Ratios of dijet production cross sections as a function of the absolute difference in rapidity between jets in proton–proton collisions at √s = 7 TeV

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th>Citation</th>
<th>The CMS Collaboration et al. “Ratios of Dijet Production Cross Sections as a Function of the Absolute Difference in Rapidity between Jets in Proton–proton Collisions at √s = 7 TeV.” The European Physical Journal C 72.11 (2012): n. pag. © 2012 CERN for the benefit of the CMS collaboration</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1140/epjc/s10052-012-2216-6</td>
</tr>
<tr>
<td>Publisher</td>
<td>Springer-Verlag</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://hdl.handle.net/1721.1/105519</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution 4.0 International License</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by/4.0/</td>
</tr>
</tbody>
</table>
Ratios of dijet production cross sections as a function of the absolute difference in rapidity between jets in proton–proton collisions at $\sqrt{s} = 7$ TeV

The CMS Collaboration*

CERN, Geneva, Switzerland

Abstract A study of dijet production in proton–proton collisions was performed at $\sqrt{s} = 7$ TeV for jets with $p_T > 35$ GeV and $|y| < 4.7$ using data collected with the CMS detector at the LHC in 2010. Events with at least one pair of jets are denoted as “inclusive”. Events with exactly one pair of jets are called “exclusive”. The ratio of the cross section of all pairwise combinations of jets to the exclusive dijet cross section as a function of the rapidity difference between jets $|\Delta y|$ is measured for the first time up to $|\Delta y| = 9.2$. The ratio of the cross section for the pair consisting of the most forward and the most backward jet from the inclusive sample to the exclusive dijet cross section is also presented. The predictions of the Monte Carlo event generators PYTHIA6 and PYTHIA8 agree with the measurements. In both ratios the HERWIG++ generator exhibits a more pronounced rise versus $|\Delta y|$ than observed in the data. The BFKL-motivated generators CASCADE and HEJ+ARIADNE predict for these ratios a significantly stronger rise than observed.

The measurement of inclusive jet production in pp collisions provides an important testing ground for the Standard Model. Inclusive jet production is well described at LHC energies, over a wide range in jet transverse momentum and rapidity [1, 2], by calculations at next-to-leading-order (NLO) in perturbative quantum chromodynamics (QCD) using the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) approach [3–7] and collinear factorization. The rapidity y is defined as $y = (1/2) \log[(E + p_z)/(E - p_z)]$, where E is the jet energy and p_z is the component of the jet momentum along the beam axis. As shown in [8], the production of dijets with invariant mass above 165 GeV and $|y|$ less than 2.5 is also well described by NLO predictions. When jets are well separated in rapidity, the description of the data becomes worse [2].

When the collision energy \sqrt{s} is considerably larger than the hard scattering scale given by the jet transverse momentum, p_T, the average number of produced jets grows rapidly, along with the phase space available in rapidity. This kinematic regime is expected to be described by the Balitsky–Fadin–Kuraev–Lipatov (BFKL) evolution [9–11] and k_T factorization [12–14]. An effective theory has been developed which describes strong interactions in this kinematic domain [15].

The ratio of the dijet production cross section in “inclusive” events to that in “exclusive” events, $R^{\text{incl}} = \sigma^{\text{incl}}/\sigma^{\text{excl}}$, as a function of the rapidity separation $|\Delta y|$ between two jets, is a sensitive probe of effects beyond collinear factorization [16]. Only jets with transverse momenta above a minimal value of p_T^min are considered. Events with at least one pair of jets are denoted as “inclusive”. Events with exactly one pair of jets are called “exclusive”. In the inclusive case, the rapidity separation is evaluated for each pairwise combination of jets above threshold [16]. Mueller–Navelet jet pairs [17] are a subset of the inclusive dijet class. In this case only the jet at highest rapidity (i.e. most forward) and that at lowest rapidity (most backward) are considered. At low $|\Delta y|$, the inclusive dijet ratio, R^{incl}, is always larger than the corresponding Mueller–Navelet dijet ratio, $R^{\text{MN}} = \sigma^{\text{MN}}/\sigma^{\text{excl}}$, because all the jets in the rapidity interval between the Mueller–Navelet jets contribute to the inclusive cross section.

From the theoretical point of view, an advantage of the ratios R^{incl} and R^{MN} with respect to the individual dijet production cross sections is that the influence of the uncertainty of the parton distribution functions is greatly reduced; in addition, the ratios are particularly sensitive to the parton radiation pattern [16]. At large enough energies, the parton subprocesses involve a large number of partons with compa-
rable transverse energies. Such subprocesses, governed by
BFKL evolution, lead to an increase of the ratios with in-
creasing $|\Delta y|$ [16–18]. Experimentally, an additional advan-
tage of the R^{incl} and R^{MN} ratios defined above is the cancel-
lation of most of the systematic uncertainties affecting both
numerator and denominator.

Earlier measurements of Mueller–Navelet jets with $|\Delta y|$ up
to 5 were made at the Tevatron by the D0 experiment
[19, 20]. D0 did not find indications of BFKL effects in the
azimuthal decorrelation data [19]; however, a stronger than
expected \sqrt{s} dependence of the dijet production cross
section was observed [20] when comparing the data at
$\sqrt{s} = 630$ and 1800 GeV for dijets with large rapidity se-
paration. The ATLAS Collaboration recently studied vari-
ous dijet production cross section ratios at $\sqrt{s} = 7$ TeV for
$|\Delta y| < 6$ [21]; the results are roughly in agreement with the
DGLAP predictions. At the HERA ep collider, deviations from
DGLAP were observed in studies of forward jets by the
ZEUS [22, 23] and H1 [24, 25] Collaborations. How-
never, no compelling evidence for BFKL effects was found.

The component of the CMS detector [26] most relevant for
this analysis is the calorimeter system extending to pseudo-
arapidities $|\eta| = 5.2$, where $\eta = -\log(\tan(\theta/2))$, and θ is
the polar angle relative to the anticlockwise proton beam
direction. The crystal electromagnetic calorimeter (ECAL) and
the brass/scintillator hadronic calorimeter (HCAL) ex-
tend to pseudorapidities $|\eta| = 3.0$. The HCAL cells map
to an array of ECAL crystals to form calorimeter towers
projecting radially outwards from the nominal interaction
point. The pseudorapidity region $3.0 < |\eta| < 5.2$ is cov-
ered by the hadronic forward (HF) calorimeter, which con-
sists of steel absorber wedges with embedded radiation-hard
quartz fibers, oriented parallel to the beam direction. The
calorimeter towers in the barrel region have segmentation of
$\Delta\eta \times \Delta\phi = 0.087 \times 0.087$, becoming progressively larger in
the endcap and forward regions $(\Delta\eta \times \Delta\phi = 0.175 \times 0.175
\text{at } \eta \sim 4.5)$.

The CMS trigger system consists of a hardware Level-1
trigger and a software high-level trigger. Jets formed online
by the trigger system use ECAL, HCAL and HF inputs for
energy clustering and are not corrected for the jet energy
response. The minimum-bias trigger was defined as the co-
incidence of a signal from one of the two beam scintillation
counters covering the range $3.23 < |\eta| < 4.65$ and a signal from one of the beam pick-up timing devices.

The data were collected in 2010, when LHC collided pro-
tons at $\sqrt{s} = 7$ TeV. Various triggers were used to cover
the largest possible range in rapidity separation between
jets. Dijets with moderate $|\Delta y|$ were selected by a single-jet
trigger with a threshold on the raw (uncorrected) jet trans-
verse momentum of 15 GeV. This trigger was significantly
prescaled as the instantaneous luminosity increased, and the
effective integrated luminosity recorded with it is $\sim 33 \text{ nb}^{-1}$.

Dijet events with large rapidity separation are rare. There-
fore, a dedicated trigger for forward–backward dijets was
developed. This forward–backward–dijet trigger selects
events with two jets in opposite hemispheres and $|\eta| > 3.0$,
and jet raw transverse momentum $p_T > 15$ GeV. It was op-
erated with moderate prescaling, and the effective integrated
luminosity recorded with it is $\sim 5 \text{ pb}^{-1}$. This allowed to col-
lect a number of dijet events at high $|\Delta y|$ values more than
100 times larger than with the single-jet trigger.

The trigger efficiency was measured by means of a control
sample selected with the minimum-bias trigger. The
single-jet trigger was found to be 100 % efficient for dijets
with corrected $p_T > 35$ GeV. The single-jet trigger was also
used for the determination of the efficiency of the forward–
backward–dijet trigger. The latter was 100 % efficient for
dijets with $p_T > 35$ GeV.

Jets were reconstructed offline from the energy deposi-
tions in the calorimeter towers, clustered with the anti-k_T
algorithm [27, 28] with a distance parameter $R = 0.5$. In
the reconstruction process, the contribution from each tower
was assigned a momentum, the absolute value and the di-
rection of which were given by the energy measured in the
tower, and the coordinates of the tower, respectively. The
raw jet energy was obtained from the sum of the tower en-
ergies, and the raw jet momentum from the vectorial sum of
the tower momenta. The raw jet energies were then corrected
to establish a uniform relative response of the calorimeter in
η and a calibrated absolute response in transverse momen-
tum p_T [29]. The jet energy resolution for calorimeter jets
with $p_T \sim 35$ GeV is about 22 % for $|\eta| < 0.5$ and about
10 % for $4 < |\eta| < 4.5$ [30]. The uncertainty of the jet en-
ergy calibration for jets with $p_T \sim 35$ GeV depends on η and
is $\sim 7–8$ % [29].

In the offline analysis, at least one well-reconstructed pri-
mary vertex is required to be present within $\pm 24 \text{ cm}$ of the
nominal interaction point along the beamline [31]. In order
to reduce the sensitivity to overlapping pp collisions (the
so-called “pile-up” events), events with only one primary
vertex reconstructed within the luminous region were used
for the measurement.

Loose jet quality cuts [32] were used to suppress the ef-
ect of calorimeter noise. Events with at least two jets with
$p_T > 35$ GeV and $|y| < 4.7$ were selected; only jets satisfy-
ing these criteria were used for the analysis. All pairwise
combinations of jets from the selected events entered the
inclusive distribution. For studies of Mueller–Navelet jets,
only the pair consisting of the most forward and the most
backward jet was considered. The exclusive dijet sample is
a subset of the inclusive and Mueller–Navelet samples, and
consists of events where exactly one pair of jets is found.
The measured observables, R^{incl} and R^{MN}, are defined as
the ratios of the yield of inclusive or Mueller–Navelet dijets
to the yield of exclusive dijets in a specific $|\Delta y|$ bin, respec-
tively.
Detector effects were accounted for by applying bin-by-bin corrections derived from Monte Carlo (MC) simulations. Simulated events produced with the generators PYTHIA6 (version 6.422) tune Z2 [33–35] and HERWIG++ [36] (version 2.4.2 with default settings) were passed through the full CMS detector simulation based on the GEANT4 package [37], and were input to the same event-reconstruction program as used for the data. To quantify detector effects, the distributions obtained from detector-level quantities were compared to the distributions obtained at the level of stable particles (lifetime τ such that $c\tau > 10\, \text{mm}$). The ratios of the stable-particle level and detector-level quantities in a given bin were used to correct the data.

Because of the finite p_T and η resolutions, the detector-level distributions deviate from the corresponding ones at stable-particle level. Events can migrate to and from the exclusive or the inclusive samples because of fluctuations of the measured transverse jet momentum around the p_T^{min} threshold. The amount of these migrations was estimated not to exceed 20%. Similarly, the $|\Delta y|$ value measured at detector level may fall into a different $|\Delta y|$ bin compared to the stable-particle level; this effect, for the present data, is typically around 5–10% and reaches 15–25% at most. The influence of these migrations on the measured ratios R^{incl} and R^{MN} is minimal as the effects for numerator and denominator are similar. The uncorrected R^{incl} and R^{MN} ratios are reasonably well reproduced by the PYTHIA6 events and less well by HERWIG++ events, both of which have been passed through the detector simulation. The p_T and η distributions of the jets at the detector level for both MC generators agree with the data within the jet energy scale uncertainty (see also [2]). The correction factors were therefore obtained with PYTHIA6, while their model dependence was estimated from the difference between the PYTHIA6 and HERWIG++ corrections.

The following sources of systematic effects were considered:

1. Uncertainty of the jet energy calibration. The uncertainty of the measurement was estimated by shifting the jet energy scale (JES) by the p_T- and η-dependent uncertainties derived in [29]. The resulting variation of the measurements does not exceed 4.2% for R^{incl} and 3.8% for R^{MN}.

2. Uncertainty of the corrections for detector effects.
 (a) Uncertainty due to model dependence of the correction factors. As discussed above, correction factors were determined by using HERWIG++ and PYTHIA6, and corrected measurements were obtained for each case. The difference in the results was taken as a measure of the model dependence of the correction factors; it does not exceed 3.4% for R^{incl} and 3.3% for R^{MN}.
 (b) Uncertainty related to the quality of the MC description of the jet p_T and η resolutions. These resolutions were modified by $\pm 10\%$ in the simulation as recommended in [30]. A conservative estimate of the uncertainty associated to this effect does not exceed $\pm 1.0\%$.

3. An additional systematic effect may originate from the extra energy and jets due to pile-up collisions. As noted earlier, the measurement was restricted to events with only one reconstructed primary vertex to reduce the impact of pile-up. However, a contribution from interactions undetected because of vertex reconstruction inefficiency may still be present. By comparing data taken at different instantaneous luminosities, an upper limit of 1.3% was estimated for this effect. The value was obtained for pairs of jets in the forward region, where the impact of pile-up on jet reconstruction is more significant [29]; the effect is thus expected to be smaller for jets at central rapidities.

The total systematic uncertainty was calculated as the quadratic sum of the individual uncertainties. The total uncertainty is $|\Delta y|$ dependent but always smaller than 5.6% for R^{incl} and 4.8% for R^{MN} (Table 1).

The measured ratios, corrected for detector effects, were compared to the predictions of several MC generators at the stable-particle level. A DGLAP leading-order parton shower approach is used in PYTHIA6 (version 6.422) tune Z2 [35], PYTHIA8 (version 8.145) [38] tune 4C [39] and HERWIG++ (version 2.5.1) tune UE-7000-EE-3 [36, 40]. For the simulation of the non-perturbative fragmentation, PYTHIA uses the Lund string model, and HERWIG++ the cluster fragmentation approach. The tunes mentioned above include multiple parton interactions (MPI) as a part of the underlying event (UE) modeling. The dijet observables might be affected by MPI through jets that do not originate from the same hard interaction. The effect was estimated by switching off the MPI options in PYTHIA6 and HERWIG++; no significant change in the predictions was observed.

Table 1 Sources of systematic effects and associated uncertainties. The ranges correspond to the variation of the uncertainty with $|\Delta y|$. For different uncertainty sources, the minimum and maximum values may correspond to different $|\Delta y|$ bins. For asymmetric uncertainties the upper and lower limits are shown.

<table>
<thead>
<tr>
<th>Source</th>
<th>R^{incl} uncertainty (%)</th>
<th>R^{MN} uncertainty (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet energy scale</td>
<td>$(+2.2–4.2)$</td>
<td>$(+0.2–3.8)$</td>
</tr>
<tr>
<td></td>
<td>$(-1.0–3.0)$</td>
<td>$(-0.2–2.3)$</td>
</tr>
<tr>
<td>Uncertainty of detector corrections</td>
<td>$\pm(1.5–3.5)$</td>
<td>$\pm(0.1–3.4)$</td>
</tr>
<tr>
<td>Pile-up</td>
<td><1.3</td>
<td><1.3</td>
</tr>
<tr>
<td>Total</td>
<td>$(+2.8–5.6)$</td>
<td>$(+0.2–4.8)$</td>
</tr>
<tr>
<td></td>
<td>$(-2.7–4.5)$</td>
<td>$(-0.2–3.7)$</td>
</tr>
</tbody>
</table>
The ratios of the inclusive to exclusive dijet cross sections as a function of the rapidity separation $|\Delta y|$ between the two jets, R_{incl} (top panel) and R_{MN} (bottom panel), compared to the predictions of the DGLAP-based MC generators PYTHIA 6, PYTHIA 8, and HERWIG++, as well as of CASCADE and HEJ+ARIADNE, which incorporate elements of the BFKL approach. The shaded band indicates the size of the total systematic uncertainty of the data. Statistical uncertainties are smaller than the symbol sizes. Because of limitations in the CASCADE generator, it was not possible to obtain a reliable prediction for $|\Delta y| > 8$.

The Monte Carlo generators CASCADE (version 2.2.03) [41] and HEJ (version 1.3.2) [42] are motivated by the leading-logarithmic BFKL approach and incorporate parts of a next-to-leading logarithmic approximation. The HEJ generator produces parton-level jets; the corresponding showers were produced with the ARIADNE program [43]. The HEJ+ARIADNE package [44] version 0.99b, consisting of HEJ 1.3.2 and ARIADNE 4.12, was used.

The ratio R_{incl} of inclusive to exclusive dijet production as a function of $|\Delta y|$ is presented in Fig. 1 (top panel). On average the inclusive cross section is 1.2–1.5 times larger than the exclusive cross section. The ratio R_{incl} grows with increasing $|\Delta y|$, as expected because of the larger phase space for hard parton radiation. At the highest $|\Delta y|$, R_{incl} is expected to decrease because energy-momentum conservation suppresses the emission of extra jets. The $|\Delta y|$ value where R_{incl} starts to decrease varies from one MC generator to another, as can be seen in Fig. 1.

The predictions from PYTHIA6 and PYTHIA8 agree with the measurement. HERWIG++ overestimates the ratio R_{incl} at medium and large rapidity intervals. A detailed comparison between the data and the predictions of the DGLAP-based MC generators is presented as a ratio in Fig. 2 (top panel). It was checked explicitly that the results obtained from PYTHIA6 and HERWIG++ at parton level are close to the corresponding ones at stable-particle level. The different behaviour of PYTHIA6 and HERWIG++ is also observed at parton level.

The ratio R_{MN} and the corresponding MC to data ratio are presented in the bottom panels of Figs. 1–2. At large $|\Delta y|$, R_{MN} approaches R_{incl} as extra jet radiation contributing to R_{incl} tends to concentrate at moderate rapidities. The quality of the predictions of the DGLAP-based MC generators for R_{MN} is similar to those for R_{incl}. The MC generators CASCADE and HEJ+ARIADNE considerably overestimate the measurements of both R_{incl} and R_{MN}.

\[\text{Fig. 1} \text{ Ratios of the inclusive to exclusive dijet cross sections as a function of the rapidity separation } |\Delta y| \text{ between the two jets, } R_{\text{incl}} \text{ (top panel) and } R_{\text{MN}} \text{ (bottom panel), compared to the predictions of the DGLAP-based MC generators PYTHIA 6, PYTHIA 8, and HERWIG++, as well as of CASCADE and HEJ+ARIADNE, which incorporate elements of the BFKL approach. The shaded band indicates the size of the total systematic uncertainty of the data. Statistical uncertainties are smaller than the symbol sizes. Because of limitations in the CASCADE generator, it was not possible to obtain a reliable prediction for } |\Delta y| > 8. \]

\[\text{Fig. 2} \text{ Predictions for } R_{\text{incl}} \text{ (top) and } R_{\text{MN}} \text{ (bottom) from DGLAP-based MC generators presented as ratio to data corrected for detector effects. Both BFKL-motivated generators CASCADE and HEJ+ARIADNE (not shown) lead to a MC/data ratio well above unity. The shaded band indicates the size of the total systematic uncertainty of the data while statistical uncertainties are shown as bars } \]

where R_{incl} starts to decrease varies from one MC generator to another, as can be seen in Fig. 1.

The predictions from PYTHIA6 and PYTHIA8 agree with the measurement. HERWIG++ overestimates the ratio R_{incl} at medium and large rapidity intervals. A detailed comparison between the data and the predictions of the DGLAP-based MC generators is presented as a ratio in Fig. 2 (top panel). It was checked explicitly that the results obtained from PYTHIA6 and HERWIG++ at parton level are close to the corresponding ones at stable-particle level. The different behaviour of PYTHIA6 and HERWIG++ is also observed at parton level.

The ratio R_{MN} and the corresponding MC to data ratio are presented in the bottom panels of Figs. 1–2. At large $|\Delta y|$, R_{MN} approaches R_{incl} as extra jet radiation contributing to R_{incl} tends to concentrate at moderate rapidities. The quality of the predictions of the DGLAP-based MC generators for R_{MN} is similar to those for R_{incl}. The MC generators CASCADE and HEJ+ARIADNE considerably overestimate the measurements of both R_{incl} and R_{MN}.

\[\text{Fig. 1} \text{ Ratios of the inclusive to exclusive dijet cross sections as a function of the rapidity separation } |\Delta y| \text{ between the two jets, } R_{\text{incl}} \text{ (top panel) and } R_{\text{MN}} \text{ (bottom panel), compared to the predictions of the DGLAP-based MC generators PYTHIA 6, PYTHIA 8, and HERWIG++, as well as of CASCADE and HEJ+ARIADNE, which incorporate elements of the BFKL approach. The shaded band indicates the size of the total systematic uncertainty of the data. Statistical uncertainties are smaller than the symbol sizes. Because of limitations in the CASCADE generator, it was not possible to obtain a reliable prediction for } |\Delta y| > 8. \]

\[\text{Fig. 2} \text{ Predictions for } R_{\text{incl}} \text{ (top) and } R_{\text{MN}} \text{ (bottom) from DGLAP-based MC generators presented as ratio to data corrected for detector effects. Both BFKL-motivated generators CASCADE and HEJ+ARIADNE (not shown) lead to a MC/data ratio well above unity. The shaded band indicates the size of the total systematic uncertainty of the data while statistical uncertainties are shown as bars } \]
The ATLAS Collaboration measured several observables for dijets as functions of the rapidity separation between jets [21]. One is the fraction of events without jets with p_T above p_T^{veto} in the rapidity interval between the most forward and the most backward jets, which is equal to $1/R_{MN}$. A difference between data and the parton-level HEJ prediction at large $|\Delta y|$ for $70 < (p_T) < 90$ GeV, $p_T^{\text{veto}} = \langle p_T \rangle$ and $|\Delta y| < 6$ was reported (Fig. 8 from [21]), which is in qualitative agreement with the result presented here.

To conclude, the first measurement of the ratios R^{incl} and R_{MN} in a wide range of rapidity separation, up to $|\Delta y| = 9.2$, in proton–proton collisions at $\sqrt{s} = 7$ TeV was presented. A moderate rise of the ratio of the inclusive to exclusive dijet production cross sections as a function of $|\Delta y|$ is observed. The predictions of the PYTHIA6 and PYTHIA8 generators agree with the measurements. The predictions of the HERWIG++ generator are larger than the measurement especially at large $|\Delta y|$. The BFKL-motivated generators CASCADE and HEJ+ARIADNE predict for these ratios a significantly stronger rise than observed. The moderate rise of the measured dijet ratios indicates that the BFKL effects are not dominant for jets with $p_T > 35$ GeV at the present collision energy of 7 TeV.

Acknowledgements We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); IFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); PSE and RAS (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA).

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

32. CMS Collaboration, Calorimeter jet quality criteria for the first CMS collision data, CMS physics analysis summary CMS-PAS-JME-09-008 (2010)

34. R. Field, Early LHC underlying event data—findings and surprises (2010), arXiv:1010.3558

40. S. Gieseke et al., HERWIG++ 2.5 release note, arXiv:1102.1672v1

The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussel, Belgium

Université Libre de Bruxelles, Bruxelles, Belgium

1. M. Hoch is not a member of the CMS Collaboration.
University of Hamburg, Hamburg, Germany

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

Institute of Nuclear Physics “Demokritos”, Aghia Paraskevi, Greece

University of Athens, Athens, Greece
L. Gouskos, T.J. Mertzimekis, A. Panagiotou, N. Saoulidou, E. Stiliaris

University of Ioannina, Ioannina, Greece
I. Evangelou, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulo, V. Patras, F.A. Triantis

KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, J. Molnar, J. Palinkas, Z. Szillasi

University of Debrecen, Debrecen, Hungary
J. Karancsi, P. Raics, Z.L. Trocsanyi, B. Ujvari

Panjab University, Chandigarh, India
S.B. Beri, V. Bhattacharya, A. Kumar, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, V. Sharma, R.K. Shivpuri

Saha Institute of Nuclear Physics, Kolkata, India

Bhabha Atomic Research Centre, Mumbai, India
R.K. Choudhury, D. Dutta, S. Kailas, V. Kumar, A.K. Mohanty, L.M. Pant, P. Shukla

Tata Institute of Fundamental Research - EHEP, Mumbai, India

Tata Institute of Fundamental Research - HECR, Mumbai, India
S. Banerjee, S. Dugad, N. K. Mondal

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy
Northwestern University, Evanston, USA

University of Notre Dame, Notre Dame, USA

The Ohio State University, Columbus, USA

Princeton University, Princeton, USA

University of Puerto Rico, Mayaguez, USA

Purdue University, West Lafayette, USA

Purdue University Calumet, Hammond, USA
S. Guragain, N. Parashar

Rice University, Houston, USA

University of Rochester, Rochester, USA
B. Betchart, A. Bodek, Y.S. Chung, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq, A. Garcia-Bellido, P. Goldenzweig, Y. Gotra, J. Han, A. Harel, D.C. Miner, G. Petrillo, W. Sakumoto, D. Vishnevskiy, M. Zielinski

The Rockefeller University, New York, USA
A. Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, S. Malik, C. Mesropian

Rutgers, the State University of New Jersey, Piscataway, USA

University of Tennessee, Knoxville, USA
G. Cerizza, M. Hollingsworth, S. Spanier, Z.C. Yang, A. York

Texas A&M University, College Station, USA

Texas Tech University, Lubbock, USA
N. Akchurin, C. Bardak, J. Damgov, P.R. Dudero, C. Jeong, K. Kovitanggoon, S.W. Lee, T. Libeiro, P. Mane, Y. Roh, A. Sill, I. Volobouev, R. Wigmans

Vanderbilt University, Nashville, USA

University of Virginia, Charlottesville, USA
Wayne State University, Detroit, USA
S. Gollapinni, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, M. Mattson, C. Milstène, A. Sakharov

University of Wisconsin, Madison, USA

†: Deceased
1: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
2: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
3: Also at Universidade Federal do ABC, Santo Andre, Brazil
4: Also at California Institute of Technology, Pasadena, USA
5: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
6: Also at Suez Canal University, Suez, Egypt
7: Also at Cairo University, Cairo, Egypt
8: Also at British University, Cairo, Egypt
9: Also at Fayoum University, El-Fayoum, Egypt
10: Now at Ain Shams University, Cairo, Egypt
11: Also at Soltan Institute for Nuclear Studies, Warsaw, Poland
12: Also at Université de Haute-Alsace, Mulhouse, France
13: Also at Moscow State University, Moscow, Russia
14: Also at Brandenburg University of Technology, Cottbus, Germany
15: Also at Institute of Nuclear Research (ATOMKI), Debrecen, Hungary
16: Also at Eötvös Loránd University, Budapest, Hungary
17: Also at Tata Institute of Fundamental Research - HECR, Mumbai, India
18: Now at King Abdulaziz University, Jeddah, Saudi Arabia
19: Also at University of Visva-Bharati, Santiniketan, India
20: Also at Sharif University of Technology, Tehran, Iran
21: Also at Isfahan University of Technology, Isfahan, Iran
22: Also at Shiraz University, Shiraz, Iran
23: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Teheran, Iran
24: Also at Facoltà Ingegneria Università di Roma, Roma, Italy
25: Also at Università della Basilicata, Potenza, Italy
26: Also at Laboratori Nazionali di Legnaro dell’ INFN, Legnaro, Italy
27: Also at Università degli studi di Siena, Siena, Italy
28: Also at Faculty of Physics of University of Belgrade, Belgrade, Serbia
29: Also at University of Florida, Gainesville, USA
30: Also at University of California, Los Angeles, Los Angeles, USA
31: Also at Scuola Normale e Sezione dell’ INFN, Pisa, Italy
32: Also at INFN Sezione di Roma; Università di Roma “La Sapienza”, Roma, Italy
33: Also at University of Athens, Athens, Greece
34: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
35: Also at The University of Kansas, Lawrence, USA
36: Also at Paul Scherrer Institut, Villigen, Switzerland
37: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
38: Also at Gaziosmanpasa University, Tokat, Turkey
39: Also at Adiyaman University, Adiyaman, Turkey
40: Also at The University of Iowa, Iowa City, USA
41: Also at Mersin University, Mersin, Turkey
42: Also at Kafkas University, Kars, Turkey
43: Also at Süleyman Demirel University, Isparta, Turkey
44: Also at Ege University, Izmir, Turkey
45: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
46: Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy
47: Also at University of Sydney, Sydney, Australia
48: Also at Utah Valley University, Orem, USA
49: Also at Institute for Nuclear Research, Moscow, Russia
50: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
51: Also at Los Alamos National Laboratory, Los Alamos, USA
52: Also at Argonne National Laboratory, Argonne, USA
53: Also at Erzincan University, Erzincan, Turkey
54: Also at Kyungpook National University, Daegu, Korea