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Abstract We describe several explicit examples of simple abelian surfaces over real
quadratic fields with real multiplication and everywhere good reduction. These exam-
ples provide evidence for the Eichler–Shimura conjecture for Hilbert modular forms
over a real quadratic field. Several of the examples also support a conjecture of Brumer
and Kramer on abelian varieties associated to Siegel modular forms with paramodular
level structures.

Mathematics Subject Classification 11F41 · 11F46 · 11F67 · 11G10

1 Introduction

A celebrated result of Fontaine [20] (see also Abrashkin [1]) asserts that there is no
abelian scheme over Z. In other words, there is no abelian variety over Q with every-
where good reduction. However, long before this result, there were a few examples of
elliptic curves of unit conductor over quadratic fields in the literature. For example,
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1366 L. Dembélé, A. Kumar

the curve

E : y2 + xy + ε2y = x3,

where ε = 5+√
29

2 is the fundamental unit in F = Q(
√
29), was known to Tate,

and to Serre who extensively studied it in [38]; it is also alluded to in [42]. Since
then, there has been much work on finding elliptic curves with everywhere good
reduction over number fields, with a particular emphasis on quadratic fields; see for
example [8,12,27,36,40,48]. For real quadratic fields, the database of such curves
has been considerably expanded by Elkies [16]. In [14], it is shown that this database
is complete for all fundamental discriminants ≤1000 of narrow class number one, if
one assumes modularity. A more systematic algorithm which, given a number field F
and a finite set of primes S of its ring of integers, returns the set of all elliptic curves
over F with good reduction outside of S is given in [11]. However, this algorithm
relies on algorithms for S-integral points for elliptic curves, and has not yet been full
implemented for this reason. An alternate (and perhapsmore efficient) approachwhich
uses S-unit equations is currently being explored by Cremona and Elkies [10]. In fact,
a similar method has already been used by Smart [45] to find hyperelliptic curves of
genus 2 with good reduction outside S when F = Q.

In contrast, to the best of our knowledge there is not a single example of an abelian
surface with everywhere good reduction in the literature (except in the case when the
abelian surface has complex multiplication [13], or is a Q-surface [6,41] or a product
of elliptic curves). This could possibly be explained by the fact that all the algorithms
we mentioned above do not readily generalize to the genus 2 situation. The goal of
this paper is to remedy that situation by providing the first equations for such surfaces
over real quadratic fields.

We note that the non-existence of abelian varieties over Q with good reduction
everywhere is instrumental in the Khare–Wintenberger proof of the Serre conjecture
for Galois representations of Gal(Q/Q). As described in [28], the proof of the Serre
conjecture in retrospect can be viewed as a method to exploit an accident which occurs
in three different guises:

(a) (Fontaine, Abrashkin) There are no non-zero abelian varieties over Z.
(b) (Serre, Tate) There are no irreducible representations

ρ : Gal(Q/Q) → GL2(F),

where F is the algebraic closure of F2 or F3, that are unramified outside of 2 and
3 respectively.

(c) S2(SL2(Z)) = 0, i.e., there are no cusp forms of level SL2(Z) and weight 2.

The failure of this happy accident over general number fields, such as real quadratic
fields, means that new techniques are needed for analogous modularity results.

Our approach to the construction of abelian surfaces with everywhere good reduc-
tion combines three key elements: (a) recent advances in the computation of Hecke
eigenvalues of Hilbert modular forms, (b) new rational models of Hilbert modular sur-
faces, and (c) the Eichler–Shimura conjecture for Hilbert modular forms. As a result
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Examples of abelian surfaces with everywhere good reduction 1367

of our investigation, we produce further evidence for the Eichler–Shimura conjecture,
as well as for a conjecture of Brumer and Kramer [5] associating abelian varieties to
paramodular Siegel modular forms on Sp(4).

The outline of the paper is as follows: in Sect. 2, we briefly recall the basic facts
regarding these three ingredients. In Sect. 3, we describe our strategy to predict and
find examples of good reduction abelian surfaces, assuming the Eichler–Shimura con-
jecture. Section 4 provides several illustrative examples of ourmethods, giving explicit
abelian surfaces with good reduction everywhere, and connecting them to appropriate
Hilbert modular forms. We conclude with a list of all our examples in Sect. 5.

2 Background

2.1 Hilbert modular forms

Let F be a totally real field of narrow class number one and degree d. We let OF be
the ring of integers of F , dF the different of F . For each i = 1, . . . , d, let a �→ a(i)

denote the i-th embedding of F into R, so that we have an identification F ⊗R � Rd .
We let F+ be the set of totally positive elements in F , i.e. the inverse image of (R+)d ,
and OF,+ = F+ ∩ OF . We fix a totally positive generator δ of dF . (Note that every
ideal has such a generator since F has narrow class number one.)

LetH be the Poincaré upper half plane. The Hilbert modular group SL2(OF ) acts
onHd by fractional linear transformations:

(
a b
c d

)
· (z1, . . . , zd) =

(
a(i)zi + b(i)

c(i)zi + d(i)

)
i=1,...,d

.

Let N be an integral ideal, and set

Γ0(N) =
{(

a b
c d

)
∈ SL2(OF ) : c ∈ N

}
.

Let k ≥ 2 be an even integer. A Hilbert modular form of weight1 k and level N is a
holomorphic function f : Hd → C such that

f (γ z) =
(

d∏
i=1

(c(i)zi + d(i))

)k

f (z) for all γ =
(
a b
c d

)
∈ Γ0(N).

Let f be a Hilbert modular form of weight k and levelN. Then f is invariant under
the matrices

(1 μ
0 1

)
for μ ∈ OF , which act as z �→ z + μ. Hence, by the Koecher

principle [4], f admits a q-expansion of the form

1 More precisely, this defines a Hilbert modular form of parallel weight k.
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1368 L. Dembélé, A. Kumar

f (z) = a0 +
∑

μ∈OF,+

aμe
2π iTr( μz

δ
),

where Tr(νz) = ν(1)z1 + · · · + ν(d)zd , for ν ∈ F+. We say that f is a cusp form
if a0 = 0. Since f is invariant under the action of the matrices diag(ε, ε−1) for
ε ∈ O×

F in SL2(OF ), which act as z �→ ε2z, we have aε2μ = aμ for all μ ∈ OF,+
and ε ∈ O×

F . Let f be a cusp form of weight k and level N. Then, for every ideal
m ⊆ OF , the quantity am( f ) = aμ, where μ is a totally positive generator of m,
is well-defined and depends only on m. We call it the m-th Fourier coefficient of
f . When f is a normalized eigenform for the Hecke operators (i.e. a(1)( f ) = 1),
the eigenvalue of the Hecke operator Tm is am( f ) for each m � N. It is a theorem
of Shimura [44] that in this situation, the am( f ) are algebraic integers and the Z-
subalgebra O f = Z[am( f ) : m ⊆ OF ] ⊂ C has finite rank and is therefore an order
in some number field K f (called the field of Fourier coefficients of f ). For more
background on Hilbert modular forms, see [4,14,19].

Here, we wish to point out some new techniques in the computation of Hilbert mod-
ular forms,which arise from theEichler–Jacquet–Langlands–Shimizu correspondence
between Hilbert modular forms and quaternionic modular forms. We will not go into
details here, but instead refer the reader to [14] for a detailed description of these
methods. The upshot is that it is possible to efficiently compute systems of Hecke
eigenvalues for Hilbert modular cusp forms by instead computing modular forms on
finite spaces or on Shimura curves. This will be crucial to our methods in this paper.
The corresponding algorithms have been implemented in the Hilbert Modular Forms
Package in Magma [3]).

2.2 Hilbert modular surfaces

Let K be a real quadratic field of discriminant D′. The Hilbert modular surface Y−(D′)
is a compactification of the coarse moduli space which parametrizes principally polar-
ized abelian surfaces with real multiplication by the ring of integers OK of K , i.e.
pairs (A, ι), where ι : OK → EndQ(A) is a homomorphism. The complex points
Y−(D′)(C) of this space are obtained by compactifying SL2(OK )\(H+×H−), where
H+ andH− are the upper and lower half-planes respectively, by adding finitely many
cusps and resolving the singularities of the resulting space. TheHilbertmodular surface
maps to the moduli space A2 of principally polarized abelian surfaces, by forgetting
the action ofOK . Its image is the Humbert surfaceHD′ , and the map Y−(D′) → HD′
is a double cover, ramified along a union of modular curves. The surfaces Y−(D′) have
models over the integers, with good reduction away from primes dividing D′.

Recently, Elkies and the second author [17] computed explicit birational models
over Q for these Hilbert modular surfaces for all the fundamental discriminants D′
less than 100, by identifying the Humbert surfaceHD′ with a moduli space of elliptic
K3 surfaces, which may be computed explicitly. For the fundamental discriminants
in the range 1 < D′ < 100, the Humbert surface is a rational surface, i.e. birational
to P2 over Q (and in fact, even over Q). Therefore, they are able to exhibit HD′ as
a double cover of P2, with equation z2 = f (r, s), where r, s are parameters on P2.
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Examples of abelian surfaces with everywhere good reduction 1369

They also get the map to A2, which is birational to M2, the moduli space of genus
2 curves. It is given by producing the Igusa–Clebsch invariants of the image point as
rational functions of r and s.

Remark 1 Hilbert modular surfaces have been an object of extensive study in number
theory and arithmetic geometry, especially in the latter half of the twentieth century.
In particular, their geometric classification was described by Hirzebruch, van de Ven,
Zagier, van der Geer and others. In the comprehensive reference [50], arithmetic
models for some of them are also described. However, for our work, we need explicit
equations for these surfaces along with the map to A2, and this does not seem to be
available for any discriminant other than 5 except in [17] (though it could be worked
out in principle using Hilbert and Siegel modular forms). Consequently, we will use
the equations from [17] throughout.

2.3 Eichler–Shimura conjecture

The following conjecture is instrumental in identifying the examples in this paper.

Conjecture 1 (Eichler–Shimura) Let F be a totally real number field and N an
integral ideal of F. Let f be a Hilbert newform of weight 2 and level N. Let
O f = Z[am( f ) : m ⊆ OF ] be the order generated by the Fourier coefficients of
f , and K f its field of fractions. There exists an abelian variety A f /F of dimension
[K f : Q] with good reduction outside of N and with O f ↪→ EndF (A f ), such that

L(A f , s) =
∏

τ∈Hom(K f ,C)

L( f τ , s),

where

L( f τ , s) :=
∑

m⊆OF

am( f )τ

Nms
.

When F = Q, this conjecture is a theorem, due to Eichler for prime level and
Shimura in the general case. The Eichler–Shimura construction can be summarized
as follows. Let N > 1 be an integer, and let X1(N ) be the modular curve of level
Γ1(N ). This curve and its Jacobian J1(N ) are defined over Q. We recall that the
space S2(Γ1(N )) of cusp forms of weight 2 and level Γ1(N ) is a T-module, where
T is the Hecke algebra. Let f ∈ S2(Γ1(N )) be a newform, and let I f = AnnT( f ).
Shimura [43] showed that the quotient

A f := J1(N )/I f J1(N )

is an abelian variety A f of dimension [K f : Q] defined over Q with endomorphisms
by the order O f = Z[an( f ) : n ≥ 1] and that

L(A f , s) =
∏
g∈[ f ]

L(g, s),

where [ f ] denotes the Galois orbit of f .
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1370 L. Dembélé, A. Kumar

One of the main consequences of the proof of the Serre conjecture [39] by Khare–
Wintenberger [29] is that the converse to Conjecture 1 is true when F = Q. That is,
an abelian variety of GL2-type is isogenous to a Q-simple factor of J1(N ) for some N
[30]. And so, this provides a theoretical construction of all abelian varieties of GL2-
type over Q with a prescribed conductor. In fact, one can make this explicit in many
cases (see [9] for elliptic curves, and [23,25] for abelian surfaces).

For [F : Q] > 1, the known cases of Conjecture 1 exploit the cohomology of
Shimura curves. For instance, the conjecture is known when [F : Q] is odd, or when
N is exactly divisible by a prime p ofOF [51]. The simplest case inwhich Conjecture 1
is still unknown is when f is a newform of level (1) and weight 2 over a real quadratic
field. In that case, the conjecture predicts that the associated abelian variety A f has
everywhere good reduction.

3 The strategy

Let F be a number field of class number 1, and E an elliptic curve over F given by a
(global minimal) Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

with ai ∈ OF , the ring of integers of F . The invariants c4 and c6 of E satisfy the
equation c34 − c26 = 1728Δ, where Δ is the discriminant of E . In other words, the pair
(c4, c6) is an OF -integral point on the curve

y2 = x3 − 1728Δ. (1)

Since E has everywhere good reduction if and only if Δ is a unit in OF , we can find
all the elliptic curves over F with everywhere good reduction by solving (1) asΔ runs
over a finite set of representatives of O×

F /(O×
F )12. (Note that given a pair (c4, c6),

we get a minimal model by using the Tate algorithm.) Most of the algorithms we
mentioned earlier rely on this fact.

Unfortunately, the reduction of abelian varieties of higher dimension is not charac-
terized by a nice single diophantine equation such as (1). For this reason, we need an
additional ingredient which will guide our search. This extra input is provided by the
Eichler–Shimura conjecture.

Suppose we have a Hilbert modular eigenform f of weight 2 over F , with Hecke
eigenvalues am( f ) in a real quadratic field K f of discriminant D′. The Eichler–
Shimura conjecture predicts that there should be an abelian variety A over F of
dimension [K f : Q] = 2, (up to isogeny) associated to this data, which has real
multiplication by an order in K f . Furthermore, the conductor of A should divide the
level N of f . In particular, if f has level (1), the conjectural abelian surface A has
good reduction everywhere. This observation will be the source of our examples in
this paper, for which the abelian surface turns out to be principally polarized, and also
has real multiplication by the full ring of integers of K f . Our strategy to produce such
A is as follows:
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Examples of abelian surfaces with everywhere good reduction 1371

(a) Find a Hilbert modular form of level (1) and weight 2 for a real quadratic field
F , with coefficients in a real quadratic field K f of discriminant D′.

(b) Find an F-rational point on the Hilbert modular surface Y−(D′), for which the
L-function of the associated abelian surface matches that of f at several Euler
factors, up to twist.

(c) Compute the correct quadratic twist of the abelian surface, or the genus 2 curve.
(d) Check that the abelian surface has good reduction everywhere.
(e) Prove that the L-functions indeed match up.

Note that there is no reason one has to restrict to the case when the base field
is a real quadratic field F . The next interesting case in which the Eichler–Shimura
conjecture is not known is that of totally real quartic base fields L . So one could
look for eigenforms of weight 2 for SL2(OL) whose Fourier coefficients are in a
real quadratic field K of discriminant D, and on the other hand try to find L-rational
points on the Hilbert modular surface Y−(D). In this paper, we looked at quadratic
base fields F for convenience. On the other hand, if we instead want examples for
which the field K f has larger degree, we might need explicit rational models for the
appropriate Hilbert modular varieties, which are not currently available. Hence the
choice of K is restricted.

For simplicity, we investigated only real quadratic fields F of narrow class number 1
anddiscriminant less than1000.We found twenty-eight examples ofHilbert newforms,
and corresponding abelian surfaces for most of these forms. We will say a few words
later about the “missing” examples, which we hope will be found in future work.

4 The examples

From now on, F will denote a real quadratic field of narrow class number one. We let
D be its fundamental discriminant. We will denote its ring of integers byOF . Letw =√
D or (1+√

D)/2 according as D is 0 or 1 mod 4, so that {1, w} is a Z-basis ofOF .
For a Hilbert newform f of weight 2 over F , we will let O f = Z[am( f ) : m ⊆ OF ]
and K f be the order and the field generated by the Fourier coefficients, respectively.
Wewill focus on forms such that [K f : Q] = 2, since we do not yet know how to write
simple equations for general Hilbert modular varieties. We let D′ be the discriminant
of K f and write e = √

D′ or (1 + √
D′)/2. We denote the non-trivial element of

Gal(F/Q) and Gal(K f /Q) by σ and τ respectively. The L-series of the conjectural
surface A f attached to f is written as

L(A f , s) = L( f, s)L( f τ , s) =
∏
p

1

Qp(N(p)−s)
,

where

Qp(T ) := (T 2 − ap( f )T + N(p))(T 2 − ap( f )
τT + N(p))

= T 4 − sp( f )T
3 + tp( f )T

2 − N(p)sp( f )T + N(p)2.
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1372 L. Dembélé, A. Kumar

Table 1 A summary of the
examples

D D′ Case

53 8 I

61 12 I

73 5 I

193 17 II

233 17 II

277 29 II

349 21 II

353 5 III

373 93 II

389 8 II

397 24 II

409 13 II

421 5 I

421 5 III

433 12 II

461 29 II

613 21 II

677 13 II

677 29 II

677 85 II

709 5 II

797 8 II

797 29 II

809 5 II

821 44 II

853 21 II

929 13 II

997 13 II

Our examples (see Table 1) can be subdivided in the following cases, with the
majority of examples coming from Case II.

I: The form f is Gal(F/Q)-invariant.
II: The form f is not Gal(F/Q)-invariant, but its Gal(K f /Q)-orbit { f, f τ } is.
III: The Gal(K f /Q)-orbit { f, f τ } is not Gal(F/Q)-invariant.

We will see that Case I is somewhat special: it is frequently possible to produce the
associated abelian surface through analytic methods for classical modular forms.

In [5], Brumer–Kramer proposed the following conjecture as a genus 2 analogue
of the Eichler–Shimura construction for classical newforms of weight 2 (with integer
coefficients).

Conjecture 2 (Brumer–Kramer) Let g be a paramodular Siegel newform of genus
2, weight 2 and level N , with integer Hecke eigenvalues, which is not in the span of
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Examples of abelian surfaces with everywhere good reduction 1373

Gritsenko lifts. Then there exists an abelian surface B defined over Q of conductor N
such that EndQ(B) = Z and L(g, s) = L(B, s).

The examples in Case II show that there is a strong connection between this con-
jecture and Conjecture 1.

4.1 Case I

In this case, the Hecke eigenvalues of the Hilbert modular form f satisfy

ap( f ) = apσ ( f ).

This implies that the form f is a base change fromQ. Let g be a newform in S2(Γ1(D))

whose base change is f . Since the level of f is (1), the form g ∈ S2(Γ1(D), χD)new

by [33, Prop. 2, p. 263], where χD is the fundamental character of the quadratic field
F = Q(

√
D). Let Lg be the coefficient field of g. Then, Lg is a quartic CM field

which contains K f . The non-trivial element of Gal(Lg/K f ), which we denote by
(x �→ x, x ∈ Lg), extends to complex conjugation. Let Bg be the abelian variety
attached to the form g. Then Bg is a fourfold such that EndQ(Bg) ⊗ Q � Lg . Let wD

be the Atkin–Lehner involution on S2(Γ1(D), χD)new. This induces an involution on
Bg , which we still denote by wD . Shimura [41, § 7.7] shows the following:

(a) wD is defined over F , and wσ
D = −wD;

(b) wD · [x] = [x] · wD , where [x] denotes the endomorphism induced on Bg by
x ∈ Lg .

(c) The abelian surface A f := (1+wD)Bg is defined over F , and is isogenous to its
Galois conjugate given by Aσ

f := (1 − wD)Bg . Moreover, we have

Bg ⊗Q F ∼ A f × Aσ
f .

So in this case, the existence of the surface A f is a direct consequence of the classical
Eichler–Shimura construction.

Although Conjecture 1 is known in this case, it would still be desirable to have an
explicit equation for the surface A f . We outline two methods to find it, the first of
which is special to this case.

4.1.1 Method 1

This method is analytic, and has an obvious connection with the Oda conjecture [35,
p. xii] for Hilbert modular forms that arise from base change. It assumes that both A f

and Aσ
f are principally polarizable. To describe it, we recall that by [7, Theorems 6.2.4

and 6.2.6], there exist newforms g1, g2 ∈ S2(Γ1(D), χD)new such that g1, g1, g2 and
g2 form a basis of the Hecke constituent of g and

wD(g1) = λD(g1)g1, wD(g2) = λD(g2)g2,
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1374 L. Dembélé, A. Kumar

where aD(g) is the Hecke eigenvalue of g at D and λD(g) = aD(g)√
D

, the pseudo-

eigenvalue of wD . The matrix of wD in the basis {g1, g1, g2, g2} is given by

WD :=

⎡
⎢⎢⎣

0 λD(g1) 0 0
λD(g1) 0 0 0

0 0 0 λD(g2)
0 0 λD(g2) 0

⎤
⎥⎥⎦

From this, we see that W σ
D = −WD . The following lemma is a simple adaptation of

Cremona’s [8, Lemma 5.6.2].

Lemma 1 The set of forms h±
i := 1

2 (gi ± wD(gi )), i = 1, 2, are bases for the ±-
eigenspaces of WD, acting on the Hecke constituent of g, which give a decomposition
of the space of differential 1-forms H0(Bg ⊗Q F,�1

Bg⊗QF/F ) according to the action
of Gal(F/Q).

Let H1(Bg, Z)± denote the±-eigenspaces ofwD . They are free Hecke submodules
of H1(Bg, Z) of rank 4 over Z, which are direct summands.

Lemma 2 LetΛ±
g be the period lattices obtained by integrating the forms in Lemma 1

against H1(Bg, Z)±, and set Λg = Λ+
g ⊕ Λ−

g . Then, there exist an abelian fourfold
B ′
g defined over Q, and an isogeny φ : B ′

g → Bg whose degree is a power of 2, such
that B ′

g(C) = C4/Λg. Moreover, B ′
g = ResF/Q(A f ) where A f is an abelian surface

defined over F.

Proof We first note that the complex tori C2/Λ±
g and C4/Λg have canonical Riemann

forms obtained by restriction of the intersection pairing 〈·, ·〉 on Bg . Therefore, they
are the complex points of some abelian varieties. Since h+

1 , h+
2 , h−

1 , h−
2 is a basis

of the Hecke constituent of g, [41, Theorem 7.14 and Proposition 7.19] imply that
there exist a fourfold B ′

g defined over Q, and an isogeny φ : B ′
g → Bg , such that

B ′
g(C) = C4/Λg .
Next, let x ∈ H1(Bg, Z), then we have

2x = (x + wDx) + (x − wDx) = y+ + y− ∈ H1(Bg, Z)+ ⊕ H1(Bg, Z)−.

Hence the exponent of H1(Bg, Z)+ ⊕ H1(Bg, Z)− inside H1(Bg, Z) divides 2. This
implies that the degree of φ is a power of 2.

Since wD is defined over F and wσ
D = −wD , the bases {h+

1 , h+
2 } and {h−

1 , h−
2 } are

Gal(F/Q)-conjugate. Therefore C2/Λ+
g and C2/Λ−

g are the complex points of some
abelian surfaces defined over F that are Galois conjugate. Let A f be the surface such
that A f (C) = C2/Λ+

g . Then, we see that B
′
g = ResF/QA f by construction.

In practice, we can replace Bg by B ′
g , and hence assume that

H1(Bg, Z) = H1(Bg, Z)+ ⊕ H1(Bg, Z)− = H1(A f , Z) ⊕ H1(A
σ
f , Z).
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Examples of abelian surfaces with everywhere good reduction 1375

The above integration then gives the period lattice decomposition

ΩBg = ΩA f × ΩAσ
f

= (Ω1 | Ω2) × (Ωσ
1 | Ωσ

2 ).

Provided that the intersection pairing restricted to H1(A f , Z) and H1(Aσ
f , Z) induces

principal polarizations, we can compute the surfaces A f and Aσ
f as Jacobians of curves

C f and Cσ
f (defined over F).

We illustrate this with the following example. The smallest discriminant for which
we obtain a surface which satisfies Case I is D = 53. The abelian surface A f has real
multiplication by (an order in) the field Q(

√
2). In fact, we will see that it has real

multiplication by the full ring of integers.
A symplectic basis for H1(Bg, Z) is given by the modular symbols [47]

γ1 := −{−1/35, 0} + {−1/26, 0},
γ2 := −{−1/47, 0},
γ3 := {−1/37, 0},
γ4 := {−1/47, 0} − {−1/15, 0} + {−1/13, 0},
γ5 := −{−1/28, 0},
γ6 := −{−1/44, 0},
γ7 := {−1/15, 0} − {−1/44, 0},
γ8 := {−1/28, 0} + {−1/21, 0} − {−1/26, 0}.

Computing the matrix G of the intersection pairing in that basis, we see that Bg is
principally polarized. We obtain the integral bases {δ1, δ2, δ3, δ4} and {δ′

1, δ
′
2, δ

′
3, δ

′
4}

for H1(Bg, Z)+ and H1(Bg, Z)−, respectively, where

δ1 := −{−1/35, 0} + {−1/26, 0},
δ2 := {−1/37, 0} − {−1/47, 0} + {−1/15, 0} − {−1/13, 0},
δ3 := −{−1/28, 0},
δ4 := −{−1/28, 0} + {−1/15, 0} − {−1/44, 0} − {−1/21, 0} + {−1/26, 0},
δ′
1 := −{−1/47, 0},

δ′
2 := {−1/37, 0} + {−1/47, 0} − {−1/15, 0} + {−1/13, 0},

δ′
3 := −{−1/44, 0},

δ′
4 := {−1/28, 0} + {−1/15, 0} − {−1/44, 0} + {−1/21, 0} − {−1/26, 0}.

In this case, we verify that the index of H1(Bg, Z)+ ⊕ H1(Bg, Z)− inside H1(Bg, Z)

is 4, and that the restriction of the intersection pairing to each direct summand
H1(Bg, Z)± is of type (1, 2). This means that A f and Aσ

f are not principally polarized
with respect to the Riemann form given by the restriction of the intersection pairing
from Bg . Let G± be the corresponding matrices for these pairings. We remedy this
situation by finding a suitable element of the Hecke algebra, as in [24, Section 4.2].
The element u = −e − 2 ∈ O f has norm 2, and acts on H1(Bg, Z)± as T±

7 where T7
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1376 L. Dembélé, A. Kumar

is the Hecke operator at 7. Letting G±
u = T±

7 · G±, we obtain principal polarizations
on A f and Aσ

f by [24, Proposition 3.11].

By integrating the bases of differential forms {h+
1 , h+

2 } and {h−
1 , h−

2 } fromLemma 1
against the Darboux bases

⎛
⎜⎜⎝

η1
η2
η3
η4

⎞
⎟⎟⎠ :=

⎛
⎜⎜⎝
0 0 1 2
1 −1 0 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

δ1
δ2
δ3
δ4

⎞
⎟⎟⎠ and

⎛
⎜⎜⎝

η′
1

η′
2

η′
3

η′
4

⎞
⎟⎟⎠ :=

⎛
⎜⎜⎝
1 0 0 4
0 0 0 1
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

δ′
1

δ′
2

δ′
3

δ′
4

⎞
⎟⎟⎠ ,

respectively, we obtain the Riemann period matrices ΩA f and ΩAσ
f
, where

Ω1 :=
(

2.53595... + 2.39271...i −4.32914... − 4.08462...i
−66.45185... − 24.43147...i 19.46329... + 7.15581...i

)
,

Ω2 :=
(

1.79318... − 1.69190...i 6.12233... − 5.77653...i
46.98855... − 17.27566...i 27.52526... − 10.11984...i

)
,

Ωσ
1 :=

(−2.44814... + 4.22343...i 2.44814... + 4.22343...i
0.78506... + 1.10501...i −0.78506... + 1.10501...i

)
,

Ωσ
2 :=

(
1.43409... + 2.47403...i −8.35849... + 14.41970...i

−2.68038... + 3.77277...i 0.45988... + 0.64730...i

)
.

This yields the normalized period matrices

Z :=
(−0.65878... + 0.69909...i −0.40996... + 0.82303...i

−0.40996... + 0.82303...i −0.32227... + 1.89394...i

)
,

Zσ :=
(−0.14337... + 1.54762...i 1.99999... − 0.64475...i

2.00000... − 0.64475...i 0.14337... + 1.54762...i

)
.

We compute the Igusa–Clebsch invariants I2, I4, I6 and I10 to 200 decimal digits of
precision using Z and Zσ , and identify them as elements in F (due to Lemma 2). In
the weighted projective space P2

(1:2:3:5), this gives the point

(I2 : I4 : I6 : I10)
=

(
1 : −21504b + 81889

5973136
: −1241984b + 3114075

1122949568
: 1564843b + 21688699

1362467130944816

)
,

where b = √
53. By using Mestre’s algorithm [34] which is implemented in Magma,

we obtain a curve with above invariants. We reduce this curve using the algorithm
in [2] implemented in Sage [37] to get the curve

C ′
f : y2 = (−6w + 25)x6 + (−60w + 246)x5 + (−242w + 1017)x4

+ (−534w + 2160)x3 + (−626w + 2688)x2

+ (−440w + 1724)x − 127w + 567.
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Examples of abelian surfaces with everywhere good reduction 1377

Table 2 The first few Hecke
eigenvalues of a base change
newform of level (1) and weight
2 over Q(

√
53)

Here e = √
2

Np p ap( f ) sp( f ) tp( f )

4 2 e + 1 2 7

7 −w − 2 −e − 2 −4 16

7 −w + 3 −e − 2 −4 16

9 3 −3e + 1 2 1

11 w − 2 3e 0 4

11 w + 1 3e 0 4

13 w − 1 −2e + 1 2 19

13 −w −2e + 1 2 19

17 −w − 5 −3 −6 43

17 w − 6 −3 −6 43

25 5 2e + 4 8 58

29 −w − 6 3e − 3 −6 49

29 w − 7 3e − 3 −6 49

We have used floating point calculations to get the equation of the curve C ′
f , but now

we can directly check that the Frobenius data of its Jacobianmatches that of the Hilbert
modular form, up to quadratic twist.

Remark 2 We computed the curve C ′
f by using the normalized period matrix Z . We

could have instead applied the Jacobian nullwerte method [23,25] to the periodsmatri-
cesΩA f andΩAσ

f
. This has the advantage of producing curves with small coefficients,

needing no further reduction.

Remark 3 For the other Hilbert modular forms in Case I, we obtained the correspond-
ing abelian surfaces usingMethod 1. The only exception is D = 61, where the abelian
surface has RM by Z[√3] and is naturally (1, 2)-polarized, and is therefore not prin-
cipally polarizable by [24, Corollary 2.12 and Proposition 3.11]; it is not treated in
this paper (Table 2).

4.1.2 Method 2

An equation for the Hilbert modular surface Y−(8) is given in [17] (see 2.2 for a quick
review of the results we need here). As a double-cover of P2

r,s , it is given by

z2 = 2(16rs2 + 32r2s − 40rs − s + 16r3 + 24r2 + 12r + 2).

It is a rational surface (even over Q) and therefore the rational points are dense. In
particular, there is an abundance of rational points of small height. The Igusa–Clebsch
invariants (I2 : I4 : I6 : I10) ∈ P2

(1:2:3:5) are given by

(
−24B1

A1
,−12A,

96AB1 − 36A1B

A1
,−4A1B2

)
,
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1378 L. Dembélé, A. Kumar

where

A1 = 2rs2,

A = −(9rs + 4r2 + 4r + 1)/3,

B1 = (rs2(3s + 8r − 2))/3,

B = −(54r2s + 81rs − 16r3 − 24r2 − 12r − 2)/27,

B2 = r2.

Recall that we expect to find a point of Y−(8) over F = Q(
√
53), corresponding to the

principally polarized abelian surface A which should match the Hilbert modular form
f . We first make a list of all F-rational points of height ≤200 on the Hilbert modular
surface. Next, for each of these rational points, we try to construct the corresponding
genus 2 curveC over F , whose Jacobian corresponds to themoduli point (r, s)we have
chosen, and check whether the characteristic polynomial of Frobenius on its first étale
cohomology group matches up the polynomial Qp(T ) giving the corresponding Euler
factor of surface A f attached to the Hilbert modular form. If a candidate point (r, s)
passes this test for say the first 50 primes (ordered by norm) of F of good reduction
for f and A = J (C), we can be reasonably convinced that it is the correct curve, and
then try to prove that A is associated to f .

There are two subtleties in the search. First, since the Hilbert modular surface
Y−(D′) is only a coarse moduli space, the point (r, s) is not enough to recover the
curve up to F-isomorphism. The Igusa–Clebsch invariants are rational functions in r
and s, and they are only enough to pin down C up to quadratic twist. Therefore, when
we match the quartic L-factors Lp(A, T ) and Qp(T ), we need to allow for

Lp(A,±T ) = Qp(T )

rather than just the plus sign. Second, the Igusa–Clebsch invariants do not always
allow us to define C over the base field F ; there is often a Brauer obstruction. Even
when C is definable over F (which is the case we are interested in), it can be com-
putationally expensive to do so. Therefore, it is convenient to speed up the process
of testing compatibility with f by first reducing (I2, I4, I6, I10) modulo p (assuming
good reduction) and then producing a curve Dp over Fq from these reduced invariants,
where q = Np. If C exists over F , then its reduction Cp will be the same as Dp up to
quadratic twist. The advantage is that the Brauer obstruction vanishes over the finite
field Fq , making it very easy to check compatibility at p.

In this particular example, a search of Y−(8) for all points of height≤200 using [15]
(implemented in Sage) gives the parameters

r = −24 + 10w

112
, s = 136 − 24w

112
,

and the Igusa–Clebsch invariants

I2 = 208 + 88w,
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Examples of abelian surfaces with everywhere good reduction 1379

I4 = −1660 − 588w,

I6 = −428792 − 135456w,

I10 = 643072 + 204800w.

This leads to the same curve C ′
f as above.

By further reducing the curve we obtained by either of Methods 1 or 2, we get the
following.

Theorem 1 Let C = C f : y2 + Q(x)y = P(x) be the curve over F, where

P := −4x6 + (w − 17)x5 + (12w − 27)x4 + (5w − 122)x3

+(45w − 25)x2 + (−9w − 137)x + 14w + 9,

Q := wx3 + wx2 + w + 1.

Then

(a) The discriminant of this curve is ΔC = −ε7. Thus C has everywhere good
reduction.

(b) The surface A := J (C) is modular and corresponds to the unique Hecke con-
stituent [ f ] in S2(1), the space of Hilbert cusp forms of weight 2 and level (1)
over F = Q(

√
53).

Proof A direct calculation shows that ΔC = −ε7. By construction, A has real multi-
plication by O f = Z[√2], where 7 is split. Let λ be one of the primes above 7, and
consider the λ-adic representation

ρ = ρA,λ : Gal(Q/F) → GL2(K f,λ) � GL2(Q7),

and its reduction ρ modulo λ. We will show that ρ is modular by using [46, Theorem
A]. For this, it suffices to show that ρ is reducible or, equivalently, that A has a 7-torsion
point defined over F . By definition, we have

A(F) � Pic0(C)(F).

So it is enough to find a degree zero divisor D defined over F such that 7D is principal.
To this end, we consider the field L = F(α), where α is a root of the polynomial
x2 − wx + 3. Let σ ′ ∈ Gal(L/F) be the non-trivial involution. Then, the point P =
(α, (−6w − 12)α + 2w + 18) ∈ C(L), and the divisor D := P+σ ′(P)−2∞belongs
to Pic0(C)(F). An easy calculation shows that 7D ∼ (0). Hence, D corresponds to a
point of order 7 in A(F).

Since S2(1) has dimension 2 and is spanned by [ f ], A must correspond to this
Hilbert newform.

Remark 4 Both C and A have everywhere good reduction. However, this is not true
in some of the other examples. Indeed, it can happen that a curve C has bad reduction
at a prime p while Jac(C) does not. (See the example of Theorem 3.)
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Remark 5 The modularity of the abelian surface A = Jac(C) we found means that it
is isogenous to the surface A f obtained from the Eichler–Shimura construction over
Q. Since A f is a Q-surface, so is A. In fact, the proof of the reducibility of ρA,λ

implies that A and its Galois conjugate are related by a 7-isogeny.

4.2 Case II

The following result explains the connection between Conjectures 1 and 2.

Proposition 1 Assume that Conjecture 2 is true. Let F be a real quadratic field. Let
f be a Hilbert newform of weight 2 and levelN over F, which satisfies the hypotheses
of Case II. Then f satisfies Conjecture 1.

Proof Since f is a non-base change, [26, Main Theorem] implies that there is a
paramodular Siegel newform g of genus 2, level ND2 and weight 2 attached to f ,
where N = NF/Q(N). Moreover, since Gal(F/Q) preserves { f, f τ }, we must have

apσ ( f ) = ap( f )
τ

for all primes p ⊆ OF . Therefore, the Hecke eigenvalues of the form g are integers. So
by Conjecture 2, there is an abelian surface Bg defined over Q with EndQ(Bg) = Z
such that L(Bg, s) = L(g, s). Let A f be the base change of Bg to F . Then, by
construction, we have

L(A f , s) = L( f, s)L( f τ , s).

Hence, A f satisfies Conjecture 1. ��
Remark 6 AssumeConjecture 2. By Proposition 1, if A f is an abelian surface attached
to a Hilbert newform f satisfying Case II, then A f is the base change to F of some
surface B defined over Q, which acquires extra endomorphisms. Therefore, we know
that the Igusa–Clebsch invariants of A f are in Q, and we can use this fact in looking
for A f .

The first real quadratic field of narrow class number 1 where there is a form f
of level (1) and weight 2, which satisfies Case II, is F = Q(

√
193) (see Table 3).

The coefficients of f generate the ring of integers O f := Z[ 1+
√
17

2 ] of the field
K f = Q(

√
17).

Theorem 2 Let C : y2 + Q(x)y = P(x) be the curve over F, where

P(x) := 2x6 + (−2w + 7)x5 + (−5w + 47)x4 + (−12w + 85)x3

+(−13w + 97)x2 + (−8w + 56)x − 2w + 1,

Q(x) := −x − w.

Then
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Table 3 The first few Hecke
eigenvalues of a non-base
change newform of level (1) and
weight 2 over Q(

√
193)

Here e = (1 + √
17)/2

Np p ap( f ) sp( f ) tp( f )

2 9w − 67 e 1 0

2 9w + 58 −e + 1 1 0

3 −2w + 15 e 1 2

3 2w + 13 −e + 1 1 2

7 −186w − 1199 −e + 2 3 12

7 186w − 1385 e + 1 3 12

23 38w − 283 −e − 6 −13 84

23 −38w − 245 e − 7 −13 84

25 5 1 2 51

31 −16w − 103 e − 3 −5 64

31 −16w + 119 −e − 2 −5 64

43 4w + 25 e + 4 9 102

43 −4w + 29 −e + 5 9 102

(a) The discriminant ΔC = −1, hence C has everywhere good reduction.
(b) The surface J (C) is modular and corresponds to the form f listed in Table 3.

Remark 7 A theorem of Stroeker [48] implies2 that if E is an elliptic curve defined
over a real quadratic field F having good reduction everywhere, then ΔE /∈ {−1, 1}.
However, this fails for curves of genus 2, by the above example.

Proof We show that ΔC = −1 as before, which implies that C and J (C) both have
everywhere good reduction. However, it is important to observe that we located the
curve based on our heuristics which rely on Conjectures 1 and 2. Indeed, let S2(1) be
the space of Hilbert cuspforms of level (1) and weight 2 over F = Q(

√
193). Then

S2(1) has dimension 9, and decomposes into two Hecke constituents of dimension
2 and 7 respectively. The form f in Table 3 is an eigenvector in the 2-dimensional
constituent, and it is a non-base change whose Hecke constituent is Galois stable. So
we can look for our surface A f with the help of Proposition 1.

To find the curve C , we proceed as in Sect. 4.1.2, using the results from [17]. The
surface Y−(17) is a double-cover of the (weighted) projective space P2

g,h/Q given by

z2 = −256 h3 + (192 g2 + 464 g + 185) h2

−2 (2 g + 1) (12 g3 − 65 g2 − 54 g − 9) h + (g + 1)4 (2 g + 1)2.

A search for Q-rational points of low height on this surface yields the following
parameters, Igusa–Clebsch and G2 invariants:

g = 0, h = −1/4,

I2 = 40, I4 = −56, I6 = −669, I10 = −4,

2 Stroeker’s result is stated for imaginary quadratic fields. Elkies [16] remarks that the argument implies
the statement above for real quadratic fields.
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j1 = −3200000, j2 = −208000, j3 = −16400.

Over Q, this gives the curve

C ′ : y2 = −8x6 + 220x5 − 44x4 − 14828x3 − 4661x2 − 21016x + 10028.

After finding a suitable twist and reducing the Weierstrass equation, we get the curve
C displayed in the statement of the theorem.

To prove modularity, we note that 3 is inert in K f = Q(
√
17), and consider the

3-adic representation attached to A,

ρA,3 : Gal(Q/F) → GL2(K f,(3)) � GL2(Q9).

By computing the orders of Frobenius for the first few primes, we see that the mod3
representation

ρA,3 : Gal(Q/F) → GL2(F9)

is surjective, and absolutely irreducible. Hence ρA,3 is also absolutely irreducible.
Since 3 and 5 are unramified in the quadratic field F , the ramification indices of ρA,3
at the primes of F above them are odd. Also, since ρA,3 is unramified at (5), the
image of the inertia group at I(5) at 5 in GL2(F9) is trivial. In particular, the image of
I(5) has odd order and lies in SL2(F9). By studying the Tate module of A ×F F(ζ3),
we also see that ρ|GF(ζ3)

is absolutely irreducible. Therefore, ρA,3 is modular by [18,
Theorem 3.2 and Proposition 3.4]. We then apply [21, Theorem 1.1 in Erratum], [22]
to conclude that ρA,3 is modular. So, A is modular and corresponds to the unique

newform f ∈ S2(1) with coefficients in O f = Z[ 1+
√
17

2 ].
Corollary 1 Let B be the Jacobian of the curve C ′/Q in the proof of Theorem 2. Then
B is paramodular of level 1932.

Remark 8 In [5], the authors remarked that Conjecture 1.4 in their paper should be
verifiable by current technology for paramodular abelian surfaces B over Q with
EndQ(B) � Z. The majority of the surfaces we found fall in Case II (see Sect. 5), and
provide such evidence by Corollary 1.

In contrast to the curves in Theorems 1 and 2, we found a few curves whose
Jacobians had everywhere good reduction while the curves themselves did not. We
now discuss one such example, for the field F = Q(

√
929), with Hecke eigenvalues

in Q(
√
13).

Theorem 3 Let C : y2 + Q(x)y = P(x) be the curve over F, where

P(x) := 23x6 + (90w − 45)x5 + 33601x4 + (28707w − 14354)x3

+3192149x2 + (811953w − 405977)x + 19904990,

Q(x) := x3 + x + 1.

Then
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Table 4 The first few Hecke
eigenvalues of a non-base
change newform of level (1) and
weight 2 over Q(

√
929)

Here e = (1 + √
13)/2

Np p ap( f ) sp( f ) tp( f )

2 561w − 8830 −e + 1 1 1

2 561w + 8269 e 1 1

5 −4w − 59 −e + 1 1 7

5 4w − 63 e 1 7

9 3 3 6 27

11 −8342w + 131301 2e − 3 −4 13

11 8342w + 122959 −2e − 1 −4 13

19 −50w − 737 e − 2 −3 37

19 50w − 787 −e − 1 −3 37

23 −42832w + 674165 4e − 4 −4 −2

23 42832w + 631333 −4e −4 −2

29 −2w + 31 −2e + 6 10 70

29 2w + 29 2e + 4 10 70

(a) The discriminant ΔC = 322, hence C has bad reduction at (3).
(b) The surface A := J (C) has everywhere good reduction. It is modular and cor-

responds to the form f listed in Table 4.

Proof The curve C is a global minimal model for the base change to F of the curve
C ′/Q given by

C ′ : y2 = 93x6 − 14688x5 + 549594x4 + 2268918x3 + 2259369x2 − 1488402x

+13059345.

We compute the reduction C̃ ′ ofC ′ at 3 by combining [32, Theorem 1 and Proposition
2], andLiu’s algorithm implemented inSage. This returns the type (V), [I0 − I0 − 1].
So the reduction Ã′ of the Jacobian A′ of C ′ is a product of two elliptic curves whose
j-invariants are j1 = j2 = 0 ([32, Proposition 2, (v)]). This implies that A′ has non-
ordinary good reduction at (3); and so does A since 3 is inert in F . (Note that this is
consistent with the fact that a(3)( f ) = 3.) Since 3 is the only prime dividing ΔC , we
see that A has everywhere good reduction.

To prove modularity, we recall that by construction A has real multiplication by

O f = Z[ 1+
√
13

2 ], where 3 splits.We choose a prime λ above 3, and consider the λ-adic
representation

ρA,λ : Gal(Q/F) → GL2(K f,λ) � GL2(Q3)

and its reduction ρA,λ modulo λ. By computing the first few Frobenii, we see that ρA,λ

is surjective, hence irreducible. SinceGL2(F3) is solvable,ρ ismodular byLanglands–
Tunnell [31, Chap. I] and [49]. By looking at the Tate module of A×F F(ζ3), we also
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Table 5 Unresolved cases

Case List of (D, D′)

II (433, 12), (613, 21), (677, 85), (821, 44), (853, 21)

III (353, 5), (421, 5)

see that ρA,λ is not induced from F(ζ3). So, we conclude that ρA,λ is modular by [21,
Theorem 1.1 in Erratum], [22]. ��
Remark 9 The example in Theorem 3 and other similar ones in Table 7 underscore the
difficulty in producing effective algorithms for principally polarized abelian surfaces
with good reduction outside a (finite) prescribed set of primes S of OF . Indeed, let A
be such a surface so that A = Jac(C), where C is a curve defined over F with good
reduction outside a finite set of primes T ⊇ S. Then, the set T \S is non-empty in
general, depends a priori on A, and is hard to predict. When A has real multiplication
by some quadratic field K and is attached to a modular form f , T \S is contained in
the set of non-ordinary primes for f , which is possibly infinite.

Similar proofs apply for the other Hilbert modular forms in Case II for which we
were able to find matching principally polarized abelian surfaces. However, there are
five examples (listed in Table 5) for which we were unable as yet to find matching
abelian surfaces. In each case, the Fourier coefficients of the form indicate that the
missing surface would have real multiplication by the full ring of integers OD′ . So,
assuming the Eichler–Shimura conjecture holds, our difficulties in matching those
forms could be due to one of the following reasons:

(a) Our height bound for the rational point search on the corresponding Hilbert mod-
ular surfaces is too small. We searched for parameters r, s ∈ Q of height up to
1000.

(b) The corresponding abelian surface is not principally polarized. Note that the
criteria given in [24, Proposition 3.11] to convert an arbitrary polarization to a
principal polarization fail for each of themissing discriminants D′. For (D, D′) =
(677, 85), the field Q(

√
D′) has class number 2, whereas for the other examples,

there is no unit of negative norm.

There is also the possibility, since the models in [17] are birational to Y−(D′) (rather
than isomorphic), that we might have missed some curves or points in our search.
However, this is unlikely to be the case, as the extra points should correspond to
abelian surfaces with extra endomorphisms.

4.3 Case III

This is by far the trickiest case, since the Igusa–Clebsch invariants (and therefore r, s)
are not in Q. This leads to a much slower search for F-points on Y−(D′), compared to
searching for Q-points. We searched for points of height up to 400 using the enumer-
ation of points of small height developed in [15] (implemented in Sage), but were
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Table 6 Case I examples

D D′ Hyperelliptic polynomials

Q = wx3 + wx2 + w + 1

53 8 P = −4x6 + (w − 17)x5 + (12w − 27)x4 + (5w − 122)x3

+(45w − 25)x2 + (−9w − 137)x + 14w + 9

Q = x3 + x + 1

73 5 P = (w − 5)x6 + (3w − 14)x5 + (3w − 19)x4

+(4w − 3)x3 − (3w + 16)x2 + (3w + 11)x − (w + 4)

Q = w(x3 + 1)

421 5 P = −2(4414w + 43089)x6 + (31147w + 303963)x5

−10(4522w + 44133)x4 + 2(17290w + 168687)x3

−18(816w + 7967)x2 + 27(122w + 1189)x − (304w + 3003)

Table 7 Case II examples

D D′ Hyperellipticpolynomials

Q = −x − w

193 17 P = 2x6 + (−2w + 7)x5 + (−5w + 47)x4 + (−12w + 85)x3

+(−13w + 97)x2 + (−8w + 56)x − 2w + 1

233 17 Q = x + 1

P = −2x6 − (2w − 1)x5 − 45x4 − 4(2w − 1)x3 − 31x2 + (w − 1)x + 9

277 29 Q = −1

P = −24x6 + 31bx5 − 4615x4 + 1321bx3 + 58837x2 + 5039bx − 49745

349 21 Q = x3

P = −2x6 + 4bx5 − 1328x4 + 673bx3 − 66879x2 + 10145bx − 223536

373 93 P = (265b − 5118)(8x − b)(8960bx5 − 2020471x4 + 488608bx3

−22037369x2 + 1332394bx − 12019522)

Q = x3 + x2 + x + 1

389 8 P = −wx5 + 159x4 − (138w − 68)x3 + 6429x2 − (1619w − 809)x

+16260

397 24 P = −601x6 + 748bx5 − 154001x4 + 42596bx3 − 2631127x2

+218342bx − 2997270

Q = x3 + x2 + 1

409 13 P = −2x6 + (−3w + 1)x5 − 219x4 + (−83w + 41)x3 − 1806x2

+(−204w + 102)x − 977

461 29 Q = x3

P = −32x6 − 34bx5 − 6916x4 − 1605bx3 − 94873x2 − 6335bx − 78584
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Table 7 continued

D D′ Hyperellipticpolynomials

Q = x3 + x2 + x + 1

677 13 P = −12x6 + (61w − 31)x5 − 22335x4 + (25770w − 12886)x3

−2830998x2 + (980087w − 490044)x − 23929668

677 29 P = −4453x6 − 5786bx5 − 2120768x4 − 612392bx3 − 67342400x2

−5834038bx − 142573513

709 5 P = 2x6 + 2bx5 + 560x4 + 114bx3 + 9040x2 + 530bx + 9058

797 8 P = 1856x6 − 3784bx5 + 2561907x4 − 1160668bx3 + 235735797x2

−32038746bx + 1445987770

Q = x3 + x2 + x + 1

797 29 P = x6 + (3w − 2)x5 + 594x4 + (314w − 158)x3 + 18483x2

+(2897w − 1449)x + 37491

Q = x3 + x + 1

809 5 P = −134x6 − (146w − 73)x5 − 13427x4 − (3255w − 1627)x3

−89746x2 − (6523w − 3261)x − 39941

Q = x3 + x + 1

929 13 P = 23x6 + (90w − 45)x5 + 33601x4 + (28707w − 14354)x3

+3192149x2 + (811953w − 405977)x + 19904990

997 13 Q = x3

P = x6 + 3bx5 + 2989x4 + 1592bx3 + 475212x2 + 75831bx + 5023486

unable to find either of the two examples predicted by the Eichler–Shimura conjecture,
corresponding to the Hilbert modular forms of level 1 and weight 2 over Q(

√
353)

and Q(
√
421), both with Fourier coefficients in Q(

√
5). In addition to the reduced

search height bound, another complicating factor is the fundamental unit of F , which
might be quite large. In Case II, the discriminant of the genus 2 curve differed from
I10(r, s) by only a few small (rational) primes. However, in Case III, one has to take
into account the fact that a power of the fundamental unit might also appear in the dis-
criminant. On the other hand, principal polarizability is not an obstruction, as Q(

√
5)

has a fundamental unit of negative norm.
We hope to address the missing examples using different techniques in future work.

5 The data

In Tables 6 and 7 we list genus 2 curves y2 + Q(x)y = P(x) matching the data. We
always set b = √

D andw = (b+1)/2.We suppress Q(x)when it is 0. (We recall that
each of the curves listed has a modular Jacobian. In Case I, this is true as the Jacobian
is a Q-surface. While in Case II, we prove the modularity by the same technique as
above.)
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Appendix

In Table 8 below we list Hilbert modular form data for all the examples considered in
this paper.

Table 8 Hecke eigenvalues for the Hilbert modular forms in this paper

D = 53, D′ = 8 D = 61, D′ = 12 D = 73, D′ = 5

Np p ap ( f ) Np p ap ( f ) Np p ap ( f )

4 2 e + 1 3 −w − 3 e − 1 2 −w − 4 −e

7 −w − 2 −e − 2 3 −w + 4 e − 1 2 w − 5 −e

7 −w + 3 −e − 2 4 2 e 3 −4w − 15 −e + 1

9 3 −3e + 1 5 w − 5 −e 3 −4w + 19 −e + 1

11 w − 2 3e 5 −w − 4 −e 19 6w − 29 4e − 1

11 w + 1 3e 13 −w − 1 3 19 −6w − 23 4e − 1

13 w − 1 −2e + 1 13 w − 2 3 23 14w − 67 −3e + 4

13 −w −2e + 1 19 −3w − 11 −e + 3 23 −14w − 53 −3e + 4

17 −w − 5 −3 19 3w − 14 −e + 3 25 5 −e + 1

17 w − 6 −3 41 w − 8 −2e − 3 37 −2w − 5 5

25 5 2e + 4 41 −w − 7 −2e − 3 37 2w − 7 5

29 −w − 6 3e − 3 47 −3w − 8 4e + 6 41 30w − 143 2e + 4

D = 193, D′ = 17 D = 233, D′ = 17 D = 277, D′ = 29

Np p ap ( f ) Np p ap ( f ) Np p ap ( f )

2 9w + 58 −e + 1 2 −w − 7 e 3 w + 8 −e + 1

2 9w − 67 e 2 −w + 8 −e + 1 3 −w + 9 e

3 −2w + 15 e 7 −8w + 65 e − 1 4 2 −2

3 2w + 13 −e + 1 7 8w + 57 −e 7 6w − 53 −e + 3

7 186w − 1385 e + 1 9 3 −2 7 −6w − 47 e + 2

7 −186w − 1199 −e + 2 13 38w − 309 −e + 3 13 −w − 7 −e − 1

23 −38w + 283 −e − 6 13 −38w − 271 e + 2 13 w − 8 e − 2

23 −38w − 245 e − 7 19 −6w + 49 −3e + 3 19 4w + 31 −2e + 1

25 5 1 19 6w + 43 3e 19 −4w + 35 2e − 1

31 −16w + 119 −e − 2 23 2w + 15 −e + 2 23 −3w + 26 3

31 −16w − 103 e − 3 23 −2w + 17 e + 1 23 −3w − 23 3

43 4w + 25 e + 4 25 5 −3 25 5 −3
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Table 8 continued

D = 349, D′ = 21 D = 353, D′ = 5 D = 353, D′ = 5

Np p ap ( f ) Np p ap ( f ) Np p ap ( f )

3 −w − 9 −e + 1 2 w + 9 2e − 1 2 w + 9 −e + 1

3 w − 10 e 2 −w + 10 −e + 1 2 −w + 10 2e − 1

4 2 −2 9 3 −2e − 2 9 3 −2e − 2

5 −6w + 59 e 11 10w + 89 −2e + 2 11 10w + 89 2e + 3

5 −6w − 53 −e + 1 11 −10w + 99 2e + 3 11 −10w + 99 −2e + 2

17 13w − 128 −e + 2 17 66w − 653 −4e + 2 17 66w − 653 3

17 13w + 115 e + 1 17 −66w − 587 3 17 −66w − 587 −4e + 2

19 −5w − 44 2e 19 −28w + 277 2 19 −28w + 277 2e − 3

19 5w − 49 −2e + 2 19 28w + 249 2e − 3 19 28w + 249 2

23 −w + 11 −2e + 5 23 −8w − 71 4e − 2 23 −8w − 71 2e + 3

23 w + 10 2e + 3 23 8w − 79 2e + 3 23 8w − 79 4e − 2

29 −3w − 26 −2e − 1 25 5 −3 25 5 −3

D = 373, D′ = 93 D = 389, D′ = 8 D = 397, D′ = 24

Np p ap ( f ) Np p ap ( f ) Np p ap ( f )

3 w − 10 −2 4 2 −2 3 2w + 19 −e

3 w + 9 −2 5 −3w − 28 2e − 1 3 −2w + 21 e

4 2 3 5 −3w + 31 −2e − 1 4 2 −1

7 −6w − 55 −2 7 −w − 9 −2e − 1 11 w − 11 −e + 2

7 6w − 61 −2 7 w − 10 2e − 1 11 −w − 10 e + 2

13 −7w + 71 e + 1 9 3 −4 19 −11w + 115 2e − 2

13 −7w − 64 e + 1 11 2w + 19 −2e − 2 19 −11w − 104 −2e − 2

17 −w − 10 e − 2 11 −2w + 21 2e − 2 23 −3w − 28 2

17 −w + 11 e − 2 13 −w − 10 2e + 1 23 3w − 31 2

25 5 6 13 w − 11 −2e + 1 25 5 −4

29 −4w + 41 −e − 1 17 −8w − 75 2e − 4 29 9w − 94 1

29 −4w − 37 −e − 1 17 −8w + 83 −2e − 4 29 −9w − 85 1

D = 409, D′ = 13 D = 421, D′ = 5 D = 421, D′ = 5

Np p ap ( f ) Np p ap ( f ) Np p ap ( f )

2 219w + 2105 e − 1 3 4w − 43 2e 3 4w − 43 −2e + 1

2 219w − 2324 −e 3 4w + 39 −2e + 1 3 4w + 39 2e

3 −11066w − 106365 −e + 2 4 2 3 4 2 e − 2

3 11066w − 117431 e + 1 5 −w − 10 e − 2 5 −w − 10 3

5 −18w + 191 −e 5 w − 11 3 5 w − 11 e − 2

5 −18w − 173 e − 1 7 54w + 527 e − 2 7 54w + 527 3

17 8w + 77 4 7 −54w + 581 −e + 5 7 −54w + 581 e − 2

17 8w − 85 4 11 25w − 269 e − 2 11 25w − 269 −e + 5

23 286w − 3035 −4e + 3 11 −25w − 244 4 11 −25w − 244 0

23 286w + 2749 4e − 1 17 −3w + 32 0 17 −3w + 32 4

41 −1600w + 16979 −e + 5 17 −3w − 29 −6e + 3 17 −3w − 29 −4e + 5

41 −1600w − 15379 e + 4 31 9w − 97 −4e + 5 31 9w − 97 −6e + 3
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Table 8 continued

D = 421, D′ = 5 D = 433, D′ = 12 D = 461, D′ = 29

Np p ap ( f ) Np p ap ( f ) Np p ap ( f )

3 4w − 43 2 2 −w + 11 −e 4 2 −2

3 4w + 39 2 2 w + 10 e 5 −w − 10 e

4 2 2e − 1 3 1202w − 13107 e − 1 5 −w + 11 −e + 1

5 −w − 10 e + 2 3 −1202w − 11905 −e − 1 9 3 −3

5 w − 11 e + 2 11 −324w − 3209 −e − 3 17 w + 11 −e + 4

7 54w + 527 −2e + 2 11 −324w + 3533 e − 3 17 −w + 12 e + 3

7 −54w + 581 −2e + 2 13 94w + 931 −3 19 3w − 34 −e + 3

11 25w − 269 −4 13 −94w + 1025 −3 19 −3w − 31 e + 2

11 −25w − 244 −4 17 17152w − 187031 −2e − 3 23 −2w + 23 −e + 3

17 −3w + 32 −5e + 3 17 −17152w − 169879 2e − 3 23 −2w − 21 e + 2

17 −3w − 29 −5e + 3 25 5 0 41 w − 13 −2e + 2

31 9w − 97 2e + 4 37 −12w − 119 −3 41 −w − 12 2e

D = 613, D′ = 21 D = 677, D′ = 13 D = 677, D′ = 29

Np p ap ( f ) Np p ap ( f ) Np p ap ( f )

3 w − 13 e 4 2 0 4 2 −1

3 −w − 12 −e + 1 9 3 −4 9 3 −3

4 2 0 13 −w + 13 −e + 1 13 −w + 13 e + 2

7 8w + 95 2 13 −w − 12 e 13 −w − 12 −e + 3

7 8w − 103 2 25 5 −7 25 5 −3

17 33w + 392 −e + 5 37 −w − 11 −4e − 1 37 −w − 11 e − 3

17 33w − 425 e + 4 37 −w + 12 4e − 5 37 −w + 12 −e − 2

19 −9w − 107 3 41 w − 15 −e + 9 41 w − 15 3e

19 9w − 116 3 41 w + 14 e + 8 41 w + 14 −3e + 3

25 5 −6 49 7 −3 49 7 −10

29 −w + 14 −2e + 7 59 w − 11 −2e + 5 59 w − 11 −3e + 6

29 w + 13 2e + 5 59 −w − 10 2e + 3 59 −w − 10 3e + 3

D = 677, D′ = 85 D = 709, D′ = 5 D = 797, D′ = 8

Np p ap ( f ) Np p ap ( f ) Np p ap ( f )

4 2 −3 3 −59w − 756 2e − 1 4 2 −3

9 3 −1 3 59w − 815 −2e + 1 9 3 −3

13 −w + 13 e 4 2 0 11 −w + 15 3e

13 −w − 12 −e + 1 5 w − 14 2e + 1 11 w + 14 −3e

25 5 −7 5 −w − 13 −2e + 3 13 2w − 29 −2e − 1

37 −w − 11 e + 7 7 −16w + 221 −2e 13 2w + 27 2e − 1

37 −w + 12 −e + 8 7 −16w − 205 2e − 2 17 w + 13 −2e

41 w − 15 e + 2 11 −547w − 7009 −4e + 1 17 w − 14 2e

41 w + 14 −e + 3 11 547w − 7556 4e − 3 25 5 0

49 7 −6 19 6w − 83 2e + 4 41 −w − 15 2e − 5

59 w − 11 −e − 6 19 6w + 77 −2e + 6 41 −w + 16 −2e − 5

59 −w − 10 e − 7 29 75w − 1036 2e − 3 43 w − 13 −e − 4
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Table 8 continued

D = 797, D′ = 29 D = 809, D′ = 5 D = 821, D′ = 44

Np p ap ( f ) Np p ap ( f ) Np p ap ( f )

4 2 0 2 −219w + 3224 −e + 1 4 2 −1

9 3 −3 2 −219w − 3005 e 5 w − 15 0

11 −w + 15 3 5 21796w − 320869 e 5 −w − 14 0

11 w + 14 3 5 −21796w − 299073 −e + 1 7 −6w − 83 e − 1

13 2w − 29 e + 3 7 −18w − 247 2e − 2 7 6w − 89 −e − 1

13 2w + 27 −e + 4 7 18w − 265 −2e 9 3 −3

17 w + 13 e + 1 9 3 −4 19 5w − 74 e − 5

17 w − 14 −e + 2 13 −4w − 55 −3e + 2 19 5w + 69 −e − 5

25 5 −6 13 4w − 59 3e − 1 23 −w − 13 −e − 3

41 −w − 15 −e + 6 19 140w + 1921 e − 5 23 −w + 14 e − 3

41 −w + 16 e + 5 19 −140w + 2061 −e − 4 29 11w − 163 −2e − 3

43 w − 13 2e − 5 23 2926w − 43075 −3e + 6 29 −11w − 152 2e − 3

D = 853, D′ = 21 D = 929, D′ = 13 D = 997, D′ = 13

Np p ap ( f ) Np p ap ( f ) Np p ap ( f )

3 −w + 15 −e + 1 2 561w − 8830 −e + 1 3 −7w − 107 e

3 −w − 14 e 2 561w + 8269 e 3 −7w + 114 −e + 1

4 2 0 5 −4w − 59 −e + 1 4 2 0

19 9w + 127 5 5 4w − 63 e 13 3w + 46 2e + 2

19 −9w + 136 5 9 3 3 13 −3w + 49 −2e + 4

23 19w − 287 e + 1 11 −8342w + 131301 2e − 3 19 4w − 65 e + 1

23 19w + 268 −e + 2 11 8342w + 122959 −2e − 1 19 4w + 61 −e + 2

25 5 3 19 −50w − 737 e − 2 23 −w − 16 6

31 w − 14 −3 19 50w − 787 −e − 1 23 −w + 17 6

31 −w − 13 −3 23 −42832w + 674165 4e − 4 25 5 −4

41 8w − 121 −3e + 3 23 42832w + 631333 −4e 31 80w + 1223 −2e + 1

41 8w + 113 3e 29 2w + 29 −2e + 6 31 80w − 1303 2e − 1
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