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Abstract

Single-photon avalanche diodes (SPADs) are highly sensitive photodetectors that enable LI-
DAR imaging at extremely low photon flux levels. While conventional image formation
methods require hundreds or thousands of photon detections per pixel to suppress noise, a
recent computational approach achieves comparable results when forming reflectivity and
depth images from on the order of 1 photon detection per pixel. This method uses the
statistics underlying photon detections, along with the assumption that depth and reflec-
tivity are spatially correlated in natural scenes, to perform noise censoring and regularized
maximum-likelihood estimation. We expand on this research by adapting the method for
use with SPAD arrays, accounting for the spatial non-uniformity of imaging parameters and
the effects of crosstalk. We develop statistical models that incorporate these non-idealities,
and present a statistical method for censoring crosstalk detections. We show results that
demonstrate the performance of our method on simulated data with a range of imaging
parameters.
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Chapter 1

Introduction

Traditional light detection and ranging (LIDAR) systems must detect hundreds to thousands

of back-reflected photons at each pixel to obtain accurate reflectivity and depth images [1].

This requirement places a lower limit on the size, weight, and power (SWaP) of LIDAR

systems. One line of advancement for LIDAR is to develop systems with higher photon

efficiency—that is, systems that require less back-reflected laser light to form reliable images.

Higher photon efficiency means that imaging systems can use lower laser power, or can

capture images more quickly or from longer distances. Such characteristics have pertinent

applications in airborne and satellite systems [1, 2], where SWaP is at a premium, or in

biological imaging [3], where low flux is needed to protect delicate organisms.

On the hardware side, efforts to increase photon efficiency have led to the use of highly

sensitive photodetectors known as Geiger-mode avalanche photodiodes (APDs) or single-

photon avalanche diodes (SPADs) [4]. These devices can detect individual photons and

record their arrival times with ∼ 10 ps precision. In recent years, SPAD technology has pro-

gressed from single-pixel detectors to detector arrays, enabling data collection at thousands

of pixels in parallel.

Over the past several years, photon-counting LIDAR systems have been primarily de-

veloped for depth imaging, and most require at least tens of photon detections per pixel

using conventional image formation methods [5]. At extremely low photon flux levels, the
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data is corrupted by the Poisson noise inherent in the photon detection process, as well as

background noise from ambient light and internal noise in the detector hardware. These

high noise levels are the reason that traditional imaging techniques rely on collecting a large

number of photon detections. We seek to push the limits of photon efficiency through better

computational processing of the noisy data.

The novel computational imaging frameworks developed by Kirmani et al. [6] and Shin

et al. [7] use physically correct statistical models and spatial regularization to construct

reflectivity and depth images from data with a mean photon count on the order of one photon

detection per pixel (ppp). Their frameworks have been experimentally tested with an imaging

setup that uses focused-beam illumination and a single-pixel SPAD detector to raster scan

the entire scene, as in Figure 1-1. In this setup, the important system parameters that factor

into the statistical models are the laser beam’s intensity and the detector’s quantum efficiency

and dark count rate. We extend the framework from [7] to process data collected from an

array-based system that uses floodlight illumination and a SPAD array. In an array-based

setup, the parameters used in the statistical model generally vary from pixel to pixel—the

laser beam’s intensity profile across the array’s field of view is non-uniform, and there is some

variation in the quantum efficiencies and dark count rates of the individual detector pixels.

Array data is also affected by crosstalk, a phenomenon in which an avalanche at one pixel

triggers spurious detections at other pixels in the array. These non-idealities affect the photon

detection data, and must be accounted for in order to accurately estimate scene reflectivity

and depth from photon-limited data. In this thesis, we present our developments in adapting

the computational framework from [7] to account for the non-idealities present in an array-

based LIDAR system. We also conduct a more detailed analysis of the performance of this

framework to better understand how various imaging parameters and scene characteristics

affect the results.

The remainder of Chapter 1 will describe prior work in both conventional imaging meth-

ods and the photon-efficient computational framework upon which our research builds. In

Chapter 2, we will discuss the non-ideal parameters in an array-based LIDAR system, and
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Figure 1-1: Imaging setup used in [6] and [7].

develop our modified image formation algorithm. In Chapter 3, we will describe our meth-

ods for simulating photon detection data. In Chapter 4, we will present our results and

analyze our algorithm’s performance on simulated data with a range of imaging parameters.

In Chapter 5, we will conclude by discussing the significance of our research and suggesting

future work to build upon our results.

1.1 Prior Work

1.1.1 Operating Principles and Parameters of SPAD Detectors

A SPAD detector operates in Geiger mode, in which an avalanche photodiode is reverse-

biased past the breakdown voltage. At such a large reverse bias, the electric field in the ac-

tive detector area is so strong that an incident photon can trigger a self-sustaining avalanche

breakdown current by impact ionization. This avalanche current acts as a very large gain,

such that the current induced by the absorption of a single photon is large enough to be

detected and timestamped by the accompanying circuitry. The probability that an incident

photon triggers a detectable avalanche current is referred to as the detector’s quantum effi-
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ciency, or photon detection efficiency. The amount of uncertainty in the registered detection

times is termed timing jitter, and is usually on the order of 10-100 ps. Internal noise in the

detector causes dark counts, or false detections, primarily due to avalanches triggered by

thermally-generated carriers [8].

Because the avalanche breakdown is self-sustaining, it renders the detector inactive until

it is quenched and re-armed after some interval of time (the reset or dead time). When

time-correlated with a pulsed laser, the detector registers either no detections or a single

detection (but not multiple detections) for each laser pulse. We refer to the fact that a

detection will prevent any later detections in the same pulse frame as a blocking effect.

1.1.2 Conventional Imaging Methods

Reflectivity

Reflectivity images are conventionally formed by constructing a histogram of the amount of

light received at each pixel over a fixed acquisition time. Reflectivity is generally treated as a

relative measurement normalized over the image. This histogram method is computationally

straightforward, but requires hundreds or thousands of photon detections to suppress noise

and obtain an adequately large dynamic range.

Depth

Several methods exist for forming depth images from LIDAR data, depending on the hard-

ware configuration and the type of data acquired. Of these methods, pulsed time-of-flight

(TOF) depth imaging has the highest photon efficiency. In pulsed TOF imaging, the pho-

todetector records the arrival times of detected photons relative to the most recent laser

pulse, and the depth is calculated based on the photons’ round-trip times to the scene and

back. Photon-counting detectors like SPADs are well-suited to pulsed TOF imaging, as they

have very fine timing resolution and can be time-correlated with a pulsed laser. Currently,

the most photon-efficient systems use photon-counting detectors with pulsed TOF imaging,

achieving good results from as few as tens of photon detections per pixel.
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Sources of noise in the pulsed TOF method include photons from ambient light, false

detections from dark current, and crosstalk in a detector array. Theoretically, if this noise

were absent, a very accurate depth image could be reconstructed from just one photon de-

tection at each pixel, with accuracy affected only by the duration of the laser pulse and the

timing jitter of the detector. The combined uncertainty of these two factors generally corre-

sponds to ∼ cm depth resolution. We will show in Chapter 4 that we can use statistical noise

suppression methods to approach this hypothetical noiseless scenario, thereby increasing the

accuracy of our depth estimate in photon-starved conditions.

1.1.3 Photon-Efficient Computational Framework

The computational frameworks presented in [6] and [7] were developed with the goal of

maximizing the photon efficiency of LIDAR systems. Both have been demonstrated to

successfully construct reflectivity and depth images from an average of 1-2 photon detections

per pixel with significant levels of background noise, with results comparable to or better

than conventional methods that require much higher photon counts. They achieve such high

photon efficiency by leveraging two key concepts: 1) accurate probabilistic models of the

physics underlying photon detections, and 2) the assumption that reflectivity and depth are

each spatially correlated in natural scenes.

Here we will briefly develop the probabilistic models used in [7] for a single-pixel SPAD

detector, and show how they are used to estimate scene reflectivity and depth.

Probabilistic model for number of photon detections

When collecting data over a fixed dwell time (as in [7]), reflectivity can be estimated from the

number of photons detected at each pixel. Photon counting is an inhomogeneous Poisson

process with a rate function that comprises photon detections from back-reflected signal,

ambient light, and dark counts. For a laser pulse transmitted at 𝑡 = 0, the rate function for
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photon detections at a pixel (𝑖, 𝑗) is:

𝜆𝑖,𝑗(𝑡) = 𝜂[𝛼𝑖,𝑗𝑆𝑠(𝑡− 2𝑧𝑖,𝑗/𝑐) + 𝑏] + 𝑑, for 0 ≤ 𝑡 ≤ 𝑇𝑟, (1.1)

where we have defined variables as follows:

𝑇𝑟 : the pulse repetition period (s)

𝜂 : the detector’s quantum efficiency, 0 ≤ 𝜂 ≤ 1

𝛼𝑖,𝑗 : the scene reflectivity at pixel (𝑖, 𝑗), 0 ≤ 𝛼𝑖,𝑗 ≤ 1

𝑆 : the expected number of signal photons from one laser pulse that are back-reflected

from a unity-reflectivity pixel and arrive at the detector

𝑠(𝑡) : the laser pulse’s photon flux (Hz), normalized to satisfy
∫︀ 𝑇𝑟

0
𝑠(𝑡)𝑑𝑡 = 1

𝑧𝑖,𝑗 : the scene depth at pixel (𝑖, 𝑗)

𝑏 : the expected rate (Hz) at which photons from ambient light at the operating wave-

length arrive at the detector

𝑑 : the detector’s dark count rate (Hz).

We can integrate the rate function to obtain the expected number of photon detections

in one pulse frame: ∫︁ 𝑇𝑟

0

𝜆𝑖,𝑗(𝑡)𝑑𝑡 = 𝜂𝛼𝑖,𝑗𝑆 + 𝐵, (1.2)

where we have defined 𝐵 as (𝜂𝑏+𝑑)𝑇𝑟, or the expected number of detections due to ambient

light and dark counts, which we will collectively refer to as background detections. From the

Poisson distribution, we can use this rate function to write the probability of no detections

at pixel (𝑖, 𝑗) in one pulse frame:

𝑃0(𝑖, 𝑗) = 𝑒−(𝜂𝛼𝑖,𝑗𝑆+𝐵). (1.3)
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In each pulse frame, the SPAD will report either no detections or one detection. Thus,

under the low-flux assumption, at every pixel (𝑖, 𝑗) we can model each pulse frame as a

Bernoulli trial, where the probability of success is 1 − 𝑃0(𝑖, 𝑗). Over 𝑁𝑃 pulses at a pixel

(𝑖, 𝑗), the number of photon detections 𝐾𝑖,𝑗 is then a binomial random variable:

Pr[𝐾𝑖,𝑗 = 𝑘;𝛼𝑖,𝑗] =

(︂
𝑁𝑃

𝑘

)︂
𝑃0(𝛼𝑖,𝑗)

𝑁𝑃−𝑘 [1 − 𝑃0(𝛼𝑖,𝑗)]
𝑘 . (1.4)

Probabilistic model for photon detection times

At each pixel (𝑖, 𝑗), detection times are treated as independent and identically-distributed

continuous random variables 𝑇𝑖,𝑗 ∈ [0, 𝑇𝑟]. Detection times for photons from back-reflected

laser light (i.e., signal photons) are distributed according to the photon flux of the laser

pulse, 𝑠(𝑡):

𝑓𝑇𝑖,𝑗
(𝑡; 𝑧𝑖,𝑗|detection is signal) = 𝑠(𝑡− 2𝑧𝑖,𝑗/𝑐), for 𝑡 ∈ [0, 𝑇𝑟] (1.5)

Detection times for background detections are uniformly distributed over time from 0 to

𝑇𝑟, where these times are relative to the laser pulse:

𝑓𝑇𝑖,𝑗
(𝑡|detection is noise) =

1

𝑇𝑟

, for 𝑡 ∈ [0, 𝑇𝑟]. (1.6)

Combining these models for signal and background detections gives a mixture distribution,

where the low-flux approximation allows us to ignore blocking effects:

𝑓𝑇𝑖,𝑗
(𝑡;𝛼𝑖,𝑗, 𝑧𝑖,𝑗) = Pr[detection is signal;𝛼𝑖,𝑗] · 𝑓𝑇𝑖,𝑗

(𝑡; 𝑧𝑖,𝑗|detection is signal)

+ Pr[detection is noise;𝛼𝑖,𝑗] · 𝑓𝑇𝑖,𝑗
(𝑡|detection is noise)

=
𝜂𝛼𝑖,𝑗𝑆

𝜂𝛼𝑖,𝑗𝑆 + 𝐵
𝑠(𝑡− 2𝑧𝑖,𝑗/𝑐) +

𝐵

𝜂𝛼𝑖,𝑗𝑆 + 𝐵

(︂
1

𝑇𝑟

)︂
, for 𝑡 ∈ [0, 𝑇𝑟]. (1.7)

Image formation

Our detection dataset consists of a set of 𝑘𝑖,𝑗 detection times at each pixel (𝑖, 𝑗): {𝑡(ℓ)𝑖,𝑗 }
𝑘𝑖,𝑗
ℓ=1.

Using the probabilistic models for the random variables {𝐾𝑖,𝑗} and the {𝑇 (ℓ)
𝑖,𝑗 }, the image
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formation algorithm from [7] performs maximum-likelihood estimation with spatial regular-

ization to form reflectivity and depth images. The optimization problem consists of a data

likelihood term and a regularization term:

θ̂ = arg min
θ

[L(θ;y) + 𝜏θ pen(θ)] , (1.8)

where L(θ;y) is the negative log-likelihood of the estimated parameter θ (either reflectivity

or depth) given the observed data y. These variables θ and y are 2-D matrices over all the

pixels in the image, and we can also write the likelihood term in a pixelwise representation

for an 𝑁1 ×𝑁2-pixel image:

θ̂ = arg min
θ

[︃
𝑁1∑︁
𝑖=1

𝑁2∑︁
𝑗=1

L(𝜃𝑖,𝑗; 𝑦𝑖,𝑗) + 𝜏θ pen(θ)

]︃
. (1.9)

The regularization function pen(θ) penalizes non-smoothness across pixels in θ, and the

constant 𝜏θ controls the relative strength of this smoothing term. In [6] and [7], using

the total variation (TV) norm as a penalty function was found to give the best results in

experiments.

The image formation algorithm is comprised of three steps:

1. Reflectivity estimation. Reflectivity is estimated based on the pixelwise photon

counts 𝑘𝑖,𝑗:

�̂� = arg min
𝛼

[︃
𝑁1∑︁
𝑖=1

𝑁2∑︁
𝑗=1

L(𝛼i ,j ; ki ,j ) + 𝜏𝛼 pen(𝛼)

]︃
. (1.10)

From Eq. (1.4), we have the following negative log-likelihood:

𝐿(𝛼𝑖,𝑗; 𝑘𝑖,𝑗) = − log

(︂
𝑁𝑃

𝑘𝑖,𝑗

)︂
− (𝑁𝑃 − 𝑘𝑖,𝑗) log𝑃0(𝛼𝑖,𝑗) − 𝑘𝑖,𝑗 log[1 − 𝑃0(𝛼𝑖,𝑗)]

= (𝑁𝑃 − 𝑘𝑖,𝑗)(𝜂𝛼𝑖,𝑗𝑆 + 𝐵) − 𝑘𝑖,𝑗 log(1 − 𝑒−(𝜂𝛼𝑖,𝑗𝑆+𝐵))

≈ (𝑁𝑃 − 𝑘𝑖,𝑗)(𝜂𝛼𝑖,𝑗𝑆 + 𝐵) − 𝑘𝑖,𝑗 log(𝜂𝛼𝑖,𝑗𝑆 + 𝐵), (1.11)
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where log is the natural logarithm, we have dropped the binomial coefficient term

that is independent of 𝛼𝑖,𝑗, and we have simplified the final term using a first-order

Taylor-series approximation for low-flux conditions.

This negative log-likelihood is a convex function of 𝛼𝑖,𝑗, which we can prove by show-

ing that its second derivative with respect to 𝛼𝑖,𝑗 is always positive (in Appendix A,

we include the analogous proof for our modified statistical model). When the penalty

function is also convex, the convexity of Eq. (1.10) makes it amenable to efficient

implementations of regularized convex optimization. In particular, [7] uses an imple-

mentation called Sparse Poisson Intensity Reconstruction Algorithm (SPIRAL) [9].

2. Noise censoring. We can estimate depth from the photon detection times, which

are distributed according to Eq. (1.7). Unfortunately, the negative log-likelihood of

Eq. (1.7) is non-convex because of the background noise term, it cannot be used in

convex optimization. Therefore, we perform a hypothesis test to censor background

detections before estimating depth. Using our assumption that depth is spatially cor-

related, we compute the rank-ordered mean (ROM) [10] of detection times in the local

neighborhood of each pixel (𝑖, 𝑗) to obtain a value 𝑡𝑅𝑂𝑀
𝑖,𝑗 that we expect to be close to

the target signal value 2𝑧𝑖,𝑗/𝑐. We can reasonably infer that detection times 𝑡
(𝑙)
𝑖,𝑗 that

are far away from 𝑡𝑅𝑂𝑀
𝑖,𝑗 are most likely due to background noise. These detections are

excluded from the set of observed data used for depth estimation. We use the following

threshold comparison to obtain a set of detections that are presumably due to signal:

𝑈𝑖,𝑗 =

{︂
ℓ : |𝑡(ℓ)𝑖,𝑗 − 𝑡𝑅𝑂𝑀

𝑖,𝑗 | < 2𝑇𝑝

(︂
𝐵

𝜂�̂�𝑖,𝑗𝑆 + 𝐵

)︂
, 1 ≤ ℓ ≤ 𝑘𝑖,𝑗

}︂
, (1.12)

where 𝑇𝑝 is the full-width to half-maximum (FWHM) laser pulse duration.

3. Depth estimation. After noise censoring, we can assume that the remaining photon

detections are due to back-reflected signal, and their arrival times can be used to
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estimate depth. Thus, the optimization problem for depth is:

ẑ = arg min
z

⎡⎣ 𝑁1∑︁
𝑖=1

𝑁2∑︁
𝑗=1

⎛⎝−
∑︁
ℓ∈𝑈𝑖,𝑗

log 𝑠(𝑡
(ℓ)
𝑖,𝑗 −

2𝑧𝑖,𝑗
𝑐

)

⎞⎠+ 𝜏z pen(z)

⎤⎦ . (1.13)

Assuming that the negative log of the laser pulse shape 𝑠(𝑡) is convex, the depth

optimization problem is convex and can be solved efficiently using SPIRAL. Laser

pulse shapes can commonly be modeled by a gamma distribution, which is known to

be logarithmically concave, so its negative log is therefore convex.

Figure 1-2 shows an example of raw data and the reflectivity and depth results achieved

in [7], with an average of 4 photon detections per pixel.

(a) Ground truth reflectivity. (b) Raw photon counts. (c) Reflectivity estimate.

(d) Ground truth depth. (e) Pixelwise mean of photon
detection times.

(f) Depth estimate.

Figure 1-2: Results of reflectivity and depth estimation using photon-efficient computational frame-
work [7].
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With this imaging framework as a foundation, our first task, which we will undertake in

Chapter 2, is to characterize the non-idealities that we must incorporate into the imaging

framework to more accurately represent the physical statistics of an array-based LIDAR

system.
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Chapter 2

Image Formation Algorithm for SPAD

Arrays

Our modified image formation method is designed for a LIDAR configuration that illuminates

a scene with a floodlight laser source and uses a SPAD array to detect photons returned from

the illuminated region. We assume that an 𝑀1 ×𝑀2 detector array will scan over a scene

without overlap to produce a larger image of size 𝑁1 × 𝑁2. We will distinguish between

pixels in the detector array, denoted by (𝑚,𝑛) ∈ [1,𝑀1] × [1,𝑀2], and pixels in the image,

denoted by (𝑖, 𝑗) ∈ [1, 𝑁1] × [1, 𝑁2].

2.1 Non-Uniform Parameters in Array Setup

2.1.1 Laser Beam Intensity Profile

In an array setup, the laser beam is expanded to illuminate the detector array’s entire

field of view. Lasers most commonly have a beam profile (spatial cross-section of beam

intensity) that is approximately Gaussian, with the illumination brightest at the center of

the beam and tapering off radially (Figure 2-1(a)). This 2-D profile can be written as a

matrix S = {𝑆𝑚,𝑛}𝑚=𝑀1,𝑛=𝑀2

𝑚,𝑛=1 over all pixels in the array, where, as in Eq. (1.3), 𝑆𝑚,𝑛 is the
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expected number of back-reflected signal photons received at detector pixel (𝑚,𝑛) from a

unity-reflectivity object.

(a) Example of Gaussian beam profile. (b) Reflectivity image with artifacts from beam
falloff: 32× 32 array scanned over

512× 512 image.

Figure 2-1: Laser beam falloff.

The size of the beam is a controllable parameter, and it determines how much S falls off

toward the edges of the array. A larger beam will result in S being more uniform over the

array, but at the cost of wasted photons that fall outside the detector’s imaging area. We will

define the radius of a laser beam to be the radius at which the intensity is 1−1/𝑒2 ≈ 0.86 times

its peak value. Within this radius, the beam intensity is fairly uniform, and the reflectivity

estimation method from [7] performs adequately without accounting for the small amount

of non-uniformity. However, if the beam is expanded such that the array’s entire imaging

area lies within the 1 − 1/𝑒2 beam radius, then only ∼ 9% of the laser power falls within

the array’s field of view. For the same laser power, a narrower beam will result in higher

photon counts throughout the array, but the beam profile will be highly non-uniform across

the array’s imaging area. The number of back-reflected signal photons that are detected at

a given pixel is related to beam intensity according to Eq. (1.4). Assuming roughly uniform
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scene reflectivity over an illuminated region, we can expect more signal detections at the

center of the array and fewer as the radial distance from the center of the beam increases.

Without any processing aimed at compensating for beam falloff, the estimated reflectivity

image will contain artifacts as shown in Figure 2-1(b). Because we are aiming for photon

efficiency, we would like to accommodate some amount of beam falloff with minimal loss of

image quality. In determining the beam size and laser power level, we must also be concerned

with the decrease in signal-to-background ratio (SBR) as the beam falls off toward the edges

and corners of the array’s imaging area. Because SBR has a significant impact on our

method’s performance, an optimal choice of beam size for our method will maximize the

beam intensity at the corners of the array’s imaging area, where the intensity is lowest and

will therefore give the lowest SBR. We calculated this optimal size to be when the standard

deviation of the 2-D Gaussian function, 𝜎, is 𝑀/2 , which places ∼ 47% of the laser power

within the array’s imaging area. A detailed derivation of this optimal beam size is included

in Appendix B.

2.1.2 Quantum Efficiency

In a SPAD array, quantum efficiency varies from pixel to pixel by some small amount [11, 12].

Thus, quantum efficiency has a spatial dependency and we can denote its value at each pixel

(𝑚,𝑛) as 𝜂𝑚,𝑛. The distribution of an array’s pixel-wise quantum efficiencies is approximately

Gaussian (Figure 2-2).

2.1.3 Dark Count Rate

Dark count rate can vary throughout a SPAD array, and can also vary significantly from one

array to another (Figure 2-3(a)). In general, the distribution of an array’s pixel-wise dark

count rates is approximately Gaussian, with a small number of outliers termed “hot pixels”

that have an unusually high dark count rate (Figure 2-3(b)). At low signal return levels, the

data at hot pixels may be overwhelmed by noise and therefore unreliable for image formation.
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Figure 2-2: Distribution of pixel-wise quantum efficiencies in a SPAD array [12].

In all that follows, we shall presume, without explicitly noting it, that all hot-pixel data has

been excluded from likelihood calculations at the outset.

2.1.4 Dead Pixels

A SPAD array may have a small number of “dead pixels” that never return any detections.

These dead pixels can be considered to have a quantum efficiency of 0, and therefore have

no contribution to the data likelihood term in our reflectivity estimation. As we will do with

hot pixels, we will exclude all dead pixels from our likelihood calculations, without explicit

notation to that effect.

2.2 Crosstalk

Optical crosstalk is a phenomenon that generates signal-dependent noise and behaves as

a sort of spatio-temporal point spread function. When an incident photon triggers an

avalanche current at a pixel in the detector, high-energy “hot carriers” in the avalanche

generate secondary photons that are internally reflected within the array and can, in turn,

cause avalanches at other pixels. We can model this phenomenon as an independent Pois-
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(a) Plot of mean and standard deviation of dark
count rate in 18 different 32 × 32 SPAD arrays

[12].

(b) Plot of dark count rate at each pixel in a
SPAD array [13].

Figure 2-3: Non-uniformity of pixel-wise dark count rates in a SPAD array.

son process that is initiated when an avalanche releases secondary photons into the array.

Given an initial detection at pixel (𝑚,𝑛) at time 𝑡, the rate at which secondary photons

arrive at another pixel (𝑚′, 𝑛′) at a time 𝑡′ > 𝑡 is a function of both the spatial offset

(∆𝑚,∆𝑛) = (𝑚′ − 𝑚,𝑛′ − 𝑛) and the temporal delay ∆𝑡 = 𝑡′ − 𝑡. We can write the rate

function as 𝜆𝑠𝑝(∆𝑚,∆𝑛,∆𝑡), and we will see shortly that the spatial and temporal compo-

nents of this rate function are separable under a reasonable approximation.

The spatial component of 𝜆𝑠𝑝 depends on the geometry and fabrication details of the

device. In general, the spatial component looks like a 2-D Gaussian, but there are certain

hardware techniques designed to reduce crosstalk that result in different spatial patterns, as

in Figure 2-4(a). According to [14], it is reasonable to assume that this distribution over

spatial offsets is the same for every pixel in the array. Thus, we can write 𝛽(∆𝑚,∆𝑛) as

the expected number of secondary photons generated by an avalanche at a pixel (𝑚,𝑛) that

travel to another detector pixel (𝑚 + ∆𝑚,𝑛 + ∆𝑛). Models for 𝛽(∆𝑚,∆𝑛) are described in

[14] and [15].

The temporal component of 𝜆𝑠𝑝 is determined by the delay between the arrival of a

photon that triggers an initial avalanche and the arrival of a resulting secondary photon at

a different pixel. Secondary photons are generated at a rate proportional to the temporal
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response of the avalanche current, shown in Figure 2-4(b). According to this rate function,

a secondary photon is generated at some time after the arrival of the initial photon. The

secondary photon then travels through the device to reach another pixel. The total time

delay is dominated by the delay in generating the secondary photon, compared to which the

photon’s travel time is negligible (∼ fs) because the device is very small. Thus, the temporal

component of 𝜆𝑠𝑝 is approximately proportional to the rate of secondary photon generation,

which we will write as 𝛾(∆𝑡), normalized to integrate to 1. With this approximation, the

temporal delay is independent of the spatial offset, and we can therefore write the rate of

secondary photon arrivals as:

𝜆𝑠𝑝(∆𝑚,∆𝑛,∆𝑡) = 𝛽(∆𝑚,∆𝑛)𝛾(∆𝑡). (2.1)

(a) Spatial distribution of crosstalk [14].
(Colorbar represents probability of crosstalk given

primary detection at center pixel.)

(b) Several simulations of avalanche current
response [14], which determines temporal

distribution of crosstalk.

Figure 2-4: Spatial and temporal crosstalk parameters.

In some arrays and under some operating conditions, crosstalk is negligible [13, 16]. In

other cases, however, crosstalk can be a significant source of noise [14], so a photon-efficient

system must be able to mitigate the effects of this noise.
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The parameters of a SPAD detector depend on many factors related to both the fabrica-

tion and operation of the device, especially temperature and bias voltage. In practice, SPAD

detectors are characterized by measuring these parameters empirically for a specific device in

specific operating conditions. [12], [14], and [15] describe methods for empirically measuring

the spatial and temporal distributions of crosstalk within an array. For our purposes, we

assume that the beam profile, quantum efficiency, dark count rate, and crosstalk probability

distribution are known for a particular LIDAR configuration.

2.3 Image Formation Algorithm Without Crosstalk

We use an image formation algorithm based on the one presented in [7] and outlined in

Section 1.1.3. If crosstalk is negligible, we need only to modify the statistical models of

photon counts and detection times to accommodate pixel-wise non-uniformities in beam

intensity, quantum efficiency, and dark count rate. These modified models can be substituted

into the data likelihood calculations and noise censoring threshold without any changes to

the image formation algorithm itself.

In the most general case, we can associate every combination of image pixel (𝑖, 𝑗) and

pulse frame 𝑓 with its corresponding pixel (𝑚,𝑛) in the detector array. This means that in

pulse frame 𝑓 , the imaging system was positioned such that detector pixel (𝑚,𝑛) received

photons from the part of the scene corresponding to pixel (𝑖, 𝑗) in the image. The detector

pixel (𝑚,𝑛) maps to a beam intensity 𝑆𝑚,𝑛, quantum efficiency 𝜂𝑚,𝑛, and dark count rate

𝑑𝑚,𝑛, which are used to compute the data likelihood at each image pixel for reflectivity

estimation and noise censoring. This scheme is able to accommodate any scanning pattern.

For notational simplicity, we will proceed with the assumption that the system scans

over the scene without overlap and with a uniform dwell time at every image pixel. In this

scanning pattern, each image pixel corresponds to only one detector pixel for all pulse frames,

and we no longer need the notational distinction between image pixels and detector pixels.

Thus, we have 𝑆𝑖,𝑗, 𝜂𝑖,𝑗, and 𝑑𝑖,𝑗 for each image pixel (𝑖, 𝑗). We can represent our data as

a 3-D matrix {𝑡𝑖,𝑗,𝑓} of size 𝑁1 × 𝑁2 × 𝑁𝑃 , where the value at (𝑖, 𝑗, 𝑓) is either a detection
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time in the interval [0, 𝑇𝑟], or ∞ to indicate no detection. At each element, the probability

that there is no detection follows from Eq. (2.2):

𝑃0(𝑖, 𝑗) = 𝑒−(𝜂𝑖,𝑗𝛼𝑖,𝑗𝑆𝑖,𝑗+𝐵𝑖,𝑗), (2.2)

where 𝐵𝑖,𝑗 = (𝜂𝑖,𝑗𝑏 + 𝑑𝑖,𝑗)𝑇𝑟. In our present work, we have assumed, like [6] and [7], that

the photon flux from ambient light is spatially uniform. In real imaging applications, this is

generally not the case, and recent work by Shin et al. addresses non-uniform ambient light

flux [17].

From Eq. (2.2), the modified negative log-likelihood for reflectivity estimation is then:

𝐿(𝛼𝑖,𝑗; 𝑘𝑖,𝑗) = (𝑁𝑃 − 𝑘𝑖,𝑗)(𝜂𝑖,𝑗𝛼𝑖,𝑗𝑆𝑖,𝑗 + 𝐵𝑖,𝑗) − 𝑘𝑖,𝑗 log(𝜂𝑖,𝑗𝛼𝑖,𝑗𝑆𝑖,𝑗 + 𝐵𝑖,𝑗). (2.3)

Similarly, the distribution of detection times follows from Eq. (1.7):

𝑓𝑇𝑖,𝑗
(𝑡;𝛼𝑖,𝑗, 𝑧𝑖,𝑗) =

𝜂𝑖,𝑗𝛼𝑖,𝑗𝑆𝑖,𝑗

𝜂𝑖,𝑗𝛼𝑖,𝑗𝑆𝑖,𝑗 + 𝐵𝑖,𝑗

𝑠𝑖,𝑗(𝑡− 2𝑧𝑖,𝑗/𝑐) +
𝐵𝑖,𝑗

𝜂𝑖,𝑗𝛼𝑖,𝑗𝑆𝑖,𝑗 + 𝐵𝑖,𝑗

(︂
1

𝑇𝑟

)︂
. (2.4)

We note that in the no-crosstalk case, these statistics are independent of the pulse frame.

Furthermore, we show in Appendix A that the negative log-likelihood equations are still

convex, and we can therefore use the same efficient implementation of convex optimization

as in [6] and [7].

2.4 Image Formation Algorithm With Crosstalk

If crosstalk is significant, we must take additional steps to account for crosstalk in our

statistical models and to censor crosstalk detections. We will first construct probabilistic

models that incorporate crosstalk, then propose a censoring method based on the likelihood

that a detection is crosstalk.

To avoid notational complexity, we will maintain our assumption of a simple non-overlapping

scanning pattern. When considering crosstalk, it is useful to define a term array-frame to
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denote the 𝑀1×𝑀2 set of pixels captured by the array in one pulse frame. Crosstalk effects

are confined within a single array-frame—that is, any crosstalk detections triggered by an

initial detection will be within the same array-frame as the initial detection. We also note

that a crosstalk detection occurs with some time delay after the initial detection. Thus, to

compute the probability of a crosstalk detection at a pixel (𝑖, 𝑗) at some time 𝑡, we must add

up the contributions of all previous detections in the same array-frame that could cause a

crosstalk detection at (𝑖, 𝑗) at time 𝑡.

2.4.1 Reflectivity Estimation with Crosstalk

Crosstalk is an event-triggered phenomenon. We can say that every avalanche initiates an

independent Poisson process when it releases secondary photons into the detector array. At

the time of data processing, we have complete knowledge of detection events. Based on this

knowledge, we can construct the overall Poisson rate function including the Poisson processes

due to crosstalk. The rate function for crosstalk detections at a pixel (𝑖, 𝑗) in pulse frame 𝑓

is the rate at which secondary photons arrive at (𝑖, 𝑗), times the probability that an incident

photon at (𝑖, 𝑗) triggers a detection:

𝜆𝐶𝑇
𝑖,𝑗,𝑓 (𝑡) = 𝜂𝑖,𝑗

∑︁
(𝑖′,𝑗′)∈
𝐴(𝑖,𝑗,𝑓)

𝜆𝑠𝑝(𝑖− 𝑖′, 𝑗 − 𝑗′, 𝑡− 𝑡𝑖′,𝑗′,𝑓 )

= 𝜂𝑖,𝑗
∑︁
(𝑖′,𝑗′)

∈𝐴(𝑖,𝑗,𝑓)

𝛽(𝑖− 𝑖′, 𝑗 − 𝑗′)𝛾(𝑡− 𝑡𝑖′,𝑗′,𝑓 ), (2.5)

where 𝐴(𝑖, 𝑗, 𝑓) is the 𝑀1×𝑀2 set of image pixel indices in the same array-frame as (𝑖, 𝑗, 𝑓).

This probability contributes to the overall Poisson rate function:

𝜆𝑖,𝑗,𝑓 (𝑡) = 𝜂𝑖,𝑗

⎛⎜⎜⎝𝛼𝑖,𝑗𝑆𝑖,𝑗𝑠(𝑡−
2𝑧𝑖,𝑗
𝑐

) + 𝑏 +
∑︁

(𝑖′,𝑗′)∈
𝐴(𝑖,𝑗,𝑓)

𝛽(𝑖− 𝑖′, 𝑗 − 𝑗′)𝛾(𝑡− 𝑡𝑖′,𝑗′,𝑓 )

⎞⎟⎟⎠+ 𝑑𝑖,𝑗. (2.6)
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Integrated over the pulse frame, we have:

∫︁ 𝑇𝑟

0

𝜆𝑖,𝑗,𝑓 (𝑡)𝑑𝑡 = 𝜂𝑖,𝑗𝛼𝑖,𝑗𝑆𝑖,𝑗 + 𝐵𝑖,𝑗 + 𝜂𝑖,𝑗
∑︁

(𝑖′,𝑗′)∈
𝐴(𝑖,𝑗,𝑓)

𝛽(𝑖− 𝑖′, 𝑗 − 𝑗′). (2.7)

From this integral, we can write the probability that pixel (𝑖, 𝑗) has no detections in pulse

frame 𝑓 :

𝑃0(𝑖, 𝑗, 𝑓) = exp

⎡⎢⎢⎣−
⎛⎜⎜⎝𝜂𝑖,𝑗𝛼𝑖,𝑗𝑆𝑖,𝑗 + 𝐵𝑖,𝑗 + 𝜂𝑖,𝑗

∑︁
(𝑖′,𝑗′)∈
𝐴(𝑖,𝑗,𝑓)

𝛽(𝑖− 𝑖′, 𝑗 − 𝑗′)

⎞⎟⎟⎠
⎤⎥⎥⎦ . (2.8)

Let I𝑖,𝑗,𝑓 be an indicator random variable that is 1 if pixel (𝑖, 𝑗) has a detection in frame 𝑓 ,

and 0 otherwise. Then, the data likelihood for reflectivity is:

Pr[{I𝑖,𝑗,𝑓}𝑁𝑃
𝑓=1;𝛼𝑖,𝑗] =

𝑁𝑃∏︁
𝑓=1

[1 − 𝑃0(𝑖, 𝑗, 𝑓)]I𝑖,𝑗,𝑓𝑃0(𝑖, 𝑗, 𝑓)1−I𝑖,𝑗,𝑓

=
∏︁

𝑓 :I𝑖,𝑗,𝑓=1

[1 − 𝑃0(𝑖, 𝑗, 𝑓)]
∏︁

𝑓 :I𝑖,𝑗,𝑓=0

𝑃0(𝑖, 𝑗, 𝑓).
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The negative log-likelihood is:

𝐿[𝛼𝑖,𝑗|{I𝑖,𝑗,𝑓}𝑁𝑃
𝑓=1] = −

∑︁
𝑓 :I𝑖,𝑗,𝑓=1

log[1 − 𝑃0(𝑖, 𝑗, 𝑓)] −
∑︁

𝑓 :I𝑖,𝑗,𝑓=0

log𝑃0(𝑖, 𝑗, 𝑓)

≈ −
∑︁

𝑓 :I𝑖,𝑗,𝑓=1

log{𝜂𝑖,𝑗[𝛼𝑖,𝑗𝑆𝑖,𝑗 +
∑︁

(𝑖′,𝑗′)∈
𝐴(𝑖,𝑗,𝑓)

𝛽(𝑖− 𝑖′, 𝑗 − 𝑗′)] + 𝐵𝑖,𝑗}

+
∑︁

𝑓 :I𝑖,𝑗,𝑓=0

{𝜂𝑖,𝑗[𝛼𝑖,𝑗𝑆𝑖,𝑗 +
∑︁

(𝑖′,𝑗′)∈
𝐴(𝑖,𝑗,𝑓)

𝛽(𝑖− 𝑖′, 𝑗 − 𝑗′)] + 𝐵𝑖,𝑗}

= −
∑︁

𝑓 :I𝑖,𝑗,𝑓=1

log{𝜂𝑖,𝑗[𝛼𝑖,𝑗𝑆𝑖,𝑗 +
∑︁

(𝑖′,𝑗′)∈
𝐴(𝑖,𝑗,𝑓)

𝛽(𝑖− 𝑖′, 𝑗 − 𝑗′)] + 𝐵𝑖,𝑗}

+ (𝑁𝑃 − 𝑘𝑖,𝑗)(𝜂𝑖,𝑗𝛼𝑖,𝑗𝑆𝑖,𝑗 + 𝐵𝑖,𝑗) + 𝜂𝑖,𝑗
∑︁

𝑓 :I𝑖,𝑗,𝑓=0

∑︁
(𝑖′,𝑗′)∈
𝐴(𝑖,𝑗,𝑓)

𝛽(𝑖− 𝑖′, 𝑗 − 𝑗′)

(2.9)

where we have again used the low-flux approximation. This data likelihood function is convex

with respect to 𝛼𝑖,𝑗 because the crosstalk term is independent of 𝛼𝑖,𝑗, and therefore does not

affect the non-negativity of the second derivative.

Thus far, we have developed a statistical model that closely represents the physical pro-

cesses that generate photon detections. Computationally, however, Eq. (2.9) causes the

complexity of our reflectivity estimation to scale with the total number of photon detections,

rather that the number of image pixels. This means that increasing the number of detections

to obtain higher quality images would adversely affect our method’s computational efficiency.

We found in our experiments that we could achieve comparable image results by considering

the expected number of crosstalk detections to be uniform across all pulse frames, still using
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our knowledge of the photon count data 𝑘𝑖,𝑗. In this case, we can define 𝑃0(𝑖, 𝑗) as:

𝑃0(𝑖, 𝑗) = exp

[︃
−

(︃
𝜂𝑖,𝑗𝛼𝑖,𝑗𝑆𝑖,𝑗 + 𝐵𝑖,𝑗 +

𝜂𝑖,𝑗
𝑁𝑃

𝑚−𝑀1∑︁
Δ𝑚=𝑚−1

𝑛−𝑀2∑︁
Δ𝑛=𝑛−1

𝛽(∆𝑚,∆𝑛)𝑘𝑖−Δ𝑚,𝑗−Δ𝑛

)︃]︃
,

(2.10)

where (𝑚,𝑛) is the array pixel corresponding to the image pixel (𝑖, 𝑗), i.e., 𝑚 = ((𝑖 − 1)

mod 𝑀1) + 1, 𝑛 = ((𝑗 − 1) mod 𝑀2) + 1.

2.4.2 Noise Censoring

Like background noise, crosstalk causes the depth likelihood to be non-convex. Thus, be-

fore we can estimate depth by convex optimization, we must censor both background and

crosstalk detections. We can use the Poisson rate functions of signal, background, and

crosstalk detections to compute the likelihood that a detection is due to background or

crosstalk:

Pr[detection at (𝑖, 𝑗, 𝑓) is noise] =
𝜆𝐵𝐺
𝑖,𝑗 + 𝜆𝐶𝑇

𝑖,𝑗,𝑓 (𝑡𝑖,𝑗,𝑓 )

𝜆𝑆𝐼𝐺
𝑖,𝑗,𝑓 (𝑡𝑖,𝑗,𝑓 ) + 𝜆𝐵𝐺

𝑖,𝑗 + 𝜆𝐶𝑇
𝑖,𝑗,𝑓 (𝑡𝑖,𝑗,𝑓 )

=
𝐵𝑖,𝑗/𝑇𝑟 + 𝜆𝐶𝑇

𝑖,𝑗,𝑓 (𝑡𝑖,𝑗,𝑓 )

𝜂𝑖,𝑗𝛼𝑖,𝑗𝑆𝑖,𝑗𝑠(𝑡𝑖,𝑗,𝑓 − 2𝑧𝑖,𝑗/𝑐) + 𝐵𝑖,𝑗/𝑇𝑟 + 𝜆𝐶𝑇
𝑖,𝑗,𝑓 (𝑡𝑖,𝑗,𝑓 )

.

(2.11)

At this step, we already have an estimate for 𝛼𝑖,𝑗, but we need some preliminary estimate of

depth 𝑧𝑖,𝑗 to suppress crosstalk. In practice, we use 𝑐𝑡𝑅𝑂𝑀
𝑖,𝑗 /2 as a depth estimate, just as we

did in the no-crosstalk case. We can now rewrite Eq. (2.11) using our initial estimates for

reflectivity and depth:

Pr[detection at (𝑖, 𝑗, 𝑓) is noise] =
𝐵𝑖,𝑗/𝑇𝑟 + 𝜆𝐶𝑇

𝑖,𝑗,𝑓 (𝑡𝑖,𝑗,𝑓 )

𝜂𝑖,𝑗�̂�𝑖,𝑗𝑆𝑖,𝑗𝑠(𝑡𝑖,𝑗,𝑓 − 𝑡𝑅𝑂𝑀
𝑖,𝑗 ) + 𝐵𝑖,𝑗/𝑇𝑟 + 𝜆𝐶𝑇

𝑖,𝑗,𝑓 (𝑡𝑖,𝑗,𝑓 )
. (2.12)

We censor detections for which Pr[detection at (𝑖, 𝑗, 𝑓) is noise] > 0.5. Because a crosstalk

detection occurs with only a short time delay after its originating detection, it is easy to cen-
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sor crosstalk that results from background noise, and much more difficult to censor crosstalk

that results from signal detections. In low-SBR conditions, we obtained better results by

first censoring background detections before attempting to censor crosstalk (see Section 4.4).

2.4.3 Depth Estimation

After noise censoring, we proceed to estimate depth with the assumption that the remaining

detections are due to back-reflected signal, just as in the no-crosstalk case. Any crosstalk

detections that do not get censored are generally indistinguishable from signal detections,

and therefore do not severely impact the accuracy of depth estimation.

One parameter we do not account for is timing jitter. There is some delay between

the time when a photon arrives at the active area of a detector pixel and the time when a

detection is registered. This delay varies with some uncertainty due to randomness in the

motion of charge carriers through the device, as illustrated by the variation in the simulated

avalanche current responses in Figure 2-4(b). This uncertainty is called the detector’s timing

jitter, and is often as low as tens of picoseconds. Although the delay itself may be hundreds

of picoseconds, the uncertainty in the delay is small enough that it does not warrant the

computational complexity it would add to our statistical model. We have not explicitly

incorporated the overall delay into our models, but it can be corrected by a simple calibration

either before or after depth estimation.

Another point of interest is that the readout circuitry quantizes detection times into

discrete time bins, which affects depth resolution. While these time bins can be very small

(<10 ps) for single-pixel detectors, they are generally larger (100 ps - 1 ns) for arrays. For

simplicity, we have omitted time bin quantization from our discussion in this chapter, but

in practice we can account for it by converting between time units of seconds and time bin

number.
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Chapter 3

Simulation of Photon Detection Data

In this chapter, we will briefly describe our methods for simulating the photon detection

data that we used to test our imaging method.

We begin with a set of imaging parameters that represent the relevant characteristics of

a LIDAR system:

� Array size: 𝑀 ×𝑀 pixels

� Laser beam intensity profile: 𝑆𝑚,𝑛 for all array pixels (𝑚,𝑛) ∈ [1,𝑀 ] × [1,𝑀 ]

� Pixel-wise quantum efficiency: 𝜂𝑚,𝑛 for all array pixels (𝑚,𝑛) ∈ [1,𝑀 ] × [1,𝑀 ]

� Pixel-wise dark count rate: 𝑑𝑚,𝑛 for all array pixels (𝑚,𝑛) ∈ [1,𝑀 ] × [1,𝑀 ]

� Rate of photon arrivals from ambient light: 𝑏, assumed to be spatially uniform

� Number of laser pulses: 𝑁𝑃

� Pulse repetition period: 𝑇𝑟 > 2𝑧𝑚𝑎𝑥/𝑐, where 𝑧𝑚𝑎𝑥 is the maximum scene depth

� Photon flux of laser pulse: 𝑠(𝑡), normalized to satisfy
∫︀ 𝑇𝑟

0
𝑠(𝑡)𝑑𝑡 = 1

� Time bin width: 𝑇Δ
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We represent a scene with ground truth reflectivity and depth images, which are composed

of discrete pixels. In the continuous real world, however, a scene’s reflectivity and depth are

not necessarily uniform over the imaging area of a single detector pixel, which may be as large

as several m2 for airborne LIDAR systems. To simulate a continuous scene while still using

discretized ground truth images, we introduce the concept of a superpixel to describe the

imaging area of a detector pixel. This superpixel method is important in simulating realistic

behavior when the scene reflectivity and/or depth is highly non-uniform within a detector

pixel’s imaging area, i.e., along edges and when scene features are small compared to the

detector pixel’s imaging area. We begin with high-resolution ground truth images, in which

one 𝑤 × 𝑤 superpixel—for example, a 2 × 2 square in the ground truth images—maps onto

one detector pixel (Figure 3-1). If we want to form 𝑁1 × 𝑁2 reflectivity and depth images

with a superpixel size of 𝑤×𝑤, then our ground truth images should be 𝑤𝑁1 ×𝑤𝑁2 pixels.

For the estimated reflectivity and depth values �̂�𝑖,𝑗 and 𝑧𝑖,𝑗, we will notate the corresponding

ground truth values as 𝛼
(𝑔)
𝑖,𝑗 and 𝑧

(𝑔)
𝑖,𝑗 for 𝑔 = [1, ..., 𝑤2].

Figure 3-1: Use of superpixels to approximate a spatially continuous parameter.
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We can then rewrite Eq. (2.2) as:

𝑃0(𝑖, 𝑗) =

(︃
𝑤2∏︁
𝑔=1

𝑒−(𝜂𝑚,𝑛𝛼
(𝑔)
𝑖,𝑗 𝑆

(𝑔)
𝑚,𝑛)

)︃
𝑒−𝐵𝑚,𝑛 ,

= 𝑒−(𝜂𝑚,𝑛
∑︀𝑤2

𝑔=1(𝛼
(𝑔)
𝑖,𝑗 𝑆

(𝑔)
𝑚,𝑛)+𝐵𝑚,𝑛) (3.1)

where we understand (𝑚,𝑛) to be the detector pixel corresponding to the image pixel (𝑖, 𝑗) as

discussed in Section 2.3. We have also used the notation 𝑆
(𝑔)
𝑚,𝑛 to apply the superpixel concept

to a laser beam intensity profile that is spatially continuous. In our estimation method,

however, we can approximate the beam intensity as being uniform within a superpixel, so we

will say 𝑆
(𝑔)
𝑚,𝑛 ≈ 𝑆𝑚,𝑛/𝑤

2 for 𝑔 = [1, ..., 𝑤2]. We calculate 𝑆𝑚,𝑛 from a 2-D Gaussian function:

𝑆𝑚,𝑛 ∝
∫︁ 𝑚

𝑦=𝑚−1

∫︁ 𝑛

𝑥=𝑛−1

𝑒−
(𝑥−𝑀

2 )2+(𝑦−𝑀
2 )2

2𝜎2 𝑑𝑥𝑑𝑦, for (𝑚,𝑛) ∈ [1,𝑀 ] × [1,𝑀 ], (3.2)

where 𝑥 and 𝑦 are in pixel units. Thus, we can simplify Eq. (3.1):

𝑃0(𝑖, 𝑗) ≈ 𝑒−(𝜂𝑚,𝑛𝑆𝑚,𝑛
1

𝑤2

∑︀𝑤2

𝑔=1 𝛼
(𝑔)
𝑖,𝑗 +𝐵𝑚,𝑛). (3.3)

With 𝑃0(𝑖, 𝑗) in this form, we can see that our estimated reflectivity value at (𝑖, 𝑗) will actually

be an estimate of the average of the scene reflectivity over the corresponding ground truth

superpixel, which we will denote as �̄�𝑖,𝑗.

When the depth is highly non-uniform within a superpixel, we call the resulting image

pixel a multi-range pixel. The distribution of signal detection times at a multi-range pixel

will have multiple peaks corresponding to the different ground truth depth values within the

corresponding superpixel. We can rewrite Eq. (1.5) as:

𝑓𝑇𝑖,𝑗
(𝑡;𝛼

(𝑔)
𝑖,𝑗 , 𝑧

(𝑔)
𝑖,𝑗

𝑤2

𝑔=1
|detection is signal) =

∑︀𝑤2

𝑔=1 𝛼
(𝑔)
𝑖,𝑗 𝑠(𝑡− 2𝑧

(𝑔)
𝑖,𝑗 /𝑐)∑︀𝑤2

𝑔=1 𝛼
(𝑔)
𝑖,𝑗

. (3.4)

Although our work does not attempt to address this issue of multi-range pixels, we take note

of it as an expected source of error along edges in our depth estimation.
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To simulate detections, let us first consider a superpixel within a single pulse frame. Each

superpixel (𝑖, 𝑗) corresponds to a detector pixel (𝑚,𝑛) and ground truth pixels 𝑔 = [1, ..., 𝑤2].

For each superpixel (𝑖, 𝑗), we generate 𝑤2 Bernoulli random variables to represent signal

detections, with success probability 1 − 𝑒−(𝜂𝑚,𝑛𝛼
(𝑔)
𝑖,𝑗 𝑆

(𝑔)
𝑚,𝑛) for 𝑔 = [1, ..., 𝑤2]. If a Bernoulli trial

returns a success, then we then assign it a detection time from the distribution 𝑠(𝑡−2𝑧
(𝑔)
𝑖,𝑗 /𝑐).

We also generate another Bernoulli random variable to represent noise detections with success

probability 1 − 𝑒−𝐵𝑚,𝑛 , and assign a detection time drawn from a uniform distribution on

[0, 𝑇𝑟]. If multiple detections occur within the superpixel, then we retain only the detection

with the earliest arrival time, since a detector pixel can only fire once in a pulse frame. In this

way, we simulate detections over the 𝑀 ×𝑀 array for 𝑁𝑃 pulses, and scan over the ground

truth scene to obtain detection times 𝑡𝑖,𝑗,𝑓 for 𝑖 = [1, ..., 𝑁1], 𝑗 = [1, ..., 𝑁2], 𝑓 = [1, ..., 𝑁𝑃 ].

The final step is to quantize the detection times into time bins: 𝑡𝑖,𝑗,𝑓 → ⌈𝑡𝑖,𝑗,𝑓/𝑇Δ⌉. We store

the quantized detection times in a 𝑁1×𝑁2×𝑁𝑃 sparse matrix. We also keep track of which

detections are due to signal and which are due to noise, as this information will be useful in

assessing the accuracy of our noise censoring method (see Section 4.4).

3.1 Simulation of Crosstalk Detections

After generating a set of primary detections, we may optionally choose to simulate crosstalk.

We generate crosstalk based on the parameters 𝛽(∆𝑚,∆𝑛) and 𝛾(∆𝑡) defined in Section 2.2.

In our simulations, we experimented with various choices of 𝛽(∆𝑚,∆𝑛), including the ones

empirically measured for real arrays in [14] and [15]. We used a gamma distribution for the

normalized rate of secondary photon generation: 𝛾(∆𝑡) = Γ(8, 0.1), where the parameters of

the gamma distribution were selected to match the curves given in Figure 2-4(b), and ∆𝑡 is

in nanoseconds.

Because crosstalk is confined within each array-frame (see Section 2.4), we will consider

one array-frame at a time when simulating crosstalk. For each array-frame, our implementa-

tion maintains two data structures that hold photon detection data: (1) a priority queue that

returns detections in order of detection time, and (2) an 𝑀 ×𝑀 array to store the output
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set of detections. We begin by placing all of the primary detections in the array-frame into

the priority queue. When we pop a detection off the queue, we first check the output array

to see if we have already processed an earlier detection at the same pixel. If there is already

an earlier detection stored at that pixel in the output array, then the detection in question

is blocked, and we discard it. Otherwise, we store the detection in the output array and

proceed to generate crosstalk.

To generate crosstalk from a detection at pixel (𝑚,𝑛) at time 𝑡, we will first consider

the spatial offsets at which crosstalk can occur. At every other pixel (𝑚′, 𝑛′) in the array,

the expected number of crosstalk detections resulting from the primary detection at (𝑚,𝑛)

is 𝜂𝑚′,𝑛′𝛽(𝑚′ − 𝑚,𝑛′ − 𝑛). If this quantity satisfies the low-flux assumption, then we can

use it as the probability of success in a Bernoulli trial. If the trial returns a success, then

we randomly sample a temporal delay ∆𝑡 from the distribution 𝛾(∆𝑡), and we assign the

detection time 𝑡′ = 𝑡 + ∆𝑡 to the new crosstalk detection at (𝑚′, 𝑛′). The new detection is

then placed in the priority queue. We repeat this process until the priority queue is empty,

at which point all detections that are not blocked will be stored in the output array.

In this way, we simulate crosstalk for each array-frame, and combine the output arrays

to obtain a full set of detections over all image pixels and pulse frames. Just as we did for

signal and noise detections, we keep track of which detections are due to crosstalk so that

we can assess the accuracy of our crosstalk censoring method.
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Chapter 4

Results and Performance Analysis

4.1 Performance Measurements

We will first discuss how we quantify our algorithm’s performance for reflectivity and depth

estimation. To quantify the accuracy of a reflectivity estimate, we use mean squared error

(MSE) in decibels (dB):

MSE(�̂�,𝛼) = 10 log10

(︃
1

𝑁1𝑁2

𝑁1∑︁
𝑖=1

𝑁2∑︁
𝑗=1

(�̂�𝑖,𝑗 − �̄�𝑖,𝑗)
2

)︃
, (4.1)

where �̂� is our estimated reflectivity image, 𝛼 is the ground truth reflectivity image, and

�̄�𝑖,𝑗 = 1
𝑤2

∑︀𝑤2

𝑔=1 𝛼
(𝑔)
𝑖,𝑗 , as in Chapter 3

We quantify the accuracy of a depth estimate by computing the root mean squared error

(RMSE) in meters:

RMSE(�̂�, 𝑧) =

⎯⎸⎸⎷ 1

𝑤2𝑁1𝑁2

𝑁1∑︁
𝑖=1

𝑁2∑︁
𝑗=1

𝑤2∑︁
𝑔=1

(𝑧𝑖,𝑗 − 𝑧
(𝑔)
𝑖,𝑗 )2, (4.2)

where �̂� is our estimated depth image, and 𝑧 is the ground truth depth image. Because it

does not make sense to average depth values within a superpixel, we have defined the depth
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RMSE such that we compare the estimated depth at an image pixel with each of the 𝑤2

ground truth depth values within the corresponding superpixel.

Another useful measurement to assess our method’s performance for a given ground truth

scene is the pixel-wise RMSE over repeated trials of reflectivity and depth estimation with

different sets of simulated data. Over 𝑅 repeated trials, we can compute an RMSE image

for reflectivity estimation as:

RMSE𝑖,𝑗({�̂�(ℓ)
𝑖,𝑗 }𝑅ℓ=1, �̄�𝑖,𝑗) =

⎯⎸⎸⎷ 1

𝑅

𝑅∑︁
ℓ=1

(�̂�
(ℓ)
𝑖,𝑗 − �̄�𝑖,𝑗)2 , for all image pixels (𝑖, 𝑗), (4.3)

and similarly for depth estimation. For all three of these quantities—reflectivity MSE, depth

RMSE, and pixel-wise RMSE—a lower value means that the estimated image is closer to

the ground truth.

4.2 Simulation of Ideal Conditions

We begin by assessing our algorithm’s performance in ideal conditions, by simulating only

signal photon detections with uniform array parameters. In real imaging systems, signal-

only conditions can be approached when ambient light and dark counts are negligible (very

low dark count rates have been achieved in some CMOS arrays [8]). For our purposes, our

algorithm’s performance with ideal data will serve as a useful benchmark for comparison

when we add noise and non-idealities to our simulation. In these simulations and all that

follow, unless otherwise specified, the imaging parameters are shown in Table 4.1. The

parameters 𝑁𝑃 and 𝑆𝑖,𝑗 were chosen to realize the desired number of photon counts. In later

results that include noise, 𝐵𝑖,𝑗 was chosen to realize the desired SBR. We also included the

effect of an optical bandpass filter with a 50% transmission at the operating wavelength,

emulating the physical imaging setup in [6] and [7].

In Figure 4-1, we show results from a tank scene with only signal detections. Figure 4-2

shows how performance improves as the mean number of photon detections increases. Figure
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Parameter Value

𝑀 ×𝑀 32 × 32 pixels
𝑁1 ×𝑁2 256 × 512 pixels
𝑤 × 𝑤 4 × 4 pixels
𝑇𝑝 40 ps
𝑇𝑟 1 𝜇s
𝜂𝑖,𝑗 0.35
𝑇Δ 100 ps

Table 4.1: Simulation parameters.

4-3 shows that the error in both reflectivity and depth estimation is primarily due to loss of

edge detail and small image features. For reflectivity estimation, the high variance of Poisson

noise with low photon counts makes it difficult to simultaneously preserve image details and

suppress noise, which we will discuss further in Section 4.3. For depth estimation, the error

along depth boundaries can be attributed to the fact that we used 4 × 4 superpixels in this

set of simulations. In other words, 16 pixels in the ground truth images are mapped onto 1

pixel in the estimated image. This means that we have multi-range pixels when the scene

depth is highly non-uniform within a 4 × 4 superpixel. Although our work did not seek to

address the issue of multi-range pixels, there is ongoing work in this area using techniques

such as range gating and mode-based coincidence processing [18]. When the scene depth

is uniform within a superpixel (e.g., 𝑤 = 1), any error in the depth estimate is due to the

duration of the laser pulse, the quantization of detection times, the detector’s timing jitter,

and possible over-smoothing resulting from spatial regularization. Error due to the laser

pulse’s duration decreases as the number of signal detections increases.

47



(a) Ground truth reflectivity. (b) Ground truth depth.

(c) Photon counts with avg 1 ppp. (d) Mean of detection times with avg 1 ppp (white
indicates no detections).

(e) Reflectivity estimate with avg 1 ppp.
MSE = -26.4 dB.

(f) Depth estimate with avg 1 ppp.
RMSE = 12.3 cm.

(g) Reflectivity estimate with avg 8 ppp.
MSE = -30.3 dB.

(h) Depth estimate with avg 8 ppp.
RMSE = 7.7 cm.

Figure 4-1: Results with only signal detections. Ground truth size: 1024×2048. Superpixel size: 4×4.
Image size: 256× 512.
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(a) MSE of reflectivity estimate for varying signal
levels.

(b) Pixel-wise RMSE values for reflectivity
estimates for varying signal levels.

(c) RMSE of depth estimate for varying signal
levels.

(d) Pixel-wise RMSE values of depth estimates for
varying signal levels.

Figure 4-2: Performance with only signal detections, averaged over 50 trials.

4.3 Spatial Resolution Tests

Our method’s ability to suppress high noise levels in photon-starved conditions relies on the

key assumption that reflectivity and depth are each spatially correlated in natural scenes.

This assumption breaks down when the features of interest are small, i.e., only a few pixels

in size. Seeking to achieve a spatial resolution of only 1-2 pixels, for example, would equate

to abandoning our assumption of spatial correlation in the scene. Our method thus sacrifices

some degree of spatial resolution in order to achieve high photon efficiency, and in this section

we seek to determine our method’s best achievable spatial resolution, in terms of the smallest
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(a) RMSE image for reflectivity estimate with
mean 1 ppp.

(b) RMSE image for reflectivity estimate with
mean 8 ppp.

(c) RMSE image for depth estimate with
mean 1 ppp.

(d) RMSE image for depth estimate with
mean 8 ppp.

Figure 4-3: Pixel-wise RMSE images for reflectivity and depth estimation over 50 repeated trials.

feature size (in pixel units) that is discernible in the reflectivity and depth images. Naturally,

spatial resolution improves as the number of signal detections increases, but since we are

interested in exploring the limits of photon efficiency, we conduct our analysis here only for

very low photon counts.

To test spatial resolution, we created the test chart shown in Figure 4-4. In these charts,

the feature size increases from left to right, and the image “contrast” increases from top to

bottom. In this context, the image contrast corresponds to the change in reflectivity and

depth across edges, which we will refer to as the dynamic range of the scene’s reflectivity and

depth, respectively. This chart allows us to determine if and how the spatial resolution of our

reflectivity and depth estimation depends on dynamic range. In these test chart simulations,

we used 𝑤 = 1 and uniform imaging parameters, with noise added at an SBR of 1.

Our tests show that the factors that determine spatial resolution differ for reflectivity

versus depth estimation. For reflectivity, the spatial resolution depends on the dynamic

50



Figure 4-4: Grid chart used to test spatial resolution of both reflectivity and depth estimation.
When testing reflectivity, the ground truth depth was held constant at 75 m. When testing depth,
the ground truth reflectivity was held constant at 1.

range of the scene’s reflectivity, the number of signal detections, the SBR, and the spatial

regularization parameter 𝜏𝛼. For depth, the spatial resolution depends primarily on the

ROM window size, which plays a large role in determining the set of detections that are used

to estimate depth after noise censoring.

As with many denoising algorithms in image processing, we have a tradeoff between the

suppression of unwanted noise and the preservation of image details. With photon-limited,

noisy data, it is impossible to distinguish small image features from noise unless we have some

prior knowledge about what the scene should look like. In fact, the spatial regularization

term is a spatial prior from the perspective of Bayesian inference, where the parameters 𝜏𝛼

and 𝜏𝑧 represent our belief about the degree to which reflectivity and depth, respectively,

are spatially correlated in the scene. Figures 4-5 demonstrates the effect of these spatial

regularization parameters. In Figure 4-6, (a) and (b), we can see more precisely how 𝜏𝛼

affects spatial resolution in reflectivity estimation, where spatial regularization plays a larger

role than in depth estimation.
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(a) Reflectivity estimate with low 𝜏𝛼. (b) Reflectivity estimate with high 𝜏𝛼.

(c) Depth estimate with low 𝜏𝑧. (d) Depth estimate with high 𝜏𝑧.

Figure 4-5: Smoothness vs. detail tradeoff: in (a) and (c), smaller image features appear more
defined, but the image is noisier. Mean photon count = 3 ppp, signal only.

Besides spatial regularization, our method also suppresses noise by means of statistical

noise censoring, where our assumption of spatial correlation is implied in the ROM window

size. In their previous work, Kirmani et al. [6] and Shin et al. [7] performed noise censoring

after reflectivity estimation. With an additional step of re-estimating reflectivity after noise

censoring, we were able to achieve significantly better spatial resolution, as shown in Figure

4-6(c). For depth estimation, the spatial resolution is inherently limited by the fact that our

noise censoring method uses a local neighborhood ROM filter. As we will discuss further in

Section 4.4, the noise censoring step is likely to incorrectly remove some signal detections

when the depth features are spatially smaller in size than the ROM window. This behavior

is seen in Figure 4-7(a), where much of the signal return is removed at grid sizes that are

smaller than the 5 × 5 ROM window. The effects of this behavior are seen in the resulting

depth image in Figure 4-7(b), where the depth estimation cannot reliably resolve features

smaller than 5×5 pixels. For the data set in these figures (with a mean signal count of 2 ppp

and SBR of 1), a 5× 5 ROM window gave the best results. Even with the same SBR of 1, a
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(a) Low 𝜏𝛼 = 0.5. (b) High 𝜏𝛼 = 1.5.

(c) Re-estimated reflectivity after noise
censoring, 𝜏𝛼 = 1.5.

Figure 4-6: Spatial resolution test for reflectivity estimation. Mean signal counts = 2 ppp, SBR = 1.

slightly higher number of signal detections (∼ 5 ppp) allows us to use a smaller ROM window

(3 × 3), and thereby improve spatial resolution to ∼ 3 × 3 pixels, as shown in Figure 4-7(c).

Interestingly, depth estimation achieves better edge definition at the top of the test chart

where the dynamic range is smaller (the change in depth across edges is smaller), whereas it

is the opposite for reflectivity, which achieves better edge definition at the bottom of the test

chart where the dynamic range is large. This characteristic of depth estimation is a result

of the noise censoring method, as it is more likely to incorrectly censor signal detections

when there is a very large depth gradient within a ROM window. This behavior becomes

more apparent at very low signal flux, as in Figure 4-7(b), where we can see that our depth

estimate loses some edge definition at the bottom of the test chart.
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(a) Black indicates pixels where signal detections are removed by noise censoring.
Mean signal counts = 1 ppp, SBR = 1. ROM window size = 5× 5.

(b) Depth estimate. Mean signal counts = 1 ppp,
SBR = 1. ROM window size = 5× 5.

(c) Depth estimate. Mean signal counts = 5 ppp,
SBR = 1. ROM window size = 3× 3.

Figure 4-7: Spatial resolution test for depth estimation.

In summary, our spatial resolution tests show that our method is capable of resolving

features as small as 3× 3 pixels with low signal flux and high noise levels. The tests demon-

strate how our method’s spatial resolution varies depending on the scene’s characteristics

and the choice of parameters that represent our assumption of spatial correlation. We also

saw that this assumption presents us with a performance tradeoff between noise suppression

and spatial resolution. Because of this tradeoff, our discussion of spatial resolution is closely

related to the analysis of our noise censoring method in Section 4.4. Gaining a better un-

derstanding of the behavior of our noise censoring method will help to explain the spatial

resolution characteristics that we have seen in this section.
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4.4 Noise Censoring

We will now analyze our method’s performance in censoring background detections and

crosstalk detections, addressing each of these cases separately. One advantage of using

simulated data is that we know whether each detection is due to signal, background, or

crosstalk. This knowledge allows us to assess the accuracy of our censoring methods for

background and crosstalk detections, respectively. Both background and crosstalk censoring

involve two flexible parameters: the ROM window size and the censoring threshold. We

will explore how these parameters each affect the behavior of the censoring method and the

resulting reflectivity and depth images after censoring.

4.4.1 ROM Filter

The purpose of the ROM filter is to obtain an initial rough estimate of depth (or precisely,

2𝑧𝑖,𝑗/𝑐) for use in the hypothesis test for noise censoring. We censor detections whose detec-

tion times are beyond some threshold away from the ROM value 𝑡𝑅𝑂𝑀
𝑖,𝑗 , so we want 𝑡𝑅𝑂𝑀

𝑖,𝑗 to

be as close as possible to the true signal value 2𝑧𝑖,𝑗/𝑐. There are two main cases in which

the ROM value is likely to be a poor estimate of 2𝑧𝑖,𝑗/𝑐:

1. when the scene depth is highly non-uniform within the ROM window, e.g., near depth

boundaries, as in Figure 4-8(a). In this case, the ROM window will contain multiple

signal detection times, and 𝑡𝑅𝑂𝑀
𝑖,𝑗 may fall between those times but be close to none of

them, especially in the presence of background noise. This behavior is analogous to

that of multi-range pixels. Intuitively, a smaller ROM window would help to achieve

better performance near depth boundaries, but a window size smaller than 5 × 5 or

3 × 3 is infeasible in low-flux and noisy conditions.

2. when there is more background than signal (low SBR), e.g., in low-reflectivity regions,

as in Figure 4-8(b). In this case, 𝑡𝑅𝑂𝑀
𝑖,𝑗 will be biased toward 𝑇𝑟/2 because background

detection times are uniformly distributed over [0, 𝑇𝑟]. If the approximate scene depth

is known, accuracy can be improved by using a technique known as range gating, in
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which we only consider detections within a truncated time range, chosen such that

2𝑧𝑖,𝑗/𝑐 is near the middle of the time range.

In both of these cases, the ROM estimate may also be improved by using alternative mode-

based (rather than median-based) approaches to detect peaks in the distribution of detection

times within the ROM window [18].

(a) Non-uniform depth within ROM window.

(b) Low SBR within ROM window.

Figure 4-8: Distribution of detection times for two cases in which the ROM filter may not provide
an accurate depth estimate. The marks along the 𝑡 axis correspond to a sample simulation of signal
and background detection times within a ROM window.

In Figure 4-9(a), we show the difference between the ground truth depth, 𝑧𝑖,𝑗, and the

depth corresponding to the ROM value, 𝑐𝑡𝑅𝑂𝑀
𝑖,𝑗 /2, verifying that the ROM error is likely to

be higher in the two cases of depth boundaries and low SBR.

4.4.2 Censoring Threshold

The choice of the censoring threshold is an adjustable parameter that differs for background

censoring versus crosstalk censoring. This threshold determines a tradeoff between censoring
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a greater fraction of noise detections and preserving a greater fraction of signal detections.

A higher threshold signifies a higher tolerance for error in 𝑡𝑅𝑂𝑀
𝑖,𝑗 as an estimate of 2𝑧𝑖,𝑗/𝑐,

and thus gives a better chance of retaining signal detections near depth boundaries and

in low-reflectivity regions. On the other hand, a lower threshold will censor a very high

percentage of noise detections, but at the cost of incorrectly removing a greater number of

signal detections. This result may be acceptable if the signal return is high enough to begin

with, but at low signal levels it can result in small image features being removed entirely.

We will also see that in general, a higher threshold gives better results when re-estimating

reflectivity after censoring, whereas a lower threshold is more suitable for depth estimation.

Censoring Background Detections

In the no-crosstalk case, Eq. (1.12) gives one possibility of a censoring threshold for back-

ground detections. We found that Eq. (1.12) is a very low threshold, and although it censored

>99.9% of background detections, it also mistakenly censored ∼ 30% of signal detections.

For several different scenes and imaging parameters, we were generally able to find a thresh-

old setting that censored ∼ 99% of noise detections and retained ∼ 99% of signal detections.

Figure 4-9(b) shows that the incorrectly censored signal detections are concentrated along

edges and in low-reflectivity regions, where 𝑡𝑅𝑂𝑀
𝑖,𝑗 is not close to 2𝑧𝑖,𝑗/𝑐.

Censoring Crosstalk

With crosstalk, we use a censoring threshold based on the statistical likelihood that a detec-

tion is due to either background noise or crosstalk, as in Eq. (2.12). This likelihood is very

sensitive to ROM error, especially if the laser’s FWHM pulse duration 𝑇𝑝 is small compared

to the time bin width 𝑇Δ. We can adjust the tolerance of ROM error by substituting a

different function for 𝑠(𝑡 − 𝑡𝑅𝑂𝑀
𝑖,𝑗 ) in the denominator of Eq. (2.12). In the results shown

here, we found that a simple box function with a width of ±3 time bins gave satisfactory

results.
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(a) ROM error, calculated as |𝑧𝑖,𝑗 − 𝑐𝑡𝑅𝑂𝑀
𝑖,𝑗 /2|.

(b) Black indicates pixels where signal detections are removed by
background censoring.

Figure 4-9: Background censoring is likely to incorrectly remove some signal detections where the
ROM error is high. Mean signal count = 2 ppp, SBR = 1.

In our crosstalk simulations, we used 𝑤 = 1, and the results we present here are for a data

set with a mean signal count of 2 ppp, mean background count of 2 ppp, and mean crosstalk

count of 0.75 ppp. As shown in Figure 4-10, our crosstalk censoring method incorrectly

removed much of the signal return near depth boundaries. The error near edges is more

pronounced than in the no-crosstalk case because secondary photons can travel through the

array to cause crosstalk detections across depth boundaries. This means that crosstalk may

degrade our ROM estimate as far as 𝑀 pixels away from a depth boundary. We were able

to ameliorate this problem to some extent by first censoring background detections, then re-

computing 𝑡𝑅𝑂𝑀
𝑖,𝑗 to obtain a significantly improved estimate of 2𝑧𝑖,𝑗/𝑐. Using this improved
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𝑡𝑅𝑂𝑀
𝑖,𝑗 , our crosstalk censoring method was able to censor > 99.9% of background detections

and ∼ 99% of crosstalk detections, while retaining ∼ 98% of signal detections.

Figure 4-10: Black indicates pixels where signal detections are removed by crosstalk censoring.

Two other factors have a significant influence on our method’s ability to censor crosstalk:

(1) the width of the time bins as compared to the temporal delay of crosstalk, and (2) the

scene’s depth characteristics. If 𝑇Δ is large, then crosstalk detections are most likely to occur

at a delay of only a few time bins—although this makes crosstalk censoring more difficult,

it also means that the small temporal delay of any uncensored crosstalk detections will not

induce much error in depth estimation (compared to the depth resolution set by the time bin

width). With 𝑇Δ = 1 ns for the same tank scene, our method was only able to censor ∼ 62%

of crosstalk detections without incurring an unacceptably high loss of signal detections. In

this tank scene, the camera is looking straight down at the scene. It is more difficult to censor

crosstalk when there is an overall depth gradient across the scene from the camera’s viewing

angle, as in Figure 4-11. When we rotated the camera such that there is an overall depth

gradient across the scene, our method censored ∼ 92% of crosstalk detections for 𝑇Δ = 100

ps, and ∼ 67% of crosstalk detections for 𝑇Δ = 1 ns.
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Figure 4-11: Ground truth depth for scene with overall depth gradient, for which crosstalk censoring
loses accuracy.

4.4.3 Effect of Background Noise on Reflectivity and Depth Esti-

mation

Low levels of background noise can be suppressed by the spatial regularization term, and

have little effect on our method’s performance. We found that adding background noise at

10% of the signal level had no noticeable impact on our reflectivity and depth estimates.

On the other hand, high levels of background noise (SBR = 1) can visibly degrade the

results of reflectivity estimation, as we can see by comparing Figures 4-12, (b) and (d). In

(b), we used a data set containing only signal detections, with an average of 2 ppp. In (d),

we used the same set of signal detections and added background detections at an SBR of 1.

With background noise, the reflectivity image loses some edge definition in detailed image

features, and contains noisy artifacts in the scene’s smooth background region.

Because the noise censoring step is consistently able to remove >99% of noise detections,

the remaining detections approach the ideal signal-only case discussed in Section 4.2, and

we can expect similar accuracy when re-estimating reflectivity after censoring. One artifact

of our noise censoring method is that the estimated reflectivity values are likely to be too

low where signal detections are incorrectly censored, namely, in low-SBR regions and near

depth boundaries, as we can see in Figure 4-12(f). For this reason, reflectivity re-estimation

performs better with a higher censoring threshold that retains more signal detections. The
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spatial regularization is effective at suppressing noise due to the small number of background

detections that remain after censoring.

(a) Photon counts: mean 2 ppp, signal only. (b) Reflectivity estimate with only signal
detections. MSE = -27.7 dB.

(c) Photon counts: mean 4 ppp, SBR = 1. (d) Reflectivity estimate before noise censoring.
MSE = -26.5 dB.

(e) Photon counts after censoring. (f) Reflectivity estimate after censoring, with high
censoring threshold. MSE = -27.4 dB.

Figure 4-12: Effect of background noise on reflectivity estimation.

Because we censor noise before estimating depth, the degree to which noise affects our

depth estimation depends on the accuracy of the noise censoring step. In depth estimation,

spatial regularization can help to fill in regions that have no photon detections. However,

it is less effective at suppressing noise due to uncensored background detections than in

reflectivity re-estimation, as background detection times have a more significant impact on

depth likelihood than on reflectivity likelihood. Thus, a lower censoring threshold is more
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suitable for depth estimation because it is more negatively affected by uncensored background

detections than by the loss of signal return. However, a low threshold also has the effect of

diminishing or removing the signal return from small image features where there is a large

difference in depth (e.g., the thin gun on top of the tank in Figure 4-13).

We found that as the SBR decreased past 2, it became more difficult to find a censoring

threshold that gave good results for both reflectivity and depth images. The results shown

in Figures 4-12(f) and 4-13(b) were obtained by using different thresholds. In practical

applications with low SBR, the thresholds for reflectivity and depth estimation may each be

independently optimized to achieve the desired results.

(a) Depth estimate (no censoring).
Mean signal count = 2 ppp, no background.

RMSE = 10 cm.

(b) Depth estimate (low censoring threshold).
Mean signal count = 2 ppp, SBR = 1. RMSE = 15 cm.

Figure 4-13: Effect of background noise on depth estimation.

4.4.4 Reflectivity and Depth Estimation With Crosstalk

Crosstalk acts as a point spread function that blurs image features. Figure 4-14 shows that

crosstalk also creates grid-like artifacts in reflectivity images, for which our method corrects

by incorporating crosstalk into our statistical model of photon counts.

In Section 2.4, we presented Eqs. (2.8) and (2.10) as two possible ways to model the

distribution of photon counts with crosstalk, where the former uses knowledge of detection

events more precisely but is not computationally scalable. Figure 4-15 shows that the two

models give very similar results, suggesting that the more computationally efficient Eq.

(2.10) can be used without any substantial loss in performance. Although these statistical
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models can correct for the grid-like artifacts, image features are still noticeably blurred as

compared to Figure 4-12(d).

The results of reflectivity and depth estimation after censoring are shown in Figure 4-

16(a) and (b). We see that the addition of crosstalk exacerbates the removal of signal

detections along depth boundaries in this scene, because of the need for a very low threshold

to censor crosstalk.

(a) Crosstalk counts only. Based on our spatial
model for crosstalk generation, fewer secondary
photons reach the edges and corners of the array.

(b) Reflectivity estimate when crosstalk is modeled
as a uniform background noise contribution, not

using any knowledge of detection events.
MSE = -26.0 dB.

Figure 4-14: Crosstalk causes grid-like artifacts in reflectivity images. Mean signal counts = 2 ppp,
mean crosstalk counts = 0.4 ppp. No background detections added, to show effect of crosstalk more
clearly.

(a) 𝑃0(𝑖, 𝑗, 𝑓) defined as in Eq. (2.8).
MSE = -26.1 dB.

(b) 𝑃0(𝑖, 𝑗) defined as in Eq. (2.10). MSE = -26.0 dB.

Figure 4-15: Comparison of statistical models for reflectivity estimation with crosstalk. Mean sig-
nal counts = 2 ppp, mean background counts = 2 ppp, mean crosstalk counts = 0.75 ppp.
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(a) Reflectivity estimate after censoring.
MSE = -25.6 dB.

(b) Depth estimate after censoring. RMSE = 24 cm.

Figure 4-16: Results of crosstalk censoring. Mean signal count = 2 ppp,
mean background count = 2 ppp, mean crosstalk count = 0.75 ppp.

4.5 Correction of Non-Uniform Array Parameters

4.5.1 Non-Uniform Beam Intensity Profile

The non-uniformity of the laser beam’s spatial intensity profile primarily affects reflectivity

estimation. In Figure 4-17, we show the improvement in reflectivity estimation achieved by

incorporating the non-uniformity of the beam profile into the statistical model. We simulated

the photon detections using the same laser power needed to obtain an average of 1 signal

detection per pixel when the entire array is within a 1 − 1/𝑒2 beam radius. At this laser

power, the optimal beam size (𝜎 = 𝑀/2; see Appendix B for derivation) produced a mean

of 3.2 signal detections per pixel, with a minimum of 1.5 expected signal detections per pixel

at the corners of the array, and a maximum of 4 at the center of the array. Our method’s

ability to correct for non-uniform beam intensity significantly increases photon efficiency by

allowing imaging systems to make use of a larger portion of the total expended laser power.

4.5.2 Non-Uniform Quantum Efficiency and Dead Pixels

We simulated detections from an array with pixel-wise quantum efficiencies normally dis-

tributed with a mean of 0.35 and standard deviation of 0.04, truncated to 0.35±0.1. We also

randomly assigned 1% of detector pixels to be dead. For a mean photon count of 1.1 ppp
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(a) Photon counts. (b) Reflectivity estimate
assuming uniform beam
profile. MSE = -22.4 dB.

(c) Reflectivity estimate accounting
for non-uniform beam profile.

MSE = -28.4 dB.

Figure 4-17: Reflectivity estimation with Gaussian beam profile. SBR = 10.

and SBR of 10, there was no noticeable difference in performance when assuming a uniform

quantum efficiency versus accounting for the non-uniformity and dead pixels.

4.5.3 Non-Uniform Dark Counts and Hot Pixels

We simulated detections from an array with pixel-wise dark count rates normally distributed

with a mean of 2 kHz and a standard deviation of 1 kHz, truncated to [0 kHz, 4 kHz]. We then

randomly assigned 2% of detector pixels to be hot pixels, and increased the dark count rate

at these pixels by a factor of 10. We also maintained the same non-uniformity of quantum

efficiency and dead pixels that we previously described in Section 4.5.2. In Figure 4-18(a),

we show the hot pixels in red and the dead pixels in black.

(a) Dead pixels (black) and
hot pixels (red).

(b) Photon counts: mean signal count = 2 ppp,
mean background count = 0.6 ppp (ignoring hot pixels).

Figure 4-18: Non-uniform quantum efficiency and dark count rate with dead pixels and hot pixels.
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Figure 4-19 shows a comparison of our results when we assumed a uniform quantum

efficiency of 0.35 and a uniform dark count rate of 2.2 kHz, versus using our array method

to account for the non-uniformities. In (a), we see that hot pixels in particular create visible

artifacts in the reflectivity image, and in (b), we see that our method is able to correct for

them. Figure 4-19(c) and (d) show that these non-uniformities have little effect on depth

estimation.

(a) Reflectivity estimate assuming uniform
parameters.

(b) Reflectivity estimate using our method.

(c) Depth estimate assuming uniform parameters. (d) Depth estimate using our method.

Figure 4-19: Reflectivity and depth estimates for data in Figure 4-18.
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Chapter 5

Conclusions

In this thesis, we have presented statistical models that accurately reflect the photon detec-

tion process in a LIDAR system using a SPAD array, and we have described a photon-efficient

image formation method that uses these models to correct for the adverse effects of the non-

idealities and non-uniformities that are present in an array-based system. By adapting Shin

et al.’s imaging method in [7] for use with detector arrays, we have made it more practical

for imaging applications that benefit from the ability to collect data at thousands of pixels

in parallel. While the non-idealities of the imaging parameters would otherwise require that

a larger number of photons be collected to obtain good results, we have demonstrated that

our method can successfully correct for the undesirable effects of these non-idealities at very

low photon counts. Through our analysis in Chapter 4, we have seen that certain imaging

parameters affect the data more than others. We have shown that our method’s ability to

correct for the radial falloff of laser beam intensity allows a LIDAR system to focus a larger

fraction of the transmitted light within the array’s field of view, thereby increasing photon

efficiency by at least 5 times. Our method’s ability to censor background and crosstalk de-

tections, as well as correct for hot pixels, may also allow SPAD arrays to be operated at a

higher quantum efficiency, which generally has the caveat of higher dark count and crosstalk

levels. One of the next steps in our future work would be to test our method with a real

imaging system to confirm the results we obtained with simulated data.
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Our experiments showed that our censoring method can remove detections due to back-

ground light and dark counts with very high accuracy, giving us a data set that approaches

ideal signal-only conditions. The accuracy of our noise censoring method suffers near depth

boundaries and in low-SBR conditions, where signal detections are likely to be incorrectly

labeled as noise. The effects of this phenomenon are visible in reflectivity and depth images,

but we have shown that they can be minimized by independently optimizing the censor-

ing thresholds for reflectivity and depth estimation, combined with spatial regularization.

We expect that our noise censoring method would benefit from further progress in process-

ing multi-range pixels, which may help to achieve better performance at depth boundaries.

Multi-range processing also has the potential for sub-pixel depth resolution and for the re-

construction of scene objects that are partially occluded.

We have also shown that the accuracy of our crosstalk censoring method is highly depen-

dent on the time bin resolution and the scene’s depth characteristics. From this behavior,

we conclude that our method may perform well for specific applications where the SPAD

array has small time bins and the scenes of interest have no overall depth gradient. For more

general imaging applications, however, statistical crosstalk censoring may not be a reliable

method. For this reason, photon-efficient LIDAR systems would still benefit from hardware

improvements to decrease crosstalk in SPAD arrays.

Our method’s high photon efficiency has promising implications for imaging applications

where laser power or data acquisition time is limited, whether by hardware constraints or

external factors. Compared to conventional image formation methods, our method relaxes

the requirement for high-quality, high-volume data, thus shifting much of the burden of

image quality from data collection to data processing. Despite our method’s strengths in

processing photon-limited, noisy data, it is not without its own limitations. As we have

discussed, various imaging and algorithmic parameters play a role in determining the partic-

ular behavior at each step of our image formation method. Our analysis not only suggests

directions for further progress in our computational framework, but may also help to guide

the future development of SPAD arrays and LIDAR systems that use them. As SPAD array
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hardware continues to improve, our hope is that our computational method will open new

avenues for imaging where it was previously infeasible.
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Appendix A

Proof of Convexity of Reflectivity

Likelihood Equation

The SPIRAL optimization algorithm makes the assumption that the negative log-likelihood

function 𝐿(θ) is proper convex—that is, the negative log-likelihood 𝐿(θ) is convex and 𝐿(θ) >

−∞ for every 𝑥. We show here that our likelihood equations satisfy this assumption and are

therefore appropriate for the SPIRAL algorithm.

From Eq. (2.3), we have the negative log-likelihood of reflectivity:

𝐿𝛼(𝛼𝑖,𝑗; 𝑘𝑖,𝑗) = − log

(︂
𝑁𝑃

𝑘𝑖,𝑗

)︂
+ (𝑁𝑃 − 𝑘𝑖,𝑗)(𝜂𝑖,𝑗𝛼𝑖,𝑗𝑆𝑖,𝑗 + 𝐵𝑖,𝑗) − 𝑘𝑖,𝑗 log(1 − 𝑒−(𝜂𝑖,𝑗𝛼𝑖,𝑗𝑆𝑖,𝑗+𝐵𝑖,𝑗))

≈ (𝑁𝑃 − 𝑘𝑖,𝑗)(𝜂𝑖,𝑗𝛼𝑖,𝑗𝑆𝑖,𝑗 + 𝐵𝑖,𝑗) − 𝑘𝑖,𝑗 log(𝜂𝑖,𝑗𝛼𝑖,𝑗𝑆𝑖,𝑗 + 𝐵𝑖,𝑗)

First derivative:

𝜕𝐿𝛼

𝜕𝛼𝑖,𝑗

= (𝑁𝑃 − 𝑘𝑖,𝑗)𝜂𝑖,𝑗𝑆𝑖,𝑗 −
𝑘𝑖,𝑗𝜂𝑖,𝑗𝑆𝑖,𝑗

𝜂𝑖,𝑗𝛼𝑖,𝑗𝑆𝑖,𝑗 + 𝐵𝑖,𝑗

(A.1)

Second derivative:
𝜕2𝐿𝛼

𝜕𝛼2
𝑖,𝑗

=
𝑘𝑖,𝑗(𝜂𝑖,𝑗𝑆𝑖,𝑗)

2

(𝜂𝑖,𝑗𝛼𝑖,𝑗𝑆𝑖,𝑗 + 𝐵𝑖,𝑗)2
≥ 0 (A.2)
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The second derivative of 𝐿𝛼 with respect to 𝛼𝑖,𝑗 is always nonnegative, so 𝐿𝛼 is convex

and can be optimized efficiently.
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Appendix B

Optimal Beam Size

In this appendix, we explain our derivation of the optimal beam size referred to in Section

2.1.1. For our discussion here, we will define the 2-D Gaussian used to generate the beam

profile as:

ℎ𝑔(𝑥, 𝑦) =
1

2𝜋𝜎2
𝑒−(𝑥2+𝑦2)/2𝜎2

, (B.1)

where 𝑥 and 𝑦 are in pixel units. With this definition, we place the center of both the beam

and the array at (0, 0), with the array bounds from −𝑀/2 ≤ 𝑥, 𝑦 ≤ 𝑀/2. This function is

normalized such that
∫︀∞
−∞

∫︀∞
−∞ ℎ𝑔(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = 1.

The power expended by the laser over some area is proportional to the volume beneath the

2-D surface ℎ𝑔(𝑥, 𝑦) within that area. We can thus write the fraction of the total expended

laser power that falls within the array’s field of view as a function of 𝜎:

𝑃𝐴𝑅𝑅(𝜎)

𝑃𝑇𝑂𝑇

=

∫︀𝑀/2

−𝑀/2

∫︀𝑀/2

−𝑀/2
ℎ𝑔(𝑥, 𝑦)𝑑𝑥𝑑𝑦∫︀∞

−∞

∫︀∞
−∞ ℎ𝑔(𝑥, 𝑦)𝑑𝑥𝑑𝑦

=
1

2𝜋𝜎2

∫︁ 𝑀/2

−𝑀/2

∫︁ 𝑀/2

−𝑀/2

𝑒−(𝑥2+𝑦2)/2𝜎2

𝑑𝑥𝑑𝑦

=

[︂
erf

(︂
𝑀

2
√

2𝜎

)︂]︂2
. (B.2)
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We will first calculate the beam size such that the intensity profile is fairly uniform over

the entire array. Let 𝜎𝑢 be the value of 𝜎 such that the entire array is within a 1−1/𝑒2 beam

radius. We can calculate 𝜎𝑢 by setting ℎ𝑔(
𝑀
2
, 𝑀

2
) equal to 1 − 1/𝑒2 times the peak value of

ℎ𝑔(𝑥, 𝑦), which occurs at (𝑥, 𝑦) = (0, 0):

ℎ𝑔(
𝑀

2
,
𝑀

2
) =

(︂
1 − 1

𝑒2

)︂
ℎ𝑔(0, 0)

1

2𝜋𝜎2
𝑢

𝑒−((𝑀
2
)2+(𝑀

2
)2)/2𝜎2

𝑢 =

(︂
1 − 1

𝑒2

)︂
1

2𝜋𝜎2
𝑢

𝑒−𝑀2/4𝜎2
𝑢 = 1 − 1

𝑒2

−𝑀2

4𝜎2
𝑢

= ln

(︂
1 − 1

𝑒2

)︂

𝜎2
𝑢 = − 𝑀2

4 ln
(︀
1 − 1

𝑒2

)︀
𝜎𝑢 =

𝑀

2
√︁

− ln
(︀
1 − 1

𝑒2

)︀ (B.3)

≈ 1.3112𝑀. (B.4)

At this beam size, the fraction of the laser’s power that is utilized is:

𝑃𝐴𝑅𝑅(𝜎𝑢)

𝑃𝑇𝑂𝑇

=

[︃
erf

(︃√︂
−1

2
ln(1 − 1

𝑒2
)

)︃]︃2
≈ 0.09. (B.5)
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Now we want to find the beam size that maximizes the beam intensity at the corners of

the array. To do this, we first write ℎ𝑔

(︀
𝑀
2
, 𝑀

2

)︀
and its derivative with respect to 𝜎.

ℎ𝑔

(︂
𝑀

2
,
𝑀

2

)︂
=

1

2𝜋𝜎2
𝑒−𝑀2/4𝜎2

(B.6)

𝜕ℎ𝑔

(︀
𝑀
2
, 𝑀

2

)︀
𝜕𝜎

=
𝜎2(𝑀2

2𝜎3 𝑒
−𝑀2/4𝜎2

) − 2𝜎𝑒−𝑀/4𝜎2

2𝜋𝜎4
(B.7)

=
(𝑀2 − 4𝜎2)𝑒−𝑀2/4𝜎2

4𝜋𝜎5
. (B.8)

We then set Eq. (B.8) equal to 0, and find the value 𝜎* that maximizes ℎ𝑔(
𝑀
2
, 𝑀

2
).

(𝑀2 − 4𝜎2
*)𝑒−𝑀2/4𝜎2

*

8𝜋2𝜎5
*

= 0 (B.9)

𝑀2 − 4𝜎2
* = 0 (B.10)

𝜎* =
𝑀

2
(B.11)

At this optimal beam size, the fraction of power utilized is:

𝑃𝐴𝑅𝑅(𝜎*)

𝑃𝑇𝑂𝑇

=

[︂
erf

(︂
1√
2

)︂]︂2
≈ 0.47. (B.12)

At this optimal beam size, the beam’s intensity profile is highly non-uniform over the

array’s field of view. The minimum beam intensity, at the corners of the array’s field of view,

is:

ℎ𝑔

(︂
𝑀

2
,
𝑀

2

)︂
=

1

2𝜋
(︀
𝑀
2

)︀2 𝑒− 𝑀2

4(𝑀
2 )

2

=
2

𝜋𝑀2
𝑒−1. (B.13)

The maximum beam intensity, at the center of the beam, is:

ℎ𝑔 (0, 0) =
1

2𝜋
(︀
𝑀
2

)︀2 =
2

𝜋𝑀2
. (B.14)
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Thus, we can expect the signal return at the center of the array to be 𝑒 ≈ 2.7 times higher

than the signal return at the corners.

In practice, the optimal choice of 𝜎 will depend on the specific imaging application. In

these calculations, we chose to maximize the beam intensity at the corners of the array’s

field of view (i.e., maximize the minimum beam intensity within the array’s field of view).

Another option might be to find the smallest value of 𝜎 such that the SBR at the corners

is above some minimum threshold—this choice of 𝜎 would maximize the utilization of the

total amount of power expended by the laser, and therefore maximize the system’s photon

efficiency, given the choice of the minimum allowable SBR.

76



Bibliography

[1] J. J. Degnan, “Photon-counting multikilohertz microlaser altimeters for airborne and space-
borne topographic measurements,” Journal of Geodynamics, vol. 34, no. 3, pp. 503–549, 2002.

[2] M. E. O’Brien and D. G. Fouche, “Simulation of 3D laser radar systems,” Lincoln Laboratory

Journal, vol. 15, no. 1, pp. 37–60, 2005.

[3] E. Grigoriev, A. Akindinov, M. Breitenmoser, S. Buono, E. Charbon, C. Niclass, I. Desforges,
and R. Rocca, “Silicon photomultipliers and their bio-medical applications,” Nuclear Instru-

ments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and

Associated Equipment, vol. 571, no. 1-2, pp. 130–133, 2007.

[4] D. Renker, “Geiger-mode avalanche photodiodes, history, properties and problems,” Nuclear

Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors

and Associated Equipment, vol. 567, no. 1, pp. 48 – 56, 2006.

[5] A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Rug-
geri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1550 nm wavelength using
an InGaAs/InP single-photon avalanche diode detector,” Optics Express, vol. 21, no. 19, pp.
22 098–22 113, 2013.

[6] A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. C. Wong, J. H. Shapiro, and
V. K Goyal, “First-photon imaging,” Science, vol. 343, no. 6166, pp. 58–61, 2014.

[7] D. Shin, A. Kirmani, V. K Goyal, and J. H. Shapiro, “Photon-efficient computational 3D
and reflectivity imaging with single-photon detectors,” IEEE Transactions on Computational

Imaging, vol. 1, no. 2, pp. 112–125, 2015.

[8] F. Zappa, S. Tisa, A. Tosi, and S. Cova, “Principles and features of single-photon avalanche
diode arrays,” Sensors and Actuators A: Physical, vol. 140, no. 1, pp. 103–112, 2007.

[9] Z. T. Harmany, R. F. Marcia, and R. M. Willett, “This is SPIRAL-TAP: Sparse Poisson inten-
sity reconstruction algorithms—theory and practice,” IEEE Transactions on Image Processing,
vol. 21, no. 3, pp. 1084–1096, 2012.

[10] E. Abreu and S. Mitra, “A signal-dependent rank ordered mean (SD-ROM) filter-a new ap-
proach for removal of impulses from highly corrupted images,” in 1995 International Conference
on Acoustics, Speech, and Signal Processing, vol. 4. IEEE, 1995, pp. 2371–2374.

77



[11] C. Veerappan, J. Richardson, R. Walker, D. Li, M. Fishburn, D. Stoppa, F. Borghetti,
Y. Maruyama, M. Gersbach, R. Henderson et al., “Characterization of large-scale non-
uniformities in a 20k TDC/SPAD array integrated in a 130nm CMOS process,” in 2011 Pro-

ceedings of the European Solid-State Device Research Conference (ESSDERC). IEEE, 2011,
pp. 331–334.

[12] M. Itzler, U. Krishnamachari, M. Entwistle, X. Jiang, M. Owens, K. Slomkowski et al., “Dark
count statistics in Geiger-mode avalanche photodiode cameras for 3-D imaging LADAR,” IEEE
Journal of Selected Topics in Quantum Electronics, vol. 20, no. 6, pp. 318–328, 2014.

[13] C. Niclass, A. Rochas, P.-A. Besse, and E. Charbon, “Design and characterization of a CMOS 3-
D image sensor based on single photon avalanche diodes,” IEEE Journal of Solid-State Circuits,
vol. 40, no. 9, pp. 1847–1854, 2005.

[14] R. D. Younger, K. A. McIntosh, J. W. Chludzinski, D. C. Oakley, L. J. Mahoney, J. E.
Funk, J. P. Donnelly, and S. Verghese, “Crosstalk analysis of integrated Geiger-mode avalanche
photodiode focal plane arrays,” in Proc. SPIE, vol. 7320, 2009, pp. 73 200Q–1.

[15] I. Rech, A. Ingargiola, R. Spinelli, I. Labanca, S. Marangoni, M. Ghioni, and S. Cova, “Optical
crosstalk in single photon avalanche diode arrays: a new complete model,” Optics Express,
vol. 16, no. 12, pp. 8381–8394, 2008.

[16] B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and
D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln

Laboratory Journal, vol. 13, no. 2, pp. 335–349, 2002.

[17] D. Shin, J. H. Shapiro, and V. K Goyal, “Single-photon depth imaging using a union-of-
subspaces model,” arXiv preprint arXiv:1507.06985, 2015.

[18] A. N. Vasile, L. J. Skelly, M. E. O’Brien, D. G. Fouche, R. M. Marino, R. Knowlton, M. J. Khan,
and R. M. Heinrichs, “Advanced coincidence processing of 3d laser radar data,” in Advances in

Visual Computing. Springer, 2012, pp. 382–393.

78


