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Abstract
We consider the propagation of a contagion process ("epidemic") on a network and study
the problem of dynamically allocating a fixed curing budget to the nodes of the graph, at
each time instant. We provide a dynamic policy for the rapid containment of a contagion
process modeled as an SIS epidemic on a bounded degree undirected graph with n nodes.
We show that if the budget r of curing resources available at each time is Q(W), where
W is the CutWidth of the graph, and also of order Q(log n), then the expected time until
the extinction of the epidemic is of order O(n/r), which is within a constant factor from
optimal, as well as sublinear in the number of nodes. Furthermore, if the CutWidth increases
sublinearly with n, a sublinear expected time to extinction is possible with only a sublinearly
increasing budget r.

In contrast, we provide a lower bound on the expected time to extinction under any such
dynamic allocation policy, for bounded degree graphs, in terms of a combinatorial quantity
that we call the resistance of the set of initially infected nodes, the available budget, and
the number of nodes n. Specifically, we consider the case of bounded degree graphs, with
the resistance growing linearly in n. We show that if the curing budget is less than a certain
multiple of the resistance, then the expected time to extinction grows exponentially with
n. As a corollary, if all nodes are initially infected and the CutWidth of the graph grows
linearly in n, while the curing budget is less than a certain multiple of the CutWidth, then
the expected time to extinction grows exponentially in n.

The combination of these two results establishes a fairly sharp phase transition on the
expected time to extinction (sublinear versus exponential) based on the relation between
the CutWidth and the curing budget.

Finally, in the empirical part of the thesis, we analyze data on the evolution and prop-
agation of influenza across the United States and discover that compartmental epidemic
models enriched with environment dependent terms have fair prediction accuracy, and that
the effect of inter-state traveling is negligible compared to the effect of intra-state contacts.
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Title: Professor
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Title: Professor
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Chapter 1

Introduction

1.1 Problem and Motivation

With infectious diseases frequently dominating news headlines, public health and

pharmaceutical industry professionals, policy makers, and infectious disease researchers

increasingly need to understand their transmission dynamics, make better predictions,

and design effective intervention policies.

Clearly, such contagion processes (processes spreading over contact networks) do

not only apply in the context of infectious diseases but also in the context of propaga-

tion of information [21, viral marketing [37], spread of computer viruses [231, diffusion

of innovations [541 or financial contagion 111.

The theoretical part of this thesis (cf. Chapters 2-6) is concerned with efficient

dynamic intervention for the control of such contagion processes, under limited curing

resources. Our main motivation comes from infectious disease epidemics, although

without aiming at a faithful representation of the details of real-world situations.

A relevant example is the recent outbreak of the Ebola virus which causes an

acute and serious illness [67]. Ebola was associated with a high fatality rate in the

rural forest communities of Guinea in December 2013 which spiraled into an epi-

demic that ravaged West Africa and evoke fear around the globe 15]. The virus

spreads through human-to-human transmission via direct contact (through broken

skin or mucous membranes) with the blood, secretions, organs or other bodily fluids
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of infected people, and with surfaces and materials (e.g., bedding, clothing) contam-

inated with these fluids [67]. However, supplies of experimental medicines, e.g., the

prototype drug ZMapp, are limited and "will not be sufficient for several months to

come," as stated in [69]. In view of the limited availability of treatment for the virus,

[501 poses the following question: "Ebola Drug Could Save a Few Lives. But Whose?".

There are many other examples of communicable diseases including measles, in-

fluenza, and tuberculosis. The mechanism of transmission of infections is now known

for most diseases and generally they can be split in two categories: (i) diseases trans-

mitted by viral agents, such as influenza, measles, rubella (German measles), and

chicken pox which confer immunity against reinfection and (ii) diseases transmitted

by bacteria, such as tuberculosis, meningitis, and gonorrhea which do not confer

immunity against reinfection.

The wide applicability and major significance of contagion processes has led to

extensive work on modeling their evolution and understanding the resulting dynamics

[32, 14]. Many models have been proposed in the field of mathematical epidemiology

to describe and study infectious diseases [3]. The main characteristic of these models

is the presence of an underlying contact network. Depending on the context, the

network may represent contacts between individuals [311, influence among them ([361,

[41), or influence among different blogs in the blogspace ([21, [371, [261). Given the

network, there are two main approaches to modeling epidemics 1.

(i) SIR type models where agents can be in one of three states: susceptible to

infection, infected or removed from the system (recovered). These models are

used to describe situations where reinfection is not possible.

(ii) SIS type models where agents can be in one of two states: susceptible to

(re)infection or infected. These models are used to describe situations where

reinfection is possible.

For each agent, transitions between these states depend on the details of the

model and may happen deterministically or stochastically. The analysis of these

'Many extensions of these models have been proposed in the literature, including more states for
agents, such as exposed but asymptomatic, quarantined etc.
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models in the literature has been pursued through three different routes of increasing

mathematical difficulty and modeling granularity:

(i) Approximations using a single differential equation: This approach has been

used in the literature to study simplistic deterministic versions of SIR and SIS

models. This is the most traditional approach and takes a macroscopic view

of the system by focusing on aggregate metrics of infections. The paper [28]

provides an excellent survey of this approach.

(ii) Approximations using systems of differential equations: This approach has been

used in the literature to approximate stochastic versions of SIR and SIS models.

Such approaches focus more on the details of the infection state of the system

thus providing greater modeling flexibility. See [631 and references therein for

a concrete study on the application and accuracy of such Mean Field Approxi-

mations.

(iii) Stochastic Analysis of Exact Dynamics: Results for the general case of stochas-

tic infections and recoveries on arbitrary underlying networks are scarce, mostly

due to the complex structure of the problem. See [21, 401 and references therein

for main results. The theoretical part of this thesis (cf. Chapters 2-6) provides

results using these exact models on arbitrary graphs.

The different models for studying evolution and propagation of epidemics de-

scribed above have been widely used in the literature due to their tractability and/or

insightful interpretation. However, limited work [461 has been done to understand

the effectiveness of these models in describing real phenomena.

On the other hand, forecasting of epidemics is an extremely active research area

and the approaches that have been developed to predict the spread fall into two

categories: time-series modeling [61, 53, 12] and non parametric forecasting ([65] and

references therein).

In the empirical part of this thesis (cf. Chapter 7), we use real data on the

propagation of influenza related infections in the United States in order to evaluate
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these more traditional models by testing their predictive accuracy. Clearly, the scope

and purpose of this study is not to improve on the benchmark for epidemic prediction.

Instead, we seek to understand whether the traditional epidemiological models are

rich enough to fairly describe real contagion phenomena such as influenza propagation

and we investigate the effect of inter-state traveling.

1.2 Related literature

Several approaches to the problem of optimal intervention have been proposed, in

which the curing rate allocation is static (open-loop) ([13, 27, 11, 52]), and the pro-

posed methods were either heuristic or based on mean-field approximations of the

evolution process; see [45] for a survey.

In this thesis, we study the dynamic control of contagion processes (from now

on called epidemics) under limited curing resources. Specifically, we study dynamic

allocation policies that use information on the underlying structure of contacts and

on the infection state of individuals, and we evaluate performance in terms of the

expected time until the epidemic becomes extinct.

Specifically, our work involves an extension of the canonical SIS epidemic model:

the epidemic spreads on the underlying network from an initial set of infected nodes to

healthy nodes and at the same time, infected nodes can be cured. Healthy nodes get

infected at a constant and common infection rate (that we assume equal to 1) by each

of their infected neighbors. In contrast to the standard SIS model, which assumes a

common curing rate for all infected nodes at all times, we assume instead a node and

time-specific curing rate. A curing policy, to be applied by a central controller, is a

choice, at each time instant, of the curing rates at each node, taking into account the

history of the epidemic and the network structure, subject to a budget constraint on

the sum of the curing rates applied at each time. We denote the available budget by

r. The resulting process is a controlled finite Markov chain with a unique absorbing

state: the state where all nodes are healthy. We say that the epidemic becomes extinct

when that absorbing state is reached. Under mild assumptions (positive total budget
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on infected nodes) on the curing budget and given any set of initially infected nodes,

the epidemic becomes extinct in a random but finite amount of time. The goal of the

network planner is to minimize the expected extinction time subject to the budget

constraint.

Several approaches to studying this problem have been proposed in the literature,

and below we describe the main contributions.

Static and node-independent policies

Traditionally, the literature has focused on the uncontrolled version of the contact

process where the curing rate is equal to a constant, i.e., the case where all infected

nodes receive the same, constant amount of curing. The latter can be considered as a

special case of a dynamic curing policy. Several papers and books, such as [401, [49],

[20] focus on analyzing the behavior of the expected extinction time for special cases

of graphs such as line graphs, star graphs and lattices. The seminal paper 1221, on the

other hand, obtains strong results on the effect of network topology on the behavior

of the expected extinction time, assuming that all nodes are initially infected:

(a) if r > np(A), where p(A) is the spectral radius of the graph Laplacian, then the

expected extinction time is O(log n).

(b) If r < nj, where 77 is the isoperimetric constant of the graph, then the expected

extinction time is exponential in the number of nodes.

More intuitively, all these papers identify two regimes: depending on the param-

eters and the underlying graph properties, extinction can be fast, in which case ex-

pected extinction time scales sublinearly with the number of nodes, or slow, in which

case the expected extinction time scales exponentially with the number of nodes.

Static and node-specific

As a first approach to node-specific (but still static) policies, the authors of 19] let the

curing rates be proportional to the degree of each node and independent of the current

state of the network, which may however result in having curing resources wasted
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fast extinction slow extinction
p(t) = p r > np(A) r < nr
p (t) = dv r > Cn
any policy not applicable expander graphs and r < C'n

Table 1.1: Existing Results: Conditions for fast and slow extinction under different
curing policies, assuming all nodes initially infected.

on healthy nodes. For bounded degree graphs, the policy in [9] achieves sublinear

expected time to extinction (small), but requires a curing budget that is proportional

to the number of nodes (large). More precisely, under this more sophisticated control

policy, for which pv(t) = d,, where dv denotes the degree of node v the authors obtain

significant improvement in the performance:

(a) if r > Cn, where C is an appropriately chosen constant, then the expected

extinction time is O(log n).

(b) If r < C'n, where C' is an appropriately chosen constant and the graph is an

expander, then, for any curing policy, the expected extinction time is exponential

in the number of nodes.

Intuitively, this more sophisticated policy achieves fast extinction using total curing

resources that scale linearly with the number of nodes. Moreover, they argue that if

the underlying graph is an expander, then the curing resources required to achieve

fast extinction scale linearly with the number of nodes.

The main question addressed in this thesis is whether better performance is achiev-

able by applying dynamic and node-specific curing policies. Specifically, we identify

conditions and the corresponding dynamic curing policies under which both extinction

time and curing budget is small (sublinear).

1.3 Simple examples

In this section we discuss two examples where intuitive dynamic curing policies per-

form better than the existing policies in terms of required curing budget for fast
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Figure 1-1: An efficient dynamic curing policy for the line graph would allocate all
curing resources to the right-most infected node.

extinction. Specifically, we will go over two examples: the line graph and the two

dimensional square grid.

1.3.1 Example I: the line graph

As discussed in the previous subsection both the constant rate curing as well as the

degree based curing (which are almost identical in this case) require total curing

budget that scales linearly in the number of nodes to achieve fast extinction.

In contrast, consider a policy which allocates all curing resources to the right-

most infected node. In this case the number of infected nodes increases at a rate

equal to one (since there is only one edge connecting infected and healthy nodes)

and decreases at a rate that is equal to r, the curing budget. Therefore, as long as

the curing budget is larger than 1 the expected extinction time can be made linear

(compared to exponential for the constant rate curing). Moreover, as long as the

curing budget is larger than n/log n + 1 (compared to linear for the degree based

curing) the expected extinction time can be made log n.

1.3.2 Example II: the two dimensional grid

As discussed in the previous subsection both the constant rate curing as well as the

degree based curing (which are almost identical in this case) require total curing

budget that scales linearly in the number of nodes to achieve fast extinction.

In contrast, consider a policy which allocates all curing resources to the first

(in the lexicographic order) infected node and assume that the budget is equal to

1OV/ri + n/ log(n). Consider a situation where the set of infected nodes is a rectangle,

similar to the one depicted in Figure 1-2. In this case the number of infected nodes

increases at a rate equal to \/ni (since there are only v//i edges connecting infected and
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Figure 1-2: An efficient dynamic curing policy for the grid graph would allocate all
curing resources to the top-right infected node.

healthy nodes) and decreases at a rate equal to r, the curing budget. If there were no

infections, the time until the height of the rectangle decreases by one is equal to Vji/r.

Assuming that there are some infections that are changing the shape of the rectangle

(such as the nodes outside the rectangle in Figure 1-2), then all the curing budget is

allocated to these nodes. If there is a small number of such infections the number

of infected nodes still increases at a rate roughly equal to d. Therefore, since the

budget is chosen sufficiently high (equal to 1OV/n + n/ log(n)), the process returns

with high probability to the rectangle-shape and the time to decrease the height of

the rectangle by one is indeed (roughly) equal to a multiple of #/r. Therefore the

total extinction time is (roughly) equal to V - V//r and hence is O(log n).

1.4 Contributions of this thesis

The main results of this thesis can be categorized in the following two categories:

I. Theoretical contributions

(i) In Chapter 2 we introduce novel graph theoretic quantities that capture the

"hardness to cure" for a given subset of nodes.
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(ii) In Chapter 3 we propose a dynamic policy which achieves order-optimal perfor-

mance (expected extinction time) when the curing budget is sufficiently higher

than the CutWidth of the underlying graph. Our results have originally ap-

peared in [151.

(iii) We use this result to show that for bounded degree graphs with small CutWidth

(sublinear in the size of the graph), efficient performance (sublinear extinction

time) can be achieved economically, i.e., by properly allocating a sublinear cur-

ing budget, hence demonstrating the increased effectiveness of dynamic policies.

(iv) In Chapters 4 and 5 we establish a converse result for graphs with large CutWidth,

namely, for graphs whose CutWidth scales linearly in the number of nodes. In

particular, we show that if r < crW, where c, > 0 is an absolute constant

(depending only on the degree bound and on c(), then, for some initial states,

the expected time to extinction is at least exponential, under any curing policy.

Our results have originally appeared in [16 and 117].

(v) Using these results we draw an important qualitative distinction between net-

works in which (i) the spread of the epidemic is hard to stop with the given

curing budget, so that the expected time to extinction grows exponentially with

the number of nodes, and (ii) the curing resources are adequate, so that the ex-

pected time to extinction grows slowly (sublinearly) with the number of nodes.

II. Empirical contributions

(i) We enrich traditional epidemiological models with environment-dependent pa-

rameters. Specifically, we include an unknown dependence on absolute humidity

to improve existing models and allow for better predictions.

(ii) We develop a recurrent neural network approach to estimate these models. The

estimated models have fair predictive accuracy although they are extremely

dependent on absolute humidity.

(iii) We use our estimates to evaluate the effect of interstate traveling and discover

that the latter is negligible compared to intra-state contacts.
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1.5 Structure of the thesis

This thesis is organized as follows. In Chapter 2 we introduce our model and the

main problem under consideration. Moreover, we present several combinatorial graph

theoretic results that will be widely used throughout the thesis. In Chapter 3 we

describe and analyze our dynamic curing policy and obtain performance guarantees.

In Chapter 4 we provide a lower bound on the performance of all dynamic policies for

graphs with very large CutWidth while in Chapter 5 we obtain a similar result but

in the general case of linear CutWidth. In Chapter 6 we summarize our theoretical

findings and pose an open problem for future research. Finally, in Chapter 7 we

describe the empirical part of the thesis and present our findings.
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Chapter 2

Model and Graph Theoretic

Preliminaries

In this chapter we introduce our model as well as several important concepts and

quantities that will be widely used in the rest of this thesis.

2.1 Controlled Contact Process

We consider a network, represented by an undirected graph G = (V, E), where V

denotes the set of nodes and E denotes the set of edges. We use n to denote the

number of nodes. Two nodes u, v E V are neighbors if (u, v) E E. We restrict to

graphs for which the node degrees are upper bounded by A, which we take to be a

given constant throughout the thesis.

We let Io; V be a set of intially infected nodes, and assume that the infection

spreads according to a controlled contact (or SIS) process, where the rate at which

infected nodes get cured is determined by a network controller. Specifically, each

node can be in one of two states: infected or healthy. The controlled contact process

is a right-continuous, continuous-time, controlled Markov process {It}t>o on the state

space {0, 1}V, where It stands for the set of infected nodes at time t. We refer to

It as the infection process. We will sometimes use It- as a short-hand for the value

limstt I, just before time t.

29



4

Figure 2-1: The controlled contact process: each node can be either infected (black) or
healthy (white). Infected nodes infect their healthy neighbors according to a Poisson
process with rate 1. Infected nodes get cured according to a Poisson process with
rate p,,(t) that is deterinined by the network controller.

At any point in time, state transitions at each node occur independently, according

to the following rates. (These rates essentially define the generator matrix of the

continuous-time Markov process under consideration.)

a) The process is initialized at the given initial state I.

b) If a node v is healthy, i.e., if v It, the transition rate associated with a change

of the state of that node to being infected is equal to a positive infection rate 1

times the number of infected neighbors of v, that is,

/ - {(u, v) E E : u E It}

where we use to denote the cardinality of a set. Any transition of this type

will be referred to as an infection. By rescaling time, we can and will assume

throughout the thesis that 3 = 1.
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c) If a node v is infected, i.e., if v C It, the transition rate associated with a change

of the state of that node to being healthy is equal to a curing rate pv(t) that is

determined by the network controller, as a function of the current and past states

of the process. We are assuming here that the network controller has access to the

entire history of the process. Any transition of this type will be referred to as a

recovery.

2.2 Main Problem

So far we discussed the dynamics of infection and curing events. In this section we

discuss the problem that the network controller is facing. Specifically, we impose a

budget constraint of the form

Epv(t) r, (2.1)
v6V

for each time instant t, reflecting the fact that curing is costly.

A curing policy is a mapping which at any time t maps the past history of the

process to a curing vector p(t) = {pv(t)}vv that satisfies (2.1).

We define the time to extinction as the first time when the process first reaches

the absorbing state where all nodes are healthy:

r = min{t > 0 : It = 01.

In this thesis, we focus on the expected time to extinction (the expected value of r), as

the performance measure of interest. At a high level, the network planer is interested

in solving the following optimization problem with respect to all curing policies p(t).

minimize E10 [T]
P(.)

subject to pv(t) < r, for all t.
vEV

Without loss of generality, we can and will restrict to policies that at any point

in time allocate the entire budget to a single infected node, if one exists. We can do
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this because it is not hard to show that there exist optimal policies (i.e., policies that

minimize the expected time to extinction) with this property.1 Under this restriction,

the empty set (all nodes being healthy) is a unique absorbing state, and therefore the

time to extinction is finite, with probability 1.

Finally, the aforementioned optimization problem is a Dynamic Program with

a state space that scales exponentially in the number of nodes. Specifically, since

each node at every time instant can be either infected or healthy and because of the

Markovian nature of the dynamics, the state space of the problem is {0, 1}". Hence,

the resulting problem is inherently combinatorial and obtaining the optimal solution

is hard.

Instead, in this thesis, we focus on

(a) Obtaining an order-optimal policy (Chapter 3).

(b) Understanding the fundamental limits of this problem with respect to the struc-

ture of the underlying graph (Chapters 4 and 5)

2.3 Discussion on the Model

The model described above is an extension of the canonical SIS model. Several of the

modeling assumptions that are made both in this work as well as the prior literature

are noteworthy and are discussed in this section.

(i) Re-infections: The canonical SIS model assumes that nodes after recovering

from the infection are susceptible to re-infection. This assumption, although

realistic in some situations (as explained in Section 1.1) is not natural in many

other applications, such as most infectious diseases where agents develop immu-

nity after recovery.

'A formal proof of this statement (which we only outline) goes as follows. We write down the
Bellman equation for the problem of minimizing the expected time to extinction and observe that
the right-hand side of Bellman's equation is linear in p(t). We then recall that p(t) is constrained to
lie in a certain simplex, and conclude that we can restrict, without loss of optimality, to the vertices
of that simplex. Any such vertex corresponds to allocating the entire budget to a single infected
node.
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(ii) Intervention: In this thesis, we assume that the network planner intervenes to

the evolution through (stochastically) curing a subset of the infected nodes. In

practice, several other intervention actions can be considered such as removing

nodes from the network, quarantining subset of the network or reducing the

contact rates on a subset of edges of the graph. Our work focuses on curing,

mostly due to tractability but extending this work to other intervention actions

is an extremely interesting and important research direction.

(iii) Curing budget: In this work, we assume that the budget constraint takes the

form of a constant amount of curing resources R at each time instant. With this

assumption, we aim to model situations where due to production or logistical

constraints, the network planner has access to a specific and limited amount of

resources per time unit (day, week etc.). In many situations, budget constraints

take different forms, such as a total curing budget available at the beginning to

be allocated over time, or a time-varying capacity over time to be determined

by the network-planner according in a static or dynamic manner.

(iv) Objective function: In this thesis, the network planner seeks to minimize the

expected time extinction time. This objective, although natural for applications

were the goal is to return the system to normal operation (such as financial

networks) may seem unnatural for other applications (such as infectious diseases)

where the total number of infections would be the main concern. We chose to

work with this specific objective function due to tractability as well as the ability

to compare and benchmark our results against the existing literature.

2.4 Graph Theoretic Preliminaries

In the remainder of this chapter, after giving some elementary definitions and nota-

tion, we introduce and examine a deterministic version of the problem under consid-

eration. Variants of such deterministic problems have been studied in the literature

134, 471 and involve the concept of the Cut Width of a graph. Loosely speaking, the
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CutWidth is the maximum cut encountered during the deterministic extinction of an

epidemic on a graph, starting from all nodes infected, in the absence of any reinfec-

tions of nodes that have become healthy, and under the best possible sequence with

which nodes are cured. (A formal definition will be given shortly.)

We also introduce and study two natural extensions of the concept of the CutWidth,

for the more general case where only a subset of the nodes is initially infected; we

refer to them as the resistance and the impedance of the subset. These objects turn

out to contain important information about the evolution of an epidemic, starting

from the corresponding subset, and will serve as a low-dimensional summary of the

state of an infection process.

2.4.1 Notation and Terminology.

For convenience, we use the term bag to refer to a "subset of V." For any bags A, B,

we define

A \ B = {v c A: v B},

which is the set of nodes that belong in A but not in B, and

AAB = (A\ B) U (B\ A),

which is the set of nodes at which A and B differ. Finally, for any node v, we write

A +v = A U {v}, A -v = A\{v}.

We next define the concept of a crusade from A to B as a sequence of bags that

starts at A and ends at B, with the restriction that at each step of this sequence,

arbitrarily 'many nodes may be added to the previous bag, but at most one can be

removed. The formal definition follows.

Definition 1. For any two bags A and B, an (A-B)-crusade w is a sequence

(wo, w1, ... , W) of bags, of length k + 1, with the following properties:
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(i) WO = A,

(ii) Wk = B, and

(iii) 1wi \ i+1 < 1, for i = 0,..., k - 1.

We use the notation Q(A) to refer to the set of all (A-0)-crusades, i.e., crusades that

start with a bag A and eventually end up with the empty set.

Property (iii) states that at each step of a crusade, arbitrarily many nodes can be

added to, but at most one node can be removed from the current bag. Note that the

definition of a crusade allows for non-monotone changes, since a bag at any step can

be a subset, a superset, or not comparable to the preceding bag.

We also consider a special case of crusades, the monotone crusades for which

only removal of nodes is allowed at each step, as defined below.

Definition 2. For any two bags A and B, A, B C V, an (A 4 B)-monotone

crusade w is an (A - B)-crusade (WO, W1 .... Wk) with the additional property:

for i C {0,... , k - 1}. We denote by Q(A 4 B) the set of all (A 4 B)-crusades.

2.4.2 Cuts, CutWidth, and Resistance.

The number of edges connecting a bag A with its complement will be called the cut

of the bag. Its importance lies in that it is equal to the total rate at which new

infections occur, when the set of currently infected nodes is A.

Definition 3. For any bag A, its cut, c(A), is defined as the cardinality of the set of

edges

{(uv) : u E A, v Ac.

In Lemma 1 below, we record, without proof, some elementary properties of cuts.

Lemma 1. For any two bags A and B, we have
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(i) |c(A) - c(B)| I A - I AAB|.

(ii) If A C B, and v E A, then

c(A - v) - c(A) _ c(B - v) - c(B).

Note that Lemma 1(ii) states the well-known submodularity property of the func-

tion c(.) (1191), and thus of the infection rate.

We now define the width of a crusade as the maximum cut that it encounters.

Definition 4. The width z(w) of an (A-B)-crusade w = (w0 , ... ,Wk) is defined by

z(w) = max{c(wj)}.
1<i<k

Note that in the above definition, the maximization starts at the first step of

the crusade, i.e., we exclude wo from consideration. The reason is the important

Monotonicity property in Lemma 2(i), in the next subsection, which would otherwise

fail to hold.

We next define the resistance of a bag A as the minimum crusade width, over all

(A-0)-crusades. Intuitively, this is the maximum cut encountered after the first step,

during a crusade that "cures" all nodes in A in an "optimal" manner.

Definition 5. The resistance -y(A) of a bag A is defined by

-y(A) = min z(w).
WEP(A)

We finally define the impedance a bag A as the minimum crusade width, over all

(A J 0)-crusades. Intuitively, this is the maximum cut encountered including the first

step, during a monotone crusade that "cures" all nodes in A in an "optimal" manner.

Definition 6. The impedance J(A) of a bag A is defined by

6m(A) min max{z(w), c(A)}. (2.2)
WEQ (A40)
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We say that a (monotone) crusade (A 4 B)-crusade w = (wO, ... , w_) is optimal

if it attains the minimum in Eq. (2.2).

The Cut Width W of the graph is the impedance of the set of all nodes V, i.e.,

W = 6(V).

In other words, the problem of finding the CutWidth of a graph is the problem of

deterministically curing one node at a time, starting from all nodes infected, so that

the maximum cut (or the width) encountered during the curing process is minimized.

Note that traditionally, the CutWidth of a graph is defined in terms of monotone

crusades, but 181 and [341 prove that even if general crusades are considered, the

minimum width is the same, as the following theorem illustrates.

Theorem 1 ([8, 341). For any graph G = (V, E),

(V) = -y(V)

We close this section by observing that the resistance of a bag A satisfies the

Bellman equation

-y(A) = min { max{c(B), y(B)}}, (2.3)
IA\Bl<1

while the impedance of a bag satisfies the Bellman equation

6(A) = max {c(A), min{(B) : B C A, IA\B| = 1}}. (2.4)

Note that along an optimal crusade, we have J(wai+) < 6(wi), for i = 0,1,... , k - 1.

2.4.3 Properties of the resistance.

This section develops some properties of the resistance. Lemma 2(i) states that if

A and B are two bags with A C B, then y(A) < y(B). Intuitively, this is because

one can construct a crusade from A to 0 as follows: The crusade starts from A,
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then continues to the first bag encountered by a B-optimal crusade wB, and then

follows wB. The constructed crusade and wB are the same except for the respective

initial bags. By the definition of the resistance, the initial bag does not affect the

maximization and thus the width of the new crusade is equal to 'y(B). An optimal

crusade from A can do no worse.

Lemma 2(ii) states that if two bags A and B differ by only m nodes, then the

corresponding resistances are at most mA apart. Intuitively, this is because if m = 1

and A/NB = {v}, one can attach node v to the optimal crusade for the smaller of

the two bags, thus obtaining a crusade that starts at the larger bag and encounters a

maximum cut which is at most A different from the original. The result for general

m is obtained by moving from A to B by adding or removing one node at a time.

Lemma 2. Let A and B be two bags.

(i) /Monotonicityj If A C B, then y(A) < 'y(B).

(ii) [Smoothness] We have that |1y(A) - -y(B) I < - | ALB|.

Proof. Recall that Q(A) stands for the set of all (A-0)-crusades. Let also QA be the

set of all such crusades that achieve the minimum in the definition of the resistance,

i.e.,

QA = {w E Q(A) : z(w) = 7(A)}.

(i) Suppose that A C B. Let wB = (wo, ... , wg) E B. Consider the sequence

w = (C4,). .. ,Ck) of bags with c2,O = A, and cZ' = wB, for i = 1, ... , k. We claim

that Co is a crusade Co C Q (A). Indeed,

(a) co = A;

(b) C=k = 0;

(c) VZ'o \ c01I = IA \ c0i 1 1B \ w'BI = JwI \ wBI 1 1, where the first inequality

follows from A C B and C 1o= w. Moreover, for i = 0, . . . , k - 1, we have

+= Uw\jw I 1.
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Clearly,

z(c) = max {cQ2)} = max {c(w B)} = 7(B).
1<i<k 1<i<k

Using the definition of -y(A), and the fact that C E Q(A), we conclude that

y(A) = min z(w) < z() = y(B).
weQ(A)

(ii) If AAB = m, we can go from bag A to bag B in a sequence of m steps, where

at each step, we add or remove a single node. It thus suffices to show that each

one of these steps can change the resistance by at most A. Accordingly, we only

need to conside the case where B = A + v, for some v ( A.

Let wA = (P ,... WA) E QA. Consider the sequence c2 = (o,. .. , c2+1) of bags

with 2 =) 2 + v, for i = 0, . . . , k, and Ok+ = 0. Clearly, C2 is a crusade in

Q(B) and, therefore,

y(B) < z(cZ)= max{c(wl + v)} max{c(w1)} + A =(A) + A
1<i<k 1<i<k

where the second inequality follows because the addition of one node can change

the cut by at most A (Lemma 1(i)).

An immediate corollary of Lemma 2(i) is that for any bag A, we have 7(A) < W.

2.4.4 Relating cuts to the resistance.

This section explores a connection between cuts and resistances at the times that the

resistance is reduced. It shows that, whenever the resistance is high and gets reduced,

the total infection rate is also high. This observation will play a central role in the

proof of our main results.

Lemma 3. Let A be a bag and suppose that y(A - v) < y(A), for some v E A. Then,

c(A - v) ;> -y(A).
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Proof. Let B = A - v. Since IA \ BI = 1, Eq. (2.3) implies that

-y(A) < max{c(B), y(B)}. (2.5)

Having assumed that -y(B) < -y(A), Eq. (2.5) implies that y(A) < c(B). EJ

We call a bag for which y(A - v) < y(A) for some v E A, an improvement bag

and denote by C the set of all improvement bags, i.e.,

C = {A C V: 3v E A, y(A - v) < -y(A)}. (2.6)

2.4.5 Properties of the impedance

In this subsection we discuss two important properties of the impedance of a bag.

First, it follows from the definition that the impedance of a bag A is at least c(A),

which in general may be much larger than the CutWidth. This is a concern because

the stochastic nature of the infections can always bring the process to a bag with high

impedance, and therefore high subsequent infection rates. The next lemma provides

an upper bound on the impedance of a bag A in terms of the CutWidth W of the

graph and the cut of A. Its proof is given in the Appendix.

Lemma 4. For any bag A, we have

(i) 6(A) > c(A),

(ii) J(A) < W + c(A).

Proof. (i) Follows from Definition 6

(ii) Consider a monotone crusade w E C(V 4 0) whose width is equal to the CutWidth

W. This crusade starts with V and removes nodes one at a time, until the empty set

is obtained. Let v1 , v2 , ... , v,, be the nodes in V, arranged in the order in which they

are removed.

Let us now fix a bag A. We construct a monotone crusade c.^ E C(A 4 0) as

follows. We start with A and remove its nodes one at a time, according to the order
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prescribed by w. For example, if n = 4, and A = {v 2 , v4 }, the monotone crusade that

starts from A first removes node v 2 and then removes node v4 .

At any intermediate step during the crusade &', the current bag is of the form

An {Vk, ... , vn}, for some k. It only remains to show that the cut of this bag is upper

bounded by c(A) + W. Let R = {vi, .. . , Vk1}. Note that

c(R) < W,

because of the definition of the width and the assumption that the width of w is W.

Note also that the current bag is simply A n R'.

For any two sets S, and S2, let e(Si, S2) be the number of edges that join them.

We have that

c(AnRe) = e(AfnRc,(AfnR)c)

= e(A n Rc, Ac U R)

" e(A n RC , A)+e(A n R, R)

" e(A, A)+e(Rc ,R)

= c(A)+c(R)

< c(A)+W.

We conclude that the cut associated with any intermediate bag in the crusade CO is

upper bounded by c(A) + W. It follows that the width of c', and therefore 6(A) as

well, is also upper bounded by that same quantity. L

2.4.6 Resistance and Impedance

In the preceding subsections, we defined two different concepts for a subset of nodes

A, the resistance 'y(A) and the impedance 6(A). The definitions of these two concepts

are related but their behavior can differ significantly.

Intuitively, the impedance of a bag is useful for the curing problem. Specifically,

when designing a dynamic curing policy, the network planner may decide to allocate
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Figure 2-2: A line graph with n nodes (n is a multiple of 4). Bag A consists of n/2
nodes. Bag B consists of the odd numbered n/4 nodes of bag A. The impedance and
the resistance of bag A coincide and are equal to 1. However, the impedance of bag
B is equal to n/2 - 1 while the resistance of bag B is equal to 1.

curing resources to any node of the bag. The definition of impedance involves mono-

tone crusades and hence provides a recipe for the order of these curing decisions. On

the other hand, the resistance of a bag involves non-monotone crusades, and hence al-

lows for new "infections" during the curing process. Allowing for non-monotonicities

during the process, resistance is useful when studying the evolution of the process

without restricting the network planner to a specific dynamic curing policy. In other

words, the resistance of a bag is a crucial concept when studying the behavior of the

contagion process under arbitrary curing policies and hence, when exploring lower

bounds on the performance of the optimal dynamic curing policy.

Hence, in order to obtain meaningful upper and lower bounds on the performance

of dynamic curing policies, we should be able to relate these two central concepts,

impedance and resistance. The rest of this section explores the connection between

the two, starting with two examples.

Example 1 For the case of V, impedance and resistance coincide, as Theorem 1

suggests.

Example 2 Consider a line graph with n nodes, where n is a multiple of 4. Its

CutWidth is easily seen to be equal to 1: if all nodes are initially infected, we can

cure them one at a time, starting from the left; the cuts encountered along the way

are all equal to 1. Consider a bag with n/2 nodes such as bag A of Figure 2-2. The

impedance of A is equal to 1 since an optimal monotone crusade consists of curing
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nodes one at a time starting from the right. Similarly, the resistance of A is equal to

one as any crusade cannot achieve width less than one. In contrast, consider a subset

B of bag A which only consists of odd numbered nodes. Note that the cut of bag B

is equal to n/2 - 1 and hence by Lemma 4 (ii), its impendance is at least equal to

n/2 - 1. A monotone crusade that achieves this lower bound consists of curing nodes

one at a time starting from the right. Hence the impedance of B is equal to n/2 - 1.

On the other hand, the resistance of B is equal to 1 since an optimal crusade would

first infect all even numbered nodes of bag A and then proceed by curing one node at

a time starting from the right, hence achieving width of 1. The implications of this

discrepancy are significant for the curing problem. The difficulty of curing the two

bags is comparable (especially given that one is a subset of the other), but a curing

policy that is "monotone" would face higher drifts in the case of bag B. Example

2 seems to suggest that for bags with high cuts, there is a potential discrepancy

between the impedance and the resistance of a bag, and that the resistance is the

more relevant one.

In the rest of this section we show that for bags with small cuts, the distance

between impedance and resistance is also small. We start by-showing the existence

of an optimal crusade with several desirable properties. Specifically, we argue that

for any bag A, there exists an optimal crusade that adds nodes (and perhaps removes

one) only at the first step of the crusade and from then on, the crusade is monotone

(properties (i)-(ii)) .

Lemma 5. For any bag A there exists an optimal crusade C' (CO, C1,... , k) E QA

with the following properties:

(i) For i E {0, .. . , k - 1}, Coi : )j

(ii) For i E 1, .. . , k - 1}, jii C 1 i.

Proof. We assign to every (A - 0)-crusade w E QA a value

-1 IWI-1
P(w) = (C(Wi) + 1), E 1wi .

i=O i=O
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Let L) E argminlQA P(w), where the minimum is taken with respect to the lexico-

graphic ordering.

(i) We first prove that for all i E {1,... , k - 1,

CQi 7 Ci+ 1. (2.7)

For the purposes of contradiction, assume that for some q E {1,... , k - 1}, q = Wq+1,

and construct a crusade C = (o,. .. , Ck-1) by setting ci = cZj for all i < q, and

C4 = wc+1 for i = q +.,.. , k - 1.

Clearly, CD= (CO,... , -1) is a crusade, i.e., W E Q(A - 0). Moreover, o E A,

because max1<i<k_1 c(C4) = Z(C) = -y(A). But Z-i7(c(&i) + 1) < Zo(c(') + 1),

which implies that P(Co) < P(Q), and contradicts the minimality of c2.

(ii) The idea of the proof of this property is borrowed from [8], and is based on

the submodularity of c(.). We first argue that for all i E {,... , k - 1,

c(.Ji+i U C,) ;> c(). (2.8)

For the purposes of contradiction, assume that there exists some q E {1, ... , k - 1}

such that

c(Q2 q+1 U Cq) < c((Cq), (2.9)

and construct the sequence of bags cD = (o,... , O), by setting Coi = c0j for all i = q

and Wq = Wq+1 U q.

We first claim that C is a crusade, i.e., CD E Q(A -0). Indeed, since c2 is a crusade,

we get ' q \ 0q+1I 1 and ICq-l \ C2ql < 1. Therefore,

|q-_1 \ Jq I = |qI \ (iq+U1 U W q _ q-1 -q| 1,

where the first equality follows from the construction of &' and the second inequality

from c2 q 1 U C2 q. Furthermore,

|oq \ ~q+ 1 = I(Cq+1 U q) \ Cq+1 Cq -K q+1| < 1,
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where the the first equality follows from the construction of CD and the second inequal-

ity from Wq+1 U q D Wq+1-

Moreover, we claim that cD E QA. Indeed

maxc(i) = max{c(C'q), max c(cy)
1<i<k 1<i<k,i54q

< max c(cj) = y(A),
1<i<k

where the inequality follows from (2.9).

On the other hand, it follows from (2.9) that E_=(c(2) + 1) < $_o(c(') + 1)

and thus P(D) < P(cZ), which contradicts the minimality of (. We have therefore

established (2.8).

Using the submodularity of the cut as well as Eq. (2.8), we have that for all

i E l, . .. ,)k - 1},

c(Cji+ O cZ) c((i+1). (2.10)

We now prove that |I0+ f l Ic2'+II for all i E {1, ... , k - 1}.

For the purposes of contradiction, assume that there exists some q E {, ... , k -1}

such that

|pq+1 n Oql < JC0q+1j. (2.11)

Construct the sequence CQj = J0j for all i $ q + 1 and q+1 = &g+1 f 0q.

We first claim that CD is a crusade, i.e. c E Q(A - 0). Indeed, since cZ' is a crusade

we get c) \ COq+1I < 1 and k20q+1 \ Wq+2 1 < 1. Therefore,

|q \ 7q+1 1= IZ'q \ (CZJq+1 nf)I = Iq - 2q+1 1,

where the the first equality follows from the construction of L' and the second inequal-

ity from &'q+1 n WOq C C2q+1. Furthermore,

|Aq+1 \ 7q+21 = I(W^ q+1 nCZq) \ Wq+2| |Wq+1 - Wq+2| 1,

where the the first equality follows from the construction of CD and the second inequal-
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ity from Lq+1 l Lq C L2 q+1. Moreover, we claim that c E QA. Indeed

maxc(Ci) = max{c(Cq), max c(Wq+1)}
1<i<k 1<i<k,iy-q+1

< max c(c.2) =(A),
1<i<k

where the inequality follows from (2.10).

On the other hand, it follows from (2.10) that Z=o(c((7') + 1) < Z 0 (c(2i) +

1) and from (2.11) that >= w| < Z y Li. Therefore, P(Cv) < P(2), which

contradicts the minimality of c2.

Therefore we established that |ZGij+ flcZj > |cZ'+j for all i E (i .... , k - 1}. The

latter implies that for all i E {1, ... , k - 1}, cZ'+ 1 C ci. Using part (i) of the lemma,

it follows that that for i E {1, ... , k - 1}, Ci+1 C CZ- E

The next corollary summarizes our findings regarding the relationship between

the resistance and the impedance of a bag.

Corollary 1. For any bag A

6(A) < y(A) + c(A) + A

Proof. Consider any bag A and construct an optimal crusade c2 = (c270,o ,... , k)

with the properties of Lemma 5. We consider two cases.

If c2,1 C A, then by property (ii), c2 is a monotone crusade an hence

y(A) = 6(A).

Otherwise, there exists B C A, with JA \ BI < 1, such that B C cZ1. For all

i E {1,... , k - 1}, let vi = &j \ cZ+ be the sequence of nodes that are removed at

each stage of the crusade. Then for all i E {1, ... , k - 1},

c(c1 - {v, ..., vi}) 7(A),
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by the optimality of c2. Consider the crusade Ci E Q(B 4 0) for which Co = B and

Ci = B \ {v1 , . . ,vi} for i E {1, .. ., k - 1}. Note that by the assumption w1 D B we

get that for all j E ..E .. , k - 1}, B \ {v,, ... , C} c 2 - {v 1, ... , vj}. Hence, using

(ii) of Proposition 1, we obtain

c(B \ {vi,.. -. , j+1}) - c(B \ {Vi,,... -, vj})

< c() 1 \ {v1 ,... I }j+1}) - c(G'i \ {vi,.. I.

Adding all the inequalities that correspond to j < i, we obtain that for all i E

{I,... k - 1},

c(B \ {v1, . . . ,vi}) - c(B) < c (C 1 \ {v,. .. , vi}) - c(c1)

Therefore,

c(P) c(P1 \ {vi, ... , vj+1}) + (c(B) - c(c1))

< c(Zi \ {v,.. ., vj+}) + c(B) = c(c2j) + c(B),

and hence

6(A) < c(Coi) < c(c,) + c(B) 5 -y(A) + c(B),

where the first inequality follows from the definition of the impedance and from the

fact that Co is a monotone path, while the last inequality follows from the optimality

of &'. Finally, note that by Lemma 1, c(B) < c(A) + A, hence the result. E
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Chapter 3

An Efficient and Optimal Curing

Policy

In this chapter we develop one of the main contributions of this thesis, an (order)

optimal dynamic curing policy. Specifically we show that when the budget r of curing

resources available at each time is Q(W), where W is the CutWidth of the graph,

and also of order Q(log n), then the expected extinction time of the epidemic is of

order O(n/r), which is within a constant factor from optimal, as well as sublinear in

the number of nodes. Consequently, if the CutWidth increases only sublinearly with

n, a sublinear expected time to extinction is possible with a sublinearly increasing

budget r.

3.1 Description of the CURE policy

In this section, we present our curing policy and we study the resulting expected

time to extinction, starting from an arbitrary initial set of infected modes. Loosely

speaking, the policy, at any time, tries to follow a certain desirable (monotone) cru-

sade, called a target path, by allocating all of the curing resources to a single node,

namely, the node that should be removed in order to obtain the next bag along the

target path. On the other hand, this ideal scenario may be interrupted by infections,

at which point the policy shifts its attention to newly infected nodes, and attempts

49



to return to a bag on the target path. It turns out that under certain assumptions,

this is successful with high probability and does not take too much time. However,

with small probability, the process veers far off from the target path; in that case the

policy "restarts" in a manner that we will make precise in the sequel.

Waiting period. A typical attempt starts at some bag A, with a waiting period.

(If this is the first attempt, then A = 1o. Otherwise, A is the bag at the end of

the preceding attempt.) During the waiting period, all curing rates p,(t) are kept at

zero.1 The waiting period ends at the first subsequent time that2

c(It) < r/8.

Let B be the bag It right at the end of the waiting period, and let wB - (w, ... 1W B

the corresponding optimal crusade, which we refer to as the target path.

Segments. Each segment of an attempt starts either at the end of the waiting period

or at the end of a preceding segment of the same attempt. In all cases, the segment

starts with a bag on the target path. For the first segment, this is guaranteed by the

definition of the target path. For subsequent segments, it will be guaranteed by our

specifications of what happens at the end of the preceding segment. Let v, ... , v. be

the nodes in the bag at the beginning of a segment, arranged in the order according

to which they are to be removed along the target path. For example, the bag at the

beginning of the segment is wgB = {Vi, ... , Vm}, the next bag is U)B = {v2 ,... ,

etc. The node v, is called the target node; the goal of the segment is to cure the target

node and reach the bag C = {v2 , . . . , vm}. For all t during the segment, we define

Dt = It \ C; this is the set of infected nodes that do not belong to the next bag on the

target path. At the beginning of the segment, It = C U {v} and therefore Dt = {v}.

'During the waiting period the curing budget is wasted and not allocated to any of the nodes.
Note that the cut of It during the waiting phase could be linear in the number of nodes, while we
focus on the regime where the available budget is sublinear. Therefore, regardless of the allocation,
during the waiting period the process would have an upward drift. For this reason, allocating budget
to a subset of nodes in this period would not have a significant effect on the performance.

2Note that the waiting period is guaranteed to terminate in finite time, with probability 1. This
is because if it were infinite, then healthy nodes would keep getting infected until eventually It = V.
But c(V) = 0, which means that at some point the condition c(It) ; r/8 would be satisfied and the
waiting period would be finite, a contradiction.
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During the segment, the entire curing budget is allocated to an arbitrarily chosen

node from Dt. Note that p,(t) = 0 for v C C during the segment and therefore, we

always have It D C.

The segment ends when either:

(i) all nodes have been cured, i.e., It = 0; in this case, the attempt is considered

successful and the process is over.

(ii) It = C and C # 0 in which case the target node is cured, the process is on the

target path, and we are ready to start the next segment. In this case, we say

that we have a short segment.

(ii) JDtI > r/8A, in which case we say that the segment was long, and that the

attempt has failed. In this case, the attempt has no more segments, and a new

attempt will be initiated, starting with a waiting period.

3.2 Performance Analysis

We now proceed to establish an upper bound on the expected time to extinction, under

the assumption that r > 4W, for any set of initially infected nodes. If the process

always stayed on the target path, that is, if we had no infections, the expected time

to extinction would be the time until all nodes (at most n of them) were cured. Given

that nodes are cured at a rate of r, the expected time to extinction would have been

O(n/r). On the other hand, infections do delay the curing process, by increasing IDt|

during segments, and we need to show that these do not have a major impact.

There are two kinds of segments to consider, short ones, at the end of which

JDtJ = 0, and long ones, at the end of which JDtl>r/8A. During a segment, the size

of Dt (the "distance" from the target path) is at most r/8A. Using also an upper

bound on the size of the cut along the target path, we can show that the infection

rate throughout a segment is smaller than the curing rate. For this reason, during a

segment, the process |Dt| has a downward drift. As a consequence, using a standard

argument, the expected duration of a segment is small and there is high probability
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that the segment ends with |Dt| = 0, so that the segment is short and we continue

with the next segment. As a result, the expected duration of an attempt behaves

similar to the case of no infections and is also of order O(n/r). Finally, by studying

the number of failed attempts until a successful one, we can establish an upper bound

for the overall policy. A formal version of this argument is the content of the rest of

this section.

3.2.1 Segment analysis

Let us focus on a particular segment, and let Mt = IDt|. The process Mt evolves on the

finite set {0, 1, ... , r/8A}. (For simplicity, and without loss of generality, we assume

that r/8A is an integer.) Recall that C was defined as the bag on the target path that

we were trying to reach at the end of the segment. The difference Dt at the time that

the segment starts consists of exactly one node: the target node. Thus, the process

Mt is initialized at 1, at the beginning of the segment. The process Mt is stopped as

soon one of the two boundary points, 0 or r/8A, is reached. At each time before the

process is stopped, there is a rate equal to r of downward transitions. Furthermore,

there is a rate c(It) of upward transitions, corresponding to new infections.

Lemma 6. The rate c(It) of upward transitions during a segment satisfies c(It) < r/2.

Proof. The definition Dt = It \ C implies that It ; C U Dt. Consequently,

c(It) c(C) + c(Dt) < c(C) + A - IDtI

c(C) + A . Mt < c(C) + -. (3.1)8

We have used here Proposition 1, in the first and second inequality, together with the

fact Mt r/8A.

On the other hand, C is on the target path associated with B, the bag obtained at

the end of the waiting period. As remarked at the end of Section 2.4.2, the impedance

does not increase along an optimal crusade, and therefore, 6(C) 5 6(B). Using also
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Lemma 4, we have

c(C) 6(C) < 6(B) < W + c(B).

Recall now that a waiting period ends with a bag whose cut is at most r/8. Therefore,

c(B) < r/8. It follows that c(C) W + r/8. Using this fact, together with the

assumption r > 4W and Eq. (3.1), we obtain

c(It) < c(C) + r < W + r)+ r + r+ = .

We now establish the properties of the segments that we have claimed earlier;

namely, that segments are short, with high probability, and do not last too long.

Lemma 7. a) The probability that the segment is long is at most

1
p 2r/8A - I'

b) The expected length of a segment is upper bounded by 2/r.

Proof. a) Using Lemma 6, the process Mt is stochastically dominated by a pro-

cess Nt on the same space {0, 1, . . . , r/8A}, which is initialized to be equal to

the value of Mt at the beginning of the segment (which is 1), has a rate r of

downward transitions, a rate r/2 of upward transitions, and stops at the first

time that it reaches one of the two boundary values. Note that the ratio of the

downward to the upward drift is equal to 2. The probability, denoted by p, that

the process Nt will first reach the upper boundary is a well-studied quantity

and is given by the expression in part (a) of the lemma. The proof is standard

and can be found in Section 2.1 of [38] (for a non-martingale based proof) or

Section 2.3 of [60] (for a martingale based proof). Since Mt is stochastically

dominated by Nt, the probability that Mt will first reach the upper boundary

is no larger.
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b) For simplicity, let us suppose that the segment starts at time t = 0. We define

the process
r

Ht = Mt +-rt
2

and the stopped version, Ht which stops at the time T that the segment ends.

It is straightforward to verify that Ht is a supermartingale, because the upward

drift of the process is 3c(It) r/2 and the downward drift is r, so that the total

downward drift at least r/2. Furthermore, Ho = HO =MO = 1. Using Doob's

optional stopping theorem we obtain

1= E[Mo] = E[o] E[T]+ - E[T] -E[T],2 2

from which we conclude that
2

E [T] < -.
r

Note that if r > a log n, where a is a sufficiently large constant, then p can be

made smaller that 1/n2 , so that np tends to zero. We will be using this observation

later on. We will now bound the length of a waiting period.

Lemma 8. The expected length of a waiting period is bounded above by 8n/r.

Proof. A waiting period involves at most n infections. The waiting period ends as

soon as c(It) < r/8. Therefore, during the waiting period, infections happen at a rate

of at least r/8. In particular, during the waiting period, the expected time between

consecutive infections is at most 8/r. For a maximum of n infections, the expected

time is upper bounded by 8n/r. El

We can now combine the various bounds we have derived so far in order to bound

the expected time to extinction under our policy.

Theorem 2. Suppose that r > 4W and that r is large enough so that np < 1, where

p is as defined in Lemma 7. For any initial bag, the expected time to extinction under
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the CURE policy is upper bounded by

1 10n
1 - np r

Proof. We start by upper bounding the expected duration of an attempt. The ex-

pected length of the waiting period of an attempt is upper bounded by 8n/r, by

Lemma 8.

The number of segments during an attempt is at most n since each segment is

associated with one target node and there can be at most n different target nodes.

By Lemma 7, the expected length of a segment is at most 2/r.

Putting everything together, the expected duration of an attempt is at most

(8n/r) + (2n/r) = lon/r.

Each attempt involves n segments. During each segment, there is probability at

most p that the segment is long and that the attempt fails. Therefore, the overall

probability that an attempt will fail is at most np (here we used the union bound).

We note that his upper bound (np) on the failure probability holds regardless of the

initial bag at the beginning of an attempt. It follows that the attempt is stochastically

dominated by a geometric random variable with parameter 1-np. For this reason, the

expected number of attempts is at most 1/(1 -np), and the desired result follows. E

3.3 Corollaries and near-optimality of the CURE pol-

icy

Theorem 2 has a number of interesting consequences, which we collect in the corollary

that follows. We argue that if all nodes are initially infected, then the expected time

to extinction under any policy is at least n/r. Furthermore, in a certain regime of

parameters, our policy achieves O(n/r) expected time to extinction and is therefore

optimal within a multiplicative constant. Finally, if the CutWidth increases sublin-

early with the number of nodes, then the expected time to extinction can be made

sublinear in n, using only a sublinear budget.
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Corollary 2. a) For any graph with n nodes and with all nodes initially infected,

the expected time to extinction is at least n/r, under any policy.

b) Suppose that the budget r satisfies

r > 4W, r > 16Alog 2n.

Then, for large enough n, and for any initial set of infected nodes, the expected

time to extinction under the CURE policy is at most 26n/r, which is sublinear

in n and within a multiplicative factor from optimal.

c) Suppose that the maximum degree is bounded, i.e., A is 0(1). If the CutWidth

increases sublinearly with n, then it is possible to have sublinear time to extinc-

tion with a sublinear budget.

Proof. a) Since nodes are cured at a rate of at most r, and there are n nodes to be

cured, the expected time to extinction must be at least n/r, even in the absence

of infections.

b) When r > 16- log2 n - A, we have r/8A > 210g2 n, and 2 '/SA > n2 . Thus, the

probability p in Lemma 7 is of order 0(1/n2 ), and np is of order 0(1/n). In

particular, for large enough n, the factor 1/(1 - np) is less than 2. By Theorem

2, the expected time to extinction is at most 20n/r. This is sublinear in n,

because r tends to infinity. Order optimality follows from part (a).

c) Suppose that the budget r satisfies the conditions in part (b), together with the

condition

r = Q(n/ log n).

Then, it follows from part (b) that the expected time to extinction under the

CURE policy is of order 0(log n). If W increases sublinearly with n, we can

satisfy the conditions in parts (b) and (c) while keeping r sublinear in n, and

still achieve sublinear, e.g., 0(log n) expected time to extinction.

0
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We continue with some examples. For a line graph with n nodes, the CutWidth

is equal to 1 and A = 2. Therefore, by part (b) of Corollary 2 we can guarantee

an approximately optimal expected time to extinction, of order O(n/r), as long as

r > 16 log 2 n - A = 3210g 2 n. We note, however, that for this example, our analysis

is not tight, and the requirement r > 32log 2 n is stronger than necessary.

For a square grid-graph with n nodes, the Cut-Width is approximately \/ni and

A = 4. In this case, the requirement r > 4W ~ 4V/ni is the dominant one, and suffices

to guarantee an approximately optimal expected time to extinction, of order O(n/r).

In both of these examples, we can of course let r be much larger than the minimum

required, which was O(log n) and O(VfiI), respectively, in order to obtain a smaller

expected time to extinction, e.g., the O(log n) expected time to extinction in part (c)

of the corollary.

3.4 Performance of the CURE Policy under arbi-

trary initial infections

The results of Section 3.3 are stated in terms of n and W which are global charac-

teristics of the network and do not take into account the possibility of a favorable set

of initially infected nodes. In this section we obtain performance guarantees for our

policy as a function of JAI and 6(A), where A is the bag of initially infected nodes.

Our goal is to explore conditions under which the CURE policy is (order) optimal,

i.e., achieves expected extinction time of order O(JAI/r).

Note that if c(A) > r/8, a waiting phase is initiated. By the end of the waiting

phase a superset of A (potentially the whole graph) is infected and thus the perfor-

mance of the CURE policy cannot be related to the properties of A. For this reason,

we focus on the case where c(A) < r/8. Section 3.3 illustrates that when the budget

is larger than 4W then, the CURE policy is (order) optimal. In this section we are

interested in the case where the impedance of the initial bag, 6(A), is smaller than

the CutWidth of the graph, i.e., 6(A) < W. Under such conditions, we expect to
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require less curing budget in order to attain (order) optimal extinction time; the main

theorem of this section confirms this fact.

First we establish some properties of the first attempt of the CURE policywhen

r > max{46(A), 8c(A)}. Note the similarity between the latter condition and that of

Corollary 2(a)

Lemma 9. Suppose that the set of initially infected nodes is A, and that

r > max{46(A),8c(A)}.

Let TS denote the duration of a segment and let S denote the event that the segment

is short. Moreover, we write p, = P(SC). Then, for the first attempt the following

properties hold:

a) The probability pi that a segment is long is at most

1
P =2/8A - 1

b) The expected length of a segment is upper bounded by 2/r, i.e., E[ 8 ] 2/r.

c) The conditional expectation of a segment, given that it is short, E[S,| S], is

upper bounded by 2/(r(1 - p)).

Proof. a,b) Note that since c(A) < r/8 there is no waiting phase and the target path

of the first attempt is the crusade associated with 6(A). Given this observation,

the proofs are identical to Lemma 7 after replacing W by 6(A) in all arguments.

c) We have,

E[-r] = E[Ts S](1 - pi) + E [s I S']pi

> E[7-s|IS] (1 - pl) > E [rs|IS] (1 - p).

Solving for E[Ts I S] and using part (b) the result follows.

DI
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We now combine the bounds we derived in order to bound the expected time to

extinction under our policy.

Lemma 10. Suppose that the set of initially infected nodes is A with

r > max{46(A), 8c(A)}.

Moreover, suppose that r is large enough so that |Alp < 1 and let g denote the event

that the first attempt is successful. Then

2E[7 | F] < |A| .
(1 - p)r

Proof. First, the conditional expectation is well defined since P(S) > 1 - Alp > 0 by

the assumptions of the lemma. Conditioned on the success of the first attempt, the

number of segments is JAI and the result follows from Lemma 9c. El

Lemma 10 is mainly relevant in the regime where JAI grows to infinity with

r > max{46(A), 16A1og 2 AI,8c(A)}. (3.2)

In this regime, the budget is sufficiently high for the first attempt to be successful

with high probability. Thus, the performance indicated by Lemma 10 is achieved

conditioned on an event which occurs with high probability, as the following theorem

states.

Theorem 3. Suppose that the budget satisfies Eq. (3.2) and that the set of initially

infected nodes is A, whose size |AI grows to infinity. Let S be the event that the first

attempt is successful. Then, P(SE) = 1 - o(1), E[r | S] is of order O(|A|/r), and thus

our policy is (order) optimal with high probability.

Proof. Following similar reasoning as in Corollary 2,under the condition (3.2), the

probability p in Lemma 9 is of order O(1/A |2). This implies that

lim P(E) > lim (1 - |Alp) = 1.
|AI-+oo IAI-oo
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Moreover, for large enough |AI, 1 - p is larger than 1/2 and thus, by Lemma 10 the

expected time to extinction, conditioned on is at most 41AI/r and thus O(IAI/r). E

Note that Theorem 3 establishes (order) optimality with high probability, which

is weaker than (order) optimality in Corollary 2. This is due to the fact that the lower

budget requirements (r > max{46(A), 16A log 2 AI, 8c(A)} vs. r > max{4W, 16 log 2 n'

A}) come at a cost: if we have a long segment and a failed attempt (which is a small

probability event) the process can potentially be uncontrollable and the extinction

time from then on large.

3.5 Simulation Results

In this section, we evaluate the practical performance of our policy, against the pre-

viously proposed degree based policy as well as the dynamic version of the latter.

Specifically, for each amount of total curing budget, r we evaluate the following poli-

cies:

1. Static Degree: The curing rate at each node v at each time instant t is equal

to

Pv(t)= d r.

2. Dynamic Degree: The curing rate at each node v at each time instant t is

equal to

ZUEV duXu(t)

where X,(t) = 1 (Xv(t) = 0) if node v is infected (healthy) at time t.

3. CURE Policy: this policy is described in Section 3.1.

We simulate the performance of these policies in two graphs. We calculate the

expectation of the extinction time by averaging over 100 samples, for each value of

the curing budget r.

Star graph: The first is a star graph with 51 nodes. In this case we are able to

find the optimal monotone crusade for any subset of nodes and hence implement the
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CURE policy as described above. Specifically, the optimal monotone crusade for a

bag that contains only leaves consists of removing leaves one at a time at any order.

The optimal monotone crusade for a bag that contains less than 25 leaves and the

center consists of first removing the center and then the leaves one by one. Finally,

the optimal monotone crusade for a bag that contains more than 25 leaves and the

center consists of first removing leaves one at a time until 25 leaves remain in the

bag, then remove the center and finally the rest of the leaves one by one.

Mesh graph: Our second experiment uses a 5 x 10 mesh graph. In this case,

due to the hardness of finding the optimal monotone crusade for a given subset of

infections, we use the following heuristic for finding a monotone crusade: at each step

of the proposed crusade we remove the largest (in the lexicographic order) infected

node. Note that our heuristic for constructing a monotone crusade is order optimal.

Figures 3-1 and 3-2 contain the results of our simulations. From these results we

conclude that dynamic curing policies greatly outperform static policies. Moreover,

when curing resources are sparse, i.e. curing budget is small, then there is a significant

difference in the performance of the CURE and the dynamic degree policy. In contrast,

when the curing budget is large, both dynamic policies yield comparable results.

We also observe that in the mesh graph, the CURE policy significantly outper-

forms the dynamic degree policy for a large range of curing budgets. This behavior

is in agreement with our theoretical findings. Specifically, the CutWidth of the star

graph is 0(n) (in particular it is equal to [(n - 1)/2]) and therefore the required

curing budget for the CURE policy to be efficient (achieve small expected extinction

time) is also 0(n). On the other hand, when the budget is 0(n) the dynamic degree

policy also performs significantly well, hence the policies are comparable. On the

other hand, the mesh graph has CutWidth that is equal to ji (in particular, for a

m x n mesh graph it is equal to min{m, n} + 1). Therefore, the CURE policy per-

forms optimally when the Curing budget is Q(Vji) while the dynamic degree policy

performs well when the total budget is Q(n), hence the significant difference in the

performance.
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Figure 3-1: Performance of three policies on a star graph with 51 nodes.
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3.6 Discussion and Conclusions

We have presented a dynamic curing policy which achieves sublinear expected time

to extinction, using a sublinear curing budget when the CutWidth of the underlying

graph is sublinear in the number of nodes. This policy applies to any subset of initially

infected nodes and the resulting expected time to extinction is order-optimal when

the available budget is sufficiently large.

The analysis of the extinction time under our policy is based on a drift analysis

of the epidemic process. The upward drift is equal to the cut of the set of infected

nodes c(It) and the downward drift is proportional to the curing budget r. While the

process is on the target path, c(It), and therefore the upward drift, can be bounded

from above by the impedance of the starting bag. On the other hand, when the

process deviates from the target path this is no longer the case. For this reason we

invoke the maximum degree A of the graph in order to bound the change of the

cut during each such deviation. Note that none of our results (except for Corollary

1c) requires bounded degree. The maximum degree appears in the minimum budget

requirement but is not required to be bounded. Furthermore, our results indicate that

under our policy, the process has low probability of deviating significantly from the

target path and therefore only the locally maximum degree is relevant to the analysis,

and not the global maximum. In other words, as long as the infection does not reach

high degree nodes we should have results similar to those for the bounded degree case.

However, the performance analysis for this case is expected to be significantly harder

and the statement of the results more complicated.

Our policy allocates all the available budget to one node at every time instant.

This is permitted by our formulation but in practice each infected agent can only

be offered a bounded amount of curing resources. Our policy, cannot be directly

generalized to account for such a constraint but the insights of our solution can be

directly adapted to such a scenario.

A drawback of the CURE policy is computational complexity because calculat-

ing the impedance of a bag or finding a target path is computationally hard. Like
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many other interesting graph problems, CutWidth is NP-complete [24], even if we

restrict to planar graphs or graphs with maximum degree three [42] but in general

fixed parameter linear [621. Several approximation algorithms have been developed

for computing the CutWidth of a graph. Specifically, there is a polynomial time

O(log 2 n)-approximation algorithm for general graphs [35], and a polynomial time

constant factor approximation algorithm for dense graphs [561. We leave it as an

interesting future direction to develop such algorithms for computing the impedance

of a bag. Finally, we have argued in this paper that the CURE policy is efficient in

the sense of attaining near-optimal, O(n/r) expected time to extinction, in a certain

parameter regime. It is an interesting problem to look for approximately optimal

policies over a wider set of regimes.
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Chapter 4

A lower bound for graphs with very

large CutWidth: a special case

In this chapter, we provide a lower bound on the optimal expected extinction time

as a function of the available budget, the epidemic parameters, the maximum degree,

and the CutWidth of the graph, for graphs with large CutWidth (close to the largest

possible). Under a budget which is sublinear in the number of nodes, our lower bound

scales exponentially with the size of the graph.

This chapter focuses on the case of graphs whose CutWidth is close to the largest

possible, while the next chapter provides a similar result for all graphs whose CutWidth

scales linearly in the number of nodes. The reason for including the current chapter

and the special result is twofold. First, it conveys much of the intuition of the general

proof and secondly it relies on a combinatorial result (cf. Lemma 12) of independent

interest.

If the graph G is complete, all policies that always allocate the entire curing

budget to infected nodes are essentially equivalent, in the sense that the dynamics of

jItI, the number of infected nodes, are identical under all such policies. Furthermore,

It evolves as a birth-death Markov chain which is easy to analyze, and it is not hard

to show that the expected time to extinction increases exponentially with n. On the

other hand, for more general graphs with large CutWidth but bounded degree the

analysis is more challenging: an analysis using a one-dimensional birth-death chain
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or a simple Lyapunov function does not seem possible.

A related, and conceptually simple, way of deriving lower bounds for more general

graphs would be to try to show that the process must make consistent progress

through configurations (subsets I of V) where the total curing rate is significantly

lower than the total infection rate. Such progress must then be a low-probability

event, implying an exponential lower bound on the time to extinction. Unfortunately,

it is not clear whether this line of argument, based only on the instantaneous infection

rates, suffices.

The main technical contribution in this chapter is to show that in the regime exam-

ined (large CutWidth), the above outlined simple approach to deriving lower bounds

is successful. Based on some nontrivial combinatorial properties of the CutWidth,

and the related concept of the resistance of a set of nodes, we will show that there is

a sizeable part of the configuration space in which Itj has a strong upward drift.

Before we proceed, let us specify the meaning of large CutWidth. The largest

possible value of a cut, for graphs with maximum degree A, is nA/2, and therefore

the CutWidth is also upper bounded by nA/2. For notational convenience, we define

2 (n + 2)A (E=--- WI, (4.1)A \ 2

and observe that E > 2/A. Note that "small" values of E indicate that the CutWidth

is not too far from the largest possible value, nA/2. In Section 4.1.1 we relate E to

cuts and show that when E is small, then bags with large resistance, as defined below,

also have a large cut.

We first explore several graph theoretic (combinatorial) properties of the resistance

of a bag and the corresponding optimal crusades and then use these results to obtain

our first lower bound.
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Figure 4-1: Admissible region for the pair (-y(A), JAI). If -y(A) < W, Lemma 11
implies that ('y(A), JA) belongs to the parallelogram shown in the figure. On the
other hand, there is no restriction on the size JAl of bags with -y(A) = W, and so the
admissible region also includes the horizontal line segment at the top of the figure.

4.1 More properties of optimal crusades and impli-

cations

This section can be viewed by the reader as a continuation of Section 2. We start by

exploring the connection between the size of a bag and its resistance. We first obtain

a bound on y(A) by considering a crusade which removes all nodes of A, one at a

time, in an arbitrary order. We then obtain a related bound on W by constructing

a crusade in Q(V - 0) that removes the nodes of the complement of A, one at a

time, and then uses an A-optimal crusade wA. These two observations imply certain

constraints (an "admissible region") for the pair (y(A), AI) on the two dimensional

plane, which are illustrated in Figure 4-1. Finally, using the properties of the function

-yQ) that have been established so far, we obtain a refinement of the admissible region,

which is again illustrated in Figure 4-1.

Lemma 11. Consider a graph with W > A and a bag A. Let E be as defined in

Eq. (4.1),

(i) y(A) < AlA;

(ii) If -y(A) <W, then W < (n - AI)A;
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(iii) If y(A) < W, then -y(A) > A(Al - E).

Proof. (i) Consider some enumeration (ai, a2, ... , alAi) of the nodes of A. We con-

struct a crusade CZ E Q (A -0) by letting cZo = A, and wi = wi_ 1 \{ai} for i = 1, .... , Al.

By Proposition 1(i), the maximum cut encountered by c is bounded by IAIA. There-

fore,

y(A) < z(c ) < JAlA.

(ii) Consider some enumeration (ac, ac,... , acII) of the

plement of A. Let wA ( WA, ... ,A) E A. We construct a

by letting wo = V, w= wi_ 1 \ {a} for i = 1,..., n - JAl,

i= n -JAI+1,...,k+n -JAl. Then,

nodes of Ac, the com-

crusade w c Q(V - 0)

and wi = w A fori-n+IAI

W= y(V) 5 z(w) = max{y(A), max c(wj)}
iE{1,...,n-IAI}

< max{y(A), (n - lAI)A}.

(4.2)

The first equality above follows from Theorem 1; the second equality follows from

the construction of w; the last inequality follows from Proposition 1(i). Using the

assumption y(A) < W, Eq. (4.2) implies that

W < (n - IA)A.

(iii) Consider some bag A for which y(A) < W. From (ii),

JAl < n - W/A. (4.3)

Let C C V \ A be some nonempty bag with ICI = n - [W/AJ - JAl + 1. Note that

Eq. (4.3) implies that

ICI = n - [W/AJ -JAI +1 > n - W/A -JAI +1 > 1,
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and that the assumption W > A implies that

|CI|= n -- [W/ A -|JA|+ 1 < n -|JA|.

This shows the existence of a bag with the desired properties exists.

We define F = A U C. Note that

FI=AI+ICI > n - [W/Aj +1I

> n - [W/A] > n - W/A

and thus

W > (n - FI)A.

Then, part (ii) of the Lemma implies that -y(F) = W. The resistance of F satisfies

W = y(F) = y(A U C) < 7(A) +ICIA,

where the inequality follows from applying Lemma 2(ii) ICI times. Therefore,

-y(A) > W - CIA

= W - (n - [W/AJ - AI + 1)A

> W - (n - W/A + 1 - JAI +1)A

> 2W - (n + 2)A + AA

which concludes the proof. LI

4.1.1 Characterization of optimal crusades and some implica-

tions

In this section we prove that when E is small, i.e., when the CutWidth is close to the

largest possible value, then bags with large resistance also have large cuts.
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Lemma 12. Suppose that W > A and that the bag A satisfies 0 < -y(A) < W. Then,

c(A) > y(A) - 2(E + 2)A.

The rest of the section is devoted to proving this property. We start with a

characterization of optimal crusades for a given bag A. Specifically, Lemma 5 of

Section 2.4.6 states that for any bag A, there exists an optimal crusade which: (i)

can add nodes, and potentially remove one node at the first step; (ii) cannot add

nodes (i.e., is monotone) after the first step (parts (i)-(ii)). Moreover, we argue that

except for trivial cases, an improvement bag must be encountered before the end of

the crusade (part (vi)). These properties allow us to make a connection between

resistance and cuts.

Lemma 13. For any nonempty bag A with 1 (A) > 0, there exists a crusade c2)= (Coo, .,1)

QA with the following properties:

(i) For i E Ill. .. , k}, c ) =/ c0;_1

(ii) For i Ez 12, ... ,k}, cOj c _.

(iii) For i E {0, ... k}, y}(2i) < -y(A).

(iv) -y(c21) > y(A) -A.

(v) c(A) > c(C1) - A(E + 2).

(vi) Let 1 = min{i > 0 : c2 E C}. Then, l < oo.

Proof. We assign to every (A - 0)-crusade w E QA a value

IWI-1 IWI-1

P(G) = (c(Wi) + 1), E Ioi .
i=O i=O

Let c2 E argminWrgA P(w), where the minimum is taken with respect to the lexico-

graphic ordering.
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(i)-(ii) These properties have been established in Lemma 5 of Section 2.4.6.

(iii) We prove the result by induction. First, observe that -y(&o) = -Y(A). Assume

that -y(A) ;> -y(ci). Moreover, by (2.3), for all i c {,.... , k - 1}, y(cZ'i)

maxf- (ci+1),-c(cQi+1)l > 7Y(ci+1). Therefore, -y(ci+1) < 7y(A).

(iv) We consider two cases. Assume that &'1 D A. Then >() > y(A) -y(A) - A.

Otherwise, by the definition of a crusade we get IA \ ci < 1. Therefore, we can

write cZ1 = A U D - v, for some set D (disjoint from A) and some v E A. Using

Lemma 2(ii), and then Lemma 2(i), we obtain

-y(c ) ;> -y(A U D) - A;> - (A) - A.

(v) From (iii) we obtain -y(c1) < -y(A). Therefore, using Lemma 11(iii), we conclude

that

IC;iI < + E. (4.4)
-A

Moreover, by Lemma 11(i), we get

JAI > 7(A) (4.5)
A

We consider two cases. Assume that w, D A. Then,

lc 1AAJ = lcil - JAI.

Otherwise, by the definition of a crusade we get IA \ c2i I 1. Therefore, we can

write c21 = A U D - v, where D is disjoint from A and v E A. Thus,

k' 1 AAJ = ID|+ 1 = |1 1 - JAI+ 2.

Therefore, in both cases,

lcZ1AAJ lcZ'l - AI +2.
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We then use Eqs. (4.4) and (4.5) to obtain

KijAAj < E + 2.

The result follows by applying Proposition 1(iv).

(vi) Note that Y(CZk) = y(0) = 0. Note also that any single-element set B satisfies

?(B) = 0. Suppose that -y(cZ1) > 0. Then, there exists some i E {1, ... , k - 1}

such that 'y(Civi) < 7(c2i), and Jj; is an improvement bag, as defined in Section

2.4.4.

Suppose now that -y(co1) = 0. If c1 = 0, then -y(A) = 0, which contradicts the

assumption -y(A) > 0. If Col is nonempty, then we must have c(C 2 ) = 0, so that

w 2 is empty and cZ 1 is a singleton. Since -y(A) > 0, the set A is not a singleton.

Since at most one element can be removed in going from A to C2.1, it follows that

A consists of two elements and that a single element was removed from A. In

that case, A = CDO is an improvement bag.

In both cases, we see that there exists some i for which cZ'j is an improvement

bag and therefore l is well-defined and finite.

Proof. (of Lemma 12) Consider a crusade WA with the properties in Lemma 5, and

let 1 > 0 be such that B = O) is the fist improvement bag encountered.

From Lemma 5(vi), 1 is well-defined and finite. We consider three cases:

(i) 1 = 0: If A is itself an improvement bag, then from Lemma 3, c(A) > 'y(A) - A.

(ii) 1 = 1: In this case, c21 is an improvement bag. From Lemma 3, c(c2 1 ) >

-(c1) - A. Then, from Lemma 5(iv), we obtain

c(cZ) 1) ;> y(A) - 2A.

Moreover, from Lemma 5(v), we get

c(A) > c(Co1) - (E + 2)A > -y(A) - (E + 4)A.
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(iii) 1 > 2: In this case, by property (ii) in Lemma 13(ii), it folows that B C cZ 1 and

jBAi j = k'il - JBI.

Moreover, since B is the first improvement bag that is encountered, -y(B) =

-y(A 1). We use Lemma 11(i) to obtain

JBI > y(B)/A = -(c1)/A,

and Lemma 11(iii) to obtain

161Il < y(Co1)/A + E.

Combining the above,

|BAic = JGi - JBI < E,

from which we conclude that

c(cZ 1) > c(B) - EA > -y(L.) - (E + 1)A.

where the first inequality follows from Proposition 1 (iv) and the second from the

fact that B is an improvement bag and -y(B) = -y(wi). Therefore, from Lemma

13(v), we obtain

c(A) -y(wi) - (2E + 3)A.

Finally, using Lemma 5(iv), we conclude that

c(A) > y(A) - 2(E + 2)A,

which completes the proof of Lemma 12.

The combinatorial properties of the resistance derived in this section will be used

next to obtain a lower bound on the expected extinction time, in the regime where
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-y(Io) > r.

4.2 Exponential Lower Bound

In this section we state and prove the main result of this chapter. Specifically, we use

Lemma 12 to argue that the process must traverse a region in which the number Itj

of infected nodes has an upward drift, which in turn leads to the desired lower bound.

We first recall a basic result on the standard continuous time random walk on the

integers. Specifically, let Zt denote the state of a Markov process with the following

dynamics:

Zt : i - i + 1, with rate p,

Zt : i -i - 1, with rate A. (4.6)

Fix some integers M and L with 0 < M < L, and let PM be the probabilty

measure that describes the process when initialized at Zo = M. Let

TL = inf{t : Zt = 0 or Zt = L}

denote the first time that the process Zt visits state 0 or L, which is a stopping time.

Moreover, let

T = inf{t: Zt = 0}

denote the first time that Zt hits 0.

The following result is standard; see, e.g., Section 2.1 of [38] or Section 2.3 of [60].

Lemma 14. Consider the process Zt and the stopping times rL and '. Then,

PM(ZL = L) = I -(A 1 )m (4.7)
1 - (A/p)
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Consider now a related Markov process Y, whose transition rates are as follows:

Y : i i + 1, with rate p,

Yt : i -+ i-1, with rate A, (4.8)

for i E{1, ... , L - 1} while

Y : i - i - 1, with rate A,

for i = L and

Y : i -+ i + 1, with rate ,

for i = 0.

We are looking for a lower bound on the expected time that it takes for the process

Y to hit 0 for the first time, assuming that it starts at L - 1. Let p be the probability

that Y hits level L before hitting 0 starting from state L -1, which is given by Lemma

14, with M = L - 1. We consider the case where A < y, so that p > 1/2. Each time

that the process is at state L - 1, the process regenerates, and we have a new trial,

which succeeds in hitting state 0 before state L, with the same probability 1 - p. Let

N be the number of trials and note that its expected value is 1/(1 - p). In between

trials, there needs to be a transition from state L to state L - 1, whose expected time

is 1/A. Thus, the total expected time elapsed until state 0 is hit for the first time is

E[N - 1]/A = p/(l - p)A. Using Lemma 14 and some straightforward algebra, we

obtain that this expected time is at least as large as

- 1 -. (4.9)
2 A A*
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Theorem 4. Suppose that y(Io) > A(9E + 12) + 3r. Then,

E1 [] > 1
~ILJ-2r

( ((o) - (9E + 12)A)3A1

Proof. We define a process Vt which is coupled with the process It as follows.

t It,
L 2=y(Io)J

if hI 2-yIo)Jif 'it4 < 3A

if litl > 3

The dynamics of Vt are as follows. If i < _2-y(Io)/3A)], then

S i - i + 1, with rate c(It),

S i - i - 1, with rate r.

Furthermore, if i = [2'(Io)/(3A))], then

Vt : i -÷ i - 1, with rate r(It),

where r(It) < r.

Consider the stopping time

r* = inf t > 0:

= inf t > 0:

|It| < [ A

t < .A

For every sample path, r* < r. Therefore,

E10 [7] > EI0I7*]

Suppose now that IIt I satisfies

ItI < 2 -y(Io)
-3A
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Then, by parts (i) and (iii) of Lemma 11, we obtain that

,(Io) - EA< _00 < 2y(Io)
3 3

Furthermore, Lemma 12 implies that

c(It) > -y(It) - 2(E + 2)A > Jo) - (3E + 4)A.
3

It follows that the process V stochastically dominates a process Y, described above,

with parameters A = r, P = 'y(Io)/ 3 - (3E + 4)A, and L =y(Io)/3A. Therefore,

using Eq. (4.9) in the Appendix,

E 0 [T] > I- (jy(Io) - (9E + 12)A) -1
2r 3r

Note that when 3r < -y(Io) - 9EA-12A, the optimal expected extinction time

scales exponentially in the resistance of the set of the initially infected nodes. In

Chapter 3 we focused on the case where 1o = V (the worst case) and proved that

if the CutWidth of the graph is a sublinear function of the number of nodes, and if

r = o(n), then, the expected extinction time is o(n). In contrast, the following result

considers the case where W scales linearly in the number of nodes and provides an

exponential lower bound on the expected extinction time. Specifically, using Theorem

1 to replace -y(V) by W, and using also the definition of E, we can write our lower

bound as

Ev[T] > I 19W - 9nA - 30A W/3-1

2r (3r

and we obtain the corollary that follows.

Corollary 3. Fix a constant C > 1 and consider those graphs' for which

'Regarding the existence of such graphs, consider as an example the Ramanujan A-regular graphs.
Their CutWidth is at least equal to n(A - 2VA - 1)/2, since their edge-expansion is at least equal
to A - 2VS -1
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90
W >-9riA.

- 19

Moreover, assume that r < C'n, where C' < C/3. Then,

Ev[r] = Q(2n).
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Chapter 5

A lower bound for graphs with linear

CutWidth: the general case

In the previous chapter, we showed that for graphs with large CutWidth, when the

curing budget scales sublinearly, the expected extinction time is exponential for all

dynamic curing policies. In this chapter we prove the general result by not restricting

our analysis to graphs with large CutWidth. Instead, we consider graphs whose

CutWidth scales linearly in the number of nodes (but not necessarily close to nA/2).

5.1 The main result and the core of its proof

In this section we state our main result and provide the key elements of its proof in the

form of two lemmas. Loosely speaking, the result states that if the resistance of the

initial bag scales linearly with the number n of nodes, and the budget scales only as

a small constant multiple of n, then the expected time to extinction is exponentially

large.

Theorem 5. Consider a graph with n nodes and a set 10 of initially infected nodes,

and suppose that for some constant c,,

-y(1o) > c-,n.
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Suppose, furthermore that all node degrees are bounded above by A. Then, there exist

positive constants c, and c, which only depend on c, and A, such that if

r < crfn,

then

P(7 > ce") > ,

under any policy, and for all large enough n. In particular,

1
E[T] > -ce".

Remark: An immediate corollary of Theorem 5 is obtained by letting 1o = V, so

that y(Io) coincides with the CutWidth W: if the CutWidth scales linearly in n, and

the curing budget is less than a certain multiple of the CutWidth, then the expected

time to extinction grows exponentially in n. As a further corollary, if the curing

budget grows sublinearly with n, fast extinction is possible only if the CutWidth

grows sublinearly in n. This is a converse to the results of Chapter 3 , which establish

that if the CutWidth grows sublinearly in n, then fast extinction is possible with a

sublinear budget.

The proof of our main result involves the following line of argument.

a) In the first, deterministic, part of the proof (Lemma 15), we show that for graphs

with large CutWidth, the time interval until the extinction of the epidemic

must contain a substantially long subinterval during which the expected total

infection rate is significantly larger than the budget, yet the realized ratio of

infections to recoveries is relatively small, and in particular, fairly different than

the ratio of the corresponding expected rates.

b) In the second, stochastic, part of the proof (Lemma 16), we argue that for a

given time interval to have the properties in a), a "large deviations" event, with

exponentially small (in n) probability, must occur. This is used to conclude
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that, with significant probability, it will take an exponentially long amount of

time until an interval with the properties in a) emerges.

Proof of Theorem 5. We start the proof by fixing a graph with n nodes, and

the initial set 1 of infected nodes. For convenience, from now on, we will use the

short-hand notation -y instead of y(Io). We assume that c, and A have been fixed,

and that -y > cyn. Note that for sufficiently large n, -y will be much larger than A, so

that we can use freely inequalities such as A < -y/ 4 , or -y/4A > 1. In order to keep

notation simple and avoid the use of ceilings and floors, we will also assume from now

on that 7/4A is an integer. The proof for the general case, is essentially the same.

The first part of the proof corresponds to the following lemma.

Lemma 15. Consider a sample path for which T < o. For that sample path, there

exist times t' and t", with 0 < t' < t" < T, such that:

(i) c(It) ;> -/4, for all t E [t', t"];

(ii) we have b = (-y/4A) - 1 recoveries during the interval [t', t"];

(iii) we have no more than n + b infections during the interval [t', t"].

The times t' and t" in the preceding lemma are random variables (they depend on

the sample path). However, they are not necessarily stopping times of the underlying

stochastic process.

Note that it suffices to prove the existence of a time interval [t', t" with just

properties (i) and (ii). This is because there are only n nodes in the graph. If we

have b recoveries during a time interval, the number of infections cannot exceed n + b,

and property (iii) follows automatically.

For the stochastic part of the proof, let us introduce some notation: for any c > 0,

we define B, to be the event that there exist times t', t", with the properties in Lemma

15, together with the additional property t" < ce".

Lemma 16. Having fixed c,, and A, there exist small enough positive constants c,

and c such that if r < Crn, then

P(Bc) -,
2
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for all large enough n.

Lemmas 15 and 16 immediately imply Theorem 5. To see this, Lemma 15 implies

that t" is well defined for any sample path. For any sample path that satisfies -r ce ,

we must also have t" < cecn. Thus, the event {r cec"} is a subset of the event Bc.

Using Lemma 16, we conclude that P(r < cecn) < P(Bc) 1/2, as long as c, and c

are suitably chosen.

5.2 Proof of Lemma 15

Lemma 4 is the central - and least obvious - part of the proof. Before continu-

ing with a formal argument, we provide a high-level informal overview, intended to

enhance comprehension. The overall plan is to argue that 7(It), whose initial value

is -y, must eventually (at some time T) drop to -y/ 2 , and that while the value -y/ 2 is

approached, there must be a sufficiently long interval during which c(It) is at least

7/4. Indeed, if c(It) ;> y/4 for all times in [0, T] (this is Case 1 below), the cut

remains relatively large (and larger than the budget), which implies that the process

is moving in a direction opposite to its drift; in particular, the probability of this

happening is small.

Recall now that the cut is approximately equal to the resistance at those times that

the resistance drops. Thus, c(IT) is approximately equal to 7/2. If c(It) drops below

-y/4 before time T (this is Case 2 below), there must exist an interval [T', T] during

which c(It) ;> y/4, and during which the cut increases from i/4 to -y/2. We want

to argue that such an increase must be accompanied by a large number of recoveries

(which will consist a low-probability event). The difficulty is that cut increases may

be caused by either recoveries or infections. In order to isolate the effects of recoveries,

we look at a "bottleneck process" Ot that starts the same as It at time T', and which

keeps track of the recoveries in It, while ignoring the infections. Similar to It, there

will be a time at which the resistance of Ot will drop to -y/2 (this is due to the fact

that 8t C It, and monotonicity), and at that time, c(Et) will be roughly equal to

-y/ 2 . Thus, c(E9) also increases from -y/4 to -y/ 2 . However, because et only changes
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whenever the process It has a recovery, it follows that there must be 0(-Y) recoveries

in the process et and, therefore, for the process It as well (Lemma 17).

We can now start with the formal proof. Let us fix a particular sample path for

which T < oo. Let T be the first time that y(It) drops to a value of -y/2 or less:

T = inf {t > 0 : y(It) < -/2}.

Given that -y(I,) = -y( 0 ) = 0, it is clear that such a time T exists and satisfies

0 < T < 7.

We distinguish between two cases:

Case 1: Suppose that throughout the interval [0, T], we also have c(It) ;> y/4.

Because of the monotonicity property of -y(.) (Lemma 2(i)), y(It) decreases only

when the set It decreases, that is, only when there is a recovery. Furthermore, using

the smoothness property in Lemma 2(ii), each time that there is a recovery, -(It)

can drop by at most A. Therefore, the number of recoveries during the time interval

[0, T] is at least
'y(Io) - y(IT) 7 -- y/2 - y

A - A 2A*

We can then find some T K T such that during the time interval [0, t], we have

exactly -y/4A - 1 recoveries, and properties (i)-(ii) in the statement of Lemma 15 are

satisfied by letting t' = 0 and t" = t.

Case 2: Suppose now that there exists some t E [0, T], with c(It) < -y/4, which

is the more difficult case. Note that just before time T, we have -(IT_) > Y/2.

Furthermore, -y(IT) < y/2. With our continuous-time Markov chain model, only one

event (infection or recovery) can happen at any time. Since -y(IT) < y(IT-), and since

y(-) is monotonic, it follows that we had a recovery and, therefore, IT =IT- - v, for

some node v. Lemma 3 applies, with A = IT- and A - v = IT, and we obtain

W(Ir) ;> -(I-) > 2
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We now define

T' = sup{t < T: c(It) < y/4},

so that c(Ir_) < 7/4. Furthermore, since c(It) can change by at most A at each

transition (Lemma 1), we must actually have

c(I-) < + A, (5.1)

which implies that T' $ T and 0 < T' < T.

We will show that the interval [t', t"], with t' = T' and t" = T has properties

(i)-(ii) in the statement of Lemma 15. Indeed, the definition of T' implies that

c(It) ;> , V t E [T', T],4

which is property (i). The proof of Lemma 15 is completed by showing property (ii),

namely, that the increase in c(It), from a value smaller than (7/4) + A (at time T'),

to a value above -y/2 (at time T) together with a drop of the resistance from a value

above y/2 (at time T') to a value below 7/2 (at time T), must be accompanied by at

least (-y/4A) - 1 recoveries. This is the content of the next lemma.

Lemma 17. The number of recoveries during the time interval [T', T] is at least

7 1
4A

Lemma 17 is a rather simple statement, but we are not aware of a simple proof

or of a transparent intuitive explanation. Our proof relies on an auxiliary process,

the bottleneck process, coupled with It, which is introduced and analyzed in the next

section.

5.3 Proof of Lemma 17

The first step in proving Lemma 17 is the construction of a process which is coupled
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with the infection process. Observe that a sample path of the infection process defines

a crusade in which, at each step, a single node is added to or removed from the current

bag. To any such crusade, we associate a bottleneck sequence, which is a sequence of

bags consisting of subsets of the bags in the original crusade, with several important

properties. Consider a crusade w = (A 0 , A 1 , ... , A1) in which IAjAAji_1 = 1, for

i = 1, ... , I. In particular, we always have A C Ai_ 1 or Ai D Ai_ 1. We associate

with w a related sequence of bags (0o,... , ), by letting

E8i =n A,, i = 0, ... ,)1. (5.2)
k=O

It is clear from our construction that E2 is always a subset of Aj, and that O4 2

E8j 1 . We have the following interpretation: E0 starts the same as A0 . Whenever a

node is removed from a bag in the original sequence, the same is done in the bottleneck

sequence, as long as this is possible. On the other hand, whenever a node is added

to a bag in the original sequence, nothing is done in the bottleneck sequence.

Lemma 18. Consider a sequence (A0 , A 1,..., A,) of bags such that |AjAAj_ 1 | = 1,

for i = 1, ... , 1, and the associated bottleneck sequence (80,... , 61). The following

hold:

(i) 1i C A2 .

(ii) If c(04) > c(0i_ 1), then Ai C Ai_ 1 .

(iii) c(0j) - c(8i-_) < A.

Proof. Proof:

(i) Follows directly from the definition.

(ii) Suppose that c(02 ) > c(E0_ 1 ). Then, 0 4 E ej_. From the definition of the

bottleneck sequence, we see that it if Ai D Ai_ 1, then 02 = E0 _1. Therefore, we must

have that Ai C Ai- 1.

(iii) If A jDAj_ 1 , then, 8 = Oi_1, and c(04) - c(04-1) = 0. On the other hand,

if Ai c Ai_ 1, and using the assumption jAjAAj_ 1 I = 1, we write Ai = Ai- 1 - v for
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some v E Ai- 1 , and from Eq. (5.2) we obtain 6i = E;_1 - v. The result then follows

from Lemma 1(i). 0

We now complete the proof of Lemma 17. Let A 0 ,... , A, be the sequence of

bags that arise during the evolution of It, between times T' and T. In particular,

AO = IT, and A, = IT. Let 00, . . . , 61 be the corresponding bottleneck sequence, so

that E0 = AO = Ip. Using property (i) in Lemma 18, we have E8 C Aj, for all i.

Using the nonotonicity of -y(-), we obtain 7-(ej) < -y(Ai), for all i. In particular,

y(e1) < 7(Al) = y(IT) < l- < 7(IT) =-(80).2

(The second and third inequalities follow from the definition of T and the fact T' < T,

respectively.) This implies that there exists some i E {1, ... , l} for which

-y(E8j) < 17 < -Y(E8j_).
2

We apply Lemma 3 and obtain that c(E8) ;> -y(E8 1) > y/2. Thus, the bottleneck

sequence starts with c(EO) = c(IT,) < (7/4) + A (cf. Eq. (5.1)) and eventually its cut

rises to a value above 7/2. From part (ii) of Lemma 18, c(E8) can increase only when

there is a recovery. From part (iii) of Lemma 18, c(E8) can increase by at most A at

each recovery. Thus, in order to obtain an increase from (Y/4) + A to y/ 2 , we must

have had at least (-y/4A) - 1 recoveries in the process It between times T' and T.

A schematic summary of the two cases introduced in Section 5.2 is provided in

Figure 5-1.

5.4 Proof of Lemma 16

Lemma 16 is a fairly routine "large deviations" result. It is useful to provide some

intuition by considering the special case in which the times t' and t" are fixed (not

random), and c(It) = -y/ 4 throughout the interval [t', t"] (as opposed to c(It) ;> -/4).

In this case, we have a Poisson process (recoveries) with rate r and an independent
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Case 1

I

T
Case 2

-y / .( .... ... ..... .... ................7

T' T

Figure 5-1: Case 1: In the first case, c(It) remains at least -y/4 throughout the
interval [0, T]. Moreover, since the resistance drops from -y to -y/2, at least -y/2
recoveries must occur. Case 2: In the second case, c(It) drops below -/4. The last

time that it does so (time T'), the resistance is above /-y2 and needs to drop to a
value below -y/2. Therefore, c(It) needs to grow above (roughly) Y/2. In principle,
this increase may happen through infections and not only through recoveries. This is
why we define the auxiliary process E8, whose cut also needs to increase to -y/2 but

can only increase through recoveries, implying that at least (roughly) -y/4A recoveries
occur.
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Poisson process (infections) with rate y/4; their ratio is 4r/-y. For properties (i) and

(ii) in Lemma 15 to hold, the empirical ratio of observed recoveries to infections must

be at least
b _ (7/4A) - 1

n+ b n+ (y/4A) - '

where b is as defined in Lemma 15. When r is small compared to -Y/4, which is

the case if we choose c, small enough, we have an empirical ratio of recoveries to

infections which is above the theoretical ratio by a constant factor. Large deviations

theory implies that this event has exponentially small probability. We then argue

that within the time horizon of interest, [0, cecn], there are only O(necn) intervals

that need to be considered. By choosing c small enough and using the union bound,

the overall probability that there exist t' and t" with the desired properties can be

made small.

The proof for the general case runs along the same lines but involves a coupling

argument to show that when c(It) can exceed -y/4A, then the event of interest (rela-

tively few infections or, equivalently, too many recoveries) is even less likely to occur.

5.4.1 Decomposing the event of interest

Let c be a small enough constant - how small it needs to be will be seen at the

end of the proof. Let V = ce', which is the time horizon of interest in Theorem 5.

Recall our definition of the event B, in Section 5.1: event B, occurs if and only if

there exists a time interval [t', t"] with t" < cecn = V, with exactly b = (7/4A) - 1

recoveries, with at most n + b infections, and during which c(It) -y/4.

Our first step is to show that only a finite number of intervals [t', t"] need to be

considered. The recovery process behaves as a Poisson process with rate r, as long as

the absorbing state has not been entered. To simplify the presentation, let us redefine

the process, so that recoveries take place forever, according to a Poisson process. Any

recovery that occurs after the extinction time T is "dummy" and has no effect on the

process {It}.

For i > 1, let ti, be the time of the ith recovery (actual or dummy). We consider
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the time interval [ti, ti+b-1], which is the interval until b-I new recoveries are observed,

after the time ti of the ith recovery.

For i > 1, we define Bi as the event that throughout the interval [ti, ti+b-11 we

have c(It) > -y/4 and at most n + b infections.
00

Lemma 19. B C U Bi.
i=1

Proof. Proof: Consider a sample path that belongs to Bc, so that there exists an

interval [t', t"] with the properties in the definition of B,. In particular, there exists

some i > 1 such that the interval [t', t"] contains the times ti,.. . , ti+b-1, i.e.,

t' < ti < ti+6-1 < t;

furthermore, c(It) > -y/4 during that interval, and we have at most n + b infections.

But in that case, the interval [ti, ti+b-1] has all of the properties that are required for

event Bi to hold. E

Let K be the total number of recoveries (real or dummy) during the time interval

[0, t*]. Using Lemma 19 and the union bound, we obtain

4rt* 4rt*

P(Bc) < P(B) + P(K > 4rt*) < P(B) + 4, (5.3)
i=1 i=z1

where the last inequality is obtained from the fact that K is a (Poisson) random

variable with mean rt*, and the Markov inequality.

It remains to bound the sum of the P(Bi). Since t* grows exponentially with n, we

are looking for an exponentially small upper bound on each Bi. This is the subject

of the next subsection.

5.4.2 Bounding P(Bi)

The main obstacle in characterizing P(Bi) is that the infection process has a time-

varying rate. We will handle this issue through a coupling with a Poisson process

that has a constant rate.
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For t > ti, let Mi (t) be the number of infections during the interval [ti, t], Let also

Ci(t) = {c(It) > y/4, Vt E [tit]},

which is the event that c (It) remains "large" during the interval [ti, t]. Then, the event

Bi can be expressed as

Bi= {Mi(ti+b-1) < n + b} n Ci(ti+-1).

For the remainder of the proof, we assume that c, is chosen (based only on cy and

A, as in the statement of the theorem) so that

2

Cr < C; (5.4)
4OA

By rearranging terms, it is then seen that we can fix a constant t that again depends

only on cy and A, which satisfies

Crt < and - > 2 (5.5)
5A 4

For some interpretation and an outline of the rest of the argument, f is chosen so

that, with high probability, the interval [ti, ti + t] has fewer than b - 1 recoveries, but

more than n + b infections if the cut remains "large." As will be seen, this property

of t implies that, with high probability, the event Bi does not occur.

We define the event Bi by

Ri = {ti+b-1 < ti + f} U ({ M(ti +<) +b} n c(ti +).

We will now show that Bi g B. Consider a sample path in Bi. If that sample path

also satisfies ti+b-1 < ti + f, then it is also an element of B2 . Suppose now that the

sample path satisfies ti+b-1 > ti + f. Using the monotonicity of the counting process

M&), we obtain Mi(ti + f) Mi(ti+b-1) < n + b, where the last inequality holds

because the sample path belongs to Bi. Furthermore, since the sample path belongs
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to Bi, it must belong to Ci(ti+b- 1), which implies that it must also belong to Ci(ti + -).

Thus, the sample path belongs to {Mj(tj + F) n + b} n c(tj + ), and is therefore

an element of Pi. This concludes the proof that Bi C Bi. It then follows, using the

union bound, that

P(B) < P(Bj) P(ti+b-1 < tj + ) + P({AM(t + t) n + b} n c(ti + t). (5.6)

Our next step is to derive an upper bound for each of the two terms on the right-

hand side of Eq. (5.6), in terms of the Poisson distribution. For the first term, this

is simple. The event {ti+b-1 < ti + T} is the event that starting from time ti, at least

b - 1 recoveries occur within f time units. Since the recovery process is Poisson with

rate r, we have

P(ti+b-1 < t + IP(R > b - 1), (5.7)

where R is a Poisson random variable with mean rt.

To study the second term, we use 1 c to denote the indicator function of the event

Ci(ti + F). For those sample paths that belong to Ci(ti + ), and during the interval

[ti, t + t], the counting process M (-) maintains a rate that is larger than or equal to

y/4. Thus, on that time interval, Mj(-) can be coupled with a Poisson process M(-)

with rate equal to '-/ 4 , in a way that guarantees that

Mi(ti + 0)1C ;> Mi(ti + 0)1C,

for every sample path. Using this dominance relation, we obtain

P({Mg (tj + t) < n + b} n c(tj + ) = P ({Mj(tj + i)11c < n + b} n c(tj + 0)

P({Mj(t + )1c < n + b} n c(tj +-))

= P({M(tj + f) n + b} n c(ti + F))

< P(M(tin+ b) (5.

= P(M < n + b), (5.8)
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where M is a Poisson random variable with mean -y/4.

We are now ready to apply large deviations results for Poisson random variables.

Note that a Poisson random variable with mean An can be viewed as a sum of n

independent Poisson random variables with mean A, and therefore, by the Chernoff

bound, the probability of deviating from the mean by a constant factor falls expo-

nentially with n. We record this fact in the lemma that follows, which just asserts

the fact that we have a positive large deviations exponent.

Lemma 20. There exists a function e(A, /'), defined for positive A and

is positive whenever A $ A', with the following properties.

(i) Let X be a Poisson random

then

A', and which

variable with mean bounded above by An. If A' > A,

P(X > A'n) < e A'). V n.

(ii) Let X be a Poisson random

then

variable with mean bounded below by An. If A' < A,

P(X < A'n) < edaA')" V n.

The random variable R in Eq. (5.7) is Poisson with mean rf K cjn. Note that,

for large enough n, we have b - 1 = (-y/4A) - 2 > (-y/5A) > (cy/5A)n, where the last

inequality follows from the fact that y > cn. . We apply Lemma 20(i), with A = crt

and A' = cy/5A:

P(R > b-1) < P(R > (c/5A)n) < e-lf.

Because of our assumptions on cr and f (cf. Eq. (5.5)), we have A' > A', and c, is a

positive number determined by cr, c,, and A.

Similarly, the random variable M in Eq. (5.8) is Poisson with mean yt/4 >

(c-)f/4)n. For any graph, y is bounded above by nA, and this implies that b =

(/4A) -- 1 < n. We apply Lemma 20(ii), with A = cJ4/4 and A' = 2:

P(M < n + b) P( < 2n) e".
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Because of our assumptions on c., and f (cf. Eq. (5.5)), we have A' < A, and 62 is a

positive number determined by cy.

We have therefore established that each of the two terms on the right-hand side

of Eq. (5.6) is bounded above by an exponentially decaying term. By letting c =

min{E, E2} > 0, we obtain that

P(Bi) < 2e-. (5.9)

5.4.3 Completing the proof of Lemma 16.

For the given c, and A, we choose a suitably small c, as in Eq. (5.4). This allows us

to set f as in Eq. (5.5), leading to a positive e in Eq. (5.9). We then use Eq. (5.9)

to bound the terms P(Bi) in the inequality (5.3), and also make use of the facts that

t= cec and 4rt* < 4cncecn, to obtain

1 1
P(B,) < 4cnCecn2e~-n+ - -

4 -2'

provided that c is small enough (it just needs to be chosen a little smaller than e)

and n is large enough. This concludes the proof of Lemma 16.

5.5 Conclusions

We have considered the control of an epidemic (contagion process) given a limited

curing budget, and provided an exponential lower bound on the expected time to

extinction, for bounded degree graphs under any dynamic curing policy. For the

interesting (and least favorable) case where all nodes are initially infected, our as-

sumption was that the CutWidth of the graph scales linearly with the number of

nodes, and that the curing budget is bounded above by a small enough multiple of

the number of nodes.

It remains an open problem to develop lower bounds for more general bounded-

degree graphs, whose CutWidth scales sublinearly with the number of nodes.
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Chapter 6

Summary of Theoretical Results and

Open Questions

In the preceding chapters, we have considered the control of an epidemic (contagion

process) given a limited curing budget. In Chapter 3 we proposed an order optimal

policy, while in Chapters 4 and 5 we provided lower bounds on the expected time to

extinction for any dynamic curing policy.

In this chapter we contrast these results and describe an open problem that re-

mains unanswered.

6.1 Case I: All nodes initially infected

We start our discussion by considering the case of all nodes being initially infected.

A standard coupling argument reveals that this is the worst case scenario for the

optimal dynamic curing policy with respect to the achieved expected extinction time.

With regards to our discussion in Section 1.4 and in order to clearly illustrate

the contributions of this thesis, we define a network to be resilient if and only if

there exists a policy that achieves sublinear extinction time with sublinear budget,

assuming that all nodes are initially infected.

Chapters 3, 4 and 5 provide necessary and sufficient conditions for the resilience

of a bounded degree network, as the following theorem illustrates.
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Theorem 6. A network is resilient if and only if its Cut Width is sublinear.

Proof. Sufficiency follows from Corollary 2 (d). Necessity follows from Theorem 5. El

We now focus on the set of graphs whose CutWidth scales linearly in the number

of nodes (large CutWidth). Our results if combined show that for such graphs, the

ratio of the curing resources to the CutWidth is the key factor that distinguishes

between slow and fast extinction, as shown in Figure 6-1.

c' W 4W

slow extinction fast extinction

Figure 6-1: Slow vs. fast extinction for graphs with large CutWidth. The ratio of the
curing resources to the CutWidth is the key factor that distinguishes between slow
and fast extinction.

Our results do not provide a sharp conclusion for the case of graphs whose

CutWidth scales sublinearly in the number of nodes (small CutWidth) as Figure

6-2 illustrates. More specifically, Corollary 2(c) specifies conditions under which fast

extinction is achievable by the CuRe policy. On the other hand, Theorem 5 applies

only to the case of graphs with large CutWidth and it remains an open problem to

develop similar lower bounds for such more general bounded-degree graphs. In some

cases, this is easy. For example, for a square mesh with n nodes, the CutWidth is of

order O(y'Th). Using the fact that any subset of the mesh with (roughly) n/2 nodes

has a cut of size Q(/), one can show that a curing budget that scales at least as

fast as # is necessary for fast extinction. The same argument applies whenever we

deal with families of graphs that satisfy suitable isoperimetric inequalities.

We conjecture that a similar result is always true: that is, unless the curing

budget scales in proportion with the CutWidth, the expected time to extinction will

be exponential, if all nodes are initially infected. However, some new tools may have

to be developed.

More specifically, the proof of Theorem 5, and in particular Eq. (5.4), shows that

the exponential lower bound holds when c, is smaller than a constant multiple of c'.
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? c' W 4W

fast extinction r

Figure 6-2: Slow vs. fast extinction for graphs with small CutWidth. If the curing
budget is larger than the CutWidth of the graph, then fast extinction is achieved.
Otherwise, we conjecture that fast extinction is not achievable.

fast extinction slow extinction

pf,(t) = p r > np(A) r < n7

pV(t) = dVr > Cn
CuRe

any policy not applicable

Table 6.1: Existing and New Results: Conditions for fast and slow extinction under
different curing policies, assuming all nodes initially infected.

We conjecture that a similar lower bound can be established under the assumption

that c,. is smaller than a constant multiple of c-. If this is true, the deciding factor

will be the ratio between the resistance and the recovery rate in a very concrete

sense. However, the proof of this conjecture, if true, will require a much more refinied

argument.

Table 6.1 summarizes out contributions in the literature for the case of all nodes

initially infected.

6.2 Case II: Some nodes initially infected

In this section we consider the more general case where a subset of nodes is initially

infected. As we discussed in Chapter 2, there are two notions associated with the

curing problem of a subset of nodes A, the resistance 4(A) and the impedance 6(A).

Our results in Chapter 3 are phrased in terms of the impedance of A. Specifically,

in Corollary 2 we argue that if the curing budget is larger than 46(A) (and larger

than n/ log n) then sublinear extinction time can be achieved.

In contrast, in Chapters 4 and 5 our results are phrased in terms of the resistance
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y(A). For example in Theorem 5, we show that if the resistance -y(A) is larger than

a linear function of the number of nodes then for sufficiently low curing budget the

expected time to extinction is exponential for all dynamic curing policies.

Essentially, if we focus on the regime where -y(Io) = E(n) and consider the re-

lation between the curing budget and the two metrics 6(A) and y(A) we obtain the

following conclusions: (i) if the curing budget is smaller than a constant fraction of

the resistance -y(Io), then extinction is slow while (ii) if the curing budget is larger

than the impedance 6(Ib) then the extinction is fast using the CuRe policy, as Figure

6-3 illustrates.

c' y(1 0) 4 6(10)

slow extinction fast extinction

Figure 6-3: If the curing budget is larger than the the impedance of the set of initial
infections, then fast extinction is achieved. On the other hand, fast extinction is
achievable if the curing budget is smaller than the resistance of the set of initial
infections.

Therefore, in order to evaluate the sharpness of this result one should be able to

bound the gap between 7(Io) and 6(Io). For the case where Io = V, i.e., the case

where all nodes are initially infected (Theorem 1), the gap is zero. For all other

cases, Corollary 1 shows that the gap is bounded by c(Io). In other words, for initial

infections with small cut the ratio of the curing resources to the resistance is the

key factor that distinguishes between slow and fast extinction. On the other hand,

for initial infections with a large cut, our result is not as sharp and remains to be

proven whether the impedance or the resistance is the key quantity that determines

the speed (slow or fast extinction).

6.3 Conclusions of the theoretical part of the thesis

We have presented a dynamic curing policy with desirable performance characteristics.

This policy applies to any subset of initially infected nodes and the resulting expected

time to extinction is order-optimal when the available budget is sufficiently large.
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Moreover, we provided corresponding lower bounds on the performance of an optimal

dynamic curing policy.

Our analysis brings up a number of open problems of both practical and theoret-

ical interest. Specifically, a major drawback of the CuRe policy is its computational

complexity, because calculating the impedance of a bag or finding a target path is

computationally hard. Therefore, one possible direction is the design of computation-

ally efficient policies with some performance guarantees, perhaps for special cases.

In the same spirit, certain combinatorial optimization tools have been developed

for the approximation of the CutWidth of a graph. Such tools can be employed to

approximate the impedance of a bag. An interesting direction is the analysis of the

performance of the CuRe policy when, instead of optimal crusades, approximately

optimal crusades are used.

Furthermore, we have argued in this thesis that the CuRe policy is efficient in

the sense of attaining near-optimal, O(n/r) expected time to extinction, in a certain

parameter regime. It is an interesting problem to look for approximately optimal

policies over a wider set of regimes.

Concluding, our theoretical analysis is based on a set of assumptions that if relaxed

give rise to a number of interesting directions for future work:

(i) Full information: In this thesis, we assumed that the network planner has

full information on the state of each node at every time instant. In reality,

though, one is given access to partial information on the underlying state (due

to corrupted or noisy data, mis-reporting etc.).

(ii) Budget constraint: In our analysis we assumed that the network planner

allocates a total curing budget R at each time instant t. In more realistic

situations though, a network planner would be provided with a total curing

budget to be allocated over the course of time, which leads to a more complicated

decision problem.

(iii) Curing and Removal: In many applications, such as the human epidemics,

the network planner can intervene to the evolution of the contagion process

99



not only through curing nodes but also through removing nodes (quarantine or

vaccination). This consideration gives rise to richer models and possibly richer

insights.
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Chapter 7

Modeling Infectious Diseases:

Influenza in the United States

In this chapter, we turn our attention to the modeling and analysis of infectious

diseases. Specifically, our goal is to investigate the accuracy of a popular class of

models studied in the literature and understand the effect of inter-state traveling on

nationwide propagation of influenza-like infections. This latter question is of great

importance in the context of epidemic control as it quantifies the effectiveness of state

quarantining or regulation of inter-state traveling.

In order to do that, we estimate such models using datal on the evolution of

influenza-like infections (ILI) in the United States. We then use the estimated models

to test their prediction accuracy, and to resolve a hypothesis testing problem aiming

to understand whether inter-state traveling is significant in the propagation of ILI.

Starting from the first known result in mathematical epidemiology in 1760 by

Daniel Bernoulli [7], mathematical modeling approaches have been the main resort to

compare and test theories, as well as to gauge uncertainties in intervention strategies

against infectious diseases and epidemics.

Modern epidemic models generally assume that the population can be divided into

different classes or compartments depending on the stage of the disease. The seminal

work of Kermack and McKendrick [30] assumes that the population can be divided

'Special thanks goes to Vasilis Milias, who helped- in the early stages of data-collection.
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into two or three compartments depending on the type of the disease:

(i) Susceptible: individuals who have no immunity to the infectious agent, so that

they might become infected if exposed.

(ii) Infectious: individuals who are currently infected and can transmit the infec-

tion to susceptible individuals who they contact.

(iii) Removed (or Recovered): individuals who are immune to the infection, and

consequently do not affect the transmission dynamics in any way when they

contact other individuals.

Several models have been proposed in the literature to describe the time evolution

of the size of each compartment. In this chapter we briefly describe the most popular,

networked compartmental models, (Section 7.1) and draw qualitative connections be-

tween these models and the model of Section 2 (Section 7.2). In Section 7.3 we present

the data that we use to estimate the model and evaluate its predictive accuracy. In

Section 7.4 we finalize the structure of the model to be estimated, while in Section 7.5

we present our approach and results. Finally, in Section 7.6 we provide a preliminary

attempt to identifying the effect of inter-state traveling on the propagation of ILL.

7.1 Networked Compartmental Models

In this section we present the model that we use in the rest of the chapter. Essen-

tially, the model consists of a system of differential equations describing how the sizes

of the compartments change over time. Solutions to these equations will yield, in

particular, the size of the each compartment at time t. The numbers of individuals

in each compartment must be integers, of course, but if the host population size N

is sufficiently large, then they can be treated as continuous variables.

In the simplest version of compartmental models where there is a unique host

population, their evolution can be treated through a system of differential equations,
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S(t) = -#3s(t)i(t),

i(t) = #3s(t)I(t) - mI(t), (7.1)

R(t) = mI(t),

where S(t) denotes the number of susceptible individuals, 1(t) denotes the size of

infected individuals, and R(t) denotes the number of recovered individuals. Here,

the transmission (or contact) rate (per capita) is 0 and the recovery rate is m. Note

that the equation for N(t) has no effect on the dynamics of S(t) and I(t) (formalizing

the fact that removed individuals cannot affect transmission). Intuitively, since the

probability that a random contact by an infected individual is made with a susceptible

is given by S(t)/N, the number of new infections in unit time per infected individual

is (fN)(S(t)/N), giving a rate of new infections (f3N)(S(t)/N)I(t) = fS(t)I(t).

One of the main and strongest assumptions of the model described above is that

the host population is homogeneous, in the sense that contact rate is the same across

all individuals or, equivalently, that each infected (or susceptible) individual is ran-

domly and uniformly matched with another individual on the network.

Several models for modeling inhomogeneous populations have been proposed in

the literature, by studying SIR-type models on complex networks of interactions (see

[44], 16], [57], [48] and references therein). This literature can essentially be divided

into stochastic models and deterministic models. In this chapter we focus on the

latter but we briefly review the connections with the former in the next section.

Essentially, one can think of two extremes as follows: Either, a model that con-

siders the whole population of N individuals as in (7.1), or focus on the details of

the interactions of each of N individuals, which leads to complex dynamical system

(such as the model studied in Chapters 2-5).

Bridging these two approaches, researchers ([391, 133]) have proposed to create

M < N subpopulations to approximate the dynamics of the entire N-dimensional

system. We can then keep track of the state of each subpopulation rather than the
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state of each individual in the population, thus providing a more realistic (in terms

of homogeneity) approach, but significantly simpler in its description and analysis

compared to tracking the state of each individual.

More specifically, let i C {1, ... , M} denote the i-th subpopulation, with Ni indi-

viduals, where each individual from the original population with N people is assigned

to exactly one subpopulation. In other words, E_, Ni = N. Note that the number

of individuals in each subpopulation does not need to be the same. Intuitively, each

subpopulation can be thought of as a large city, state, or country.

The main assumption of these meta-population models is that each subpopulation

i is well-mixed (in the sense that interactions are random within the subpopulation)

and that both recovery and transmission rates are homogeneous and equal to mi and

f3j respectively. However, each subpopulation can affect each of the other subpopu-

lations, for example through traveling and "long range" contacts. Hence, there is an

infection rate #i that captures the effect that subpopulation i has on subpopulation

j. Note that it is not required that fij = #ji nor does it make sense be so. We de-

note by Ii(t), Si(t), Ri(t) the number of infected, susceptible and removed individuals

of subpopulation i, respectively. The meta-population model for the SIR dynamics

consists of the following system of differential equations

M I,(M

S i~t E #5i Si (t) IN t
j=1

M

i(t) = -mi(t) + E jiSi(t) Ni (7.2)
j=1 3

f(t ) = mhii(t).

This has now reduced the original N-dimensional system into an M-dimensional one.

Essentially, varying the number of subpopulations considered, one can study different

levels of granularity. If M = 1 we recover the original SIR model of Equation 7.1

while if M = N one can study each individual separately.

104



7.2 Connections between Compartmental and Stochas-

tic models

In this section we draw qualitative connections between the networked compartmental

model of Section 7.1 and the SIS model described in Section 2.1. In particular,

the models of Section 7.1 consist of a system of ordinary differential equations in

contrast to the model described in Section 2.1 which is a Markov process describing the

stochastic transitions between infection states of the nodes on a network. Therefore,

these models are seemingly unrelated.

More specifically, revisiting the model of Section 2.1 and assuming that (i) infec-

tions on the edge (i, j) happen according to a Poisson process with rate 3ij (instead of

/3 as described in Section 2.1) and (ii) recoveries happen at a node specific static rate,

i.e., that the dynamic curing policy takes the simple form pi(t) = mi, the infection

process takes the following simple form:

Xi(t) : 0 -+1 with rate >jjXj(t),
(j,i)EE

Xi(t) : 1 - 0 with rate miXi(t),

where Xi(t) E {0, 1} denotes the infection state of node i. We denote by pi(t) the

probability that node i is infected and observe that pi(t) = E[Xi(t)]. This allows us

to write the exact equations for the probability of being infected, for each node i of

the SIS model,

p(t) = dE[X2 (t)= E -miXi(t) + (1 - Xi(t)) : OjiXj(t)1 (7.3)
(j,i)EE

Using the linearity of expectation, as well as some algebraic manipulations, we obtain

AM )= -mipi(t) + 3 E pi(t) - E OiEXi(t )],
(j,i)E E (j,i)E E
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which does not allow for an explicit solution because the equation for pi (t) depends on

the two-node expectation E[Xi(t)Xj (t)]. Its exact computation requires the knowl-

edge of the joint probability distribution P(Xi = 1, Xj = 1) for the state of nodes i

and j, which is in general impossible. Nevertheless, in order to derive a closed set of

N dynamical equations, the Mean-Field approximation is commonly enforced which

assumes that the states of neighboring nodes are uncorrelated, i.e.,

E[Xi(t)Xj (t)] = P(Xi(t) = 1, Xj (t) = 1) = P(Xi(t) = 1)IP(Xj (t) = 1) = pi(t)pj (t).

Using this approximation, we write

= -mipi(t) + (1 - p(t)) 3ip W(t). (7.4)
(j,i)EE

This Mean-Field approximation has become extremely popular due to the tractabil-

ity of the resulting dynamical system, but very few results have been discovered re-

garding the quality of the approximation. For more information on the derivation,

the validity, and the exactness of this approximation the reader may refer to 1411 and

[641 and references therein.

At this point let us revisit Equation (7.2), and assume that (i) all subpopulations

have the same size, Ni = N, and (ii) all removed nodes are instead susceptible to

reinfection, i.e. Ns = Si(t) + Ii(t). In other words, we slightly change the model to

assume that cured individuals instead of developing immunity, become susceptible to

reinfection. In that case, (7.2) takes the simpler form

d Ii (t) I -ml(t) I (1- t) M 3i(t(75

dt Ns Ns+k1 Ns NJ j .
j=1

Note that Equations (7.4) and (7.5) are exactly the same if we set pi(t) = Ii(t)/N,.

In other words, the compartmental networked model coincides with the evolution of

the probability of infection in the stochastic SIS networked model (after making the

mean field assumption). This observation has a fairly natural interpretation: instead

106



VA SifN( ION

VR OO IAHO

NEVADA

CALIFORNIA

UT1

CDAD

411

AAN

N~~OI MI IA MNES!AW iAR

I FINN

olumbA

NIII AS IAN NJ SF

-II> (N Ann
IAMIIS&ANIX

Figure 7-1: The metapopulation model for the United States

9
of considering a node as an individual in the stochastic SIS model, we may interpret

it as a well mixed subpopulation with connections to other nodes subpopulatiols.

Under this new interpretation, the probability that a specific node is infected at time

t coincides with the fraction of infected individuals in that subpopulation.

For the rest of this chapter we will be working with a variant of the mieta-

population Inodel as described in Equation (7.2), and use it to understand and study

the evolution of influenza type infections in the United States as shown in Figure 7-t.

7.3 Data
4

In this section we present the data that we use to estimate and test a meta-population

model. Our data consists of weekly samples of influenza related infections, percentage

of vaccinated population, absolute humididy for all states over 8 seasons as well as a

static estimate of inter-state travel intensity for each pair of states in the country.
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Influenza

Influenza, commonly known as "the flu", is an infectious disease caused by an in-

fluenza virus [681. Symptoms can be mild to severe. The most common symptoms

include high fever, runny nose, sore throat, muscle pains, headache, coughing, and

fatigue. These symptoms typically begin two days after exposure to the virus and

usually last less than a week.

Three types of influenza viruses affect people, called Type A, Type B, and Type

C. Usually, the virus is spread through the air from coughs or sneezes [68] and hence

is believed to occur mostly over relatively short distances. It can also be spread by

touching surfaces contaminated by the virus and then touching the mouth or eyes.

A person may be infectious to others both before and during the time they are sick.

The infection may be confirmed by testing the throat, sputum, or nose for the virus.

A number of rapid tests are available; however, people may still have the infection if

the results are negative.

Yearly vaccinations against influenza are recommended by the World Health Or-

ganization for those at high risk. The vaccine is usually effective against three or four

types of influenza viruses and is usually well tolerated. A vaccine made for one year

may not be useful in the following year, since the virus evolves rapidly.

As Figure 7-2 indicates, influenza spreads around the world in yearly outbreaks,

resulting in about three to five million cases of severe illness and about 250,000 to

500,000 deaths per year. In the Northern and Southern parts of the world, outbreaks

occur mainly in the winter, while in areas around the equator, outbreaks may occur

at any time of the year.

Subpopulations

In the model that we study, the subpopulations of the meta-population model corre-

spond to each of the 50 states of the United States. We assume that each of these

states is composed of a well mixed population of individuals. We also assume that

the population of each state i remains constant over time as given by [51]. We denote
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the size of each subpopulation by Ni.

Infection data

Traditional surveillance systems to monitor influenza spread, including those em-

ployed by the U.S. Centers for Disease Control and Prevention (CDC) and the Euro-

pean Influenza Surveillance Scheme (EISS), rely on both virologic and clinical data,

including influenza-like illness (ILI) physician visits. CDC publishes national and

regional data from these surveillance systems on a weekly basis, typically with a 1-2

week reporting lag.

The data provided from such surveillance systems, although fairly accurate, are

not detailed enough to shed light on the structure of models of the form (7.2) for

many reasons:

" Geographic granularity: Data published from CDC consist of weekly esti-

mates of influenza related hospitalizations per HHS region or Census division.

Note that the effective infection rate depends both on the population density

(which governs human contacts) and the environmental conditions (which gov-

erns probability of transmission as we see in the sections to come). Hence, HHS

regions and Census divisions being large areas, have fairly varying environmen-

tal conditions and population densities, which make the assumption of fully

mixed homogeneous subpopulations very unrealistic.

" Data granularity: Data published from traditional surveillance systems take

the form of an influenza activity level (scale 1-5) which is not detailed enough

to learn a model consisting of a system of ordinary differential equations.

In an attempt to provide faster detection and more detailed reporting, innovative

surveillance systems have been created to monitor indirect signals of influenza activity,

such as call volume to telephone triage advice lines and over-the-counter drug sales.

About 90 million American adults are believed to search online for information about

specific diseases or medical problems each year, making web search queries a uniquely

valuable source of information about health trends. Previous attempts at using online
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activity for influenza surveillance have counted search queries submitted to a Swedish

medical website, visitors to certain pages on a U.S. health website, and user clicks on

a search keyword advertisement in Canada. A set of Yahoo search queries containing

the words "flu" or "influenza" were found to correlate with virologic and mortality

surveillance data over multiple years.

Google created a system [251 which builds on these earlier works by utilizing

an automated method of discovering influenza-related search queries. By processing

hundreds of billions of individual searches from five years of Google web search logs,

this system generates comprehensive models for use in influenza surveillance, with

regional and state-level estimates of influenza-like illness (ILI) activity in the United

States.

In this work, we used the dataset provided by the Google Flu Trends tool, which

consists of weekly estimates of influenza related infections for all 50 states, over 8

seasons, namely 2008-2015. Note that we exclude from the dataset the season 2009-

2010, due to the H1N1 influenza virus outbreak which featured non-typical behavior.

Moreover, we exclude from the dataset the first 10 weeks of each season, as the

transition from the previous season to the next one may cause problems both in

training and in prediction. A typical snapshot of this data set for a specific state

during a specific season is shown in Figure 7-2.

Curing and vaccination

According to the National Center for Immunization and Respiratory Diseases, Centers

for Disease Control and Prevention [43], the typical duration of influenza related

infection sickness is 5-7 days, and hence since the data set consists of weekly samples,

each data point corresponds to new infections. In other words, the relevant difference

equation equivalent of our baseline model (7.2) can be written as

M
Ij(t + 1) = Z jiSit) I ()

j=1

where t denotes the week number of the season and ranges from 1 to 42.
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Figure 7-2: Number of influenza related infections in Arizona for the 2008-2009 season.
The single peaked shape of the time series is typical in the dataset.

Reinfections from the virus are rare but possible 1591 and hence the number of

immune (after infection) individuals in week t is proportional to

t-1

m Iit)
t'=1

Furthermore, immunity may be developed after taking flu vaccines which cause

antibodies to develop in the body about two weeks after vaccination. These anti-

bodies provide protection against infection with the viruses that are in the vaccine.

The seasonal flu vaccine protects against the influenza viruses that research indicates

will be most common during the upcoming season. The evolution of the vaccinated

population is crucial in understanding the evolution of the susceptible population in

each state. The Center for Disease Control and Prevention (CDC) provides weekly

estimates of the vaccinated population for all seasons 2009-2015 through the Flu-

VaxView tool. We denote by Vi(t) the proportion of non vaccinated population in

state i on week t and we write

t--1

Si(t) = NiVi(t) - mIi(t').
t'=1
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Effect of environmental conditions

Influenza A incidence peaks during winter in temperate regions. The basis for this

pronounced seasonality is not understood, nor is it well documented how influenza A

transmission principally occurs. Previous studies indicate that several environmental

factors may affect seasonality and have analyzed data from laboratory experiments

to explore the effects of different parameters on influenza virus transmission and

influenza virus survival.

Recent studies (see [58] and references therein) find that absolute humidity con-

strains both transmission efficiency and, most significantly, influenza virus survival.

In the studies presented, 50% of influenza virus transmission variability and 90% of

influenza virus survival variability are explained by absolute humidity. In temperate

regions, both outdoor and indoor absolute humidity possess a strong seasonal cycle

that is smallest during the winter. This seasonal cycle is consistent with a winter-

time increase in influenza virus transmission and influenza virus survival and can be

used to explain the seasonality of influenza. Thus, differences in absolute humidity

provide a single, coherent, physically sound explanation for the observed variability

of influenza seasonality.

These observations necessitate the introduction of absolute humidity as a variable

in our model. Both influenza virus transmission and influenza virus survival affect

the effective contact rate, or equivalently the rate at which infected individuals infect

their susceptible contacts. Hence, we modify our infection model to

M Ii(t
1i(t + 1) f(Hi(t)) E /jSi (t) I, (7.6)

j=1

where Hi(t) corresponds to weekly data on the average absolute humidity at state i

during week t as obtained from the National Center for Environmental Information

and f is a parametric function to be estimated from the data which quantifies the

dependence of the effective contact rate on the absolute humidity. Note that the

dataset consists of daily measurements from several locations within the state. We
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Figure 7-3: Relation between number of infections and absolute humidity of the
preceding week in Arizona, for the 2008-2009 season. We plotted the logarithmi of
each quantity for illustration purposes. The slope for this case is equal to -0.37.

take the average, for every state and every week among all locations and among all

days within the week.

Figure 7-3 shows the strong correlation between number of infections and humidity

conditions in the preceding week in the state of Arizona, for the 2008-2009 season.

Inter-state mobility

In our model, we assume a well mixed subpopulation at each state node, as well as

a network of states, corresponding to individuals traveling between states. In other

words, in our model (7.4) the weights /4 correspond to the density of individuals

traveling from state j to state i.

One approach to determiliring these parameters O would be to "learn" their value

from the available data. On the other hand, note that the number of such paramn-

eters is in the worst case 2500, since we need two such paramneters for each pair of

states (to and from intensity). This approach, even imposing sparsity constraints or

penalization, would lead to a greatly overdetermined problem of questionable value.

Instead, in our approach we used travel data to estimate the relative travel in-
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tensity for each pair of states. Specifically, the National Household Travel Survey

(NHTS) is the flagship survey of the U.S. Department of Transportation (DOT) and

is conducted periodically to assess the mobility of the American public. The sur-

vey gathers trip-related data such as mode of transportation, duration, distance, and

purpose, and then links the travel related information to demographic, geographic,

and economic data for analysis. Policy makers, individual state DOTs, metropolitan

planning organizations, industry professionals, and academic researchers use the data

to gauge the extent and patterns of travel, to plan new investments, and for innumer-

able applications of data on trends in travel for policy and planning applications. The

NHTS surveys that we used for our analysis occurred in 1990, 1995, 2001, 2009 and

2014. Each survey contains about 25,000 households representing all 50 U.S. States

and the District of Columbia. During the survey period, each household was sent a

travel diary and asked to report all travel by household members. For the purposes of

our analysis, we identified for each (directed) pair of states the number of individuals

traveling from state to state, after normalizing by the population size. Specifically,

our calculation for the estimate of fij is equal to

Ajg = Ni Ni,
Di

where Nij is the total number of individuals in the sample traveling from state i to

state j, Di is the sample size for state i and Ni is the population of state i. Note that

fi3 provides a relative measure of travel intensity (or contact rate) between different

state pairs. On the other hand, we do not know the absolute magnitude (and effect)

of travel intensities as it should appear in the model (and compared to the intra-

state contacts) and hence, the effective travel intensity is / 3  = zjij where z is to be

estimated using the data. Using this procedure we generate the network, as shown in

Figure 7-4.
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Figure 7-4: Travel intensities (normalized) as calculated using data from the National
Household Travel Survey (NHTS).
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7.4 Model, Assumptions and Problem

Using the data from various sources as explained above to obtain several parameters

in our model, we write

ii~ +M W-
i~t+ = ( Hi(t))E( ji NjV(t) - m I(t') I, j

j=1 t'=1

where Hi(t), V(t) is given by the data. Moreover, we do have estimates for f3ji for all

pairs j = i (except for their absolute magnitude z) but we do not have estimates for

the mixing rates 3ii, which correspond to the intra-state human contact rate. Hence,

our model can be rewritten as

t-1 M I t
Ii(t + 1) = f(Hi(t)) Ni Vi(t) - m Ii (t') (iiIi(t) + z # (t) (77)

j=1,j7i

where z is an unknown parameter which summarizes the effect that infected travelers

from other states have on the infections of each state. Equation (7.7) describes the

evolution of the number of infected individuals over a single season.

Each season, different strains of flu related viruses cause infections. Each virus

(and hence each season) may have different characteristics which change the effective

contact rate (dependence on absolute humidity). We model this phenomenon in our

analysis by making the function f(-) dependent on the season s E {1, . . . , 7} as follows:

t-1
Ij9(t + ) = f(Hjs(t)) NjVjs(t) - mE I (t') (#iiIi (t)+ zQi(t)) , (7.8)

where
M )

Qi8(t ) = 0 P 3SN.
j=1,j~hi 3

denotes the total number of infected individuals traveling into state i during season s.

Several assumptions have been made in developing this model that we summarize

here:

(i) The population of each state remains constant over time.
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(ii) All infected individuals recover within a week.

(iii) The effect of humidity (i.e., the function f,) depends only on the season (the

strain of the virus) and not on the state. This assumption is crucial for the

identifiability of the network effect z.

(iv) The travel intensities are constant over time. In our work, due to lack of more

refined travel data we assumed that the travel intensities are constant over time.

This assumption is extremely simplistic and the insights could change depending

on the quality of the travel data.

Our goal in the rest of this chapter is to estimate this model using the available

data, i.e., determine the lower-case parameters m, /3#j and z, as well as the functions f,
and evaluate the accuracy of the model by making predictions using these estimates.

7.5 Estimation

In this section we use the data to learn the unknown dependence on absolute humidity

and estimate the parameters of the model (7.9). The first step is to decouple the

problem of learning the network effect z from learning the function f (in Section

7.5.2 we specify the parametric form of f).

7.5.1 Identifiability of network effect z

Our model (7.8) is linear with respect to the network parameter z. Therefore, assum-

ing that the rest of the unknown parameters and functions are perfectly estimated, we

could potentially use linear regression to estimate z. An important question, though,

is whether the parameter z can be identified.

For example, consider the case of Colorado in the season 2011-2012, as depicted

in Figure 7-5. The time series of infections within the state (Ii') is collinear with the

time series of traveling infections (Qf) and hence any effect the latter may have on

the former cannot be identified by our model.
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Figure 7-5: Normalized infections within the state of Colorado as well as traveling
infections into the state for the season 2011-2012. Identifying network effect z is
impossible due to collinearity.

In contrast, consider the case of Kentucky for the same season 2011-2012, as

depicted in Figure 7-6. The time series of infections within the state are far from

collinear with the time series of traveling infections and lence the effect of the latter

oil the former may potentially be identified by our model.

In other words, as standard results from linear regression suggest, the parameter

is identifiable only if the covariate vectors If(t) and Q'(t) are linearly independent.

Specifically, let us denote by X the data matrix for each state and each season, i.e.

Xfi = i' Q7],

where If {I8(t)}j() and Q = {Q.(t)}4() for each specific season. Then the stan-

dard error for each estimator of the z variable is proportional to [(Xs TXv )l1] 2 . There-

fore, in order to better understand the orthogonality (or lack thereof) of the in-state

infections to the traveling infections, and perform our inference task on states and

seasons where identification is possible, we generate for every season and every state,
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Figure 7-6: Normalized infections within the state of Kentucky as well as traveling

infections into the state for the season 2011-2012. Identifying network effect z possible

due to orthogonality.

the corresponding entry of the variance matrix:

Of=[(X T XS ) ]122,

for each state i E { 1, 50} and each season s E {1, ., 7}. Figure 7-7 shows an

illustration of these entries. As we can see in the figure, in several state-season

pairs the two vectors are orthogonal enough to lead to a small standard error in the

coefficient estimation but in many state-season pairs, the two vectors are collinear to

the extent that identification is impossible.

In our analysis, we split our dataset into two groups:

(i) Collinear state-season pairs: whenever the quantity 0Q is larger than 5,

the two vectors are essentially collinear (and hence the standard error would be

inherently high to lead to precise inference). Therefore, in all such season-state

pairs, the niodel can be simplified to

IIt +t- 1
If (t +F 1) =f 3(Hi(t)) (Ni~ "(t) - mLJ t' #if t ). (7.9)
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sible. In yellow: season-state pairs where identification of network effect is possible.

Validation set, V . We chose the training appropriately so that all states and all

seasons are represented at least one in the training set T.

A naive approach to estimation: One Step prediction

For any possible paramietric form of f(.), we can use non-linear regression to learn

the non linear model (7.9). Specifically, we consider estimates of the forim

Ij (t + 1) f (Hi(t)) (NiVis(t) - (7. 10)
t'= 1

where Ii denotes the vector of infections for state i during season s (data), and find

the paraneters that minimize the sum of squared errors, i.e.,

mnin s3 J| s 1 2

(is)CT

In the above problem, when we minimize with respect to f, we naminimize with respect

to the parameters which appear in a certain parametric forni of f.
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Figure 7-9: Non linear regression: The fitted model is accurate. Prediction using the
estimated model is not.

For the purposes of our analysis, we implemented an extensive set of such esti-

mation schemes, trying various parametric forms of f(.) and using the Non Linear

Regression package of MATLAB®.

The achieved fit using this approach is excellent with R2 ranging from 0.908 to

0.974 for different state-season pairs in T. Indeed, as Figure 7-9 shows, 7.10, the

fitted model is very close to the data. On the other hand, the long-term predictive

performance of the estimated model is bad. Specifically, if we use the estimated model

and simulate (7.9), the prediction is extremely inaccurate. The mean squared error,

ranges from 0.91 to 0.98 for different state-season pairs even within the training set

T, as shown in Figure 7-9.

This problem is not uncommon in identification. The non-linear regression task,

as outlined above, optimizes with respect to the parameters, in order to achieve the

best one-step prediction: using the data, Ii(t), match as closely as possible Ii(t + 1).

On the other hand, since our data consists of weekly samples, the "best" estimation

for I(t + 1) would be very close to Ii(t) and hence, the non linear regression roughly

estimates this simple relationship between input (Ij (t)) and output (ij (t + 1)). Hence,
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(a) One step prediction: Non linear regression (b) Long term prediction: Using the initial
to estimate the model using the relationship number of infections (Ii(0)) we simulate the
between hi(t) (data) and Ii(t + 1) (one step model for the whole season and minimize the
estimation). error for the whole season.

Figure 7-10: One step vs Long term prediction

the resulting estimation task is seemingly successful but the long term prediction is

not. Therefore, in order to learn the model (7.9) we need to optimize with respect to

its long-term prediction accuracy.

Estimation for long term prediction

As discussed above, the simple non-linear regression approach fails to uncover the

details of the model (7.10) as the estimated model yields poor predictions. In order

to tackle this issue, we explicitly define our estimation objective to incorporate the

need for predictive accuracy.

Specifically, for each state-season pair in T, and for each set of parameters, one

can simulate the model (7.9) and obtain a vector i = {i(t)}' 2, starting from

JIf(0) = I'(0) as given from the data. Our estimation task is to find a set of parameters

that minimizes

E ='|is - 48 |2
2LS

(i,s)cT

with the difference that 1l corresponds to the simulated timeseries as given by model

(7.9). Schematically, the difference between the two approaches can be seen in Figure

7-10.

This approach, although fairly natural for our estimation task, involves a non-

trivial, non-convex optimization problem. Essentially, the mapping from i (0) to

the simulated time series 48 is extremely complex and highly non-linear. Therefore,
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achieving global optimality guarantees for such a problem is hard if not impossible.

Instead, as is commonly done in most machine-learning approaches, we obtain a

locally optimal solution to our estimation problem using gradient descent.

Note though that the objective, i.e., the squared error between the simulated

time series and the data, is fairly complex and hence, calculation of the gradient is a

non-trivial task. Specifically,

42

E(fs, m,3 1i,. . ., 3 ii) = E(t)2
t=2

with

E(t) = 1 Ei,(t)2
(i,s)eT

Ei, 8 = is (t) - iis(t),1 (7.11)

Is (0) = jf (0)

and

IZ(t + 1) = f( Hi(t)) Ni V-(t) - m is (t') 13 ii (t). (7.12)

In order to perform the update in standard gradient descent, one needs to cal-

culate the gradient of E(.). The problem of efficiently calculating the gradient, in

such settings has been encountered in recurrent neural networks and one of the first

proposed solutions has been back propagation through time [55]. This approach has

not been popular due to the need for large computational requirements. Instead,

machine learning researchers and practitioners typically use an approach known as

Real-Time Recurrent Learning [66] that we explain below.

For the purposes of this exposition we assume that the function f, is determined

by only one parameter as. Our goal is to estimate the derivatives

AW = a
aw'
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where w E {a., f3jj, m}. We write

Aw(t) = ,~t
aw

so that
42

Aw = ZzAw(t). (7.13)
t=2

Note that
lEi,(t) B(t)Aw(t) = Ei,,(t) ' = Ei, (t) ,1 (7.14)

9w 8
(i,s)eT (i,7)T

where the last equality follows from (7.11). Therefore, in order to calculate the incre-

ment for w, we are looking for an efficient way to calculate the terms aIi (t)/w within

the sum. To this end, note that differentiating (7.12) with respect to w E {a,, /ii, m}

yields a recursion providing &I (t)/Ow as a function of aI (0)/ w, . . . , aIf (t - 1)/Ow,

that can be computed using the fact that 0ih(O)/0wj = 0. The updates for model

(7.9) can be found in Appendix A.

Below, we present the high-level structure of the estimation procedure.

Algorithm 1 Estimation Procedure

1: parameters <- initialization
2: while no convergence do
3: generate if for each i, s using (7.9)
4: evaluate Ei,,(t) using Is
5: evaluate OI (t)/w, for each w E {a8 , ii, m}, using (A.1)-(A.3).
6: Calculate derivatives aE/Ow using (7.13)-(7.14).
7: Perform gradient step using Armijo step size and ADAGRAD.
8: end while

Implementation of Real Time Recurrent Learning

Equations (7.14)-(A.3) provide an efficient way of calculating the gradient of the error

and in principle provides the necessary ingredients for performing gradient descent

in order to calculate the optimal (with respect to mean squared error) parameters.

On the other hand, the system that is to be estimated is complex and the objective

non-convex and several issues should be taken into account for the implementation.
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Teacher forcing: The calculation of OF/Ow for each of the parameters w E

{a., 3 ii, m} involves calculations using i (t), i.e., the simulated time-series. During

the first several iterations of the gradient descent, the simulated time series is far

from the data of the training set and hence introduces errors in these calculations

which significantly reduce the time to convergence or may lead to instability. Instead,

common practice has found that performance is improved when instead of Ii (t) we use

Ji(t), i.e., aI(t)/Ow (line 5 of Algorithm 1) is calculated along the actual trajectory

(data) while Ei,,(t) is evaluated along the simulated trajectory.

This practice is called teacher forcing. In our implementation we tried both ap-

proaches but teacher forcing seems to perform better both in terms of convergence

and in terms of fit.

System instability: The model under consideration (7.9) is a complex dynam-

ical system and, as such, features complex behavior. Specifically, for a large set of

parameter choices, the system becomes unstable and both the calculation of the sim-

ulated time series as well as the calculation of the gradient becomes impossible, due

to numerical accuracy issues. In the neural network literature, this problem is fairly

common. The basic problem is that calculations of large gradients propagated over

many stages tend to explode (with much damage to the optimization).

Several approaches (129] and references therein) have been proposed in the litera-

ture to resolve or ease the problem, most of them being problem-specific or extremely

convoluted. In our approach, we adopted a simple heuristic, which seems to overcome

the instability issue at the expense (perhaps) of the quality of fit. Specifically, in our

implementation of the recurrent neural network, whenever the simulated time series

exceeds the maximum value in the training set, we replace the former value with the

latter. Similarly, whenever the simulated time series is below zero, we replace that

value with zero, i.e., we use

lIs(t+1) = min {,max max lIz(t'), ysf(Hi(t)) NiVi(t) - mZ i(t') iiI(t)}},
i o)-

instead of (7.12) in our implementation.
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Figure 7-11: Different shapes of logistic functions

Adaptive gradient descent: In our implementation we adaptively chose the

stepsize of the gradient descent. Specifically, we use the adaptive gradient algorithm

ADAGRAD as described in [18], and chose the increment using backtracking line

search (Armijo rule). As is commonly done in most non-convex programs, we allow

for the error to increase during the backtracking line search. Specifically, we allow

the error to increase by 1% at each step.

Humidity Function: In our analysis we tried several parametric forms for the

function f (-), and eventually we chose the logistic function

f (h; k, 1, m) = us+ e-k -) +Tn.,

which has the flexibility to describe the potentially extreme dependence of the contact

rate on the humidity levels. Figure 7-11 shows the shape of f for different values of

the parameters, illustrating the modeling flexibility of this parametric form.

Results

In order to provide an easier interpretation, we present our results in terms of the

mean absolute normalized error

42Ij'(t)-ij'(t)j
('~)CS E42 :()

Rs = i(tI
42-I|S|
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which measures the absolute error per data point. When S = T the corresponding

error is the error of the training data, while when S = V, the error on the validation

set ("out of sample" error).

Error on training data Our implementation yields error on the training data

equal to RT = 0.391. Figure 7-12 shows an example of the fit for a state-season pair

in the training set. As expected, the model, being a system of ordinary differential

equations is not capable of reproducing the details of the time series. Specifically,

the trained model cannot capture the "peak" behavior of weeks 19-25 but is fairly

accurate in learning the smoother portions of the time series.

Furthermore, Figure 7-12 provides insight on the effect of the absolute humidity

on the evolution of infections. Specifically, low absolute humidity seems to correlate

with higher infection rates. Indeed, this effect is captured in the "learned" function

f( as shown in Fig 7-13.

Figure 7-12: Example of fit: simulated vs. real infection time series for a state-season
pair in the training set T.

Out of sample error Our implementation yields error RV = 0.851. Figures 7-14

and 7-15 show the predicted time series for two different state-season pairs. In one

case the prediction results are extremely good, due to the fact that real infections

seem to negatively correlate with the absolute humidity and hence the effect of the

latter on the effective contact rate accurately describes the evolution of infections.

On the other hand, for other state-season pairs this does not seem to be the case and

128



Figure 7-13: Dependence of effective contact rate on absolute humidity for different
seasons

in such cases prediction is unsuccesful, leading to large prediction errors.

7.6 A preliminary approach to identifying network

effects

Given the estimates of the unknown parameters, denoted as jj, -s, for s =1, . . . 7 and

i = 1 : 50, as well as in and the estimated function f we now proceed to understanding

the effect of inter-state traveling. Our approach to this problem is fairly preliminary

as we proceed by performing a linear regression on the model (7.9). Specifically we

write

Iis (t + 1) = -ys j (Hi (t)) Ni Vi (t) - rn lIs (t' e (Ceji (t) + zQi(t)) + e (t), (7.15)

and use the Linear Regression package of MATLAB®, to estimate the parameters a

and /. The results of the regression are summarized in Table 7.1 and lead to the

conclusion that network effects are indeed negligible compared to the effect of intra-

state contacts. Specifically, the p-value 2 corresponding to the network parameter z

2 The p-value corresponds to the test between the null-hypothesis according to which z = 0 and
the hypothesis that z > 0. Note that this p-value is calculated assuming normal and i.i.d. noise
which is not necessarily the case in our model.
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Figure 7-14: Example of prediction: predicted vs. real infection time series for a
state-season pair in the validation set T. Prediction error for this case is 0.503, which
is the smallest prediction error achieved within the whole validation set.

Figure 7-15: Example of prediction: predicted vs. real infection time series for a state-
season pair in the validation set T. Prediction error for this case is 1.471, which is
one of the largest prediction errors achieved within the whole validation set. For this

particular state-season pair, and for those with large prediction error, the absolute
humidity does not seem to correlate negatively with the increase of the number of
infections. Such pairs are an exception both in the training and the validation set.
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Estimate SE pValue
Intercept 0.0002133 1.7369- 10-05 1.548. 10-4

a 0.92924 0.0037379 0
z 0.026663 0.00392 1.0627. 10-11

Table 7.1: Results of linear regression to identify network effects.

is very small (significantly smaller than 0.01 which is the standard benchmark) and

hence the corresponding predictor is indeed significant but its value is significantly

smaller compared to a, the effect of intra-state contact (note that we normalized the

vectors I' and Q before making the comparison).

This approach for identifying the network effect is overly simplistic as it is ne-

glecting two important effects:

* temporal correlation: In this preliminary analysis we have neglected the

temporal correlations between the predictors, i.e., the correlations between Is(t),

and If (t - 2), hI (t - 3), . . .. In other words the noise term in (7.15) is assumed

to be i.i.d. noise which is not necessarily the case for our purposes.

* 'reflection' problem: This problem has a long history in econometrics ([101

and references therein) and in our context boils down to the following situation.

Assuming that a network effect exists, and assuming that states i and j are

neighbors, then Ii(t - 3) would affect Ij (t - 2) which in turn would affect Ii(t -

1). Hence, if this effect is not taken into account, network effects could be

overestimated. On the other hand, in our analysis, network effects seem to

be negligible and hence the reflection problem will not change our qualitative

conclusion.

7.7 Summary and Conclusions

In this chapter, we focused our attention on the modeling and analysis of influenza in

the United States. Our goal was twofold. First, to evaluate networked compartmental

models based on their predictive power and second identify potential network effects
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between different states through traveling. Our approach to tackling these problems

can be summarized as follows:

1. Data collection: We collected data from various sources describing the evolu-

tion of infections, absolute humidity, vaccinated population over the course of

eight seasons for all states of the United States. Furthermore, we used Census

data as proxies to the travel intensity between each pair of states.

2. Data pre-processing: We used the methodology described in Section 7.5.1 to

identify state-season pairs for which identification of network effects is possible.

3. Model estimation: We used the data corresponding to the state-season pairs

for which identification of network effects is not possible in order to learn the

parameters of the compartmental models under consideration, using a recurrent

neural network approach as explained in Section 7.5.2.

4. Identification of network effects: We followed a simplistic approach to

identify network effects, using the estimates from the previous step and using

the data of the state-season pairs for which identification of network effects is

possible.

Our analysis shows that the predictive accuracy of the compartmental models is fair

but extremely dependent on the environmental factors. Specifically, our findings

indicate that the effective contact rate strongly depends on the absolute humidity

and as a result the predictive accuracy of the model boils down to the accuracy of the

relation between humidity evolution and the time series of the number of infections

(as shown in the extreme example of Figure 7-15).

Several directions can be considered in order to improve the predictive accuracy

of the models described in this section, such as adding more compartments (e.g.,

individuals exposed to infection but not symptomatic, etc.) but if prediction accuracy

is the goal, we strongly believe that other model free approaches such as time series

prediction (161, 53, 12]) or non parametric forecasting (165] and references therein)

appear to be more promising.
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Regarding the evaluation of network effects, our approach indicates that the effect

of traveling infections is minimal compared to intra-state contacts. This result though

is obtained through a fairly simplistic approach. Unfortunately, although identifica-

tion of network effects has been widely studied in the Econometrics literature (1101
and references therein) to the best of our knowledge there is no approach that can be

applied to time series data. As argued in this chapter, the latter is a very important

problem and one of the many possible extensions of this work.

Finally, the network identification task and our findings (Step 4) are dependent

on the estimation step (Step 3). On the other hand neither the fit nor the prediction

errors are sufficiently small to allow for high confidence on the estimated models.

Hence, an important and interesting direction is the identification of network effects

independently of the estimation procedures (model free).
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Appendix A

Real-time Recurrent Learning

Updates

In this appendix we provide the updates for the model under consideration, i.e. Equa-

tion (7.9)

aIf (t + 1)
am

t'=1

(A.1)

( N V"8 (t)-

t-1

t'=1

Moreover, note that changes in aj affect only the values of I' and hence,

OIs(t-1) -0, for all j = s
a
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= fs(Hi (t))

+fs(Hi(t))

+fs(Hi(t)) #i9I|(t)

-- - - - - ------------------- -. JL-

t'=1

Is (t'1 ) A iIf (t)



=f'(H( (t))

+f8 (Hj(t))

+fs (Hi (t))

-m

Ni V(t) - mI (t'))

where f'(.) denotes the derivative of f, with respect to a. Finally, note that changes

in f3jj affect only the values of Is and hence,

aIk(t + 1) = 0,
09/ii

for all k # i

=fs (H (t)) (Ni%(t) - mZ I (t')) I (t)

t- I

AiaIi()

Therefore, the system of equations (7.14) and (A.1)-(A.3) provide a systematic and

efficient way to calculate the gradient of E and hence to perform gradient descent.
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&If(t + 1)
a- j
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A3ii 
(

and
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W) 
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