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Abstract

Safe and efficient management of air traffic requires accurate predictions of aircraft trajec-
tories. In the existing air traffic system, predictions of take-off times are 2 major source of
forecast error. This thesis presents three primary contributions: forccasting models for pre-
dicting individual take-off times, models of aircraft flow to predict departure congestion at
major airports, and methods for balancing the frequency of forecast updates with the costs
of forecast inaccuracy. The models use real-time data to update parameters and generate
forecasts. They are tested with data from the existing air traffic management system as
well as data that may be obtained from other scurces, such as the commercial air carriers.

Empirical tests using data specific to Logan Airport suggest that the take-off time fore-
casting models achieve small improvements in forecast accuracy over existing methods when
using information currently available to the air traffic management system. If additional,
carrier-specific information is available, the models achieve more substantial improvements.
Empirical tests also demcnstrate that the departure flow models produce accurate predic-
tions of airfield congestion over both ten-minute and one-hour forecast horizons.

Once a take-off time forecast is produced, there are frequent opportunities to update
the prediction with new information. We develop forecasting algorithms which balance
prediction accuracy and the cost of each forecast update, for frequent updates burden the
traffic management system'’s computers and lead to distrust in a system that cannot ‘make
up its mind.” Numerical examples demonstrate that the proposed algorithms significantly
improve forecast accuracy and require fewer updates than existing procedures.
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Chapter 1

Introduction

During the past few decades, commercial ai1 traffic has increased dramatically, while the
capacity of the system which serves that traffic has not kept pace. The resulting congestion
produces costly delays. The Federal Aviation Administration (FAA) estimates that delays
initiated by air traffic control cost airlines $1.5 billion per year in direct operating costs in
addition to the cost of delays borne by passengers [15]. The FAA also anticipates substantial
increases in demand on the air traffic system over the next decade. Expanding the physical
capacity of the systex: might alleviate congestion, but few infrastructure improvements,
such as new airports or runways at existing airports, are planned in the most congested
parts of the system [25]. One of the FAA’s primary research initiatives in response to
increasing congestion is to create a system for the strategic management of traffic flow. By
controlling the movements of airborne aircraft and by holding aircraft on the ground, traffic
managers attempt to reduce congestion and increase system throughput.

Even with perfectly accurate projections of demand and capacity, traffic management is
a difficult task. Capacity reduction at a single airport may lead to changes in hundreds of
flight plans. The task is made even more difficult by the large uncertainties associated with
forecasts of both demand and capacity. There are delays between air traffic management
actions and effects, so potential problems must be recognized and corrected far in advance.
Effective action depends on accurate forecasts.

To provide up-to-date information to air traffic managers, the FAA has developed the

Enhanced Traffic Management System (ETMS).! The ETMS consolidates and distributes

!Strictly speaking, there are two closely related traffic management technology programs within the



real-time information about the national airspace and can indicate the locations of all
controlled aircraft in the U.S. on a single video screen. Recently, a predictive function
has been added to the ETMS so that it generates predictions of a flight's path. However,
forecasts of aircraft take-off times have a large variance [20)].

The following example demonstrates why take-off time uncertainty is a significant prob-
lem for air traffic management. Imagine that a large number of aircraft are planning to fly
through the same sector (a region of airspace) within one hour. An air tiaffic manager using
the ETMS is concerned that many of the aircraft will reach the sector at the same time,
and that the airspace will become dangerously crowded. In addition, suppose that many
of these aircraft are still on the ground, either about to push-back from the gate or taxiing
to the departure runway. If the traffic manager anticipates trouble, then it is possible to
hold some of these aircraft on the ground. The manager, however, faces a decision under
great uncertainty. The standard deviation of ETMS take-off time forecasts is between ten
and fifteen minutes, and it takes only five minutes to cross the potentially congested sector.
Since there are no reliable predictions of when the aircraft will leave the ground, there are
no reliable predictions of when they will enter and leave the sector.

The manager will not be sure whether the sector will be ‘loaded’ until many of the
aircraft are in the air. Once airborne, aircraft trajectories are almost deterministic and
sector arrival forecasts are accurate, but by then it is too late to keep many of the aircraft on
the ground. In general, when take-off time forecasts are inaccurate, air traffic managers may
be surprised by the appearance of flights in the sectors near the terminal airspace. They may
also take action to prevent projected congestion which may be merely a statistical illusion.
Inaccurate long-term forecasts decrease the effectiveness of strategic traffic management
actions.

This thesis develops models and forecasting procedures which improve take-off time
forecast accuracy. It presents probabilistic models of the aircraft departure process from
major U.S. airports. It develops procedures which use real-time data to update these models.
The models are used to generate forecasts of aircraft departure demand, departure queue

sizes, and take-off times of individual aircraft. Empirical tests investigate the value of the

FAA. The Advanced Traffic Management System (ATMS) is a system for research and development while
the ETMS is the version brought into the field. We will use the acronym ‘ETMS’ when speaking of either
program.
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Figure 1-1: Definition of ground transit time

models as tools for monitoring and forecasting airport congestion and aircraft delays.
Section 1.1 provides an overview of the statistical models and results of the thesis. The
section specifies the data requirements of the models, describes model form and function,
and summarizes the results of empirical tests of each model. Section 1.2 describes the
primary contributions of this thesis. Section 1.3 concludes this chapter with a guide to the

organization of the thesis.

1.1 Overview of the Models and Summary of Results

Predictions of take-off time are derived from predictions of ground transit time (GTT), the

time between the proposed departure time from the gate and the actual take-off:
actual take-off time = proposed departure time from gate + GTT

(see figure 1-1). The proposed departure time is the departure time submitted by the airline
to the FAA as part of the flight plan. A flight plan may be ‘filed’ as late as thirty minutes
in advance of the proposed departure time. However, many carriers automatically file flight
plans weeks in advance, and for most flights by the major carriers, the proposed departure
time is identical to the scheduled departure time published for consumers. Therefore, we
will assume that for all flights the proposed departure time is known at the time a forecast
is produced.

Ground transit times are divided into two components: gate delay and roll-out time.
Gate departure delay is the time between proposed push-back (departure) and actual push-

back from the gate. While the average gate departure delay is small, there are occasional
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large delays of over one hour. These long gate departure delays have a variety of causes,
including mechanical problems or delays to incoming flights. Roll-out time is the time
between push-back and actual take-off. It includes time spent turning on the apron near
the gate, taxiing to the runway, waiting in a departure queue, and rolling down the runway.
Note that a significant portion of roll-out time may be spent waiting, rather than rolling.
The ability to predict variations in gate delay and roll-out time depends on both the
look-ahead time, or forecast horizon, of the prediction as well as the information that is
available to generate the prediction. Our models will be shaped by the questions: “what do
we know, and when do we know it?” Section 1.1.1 provides some answers to these questions
by describing the forecast horizon and data requirements of the models. Section 1.1.2

describes the models themselves and summarizes the empirical results.

1.1.1 Forecast Horizons and Data Availability

The design of each model is shaped by both the availability of data and the forecasting
requirements it is intended to fulfill. A model which generates forecasts minutes in advance
will employ different techniques and data than models with forecast horizons of days or
months. We will assume that our forecasts will be used as input to strategic traffic manage-
ment decisions. At the earliest, these decisions are taken from three to six hours in advance
of projected congestion. At the latest, the decision may be taken while an aircraft is rolling
out. This range describes our forzcast horizon. It is possible that one set of models are
most accurate for long-term forecasts while other models are more appropriate over short
forecast horizons.

Assumptions about data availability will also shape the models. We might build models
under that assumption that all possible data sources are available. For example, the FAA is
considering adopting the Global Positioning System (GPS) for aircraft navigation, precision
approach procedures for landing aircraft, and airport surface monitors for tracking aircraft
on the ground [16]. When linked to a GPS-based surface monitoring system, the ETMS
would be able to report the location of each aircraft on the airfield. A detailed model which
incorporates this information should produce extremely accurate roll-out time predictions
over short time horizons. However, such a system will not be available until the rather
distant future. According to the FAA strategic plan, a reliable GPS-based system for

terminal airspace navigation will not be available until the year 2000, GPS-based landing
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Currently On-line Potential Addition

in ETMS to ETMS
Environmental
Data weather conditions runway configuration
Flight Data proposed push-back time actual push-back time
actual take-off time
carrier
flight duration
size of aircraft
Connection
Injormation arrival delay flight connections linking

arrivals and departures

Table 1.1: Data sources assumed to be available to the forecasting models

systems are scheduled for 2005, and an airport surface monitor has been proposed but no
schedule for development or implementation has been published.

Conversely, if we restrict ourselves to real-time data that is currently available to the
ETMS, we lose the opportunity to explore whether additional sources of information may
significantly improve forecast accuracy. The approach taken here falls between the extremes
described above. We assume that our models will have access to real-time data which
is either available now or may be channeled to the ETMS from existing databases. In
particular, the models utilize data that are collected in real-time by the ETMS today or

tha - satisfy the following three requirements:

e The data may significantly improve the model’s forecast accuracy;

e The data may be obtained for the ETMS, in real-time, using data collection systems

that have already been developed by the FAA or the carriers;

» Some subset of the data can be obtained from historical sources.

The third requirement ensures that the models can be thoroughly tested with historical data
without relying on simulation. Table 1.1 lists the data that satisfy these three requirements.

The data listed in the right-hand column are not currently available to the ETMS.
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There may be important sources of information which are not available to us but might
be made available to the ETMS. For example, an individual carrier may be aware that
a flight must be held for a crew which is arriving on another, late flight. This event,
and many others, would appear as statistical noise in the model. One implication of the
empirical results of this thesis is that such delay information, if shared by the carriers, may
produce greater gains in forecast accuracy than the most complex mathematical models

which rely on existing information sources.

1.1.2 Description of Individual Models and Results

In this section we provide an overview of the models and results of the thesis. We first
describe relationships between the mcdels and then provide more details about each model.

A primary benefit of improved take-off time forecasts is an improvement in demand
forecasts at fixes (an airspace reference point), sectors and airports downstream. The first
model developed in this thesis (in Chapter 2) provides motivation for subsequent models
of aircraft departures by quantifying the relationship between errors in individual aircraft
trajectories and errors in arrival demand predictions at airports. The model demonstrates
that current levels of uncertainty in take-off time forecasts are likely to cause significant
errors in demand forecasts.

The remainder of the thesis develops models for take-off time prediction. Figure 1-
2 displays the relationships among the primary models. Ground transit time forecasts
combine forecasts generated by a gate departure delay model and a roll-out time model.
Analysis of data from Logan Airport will demonstrate that at Logan gate departure delay
and roll-out time are essentially statistically independent, and therefore the models for each
were developed separately.

One would expect that roll-out times would be heavily influenced by congestion on the
airfield (any airline passenger who has been told by the pilot that their aircraft is "eighth in
line for take-off” would recognize this). Therefore, we constructed an aggregate flow model
to forecast airfield congestion. While originally developed to provide forecasts of airfield
congestion to the roll-out time models, the forecasts of the aggregate flow models should be
of independent interest to traffic managers at airports.

The gate delay and roll-out models may be used to generate take-off time predictions

until the expected departure time of a flight approaches. Predictions might be revised on
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Figure 1-2: Models for gate departure delay, roll-out time, and ground transit time forecasts
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the arrival of relevant information, such as an updated weather forecast. When close to the
expected take-off time, detailed information about the individual flight’s status is available
to the ETMS and there is the opportunity to almost continually update forecasts with this
information. A forecast updating algorithm selects the times to update the forecast and
produces new forecasts from the available information.

Following are more details about each model and summaries of the results of empirical

experiments using data from Logan Airport.
Gate Departure Delay (Turn) Model

We have found that a simple model linking arrival delays with subsequent gate departure
delays produces a 50% reduction in mean squared forecast error from existing methods in
a sample of flights from Logan Airport. This ‘turn model’ simply adds a minute of gate
departure delay for every minute of arrival delay when the time between gate arrival and
scheduled gate departure falls below some threshold. The threshold varies among carriers,
and we find thresholds for individual carriers by data analysis.

We find that additional delays are correlated with poor weather and other environmental
factors. However, models constructed from these factors only obtain marginal improvements
in forecast accuracy. The airlines themselves have information that should allow for sig-
nificantly more accurate predictions of gate departure delay. The thesis describes the turn
model and then discusses the potential benefits of increased communication between the

FAA and the carriers.
Aggregate Flow Model

In order to produce real-time forecasts of departure service rates and airfield congestion,
we developed aggregate flow models which monitor and predict the number of aircraft rolling
out. The models collect aggregate statistics on departures in discrete time periods (15 min.)
in order to smooth over small fluctuations in service rates. Simple difference equations
describe the movement of aircraft onto and off of the airfield, while real-time data are used
to update estimates of the service rates and queues. Empirical tests demonstrate that the
models produce accurate forecasts of the number of aircraft on the airfield. The aggregate

flow models show promise in monitoring and forecasting airport congestion.
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Roll-out Models

Forecasts of roll-out time are generated by a variety of models: an exponential smoother,
a lookup table (the current ETMS method), and static and dynamic linear models. A static
model gives equal weight to all previous observations, and its parameters are not sensitive
to temporary variations in observed roll-out times. A dynamic model gives more weight to
recent observations, and should respond more readily to temporary changes in conditions.
An important point is that out ‘static’ models do vary their forecasts among flights. Each
forecast produced by a static model is tailored to a flight’'s operating characteristics, such
as the carrier, runway configuration, weather, and a measure of airport congestion. The
model is static in the sense that the presumed impact of each of these conditions remains
constant over all flights.

The static and dynamic linear models may also be divided into two sub-groups. The first
sub-group generates its forecasts from the congestion forecasts produced by the aggregate
flow models as well as other factors, such as weather conditions. The second sub-group
does not rely on congestion forecasts and replaces them with a rough estimate of departure
demand based on the the carriers’ scheduled departure times.

This second sub-group produced the most accurate models over long forecast horizons
while the linear models with congestion forecasts produced the most accurate short-term
forecasts. This is not surprising, for the congestion forecasts from the aggregate flow model
become less reliable as the forecast horizon increases. Given congestion forecasts, the dy-
namic models did not improve over the static models, possibly because the congestion
forecasts themselves incorporated the available information about temporary airfield con-
ditions. None of the models were successful in predicting the largest deviations in roll-out

times.
Forecast Updating Algorithms

The models developed in this thesis produce predictions of airr.caft take-off times. In the
traditional forecasting problem, an optimal prediction minimizes an expected forecast error
cost under the assumption that the forecast will not be revised. This criterion for optimality
ignores the dynamic nature of ETMS forecasts, for an initial prediction may be updated

with information that is collected as the expected take-off time approaches. The number of
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Figure 1-3: Evolution of forecasting methods as flight departure approaches

these updates may be limited by the cost of collecting, processing and distributing relevant
information. We generalize the forecasting problem by proposing a cost function for a
sequence of forecasts. The cost includes the cost of forecast errors made at various times
before take-off as well as an update cost for each forecast revision. A method is derived for
finding an optimal sequence of forecasts, given a particular update schedule. When there
is a finite number of potential update epochs, a dynamic programming algorithm finds an
optimal update schedule, given a sequence of forecasts. In principle, one could iterate this
procedure, but we find that after performing these two steps the resulting solution has a
forecast cost which is within a few percentage points of a lower bound. This lower bound
is achieved when the forecast is continuously updated.

When these algorithms are applied to examples of ETMS take-off time forecasts with
high variance, we find that forecast accuracy can be significantly improved by the opti-
mization procedure. In contrast, increasing the number of updates allowed in the examples
does relatively little to reduce forecast error. When applied to more typical forecasts with
a smaller variance, the advantages of the optimal update schemes arec marginal, and simple
heuristics are close in performance.

Figure 1-3 displays the transition from model to model as the proposed departure time
approaches and the forecast horizon decreases. For a forecast horizon of a few hours, a gate

departure delay model and a roll-out time model produce take-off time forecasts. As the
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proposed push-back tirae approaches, GTT forecasts are derived from the gate departure
delay model and a roll-out time model that is more adaptable to local conditions (i.e. which
includes estimates of temporary airfield congestion). Finally, when the actual push-back is
observed, the gate departure delay model is abandoned (the plane is no longer at the gate)
and the roll-out time model produces a final roll-out time prediction, along with information
about the distribution of forecast error. Thereafter, forecasts are revised according to an

update schedule and forecasts derived from the shape of the error distribution.

1.2 Primary Contributions of the Thesis

The main goal of this thesis is to accurately forecast the take-off times of flights from major
airports. To this end, we implemented a variety of models, and these led to the fullowing

contributions:

e Forecasting models for aircraft gate delays and roll-out times. When using information
currently available to the air traffic management system, these mode.s achieve small
improvements in forecast accuracy over current practice. When additional information
not currently available to the system is added, such as connections between arriving

and departing flights, the forecasting improvements are substantial.

o Aggregate flow models to represent the dynamics of departing airport traffic. These
models require information which is not yet available to the ETMS (gate push-back
of departing flights), but the success of these simple models in predicting airport

congestion suggests the value of this information.

e Formulation and optimization of a sequential forecasting problem. In this problem,
forecast accuracy is balanced against the cost of forecast revision. We specify a forecast
error cost which accumulates over time, and the optimization approach determines a
schedule of updates, as well as optimal forecasts, given the schedule. The procedures

reduce forecast errors and the number of updates from current ETMS procedures.

Lessons learned from this thesis also have implications for practical implementation in the
air traffic management system. The thesis highlights those sources of information that

are likely to be most valuable for improving forecasts. Since the FAA is in the process of
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upgrading the ETMS to incorporate more data sources, this information may help the FAA

to efficiently allocate its resources.

1.3 Contents of the Thesis

Chapters 2 and 3 provide motivation and background for the thesis. Chapter 2 describes the
role of forecasting in the air traffic management system and quantifies the level of forecast
inaccuracy in the current version of the ETMS. Since traffic management decisions are often
driven by forecasts of demand at airports and en-route sectors, Chapter 2 also develops a
simple probabilistic model to describe the relationship between errors in trajectory forecasts
for individual flights and errors in forecasts of aggregate demand. With the value of accurate
forecasts established in Chapter 2, Chapter 3 initiates the analysis of data collected from
the ETMS and other sources. In later chapters these data will be employed in empirical
tests, so it is important to understand how the data were obtained. The chapter describes
the data sampling procedures, specifies the techniques for ‘matching’ multiple data sets,
and provides descriptive statistics of the data. The chapter also tests for sampling bias and
describes how this may affect our analysis.

These introductory chapters do not contain a separate literature review, for theie is no
single body of work which is applicable to the thesis as a whole. Instead, references to
relevant material will be made in the introductory sections of appropriate chapters.

Chapters 4, 5, and 6 describe the gate departure delay, aggregate flow, and roll-out
models, respectively. In each chapter models are formulated, fitted using historical data, and
tested for forecast accuracy. We also test the sensitivity of the models to their parameters,
and examine residuals to determine how the models may be improved with additional data.

Chapter 7 describes procedures for updating forecasts once they have been generated
by the forecasting models. The chapter describes the cost function de eloped for this
application, which takes into account both the cumulative cost of forecast errors made over
time and the cost of updating each forecast. Procedures for finding optimal forecasts and
update schedules are derived, and these are tested on examples which are representative of
existing air trafic management conditions.

Chapter 8 summarizes the results of the thesis and makes recommendations for im-

plementation. The role of forecasting in air traffic management over short and long time
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horizons is examined. The chapter also describes how the aggregate flow models might
be incorporated into a real-time airjort monitor for air traffic managers. The chapter
makes recommendations about which models should be implemented and which informa-
tion sources would be most valuable for inproving ETMS forecasting performance. The
thesis ends with suggestions for further research on real-time forecasting models and traffic

management.
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Chapter 2

The Impact of Forecast Errors on

Air Traffic Management

This chapter provides both qualitative and quantitative motivation for improving take-
off time forecasts. It first presents a qualitative description of the role of forecasting in
air traffic management (ATM) and then presents quantitative evidence of the need for
improvements in take-off time forecasting. Section 2.1 describes the relationship between
forecasting and air traffic management. The section provides examples of ATM decisions
that use as input forecasts of demand at air traffic fixes, sectors or airports. Section 2.2
summarizes empirical studies which determine the size of forecast errors in the current ATM
system. The section then presents a probabilistic model which quantifies the relationship
between errors in forecasts for individual aircraft and errors in demand forecasts. The model
demonstrates that current levels of take-off time forecast errors lead to substantial errors in

demand forecasts.

2.1 The Role of Forecasting in Air Traffic Management

While the responsibility of the familiar air traffic controlier is to maintain separation be-
tween individual aircraft, air traffic managers are responsible for the strategic and tactical
management of traffic low. ATM personnel are located in the Air Traffic Control System
Command Center (ATCSCC) near Washington D.C., the regional Air Route Traffic Control
Centers (ARTCCs), the Terminal Radar Approach Control Facilities (TRACONSs), and the

airport towers. ATM personnel are known by a variety of titles, but we will use here the
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term ‘air traffic manager.’

The ATM procedure with the largest impact is a Ground Holding Program (GHP)
generated by the ATCSCC. When weather is expected to reduce significantly the capacity
at major airports, aircraft departing for those airports are assigned departure times that
may be minutes, or even hours, after the aircraft’s scheduled departure time. The departure
times are assigned so that projected operations fall below projected capacity at the affected
airports.

Other ATM actions are taken by the regional ART'CCs. If a particular airport expects
a moderate amount of congestion, it may request metering of aircraft from adjacent air
traffic control regions so that aircraft arrive at a pre-arranged rate. When metering has
been requested, a local ground holding program may be implemented so that flights to the
congested airport from nearby regions are held on the ground. For certain airports metering
is in effect almost every day. For example, on weekday afternoons there is a cap on the rate
of aircraft from airports in the New England region to Chicago’s O'Hare airport. Flights
from Logan to O’Hare are routinely held on the ground so that the arrival rate at O’Hare
is not excessive.

While there are a variety of other traffic management strategies, all share an important
attribute: a lag between action and effect. Large reductions in arrival demand at an airport
can be realized by holding aircraft on the ground, but this decision must be made hours
in advance of the anticipated congestion. Therefore, the decision to hold flights is based
on congestion and demand forecasts rather than on direct observations. The decision may
only be as good as the forecasts on which it is based.

The formulation of a Ground Holding Program illustrates the relationship between ef-
fective ATM and accurate forecasts. In the current system, GHPs are based on a heuristic
which assigns departure times on a FCFS basis [18]. The heuristic assumes that airports
have deterministic (known) capacities and that each flight has deterministic (known) de-
parture and travel time. The departure and travel times are used to generate predictions
of airport departure and arrival demands. Demand is usually expressed as the number of
operations predicted to occur within discrete time periods.

While recent research has led to sophisticated techniques for finding optimal GHPs,
proposed algorithms which solve problems of a reasonable size also assume perfect forecasts

of capacities and demand [40]. If the forecasts are inaccurate, the ‘optimal’ ground delay
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program may be far from optimal in actuality. Because of the variability in weather, ca-
pacity forecasts in particular can be very inaccurate. Even when weather cor.ditions are
known, actual capacity can change over time and may vary far from the generally accepted
capacity estimates for particular airport conditions. In order to capture these uncertainties,
Richetta and Odoni formulate a stochastic program to find an optimal GHP ([29]). Their
formulation only applies to a single airport over a small number of weather scenarios, but
the uncertainties in capacity projections are likely to motivate further work in stochastic
optimization.

Forecasts of demand, rather than capacity, are closer to the concerns of this thesis. The
problem solved by Richetta and Odoni also assumes perfect forecasts of take-off and travel
times, and therefore assumes perfect forecasts of departure and arrival demand. The same
assumption is made in practice when GHPs are formulated at the ATC System Command
Center. Prior to the formulation of a GHP, traffic managers obtain dgmand predictions by
counting the number of scheduled arrivals to the congested airport. However, even without
a GHP, the scheduled arrival pattern will not match the actual arrival pattern.

For example, figure 2-1 compares the actual number of take-offs/hour from Logan airport
on March 11, 1991 with a prediction based on the aircrafts’ scheduled times of departure.
The predictions are calculated by adjusting each flight’s scheduled departure time by a
constant ground transit time and then counting the number of adjusted take-off times in
each hour-long period. The graph shows that the schedule is sometimes ar unreliable guide
to the actual number of take-offs. In both the morning and afternoon there are large
differences between the scl.eduled and actual demands. One of the periods in the morning
has an error of almost tweaty flights.

Since GHPs are formulated on the basis of arrival demand, rather than departure de-
mand, this figure does not directly quantify the effect of forecast uncertainty on flow man-
agement decisions. However, it demonstrates how individual take-off time forecast errors
produce errors in aggregate demand forecasts. These demand forecast errors may have
a nonlinear effect on traffic management decisions, with one error having no effect and a
slightly larger error leading to an unnecessary control action. It is possible, for example,
that flow management actions may be taken unnecessarily to diminish the ‘phantom’ bulge
in demand shown in Figure 2-1 at 17:00. The next section quantifies the extent of these

demand errors.
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Figure 2-1: Predicted and actual departure demand at Logan Airport during hour-long
periods on March 11, 1991. Predictions are based on the scheduled departure times of
flights.

2.2 Quantifying Take-off and Demand Forecast Errors

This section quantifies take-off time and demand forecast errors in the existing air traffic
management system. Section 2.2.1 describes empirical studies which find large uncertainties
associated with take-off time forecasts. Section 2.2.2 presents a simple model which derives

errors in demand projections, given a distribution for errors in take-off times.

2.2.1 Empirical Studies of Forecast Accuracy

The most recent published study of overall ETMS take-off time forecast accuracy was pro-
duced by ETMS personnel in 1992 [38]. The study averaged forecast errors for flights from
thirteen major airports over nine months. The mean difference between actual and forecast
take-off time was 14 minutes. In other words, the predictions were biased by 14 minutes;
on average, aircraft were predicted to depart almost one-quarter of an hour before they
actually got off the ground.

Since 1992, ETMS personnel have been developing an improved take-off time prediction
algorithm which produces forecasts based on the prevailing weather conditions, time of
day, day of week, and other factors [37). This system is currently being installed in the
ETMS, and an experiment by Peter Stynes at the Volpe Transportation Systems Center
indicates that the new algorithm does improve forecast accuracy over the previous system.

The experiment involved 15,116 flights from O'Hare Airport, and the forecasts produced
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Mean Error | Mean Absolute Error | Number of Flights
(min.) (min.)
Bad Weather 6.2 17.0 2747
Good Weather 0.8 9.7 12,369
All Flights 1.7 11.0 15,116

Table 2.1: Forecast accuracy of the most recent ETMS take-off time model, based on
approximately 15,000 flights from Chicago O’Hare Airport

by the algorithm had an overall mean error of 1.76 minutes and a mean absolute error
(MAE) of 11.0 minutes. The sample was also broken down into ‘good weather’ and ‘bad
weather’ averages, where bad weather was indicated by standard minimum ceiling heights
and visibilities. Table 2.1 displays results from these experiments. This represen:s an
improvement, but there are still large errors in take-off time predictions, especially in bad
weather.

While these studies measured the accuracy of ETMS predictions for aircraft on the
ground, Goranson compared trajectory forecasts for aircraft on the ground with forecasts
for aircraft already in the air [20]. For aircraft traveling through a random sample of 12
sectors (4 each from low, high and super high sectors) he calculated the ‘midpoint tardiness,’
the difference between the actual and predicted times for the midpoint of the aircraft’s visit
to the sector. Over all flights, mean midpoint tardiness depended on the forecast horizon,
but was always between 8 and 10 minutes. If the sample were limited to flights already in
the air, however, the mean midpoint tardiness was always less than one minute. Interviews
with air traffic managers confirm the results of this study. These ETMS users agree that
forecasts are unreliable before an aircraft takes off, but are much more accurate once the
aircraft is off the ground [18] [7].

Goranson also examined the accuracy of the ETMS Monitor Alert, a system designed
to warn air traffic managers when the ETMS anticipates congestion in a sector or airport.
The study found that the ETMS is a conservative system which calls many false alerts
for congestion that does not materialize and allows few surprise alerts for unanticipated
congestion. However, Goranson’s study was not able to specify the causes of errors in
predicted demand. These errors may have been caused by incorrect predictions of sector
crossing times, errors in predictions of aircraft trajectories, or surprise cancellations.

No published study has quantified the relationship between individual take-off time
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Figure 2-2: Surprises and no-shows during one demand peried

forecast accuracy and accuracy in demand forecasts. This is the link between the goal of
this thesis (more accurate take-off time forecasts) and many traffic management procedures

(which depend upon demand forecasts). This will be the subject of the next section.

2.2.2 A Model of Demand Forecast Error

The research by Goranson and the experiments by Stynes have demonstrated that there
are large errors in take-off time forecasts. However, these studies do not quantify the rela-
tionship between errors in trajectory forecasts of individual aircraft and errors in aggregate
demand forecasts. We ask the question: if this thesis improves take-off time forecasts, to
what extent will demand forecasts improve? In order to answer this question, we derive a
relationship between forecast error in the arrival times of individual aircraft and forecast
errors in arrival demand.

We focus attention on arrival demand since this is an important input when GHPs are
formulated. The model described here assumes that the arrival time forecast error is a
random variable g with distribution F,. Results cited in the previous section demonstrate
that aircraft trajectories are, in general, quite predictable once the aircraft has left the
ground, so Fy will be similar te the distribution of take-off time forecast error. Improvements
in the accuracy of take-off-time forecasts should lead to similar improvements in the accuracy
of arrival time forecasts.

Formulations for the GHP use the predicted arrival times of aircraft to calculate the
demand. Demand is specified as the number of planes predicted to arrive during a discrete
time period. Let T be the length of each demand period (T is 15 minutes in the GHPs
implemented by the central flow control facility). Figure 2-2 displays a demand period that
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begins, by definition, at time 0 and ends at time T. Two pairs of arrivals and forecasts are
also shown in the figure. The time a; is the actual arrival time of aircraft : and f; is the
arrival time forecast for aircraft i. Forecast error g; is distributed according to +y. Define a
“surprise” to be a flight which is predicted to arrive outside the demand period but instead
arrives during the veriod, while a “no-show” is a flight which is predicted to arrive during
the period but does ..0t. Note that a “no-show” eventually does ‘show’. The flight arrives
during a different demand period, for we assume that there are no unexpected cancellatiuns.

Define the following random variables:

! = actual number of arrivals during the demand period
m = number of surprises during the demand period
n = number of no-shows during the demand period
e = error in predicted demand
= (I-m+n)-1
= n-m

We are interested in the relationship between the distribution of arrival time forecast error
(Fy) and the distributions of m, n, and e. Here we derive these distributions for a single pe-
riod. Demand errors between periods will be heavily correlated, for no-shows and surprises
in one period will be mirrored by surprises and no-shows in nearby periods.

For this illustrative model, we assume the following simple probability model for arrivals

and forecast errors. The assumptions are first stated here, and then discussed below:

e Actual arrivals occur according to a homogeneous Poisson process with rate ;

e Arrival time forecast errors for each arrival are independent and are distributed ac-

cording to the function Fj.

On first glance, both of these assumptions are suspect. Aircraft must maintain a minimum
separation, contradicting the assumption of Poisson arrivals. Arrival rates are often time-
varying (not homogenous), with sharp peak periods. Forecast errors may be correlated, as
when unexpected weather conditions or congestion affect multiple flights.

However, these assumptions are reasonable models for many airports over short periods

of time. Major airports have multiple arrival streams into the terminal area, and these
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Figure 2-3: A surprise at time ¢ must have a forecast which falls outside of the demand
period.

streams operate more or less independently. The sum of the arrival streams may be approx-
imated with a Poisson process. In addition, airports have periods of high or low demand
which may last for an hour or more. For the purposes of this illustrative model, we assume
that these periods have an approximately homogeneous arrival rate. Ultimately, it would
be helpful to test this assumption, but accurate data on arrival times of aircraft to airport
terminal areas were not available.

There are two reasonable justifications for the assumption that arrival time forecast
errors are independent. Arriving aircraft hail from a variety of airports, and take-off time
errors at those airports may be independent. In addition, an effective forecast system would
filter out most correiation between departures. If forecast errors were heavily correlated,
predictions could be improved by taking the correlation into account.

Given these assumptions, we find the distributions of m and n as well as the mean and
variance of e. In fact, both m and n are distributed as Poisson random variables with the

same mean, which is a function of F,, ), and 7.

Number of Surprises (m)

In order for an aircraft to be a surprise, it must arrive within the demand period, but

its forecast must predict an arrival outside the demand period. From figure 2-3, any arrival
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at time ¢, 0 <t < T, has the following probability of being a surprise:
Pu(t) = Fy(=t)+ (1~ Fy(T - 1)). (2.1)

From the definition of a Poisson process, the probability of a surprise arrival in some small
interval [t,¢ + A] is Pn(t)AA, independent of all other intervals. The probability of no
surprise in the interval is 1 — Pp,(t)AA. Therefore, surprises occur during the demand
period according to a nonstationary Poisson process with rate Ppn(t)A. It is well known
that m, the total number of surprise arrivals during the period from 0 to T, is distributed

as a Poisson random variable with mean:

T
Am = / Po(t)Adt (2.2)
0
T
= 2 / [Fy(~t) + 1 - F)(T — t)}dt (2.3)
(i
(see [30], p. 46). This expression may be evaluated numerically for an arbitrary distribution
F,. An algebraic expression for A, can be derived if forecast errors are normally distributed.
The expression is particularly simple if we make the reasonable assumption that forecasts
are unbiased, so that g ~ N(0, ag). Let f; be the density of random variable g. By
rearranging and evaluating integrals is equation 2.3, we find that:

dm = AT = Fy(T) + Fy(=T)) + (,(0,T) = (I,(~T, 0))] (24)
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where

b
I(ab) = /a tf,(t)dt (2.5)

If the density f4(t) is symmetric about a mean of zero, then this expression simplifies to:

A = 2MT(1 - Fy(T)) + I,(0,T)] (2.6)
When g ~ N(0,02),
Io(a,b) = o3(fola) - f4(b)) (2.7)
so that
Am = 2X[T(1 = Fy(T)) + 05(f4(0) — £o(T))] (2.8)

Figure 2-4 displays the mean number of surprises (Ap), as the standard deviation of the
arrival time forecast error (0,) increases. The calculations assume that 7' = 15 min. and that
A =1 (one aircraft every minute, or 60/hour, on average). The mean A, has an asymptote
at AT = 15, the expected number of arrivals during each fifteen-minute demand period.
If forecasts are extremely inaccurate, many of the actual arrivals in the demand period
are predicted to arrive during other periods. In the limit, all actual arrivals are surprises,
and surprises occur according to the Poisson process with rate AT. To approximate the
current level of uncertainty in the air traffic management system, set the arrival-time forecast
standard deviation to 10 minutes. If o4 = 10, the expected number of surprises (Am) is 7.4;

on average, 50% of the arrivals during the demand period will be surprises.

Number of No-Shows (n)

By an argument similar to the argument made for surprises, the number of no-shows is

also distributed as a Poisson random variable. The probability of a no-show at time t is:

Fy(t) = Fy(t-T) ift<0
Po(t) = Fy(T —t) - Fy(—t) ift>T (2.9)

0 otherwise
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The curve has an asymptote at v2AT = v/30.

By syminetry, the rate of no-shows generated after T is equal to the rate generated before

0, so that the total rate of no-shows, A,, is:
oC
A = 2 / Po(t)Adt. (2.10)
T

If the density is symmetric about a mean of zero, then the expression 2.10 reduces to
equation 2.6. Therefore, the distribution of no-shows is also Poisson with parameter A,.
Intuitively, each surprise (no-show) is a no-show (surprise) in another period. As with the
surprises, the expected number of no-shows have an upper limit of AT as o, increases. This

is the expected number of arrivals during the demand period of length T (see Figure 2-4).

Demand Forecast Error (e)

Since arrivals appear according to a Poisson process and arrival time forecast errors
are independent, the number of surprises and no-shows are also independent. Therefore,
the distribution of the demand forecast error e = n — m may be found by convoluting the
distributions of n and m. The mean of e is zero (we expect equal numbers of surprises and
no-shows as long as the arrival process is homogeneous), while the variance is the sum of
the variances of surprises and no-shows. Under the assumption of independent, normal,
zero-mean forecast errors,

2

o, = d,%,-#—o%
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= 2A\m
= ANT(1 = Fy(T)) + 02(£4(0) — fo(T))] (2.11)

and as o4 grows, g, — V2)T. When individual arrival-time forecasts have a large variance,
the variaice of the demand forecast error approaches twice the expected number of arrivals
during the demand period. The standard deviation, o., is displayed in figure 2-5 as a
function of the forecast standard deviation a,.

If we assume that arrival-time forecasts have a standard deviation of 10 minutes, then
the standard deviation of the demand forecast during one 15-minute period is 3.8 aircraft
(see Figure 2-5). We expect 15 aircraft during the demand period, so the standard deviation
is approximately 25% of the mean. This represents a large amount of uncertainty injected
into traffic management decisions.

Figure 2-5 also indicates that the standard deviation of the demand forecasts fall ra pidly
as arrival time forecast standard deviation falls below 10. Therefore, there is much to be

gained by reducing take-off time uncertainty below its present level.

2.3 Conclusions and Extensions

The previous demand model assumed a homogeneous poisson arrival rate and independent
arrival forecast errors. Additional analyses may relax these assumptions, or a simulation
may be used to find the demand forecast error rate for an actual arrival schedule. Also of
interest is the pattern of forecast errors over multiple periods. Errors among periods are
correlated, since surprises in one period are no-shows in another. Given a finite number
of flights over a limited number of demand periods, the distribution of demand forecast
errors over time periods might be expressed in terms of combinatorial probability (i.e. an
expression similar to the multinomial distribution).

In addition, these calculations may not provide a full description of the effect of forecast
errors on strategic traffic management decisions. Flights which are no-shows or surprises
usually appear in a period adjacent to the expected period of arrival. In other words,
normally distributed forecast errors with a small variance produce local fluctuations in
actual demand around the projected demand, and these local effects would not have a great

impact on the effectiveness of global flow management strategies. Temporary saturation of
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airport capacity can be alleviated by path-stretching or speed control of arriving aircraft.
It is preferable not to resort to these tactical flow management procedures, but they have
less of an impact when compared to the length of delays and number of aircraft involved
in a typical GHP. Further research would evaluate the effect of these uncertainties on the
performance of Ground Holding Programs in particular and on air traffic management

actions in general.
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Chapter 3

Description of Data Sources and

Preparatory Data Analysis

The aircraft departure models developed in this thesis must be tested against real data, and
the collection and consolidation of the necessary data presented many challenges. At this
time, the FAA does not maintain a central database with information about all operations at
major airports. Nor does the FAA regularly receive either real-time or historical information
from the carriers. Therefore, we gathered data from the FAA, the National Weather Service,
the Logan Airport tower, and three major carriers in order to construct a data set for fitting
and testing the models. We were able to ‘match’ flights in distinct data sets in order to
build more complete records of each aircraft’s trajectory. However, complete records for
some sulsets of flights could not be constructed. This chapter describes the procedures used
to assemble the data set and provides summary statistics of the data. Potential limitations
and sources of bias in the data are also described. The final section of the chapter presents
recent improvements to the FAA’s data collection capabilities

In subsequent chapters, predictions of ground transit times (GTTs) will be derived from
the observed ground transit times of recently departed aircraft as well as from predictions
of environmental factors, such as the weather. Therefore, there are two general categories

of data which have been collected:

e Flight Data contain information about particular flights, such as the scheduled and
actual take-off times.

e Environmental Data contain information about factcrs which affect a number of flights
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during a significant time period, such as weather conditions and runway cenfiguration.

Section 3.1 discusses the flight data and the procedures to match flights in multiple
databases. Section 3.2 describes the environmental data while Section 3.3 examines po-
tential problems due to sampling bias or ‘noise’ in the data. Finally, Section 3.4 describes
current FAA inititiatives to improve data collection and analysis.

Data from these two categories will be described in the following sections.

3.1 Flight Data

We obtained three sets of flight-by-flight data: a historical database collected by the ETMS
itself, the DOT’s Air System Quality Performance (ASQP) data, and the Logan Airport
gate schedules of three major carriers. Table 3.1 describes the contents of these databases.
The second column of the table lists the elements of a flight’s record in each database and
the final column describes the sample of flights contained within each database and the time
period covered by the data. Records from the ETMS data contain information about actual
aircraft take-off times, while the ASQP data provide actual times of departure (push-back)
from the gate and arrivals to the gate. In addition, the ASQP data contain the scheduled
(published) departure times while the ETMS data contain the proposed departure time of
each flight according the to the filed flight plan. Connections between arriving and departing
aircraft may be inferred from the gate schedule data. Gate schedules were contributed by
American Airlines as well as two additional carriers which wished not to be identified. These
two will be labeled ‘Carrier B’ and ‘Carrier C.’ The third column indicates that only major
carriers operating at Logan are covered by both the ETMS and ASQP data, while only
August flights by Carrier B are covered by all three databases.

Ground transit times may be broken into gate departure delay and roll-out time (see
Figure 1-1 in Chapter 1). The ETMS data contributed GTTs of departures from Logan,
while gate departure delays were calculated from the ASQP data. F lights found in both
the ETMS and ASQP will be called matched flights. For matched flights, roll-out times are
calculated by subtracting the gate departure delay from the GTT. The following sections
describe these data in more detail. The gate schedule information will be described in more

detail in Chapter 4 when it is incorporated into a model linking arrival and departure delays.
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Database Name

ETMS

ASQP

Gate Schedule

Contents of Record

scheduled gate departure
proposed gate departure

DZ message (approx. take-off)
cancellation indicator

flight number

carrier

aircraft size code

scheduled gate push-back
scheduled gate arrival
actual gate push-back
actual gate arrival
cancellation indicator
flight number

carrier

connection flight numbers

Sample

Logan Airport only;
All flights;

March 5 - 15, 1991;
August 16 - 31, 1991.

All major airports;
Major carriers only;
Jan. 1991 - Dec. 1992.

Logan Airport only;

AA, January - December, 1992;
Carrier B, June - August, 1991;
Carrier C, December 1992.

Table 3.1: Airport Flight Data
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March August Total
number of flights 4245 7343 11588
median 17 21 19
mean 22.4 26.2 24.8
standard deviation 17.7 19.0 18.6

Table 3.2: Summary Statistics of Ground Transit Time for all Recorded Logan Departures
During March and August, 1991

3.1.1 Ground Transit Times from the ETMS Data

The ETMS historical database contains records of departures from Logan Airport for 11
days in March and 16 days in August, 1991. Once duplicates and records with missing
fields are removed, 4245 complete records remain for March and 7343 records remain for
August. Note that the August sample contains proportionally more flights than March.
After adjusting for the number of days in each sample, the August data has, on average,
16% more flights on each weekday and 28% more flights on each weekend day. A likely
explanation for this increase is the extra traffic between Logan and summer destinations
such as Cape Cod.

Each flight in the ETMS database contains the proposed departure time listed in the
flight’s filed flight plan and the time of the aircraft’s DZ message. We will use the DZ
message as an estimate of the aircraft’s actual take-off time. The estimated GTT for each

flight in the ETMS data is the difference between actual take-off and scheduled departure:

estimated GTT = DZ message time - proposed departure time

The first graph in Figure 3-1 displays GTTs on March 11, a Tuesday with snow flurries in
the morning and fair weather in the afternoon. Each ‘*’ represents the GTT of one flight.
Note the extremely high variability of GTT, even during the afternoon. Table 3.2 contains
summary statistics for the sample of ground transit times. While the overall mean GTT was
approximately 25 minutes, 6% of the GTT were above one hour while 1% were below zero.
Aircraft with negative ground transit times would have left the gate before the proposed

departure time. This is not unusual for General Aviation and freight carriers.
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Figure 3-1: Ground transit times, gate departure delays, and roll-out times of individual
flights at Logan Airport on Monday, March 11, 1991. The first graph displays all flights
in the ETMS data, while the second and third graphs only show ‘matched’ flights found in
both the ASPQ and ETMS data.
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3.1.2 Gate Departure Delay and Roll-out Time from the Ma*ched Data

In order to calculate roli-out times for individual flights, departures in the ETMS and ASQP
data were matched. For each matched flight, GTT and gate departure delay were calculated
from the ETMS and ASQP data, and their difference is the roll-out time. The following
criteria were used to match a record from the ETMS database with a record from the ASQP

database:

e Records in both databases must be complete. This eliminated damaged records and

canceled flights.
o The records must indicate the same origin, destination, carrier, and flight number.

e The scheduled drparture time in the ASQP database and the proposed departure
time in the ETMS database must be within six hours of each other. Therefore, the
published departure time and the departure time in the filed flight plan must be within
six hours of each other in order for the two to be considered the ‘same’ flight. This

eliminates the possibility that flights on two different days may be matched.

Flights that satisfy all of these criteria will be referred to as matched flights, and the resulting
data as matched data. Overall, 44% of the flights in the ETMS database were matched (see
Table 3.3) while 75% of the flights in the ASQP database were matched.

The low percentage of ETMS matches can be attributed, in part, to Logan’s traffic mix.
The ETMS contains a cross-section of all flights, while the ASQP database contains flights
operated by the major carriers. According to FAA records, in 1991 approximately 234, 000
out of the 441,000 operations at Logan were performed by the major carriers [17]. This
is 53% of all operations; the remaining operations were performed largely by air taxis and
commuter airlines (40%) and general aviation (7%). Since the ASQP data includes only
the ten largest domestic air carriers, the 44% match rate is not surprising.

Table 3.3 also shows that 25% of the ASQP flights were not found in the ETMS data.
Most of these unmatched flights departed during ‘gaps’ in the ETMS data. During these
gaps, no flights were recorded by the ETMS, even though the ASQP data indicate that
the airport was operating normally. ETMS personnel believe that these gaps were caused
by computer ‘down-time’ for maintenance or re-programming and that these gaps are not

related to the status of the air traffic system.
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number of flight,
March August Total
ETMS Historical Database 4245 7343 11588

ASQP Database 2739 4020 6759
Matched Data 2043 3002 5045
% ETMS Matched 48% 41%  44%
% ASQP Matched 75% 5%  75%

Table 3.3: Number of flights recorded and matched during the sample period, March 5-15
and August 16-31, 1991.

March August Total
number of flights 2043 3002 5045

gate departure delay median 0 0 0
mean 4.2 6.2 5.4
standard deviation 12,5 150 14.1
Roll-out time median 16 17 17
mean 17.2 19.1 18.3
standard deviation 8.1 8.5 8.4
ground transit time median 17 20 19
mean 214 25.3  23.7

standard deviation 15.1 17.8 16.8

Table 3.4: Summary statistics of gate departure delay, roll-out time, and ground transit
time for matched data (flights in both ETMS and ASQP databases)
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Figure 3-2: Percentage of ground transit time taken at the gate for increasing levels of
ground transit time

Table 3.4 contains summary statistics for the gate departure delays and roll-out times for
matched flights, and Figure 3-1 shows gate departure delays and roll-out times on March 11,
1991. The table indicates that the mean roll-out time of 18 minutes is significantly higher
than the mean gate departure delay of 5.4 minutes, but that the variance in gate departure
delay is much higher than the variance in roll-out time. Since gate departure delays have
a long ‘right tail’, the mean gate departure delay of 5.4 minutes is larger than the median
gate departure delay of 0 minutes. This is also seen in Figures 3-1; roll-out times have a
low variance during the afternoon, and the high variance in GTT is contributed primarily
by the gate departure delays.

On average, gate departure delay represents under one-quarter of total GTT. However.
the impact of gate departure delay varies with the size of the total delay. As GTT grows,
the percentage of delay taken at the gate grows as well. Figure 3-2 displays the percentage
of delay taken at the gate as the total ground transit time varies. For GTTs between 10
and 20 minutes, gate departure delays were negligible. For GTTs above one hour, gate
delay contributed 65% of the total. Therefore, attention should be given to predicting both
roll-out times and gate departure delays even though gate departure delays are, on average.

a much smaller contributor to overall GTT.
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3.2 Environmental Data

Since we expect ground transit times to be influenced by both weather and runway config-
uration, the matched data described in the previous section were combined with data from
the National Weather Service (NWS) and Logan Airport’s Preferential Runway Advisory
System (PRAS). The NWS data contain hourly observations of ceiling height, visibility,
wind speed and wind direction at Logan airport. The ceiling height and visibility were
used to classify each hour into one of four standard weather categories: Visual Flight Rules
(VFR), Marginal VFR (MVFR), Instrument Flight Rules (IFR), and Low IFR (LIFR). The
categories are determined by comparing ceiling and visibility to the minimum values shown
in Figure 3-3. Each departure in the matched data was assigned the weather category seen
at the time of its push-back from the gate. The bottom row of Table 3.5 displays the
percentage of all matched flights which occurred under each weather condition.

The PRAS data describes Logan’s runway configuration throughout the day. Each
departure in the matched data was assigned the active runway configuration at the time of
ics push-back from the gate. Table 3.5 displays the percentage of the 5045 matched flights
which fell under each weather category and runway configuration. A majority of flights,
3274 out of 5054, or 65%, operated under one of three high-capacity runway configurations
(4LR/9-4R, 27-22L/22LR and 33LR/27-33L) and under VFR. Despite the large number
of flights in the matched sample, there are few flights in the sample which operated under
the less common runway configurations and the worst weather. Only 3% of the flights (132
flights) operated under LIFR. The low number of LIFR flights in the matched data is due
to both the infrequency of severe weather conditions and the cancelation of flights during

these conditions.

3.3 Sources of Error and Bias

The data described above will be used to test the forecasting procedures, and errors in the
data may affect the results of the empirical tests. There are two potential problems in the
data: measurement error and sampling bias. The former problem is caused by the use of
the DZ message as a proxy for take-off time. The latter problem may stem from the small
sample period as well as the selection bias introduced when only matched data are used

for testing. In this section we discuss the causes and potential effects of these errors. We
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Figure 3-3: Standard weather categories

VFR MVFR IFR LIFR | total
4LR/9-4R 23 2 3 2 30
22LR/22LR 3 2 1 0 6
27-22L/22LR 19 6 2 0 27
33LR/27-33L 23 3 2 0 29
33LR/33LR 5 1 1 0 6
Other-Runway 0 0 1 0 1
total 73 14 10 3 100

Table 3.5: Percentage of 5045 matched flights operated under Logan runway configurations
and standard weather categories (columns and rows do not sum to margins because of
rounding)
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determine that while these problems exist, they shculd not affect fundamental results of
the thesis.

Use of the DZ message as an estimate of take-off time may introduce errors into our
estimates of ground transit times. According to the ETMS Functional Description, a DZ
message “signifies the activation of a proposed flight” in the National Airspace System [39).
Gary Hofnagle, an engineer in the Boston Tower, adds that the DZ message is generated
when a departing aircraft’s beacon first responds to an interrogation from the tower’s Sec-
ondary Surveillance Radar (SSR) [21]. When the message is generated, a filed flight plan
is activaterd and a flight strip is produced. However, portions of the airfield are masked
from the SSR in order to minimize the radar noise from objects on the ground, and the DZ
message may be delayed until after the aircraft has climbed above the masking.

While Mr. Hofnagle estimated that the lag between take-off and DZ message generation
should not be more than ten seconds, comparisons between DZ messages and actual take-
off times have revealed that DZ messages at some airports may be generated almost 5
minutes after actual take-off, on average [36]. Unfortunately, no detailed information on
the difference between DZ message and actual take-off time is available for Logan Airport,
so that it is not possible to adjust for possible errors in the data. However, it seems
reasonable to treat take-off time error as random noise of the sort found in almost any
electronic monitoring system. We will not explicitly correct for this error, but it should be
remembered that variations in take-off times may be due, in part, to deviations of the DZ
messages from the true take-off times.

Sampling bias may also be of some concern, for it is not likely that a sample of flights
from 27 days at Logan is representative of flights at other airports or even at Logan at other
times of the year. The sample itself contains some unusual conditions: August 18 - 20 saw
the passage of Hurricane Bob up the East Coast. While we cannot be sure that the results
derived in this thesis would apply throughout the air traffic management system, the data
do provide a thorough test of the forecasting procedures. Both VFR and IFR conditions
are well-represented in the sample, and empirical tests with these data should determine
how the forecasting procedures are affected by good, bad, and extreme weather at Logan
airport. The data will also provide a good test of the relative merits of the torecasting
procedures.

Empirical tests of roll-out time forecasts will be performed on flights in the matched
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data only, since roll-out times are only known for these flights. The results of these tests
may not be representative of the results that would be obtained if all flights were used since
the distribution of roll-out times for matched flights may be significantly different from the
distribution for unmatched flights. We cannot compare their roll-out times directly, but we
can compare their ground transit times. Table 3.6 contains GTT summary statistics for
matched and unmatched flights and Figure 3-4 displays the empirical cumulative distribu-
tions of the GTTs of each sample. The table and the figure suggest that while both samples
have similar means, the GTTs of the unmatched flights have a higher variance than those
of the matched flights. Nonparametric statistical tests confirm these observations. The
Wilcoxon rank-sum test produces a statistic that indicates a difference in location between
the distributions which is almost, but not quite, significant at the 0.05 level (z-stat = —1.6,
p-value = 0.06). However, a two-sample Kolmogorov-Smirnov test unequivocally rejects
the hypothesis that the two empirical distributions shown if Figure 3-4 were produced by
populations with the same distribution of GTT (z-stat = 5.07, p-value < 0.0001). A large
difference in dispersion, rather than location, distinguishes the two samples.

Without more information about the unmatched flights, we cannot be sure whether
the differences in Ground Transit time are due to differences in gate delay, roll-out time,
or both. We do know that only the major carriers are included in the matched data,
while the unmatched data are dominated by commuter and general aviation aircraft. It
is likely that aircraft types, push-back procedures, and scheduling practices vary between
these subsamples, and therefore there may be differences in both gate departure delays and
roll-out times. However, we feel that the bias iniroduced by the use of matched data is
nct of great concern. First, the differences between matched and unmatched flights, while
statistically significant, are not enormous (i.e. a 15% difference in standard deviation). In
addition, the FAA may be primarily interested in take-off time predictions of flights by the
major carriers (the only flights found in the matched data), for these flights are most often

subject to major air traffic management procedures, such as ground hold programs.

3.4 Improving FAA Data Collection: Current Initiatives

This analysis has highlighted the scarcity of clean and complete data on airport operations.

Without supporting data. empirical analysis and statistical model-building are impossible.
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Matched Unmatched

Number Flights 5045 6543
Mean (min.) 23.7 25.6
Median(min.) 19 20

Standard Deviation (min.) 16.8 19.8

Table 3.6: Summary statistics for ground transit times of matched and unmatched flights
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Figure 3-4: Cumulative distributions of ground transit times of matched and unmatched
data.
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Figure 3-5: Roll-out times of flights from Atlanta Hartsfield International Airport on August
1, 1993.

We have assembled a data set which will allow us to asses the performance of our forecasting
models under a wide variety of weather conditions and runway configurations at Logan
Airport. The FAA has also recognized the need for such a data set, and two recent projects
have improved the FAA’s resources. While both data sets are similar to our ‘matched’ data,
neither were available in time for an analysis to be included in this thesis.

The first new data set is an upgraded version of the ASQP which contains records
for flights by the ten major carriers from January, 1995. Each record in the ASQP now
includes actual push-back and gate arrival times [14]. Therefore, each record may now
be used to generate gate departure delays and roll-out times. The second database is the
Consolidated Operations and Delay Analysis System (CODAS). The CODAS data set is
similar to our own data set and was also constructed by matching historical ETMS and
ASQP records {1]. The CODAS data were gathered for flights which operated during 1992
- 1993 at almost 100 of the largest domestic airports. As with the new ASQP and our own
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database, the CODAS data contain gate departure delays and roll-out times. Figure 3-5
shows CODAS roll-out times of flights from Atlanta Hartsfield International. A comparison
with Figure 3-1 demonstrates that the pattern of delays is strikingly different from the
pattern at Logan and is characterized by increasing roll-out delays within, and between,
large banks of departures. Clearly, there are rich opportunities for analysis and modeling
of departure delays at airports besides Logan.

While the new ASQP and CODAS data sets are improvements over previous data
sources, neither offer a full description of airport operations. As with the matched data,
these data sets only contain flights operated by the ten largest carriers. One advantage of
our ‘home-grown’ data set is that the unmatched flights are also available for analysis. This
is especially important at Logan, where many flights do not show up in either the ASQP
or CODAS data. For example, in Chapter 5, departure queue sizes will be derived by esti-
mating the push-back times of all flights and then counting the total number of aircraft on
the airfield. Using CODAS or ASQP alone, approximately half the aircraft would not be
counted in the total.

In the long run, the FAA should expand its databases to include real-time information
collected from major air traffic facilities and the air carriers. However, there are a multitude
of possible sources of data, and the FAA will have to establish priorities. Experiments such
as the ones conducted in this thesis will point out which data are most likely to produce
significant benefits. The importance of one data source, the carriers’ real-time delay and

connection information, will be highlighted in the next chapter.
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Chapter 4

Forecasting Gate Departure Delay

In the previous chapter we saw that the average gate departure delay (GDD) in the matched
data is just above five minutes, while the average ground transit time (GTT) is 24 minutes.
However, GDDs have a high variance and represent a large percentage of the total GTT
when flights experience long delays. If a forecasting model can be devised which accurately
predicts GDD, we will have made substantial gains in reducing take-off uncertainty.

Since departures may be delayed at the gate by a large number of factors, accurately
predicting GDD is a difficult problem for both the carriers and the FAA. The delay reporting
system managed by American Airlines indicates the complexity of the problem. Each delay
is classified with one of over one hundred possible delay codes. The list includes codes
for weather, mechanical, and crew problems, as well as codes for the late arrival of a
dignitary and the removal of flying insects from the cockpit [22]. Many of these delays
occur irregularly and are nearly impossible to predict, and it is inevitable that there will
be some irreducible uncertainty in GDD forecasts. This chapter explores whether improved
forecasting procedures may significantly reduce the current level of uncertainty.

Important sources of information on GDDs are the carriers themselves, for they continu-
ously monitor the movements of aircraft and crews. Section 4.1 describes previous research
on the accuracy of the carriers’ own delay forecasting systems. Secticn 4.2 examines our
database of matched flights to determine whether knowledge of factors such as weather or
runway configuration can significantly improve GDD forecasts. We also determine whether
GDDs and roll-out times are correlated, for a high correlation would suggest that a model

which integrates GDD and roll-out time predictions would improve forecast accuracy. Sec-
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tion 4.3 describes a simple model for GDD that describes the ‘turns’ made by individual
aircraft. This model is successful in predicting many of the largest gate departure delays,
given accurate predictions of arrival delays. The chapter concludes with suggestions for

more detailed models and improved data-sharing between the FAA and the carriers.

4.1 Gate Departure Delay Forecasts by the Carriers

Recent projects by the FAA and the MITRE corporation analyzed the real-time schedules
of the major carriers in order to determine the accuracy of the carriers’ own departure
forecasts (31}, [10]. The real-time schedules contain the carriers’ forecasts of aircraft push-
back times. For some delayed flights in the sample, these forecasts were altered as the
time of push-back approached. The forecasts for these flights were updated when the carrier
anticipated a delay. For most flights, however, the carriers retained the original scheduled
push-back times until the actual push-back occurred; the original forecast was not updated.

Under ideal circumstances, these data may have been used to determine whether the
carriers’ updated forecasts were more accurate than the forecast algorithms developed for
the ETMS. In fact, the studies found that the updated schedules were only marginally
more accurate than the original, published schedule. However, it is likely that some of
the “real-time schedules” submitted by the carriers were the departure time forecasts that
had been sent to gate agents and the passengers themselves [11]. These predictions may
have been influenced by the carriers’ customer service objectives and may not have been
the carriers’ most accurate forecasts. For example, forecasts released to passengers may
have underestimated the longest delays so that customers would be back at the gate and
prepared to board if the aircraft were ready more quickly than was anticipated. It is likely
that the carriers do produce more accurate, unbiased forecasts for operational decisions,
but these have not been made available to the FAA.

In addition to the real-time schedules, MITRE also received the delay codes for those
flights with GDDs larger than 5 minutes. The delay codes were grouped into seven cate-
gories: delays due to weather, service problems, passenger delays, mechanical difficulties,
crew duties performed by pilots and flight attendants, air traffic control, and other miscel-
laneous delays. One category of delay that was not reported was delays due to late arrivals.

Therefore, ‘upstream’ delays are not included in the breakdown even though this is likely
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Figure 4-1: Proportion of delay codes for flights with updated forecasts

to be a significant, and relatively predictable, cause of delays.

The delay codes were further broken down into codes for delayed flights that did receive
forecast updates, and codes for delayed flights with departure time forecasts that were not
updated. The proportions of delay codes in each group are shown in Figures 4-1 and 4-
2. Large proportions of the reported delays were due to mechanical problems, passenger
delays, and crew duties. Flights with push-back times that were updated in the real-time
schedule, however, had proportionally more mechanical delays, while those that were not
updated were most often delayed by passengers or crew. This disparity may be caused by
the relative length of mechanical delays (for example, the carrier would want to inform its
passengers about an hour delay), but the carriers’ delay reporting policies are not known.
In general, the most coramon delays in Figures 4-1 and 4-2 are difficult for a centralized
forecasting system to predict.

Another interesting element of the FAA/MITRE study is the timeliness of the forecast
updates. Over 70% of the forecast updates arrived within one hour of the scheduled depar-
ture time of the flight; only 5% of the updates arrived over three hours in advance. If the
carriers were supplying their most up-to-date data, then the value of carrier delay infor-
mation for long-term forecasts may be limited. Most of these carrier forecasts only diverge
from the scheduled departure time when the scheduled departure time is close. It is quite

possible, however, that the studies did not include the most timely carrier forecasts.
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Figure 4-2: Proportion of delay codes for flights with no updated forecasts

4.2 Explanatory Variables for Gate Departure Delay

One would expect that weather and runway configuration would be useful for predicting
GDD. One might also expect GDD to be correlated with roll-out time, for conditions which
lead to push-back delays may also lead to roll-out delays. In this section we investigate
wheiher GDD is significantly correlated with these factors and, if it is, whether models

built from these factors are successful in reducing the uncertainty associated with predicting
GDD.

4.2.1 Environmental Factors

Airline passengers often find that bad weather means long delays. The gate delay data
confirm this observaticn. The mean GDDs under three weather categories are displayed
along the bottom row of table 4.1 (because of the relatively small number of LIFR flights,
this category has been combined with IFR). Particular runway configurations, such as
4LR/9-R and 27-22L/22LR are associated with the longest GDDs in bad weather. This
is counterintuitive, for these two runway configurations have the highest capacity of those
runway configurations listed and are equipped with the most sophisticated aircraft guidance
systems. One explanation is that the guidance systems of these configurations are needed

when the weather is at its worst, and both arrival and departure delays are particularly
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weather category

Runway Config. [ VFR MVFR IFR/LIFR | total
4LR/9-4R 3.7 16.1 214 7.7
22LR/22LR 4.7 5.1 29| 44
27-22L/22LR 5.5 5.2 63| 55
33LR/27-33L 3.1 4.5 93| 3.7
33LR/33LR 2.1 8.4 251 30
Other 1.6 5.6 5.5 4.2
total 3.9 6.8 12.7 5.4

Table 4.1: Mean GDD by Runway Configuration and Weather Category (min.)

long at these times.

These differences in means are not statistical aberrations caused by the overall variance
in GDD. The nonparametric Kruskall-Wallace test indicates that the locations of the GDD
distributions vary significantly as weather conditions and runway configurations change.
The Kruskall-Wallace test assigns ranks to the entire sample of GDDs and then averages
the ranks of GDDs which occurred under each factor. For example, the ranks of delays
under VFR, MVFR and IFR/LIFR are each summed and the totals divided by the number
of observations in each group. If the rank averages diverge, then this is evidence that
the delays under each factor do not share a common location. This test rejected the null
hypothesis that the distribution of GDDs under varying conditions had the same locations
(p-values < 0.0001 for both weather categories and runway configuration).

While the effects of weather and runway configuration are statistically significant, the
tests described above do not demonstrate how valuable these environmental factors will be
for predicting GDD. If observed GDDs can be closely approximated by some function of
weather state and runway configuration, then this function may be used to predict GDDs,

given predictions of weather and runway. Consider the following linear model for GDD:

Gijk = b+ wj+ck+ ujk + ez (4.1)
where
9ijx = the GDD of the ith flight operating under weather category j and

runway configuration k

b = mean (or ‘base’) GDD applied to all departures
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Group Sums of Squares

Weather si = 43,475
Runway Config. s2=13,233
Interactions s2 = 39,873

Sum of Squared Errors s? = 902,602

Table 4.2: Results of Analysis of Variance for GDD Classified by Weather and Runway
Configuration

w; = additional GDD due to weather category j

¢k = additional GDD due to runway configuration k
ujx = additional GDD due to interaction between weather j and runway k
e;jk = residual GDD not explained by model factors

Let b,;, &, and ii;; be estimates of b, w;,cx, and u;jx obtained from the data. The
y] J f) 3

observed model errors é:;k are:
éijk = Gk — (b+W; + & + @;x) (4.2)

The estimates which minimize the sum of squared errors é?;k can be derived from the
means of the GDDs, grouped by the appropriate factors. For example, the optimal estimate
for b under the squared error criteria is the overall mean GDD. The efficacy of this model
is summarized in table 4.2. The table contains the sum of squared errors, 33, as well as the
portion of the squared difference from the mean ‘explained’ by the terms in the model. For
example, let n; be the number of observations in weather group j, and recall that there are

three weather groups. Therefore,
3
sa = Y muw? (4.3)
=1

That is, the term s2 is the sum over all observations of the squared differences between the
weather category group means w; and the overall mean b. The sum of squares s? and s2
are calculated in a similar manner. The sum s7 is the sum of é2, over all observations. The
table indicates that weather categories, runway configurations, and interactions between

weather and runway all contribute to the explanatory power of the model.
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Sample ps (Spearman) z-value p-value

All Flights 003 204 004
VFR 003 160 0.0
MVFR 001 -001 096
IFR/LIFR 014  -346  .0005

Table 4.3: Results of tests for independence between gate departure delay and roll-out time

The standard F-tests of significance for these results are not included in the table,
for the data do not satisfy the assumptions necessary for these tests to be statistically
valid. Deviations from the model are not normally distributed (they have an extremely
long right tail) and the error variance varies between groups. A transformation of the
data may alleviate these problems. However, the nonparametric Kruskall-Wallace tests
described above indicate that weather and runway are statistically significant factors. A
more important lesson from the table is the relative explanatory power of the factors. When
compared to the model errors, the weather, runway, and interaction effects are small. One
statistic which demonstrates the relative importance of these factors is the R? statistic:

2 33;+33+33
82, + 82+ 52 + 52

~ 0.10 (4.4)

This low R? value indicates that there is much residual uncertainty about GDDs. There

are large GDDs which are not adequately explained by equation 4.1.

4.2.2 Correlation Between Gate Departure Delay and Roll-out Time

If GDD and roll-out time are significantly correlated, then models for the two should
be integrated. Given a strong correlation, then an effective model for one should lead to
insights on the behavior of the other. However, we find that while gate delay and roll-out
time are correlated, the correlation is weak. Let g; and r; be the GDD and roll-out time,
respectively, of flight i, let § and 7 be the overall means, and let N be the total number
of flights in the sample (for our matched sample, N = 5045). The traditional measure of

correlation is the sample correlation coefficient:

N -
= = 2is1 9§ = 0.06 (4.5
VEX (g - 92 S8 (r, - 7)2

p
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Figure 4-3: Departure gate delays and roll-out times of flights under IF R/LIFR during
March and August, 1991.




While this correlation of 0.06 is low, it may be statistically significant. A nonparametric
test based on the Spearman rank correlation coefficient, ps, tests whether the correlation
between GDD and roll-out time is significant. The coefficient p, is calculated from the
difference in ranks of the GDD and roll-out time of each flight. Let G, and R; be the ranks
of the GDD and roll-out time, respectively, of the ith flight. The Spearman rank correlation

coefficient is:

L el
Pa N3 _ N

(4.6)

If the ranks R; and G; are close for all flights, then p, will be close to one. The maximum
possible value of the second term is 2, which is achieved when the ranks of the roll-out
times and GDDs are reversed, so that p, = —1. Table 4.3 displays the overall p,, as well
as p, under particular weather categories. The statistic labeled ‘z-value’ is derived from
ps and is approximately normally distributed. The column labeled ‘p-value’ displays the
significance of the two-sided test of the null hypothesis that p; = 0. Overall, there is a
significant positive correlation.

A positive correlation between roll-out time and GDD is not surprising. for as airport
capacity decreases, both roll-out times and GDD would be expected to rise. The negative
correlation under weather categories IFR and LIFR is unexpected, but a close look at the
data suggests at least one explanation. The correlation is lowest (‘most negative’) under
particularly severe weather conditions, such as during snow squalls in March and a hurricane
in August. Figure 4-3 shows the GDDs and roll-out times of flights during the IFR and
LIFR periods in the sample. The negative correlation is produced by the many flights with
small GDDs and long roll-out times, as well as the few flights with long GDDs and quick
roll-outs.

What caused these estremes? Many of the flights with the largest roll-out times were
headed for the same destination during the same bad weather period. For example, there
were five flights with roll-out times longer than one hour between 6:00 pm and 8:30 pm on
August 18, 1991, and four of these five flights had roll-outs over eighty minutes. Two of
these flights were to Newark and three to LaGuardia. In the poor weather, the aircraft may
have pushed back on-time to make room at the gate for arriving aircraft. However, it is

possible that the subsequent long roll-out times were not spent rolling out, but were spent
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on the tarmac waiting for clearance through to the destination airport. Meanwhile, the poor

weather may have increased cancellations and arrival delays and slowed the departure rate
of flights. Those aircraft that did push-back would find a relatively uncongested runway
system and would experience relatively short roll-out times. As a result, some aircraft would
have long gate departure delays and short roll-out times and some would push-back on-time
but then wait for clearance for departure.

Hoewever, without more information, we can only speculate about the causes of the
longest delays. Because of the small size of the correlation between GDD and roli-out time,
it is reasonable to treat GDD and roll-out time as statistically independent. Therefore,
models of gate delay and roll-out times w.i! he developed separately. Forecasts of total

GTT may be generated by finding the sum of GDD and roll-out time forecasts.

4.3 Aircraft Turn Models for Gate Departure Delay

In this section we find that a major cause of GDD is the simple fact that an aircraft cannot
take off before it lands. An aircraft that arrives far behind schedule will depart late if it
does not make its turn before the scheduled departure time. Delays at one airport often
stem from delays at an upstream airport.

Define a turn to be the operation performed by an aircraft between its arrival to and
departure from an airport gate (note that we use the term ‘turn’ whether or not the flight
changes its flight number between arrival and departure). The scheduled turn time of a
flight is the time between its scheduled arrival at the gate and its scheduled departure from
the gate (see figure 4-4). The available turn time is the time between actual arrival and
scheduled departure. Note from figure 4-4 that increasing arrival delay reduces available
turn time, and arrival delay translates into GDD when the scheduled turn time is small.
Finally, the actual turn time is the time between actual arrival to the gate and push-back
from the gate.

Neither the ASQP nor the ETMS data contain the information needed to link arrivals
with departures and to determine the lengths of turn times. Some of this missing informa-
tion may be inferred from the carriers’ schedules. If an arrival and a departure have the
same flight number, then it is likely that the two operations are performed by the same

aircraft. However, at an airport where many flights terminate (such as Logan), aircraft use
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different flight numbers between arrival and departure. Another approach is implemenied
within MITRE’s National Airspace System Performance Analysis Capability (NASPAC),
a simulation model used for strategic planning [13]. An “Itinerary Generator” matches
scheduled arrivals with scheduled departures at each airport to find pairs of flights that
may be connected as ‘turns.” The matches are made according to the schedule, aircraft
type, an assumed minimum turn time, and a first-come-first-served algorithm. While a
good first-order approximation, the method will incorrectiy match flights. Mismatches are
most likely at hub airports where there are banks of arrivals and departures, and many
flights are performed by the same equipment type.

Rather than trying to infer turns from published schedules, we obtained data that
enabled us to identify the turns directly. We combined data from the ASQP with the
Logan gate schedules of three major carriers operating at Logan airport: American Airlines
and two carriers which wished to remain anonymous. The schedules of each of the three
did not apply to the same time periods; they covered turns made from December 1991 to
March 1993 (American), June to August 1991 (‘Carrier B’), and December 1992 (‘Carrier
C’). The ASQP data contains the arrival delay and gate departure delay for each operation
at Logan, while the gate schedules allowed us to link arrival delays with departure delays.

Figures 4-5 through 4-7 display the available turn times and GDDs of pairs of operations
identified as turns for each carrier. A negative available turn time indicates that the aircraft
arrived after its scheduled departure time. With few exceptions, a negative available turn
time corresponds with & large GDD. The actual turn time is the sum of the available turn
time and the gate delay. Most flights have actual turn times above 30 min., but some flights
seem to have gained time on the ground (a Carrier B flight, for example, seems to have an
actual turn time of -2.7 hours).

Figure 4-8 displays the cumulative percentage of flights with actual turn times within
a given number of minutes. For flights operated by American Airlines, for example, 1% of
the flights seem to have turned within 1 minute, 3.4% within 30 minutes, and 41% within
one hour. It is interesting to note from Figure 4-8 that the three carriers differ in the speed
of their quickest turns. A full 10% of Carrier B’s flights turn within 30 minutes, while 5%
of Carrer C’s and 3% of American’s do the same. The speed of a turn is influenced by
the size of the aircraft, the load factor, the amount of baggage, and the size of the ground

crew dedicated to cleaning and re-outfitting the aircraft. Turns mey also be delayed by any
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Figure 4-4: Arrival, turn, and departure of an aircraft

number of the factors we have already mentioned, such as weather, late connecting flights,
late passengers, baggage, or crew.

All three carriers operated flights that seemed to have impossibly small, or negative,
turn times. It is likely that these flights are beneficiaries of an aircraft exchange, or swap.
For example, five of the seven Carrier B flights with negative turn times in F igure 4-6 were
produced by the same turn. A closer look at the data indicates that this flight is the last
flight of the day to a hub of the carrier, where it connects with many more flights. If the
flight is late, Carrier B may exchange aircraft to keep the flight on-time. As a rule of thumb,
we will assume that any flight with an actual turn time of less than 25 minutes benefited
from an exchange. This included 2%, 3%, and 0.3% of American, Carrier B and Carrier C’s
flights, respectively. We may not have correctly identified all swaps, for it is possible that
a flight with an actual turn time greater than 25 minutes is a swap while a few flights may
turn without a swap in less than 25 minutes. However, the cumulative percentages of actual
turns in Figure 4-8 for all three airline begins to rise between 20 and 30 minutes, and 25
minutes appears to be a reasonable demarcation between those few swaps with impossibly
quick turn times and the vast majority of aircraft which arrived, turned, and departed
according to the connection information in the gate schedules.

For flights that were not swaps, a simple aircraft turn model seems to be an accurate
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Figure 4-5: Available turn time and GDD for American Airlines flights turning at Logan
(5347 flights from December, 1991 - March, 1993). The solid line is the aircraft turn model
with a minimum turn time of 39 minutes.
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Figure 4-6: Available turn time and GDD for Carrier B flights turning at Logan (2732
flights from June - August, 1991). The solid line is the aircraft turn model with a minimum
turn time of 31 minutes.
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Figure 4-7: Available turn time and GDD for Carrier C flights turning‘ at Logan (336 flights
from December, 1992). The solid line is the aircraft turn model with a minimum turn time
of 34 minutes.

description of GDD:

g = C+PBmin(0,M-a;)+e; (4.7
where
g9i = GDD of flight i (minutes)
C = GDD assessed to all flights
M = minimum turn time
a; = available turn time of flight i
B = additional GDD due to each minute of arrival delay
once a; falls below M

ei = GDD not explained by the model

Given that there are no arrival delays, flights average C minutes of GDD. When the available
turn time falls below some threshold value M, each minute of arrival delay translates into

B minutes of departure delay.
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Figure 4-8: Cumulative percentage of flights turning within a giver number of minutes. For
example, 52% of Carrier C’s flights had actual turn times that were less than or equal to
60 min.

Carrier |M C(oc) B (05)

American | 39 4.9 (0.3) 1.0 (0.01)
Carrier B | 31 3.4 (0.2) 1.0(0.02)
Carrier C | 34 55(1.1) 1.0(0.1)

Table 4.4: Parameter estimates and standard errors for the piecewise linear regression for
the turn model. All flights with actual turn times less than 25 minutes are assumed to be
swaps, and were not included in the data set used to fit the model.
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R? R* estimated
(no swaps) (all flights) % swaps

American 0.50 0.43 2.1%
Carrier B 0.55 0.50 3.4%
Carrier C 0.40 0.40 1.2%

Table 4.5: R? values of the turn models evaluated with without and with flights that were
assumed to be swaps. The last column displays the percentage of flights assumed to be
swaps.

A procedure based on piecewise linear regression was employed to estimate parameters
M, C, and f for each carrier. Flights thought to be swaps were discarded when fitting
the models. The results are shown in Table 4.4 and the models are shown as solid lines
in Figures 4-5 through 4-7. The iterative regression procedure took advantage of the fact
that, given any value of M, the turn model may be transformed into a model which is
linear in the parameters C and 3. This simple transformation allows the use of ordinary
least-squares regression (OLS) to find values of C and 3 which minimize the sum of squared
residuals. For each carrier, we used OLS to fit models over a range of M-values from 20
min. to 60 min., and set M equal to the value which produced the model with the lowest
sum of squared residuals. Given this optimal M, OLS was employed to find the estimates
and standard errors for C and S.

In Figure 4-8, Carrier B seems to have a higher percentage of shorter turns, and this
difference is reflected in the parameters of the turn models. The three carriers have different
minimum turn times, with American having the largest value of M = 39 min. For all three
carriers, § was close to 1.0, so that on average one minute of arrival delay produces one
minute of departure delay when available turn time falls below M. The differences in both
M and C may be attributable to differences in the carriers’ equipment and operational
practices, or differences in airport conditions during the distinct time periods covered by
the data for each carrier. An important factor may be the shuttle service that Carrier B
operated out of Logan, for we would expect Shuttle flights to have relatively quick turns.

Tables 4.5 and 4.6 display the goodness of fit and forecast accuracy of the models
generated for each carrier. Table 4.5 displays the models’ R? values for the non-swapped
flights which were used to fit the models, as well as for all flights. The models reduce the

mean square forecast error by between 40 and 50%. By comparison, the factor-based linear
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MAD RMSD
from from from from
Carrier model mean % decrease | model mean % decrease
American | 9.3 15.1 38% 21.3 274 22%
Carrier B| 5.8 9.9 41% 13.9 197 29%
Carrier C 8.7 15.2 43% 18.3 24.1 24%

Table 4.6: Performance of mc.dels for gate departure delay. Mean absolute deviation (MAD)
and root-mean squared deviation (RMSD) of delays from an aggregate mean and from the
aircraft turn model. The ‘% decrease’ refers to the percentage reduction in MAD or RMSD
if the model is used instead of the aggregate mean.

model of equation 4.1 reduced the mean square error by 10%. While the two sets of models
were tested with different samples of flights, the ‘turn model’ is undoubtedly more successful
in predicting GDDs. Table 4.6 shows the mean absolute deviation (MAD) and root mean
squared deviation (RMSD) of the observed GDDs from each model, as well as from the
overall mean GDD of the carrier. The three turn models decrease MAD and RMSE by
about 40% and 25%, respectively, compared to a constant forecast of the overall mean. The
turn model is particularly successful in predicting the largest GDDs. Figure 4-9 compares
the predictive accuracy of the Carrier B turn model with the predictive accuracy of the
overall average GDD for subsamples of progressively larger GDD. The mean absolute error
is displayed for all flights and for flights with over 30 and 60 minute GDDs. As the length

of the delay grows, the advantages of the turn model becomes more pronounced.

4.4 Conclusions and Extensions

In this chapter we have developed models of GDD based on environmental factors, such
as weather conditions, as well as models based on the arrival delays and gate turns of
flights. The models based on environmental factors produced only marginal gains in GDD
forecasting accuracy. Previous studies of delay codes of a major airline found that large
percentages of delays may be a‘tributed to mechanical probleins, aircraft crew performing
last-minute duties, or passenger delays. Many of these are difficult to predict, and it is not
surprising that the environmental factor model did not significantly decrease the variance
of GDD forecasts.

On the other hand, a simple turn model using arrival delays to predict GDD produced
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Figure 4-9: Mean absolute deviation between observed GDDs, the turn model, and the
overall mean GDD for all Carrier B flights, as well as flights with actual GDDs above 30
and 60 minutes.

much larger improvements. This is especially encouraging if sne wishes to produce predic-
tions with a forecast horizon of one to three hours. ETMS predictions of aircraft trajectories
are reasonably accurate once an aircraft is in the air, so accurate arrival delay forecasts for
many flights are available over one hour before arrival and subsequent departure from the
downstream airport. The aircraft turn model should be effective for real-time delay predic-
tion.

The results of this chapter also suggest further research on aircraft turn models. The
differences between estimated values of the minimum turn time, M, in Table 4.4 demon-
strate that different carriers have, on average, different minimum turn times. This may be
explained by differences in fleet composition, scheduling practices, staffing levels, or opera-
tional procedures. In general, the models and the supporting data offer opportunities to infer
information about the competitive practices of the carriers. In addition, improved piecewise
linear models might distinguish between equipment types or individual flight numbers to
provide a better fit to the data.

Table 4.5 displays the percentage of each carriers’ flights that were classified as a ‘swap’.
Although small in number, these flights often fall far from the turn model. The model will
be much less effective at airports where swaps, substitutions with spare aircraft, or aircraft
exchanges for maintenance are common. In particular, carriers at their hub airports may

have more opportunities to perform swaps and may be more likely to exchange turning
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aircraft in order to minimize the effect of arrival delays. One further area of research might
be the construction of statistical models which track previous information abourt aircraft
swaps and predict future exchanges.

However, carrier real-time operations are extremely dynaraic, and carrier strategies
change from day to day and month to month. The FAA should continue to pursue op-
portunities for real-time data exchange with the carriers, for any model of turns and swaps
constructed without carrier data is likely to produce forecasts which are inferior to the
carriers’ own predictions. The aircraft turn models demonstrate the large improvements in
predictive accuracy that are possible with access to only a small amount of carrier data,
the gate schedules. More cooperation between the carriers and the FAA may produce even

larger benefits.
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Chapter 5

Aircraft Flow Models and
Capacity Estimates

In order to predict take-off times of aircraft, we are developing methods for predicting both
gate departure delays and roll-out times (the time between gate push-back and take-off).
In general, the time to get from the gate to the runway is likely to increase as congestion
on the airfield increases. For example, taxiing aircraft may be blocked by other aircraft on
the apron or may spend time in a queue at the head of the departure runway. This chapter
develops models of an airport’s departure process which describe aircraft movements as a
deterministic flow from the gates to the departure runway and into the air. The rate of flow
onto the airfield is governed by the rate of aircraft push-backs; the rate of flow out of the
airfield is limited by airport capacity.

A build-up of aircraft on the airfield is likely to produce an increase in the roll-out time
of individual aircraft, and predictions of airfield congestion should be useful for predicting
the roll-out times of individual aircraft. However, these models and forecasts may also
be of special interest to air traffic controllers and the carriers, apart from their value for
predicting individual aircraft roll-out times. For example, they may allow tower controllers
and carrier gate managers to plan for, and perhaps prevent, ground congestion by holding
aircraft at the gate or sending them to less congesied runways.

The next section of this chapter provides a brief description of related research on airport
capacity and queueing delays. Section 5.2 motivates our models by presenting ETMS data

on airport congestion and take-off rates. Section 5.3 describes the aggregate flow models
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while Section 5.4 describes how the data are used to produce real-time estimates of take-
off capacity. In both sections, simple examples demonstrate how the models are fitted to
data and generate forecasts of airfield congestion. Section 5.5 presents empirical tests with
data from Logan Airport. It compares the accuracy of the proposed models and tests the
sensitivity of the models to the underlying assumptions about the departure system. The

final section suggests areas for further work.

5.1 Previous Research

A large amount of research on airport capacity and delays to aircraft at airports has been
produced by the FAA, government consultants, and academics. An article by Odoni [27]
provides an overview of early and recent published research. Representative early work
includes articles by Blumstein [8] and Newell [26]. Blumstein's simple but powerful model
for aircraft arrivals illustrates the relationship between the maximum landing rate and fac-
tors such as separation requirements, length of the glide path, and aircraft velocity. Newell
extends Blumstein’s work by modeling the interaction between arriving and departing air-
craft. He derives convez capacity curves, which show the maximum rates of arrivals and
departures as the arrival/departure mix is varied. Odoni describes more recent work on
delay analysis for congested airports. Airports are modeled as queueing systems with time-
varying demand and service rates. In terms of our own aircraft departure problem, the rate
of push-backs from the gate may vary with time, and may sometimes exceed the maximum
take-off rate, so that p > 1 temporarily. Such a system cannot be adequately described
using more traditional homogeneous, steady-state queueing analysis.

These analytical delay models describe the expected system behavior, given a proba-
bilistic description of the demand and service processes. In order to simplify the analysis,
the probabilistic descriptions belong to a family of general stochastic processes. For exam-
ple, arrivals to the system may be Poisson and service times distributed as Erlang random
variables. The output of the model may be the expected value of the queue lengths or the
probability distribution of the number in the queue. These predictions of average behavior
are most useful for strategic planning, but are less useful for predicting specific delays to
actual flights. The models provide a useful guide to the factors which influence airport

capacity and delays but are not directly applicable to our problem of real-time delay pre-
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diction. For example, if the ETMS supplies accurate predictions of the push-back times of
individual aircraft, a description of demand with a general stochastic process, such as the
Poisson, would ignore this detailed information. In addition, the arrival of real-time data
also creates the opportunity to update the model, given obscrved airport conditions. This
capability does not exist in the more traditional planning models.

Empirical studies by Gilbo [19] and a study by MITRE [12] are closer in spirit to the work
of this chapter, and more detailed descriptions of these studies will be used to motivate cur
approach. Both studies produce estimates of airport capacity based on counts of aircraft
operations (arrivals and departures). The number of operations in discrete intervals is
tabulated, and capacity is estimated from the maximums of these observed counts after
adjusting for the presence of outliers. The MITRE study is applied to arrivals at Chicago
O’Hare, while Gilbo's paper derives estimates of the convex capacity curves at each of the
largest and busiest domestic airports.

While a reasonable approach, the use of observed maximums has a few potential pitfalls.
First, these estimates underestimate capacity in unsaturated systems, for capacity will only
be observed when the system is saturated. For example, suppose that there are two runway
configurations with identical capacities and that during the period of data collection the first
configuration has demand which saturates the system while the second has low demand.
A capacity estimate calculated from the observed maximum number of operations may
produce a reasonable estimate for the first configuration but will underestimate the capacity
of the second. The empirical studies described above are based exclusively on departure
counts, and no attempt was made to determine whether, or for how long, the systems were
under stress. However, information is now available that will allow us to keep track of the
number of aircraft in the process of rolling out. This will serve as a rough estimate of system
demand and will allow the flow models introduced in this chapter to distinguish between
saturated and unsaturated conditions.

In addition. the observed number of observations will fluctuate over time. even if there
is sufficient demand to maintain operations at capacity. In Gilbo's paper, the capacity
curves are described as percentiles of the arrival and departure counts over fifteen-minute
intervals. Distinct curves were found for the 90th, 95th and 99.5th percentiles. Gilbo points
out that the higher percentiles may overestimate capacity since the observed fifteen-minute

rates could not be sustained for a longer period of time. Newell recognizes this possibility
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when he defines capacity to be:

a maximum average flow that a facility can accommodate over a time period
long enough to include a large count (say 100 or more) and which could, in
principle, be sustained for an infinitely long time (if one had an arbitrarily large

reservoir of aircraft) ([26], p. 209).

For aircraft arrivals and departures, take-off rate fluctuations are often caused by temporary
changes in the aircraft mix. When a Beechcraft with a capacity of 14 passengers follows a
DC-10 with a capacity of 380, the Beechcraft must allow a large headway for safety, and the
service rate is temporarily reduced. Many small (or even large) aircraft in a row increase the
observed rate of operations. Given an overall traffic mix, however, one might consider these
fluctuations to be variations from the overall capacity for that traffic mix. We will adopt
Newell’s definition of a ‘true’ of ‘sustainable’ take-off rate as our definition of capacity.

While some deviations from capacity are short-term fluctuations, there may also be
more systematic changes in capacity over time. These changes may be caused by changes
in weather, runway configuration, or controller practices. Estimates of capacity based on
maximum counts of operations ignore the time-dependent nature of capacity, for all time
periods are given equal weight. A capacity estimate at 8:00 may be improved by giving
more weight to counts of operations at 7:50 than to counts from the previous day.

Current efforts at Atlanta Hartsfield International Airport have been directed towards
this area of dynamic queueing and capacity estimation [2). A system for real-time data
exchange has been developed by the Atlanta Tower and the airport’s primary carriers. The
existing system is a prototype which allows both Tower controllers and the carriers’ ramp
controllers to share scheduled and actual push-back and arrival times. Such a system would

be an ideal platform on which to build the flow models developed in this chapter.

5.2 Empirical Description of Airfield Congestion and Take-
off Rates

Before formulating models for aircraft roll-outs, it is useful to examine the ETMS data to
see the evolution of airport congestion over time and to investigate the relationship between

congestion and the take-off rate. We focus our attention on N(t), the number of aircraft

76




rolling out at time ¢t. Given a more complete data set, N(t) would be easy to calculate:

N(t) = # push-backs by time t — # take-offs by time ¢ (5.1)

Unfortunately, N(t) cannot be calculated directly in this way from the ETMS data. Recall
from Chapter 3 that 56% of departures are unmatched flights without known push-back
times. Push-back times are known for the 44% of flights which did match between two
crucial databases. Section 5.2.1 below describes procedures to estimate N(t) using the
available data from all flights. The procedures themselves are rather technical and are not
of great methodological interest, but the resulting estimates of N(t) will be important for
motivating and testing the aggregate flow models. In section 5.2.2 we use these ETMS
estimates of N(t) to examine empirically the relationship between congestion and take-off

rates. Patterns in these data will motivate the flow models.

5.2.1 Inferring the Number Rolling Out from Available Data

For the 56% of flights which are unmatched, push-back times are not included in the data
set, but scheduled departure times and actual take-off times are known. Two methods are
proposed for assigning push-back times to unmatched flights. The first calculates forward
from the flight’s scheduled departure time by adding an average gate departure delay which
is calculated from the matched flights. The second calculates backwards from the flight's
actual take-off time by subtracting an average roll-out time.

For the first method, let SCH(i) be unmatched flight i's scheduled departure time,
according to the filed flight plan. Let g(SCH(i)) be the average gate departure delay of
matched flights with scheduled departure times within a ten-minute window around SCH(i).
The first estimated push-back time is PB1(i) = SCH(i) + g(SCH(i)) (see figure 5-1).

The second method calculates push-back time by subtracting a roll-out time from flight
t's actual take-off time, TO(ij. Let #(TO(i)) be the average roll-out time for matched flights
with take-off times within a ten-minute window around TO(i). The second estimated push-
back time is PB2(i) = TO(i) - #(TO(i)).

Given either PB1 or PB2, the number rolling out, (N(t)), can be calculated from known

take-off times TO(i) and estimated push-back times using equation 5.1. Figure 5-2 shows
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Figure 5-1: Push-back time of unmatched flight i estimated from the scheduled departure
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Figure 5-2: Estimates of the number of aircraft rolling out (N(t)) on August 18, 1991
using push-backs estimated by adding gate delay to the scheduled departure (PB1(i)) and

subtracting roll-out time from observed take-off (PB2(i))
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Figure 5-3: Hourly average of N(t), the estimated number of aircraft rolling out. Averages
are taken over a 27-day sample from March and August, 1991.

estimates of N(t) on August 18, 1991.!) The number of roll-outs calculated from the two
methods sometimes grows far apart in IFR or LIFR. This may be explained by the effect
of poor weather on general aviation and commuter flights, which make up the bulk of the
unmatched data. In the worst conditions, these flights tend to suffer longer delays than
flights operated by the large carriers. If these delays cause an unmatched flight i to have a
long ground transit time, then PB1(i) will fall relatively early in the flight's GTT, and the
flight is assumed to have a lengthy roll-out time. This flight will be included in the count
for N(t) over many periods. On the other hand PB2(i) will place the push-back later in
the ground transit time, under the assumption that a bulk of the long delay was taken at
the gate. This removes the aircraft from the airfield, and from the count of N(t), during
the long estimated time at the gate. The most extreme example from our data set occurred
on August 20, 1991, the day after the hurricane passed New England. At one point, the
value of N(t) calculated from PB1(i) was 25 while the value calculated from PB2(i) was
5. The PB1 push-back estimates placed 20 more aircraft in the roll-out stage; PB2 placed

these aircraft at the gate. Averaged over our 27 day sample, however, the absolute value

!By the evening of August 18, Hurricane Bob had reached North Carolina. Figure 5-2 displays unusually
large values of N(t). For example, compare it with Figure 5-3.
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of the difference between these two N (t) estimates is only 0.5 aircraft. This is encouraging,
for the values of N(t) calculated from PB1 and PB2 are rough upper and lower bounds on
the number of aircraft rolling out. On average, either estimate should be close to the true
value.

There are many alternatives to PB1 and PB2, such as a weighted average of the two or a
probabilistic model for each push-back. However, we have made the reasonable decision to
adopt PB2(i) as the push-back time of each unmatched flights. Roll-out times of matched
flights should be good estimates of roll-out times of unmatched flights, for both groups face
similar conditions on the airfield. In addition, gate departure delays have a higher variance
and a much lower correlation between flights, making PB1 unreliable. In fact, the scheduled
departure times SCH(i) used to calculate PB1 have different interpretations for different
types of flights. The scheduled departure time in a filed flight plan of an executive jet is
often a preoposed take-off time and not a scheduled push-back time. Adding the average
carrier gate departure delay to the proposed take-off time of these flights makes little sense.
Push-back estimates PB2, on the other hand, depend only on the relatively reliable take-off
times. Therefore, for the remainder of this thesis, the quantity ‘N(t)’ will represent the
estimate of the number rolling out calculated from push-back times PB2.

In our sample, we find that the minimum value of N (t) was zero (i.e. at 5 A.M. on most
days), while the maximum number was 33 (during the evening of August 18, as shown in
Figure 5-2). The hourly average values of N(t) at Logan are shown in Figure 5-3, along
with the range from the first quartile to the third quartile. Note the distinct morning and
evening peaks, attributable to the increase in take-off demand during these periods. In the

next section we will investigate how departure rate varies with N(t).

5.2.2 Observed Relationship Between Airfield Congestion and Take-off
Rates

Onc would expect that during periods when N(t) is small, there would be fewer take-offs.
As N(t) rises and departure demand increases, the observed number of take-offs should rise
until take-off capacity is reached. Here we examine empirically the relationship between
N(t) and the take-off rate.

To produce estimates of take-off rates, we divide each day into ten-minute periods. Let
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Figure 5-4: Estimated number of aircraft rolling out (N(t)) at the beginning of ten minute
periods and the number of observed take-offs (D(t)) during each period.

t be the time period’s index, and let

N(t) = # of aircraft rolling out at beginning of period ¢ (5.2)
D(t) = # of take-offs during time period ¢. (5.3)
B(t) = # of push-backs during time period ¢

Note that N(t + 1) can be calculated from the recursive ‘conservation of aircraft’ equation:
N(t+1) = N(t)- D(t)+ B(t) (5.4)

Figure 5-4 shows estimated values of N(t) and observed take-off counts D(t) from 8:00
am to noon on August 27, 1991. The largest rise in N(t), at 8:40, was caused by sixteen
push-backs dur:ng the preceding ten-minute period. The observed number of take-offs rises
with N(t), and seems to have an upper limit around 8 — 10 aircraft per ten minute period
(a rate of 48 — 60 aircraft/hour). It is possible for D(t) to exceed N(t), for aircraft may
push-back and take-off within a single ten minute period, although this does not happen
during any of the periods in Figure 5-4.
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Figure 5-5: Observed number of take-offs during each period (D(t))) rises with the estimated
number of aircraft rolling out at the beginning of each time period (N(t)). An ‘*’ indicates
the mean number of take-offs while the vertical bar is the range from the first to the third
quartile.
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Values of B(t), D(t), and N(t) were calculated for 3,105 ten-minute periods over the
27 days in our data set. Figure 5-5 displays the mean number of take-ofts D(t) per period
for each value of N{t). The vertical bars describe the range from the first to the third
quartile. The mean take-off rate rises with N(t) and levels off between seven and eight
aircraft per ten-minute period. This upper plateau might be used as a rough estimate for
take-off capacity, but it is important to remember that Figure 5-5 was generated from data
over a time period which exhibited a wide variety of weather and runway conditions. The
interquartile ranges shown in the figure demonstrate how variable capacity may be. The
distance between the first and third quartiles of take-off counts during the ten-minute period
is as large as five aircraft. Some of this variation may be caused by random fluctuations
around the capacity, and some by changes in the capacity itself. The shape of Figure 5-5

motivates the following models of aircraft flow.

5.3 Deterministic Models for Departures

The relationship between airfield congestion and take-off rates displayed in Figure 5-5 is
not surprising when one considers the dynamics of the departure process. Most of the N(t)
aircraft are moving towards the departure runway, and during each ten-minute period some
proportion of them join the departure queue or are able to take-off. These observations are
the basis of the following two deterministic models for departures. Each model is specified by
three sets of equations: system equations which describe the underlying dynamics, forecast
equations which generate forecasts based on these dynamics, and update equations which

correct estimates of N(t), given observed data.

5.3.1 One-stage Deterministic Model

At major airports, departing aircraft push-back from gates and taxi to one of a few possible
departure runways. At times, there may be more than one active departure runway. How-
ever, in this model we will consider all active runways to be a single ‘server’ with a capacity
equal to the take-off capacity of all active runways. This is likely to be a reasonable approx-
imation fer Logan, where there is usually one primary departure runway and operations
on runways often interact. This approximation may not be reasonable for an airport with

more than cne independent, major departure runway, such as Atlanta Hartsfield or Denver
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international.

During a T-minute time period, the number of aircraft that enter the system is equal
to the number of push-backs, B(t). After push-back, each aircraft begins its roll-out to the
deparcure runway. The one-stage deterministic model assumes that if the aircraft is allowed
to proceed unobstructed, it will reach the departure runway R minutes after push-back.
However, rather than keeping track of individual aircraft, the model assumes that taxiing
aircraft are distributed uniformly along their R-minute taxi-times. If there are N (t) aircraft
taxiing at time ¢, then all N(#) aircraft will have reached the departure runway R minutes
later. Accordine to the model, the number that reach the departure runway in time T is
(T/R)N(t) for 1 - R. Note that this is the expected value of the number which reach
the runway in time T under the assuinption that all N(t) aircraft are distributed uniformly
along the taxiway. This can also be viewed as a ‘fluid’ model. where each aircraft flows
from gate to runway at a rate 1/R aircraft per minute. If only one aircraft is taxiing. a
fractional aircraft, T/R, reaches the runway during T minutes.

The model also assumes that the departure runway has a finite capacity of u(t) air-
craft/minute. The runway may not be able to fulfill demand for take-offs when (T/R)N(t) >
Tu(t). Therefore, the number of departures during period ¢. D(t), is the minimum of the de-
mand from aircraft rolling out and the capacity. The following difference equation describes
this system:

System Equation

N(t+1) N(t) - D(t) + B(t) (5.5)

D(t)

min[—;-N(t).Tu(t)] (5.6)

where the definitions of N(t). D(t) and B(t) can be found above in (5.2).

The foliowing example demonstrates the evolution of N ( t) under the one-stage model.

EXAMPLE: Let the average roll-out time R = 15 min.. the period length T = 10 min..
and the capacity Tu(t) = 8 aircraft per ten-minute period for all t. Table 5.1 and Figure 5-6
describe a simple example of the evolution of this one-stage model in which push-backs only occur
during the first two periods: B(1) = 9, B(2) = 18. and B(t) = 0 for t > 2. We begin with an

empty airfield (N(1) = 0). During the first period. 9 aircraft push-back. but since there were no
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t | Nt) D(t) B(t)
11 0 0 9
2] 9 6 18
3|l 21 8 0
4/ 13 8 0
5] 5 33 o0
6] 17 11 0
71 06 04 O
8/ 02 01 0

Table 5.1: Example of the one-stage model with T/R = 2/3 and p(t) = 8 aircraft per
period.

aircraft rolling out at the beginning of the period. there are no take-offs. During the second period.
(T/R)N(2) = (2/3)(9) = 6. so that six of the nine rolling aircraft reach the departure runway
and take off. Meanwhile, 18 more aircraft push back. By the start of period 3, N(t) = 21 and
(2/3)(21) = 14 aircraft arriv- to the departure runway for take-off. so that demand exceeds capacity.
The maximum of eight aircraft depart. and the 13 remaining aircraft are left uniformly distributed
along the taxiway. In period 5 the system is no longer saturated. and (2/3;5 = 3.3 aircraft take-off.
N(t) continues to decrease for the remaining periods. In Figure 5-6, D(t) reaches a plateau at u(t)

during periods 3 and 4 and is proportional to N'(t) during the remaining periods.

The system equations describe the dynamics of the model. but our goal is to forecast
values of N(t). While we may be able to predict B(t) with some accuracy. take-off rates

D(t) are not known in advance. We introduce some additional notation for these forecasts:

N(t]t) = estimated number of aircraft rolling out at start of time period ¢,
given all information available at the beginning of time period ¢

N(t+1|t) estimated number of aircraft rolling out at start of time period t + 1,

given all information available at the beginning of time period ¢

For our purposes, “all information available at the beginning of time period t” includes al!
observed push-backs and take-offs up to, but not including, those that occur during period
t. The quantities D(t|t). D(t + 1|t). B(t|t), and E(t + 1|t) are defined in a similar way. For

now, assume that the estimates of take-off capacity. i(t|t). are determined in advance from
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Figure 5-6: Example of the departure system according to the one-stage and two-stage

models. The two differ slightly after period 4, when the departure queue in the two-stage
model delivers a few more aircraft for take-off than the one-stage model.
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t | N(t) D(t) B() | N@lt)y D@t) B(tlt) | N(t+1jt)
1] 0 0 9 0 0 9 9
21 9 3 1§ 9 6 i8 21
3] 24 9 0 24 8 0 16
4115 9 0 15 8 0 7
5/ 6 5 0 6 4 0 2
6| 1 1 0 1 z 0 3
71 0 0 0 0 0 0 0

Table 5.2: Updated estimates and one-period forecasts using the one-stage model.

the predicted runway configuration and weather conditions. In the next section we will
consider methods for estimating u(t) from the real-time data. At first, we will also assume
that predictions of push-back counts, B(t+1]t). are always correct (i.e. B(t+1]t) = B(t+1)).
The fo:recast equation is derived directly from the system equation:
Forecast Equation

N+ 1)t) N(t|t) — D(t|t) + B(t|t)

D(tt) = min[%N(ﬂt), T(tt)] (5.7)

The forecast for each period is determined by assuming a deterministic flow from the pre-
vious period, just as we did at each step in Table 5.1. These are one-step forecasts (10
minutes in advance). Additional forecasts are calculated recursively.

Finally, the update equation incorporates the most recent observations about push-backs
and take-offs into the estirnate of N(t). The update equation for this model is rather obvious:
the current best estimate of N(t) is N(t) itseli.

Update Equation

N(tlt) = N(t)

= N(t-1t-1)-D(t-1)+B(t-1) (5.8)
Now consider a variation of the simple example introduced above.

EXAMPLE: Table 5.2 shows the one-step forecasts and updated estimates for the simple de-

mand profile introduced earlicr. In this example, the actual take-off counts D(t) differ from those that
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are predicted by the one-stage flow model. The model predicts 6 take-offs during the second period
(D(Q\‘Z) = 6) while only three actually depart during the period. Since N(2) = 9 and there will be 18
push-backs during the second period, the model predicts that there will be N(3/2) =9 -6+ 18 = 21
aircraft rolling out at the beginning of the third period. By the beginning of the third period, how-
ever, the system has observed that the actual number of departures during the second period was
3, so that the updated estimate of N(t) is set to the correct value: N(3|3) = N (3) = 24. This cycle

of one-step predictions and corrections continues until there are no aircraft left on the field.

One of the fundamemal assumptions of the one-stage model is that aircraft are dis-
tributed uniformly along their R-minute “taxi trajectory.” When the airport is saturated,
however, a departure queue may build near the departure runway. The following extension

to the model captures this effect.

5.3.2 Two-stage Deterministic Model

The two-stage model also describes departing aircraft with a fluid approximation. but allows
aircraft to accumulate in a departure queue when the system is saturated. As in the one-
stage model, the rate of flow to the departure queve is proportional to the number of
aircraft rolling out. Aircraft which reach the departure queue are served at a rate p( t)
aircraft/minute. If aircraft flow to the departure runway at a rate higher than u(t). a queue
builds in front of the departure runway. One sample trajectory of this system is shown in
figure 5-7. The figure displays the cumulative number of push-backs. aircraft that reach the
departure queue, and take-offs. Now there are two state variables to keep track of: X (t).
the number of aircraft taxiing out and Q(t). the number of aircraft in the departure queue.
Their sum is the total number of aircraft rolling out: N(t) = X(t) + Q(t). By time ¢ in the
figure, the take-off rate has fallen below demand to the runway. and a departure queue of
size Q(t) has developed.

Again, all aircraft flow from the gate to the departure queue in a constant taxi time, R.
Note that R is not the roll-out time of the aircraft, for roll-out time includes time spent in
the departure queue as well as on the taxiway. Actual roll-out time is at least. and usually
greater, than R. The uniformity assumption that was applied to N(t) in the one-stage
model is assumed for the X (t) taxiing aircraft in the two-stage model. Given X ( t) aircraft

on the taxiway. then the number of aircraft that reach the departure queue in time T is
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Figure 5-7: Two-stage deterministic departure process model with taxi-out time R. X(t)

Time

taxiing aircraft. and @Q(t) aircraft in the departure queue

(T/R)X(t) if T < R. These aircraft are added to the departure queue. which acts as a
buffer for unserved aircraft. The departure demand during each time period is the sum of

the queue size at the beginning of the period. Q(t). and the aircraft flowing to the queue

during the period. (T/R)X(t).

The two-stage model is specified by the following system equations:

where

X(t)-Y(t)+ B(t)

Q(t)+Y(t)— D(t)
T
FX(t)

min[Q(t) + Y(t). Tu(t)]

number of aircraft taxiing at start of time period t

number of aircraft in departure queue at start of time period t

number of aircraft moving from taxi to the departure queuv

during time period t

number of aircraft pushing back during time period ¢
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| X(t) Q(t) N(t) Y{t) D(t) B(t)
0 0 0 0 0 9
\ 9 0 9 6 6 18
21 0 21 14 8
7 6 13 4.7 8

0
0
23 27 5 1.5 4.2 0
08 05 05 0
0
0

o
oo
©

0.3 0 03 02 02
0.1 0 01 01 01

0 N oW N T

Table 5.3: Evolution of the two-stage model with T/R = 2/3 and u(t) = 8 aircraft per
period.

D(t) = number of take-offs during time period t

The quantity Y (t) is the number of aircraft which reach the departure runway during time
period t, Q(t) + Y'(t) is the total number of aircraft available for take-off during period
t, and min[Q(t) + Y (t), Tu(t)] is the number of take-offs seen during the period. Finally,
N(t) = X(t) + Q(t) is the total number of aircraft rolling out at the beginning of time

period t.

EXAMPLE: Tsble 5.3 and the bottom plot of Figure 5-6 show the evolution of the two-stage
model, given the simple push-back schedule with B(1) = 9 and B(2) = 18. In the first and second
periods, the system is not saturated, and all aircraft moving from the taxiways to the departure
runway are able to take off immediately. At the stert of the third period there are 21 aircraft
on the taxiway, and (2/3)21 = 14 available for take-off. The system is saturated and only allows
eight aircraft to depart, so the remaining six enter the departure queue. Therefore, X(4) = 7 and
Q(4) = 6. During the fourth period the system is again saturated. All six aircraft in the queue
take off, but not all aircraft moving from the taxiway to the departure queue can depart. That is,
Y (4) = 14/3 but only 2 of these depart so Q(5) = 8/3.

In terms of the number of aircraft on the airfield, N(t) the evolution of the one-stage and two-
stege models is identical until the fifth period, when the twc-stage model has 4.2 take-offs while the
one-stage model has 3.3. The small difference is due to the immediate availability of all aircraft
in the departure queue of the two-stage model. In the one-stage model, these aircraft are assumed
to be on the taxiway and only 2/3 of the aircraft are available for take-off. In fact, the difference

between D(5) in the two models is exactly one-third of the departure queue.
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As in the one-stage model, the forecast equations mirror the system equations:

X(t+1jt) = X(t|t) - Y(t|t) + B(t]t) (5.10)
Q(tlt) = Q(tlt) + Y (:]t) — Ditle)
. T -
Yy = Xt
D(t|t) = min[Q(t|t) + Y (t]t). Ta(t]t)] (5.11)

However. the update equations of the two-stage model are a bit more complex than those
of the one-stage model. Given X(t-1jt—1)and Q(t — 1|t - 1). and after having observed
B(t — 1) and D(t — 1). we wish to find new estimates X(t|t) and Q(tjt). It would seem to
make sense to add B(t — 1) to X(t — 1jt — 1) and subtract D(t — 1) from Qit—1jt—1)
in order to add push-backs to the count of taxiing aircraft and subtract take-offs from tke
departure queue. However. the number of observed take-offs is ofter larger than Q(t). and
some proportion of take-offs must also flow directly from the taxiway during the ten minute
period.

Our solution is to use the number of observed take-offs in the previous period D(t — 1)
to find Y (t — 1jt). an estimate of the number of aircraft that moved from the taxiway to
the runway during the previous period. At a minimuvm. Yit—1t) = }-T{X(t —1it—1). as
prescribed by the assumption that taxiing aircraft are spread uniformly along the taxiway.
If the observed number of takeoffs D(t — 1) is less than the number expected. the remaining
aircraft are assumed to remain in the departure queue. If the number of observed take-offs
exceeds the total number of aircraft which were expected to have reached the departure
queue by the end of the period. then Y(t — 1jt) is adjusted to include the excess. This

motivates the following update equations:

Y(t—-1t) = max[%f((t—ln-l).z)(t-1)—Q(z-1|t-1)] (5.12)
X(tt) = X(t-1t-1)-Y(t-1)+B(t-1) (5.13)

Qitlt) = Qt—-1t-1)+Y(t—1)-D(t-1)
N@lt) = X(tit)+ Q(tjt)
where

Y(t - 1|t) = estimated number of aircraft which flow from the taxiway

91



t | N(t) D(t) B(t)|Y({t-1jt) X(tjt) Q(tit) N(tit) D(tlt) | N(t+1)t)
1| 0 0 9 0 0 0 0 0 9
2| 9 3 18 0 9 0 9 6 21
3] 24 9 0 6 21 3 24 8 16
41 15 9 0 14 7 8 15 8 7
5| 6 5 0 4.6 2.3 3.6 6 5.2 0.8
6| 1 1 0 1.6 08 02 1 0.7 0.3
71 0 0 0 0.8 0 0 0 0 0
8| 0 0 0 0 0 0 0 0 0

Table 5.4: Updated estimates and one-period forecasts using the two-stage model.

to the departure queue during time period t — 1
B(t —1) = number of push-backs during time period t — 1

D{t —1) = number of take-offs during time period t — 1

The updating equations represent simple ‘bookkeeping’ to make sure that the sum of the es-
timated number of aircraft in queue. Q(t|t). and aircraft taxiing. X (t|t). equals the observed

number on the field. N(¢).

EXAMPLE: Table 5.4 shows these updates and forecasts for our simple example. The nine
push-backs during period 1 immediately enter the taxiway, so X(2/2) = 9. Of these. the model
predicts that § will leave the taxiway, pass through the departure queue, and take-off during the
second period. However. the actual number of departures during the second period is 3. 3 less than
expected. and the remaining three aircraft are placed in the departure queue (Q(3!3) = 3). During
period 2, 18 push-backs occur. so that X (3!3) = X(2]2) — 6 + 18 = 21. These movements from
taxiway to dvparture queue to take-off continues during periods 4 - 6. In each of these periods,
Y(t-1)t) = (T/R)X(t - 1|t - 1), since the observed number of departures never exceeds the number
of take-offs predicted by the model. However, during period 6 the final aircraft departs, and the
update in period 7 sets Y (6|7) = D(6) — Q(6/6) = 0.8 in order to ‘pull’ the remaining air. raft from

the taxiway and clear the airfield.

It is useful to compare the estimates of the one-stage model in the example summarized
by Table 5.2 with the two-stage model in Table 5.4. For both models. N(t|t) = N(t) for

all t. However, the two-stage model separates aircraft into two states, allowing aircraft to
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flow from the taxiway into a buffer when the system in saturated. The examples above
suggest that the aggregate behaviors of the two models are similar. Large differences only
appear under a specific combination of circumstances: when there is a sudden shift from an
extremely low to an extremely high capacity and the aircraft flow rate T/ R is very small.

so that the system can make full use of the departure queue buffer of the two-stage model.

5.4 Estimates of Capacity

In the preceding descriptions of the deterministic flow models. an important issue has been
ignored. How does one determine the take-off capacity. u(t)? This section presents four
procedures for estimating u(t). The first is based on the FAA's capacity standards while the
second and third use observed take-off counts to repeatedly adjust the capacity estimates.
The final method is motivated by the functional relationship between congestion and take-off

rates in Figure 5-5.

(i) Engineering Performance Standards

For both the one-stage and two-stage models. let ji(t|t) be the Engineering Performance
Standard (EPS) for the runway configuration during period t. the weather category during
period t. and a 50%/50% arrival/departure mix. This assumption of a balance between
arrivals and departures will frequently be violated in practice. However the EPS numbers

do establish a baseline against which to compare the following threc capacity estimates.

(ii) Real-time capacity estimates by exponential smoothing

In the one-stage model. if the take-off demand. (T'/ R)N(t). exceeds the current estimate
of capacity during the period. Tj(t|t). then we consider the system to be saturated. When
saturation occurs. let the latest observed take-off count D(t — 1) be included in a smoothed
average which serves as an estimate of the true capacity. In the following update equation

for the one-stage model, the smoothing parameter is a, 0 < a < 1:

if (%N(t ~1)> Talt -1t - 1))

D(t-1)

atlty =ap(t -1t -1)+ (1 -a) T (5.14)

else

93



# take—-ofts during 10 min. period (D(t))

-~ = fitted cumulative exponential capacity
-.- = piecewise linear capacity

i l

0] 5 10 15 20 25
estimated number rolling out at beginning of period (N(t))

Figure 5-&: Estimated number rolling out (N(t)) and observed number of take-offs during
each period (D(t)). along with fitted piecewise linear and cumulative exponential capacity
estimates.

altit)y=p(t-1t-1) (5.15)

The update equation for the two-stage model is almost identical. with a small change in
the “if* statement that tests for saturation. Replace the quantity (T/R)N(t — 1) with
(T/R)X(t) + Q(t).

With this capacity function. we are assuming that the functional relationship between
N(t) and D(t) is piecewise linear, with a plateau at Tj(t|t). The relationship is shown by the
dotted line in Figure 5-8 with T/i(t|t) = 7. As can be seen in the figure, the "capacity’ is often
exceeded. which is not surprising. given Newell's point that observed rates may fluctuate
around a long-term, sustainable capacity. The purpose of the exponential smoother is to

separate temporary fluctuations from longer-term changes in capacity.

(iii) Real-time capacity estimates by Kalman Filtering

Another method for smoothing over recent take-off rates is by iteratively fitting a dy-
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namic linear model (DLM) for u(t) with the real-time data. While the DLM itself is an
unlikely description of the evolution of u(t) capacity over time, the model provides a frame-
work for deriving capacity updating equations with many useful properties. The DLM
describes the evolution of u(t) as a stochastic process, where the current capacity level is a
linear function of the level in the previous period. Uncertainty about the current level of

u(t) is introduced by adding a random shock:
ult+1) = plt)+w(t) (5.16)

When the system is saturated, the observed take-of count is proportional to the true capac-

ity, plus some added noise:
D(t) = Tupult)+v(t) (5.17)

In the simplest case, both w(t) and v(t) are uncorrelated zero-mean white noise processes
with constant variances W and V. respectively.

The minin m mean squared error estimates of u(t), given take-off counts (D(1). D{2).
.... D(t)), can be calculated from a well-known set of equations. the Kalman Filter. When

the system is saturated, the filter updating equations are:

if (%N(t) > T,z(qt)) |
Atlt) = @t -1t — 1)+ G(t) [D(t) - Ti(t = 1{t = 1)) (5.18)

P{t) = P(t-1)-G(t)’Q(t) (5.19)
where

Qt) = THPt-1)+W)+V
G(t) = T(P(t-1)+W)/Q(t).

The quantity P(t) is the variance of our latest estimate of p(t). The term G(t) is often
referred to as the Kalman gain. This term governs the rate of adaption of the estimate to
new data. As G(t) grows, recent observations are given more weight. The quantity 1 —a
plays a similar role in tiie exponential smoother.

When the system is not saturated, we do not obtain any information that would lead




us to revise our capacity estimates, and fi(t|t) is not changed:

if (%N(t) < T,z(tgt))
ptlt)y = ple-1t-1) (5.20)
P(t) = P(t—1)+W. (5.21)

If the system were always saturated, G(t) approaches a constant as t increases. The
limiting form of the Kalman Filter is equivalent to equation 5.14 with 1 — « replaced by the
constant gain G, which is a function of the variances of the white noise processes ([41], p.

89):

¢ = Mg
TW —
= 7 V1+@V)/(WT?) — 1 | (5.22)

Note that as the observation variance V grows larger, the gain grows smaller and recent
observations are given less weight. As the system variance W grows larger, the gain and
the rate of adaption to new data grow as well. With W large, capacity varies widely over
time and we would want the most recent observations to carry more weight.

In our application, however, there are periods of non-saturation, and during these pe-
riods both the variance P(t) and the gain G(t) grow. This natural ‘softening’ of the esti-
mate over unsaturated periods is one potential advantage of the filter over the exponential
smoother. In addition, the filter allows us to distinguish between take-off variation due to
random fluctuations (represented in the equations by v(t) with variance V') and capacity
variation due to more gradual changes in capacity (represented by w(t) with variance W).
The Kalman Filter may also be adapted to a more general model, in which the perturba-
tions w(t) and v(t) are serially correlated or correlated with each other. This would reflect
the behavior of airport capacity, which moves up and down over time according to changing

weather conditions.

(iv) Cumulative Ezponential Capacity Estimates
Despite its relative complexity, the Kalman fiiter assumes the same piecewise linear

relationship between demand and capacity as the EPS and exponentially smoothed esti-
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mates. The empirical relationship between N (t) and D(t) exhibited in Figure 5-8 suggests
a smoother relationship than the piccewise linear function allows. There is no clear transi-
tion between free-flow and saturaticn, and D(t) is highest at the highest levels of N(t). A

function which traces a curve similar to that of the figure is:
ANE®) = pmaz (1= €M) (5.23)

where pmer and M\ are parameters of the function. The function has an asymptote at
pmaez and the rate of increase is determined by A. The function is a scaled cumulative
distribution function for an exponential random variable, and we will refer to this as the
cumulative exponential capacity estimate.

We performed a grid search to find the parameter values for d(N(t)) that minimize the
sum of squared residuals between d(N(t)) and the observed take-offs. We found the values

of ptmar and X that solved the following problem:

Hmaxzx,

minAZ [D(t) — d(N(t))]? (5.24)
t

The optimal parameter values are pimqr = 9.0 and A = 9.2 and the curve generated by these
values is displayed in Figure 5-8.

To this static model of the relationship between demand and departure rates we add a
dynamic term, K (t|t), which adjusts the curve up or down, depending on the most recent

observations of the take-off rate. Given a value of N(i), our expected take-off count is:
D(tlt) = d(N(t))+ K(t|t) (5.25)

The adjustment K (t|t) is updated by smoothing over the residuals of the cumulative expo-

nential capacity estimate:
K(tt) = K(t—-1t—1)+a'[D(t—1)—d(N(t —1))] (5.26)

The cumulative exponential capacity estimate is a significant change from the one-stage
and two-sta ze mod-ls. We have dispensed with the piecewise linear departure predictions,

which were justified by the assumption that aircraft are spread uniformly along the taxi-way.
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Instead, we assume a relationship between demand and take-off rates which is described
by the cumulative exponential function but is not justified by any physical model of the
departure system. In fact, for certain values of K (t|t), it is possible to predict a D(t|t) which
is less than zero. However, the function provides a good fit to the data. In the next section
we will investigate how well these capacity estimation procedures predict actual departure

rates and airfield congestion.

5.5 Empirical Tests of Departure Flow Models

The models described in the previous sections were implemented to test their forecast
accuracy. Forecasts of N(t), the number of aircraft rolling out at time ¢, were generated
from both the one-stage and two-stage models using each of the four capacity estimation
procedures. Data to test the models were generated from the sequences B(t) and D(t).
These sequences were calculated by counting the number of push-backs and take-offs during
3,105 ten-minute periods in March and August, 1991. Since push-back times were not
known for all flights, the B(t) and N(t) were estimated using the procedure described in
Section 5.2. The values of N (t) are not the actual number rolling out, for they are calculated
from inaccurate information about aircraft push-backs and take-offs. When calculating
forecast errors, we will be comparing the estimaie N(t) with a forecast of that estimate.
However, in Section 5.2 we saw that these values of N(t) are a rough lower bound on the
actual number rolling out, while a rough upper bound was, on average, within 0.5 aircraft
of this lower bound. Therefore, we are confident that N(t) is close to the actual number
rolling out. Even when the values of N(t) are not precise, these experiments should prove
useful for comparing the relative merits of the forecasting procedures.

As an example, Figure 5-4 displays the levels of N(t) and D(t) during the morning of
August 27, 1991. Figure 5-9 displays the values of N(t) over the entire day. The Figure
also shows the 30-minute forecasts of N(t) produced by the one-stage flow model using
exponentially smoothed capacity estimates. Each forecast, N (t + 3|t), was produced by
recursively evaluating the forecast equation 5.7, which simply adds expected push-backs to
N(t) and subtracts expected take-offs. The forecasts remain fairly close to the observed
values in the morning, but deviate by as much as eight aircraft in the afternoon. When

averaged over all 27 days (3, 105 ten-minute periods), the forecast residuals N(t+3)— N(t+
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Figure 5-9: Estimated number of aircraft rolling out (N(t)) and predicted number rolling
out at Logan Airport during August 27, 1991. Predictions were generated by the one-stage
flow model using exponential smoothing to estimate capacity.

3|t) can be used to estimate the forecast accuracy of the model.

While Figure 5-9 only shows 30-minute forecasts, we calculated forecasts over horizons
ranging from k = 1 (ten-minute forecasts) to k = 6 (one-hour forecasts). Forecast accuracy
for each model over each forecast horizon will be summarized with four statistics. The first

two are the mean forecast error and root-mean squared forecast error (RMSE):

NIFIN(t+ k) = N(t + k|t)]
N-k

_JZE N+ k) = Nt + kD)2
RMSE J e T

mean forecast error =

However, these averages may not accurately reflect the effectiveness of the algorithms.
The simple mean gives the same weight to forecasts for time periods with little or no

departure activity (i.e. 5:30 a.m.) as it does to forecasts for peak departure periods. A
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more representative statistic is the mean error seen by aircraft on push-back. A close
approximation to this is a weighted mean forecast error in which the weight assigned to

each error is the number of push-backs during the surrounding ten-minute period:

weighted mean forecast error

Y NIEB(t+k)[N(t+ k) — N(t + k|t)]

- S F B (5.28)
weighted RMSE
SN BU RN+ k) — Nt + K[)]?
- ad (5.29)
i1 B(t+k)

These statistics will be used to compare the one-stage and two-stage models, as well as the
four methods for estimating take-off capacity.

Two more important modeling simplifications should be mentioned before the results of
empirical tests are presented. First, we use the same push-back times to calculate the ‘real’
N(t) and to generate forecasts, so that B(t + k|t) = B(t + k) for all t and k. This implies
that forecast errors for N(k) are due solely to errors in predictions of take-off rates over the
periods in the forecast horizon:

N-k
N(t+k)-Nt+klt) = Y [b(t +1|t) - D(t + z)] (5.30)
1=0
In other words, since there are no errors in push-back forecasts, the k-step forecast error of
N(t) is an accumulation of errors in individual take-off rate forecasts over k periods. The
assumption of perfect push-back forecasts may exaggerate the accuracy of these models.
This assumption will be relaxed, and its effects explored, in Section 5.5.3.

The second simplification concerns the value of the model parameter, R, the taxi-time
of each aircraft. For both the one-stage and two-stage models, the value of the R is set to a
constant 15 min. Of course, one wonders whether forecast accuracy is sensitive to the value

of R, and the effect of changes to R will also be tested in section 5.5.3.

5.5.1 Comparison Between One-Stage and Two-Stage Models

Empirical tests with the Logan Airport data indicate that the one-stage and two-stage
models produce almost identical predictions of N(t). For example, using EPS capacity esti-

mates, the mean absolute deviation in one-hour forecasts between the two models averages
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forecast horizon (min.)
Error Statistic Capacity Estimate | 10 20 30 40 50 60
Mean EPS 00 01 01 01 01 01
SMOOTH 00 00 00 00 006 00
KALMAN 00 00 00 0.0 00 00
CUMEXP 00 00 00 00 00 0.1
RMSE EPS 1.6 21 25 29 32 34
SMOOTH 14 1.8 21 23 24 26
KALMAN 14 18 20 22 24 25
CUMEXP 1.4 1.7 19 20 21 22
Weighted Mean | EPS 02 03 03 04 03 03
SMOOTH 00 00 01 01 01 01
KALMAN 00 00 01 01 01 01
CUMEXP 00 01 01 01 02 02
Weighted RMSE | EPS 1.8 25 31 35 39 43
SMOOTH 1.6 21 24 27 29 3.1
KALMAN 1.6 20 24 26 28 3.0
CUMEXP 1.5 19 21 23 24 25

Table 5.5: Forecast error statistics of the one-stage model for predictions of N(t), evalu-
ated with EPS capacity estimates, exponentially smoothing (SMOOTH), Kalman Filtering
(KALMAN) and the cumulative exponential capacity estimates (CUMEXP). Error statis-
tics for the two-stage model were virtually identical.

0.05 aircraft, and has a maximum value of 2.4 aircraft. The mean one-hour forecast error
for both models is 0.1 min., and the RMSE for one-hour forecasts of both models is 3.4 min.
The rows labeled ‘EPS’ in Table 5.5 display the mean and weighted mean errors for the
one-stage model over six forecast horizons using EPS capacity estimates. These aggregate
statistics, as well as those produced by the other capacity estimation procedures, were all
within 0.1 min. of the error statistics collected for the two-stage model.

Based on the available information, it is impossible to say whether the one-stage or
two-stage model is a more accurate description of the dynamics of the departure process.
Information about the distribution of aircraft along the taxiways would distinguish them.
The one-stage model assumes that aircraft rolling out are distributed uniformly along the
taxiway. In the two-stage model, aircraft which find a saturated system are held in a depar-
ture queue and may be served as soon as the departure runway is available. Observations
of Logan Airport indicate that the truth is somewhere between these extremes. When de-

mand for departure runways exceeds capacity, aircraft do tend to collect in a queue near
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Figure 5-10: Root mean squared forecast errors (RMSE) for four methods of estimating
take-off capacity.
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the departure runway. However, at these times many aircraft may be delayed on the ramps
near the gates or at intersections between taxiways and runways. Given a departure queue
at push-back, pilots may see no reason to ‘hurry up and wait’ and therefore may taxi more
slowly. Since we are interested in predicting N(t), and the two models have almost identical

predictive power, we will adopt the simpler one-stage model for all subsequent testing.

5.5.2 Comparisons Among Capacity Estimation Procedures

Using the one-stage model, we compare our four methods for estimating take-off capacity:
the Engineering Performance Standards (EPS), the real-time estimates from the exponential
smoother (SNIOOTH), the estimates from the Kalman Filter (KALMAN) and the estimates
produced by the cumulative exponential capacity estimate (CUMEXP).

Each of the last three capacity estimation procedures require the setting of parameters
which govern the sensitivity of the estimate to the most recent observations. A numerical
search found that 0.9 is the optimal value of o in the exponential smoother. That is, after
observing D(t) in a saturated system, the next capacity estimate gives 10% of its weight
to this observation and 90% to the previous capacity estimate. Optimal values of the
Kalman Filter parameters were also determined by numerical search. The values used were
var(w(t)) = W = 0.05 and var(v(t)) = V = 3 for all t. This implies that the variance of the
actual take-off counts around the ‘true’ capacity in the model is 3 aircraft per ten-minute
period (a standard deviation of 1.73 aircraft). In our implementation of the filter, u(t) was
expressed as an hourly rate, so the variance W = 0.05 implies that capacity has a standard
deviation of /6(0.05) = 0.55 aircraft/hour from hour to hour. This may seem small, but
the quantity which determines the adaptability of the filter is the ratio W/V. In the limit,
the value of the Kalman gain G calculated from equation 5.22 is 0.13, which is comparable
to the value of 1 — a = 0.1 in the exponential smoother.

Three parameters govern the cumulative exponential capacity estimate. As described
in section 5.4, ftmaz and A were set to 9.0 and 9.2, respectively. The smoothing parameter
in equation 5.25 was set to o' = 0.9, as in the exponential smoother.

Table 5.5 and Figure 5-10 display the mean forecast errors of these four methods for
forecast horizons from 10 to 60 minutes. The mean forecast errors of the real-time capacity
estimates are close to zero, indicating that the models produce unbiased forecasts of N(t).

However, the EPS-based forecasts tend to underestimate N(t) and therefore are overes-
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timating the take-off rate. The weighted root mean squared errors shown in figure 5-10
indicate that the forecasts based on real-time capacity estimates are significantly more ac-
curate than those based on the EPS numbers, particularly for the long forecast horizons.
With a forecast horizon of one hour, both the exponential smoother and the Kalman filter
improve the root mean squared error by over one aircraft. The cumulative exponential
capacity estimate improves one-hour forecasts by an additional 0.5 aircraft.

Figure 5-11 displays both the EPS and exponentially smoothed capacity estimates for
four days in August, 1991. In general, the real-time estimates are more stable than the EPS
values, which vary widely over time. However, without more information it is unwise to
generalize from these pictures. The EPS values used here are estimates of capacity which
are based on our crude measurements of weather conditions: hourly ceiling and visibility
measurements, classified into one of four weather states. In addition, we assume a 50/50 mix
of departures and arrivals, an assumption which is frequently violated in practice. These
empirical tests do highlight a significant advantage of the real-time capacity estimates: they
do not depend on accurate weather observations, information about runway configurations,
or knowledge of the arrival/departure mix.

Now consider the RMSE of the forecasting models as the forecast horizon grows. The
CUMEXP model provides the most accurate forecasts, with a RMSE of 1.4 and 2.2 aircraft
over 10-minute and 60-minute forecast horizons, respectively. At first glance, this rate of
growth in forecast error is puzzlingly slow. Each k-step forecast error is the sum of k take-off
forecast errors (see equation 5.30). If each take-off forecast error is independent and has the
same distribution, then the standard deviation of N(t+k|t) should rise with the square root
of k. Let op be the standard deviation of a single take-off rate forecast D(t + k|t). From
equation 5.30, the RMSE of a 10-minute forecast N(t + 1]t) should suffice as an estimate

of op. Therefore, we might expect:

Std. Dev. [(N(t+6|t)] = Vop (5.31)
~ V6 Std. Dev. [(N(t+1]t)]

From Table 5.5, for example, we would expect the six-period RMSE for the cumulative
exponential algorithm to be v/6(1.4) = 3.4 aircraft. The actual six-period RMSE, however,

is only 2.2 aircraft.
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Figure 5-11: EPS numbers and real-time take-off capacity estimates at Logan Airport for
four days in August, 1991
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The slow growth of forecast error is due to the fact that take-off errors are not indepen-
dent, but are inversely correlated. By comparing the k-step departure rate forecast with

the k + 1st, we find the correlation coefficient:
p(D(t+klt), Dt + k+1]t)) =~ —0.2 (5.32)

This has an intuitive interpretation: an optimistic take-off prediction in one period will
often be followed by an underestimate of the take-off rate in the next. As long as the total
number of aircraft which flow through the model is correct, there is a limited number of
aircraft to send into the air at the wrong time.

Finally, the model residuals were scrutinized to determine if there are any apparent
deficiencies in the model. For all three models with real-time capacity estimates (SMOOTH,
KALMAN, and CUMEXP), there was a slight autocorrelation in the model errors from time

period to time period:
p(N(t+1Jt), N(t+2t+1)) =~ 0.04 (5.33)

The autocorrelation implies that there may be some time-varying aspect of the departure
process which is not captured by the model. However, the autocorrelation is quite small

and did not justify further changes in the model form.

5.5.3 Sensitivity to Modeling Simplifications

The forecasts described above were generated using ‘perfect’ gate departure delay informa-
tion, in the sense that the same push-back times, PB2, were used to both calculate and
predict N(t).2 This is a ‘best case,’ and true push-back forecasts are likely to be some-
what inaccurate. We saw in Chapter 4 that the accuracy of gate departure delay forecasts
may vary widely, and depends on the information that is available to the forecaster. In
order to measure the sensitivity of the model to this best-case assumption we also derived

‘worst-case’ push-back forecasts, PB3(i), based only on the scheduled departure times and

20Of course, the push-back time estimates PB2 themselves are not perfect, but were estimated from the
available information according to the procedure described in section 5.2.1. However, knowledge of PB2
provides perfect information about the demand pattern used to generate N(t), and it is N(t) which is being
used to test the models.
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the overall average gate departure delay for matched flights:
PB3(i) = SCH(i)+ 5.3 min. (5.34)

With push-back forecast PB3, we are assuming that no information is available about
any push-back other than its scheduled departure time and an overall average delay. The
simple turn models described in Chapter 4, for example, should produce substantially more
accurate forecasts of push-back times than PB3.

Push-back predictions PB3(i) were calculated for all flights, and forecasts of push-back
counts B(t + k|t) were derived from these push-back times. We then used these demand
forecasts as input to the one-stage model with exponentially smoothed capacity forecasts.
Not surprisingly, forecasts of N(t) based on PB3(i) were inferior to those based on perfect
push-back forecasts. Over a ten-minute forecast horizon, the weighted RMSE doubles when
PB3 are used (1.6 aircraft with ‘perfect’ push-back forecasts, 3.2 aircraft with PB3). The
effect of poor push-back (or gate departure delay) forecasts diminishes as the time horizon
grows (see Figure 5-12). With a forecast horizon of one hour, forecasts based on PB3
have a RMSE that is only 30% larger than those based on perfect push-back forecasts.
Predictions made with PB3 exhibit strongly the characteristic noted in the previous section:
the initial forecast error and subsequent errors are inversely correlated so that initial errors
are sometimes corrected in forecasts over longer horizons by errors in the other direction.
Forecast errors grow slowly over time.

Finally, we tested the sensitivity of the models to the value of the constant taxi-time,
R. In all previous tests, R was set to 15 min., so that 2/3 of the aircraft on the taxiway
were available for take-off during each ten-minute period. Forecasts were produced by
the one-stage, exponential smoothing model with values of R ranging from 10 min. to 25
min. Figure 5-13 displays the forecast accuracy for 10 and 60-minute forecasts. The figure
demonstrates that for short forecast horizons the model is insensitive to this parameter,
with mean and root mean squared errors varying very little as R varies. For the one-hour
forecast horizon, reducing the value of R by five minutes, or increasing it by ten minutes,
only increased the RMSE by one aircraft. However, increasing R by ten minutes introduced
a significant bias into the model. As R is increased, the modeled flow of aircraft from the

taxiway to the runways is slowed, and the forecasts of N(t) become artificially high.
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5.6 Conclusions and Extensions

The aggregate flow models offer a simple and accurate method for predicting the number of
aircraft rolling out over a short time horizon. The models approximate all departure runways
as a single, aggregate runway, and assume that aircraft ‘low’ to take-off according to a
deterministic process. These assumptions lead to a model which can be easily updated as
real-time data arrive. The empirical experiments described in the previous section quantify
the forecast accuracy of these models. Given perfectly accurate predictions of push-back
times at Logan, it is possible to predict the number of aircraft on the airfield ten minutes
and one hour in advance with RMSE of 1.4 and 2.2 aircraft, respectively.

Some proportion of these forecast errors may be caused by random fluctuations in take-
off rates around the true capacity of the airport, and some may be due to errors in the data
used to test the models. The take-off counts D(t) were calculated from take-off messages
which are sometimes inaccurate. The push-back counts B(t) were estimated from unreliable
data about push-backs of general aviation and commuter aircraft.

The remaining forecast errors, however, may be diminished by improvements to the

models. Three areas for improvement are listed below:

1. Improved Models of Queueing and Capacity:
The cumulative exponential capacity estimate seems to closely approximate the re-
lationship between congestion and take-off rates, but is not justified by any physical
model. Therefore, we have no assurance that the relationship is valid for airports
other than Logan, or for Logan under very different conditions. An important area of
research is the formulation of more detailed statistical models of queueing and capacity
that are based on the ‘physics’ of airport operations. Methods for real-time updating
of these models may be derived. It may be useful to incorporate the following effects

into the models:

e interactions between arriving and departing aircraft;

e particular runway configurations, such as those with two independent, active

runways;

e queues of aircraft that form when taxiing aircraft cross active runways.
However, given the data currently available to the ETMS, it would be difficult to either
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formulate or update these detailed models. In fact, the data from the ETMS was not
complete enough to update the simple one-stage or two-stage models (estimates were
used when the data were not available). More detailed data, such as those provided

by ground surveillance systems, will niake more accurate models possible.

2. Dynamic Ground Control Models:
The one-stage and two-stage models assume tha: taxiing aircraft arrive to the runway
at a rate that is proportional to the number of aircraft taxiing. This is justified
under the assumption that taxiing aircraft are distributed uniformly along the taxiway.
However, more detailed models of the airfield may allow us to improve this model,
perhaps by taking into account the dynamic effects of airport ground control. For
example, the arrival rate to a departure queue may be influenced by the length of the
qu-:ue itself, since grour d coutrollers may hold aircraft at the gate or route aircraft to

less congested runways when congestion builds.

3. Modeling the Stochastic Queueing Process:
One source of model error is the assumption of a deterministic flow of aircraft to the
departure runway. This source of error is explored by Koopman [24], who compares
a time-varying queueing system with a deterministic demand process with a similar
system driven by Poisson process. He finds that the expected queue lengths derived
from the deterministic system can be an inaccurate approximation of the expected
queue length of the stochastic system. It may improve the accuracy of the model tc
add a stochastic component to the description of the departure process in order to

take random changes in taxi-times and taxiway queues into account.

However, the system described in our model does differ in important ways from Koop-
man’'s. It would be unreasonable to describe aircraft reaching the departure runway
with a Poisson process when we know exactly how many aircraft have pushed back
from the gate and are lieaded for the departure runway. In addition, when an airport
is saturated and a departure queue has developed, the deterministic aspects of the
system tend to dominate ( [26], p. 21). In fact, our deterministic models showed no
forecast bias, while the deterministic models described in Koopman's paper dramati-

cally underestimate queue lengths.

Besides generating take-off time forecasts, these statistical models elso provide insight
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into the overall performance of the airport. The statistical models distill the real-time in-
formation fowing from the airport into a few summary parameters. By monitoring these
parameters, analysts may gathe: information about the effects of weather, runway condi-
tions, and other facto.s on airport performance. They may also compare the operational
‘reality,’ as described by the statistical model, with the performance predicted by the more
standard, static models of airport capacity.

Finally, Logan airport operations are characterized by complex interactions between
arrival and departure runways. Model formulation and performance may be significantiy
different at airports where arrival and departure operations are independent, such as Atlanta
Hartsfield and Denver International Airport. The development of models for Atlanta may
be especially timely, given the current work on the Atianta Airport Resource Management
Tool by the Atlanta Tower and the carriers [2]. At this stage, the project at Atlanta has
focused on communication between the airport tower and the ramps as well as the display
of data to tower and ramp controllers. However, the methods developed in this chapter

have the potential to make a significant contribution to this effort as well as to the ETMS.
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Chapter 6

Roll-out Time Models

The models of the previous chapter assigned a common taxi time, R, to all flights and
ignored distinctions among aircraft. This simplified the aggregate flow models, but is anti-
thetical to our eventual goal: the production of take-off time forecasts for individual flights.
For example, when runway 9 is the primary departure runway, USAir flights at Logan taxi
a shorter distance from gate to runway than Northwest flights, and our model should reflect
this difference (see Figure 6-1). The models introduced in this chapter produce roll-out
time forecasts that take these individual differences into account.

Assume that the flights in our sample are ordered by take-off time. In general, the model

for the roll-out time of the kth flight, 7, has the linear form:
T = F;cek + €, (61)

where F is a column vector of explanatory variables (or ‘factors’), O, is a column vector of
model parameters, and ¢ is the residual roll-out time not explained by the known factors.
This chapter describes both the selection of the model factors Fy and the estimation of
the parameters ©;. Two types of models will be introduced: dynamic and static. In
equation 6.1, the coefficients © are indexed by k, implying that they may vary from one
flight to another. This is a dynamic linear model in which the effects of a particular factor,
such as bad weather, may vary from flight to flight. An alternative is a static linear model,
in which the coefficients O are replaced by the vector © which is assumed to be constant
over all flights and all time. Forecasts from the ‘static’ model do change from flight to

flight, according to the conditions under which the flight operates. However, the static
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Figure 6-1: Logan Airport runways. taxi-ways. and terminals. USAir departures have a
significantly shorter distance from the gate to popular runway 9 than Northwest departures.

model holds constant the presumed impact of each of these conditions.

The differences between static and dynamic linear models extend not only to model form.
but also to the approach for finding model parameters. Since the static model parameters ©
are assumad to be constant over time, the value of 8 can be estimated from a large historical
database. The next section of this chapter describes how we choose model factors and
estimate parameters. Careful attention is paid to outlier detection and residual analysis. If
implemented in the ETMS, similar analyses may be performed off-line. when computers and
personnel are not devoted to tracking active flights. Subsequent forecasts of roll-out times
are made using the coeflicient estimate © which is obtained from the historical data set.
The dynamic models. on the other hand, contain coefficients 6, which are fitted recursively

by combining information from each newly observed roll-out time with information from
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previous observations. New forecasts are produced after each update to 6.

For the dynamic model, after k observations, the roll-out time prediction for flight k+ 1

Tht! = F;c-{.lék (6.2)

Forecasts from the static model use © in place of 6,.. Most factors in the vector Fi; will
be known in advance, but some of the factors themselves will be forecasts. For example,
suppose we wish to forecast the roll-out time of a Continental Airlines flight one-half hour
before its scheduled push-back. The model may include indicator variables to adjust the
predicted roll-out time so that it corresponds to a Continental flight of the appropriate
equipment type and flight duration. Other factors make further adjustments for runway
configuration, weather conditions, and the departure queue found by the flight. An impor-
tant point is that the factors ‘carrier’ and ‘equipment type’ can be predicted with great
accuracy over any forecast horizon, while runway configuration, weather, and departure
queue iength are factors which themselves must be modeled and predicted. The values
of these factors are uncertain at the time the forecast is generated and may not even be
known with certainty when the actual push-back occurs. Forecasts of these factors may be
generated by other models, such as the aggregate flow model of the previous chapter or a
weather model maintained by the National Weather Service. We would expect that if the
forecasts of the factors themselves become more inaccurate as forecast horizons increase,
then the roll-out time predictions also suffer. This effect will be explored in the empirical
results at the end of the chapter.

The remainder of this chapter is divided into three sections. Section 6.1 describes the
development of two static linear models, one containing departure queue lengths and the
other using an estimate of departure demand based on the carriers’ schedules. Section 6.2
specifies a variety of dynamic models, including exponential smoothing, lookup tables (the
procedure currently used by the ETMS), and the dynamic linear model. The potential
benefits of combining forecasts from these models is also discussed. Section 6.3 describes
empirical tests of these forecasting models. Despite the wide variety of models employed,

we achieve only partial success in predicting roll-out times.
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initial after outlier after correlation

Factor coefficient removal correction (p-stat)
intercept (min.) 12.6 134 134 (<.001)
DEMAND (min./aircraft) 0.3 0.3 0.3 (<.001)
US to NE runway -5.0 -4.5 -4.5 (<.001)
US to SW runway -29 -2.1 -19 (<.001)
America West (HP) -7.0 -4.6 -4.8 (<.001)
Delta (DL) -2.4 -2.2 -2.2 (<.001)
Northwest (NW) 0.6 1.0 1.0 (.001)
precipitation 2.9 1.8 1.8 (.002)
departure runway 22 34 2.5 26 (<.001)
departure runway 33 or 27 2.6 2.0 2.1 (<.001)
flight over 3 hours 5.0 2.8 2.2 (<.001)

Table 6.1: Coefficient estimates and p-values for a static linear model which includes ‘DE-
MAND,' an estimate of departure demand derived from the carriers’ schedules. All coef-
ficients are in minutes except for the coefficient for DEMAND, which is in min./aircraft.
The factor ‘US to NE’ indicates USAir flights departing on Northeasterly runways 9 or 4.
The coefficient ‘US to SW’ indicates USAir flights departing on Southwesterly runways 22
or 27.

6.1 Static Linear Models

This section describes procedures for model selection and parameter estimation for static
linear models of roll-out time. Initially, over 100 factors were considered for the linear
models, including weather state, runway configuration, carrier, aircraft weight, time of day,
precipitation, length of flight, wind speed and direction, and interactions between many of
these factors.

Two measures of airfield congestion were also considered for the models. The first, N,
was derived from the aggregate flow models of the previous chapter. The aggregate flow
models generated estimates of N(t), the number of aircraft rolling out at the beginning of
time period t. The quantity Ny is simply an estimate of the number of aircraft rolling when
flight k& pushes back. That is, if the push-back time of flight k is during time period ¢, then
Ni = N(t). An additional variable, ‘DEMAND’, was created by counting the number of
push-backs scheduled during a fifteen-minute window around each flight's actual push-back
time. The DEMAND count should approximate the size of the departure queue seen by
each push-back without relying on departure queue estimates produced by a forecasting

model.
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initial after outlier after correlation

Factor coeflicient removal correction (p-stat)
intercept (min.) 13.0 13.4 13.4 (<.001)
Ni. (min./aircraft) 0.6 0.5 0.5 (<.001)
US to NE runway -5.8 -5.4 -5.4  (<.001)
US to SW runway -2.3 -1.8 -1.9 (<.001)
CO to NE runway -3.5 -2.2 -2.2  (<.001)
CO to SW runway 14 2.1 2.1 (<.001)
America West (HP) -74 -4.9 -4.9 (<.001)
Delta (DL) 1.9 2.2 2.3 (<.001)
Northwest (NW) 0.8 0.9 1.0  (.001)
IFR with departure runway 27 1.4 1.3 1.3 (.02)
flight over 3 hours 4.9 24 2.2 (<.001)
flight to Newark 13 1.4 1.5 (.002)
flight to Laguardia 1.6 0.9 0.8 (.05)
flight to Dallas/Ft. Worth -0.9 -2.2 -2.2  (<.001)

Table 6.2: Coefficient estimates and p-values for static model which includes N, an estimate
of airfield congestion. All coefficients are in minutes except for the Ny coefficient, which is
in min./aircraft

A model with 100 factors would be cumbersome, and would not necessarily be more
effective than a smaller model. This section will describe how we developed two more
parsimonious models. The models are shown in the last columns of Tables 6.1 and 6.2,
while other colums show intermediate models which will be described below. The primary
difference between the linear models shown in the two tables is that the model shown in
Table 6.1 contains the variable ‘DEMAND,’ while the model of Table 6.1 contains the
congestion estimate Nj.

Figure 6-2 shows actual roll-out times during two evening hours on March 14, 1991, as
well as roll-out time predictions from the static linear model of Table 6.1. The variations
in predictions are due to the variations in the factors which apply to each flight. Many of
the largest roll-out predictions, such as the third and sixth flights as well as the ‘bump’ for
the eleventh and twelth flights, are flights over three hours long. Table 6.1 indicates that
the static linear model adds 2.2 minutes to the predicted roll-out times of each of these
flights. Many of the adjacent flights are USAir flights headed to the Northeast runways;
these have a roll-out time adjustment of —4.5 minutes. In addition, the plot demonstrates
two important shortcomings of the model: the existence of large outliers (the two here are

obvious) and autocorrelation in the residuals (note the ‘run’ of low forecasts between 18:30
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Figure 6-2: Actual roll-out times (*) and roll-out time forecasts (o) from the static linear
model with DEMAND estimate. The root mean squared error (RMSE) for these data is
7.8 min. Without the two outliers, the RMSE is 4.8 min.

and 19:00).

Data for model-building were extracted from the matched data set for March and Au-
gust, 1991. This data set only includes flights by the large carriers and does not contain
General Aviation and flights by commuter airlines. The data set includes 44% of all de-
partures from Logan during the sample period. Approximately half of the data are used
to build the model and fit its parameters, while the other half are held in reserve for test-
ing. Both of these training and testing data sets contain representative good-weather and
bad-weather days from both March and August. All of the following model-building was
performed with the training data.

Model development was an iterative process. In each iteration, the model's parameters
were estimated and model residuals were examined. If ‘he residuals indicated any inade-
quacies in the model, the model was corrected, paramecters were re-estimated, and residuals
re-examined. This process continued until the model had no apparent shortcomings. The
three primary iterations were variable selection, outlier detection, and correction for serial

correlation in the residuals. These are discussed in each of the following three sections.
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6.1.1 Variable Selection

A stepwise variable selection procedure was adapted to determine the factors to be included
in each model. The stepwise procedure relies on simple least-squares regression to select fac-
tors and eliminate those that lose significance when others are added (33]. The procedure be-
gins with a single intercept term and no explanatory variables. In its first step the procedure
adds the explanatory variable that has the largest correlation with the dependent variable.
In the next step it chooses the remaining explanatory variable that has the largest partial
correlation with the dependent variable, given the variables already included ir: the model.
The partial correlation between roll-out time r, and factorF;, given factors Fy, F, ..., Fi_y,
is the correlation between the residuals when r; is regressed on F}, Fy,...,F;_; and the
residuals when F; is regressed on F}, Fy, ..., F;_). The partial correlation is one measure of
the benefits of adding F; to a model which includes Fy, Fy, ..., Fi_;.

Additional independent variables are added in the same manner. At each step, partial
F statistics are calculated for all variables in the model, and variables with an F statistic
below some threshold are dropped. For this experiment, the F-test used an F statistic of 2,
for a p-value of approximately 0.15. If any variable’s F statistic has a p-value ahove 0.15. it
is dropped from the model. This procedure continues until any new independent variable
added to the model fails to pass over the threshold F statistic.

Stepwise regression has many potential pitfalls but there is one very obvious difficulty
with this procedure: the significance calculated for each F-test is unreliable. The F-tests
are statistically valid if model errors are independent and normally distributed with a mean
of zero and a constant variance. These conditions do not hold for these data. However, we
will see that initial model selection will not hinge on the values of the F-tests. A few factors
will clearly belong in the model, many will not, and the ones in between will not make a
significant difference in terms of model performance.

The stepwise procedure was applied separately to the March and August data. Figure 6-
3 show the increasing R? values for the August data as factors are added to each model.
The bottom line shows the progression of R? values when the congestion estimate Ny is not
included as a factor. In this case, no one factor is the primary contributor to the model’s
explanatory power. The first factor added, DEMAND, leads to an increase in R? of only
0.04. Subsequent additions to the model lead to gains that slowly taper off as the model

reaches a limiting R? of about 0.27. The top line shows the sequence of R? values when N,
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Figure 6-3: Value of R? with August data as factors are added to the model. In the top
line the first factor added is Ny, an estimate of the length of the departure queue.

is added to the model. The first factor added is Ny itself, and this immediately increases
the R? value to 0.2. The second factor, an indicator variable that the flight is operated by
USAir and is headed for a nearby departure runway, has a marginal benefit of about 0.04.
Additional factors have an even smaller effect. Long departure queues are not only highly
correlated with long roll-out times, but the departure queue length is also correlated with
other likely explanatory variables, such as weather, low-capacity runway configurations, and
heavy demand. Alone, it is a good substitute for many other factors.

Despite the preeminence of Ny, the large number of observed flights enabled the proce-
dure to identify over 30 significant independent variables in each month for both models.
Although all of these variables pass the F-test, most variables added late in the stepwise
procedure had little impact on the model’s explanatory power. Therefore, in order to find
more parsimonious models, the following ad-hoc rules for choosing factors were applied to

each model:

1. Any variable among the first five selected by the stepwise regression procedure in

either March or August is included in the model;
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2. Any variable among the first 30 in both March and August is included in the model.

These rules ensure that the most significant effects in both months are represented in the
models. Table 6.1 lists the factors and coefficient values for the static medel without
departure queue estimates. Table 6.2 lists the factors and coefficient values for the static
model with N, the departure queue estimates. The coefficient values listed in the tables
were obtained by fitting the data to the model by ordinary least-squares (OLS), using the
entire training data set of March and August data. The R? values of the models with, and
without, queue length estimates are 0.24 and 0.16, respectively (the values differ from those
shown in Figure 6-3 since that figure was generated from August data only, while these R?
values were calculated from the entire training data set).

It is a valuable exercise to examine the factors selected for the models and their coefficient
values. Terms for departure demand and departure queues are not surprising, nor are
terms which reflect airport geography. The locations of USAir (US), Continental (CO)
and America West (HP) gates in relation to the most common departure runways, 4 and
9, explain the negative coefficient values for these carriers (see Figure 6-1). Geography
also explains Northwest’s comparative disadvantage. The additional roll-out time due to
precipitation is not unexpected. While taxiing, ground controllers use surface radar to aid
aircraft, but visual navigation is the pilot’s responsibility. Heavy rain reduces visibility
and can slow surface throughput. The significance of flights to Newark, LaGuardia, and
Dallas/Ft. Worth is a bit surprising. It is possible that flights to these destinations have
gate locations close to the taxi-ways, or uncongested apron areas surrounding the gates.

However valid the models seem, the explanatory power of the models, as measured by the
R? statistic, is quite low when one considers the number of factors included in each model.

A look at the model residuals may give us some idea about what we may be missing.

6.1.2 Outlier Detection and Removal

During the two-hour period shown in Figure 6-2 there are two roll-out times with signifi-
cantly larger residuals than the others. These roll-outs lasted 41 and 35 minutes, and were
both generated by Pan Am flights. The first was destined for JFK and the other for Miami.
Over all roll-outs shown in Figure 6-2, the root-mean squared error (RMSE) of the model
is 7.8 min. Without these two longest roll-outs, the RMSE drops to 4.8 min. Successful

prediction of these two would have greatly improved the model’s performance, but it seems

121



unlikely that these long delays could have been anticipated given the information in the
data set. Pan Am flights before and after these outliers did not suffer significant delays,
nor did flights to the same destinations. In fact, no pattern in the existing data adaquately
explains these long delays.

The residuals produced by these Pan Am flights were not unusual. Figure 6-4 displays
the largest 200 residuals from the static linear model with departure queue estimates, or-
dered from largest to smallest in absolute value. The largest residual is almost 90 min. If the
true model errors €, were distributed as a normal distribution, then the standardized resid-
uals e}, from our OLS model should be distributed as standard normals. The standardized

residuals are the residuals, e, divided by their standard errors:

€k

el = —E 6.3

k T (6.3)
where
e = (Tk - F;:é) (6.4)
N 2

2 _ Zkzl ek_ '
= No, =1 (6.5)
hix = (F(FF)7'F)i (6.6)

Here, p is the number of explanatory variables, and the quantity his is a measure of the
distance between the explanatory vector Fj and the average explanatory vector in the entire
data set. If the ‘distance’ h is large, then errors in © may be exagerrated and we would
expect the residual of flight k to have a comparatively large variance.

The Quantile-Quantile (Q-Q) plots in figure 6-5 compare the distribution of the stan-
dardized residuals plotted against » sample from a standard normal distribution. Each
point represents a residual, with the value of the standardized residual as the abscissa. The
ordinate is the value from the standard normal sample which has the same cumulative per-
centile in the standard normal sample distribution. If (e}, ni) are the coordinates of point
k, then prob(e < ef) = prob(n < ny), where e and n are distributed as the standardized
residuals and the standard normal, respectively. Samples with similar distributions approx-
imate a straight line; the residuals which trail off to the right in the top graph demonstrate
that the distribution of residuals has a much longer right tail than a normal distribution.

Besides invalidating the standard statistical tests (such as the F-tests for the significance
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Figure 6-4: Residuals from the original static model.

of coefficients), these outliers have a significant impact on both model form and fit. Large
outliers have an unreasonable influence on the values of model parameters while diminishing
the R? value.

If the outliers suggest shortcomings in the model, then the model should be corrected
and re-fitted. Graphical and analytical analysis of the residuals found one pattern, serial
correlation, which will be corrected in the next section. However, no general explanation for
the largest residuals was found. The largest residuals represent unique or unusual conditions
that are not repeated in a predictable way. The outliers may be errors in data transcription
or they may have been caused by isolated delays due to passengers, crew, or the aircraft.
Whatever their cause, true outliers should be removed before the model is fitted again. But
how many residuals should be considered ‘outliers’ and removed? In this large data set,
the removal of any observation with a large residual will improve the R? value. However,
removing true outliers should produce another benefit. Once the outlier and its insidious
effect on the model coefficients is removed, the R? value of a model fitted to the remaining
points should be superior to the R? value of the model fitted on the original data set.

With this observation in mind, we ranked observations in the order of the absolute values
of their standardized residuals, largest to smallest. We then began removing observations
from the data set in that order. After each observation was removed, a new R? value was
calculated using the original parameters of the static linear model. In addition, a new ‘re-
fitted’ model was found by ordinary least squares applied to the remaining observations,
and a re-fitted R? was calculated. As the most unrepresentative outliers are removed,
the marginal gain in R? should be greater for the re-fitted model than for the original

model. However, once these observations are gone and more representative data begin to
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models with and without outliers. The x-axis represents values of the standardized residuals,
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be deleted, the re-fitted models should no longer be superior to the original model on the
margin. Figure 6-6 shows the results of this procedure. The top plot shows that the R?
values of both the original and re-fitted models improve as outliers are removed. However,
the gains of the re-fitted model are at first greater than the gains of the original model. The
bottom plot shows the difference between the R? values for these two models. The marginal
benefits of outlier removal are larger for the re-fitted model as the first 75 — 100 outliers
are removed. These results indicated that we should consider as outliers the observations
which procuced the 75 largest standardized residuals. After remov.ng the. . chservations, we
calculated a new static linear model using ordinary least squares. The results are seen in the
second columns of Tables 6.1 and 6.2, and the residuals are shown in the bottom Q-Q plot
of Figure 6-5. The R? values of the re-fitted models (without residuals) are 0.41 and 0.29
for the models with and without departure queue length estimates, respectively. However,
even after these outliers have been removed, the residuals show one more pathology: serial

correlation.

6.1.3 Correcting for Serial Correlation in the Residuals

During the two-hour period in Figure 6-2, there appears to be a positive correlation in
the residuals. During this sample period, almost all forecasts are too low, and this trend
is especially clear between 18:30 and19:00 (for the sample after outlier removal, the mean
residual is zero). Some of these variations in roll-out times may be caused by temporary
conditions which apply to flights which are close together in time. Since the roll-out time
observations 7 are ordered by take-off time, model errors ¢, may be serially correlated.
The observed model residuals e, do display significant autocorrelation. An estimate of the

first-order autocorrelation is:

N
. Dk=2CkCk-1
p —— e

= : (6.7)
Zf:l el%

For both static linear models, p = 0.18. A Durbin-Watson test found a significant autocor-
relation (p-value < .0001). A simple model for the residuals is the first order autoregressive
(AR(1)) process :

€& = pek—-1+u fork=2...N (6.8)
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€61 = up (6.9)

where |p| < 1 and the u; are independent and identically distributed with zero mean and a
constant variance. A consistent estimate of p is p = 0.18. In fact, residuals from this model
show little significant correlation, indicating that the AR(1) process is a reasonable model
for the residuals.

A simple transformation of the original data allows us to use ordinary least squares

(OLS) to find new estimates for ©, given the first-order correlation in the residuals:
Tk — pre-1 = (Fk— pFic-1)© + v (6.10)
or, after redefining the left and right-hand sides:
i = Fie+u (6.11)

The transformed observations and factors r; and F; were estimated using p. Ordinary least
squares was applied to these data to find another parameter estimate for ©. Results and
p-values are shown in the third and fourth columns of Tables 6.1 and 6.2. There was little
change in the coeflicient values with the elimination of autocorrelation. The p-values show
that all selected explanatory variables are highly significant.

The existence of autocorrelation in the residuals suggests that models of roll-out times
which contain an explicit temporal component may lead to improvements in model accuracy.
Such models, which attempt to capture local changes in roll-out times, will be described in

the next section.

6.2 Dynamic Models

The linear model developed in the previous section is a static model, with coefficients
© obtained via ordinary least squares (OLS) regression applied en masse to historical
data. The OLS procedure gives each observation equal weight, but we would expect recent
observations to be more informative than roll-out times in the distant past. This suspicion
is confirmed by the serial correlation in the residuals of the static linear model. The roll-out

time forecasts in Figure 6-2 provide an additional example: the forecasts are consistently too

127



low, but the model does not adapt. The model may minimize the sum of squared residuals
over the entire data set, but it cannot adapt to what may be temporary conditions on the
airfield.

Improvements in forecasting accuracy may be achieved by more responsive forecasting
procedures. This section presents four such procedures: exponential smoothing. a lookup
table, exponentially weighted linear regression, and dynamic linear models. Throughout
the section we will see how the procedures perform with the two-hour period shown in

Figure 6-2. We will also use the following simple example to demonstrate the mechanics of

each technique.

EXAMPLE 6.1 Suppose that the forecaster observes a sequence of roll-out times. but that the
only significant factor that is available to the forecaster is the weather condition at the departure
airport. In addition, suppose that weather is classified into one of two states: good and bad. During
the period of observation there is a stretch of bad weather, a long period of good weather, and then
a return to bad weather. Our forecaster observes a sequence of m roll-out times under bad weather.
a sequence of n roll-out times under good weather, and then a single roll-out under bad weather. In
a linear model, a bad weather state is represented by an indicator variable, with each good weather

roll-out assigned a 0 and each bad weather roll-out represented by a 1. The sequence of factors is:

11...1 00...0 1
e e ot

m n

and there are m + n + k roll-out time observations, ry,7z, ..., Tmin+k.

6.2.1 Exponential Smoothing and the Lookup Table

At any time, a simple forecast for the next roll-out might be the average of all past roll-out
times. However, we would expect recent roll-out times to be more relevant than observations
taken further in the past, for it is likely that the next departure will experience conditions
similar to those experienced by recent flights. Therefore, 71, the predicted roll-out time
of flight k + 1 given information up to the kth roll-out, will be an exponentially weighted

(or ‘smoothed’) average of previous roll-out times:

k
feer = Cell—£)3 fF (6.12)
1=1
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Ce = (1-fh! (6.13)
O0<f<l

The (k ~ l)th observation is weighted by f'. Since the normalizing constant Cy approaches

1 as k becomes large, for large k we have the recursive expression:
fre1 = (1= f)re + i (6.14)

Our choice of the constant ‘fade factor’ f determines how sensitive the average is to
changes in observed roll-out times. For example, experiments with the testing data set from
Logan Airport indicate that setting f equal to 0.9 produces the greatest forecast accuracy.
With this choice of f, 10% of each forecast is contributed by the most recent observation and
90% from the weighted average of all other observations. The top plot in Figure 6-7 shows
the forecasts made by the exponential smoother during the two-hour: period on March 14.
The forecasts change very slowly over time, with relatively large 'jumps’ only immediately
after the two outliers. It is surprising that this simple procedure has a RMSE close to that
of the static linear model shown in Figure 6-2 (7.8 min. for the linear model, 7.9 min. for
the exponential smoother). Of course, this is a small sample, and we will be comparing the
procedures over a much larger set of data later in this chapter. However, it does seem as if
the adaptability of the smoother gives it one advantage over the static procedure.

However, the static linear model does take advantage of the many factors that are
known to affect roll-out times. For example, the model generates different forecasts for
flights departing in good and bad weather, since historical roll-out times are significantly
different under these conditions. One extension of the exponential smoother is to compile a
different average from each set of flights that experienced each set of operating conditions.
For example, roll-out times of heavy aircraft in bad weather may be averaged, and this
average may be used to forecast roll-out times of heavy aircraft in bad weather. These
running averages are stored in a lookup table. Such a system has been developed at the

Volpe center and is now being implemented for the ETMS (37].

EXAMPLE 6.1 (continued). Our lookup table has two averages, or cells: one for bad weather

(7%) and one for good weather (7{). After observation m + n, the bad weather average has been
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Roll-out Time Forecasts by Exponential Smoothing
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Figure 6-7: Actual roll-out times (*) and roll-out time forecasts (o) from exponential
smoothing and the lookup table. The exponential smoother gives 10% of its weight to
the latest observation: 741 = (.1)rx + (.9)7,. The lookup table uses & similar smoother,

but divides the observations among 60 cells categorized by weather, flight duration, and
time of day.
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compiled from the first m flights and the good weather average from the next n flights:

m

frensr = (1= f)f™*ry (6.15)
k=1
m+n

Foinsr = 3 (1= f)fmn=kr, (6.16)
k=m«<+1

Since flight m + n + 1 will operate under bad wcather, we will use 7 +n+1 8s our forecast. Note

that this forecast is calculated from observations taken over n flights ago.

The bottom plot of Figure 6-7 provides another example. The forecasts in this plot are
generated from a lookup table indexed on three categories: weather state, flight duration
and time of day. There are four weather states (VFR, MVFR, IFR, LIFR), five categories
of flight duration (0—1,1-2,2—-3,3 -4, and > 4 hours), and three time-of-day categories
(morning, afternoon, and evening) creating a lookup table with sixty cells. This is similar
to the table implemented by the ETMS, although the ETMS has a day-of-week category
as well. During the sample period shown in Figure 6-7, all flights are evening flights under
IFR, so flights are only distinguished in this lookup table by their length. This lookup
table does differentiate between flights to a greater extent than the exponential smoother,
but forecasts do not vary as widely as those from the the static linear model. However,
the performance of the lookup table for this sample is comparatively good: a RMSE of 7.7
min., slightly lower than that of the SLM. Finally, none of the models presented so far are
successful in predicting the two outliers shown in the figure.

A closer look at these examples demonstrates a potential pitfall of the lookup table:
there may be large gaps between predictions from the same cell. For example, the first
flight in Figure 6-7 is a two-hour flight, and the next flight from the same cell departs
at 18:07, almost one hour later. This effect is also seen in example 6.1, above, when the
forecast for a bad-weather flight did not include information from the most recent flights.
These gaps will not affect model performance if conditions change slowly and the data are
not distributed among many cells. However, the problem may be exacerbated when more
factors are used to forecast roll-out times. For example, if we were to compile averages under
4 weather states, 7 runway configurations, 10 carriers, and 6 levels of departure demand,
we would need 1680 separate averages, or cells, in the lookup table. As we add factors we

break the data into more cells, and any one forecast is based on fewer recent observations.
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One alternative is to combine the effects of all factors, so that all observations can be used

to inform the same model.

6.2.2 Recursive Regression and Exponentially Weighted Regression

The static linear model describes roll-out time as the sum of the relevant factors, each
multiplied by a coefficient. The coefficients represent the increase in roll-out time when
there is a unit increase in the associated factor. As we saw in the previocus section, the

linear model for a single observed roll-out r, is:

rn = Fi@+¢ (6.17)
(6.18)

A series of k observations can be expressed in matrix-vector form:

ry = Ek'e+€k (6.19)
where
Ty €]
r2 €2
-F-k = [FI,FQ,...,Fk] = . Ep =
L Tk | €k

Note that F; is a matrix built from the vectors F;, i = 1...k.

EXAMPLE 6.1 (continued). Our model consists of the intercept, 8y and a single factor, the
weather. The influence of the weather is represented by 6,, while the presence of this factor at
observation k is indicated by Fi;. Fi) is O during good weather and 1 during bad weather. The
indicator for the intercept, Fio, is always 1. After observing m + n + 1 departures, our factor and

coeflicient matrices are:

11...1 111...1 1 6o
Eniner = | 1111 000...0 1 e = 0 (6.20)
N s et oz 1
m n

After observing some number k of roll-out times, we should be able to estimate the
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unknown parameters in ©. In the previous section on static linear regression, we used

ordinary least-squares estimates, which minimize the sum of squared residuals:

k
e, = mein [Z (re — F;B)z] (6.21)

i=1
: 2
= mein [Z e,]
1=1
The well-known formula for the solution to the minimization problemn is

6: = (EFy) ' Eiri (6.22)

A necessary and sufficient condition for the invertibility of F,F} and the uniqueness of 6,
is that F}. have full column rank.

In this section we are most interested in efficiently incorporating new information as
it arrives. After we have observed k roll-outs, found @y, and then observed an additional
departure, we might be tempted to append the additional observation to our matrices and
resolve equation 6.22 for ©;,;. However, the matrix operations for this calculation may
become prohibitively expensive as k becomes large. Since we have already found 6y, the

following recursive equation is much more efficient:

ék+l = ék + P;}_le.‘,l (T‘k+1 - F;c-..lék) (6.23)
Po =0

The difference (rk+1 -F; +1ék) is the prediction error, while P,:_;‘,le.,.l is a vector which
weights this error before it is added to the previous estimate of ©.

The least-squares estimation procedure is one of the most popular forecasting tools in
practice, but the results of the previous sections have demonstrated one potential drawback:
the OLS criterium (6.21) gives as much weight to recent observations as to those in the
distant past. In practice, the ETMS forecasting system may run for years and will observe
hundreds of thousands of roll-out times at each airport. Temporary shifts in the level of

the roll-out times, like those shown in Figure 6-2, will not be reflected in the model.
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One method for reducing the influence of flights that occurred in the distant past is to
discount their residuals in equation (6.21). We redefine the optimal estimate for © after k

observations as:

k
8, = min (z f"'*e,—) (6.25)
=1
where 0< f<1

The residual ! observations before k receive a weight of f!, so that the influence of an
observation decreases exponentially as it recedes into the past. Note that if f = 1, this is
equivalent to the standard least-squares criterion.

The solution to equatior 6.25 is also similar to the least-squares solution in the last

section. Using our definitions of F; and ry above,

O = (EiSkE:) ™ FiSiry (6.26)
Si = diag(f*1, £, 1,1)

As in the last section, once F,SiF; is nonsingular, 6, can be uniquely determined. Given

this estimate we may continue with the recursion:

6it1 = Op+ Pl Fiy (Tk+1 - Fl+1ék) (6.27)
Pryi = fPe+FinFiy, (6.28)
Po =0

With a fade factor f < 1, this estimate is more sensitive to temporary changes in roll-
out times than standard linear regression, especially when k grows large. However, this
sensitivity comes at a price, for the procedure is unstable if there is a long sequence of
observations which do not supply any information about a particular parameter. During
such a period, the current estimate of that parameter is quickly discounted, or forgotten,
and later estimates do not use old information that may still be valuable. The example

illustrates this phenomenon:

EXAMPLE 6.1 (continued). Suppose we wish to estimate © = (6;, 62) after N =m+n+1

observations. There were m observations under bad weather, n observations under good weather,
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and the most recent observation is taken after a return to bad weather. We are interested in what
happens when there is a long sequence of observations which do not supply infermation about the

bad weather parameter, 6,.

It is not hard to show that éN.z = ry - éN,l as n becomes large (explicit calculation of
(éN'l,éNg) is performed in Appendix 6A). As the time since the last bad-weather observation
increases, previous estimates of the bad-weather coefficient receive less and less weight. If the
stretch of good weather is long enough, the estimate 8y ; is based solely on the single bad-weather

observation rn. All previous information about bad weather is ignored.

The source of the problem illustrated in the example is the undiscriminating effect of
the fade factor f. Equation 6.25 tells us that observations are discounted exponentially, no
matter which factors are active for each observation. Some coefficients, like the intercept
6,, are updated frequently by new information, and for these ccfficients a fade factor less
than 1 is appropriate. However, the factors associated with bad weather or rare runway
configurations may appear infrequently, and a fade factor near or equal to 1 is needed to
maintain the little information that is available. Exponentially weighted regression simply

applies the same fade factor to all coefficients.

6.2.3 Dynamic Linear Models

In the terminology of systems theory, the parameter vector ©y in Example 6.1 is unobserv-
able during the n good weather observations. If these observations are the only available
information, there is no unique best estimate of the bad-weather parameter 6, without
prior information. The dynamic linear model assimilates this prior information, and the
estimation procedures derived from the model can control the degradation of information
when the system is unobservable.

The goal of each estimation procedure described above has been to estimate the current
true value of the unknown vector of coefficients, ©®. We will call this vector the state vector.
Its true value may change over time, and in our notation the true value when observation
k is taken is ©. The estimation equations will determine a best estimate for © given all
information up to and including the kth observed roll-out. The following system and update
equations for the DLM are the matrix forms of the Kalman filter, which was introduced

in Chapter 5. For the aggregate flow models we were estimating the current level of the
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take-off capacity u(t), while here we are estimating the value of the coefficient vector ©.
First we specify a probability model for the evolution of ©; over time. Assume that O

and roll-out times r; are governed by the following equations:

re = FiOp+u (6.29)
6, = O +w; (6.30)

where v ~ [0, V] and wy ~ [0, W]

Also assume that both vx and wy are uncorrelated white noise processes with mean zero
and constant variance. The model implies that each observation ry is a linear combination
of the components of 6, perturbed by a random variable v;. Meanwhile, the true value of
the state vector ©; evolves according to a random walk with variance W.

The DLM is not so much an exact model of the roll-out process, but a method for
detecting and estimating changes in roll-out conditions. The assumption that the effects
of weather or other factors follow a random walk is implausible, but the advantages of the
model lie in its implementation. The model leads naturally to estimation equations that
overcome the difficulties of the lookup table and exponentially weighted regression. The
optimal estimate adapts to local changes in the state vector, but by selectively adjusting
the covariance matrix W, we may control the loss of information that may result from this
adaptability.

We now present the update equations for the estimates. Define the optimal estimate
©, to be the linear least squares estimate, the estimate over all linear functions of the
input r that minimizes the expected squared error. If V and W are normalily distributed
then the estimate derived here is also the Bayes’ Least Squares estimates. This estimate
minimizes the expected squared error over all functions of the input. Assume that before
any observations are made we construct prior estimate ©¢ and covariance matrix Po. The

following recursive equations produce optimal estimates from each additional observation:

6, = ék-1+Gk(rk—F;,ék_1) (6.31)

P, = Pi_) - GiGiQx (6.32)
where

Qr = Fi(Pro+W)Fe+V (6.33)
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Gr = (Pro1+ W)F/Qx (6.34)

The update equations have an intuitive structure. The revised estimate of 8, is equal to
the previous estimate, adjusted by an amount which is proportional to (rk - F;ék_l), the
one-step forecast error for the old estimate. The vector Gy is called the gain of the filter,
and governs the weight given to new observations. With each observation, the covariance
matrix of the estimate, Py, is reduced by an amount calculated from the gain.

For a given set of factors Fy, the size of the gain is determined by both the observation
variance V' and the system covariance matrix W. The gain is analogous to the fade factor
f in exponential smoothing and exponentially weighted regression. If W is large and V
is small, ©; would be expected to change relatively quickly over time and the observation
i should be given much weight. On the other hand, if W is small and V large, a long
history of observations should be used to estimate ©;. In fact, if W = 0 and we have no
prior information about @y, then the Kalman Filter is equivalent to the static recursive
regression in equations 6.23 and 6.24. The advantage of the DLM over previous algorithms,
however, is that a different variance may be specified for each coefficient in ®y, while the
fade factor f was applied indiscriminately to all coefficients.

The estimation equations for the DLM were first proposed by Kalman in 1960 (23], and a
good introduction to the dynamic linear model and associated linear estimation techniques
can be found in [41). While the estimation procedure is best known as the Kalman Filter,
we usually refer to the Dynamic Linear Model (DLM) itself, since this emphasizes both
the linearity of the model and its dynamic nature, its ability to adapt to a system that is
changing over time.

Figure 6-§ shows roll-out times and forecasts from both the static linear model and the
DLM. Both series of estimates follow the same overall pattern, for both are linear functions
of the same set of factors listed in Table 6.1. The DLM, however, adjusts its parameters
to fit local conditions. Of course, these adjustments may be beneficial for some flights and
not for others. Between 18:30 and 19:00 the forecasts generated by the DLM closely follow
the observed values, improving significantly over those of the SLM. However, the SLM is
more accurate between 18:00 and 18:30. Overall, the responsiveness of the filter improves
performance: the RMSE drops from 7.8 min for the static model to 6.9 for the DLM. As

was the case for the other forecasting procedures, the DLM did not succesfully forecast the
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Roll-out Time Forecasts from the Static Linear Mode!
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Figure 6-8: Actual roll-out times (*) and roll-out time forecasts (o) from the static linear
model and the dynamic linear model. Both linear models use the DEMAND estimates.
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extreme roll-out times shown in the figure.

While th» DLM is a forecasting model with much flexibility, it does introduce more
complexity in the form of parameters W and V. The observational variance V may be
estimated from the residuals of the static regression model described in the last section.
‘The system covariance specifies the volatility of the model coefficients. For the example
presented in Figure 6-8, as well as for the empirical experiments presented in section 6.3,
we assume that W is diagonal, so that the movement of one coefficient is uncorrelated with
the movement of another. Let W;; be a value on the diagonal of the matrix. Assume that

all Wj; fall into one of two groups:

1. Volatile coefficients whose values change markedly over time and therefore have rela-

tively high system variances. For these, we set W;; > 0.

2. Static coefficients whose values do not change over time and therefore have no system

variance. For these, we set W;; = 0.

Intuition says that coefficients associated with service rates will be volatile, while those
associated with the geography of the airport will be static. For example, the coefficient
associated with the distance from USAir gates to particular runway configurations should
change little over time, while the coefficients associated with service rates are affected by
weather conditions or controller preferences. We would expect these to be more volatile.
Since conditions at a destination airport may chaage rapidly, coefficients for particular
destinations (EWR, LGA and DFW) were also assumed to be volatile. Figure 6-9 shows the
coefficient associated with flights to LaGuardia on August 25, 1991. The sudden evening
increase in the coefficient may signal a traffic management problem such as weather difficul-
ties in the New York area. The ability of the DLM to detect and respond to such changes

may lead to superior forecast accuracy. This hypothesis will be tested in Section 6.3.

6.2.4 Combining Forecasts

We have described a variety of methods for estimating the parameter vector ;. Once an
estimate ©; has been found, equation 6.2 supplies the l-step forecast. This is the prior
mean for the roll-out time k + .

It is possible theat if forecasts from two or more methods do not perform well, then a

superior forecast may be produced by combining forecasts. This is especially true if the
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Figure 6-9: Changing value of the coefficient for flights to LaGuardia in the Dynamic Linear
Model

forecasts complement each other, i.e. forecasts from some methods are most accurate when
forecasts from the others are inaccurate. Given two unbiased forecasts g, and 70, we

may obtain a new forecast from the linear combination:
. . -b
it = Mg+ (1= (6.35)

Let 02 and o7 denote the variance of each forecast and let p denote the correlation
coefficient between the forecast errors. It is not hard to show that the variance of the
combination is minimized when:

A = ag—poaab
T 02—02 - 2pa,0
a b PTa0p

(6.36)

Note that when p = 0, A = 0/(02 + 0}). Intuitively, when the variance of the second
forecast is relatively high, A approaches one, and the first forecast receives more weight. For
alternative methods for combining forecasts, see (6]. In the following empirical experiments
we will test the forecast accuracy of each model as well as the accuracy of combinations of
the most promising techniques.

The next section describes empirical experiments with each estimation procedure.
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6.3 Empirical Tests of the Roll-out Time Models

In this section we ccmpare the performances of the forecast algorithms. Comparisons are
made between exponential smoothing, the lookup table, and the static and dynamic linear
models. The empirical experiments were performed on the testing data, 2412 flights from
Logan Airport during March and August, 1991. The testing data includes only those
flights with known push-back times, 44% of all flights during the sample period. The
tests demonstrate that while some procedures are superior for short horizons and others
for longer horizons, all perform within a fairly narrow range. Results from exponentially
weighted regression are not presented here; its performance was consistently inferior to all
other regression procedures.

Before presenting the models and results, we must first settle a rather technical issue:
what information is available to the forecasting model when the forecast is made? These
models base their predictions on forecasts of environmental factors: the linear models use
weather, runway and departure queue information to generate roll-out time predictions. In
practice, these environmental forecasts must also be predicted. To simplify the analysis,
we will use weather and runway observations instead of forecasts when generating roll-
out time predictions. For example, if the ETMS were generating a prediction for a 9:00
AM roll-out at 8:00 AM, a forecast for the 9:00 AM weather state would be used. In these
empirical tests, we will be using the observed 9:00 weather state and runway configuration to
make our 8:00 roli-out time prediction. The models are using hindsight, and this may give
them a slight advantage, for forecasts of weather do not always correspond with reality.
However, the advantage should not be very great. Weather states often change slowly
of time, and certain weather patterns, such as morning fog, are quite predictable. Tower
controllers are often able to predict runway configurations with great accuracy. The stepwise
regression analysis of section 6.1 also demonstrated that, given queue lengths and runway
configuration, the direct influence of weather state on roll-out time is small. The models
should not perform substantially worse if weather observations are replaced with weather
forecasts in the models.

The models will not take advantage of hindsight when forecasts use Ni, the number of
aircraft seen on the airfield when flight k pushes back. To simplify the analysis, the first

set of tests below will use the observed values N; when forecasts are made (results from
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Figure 6-10: RMSE of roll-out time predictions for six forecasting models over horizons of
5 minutes to one hour. Only the 44% of flights with known roll-out times were used to
generate the error statistics. Note that the y-axis has a range of only 2 minutes.

these tests are shown in Figure 6-10). With these results, we will determine the relative
accuracy of the algorithms without the added variance injected by inaccurate forecasts of
the congestion. The remaining empirical experiments, which will be conducted over forecast
horizons as large as three hours, will use roll-out predictions N produced by the aggregate

flow model. This will more closely approximate reality, for forecasts of Ni are not always

accurate in actuality.

Following are details about the parameters used in each procedure:

Static Linear Models

Two static linear models were developed from the training data set. One includes

departure congestion estimates Nj as a factor while the other replaces congestion estimates
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with an estimate of departure demand in the 15-minute window around push-back. The
departure congestion estimates will serve as a proxy for the departure queues seen by aircraft
as they roll-out. In the following discussion, the two static models will be called “SLM with
QUEUE” (static linear model with queue estimates) and “SLM with DEMAND” (static
linear model with the simple DEMAND estimate). The factors included in the models are
listed in Tables 6.2 and 6.1, respectively.

It should be emphasized that while it is called ‘static,’ the SLM does distinguish between
good and bad weather. Terms in the SLM add or subtract roll-out time according to the

individual and environmental characteristics of the flight.

Exponential Smoothing and the Lookup Table

For exponential smoothing (EXP), a ‘fade factor’ (f) of 0.9 produced the most accurate
short-term forecasts. This is also the value of f used in the lookup table (LOOK). Our
lookup table is categorized into three factors that are also used by the ETMS itself: weather
category (VFR, MVFR, IFR and LIFR), time of day (morning, afternoon, evening) and
length of flight (0-1 hr., 1-2 hrs., 2-3 hrs., 3+ hrs.). While this lookup table is similar to
the present ETMS procedure for predicting ground transit time, direct comparisons with
current ETMS performance are not possible since the ETMS does not yet receive push-back

times and cannot separate gate delay from roll-out time.

Dynamic Linear Model

We implemented two dynamic linear models with the same factors as those used in
SLM with QUEUE and SLM with DEMAND (see tables 6.2 and 6.1). These models will be
referred to as “DLM with QUEUE” and “DLM with DEMAND", respectively. Parameter
values for V and W also had to be specified. The observational variance V was estimated
from the residuals of the static regression of the last section; we set V = 20 min. As described
above, we divided the system variance coefficients W;; into two categories: volatile and
static. The model intercept and the coefficient for departure queue length were volatile and
the remaining coefficients were static. For volatile coefficients, W;; = 0.05, while W,; = 0 for
static coefficients. However, the performance of the DLM was not sensitive to the values of

Wii. Changing the variance matrix by a full order of magnitude had little effect on forecast
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accuracy.

Prior to the application of the forecasting procedures, the 2412 flights in the testing
data were ordered by take-off time. Exponential smoothing, the lookup table, and the static
and dynamic linear models were all employed to make forecasts. Figure 6-10 displays the
root mean squared error (RMSE) for forecasts produced by these procedures over forecast
horizons ranging from five minutes to one hour. In this context, the forecast horizon is the
time between forecast generation and actual push-back of the flight.

Perhaps the most important aspect of Figure 6-10 is the range of the y-axis: only
two minutes. All four procedures have RMSEs that are within a small interval between
6.5 and 8.5 minutes. However, there are distinctions between procedures, and differences
vary as the forecast horizon changes. Exponential smoothin<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>