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CHAPTER 1

Introduction

A symplectic manifold (X, w) with boundary OX = M+ U M_ is called a symplectic
cobordism if both M have contact type in X. By definition, this means that there
are vector fields V defined near and transverse to M which expand the symplectic
form: Lv w = w. We require V+ to point outwards along M+ and we call M+ the
w-convex end of X. Similarly, V_ is required to point inwards along M_, and we call
M_ the w-concave end of X. We will say that X is a symplectic cobordism from M_
to M+ in order to distinguish its concave end from its convex end.

The most basic example is that of a trivial symplectic cobordism from a contact
manifold M, to itself. In this case, we endow X = [0,1] x M with the symplectic
form u = d(eta), where a is any contact form for the contact structure on M. Other
examples of symplectic cobordisms come from classical phase spaces, complex geom-
etry, and from Weinstein's procedure for performing contact surgery using symplectic
handlebodies [W].

The existence of a symplectic cobordism from one contact manifold M_, 6 to an-
other M+, 6+ does not guarantee the existence of a symplectic cobordism from M+, 6+
to M_, 6. Thus, unlike the classical notion of cobordism, symplectic cobordism does
not define an equivalence relation on the class of contact manifolds. It only defines
a partial ordering on this class. Yet it remains an interesting problem to determine
what a symplectic cobordism tells us about the contact manifolds that bound it.

Recall, for example, that a contact 3-manifold M, 6 is overtwisted if there exists
an embedded disk Y C M such that OY is Legendrian for 6, and Y is everywhere
transverse to 6 except at one singular point e E Y (which must be elliptic). If M, 6
is not overtwisted, then it is called tight. In 1989, Eliashberg [El] showed that the
overtwisted structures on a closed 3-manifold M are essentially classified by homotopy
classes of 2-plane distributions on M. Therefore the problem of classifying contact
structures on 3-manifolds amounts to classifying the tight structures. In general,
however, it is difficult to determine when a given contact structure is tight. The next
result of Eliashberg [E2] was thus significant for it showed that many known contact
manifolds were tight.

THEOREM 1 (Eliashberg). A symplectically fillable contact manifold is tight.

A contact manifold is (strongly) symplectically fillable if there exists a symplectic
manifold X, w such that 0X = M and M is w-convex in X. In other words, X
is a symplectic cobordism from the empty manifold to M. If we think of the empty
contact manifold as being tight, then a natural question to ask in light of Eliashberg's
result is the following:

(1) Let M be a contact 3-manifold. If there exists a symplectic cobordism

from a tight contact manifold to M, then must M be tight?
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Following Gromov [Gr], Eliashberg [E2] and Hofer [H], one strategy for answering
(1) would be to study pseudo-holomorphic curves in the symplectic cobordism in
question. To understand this strategy, let us briefly recall Hofer's analysis [H] of
pseudo-holomorphic curves in the symplectization of a contact manifold M.

Let a be a contact form for the contact structure on M, and let va be the
associated Reeb vector field, defined by

tvda=0 , vta=1.

If J is a complex structure on that is compatible with daI@, then J extends to an
almost complex structure on the symplectization R x M by setting

(2) J(19t) = Va , J(va) = 19t -

Now suppose that M is an overtwisted contact 3-manifold, and let Y C M be an
overtwisted disk with elliptic singularity e. By a result known as Bishop's theorem
(see [BG]), we find a family of J-holomorphic disks f, : D -+ R x M that "fill"
Y. That is, for each n, f,(aD) is an embedded loop in Y and winds precisely once
around e.

Hofer made two observations about the Bishop family of disks. First, by the
Maximum Principle, each loop f,(OD) runs transverse to the characteristic foliation
induced by on Y; indeed, f.(OD) is transverse to itself. Second, by the Implicit
Function theorem, the family of unparametrized disks is open: if f : (D, aD) -÷
(R x M, Y) is J-holomorphic, then there is a local family {f} of these disks such
that f,-o equals f. Combining these observations with a description of the bubbles
that might form off the Bishop family of disks, Hofer proved the existence of at least
one closed orbit of the Reeb vector field on M. Thus he proved an extension of the
Weinstein conjecture for overtwisted contact manifolds (see [H] for more details).

Now, returning to (1), let X, w be a symplectic cobordism from M_ to M+, and
suppose that M+ is overtwisted. By Moser's theorem, both M1 have collar neighbor-
hoods in X that are symplectomorphic to neighborhoods in their symplectizations.
Let Jrei(X, X) be the set of w-compatible almost complex structures on X that, in
a neighborhood of M , are compatible with da on and satisfy (2). If Y c M+ is
an overtwisted disk and J E Jrei(X, X), then Bishop's theorem still applies and we
find as before a family of filling disks

fn : (DI D) -+ (X, Y) .

As in Hofer's case, each fn(OD) is transverse to the characteristic foliation on Y,
and the family {fn} is open. If the Bishop family were also closed, then the disks
could be continued until the boundary of some first disk, say fn0 (aD), met and was
tangent to DY. But OY is Lagrangian, so this would contradict the fact that f,, (OD)
is transverse to the characteristic foliation on Y.

The Bishop disks should be regarded as genus 0 J-holomorphic curves in X with
boundary on the totally real submanifold Y\{e} C M+. In general, in the interest
of answering (1) and of finding relationships between the convex and concave ends
of a symplectic cobordism (of arbitrary dimension), we would like to consider higher
genus curves in X with a totally real boundary condition in M+ U M_. However, to
effectively use these curves to understand the topology of X, M+ or M-, we need a
compactification of the associated moduli space.
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This motivates the main theorem of this dissertation.

THEOREM 2. Let X4 )w be a symplectic cobordism with compatible relative almost

complex structure J, and let Y C X be a compact, totally real submanifold. Suppose
fn : (E, OE) -+ (X, Y) is a sequence of J-holomorphic curves with uniformly bounded
Hofer energy:

(3) E(fn) < C for all n.

Then there exists a punctured Riemann surface E' and a J-holomorphic map f'
( ', 9E') -+ (X, Y) that has finitely many singular points, and there is a subsequence

of {f such that fn(E) converges smoothly to f'( E') in X, uniformly in compact

regions of X.

Theorem 2 serves two purposes: it supplies a compactness result for J-holomorphic
curves in a non-compact symplectic manifold with cylindrical ends; and it supplies a
compactness result for curves with boundary on a prescribed totally real submanifold.
We should point out that pseudo-holomorphic curves with Lagrangian and totally real
boundary conditions have been extensively studied by Oh, et al.; see [Oh], [KOh]. To
the author's knowledge, however, no compactness theorem for curves in non-compact
symplectic manifolds has hitherto appeared in the literature. Hofer [H] suggested that
compactness for curves in R x M could be proved by following Parker & Wolfson's
proof [PW] of Gromov compactness in closed symplectic manifolds. The latter uses
an argument dating back to Sacks & Uhlenbeck [SU] which we have been unable
to adapt for symplectic cobordisms and symplectic manifolds with cylindrical ends.
In the Appendix, we give some indication of why the Sacks-Uhlenbeck argument is
difficult to implement in the simplest case of a symplectization (or trivial cobordism)
R x M.

We have ultimately resorted to an entirely different method to prove Theorem 2.
This method is based on a regularity theorem proved by Taubes [T] in order to prove
equivalence of the Seiberg-Witten and Gromov-Witten invariants for a symplectic 4-
manifold X. The regularity theorem, or "recognition principle" as we call it, enables
us to recognize the 2-currents that come from integration over the support of a J-
holomorphic curve in X: they are precisely the ones which carry a generalized local
intersection number, or cohomology assignment, which evaluates positively on local J-
holomorphic disks in X. Because these currents can be defined locally, and because
a positive cohomology assignment is really a local object, this method easily gives
rise to a proof of the compactness theorem in the neighborhood of any point in
any symplectic manifold, closed, compact, or otherwise. We use Aronszajn's unique
continuation principle [A] to paste the resulting limit curves together where they
coincide.

The proof of Theorem 2 can now be outlined as follows. For each J-holomorphic
curve in the sequence, we get a current by integrating over the support of the curve.
The mass of this current is bounded in terms of the Hofer energy of the curve. Thus,
from a sequence of curves with uniformly bounded Hofer energy, we get a sequence
of currents with uniformly bounded mass. We find a subsequence that converges to
a limit current F, with spt(F) = S, and S carries a positive cohomology assignment.
Now apply the recognition principle to conclude that S is a J-holomorphic curve in
X, and its positive cohomology assignment comes from local intersection with S.
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The bulk of this dissertation is occupied with the proof of the recognition prin-
ciple which is needed to prove Theorem 2. In Chapters 2 and 3, we supply some
background on monotonicity theorems and basic measure theory (including currents)
that is needed in the later chapters. In Chapter 4, we set the stage for the main
compactness theorem, by reviewing the definitions of a symplectic cobordism and
its completion, and defining the Hofer energy for pseudo-holomorphic curves in the
completion. In some cases of interest, such as curves with Lagrangian boundary con-
dition, or the Bishop family of disks, there is a natural bound on the Hofer energy in
terms of the relative homology class represented by these curves. This motivates the
compactness theorem, which appears in Chapter 4 as Theorem 13. We outline why
the hypotheses needed to apply the recognition principle, namely the finite Hausdorff
measure condition, are satisfied by the limit current S.

In Chapter 5, we give an exposition of Taubes' positive cohomology assignments
and regularity theorem. In Chapter 6, we define a local, relative intersection number
for 2-manifolds in X 4 with boundary on a prescribed codimension 2 submanifold.
Applied to half-disks with boundary on a totally real submanifold Y C X, this
relative intersection number allows us to extend Taubes' theory to handle relative
2-currents with boundary supported in Y. Finally, in Chapter 7, we supply a proof
of Lemma 41 (see [T, Lemma5.5]), which is needed to construct local families of
pseudo-holomorphic disks. The existence of these disks is crucial in showing that S
with its positive cohomology assignment can locally be expressed as the graph of a
pseudo-holomorphic function. By the reflection principle, Lemma 41 also generates
for us local families of half-disks with boundary on a totally real submanifold, which
we need to prove regularity at the boundary of S.

We have yet to examine the singular points of the limit curve, to show they are
finite in number, and to show that the limit curve has finite topology. These will be
done in a subsequent paper.
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CHAPTER 2

Monotonicity

THEOREM 3 (Wirtinger inequality). Let X 2 n, w be a symplectic manifold with

compatible almost complex structure J, and let E be a J-holomorphic curve in X.

i) If a real, 2-dimensional submanifold E' C X is homologous to E,
then

Area(E') > Area(E)

and equality holds if and only if E' is J-holomorphic.
ii) Let Y' C X be a totally real submanifold. If a real, 2-dimensional
submanifold E' C X is homologous to E relative to Y, then

Area(E') > Area(E)

and equality holds if and only if E' is J-holomorphic.

PROOF. The proof is a consequence of the Cauchy-Schwarz inequality (see [AL,
p.100]). Let E' C X be any oriented submanifold, and let x E E'. If e, f is an oriented

orthonormal basis for TE', then

(4) 0 < w(e, f) = g(Je, f) 5 lJeI| - 11fI1

where g = w(., J-) is the compatible hermitian metric. Equality holds in (4) if and

only if TE' is a complex vector space.
Now (4) implies that 0 < wjr, < dvolg,E. Therefore, if E' is homologous to E,

then

Area(E) = w = w < Area(E')

and equality holds if and only if E' is J-holomorphic.
For the boundary case, the same argument works. We only need to observe

that the equation ft w = f, holds because Y is Lagrangian and [E - E'] = 0 in

H2 (X, Y). LI

THEOREM 4 ( Isoperimetric inequality). Let X 2n, J be an almost complex manifold

with at most cylindrical ends, and let h be a compatible hermitian metric which equals
the product metric on the ends of X.

i) There exist constants Eo and C > 0 depending only on X, J and h
so that, if E is a J-holomorphic curve in X with diam(E) < E0, then
any subdomain Q c E whose boundary is homeomorphic to a circle
satisfies

Areah(Q) C length (Q)

ii) Let Yn C X2 n be a compact, totally real submanifold. There exist
constants co,C > 0 depending only on X, J, h and Y so that if E is a

11



J-holomorphic curve in X with diam(E ) < eo, then any subdomain
Q C E whose boundary is homeomorphic to a circle satisfes

Areah(Q) 5 C -length'(i9Q\OyQ),

where aYQ = 9Q n Y.

PROOF. Fix x C X and let wo be the constant 2-form on TxX defined by

wo(v, Jxv) = hx(v, v) ,v E TxX.

Setting w = (exp-)*wo, we obtain a local symplectic form that tames J on a neigh-
borhood U of x.

Next, define a hermitian metric g on U by setting

(5) g(u, v) = 1[w(u, Jv) + w(v, Ju)] for yE Uand u,v E TYX.

Both g and h are uniformly equivalent to a Euclidean metric on a smaller set V C U.
Since X is either compact or has at most cylindrical ends, we can assume that V is
a ball of radius E 0, independent of x.

By our assumptions on f and by (5), Q minimizes g-area for its boundary curve -Y,
and lies in a neighborhood V as constructed above. We can make an arbitrarily small
perturbation of Q so that -y is a smooth Jordan curve. The solution F of the Euclidean
Plateau problem in V with boundary -y is a smooth minimal disc (see [Law]), and

Areaeuc(F) 5 C -length 2e(y)

by the classical isoperimetric inequality. But g is uniformly equivalent to the Eu-
clidean metric, so we have

Areag(Q) 5 Areag(L) 5 CAreaeuc(F) 5 Clengthic(7) Clength2(_Y)

This proves (i), because g and h are uniformly equivalent.
To prove (ii), let y E Y and let e, f be an oriented orthonormal basis for TyY.

Since Y is totally real, the vectors e, Je, f, Jf form an oriented basis for TyX, and
via the exponential map they define coordinates x 1, y', x 2, y 2 on a neighborhood of y
in X. With respect to these coordinates, Y is the set where y1 = y2 = 0. Therefore
Y is Lagrangian with respect to the local symplectic form w = dx1 A dy' + dx 2 A dy 2

in U.
Note that w and J are compatible at y, since

wY(., j4.) = (dx 1) 2 + (dy 1 )2 + (dx2)2 + (dy2 ) 2

It follows that w tames J on a neighborhood U of y. Define a hermitian metric g in
U by (5) above. Then g and h are uniformly equivalent to a euclidean metric in a
smaller neighborhood V of y. By compactness of Y, we can assume that V is a ball
of radius EO independent of y.

If we let y denote the oriented 1-cycle which is the boundary of Q, then y decom-
poses as a sum y = a +,3, where a = OyQ and # = aQ\oyQ. Let #1,...,/3 denote
the oriented components of 9Q\oyQ, so that 3 = 31 + - , - +3g. For each i, let pi, qj
be the endpoints of the arc 03, so that 0i3 = qj - pi. There is an arc /i contained in
Y of length

length(3) 5 C1 - length(#i)

12
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such that Oi/3 = qj - pi as well. Since Y is compact, the constant C1 may be taken to
be independent of y.

Now let F be the solution to the Plateau problem in V with boundary 3 - # =

01 - #1 + - - -#1 - #. Since V is contractible, F is homologous relative Y to Q, and

by Lemma 3 (ii), Areag(Q) < C Area9 (F). We conclude as before that

Areag(Q) C - length2 (0 - 3) C(1 + C1) 2 - length 2 (o).

Since g and h are uniformly equivalent in V, this completes the proof. 0

COROLLARY 5 (Monotonicity). Let X 2n, J be an almost complex manifold with
compatible hermitian metric h.

i) There exist constants c, ro > 0 depending only on X, J, h such that
the following is true. Let S C X be a compact, J-holomorphic curve,
and let B = B,(x) be a ball of radius r < ro centered at x E S such
that 9S is contained in the complement of B. Then

(6) Area(S n B(x)) > cr2

ii) Let Yn C X be a compact, totally real submanifold. There exist
constants c, r0 depending on X, J, h, Y so that (6) holds for every
compact, J-holomorphic curve S and every ball B = Br(x) of radius
r < ro centered at x E S which satisfies OS C (X\B) U Y.

PROOF. To prove (i), define a function A(r) = Area(S n Br(x)) for 0 < r < ro.
For almost every r < ro, Q, = S n B,(x) is a smooth subsurface of S with smooth
boundary. Thus L(r) = length(OQr) is defined and equals A'(r) for almost every r.
By the isoperimetric inequality, NA(r) < C - L(r) = C - A'(r). Integrating A'/V/A
from 0 to 6, we obtain (6).

To prove (ii), take L(r) = length(aO,\0y9Q), which equals A'(r), and follow the
arguments of case (i). 0
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CHAPTER 3

Currents

In this chapter, we supply some background on currents that will prove useful in
Chapters 4-6. Throughout this chapter, X will denote a smooth manifold, possibly
non-compact, M will denote a smooth submanifold of X, and U an open subset of
X.

1. Basic defintions.

A current is simply a linear functional on the space of smooth, compactly sup-
ported forms in X. To make this precise, let QG(U) denote the vector space of all CO
compactly supported k-forms M with spt(p) C U. We topologize this vector space in
the following manner (see [F, 4.1.1] or [deR, 9] for more details). Given a compact
subset K C U, let QK(U) C Qc(U) denote the space of forms I-t with spt(p) c K. For
each j = 0, 1, 2,... and each M E Qc(U), let

IIpjjj = max max ID'pI.
jaIsj U

This sequence of norms defines a topology on QK(U), and the topology we take on
(c(U) is the largest for which the inclusion maps QK(U) -+ Qc(U) are all continuous.

This topology is complete, and a sequence p, E Qc(U) converges to IL if and only
if

I|n - p|j -- 0 as n -+ +oo

for each j, and there is a compact subset K C U that contains every spt(pa).
Definition. Let Dk(U) denote the topological dual of Qk (U). An element Y c
Dk(U) is called a current on U.
Examples.

1. The example of most interest to us is the current coming from a
k-chain y in X. In this case, Fy E Dk(U) is defined by

Y-Y(A) = A for p E: Qk()

2. Let q be any (n - k)-form on X, where n = dimX. Then F, defined
by

1op = 7 A p ,for p E k (U),

is a k-current in U.
3. Let x E U. The delta distribution 6x is a 0-current in U, with

6x(f) = f(x) , for all f E Cc' (U) .

15



Boundary and Pushforward of a Current. The boundary of a current F E
Dk(U) is the (k - 1)-current given by the formula

OT(p) = F(dp) , for p E Qk 1 (U).

Let X, X' be smooth manifolds and let U c X, U' c X' be open subsets. Given a
proper map o : U -+ U' and a current F E Vk(U), the pushforward of F by ,o is the
current in U' defined by the formula

vT(rn) = F(*i) , for r E G Q(X')

It is straightforward to check that these notions coincide with the notions of
boundary and pushforward for chains, that is, OF, = F,9-, and = Fe.
Mass of a Current. Assume now that X carries a Riemannian metric. Then
we can define a norm on Q*(U), called the comass norm by some and the Co norm
by others, by setting

M(u) = sup I/II.
U

The dual norm on D*(U) is called the mass norm, and

M(F) = sup F(p)

is called the mass of the current F.
Recall that we have fixed, once and for all, the C' topology on Q*(U); this is the

topology with respect to which currents were defined. The comass norm also defines
a topology on Q*(U), which coincides with the C' topology, and is weaker than the
C' topology.

On D*(U) we will take the weak topology generated by sets of the form

{F : El < -F(P) < -52}

with p E Q*(U), and E1, E2 E R. This is the weakest topology for which the linear
maps

j : *(U) -4 R
F M Fp+

for pt E Q*(U), are all continuous. (Thus it is weaker than the mass norm topology.)
Equivalently, the weak topology is characterized by the fact that a map I : Y -
D* (U) is continuous if and only if A o * is continuous for all IL.

THEOREM 6 (Alaoglu's Theorem). The unit ball

BM = {F E D*(U) : M(F) < 1}

is compact in the weak topology on D*(U).

Relative Currents. Let Y C X be a closed submanifold, and let t denote the
inclusion. Generalizing the notion of a local relative chain 7 E Ck(U, U n Y), we say
F E Dk(U) is a relative current if there exists ! E Dk--(U n Y) so that OF = wg.
We will denote the subspace of all relative currents in Dk(U) by Dk(U, Y).

LEMMA 7. Let Y c X be a closed submanifold, let U C X be open, and let
F E Dk(U). The following conditions are equivalent:

i) F E Dk(U,U nY ) .
ii) OF(p) = 0 whenever p E Qk(U) and [-ty is exact.
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PROOF. Suppose Y E Dk(U, U n Y). Let ,u E Q'(U) with ply = da for some
a E Qk 1 (U n Y). Because Y is a closed submanifold, we can find a (k - 1)-form 5
supported in a tubular neighborhood of Y, whose restriction to Y equals a. Then

Y( p) = g(t*1p) = g(da) = g(t*d&) = iF(d ) = 0 .

Conversely, suppose that F satisfies condition (ii). Define a current 9 E DEk-l(Un
Y) as follows. Given a E Qk-'(U n Y), choose & E Qh1 (U) as before so that
&Iy = a. Then put !(a) = .(d&). It is easy to verify that g is well-defined, and that

=*! 9Y.

By the way, Qk (U, Y) will denote the subspace of Qk (U) consisting of all k-forms
p such that ptly is exact.

COROLLARY 8. Vk(U, y) is closed in Dk(U) with respect to the weak topology.

2. Other facts from measure theory.

Hausdorff measure. Let (X, g) be a metric space. To define Hausdorff measure
in X, first we define preliminary measures p/ on X, for 6 > 0.

Given S C X, let B be a countable collection of balls covering S, where each ball
B is assumed to have radius

radius(B) < 6.

Given k E N, associate to B the quantity

S[radius(B)]k,
BEB

and then set

pJ(S) = inf {S[radius(B)]k}
BEL3

where the infimum is taken over all collections B of the sort described above.

If 6 1 < 62, then ptj,(S) pt 2(S). By definition, the k-dimensional Hausdorff
measure of S is the quantity

-k h(S) = SUP ptj(S).
6-40

We note that if bko(S) < +oo, then S5 k(S) = 0 for all k > ko. The 0-dimensional
Hausdorff measure bo is simply the counting measure of S.

We list here some additional measure theoretic facts (see [F]) that will prove useful
in Chapters 5 and 7.

THEOREM 9 (Federer, 2.10.27). Let X, Y be metric spaces, and let X x Y carry the
product metric. Suppose that X is boundedly compact. Then for any subset A c X x Y
and any integer k,m > 0 we have

j k({y I (x, y) E A})d m x a (k)a (m) k+m(A)
y - a(k + m)

where a(k) denotes the volume of the unit ball in Rk.
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CHAPTER 4

Compactness in Symplectic Cobordisms

Throughout this chapter, X2", w denotes a symplectic cobordism from its concave
end M_, to its convex end M+, +. Recall that there exists an outward/inward
pointing, conformally symplectic vector field V+, defined in a neighborhood of M
such that a = tvjwjM is a contact form for the contact structure on M . Using
Moser's method, we find a collar neighborhood of M+ (resp. M_) in X that is
symplectomorphic to (1 - E, 1] x M+ (resp. [0, e) x M-) together with the symplectic
form d(eta+) (resp. d(eta_)).

With these identifications we form the completion X of X by gluing [1, +oo) x M+
to X along its convex end, and then gluing (-oo, 0] x M_ to X along its concave end.

We will refer to [1, +oo) x M+ as the positive or convex end of X, and (-oo, 0] x M_

as the negative or concave end of X. The symplectic form on X extends naturally to
a symplectic form on X, which we also denote w, by setting d(etca) on the two ends.

M+

t

X

M ~

R

FIGURE 4-1. A symplectic cobordism.

Next let v, E lP(TM ) denote the Reeb vector field associated to a . An almost
complex structure J on X, compatible with w, is called a compatible relative almost
complex structure if in the neighborhood of M , it satisfies:

J(Ot) = va , J(va+) = -at

J is compatible with da on
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In this case, J extends to an almost complex structure on X, which we also denote J.
The set of all compatible relative almost complex structures is denoted Jrei(X, aX).

For fixed J E Jrei (X, OX), our goal is to study J-holomorphic curves in X with
boundary on a prescribed compact, totally real submanifold Y C X.

Once we have fixed a choice of J E Jrel(X, OX), we might choose to work with the
metric w(., J.) on X, but this metric is not complete and its injectivity radius goes
to zero as t -+ -oc along the negative, or concave, end of X. Therefore, following
Hofer [H], let us choose a metric g which equals w(., J-) in X, and equals the product
metric dt A ai + da (., J.) on the ends of X.

1. Hofer energy.

It will be convenient to extend the time function (t, p) -+ t, which at present
is defined only on the ends of X, to a function t : X -+ R in such a way that
t-1 [0,1] precisely equals our original manifold X. (Compare Figure 4-1.) Now define
a collection of functions

C = {W: R -+ [ 1, ] > 0 and W(t) = et on (0,1)}.

Each W E C pulls back via t to a function X -+ [ , ], and satisfies d(Wa ) = d(eta ) =
w on (0, e) x M_ U (1 - e, 1) x M+. Therefore, setting

w on X
WcI= d( a+) on (1 - e, 1) x M+

d(Va_) on (0, e) x M_

we obtain a well-defined 2-form on X.
For a Riemann surface E and a J-holomorphic mapping f: E -+ X, we set

E(f) = f*W,

for each 'p E C, and define the Hofer energy of f to be

E(f) = sup 9"(f) = sup f*(wW).
WeC pEC Jr

For each relatively compact, open subset U C X, we can associate to f and E
the 2-current F E D 2 (U) whose value on a compactly supported 2-form y E Q(U)
equals

YGL)= if(E)

If f(i9E) lies on a compact submanifold Y C X, then OF = t, where g E D(U n Y)
is the 1-current defined by f(OE) C Y. So in fact F E D2 (U, U n Y) is a relative
current. In the next lemma, we see how the mass of F is related to the Hofer energy
of f.

LEMMA 10. M(F) < C(f) {3 + diam(t(U))}
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PROOF. Let a = infu t and b = supu t, so that diam(t(U)) = b - a. In the first

case, suppose that a < b < 0. Take a sequence of functions Vk E C that uniformly
approximate the function

+ - (t - a)
1
et

e

if t < a
if a < t < b
if b < t < 0
if 0 < t < 1
if t > 1

Since E(f) > E k(f) for all k, it follows that

E(f)

(7)

Here, the energy E(f;
For any compactly

> jp(t o f) d(t o f)12 + P(t o f)17rdf12

> b - d(t o f)12 + IrdfI2
(tof)-[a,b] 2(b-a) 2

1 if
> --- min(, b - a)- - df 2

b - a 2 f-1(U)
1

> -E(f; f -'(U)).
max(, b - a)

f- 1(U)) = 1 f _qu- I df 12 is computed using the metric g.

supported 2-form p with spt(p) C U and ||pI| : 1, we have

F(f) = j (fx, fy) dx dy

f -1(U)

if J-(U)

z(fo, fy) dx dy

IllI 1-1 df 12 dx dy
2

Sf 11df|2 dx dy
f-1(U) 2

= E(f;f~ (U)).

Therefore, by (7),

M(F) 5 (f) -max{1, diam(t(U))} .

In a similar manner we can show that (8) holds when 1 < a < b. If 0 < a < b < 1,
then

f*wv = Jf-(U) f*w = 1 j
2 f-1(U)

Idf 2 = E(f; f -1(U))

for all p E C, because f is J-holomorphic. Therefore E(f) > E(f; f 1 (U)) and we
conclude as in the first case that (8) holds.
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In the general case, let U1 = U n t-1(-oo, 0), U2 = U n t- 1(0,1) and U3 =
U n t-1 (1, +oo). For each i = 1, 2,3, define a current Yi in U by

i GL) = pf ,F A I- E CUi) .

We have shown that (8) holds for each Yi in U. Hence

M(Y) M(F1) + M(F2 ) + M(F3 ) o(f) {3 + diam(t(U))}

and we are done.

Note that in the proof we have shown

(9) Area(f(E) n U) < E(f) - {1 + diam(t(U))}

If Y is totally real, then by the monotonicity formula (6), there are constants ro and
c > 0 such that

Area(f(E) n B,(x)) > Cr2  for r < ro, x E f

provided Of(E) is contained in Y or in the complement of B,(x). Setting

1
(10) c(U) = - {1 + diam(t(U))},

c
we obtain the next result.

LEMMA 11. Let Y C X be a compact, totally real submanifold and let U C X be
open and relatively compact. There exist positive constants c and ro depending only
on U so that for any pseudo-holomorphic map f : ( E, a9) -+ (X, Y), the following is
true: if r < ro and B is a collection of disjoint balls of radius r centered at points in
f (E) n U, then the number of elements in B is at most

6(f) - c
T2

2. Uniform energy bound.

In some cases, knowing the relative homology class represented by f : (E, OE) -4

(X, Y) gives us a bound on the Hofer energy of f.
For example, if Y C X is Lagrangian, then w.jy = wly = 0 for all p e C. If

f : (E, aE) -÷ (X, Y) is a J-holomorphic curve in the class A E H2 (X, Y), then

/f ()WV = < WW, A > = < w, A >

for all o. Thus E(f) < < w, A >.
In case n = 2, then we are interested in the situation where Y is a compact surface,

with or without boundary, in OX = M+ II M. By the contact condition, the points
at which Y is tangent to i are generically isolated and finite in number. Therefore,
apart from these isolated points of complex tangency, Y is totally real in X.

There is a function h on Y such that

wly = h - dvoly,
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and we define the w-volume of Y to be the non-negative quantity

vol,(Y) = jl W = j hi -dvoly.

If Y is Lagrangian for w, then vol,(Y) = 0.

LEMMA 12. Let Y C M+ U M_ be compact and let A E H2(X,Y). There exists
a constant C > 0 depending only on A such that 9(f) C for all J-holomorphic

curves f : ( E, E ) -+ (Xk, Y) representing A.

PROOF. Since J E Jrei(X, OX), we have

-ddj(et) = -d(edt o J) = d(eta+) = w =w0, , EC

on the set t- 1 (1 - e, 1] = (1 - e, 1] x M+. Likewise, -ddJ(et) = w in [0, e) x M_ for
all y E C. It follows that w. + ddJ(et) is identically zero on M+ U M_, and so on Y
as well.

If f : (E, E) - (X, Y) is a J-holomorphic curve in the class A, then for any
o E C we have

E()= (w + ddj(et )) - j dj(et )

- <w, +dd(et),A>+e a+ - j a

< < w + ddj(et), A > +vol(Y) .

As the last quantity is independent of p E C, this proves the lemma. L

3. Compactness.

THEOREM 13. Let X4 Iw be a symplectic cobordism with compatible relative almost

complex structure J, and let Y C X be a compact, totally real submanifold. Suppose
fn : (E, aE, ) -+ (X, Y) is a sequence of J-holomorphic curves with uniformly bounded

Hofer energy:

(11) E(fn) C for all n.

Then there exists a punctured Riemann surface E' and a J-holomorphic map f'

(s ', E') -+ (X, Y) that has finitely many singular points, and there is a subsequence

of {fn} such that fn(E) converges smoothly to f'(E') in X, uniformly in compact

regions of X.

PROOF. Let U c k be open and relatively compact. For each n, let .F E

D2(U, U n Y) be the relative current in U defined by integration over Fn(E). By
Lemma 10, we have the uniform mass bound M(Fn) 5 C- {1 + diam(t(U))} for all
n. So by Alaoglu's theorem, there is a subsequence {fT} that converges weakly to
a current F E D 2(U, Y). Let S denote the support of F in U, with aS C Y n U.
By Lemmas 14 and 15 below, S and OS have finite 2- and 1-dimensional Hausdorff
measure, respectively. Therefore, by the recognition principle (Chap. 5, Theorem 17
and Chap. 6, Theorem 33), S is the image of a (possibly disconnected) pseudo-
holomorphic curve in U.
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Thus, for each relatively compact, open subset U C X, we have a relative current
Fu in U with support spt(Fu) = Su, and we have a Riemann surface Eu, a domain
Qu C EU, and a J-holomorphic map fu : -+ X such that Su = Image(fu). Since
X can be covered by such open sets of this sort, we obtain, by Aronszajn's unique
continuation principle [A], a J-holomorphic curve S C X with the property that
S n U equals Su for any relatively compact, open U C X.

By [T], the singular points of S are isolated and finite in number in any compact
region of X. In fact, a refinement of Taubes' analysis will show that S has finitely
many singular points and has finite topology. (Additional details will be given in a
forthcoming paper.) Therefore we are done. E

LEMMA 14 (Taubes). Let U C X be open and let diam(t(U)) be finite. Then the
support S of F in U has finite 2-dimensional Hausdorff measure.

PROOF. For each N >> 0, set rN = .1 6 N. Given n and N, let Bn,N be a maximal
set of disjoint balls of radius rN centered at points in fn(D) n U. Label these points
as x1,N .,N. By Lemma 11 and the estimate (11), the number 1 is at most

Ci = c 1  162N
(rN)2

where ci is some integer constant independent of n and N. By repeating the point
n,N 2x1  if necessary, we will assume that 1 = ci - 16

Note that the balls B2rN of twice the radius cover fn(D) n U. Let Wn,N denote the
union of the balls of radius 4 rN. This set is a neighborhood of fn(D) n U in U.

Now fix N and i, and let n -+ +oo. By a diagonal argument we may assume, up
to taking a subsequence, that Xn,N converges to some point xf' E U. Let WN denote
the union of the closed, radius 4 rN balls centered at these points, that is,

WN = UB 4rN(XN>
i=1

We claim that WN+1 C WN. To see why, note that y lies in WN+1 if and only if
1

dist(y, X N+1) < - - 16 -N
-4

N1for one of the points x+1 Given arbitrary E > 0, we have

dist(XNi xnN+1 < E for all sufficiently large n.

There is some j so that

dsxn,N+1 n,N -Ndist(xINl xnjN < 2 . 1 6 -N

and moreover,

dist(xnN, x ) < E for all sufficiently large n.

Thus the distance from y to the set {xN, .... , xNJ is at most 9/4 - 16 -N + 2e. As e was
arbitrary, this proves the claim.

Now by construction, the set

W=WN
N
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has finite 2-dimensional Hausdorff measure. For given 6 > 0, the balls B4rN (X$ )

i= 1,..., 1, cover W and can be made to have radius < 6. Therefore

A5 (W) 1 - (4rN ) 2 
- 2 16r2 = 16cl,

(rN)
2

and s9 (W) = sup6 p5(W) 16c1 < +oo.
Finally, we claim that S = spt (F) is contained in W, and so has finite 2-dimensional

Hausdorff measure. It suffices to prove that F(a) = 0 for all compactly supported
forms a with spt(a) C U\W. If a is such a form, then spt(a) c U\WN for some large
N. Consequently, spt(a) C U\Wn,N and F,(a) = 0 for all n >> 0. Since F is the
weak limit of the sequence {,r}, it follows that F(a) = 0, as required. 0

The next lemma relies on the fact that Y is both compact and totally real in X.

LEMMA 15. Let U C X be an open subset such that diam(t(U)) is finite. Then
the support OS = S n Y of OF has finite 1-dimensional Hausdorff measure.
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CHAPTER 5

A Recognition Principle

In this chapter we describe Taubes' method [T] for determining when a closed subset
S of X, J is a J-holomorphic curve. To get a basic idea of how this method works,
consider the Euclidean situation where we must determine when a subvariety of CN

is a holomorphic curve.

THEOREM 16 (Euclidean Recognition Principle). A smooth, oriented, real
2-dimensional submanifold S C CN is complex analytic if and only if the local inter-
section of S with every complex hyperplane is positive.

PROOF. First, it is easy to show that the tangent space to S at any point x is a
complex line in CN - for otherwise we can find a complex hyperplane that intersects
S negatively. Next, take a point x E S, set L = TxS, and take a complex hyperplane
L' such that CN = L ( L'. In a neighborhood of x, we can represent S as the graph
of a smooth function ' : L -+ L',

S = {z + (z)Iz E L}.

If y E S is another point in this neighborhood, then TyS, L, L' are all complex
subspaces of CN. This can only be if P is holomorphic so this completes the proof. E

Let us extract the following ideas from the Euclidean case:

(1) If S c C4 is complex analytic, then S should intersect every local holomor-
phic disk (along any direction) positively.

(2) Exhibit S locally as the graph of a holomorphic function 41 : D -÷ C (in the
case above, D is a neighborhood of 0 in TxS). That (D is holomorphic follows
from positivity of the intersections with S.

The proof of Taubes' recognition principle is based on these ideas, so to outline
that result we need to do three things. First, we must construct local (families of)
pseudoholomorphic disks lying along arbitrary directions - we will do this in Chap-
ter 7. Second, we must find an appropriate function 4 whose graph is S - this will
be done using the family of parallel disks constructed in Corollary 42. Finally, since
we only have, a priori, a closed subset S C X (with finite 2-dimensional Hausdorff
measure), we must decide what it means for S to have a local intersection number,
and for S to intersect local pseudo-holomorphic disks positively. We can settle this
matter now with the following definitions.

DEFINITION. Let U be an open subset of X, and let S C U. An S-admissible disk
in U is a map o- : D -+ X defined on an open disk D C C, with image -(D) C U,
which extends to a continuous map D -+ X such that -(OD) is contained in the
complement of S.
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DEFINITION. Let U be an open subset of X, and let S C U be closed. A cohomol-
ogy assignment for S in U is a map

I: {S-admissible disks in U} --+ Z

that satisfies the following criteria:

(1) If -: D -+ U is S-admissible and Image(-, D) C U \ S, then I(-, D) = 0.
(2) If o-, -1 D -+ U are admissible and homotopic via an S-admissible ho-

motopy in U, then I(uo) = I(6-1). (An S-admissible homotopy in U is a
homotopy r : [0,1] x D -+ U which extends continuously to [0,1] x D -+ U
in such a way that r([0, 1] x OD) C U \ S.)

(3) If a : D -+ U is admissible and r : D' -÷ D is a proper map of degree k, then
I(- o -r, D') = k -I(-, D).

(4) If o : D -+ U is admissible and a-- (S) is contained in a disjoint union of
disks Ui Di C D, then I(u, D) = E I(-, Di).

Finally, if I(-) > 0 for all embedded, pseudo-holomorphic, S-admissible disks
-: D -+ U satisfying -' (S) , 0, then we call I a positive cohomology assignment

for S in U.
Thus a positive cohomology assignment has all the best characteristics of an in-

tersection pairing with a (possibly multicovered) pseudoholomorphic curve.
If E is a Riemann surface, f : E -+ X is a J-holomorphic map and U C X is open,

then a natural positive cohomology assignment for S = f(E) n U in U comes from
intersection with S: any S-admissible disk a : D -+ U can be perturbed admissibly
so as to become transverse to f, and then we define If(o-, D) to be the signed sum of
points in the finite set {(w, z) E D x Q I a-(w) = f(z)}.

THEOREM 17 (Symplectic Recognition Principle). Let X4 , W be a symplectic
manifold with a compatible almost complex structure J. Let S c X be a closed
subset with finite 2-dimensional Hausdorff measure. If S carries a (global) positive
cohomology assignment I, then there is a Riemann surface E, a domain Q C E, and a
J-holomorphic map f : Q -+ X with finitely many singular points such that S = f (Q)
and I = If.

THEOREM 18 (Local Statement). Let J, w be an almost complex structure and
compatible symplectic form on C2 , both standard at the origin. Let U C C2 be open,
and let S C U be a connected, closed subset with S59(S) < +oo. If S carries a positive
cohomology assignment I in U, then there is a Riemann surface E, a domain Q C E,
and a J-holomorphic map f : Q -+ U with finitely many singular points such that
S = f(Q) and I = If.

To prove the recognition principle from the local statement, note that if I is a
positive cohomology assignment for S in X and V C X is open, then I restricts to a
positive cohomology assignment for S n V in V. (Any (S n V)-admissible disk in V
is S-admissible in X.) Denote this restriction by Iv.

Now let g be the metric w(., J.) on X. At a point x E X, Jjx allows us to
identify the tangent space TX with (C2 , Jo). Use the exponential map to identify a
neighborhood U of 0 in TX with a neighborhood V of x in X, and then pull each of
J, g and w back to U.

If x E S, then by the local version of the recognition principle, we find a Riemann
surface E, a domain Q C E, and a (exp* J)-holomorphic map f : -- C2 so that
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f(Q) C U, f(Q) = exp-1(S), and If = exp- I. Let us denote the pushforward exp of
by f as well. Then clearly S n V = f(Q) and Iv equals If.

Thus in the neighborhood of any point x E S, we can express the pair (S, I)
as (f(Q), If) for some J-holomorphic map f : Q -+ X. By Aronszajn's unique
continuation principle, any two such expressions agree on overlaps. Therefore, away
from its boundary, S is a J-holomorphic subvariety of X, with finitely many singular
points in each compact region in X.

1. Behavior at a Point.

We focus our attention on a single point in S, which we may as well take to be 0.
The space of Jo-hermitian coordinates centered at 0 is parameterized by U(2), and
the space of Jo-complex lines through 0 is a copy of CPF. There is a natural bundle
map

Ur :(2) - CPI ~ - U (2) /(U (1) x U (1))
which associates, to a choice of hermitian coordinates {zO, z1}, the "vertical" line
zo = 0.

Let 7 -+ CP1 denote the tautological line bundle, and let E -+ U(2) denote
the pullback of -y via 7r. We think of E as the bundle of "vertical lines", and its
orthogonal complement EL in U(2) x C2 as the bundle of "horizontal lines". By
Corollaries 42 and 43, there exist R > 0 and bundle maps 0, so that the following
diagram commutes:

DR(E) (,id) > DR(E-L) e DR(E) 0 > U(2) x C2

,Z V1r 17________________~ r

U(2) DR(y) CPx C2

(0, Jo) : CP

Here, DR(Y), DR(E) and DR(E') denote the respective radius R disk bundles. The
maps to (0, Jo) on the far left are of course trivial and are included to remind us that
we are centered at the point 0 E C2 , and that U(2) and CPF are specified by the
complex structure Jo.

By construction, the restriction of 0 to any vertical fiber w x DR(Ezo,z1q), {z0 , z'} E
U(2), has J-holomorphic image in {zo, Z} x C. Likewise, the restriction of to any
fiber in DR(-y) has J-holomorphic image. For any r, E CP1 , the fiber over r is denoted
DR (r,).

LEMMA 19. Suppose U C C2 is an open neighborhood of 0, S C U is closed, and
.2(S) < +oo. Then the set

T = {r E CP1 I (DR(K)) n S is finite }
has full measure in CP'-.

PROOF. Pick arbitrary coordinates {zo, Z1} in C2 , and let ,o be the vertical line
zo = 0. There is a neighborhood of r.0 in CP1 over which DR(-Y) is identified with
D6 x DR, for some 6 > 0. Any two disks intersect each other discretely, so the
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set A = p-1 (S) has finite 2-dimensional Hausdorff measure in D6 x DR. Applying
Lemma 9, we have, for k > 0,

I yk ((b x DR) n A) dj 2 b < afk a(2) k+2(A)

When k > 0, the right hand side of this inequality is zero. When k = 0, we see that
b> ((b x DR) f - 1(S)) < +oo, and hence that (b x DR) n S is finite, for almost every
direction b E D6 .

Since {z0 , z'} and no = {z0 = 0} were arbitrary, this proves the lemma. El

LEMMA 20. If, in addition to the hypotheses of Lemma 19, we assume that S has
a positive cohomology assignment I in U, then T C CP1 is open.

PROOF. Fix an element Ko E T. We will show that for all , sufficiently close to
ro in CP1 , the intersection (DR(rc)) n S contains at most m = I( , DR(Ko)) points.

To do so, let {z0 , z1 } be hermitian coordinates in C2 for which Ko is the vertical
line zo = 0. For each b E C, let I'b denote the complex line zA - bz' = 0. The
coordinate choice gives a local trivialization of DR(-y) near K0, so is regarded as a
map C x DR -4 C2

For each b E C, define b : DR -+ C2 by b(z) =(b, z). Each (1(S) is a closed
subset of DR and, by assumption, y1 (S) = {0}. Thus, given r < R, there exists
E > 0 such that 1(S) c D, for all b E D, C C. Moreover, since S carries a positive
cohomology assignment, ' (S) has at most m components.

Suppose there is some b, IbI < c such that $ y(S) contains m + 1 points. Using
Lemma 45, we will perturb b(DR) and obtain a contradiction. First, we need the
following technical results.
Claim. Assume that 1(S) c DR has m components and contains m + 1 points.
Let d > 0 denote the diameter of the largest component of (S). There exists a
positive number r < R so that the following hold:

(1) There is a ball D,(p) C DR such that p1 (S) n D,(p) c D r(p).
(2) There are m + 1 points (1,..., (m+l E 6 1(S) n D,(p) such that |I - ;

d
2(m+1)
for i:j.

(3) There is a bound 8d < r < 8m+ld.

Note that d can be made arbitrarily small by taking JbI sufficiently small.
To prove the claim, let F = 6 (S) and let ro be the largest component of F,

with d = diam(Fo). There exist points p, p' E FO such that 1p - p'I = . For each
1 = 1,2, .. ., m + 1 there is a point ( E Fo such that

d
(12) dP - (I = 2 -

IP~d 2 (m + )

(Otherwise, p and p' lie in different components of FO.)
We have FO c B2d(p) and if F n B8d(p) c B2d(p) then we are done. If not, then

there are other components of F that meet B8d(p). Let F1 be the union of these
components. Then F1 c B2.8d(p) and if F n B64d C B16d, we are done.

Otherwise, continue in this fashion to obtain a sequence F3 of unions of compo-
nents of F such that F, n BSjd(p) # 0 and F, c B2.sad for each j. This process must
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stop after m repetitions because P only has m components. At the final stage, we
have

P n B8m+ld(P) C B2.8md(p).

Taking r = 8"+ld, this proves the claim.
Now translate the origin in C to p. The restriction of b to D,(p) takes the form

u: D, -> C, and the map

D, -+C2
z + (u(z), z)

has J-holomorphic image. By taking c sufficiently small and jbj < E, we can ensure
that d and r are small enough for the hypotheses of Lemma 45 to be satisfied. There-
fore we get a 1-parameter family of admissible disks o-a : D, -+ C2 , a E Dj, and
each disk ca(D,) is J-holomorphic and passes through the m + 1 points (u(i), (i).
At a = 0, we have o-o = (u, id ID,), so the homotopy invariance of I implies that
I(-a, Dr) = I(-o, D,) = m for all a E D6 .

By Lemma 45 (iii), o-a(D.) and -a, (D.) intersect discretely when a 0 a'. Therefore
a 1(S) has finite 2-dimensional Hausdorff measure in D6 x Dr and, by Lemma 9, there
are values of a arbitrarily close to 0 for which the intersection '-a(Dr) n S contains
the m +1 points (u((i), (i)), i = 1,.. , m +1. Thus we have a contradiction, and the
lemma is proved. 0

If K E T, then (D,(n)) n S = {} for all sufficiently small r < R. We set

(13) vo(K) = I( , Dr(r)) for any sufficiently small r.

This quantity is well-defined because of property (4) of a cohomology assignment.
Now define the multiplicity of 0 in S to be

(14) vo = inf vo(r').
r-ET

Note that if ((Dr(r)) n s = {0}, and ,' E T is sufficiently close to i', then

S(Dr(r')) n S c 6(Dz (')).

Consequently 6 : Dr(i') -+ U is S-admissible and, by property (2) of cohomology
assignments, I(6, Dr('i')) = I(6, Dr(i,)). Since vo(n') 5 I((, Dr(r')), we have proved:

(15) vo(r,') 5 vo(r.) for all W' sufficiently close to r.

If there is a neighborhood N of r, such that vo(n') = vo(r,) for all ' E N, then we
call r, a stable direction through 0. For example, the infimum in (14) is taken over
a collection of positive integers, so is achieved for some r. E T. This direction r is
stable. The set of all stable directions through 0 will be denoted T,.

LEMMA 21. T, is open and dense in CP1 .

PROOF. It follows from the definition that T, is open in T. If r, E T and N
is a small neighborhood of r., then by (15), vo(r,') < vo(r.) for all ' E N. Hence
{vo(r.')jr' E N} is a finite set of positive numbers and there exists some r" E N with
vo(K") = infK'EN vo(-). This r," is stable, so we have shown that T, is dense in T.

Since T is open and dense in CP', we are done.
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LEMMA 22. Let K be a stable direction through 0, and let r < R be small enough
that (Dr(K)) nS = {0}. If K' G T is sufficiently close to K, then (Dr(i')) n S {0}
as well.

PROOF. Take r < R so that (D,(K)) n S = {0} and vo(K) = I( , D,(K)). In

proving (15), we found a neighborhood N of K such that

Vo (K') < I ( , Dr (K') = I ( , Dr (K)) = Vo (K)

for all ti-' E N. Since K is stable, we have (up to taking a smaller neighborhood)

IVo(') = vo(K) for all K' E N. Hence vo(K') = I(, Dr(K')) for K' E N and, by the
definition of I and the definition of vo(K'), (Dr({')) n S = {o}.

z1

70

FIGURE 5-1

COROLLARY 23. Let -7 D - U be an embedded, J-holomorphic, S-admissible

disk in U. Suppose that o-(D) intersects S only at 0. Then I(o-, D) ;> vo.

PROOF. We can assume that T1(0) = 0. Let ro be the tangent line to -(D) at

0 and choose coordinates {z0 , z'} so that Ko = {z0 = 0}.
In the first case, assume that , is stable. By Lemma 22, there exists S > 0 such

that -1'(S) n {z 0 - bz' = 0} = {0} when IbK 5 6. In other words, p-1(S) is contained

in the region where Iz0 l ;> 6 z' (see Figure 5-1). Thus if D, C D is any sufficiently

small disk containing 0, then o(D,) is contained in the region where Iz0 | I z', and

7D, : Dr -* U is homotopic to D :D() - U through S-admissible disks. By
properties (2) and (4) of cohomology assignments, I(o, D) = I(u, Dr) = I(, D (Ao)).
Now take r small enough that I($, D,('o)) = vo(Ko). Then I(o-, D) vo(Ko) > vo.

In the second case, Ko is not stable but can be approximated by stable directions,
by Lemma 21. Express o near 0 as a graph over i(. Thus we have Dr(Ko) - Dr C D

and u : D,(o) - C so that o-(z) = (u(z), z) for all z E Dr(KO). Let og be the
perturbation of o- given by Lemma 44. By taking K arbitrarily close to i 0 , we can

assume that a, : DR -f C2 is S-admissible and admissibly homotopic to o-ID, (see the

proof of Lemma 20), and that K is a stable direction. Therefore I(-, D) = I(, Dr)
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I(U-, D,). But recall that the image of o-, is J-holomorphic, and I is positive. It
follows that vo < I(c-, D,) = I(-, D), as needed. Z

2. Local behavior.

We are working in a neighborhood U of 0 in C2, and with an almost complex
structure J in U that is compatible with the metric g.

The discussion of the previous section is valid at each point of U: for each x E U,
Jx is a complex structure on C2 centered at x, and the almost complex structure J
equals J, at x. The set of Jx-hermitian coordinates centered at x is a copy of U(2)
over x, and the space of Jx-complex lines through x is a copy of CP over x.

Thus we obtain over U a principal U(2)-bundle P, a CP'-bundle Q, and a bundle
map

P 7r > Q

(U, J)

which, fibrewise, maps a choice of Jx hermitian coordinates centered at x to the
corresponding "vertical" line through X. The line bundles 7 -+ CP and E, E' -+
U(2) of the previous chapter also generalize to line bundles 7 -+ Q, E = 7r*y - P
and E' -+ P. For example, the fiber of E over a point (x, {z 0, z'}) E P is the Jx
complex line zA = 0.

Corollaries 42 and 43 give us bundle maps E, E and a commutative diagram

(16)
(O'id) E

DRE - DR(E) DR(E) -~P x 2

Q x C2P DR(y)

$Qr

Q

with the property that the image under 8(X,{ZO,Z1}) of each vertical disk wxDR(E(x,{Zo,Z1})),
centered at the point x E U with coordinates {z 0, Z}, is J-holomorphic in C2. (By
the commutativity of the diagram, the image under E of each fiber in DRQ() is also
J-holomorphic.)

Now introduce the closed subset S C U with finite 2-dimensional Hausdorff mea-
sure, and positive cohomology assignment I.

We summarize the results of the previous section with the following

PROPOSITION 24. For each x E S, the following are true

i) The set T|x = {K G Qx I 4|(x,)(DR(K)) n S is finite I is open and
has full measure in Q, ~ CP'.

ii) Given r. E TIx, let vx(K) = I (B|(x,, ,D,()) for any sufficiently
small r. The multiplicity of x in S defined as vx = inf v,() is a
positive integer.
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iii) The set of stable directions through x,

T8Ix = {ii E TI, : vx(r') = vx() for all nearby directions '}

is open and dense in Qx.
iv) If , is a stable direction through x and E(D,(r)) n S = {x}, then
E(Dr(')) n S = {x} for all ' E TI. sufficiently close to r.

v) If - : D -4 U is an embedded, J-holomorphic, S-admissible disk
and -(D) n S = {x}, then I(o-, D) > v,.

A point x E S is called regular if vy > vx for all y E S lying in some neighborhood
of x. Otherwise, x is called singular. Note that singular points have vx > 2.

LEMMA 25. If x is any point in S, then vy : vx for all y in some neighborhood
of x.

PROOF. Let ,o be a stable direction through x so such that vx(Ko) = vx, and
let {z 0, z} be hermitian coordinates centered at x such that Ko = {z0 = 0}. By
Lemma 22, there exists 6 > 0 such that the closed set E-(S) is contained in the region
{|z0I ;> 6z1 }. Moreover, there is a small r > 0 so that I(Ex, D,(ro)) = v =(o) = vx.
If y E S is sufficiently close to x, then Corollary 42 provides an S-admissible disk

- = , : D, -+ U (for some w E D,) such that y E o-(Dr) n S, and also an admissible
homotopy between o- and ExIDr(KO). By Lemma 44, we can perturb o through S-
admissible disks to an S-admissible disk o-, : D, -+ U which is tangent at y to a
stable direction n E TLy. By construction, the image of -, is J-holomorphic, and also
I is assumed to be positive. Thus if we choose r' < r so that u(Dr,) n S = {y}, we
find

vy 5 v, (K) = I(a-, Dr,) < I(o-K, Dr) = I(Ex, Dr(Ko)) = Vs.

In summary, if x E S is a regular point, then there is a neigborhood Nx of x such
that vy = vx for all y E S n Nx.

LEMMA 26. The set Seg of regular points is open and dense in S.

PROOF. The preceding discussion shows that Sreg is open.
If x E S and Nx is an open neighborhood of x, then the function defined on N

by y '-+ vy is positive and integer valued. Therefore its minimum is attained, and any
point at which the minimum is attained is regular. E

3. The regular points of S.

Continuing our proof of Theorem 18, recall that U c C2 is open, J and g are
compatible almost complex structure and metric on U, S C U is closed with finite
2-dimensional Hausdorff measure, and I is a positive cohomology assignment on S.

In this section, we show that the open, dense set Sreg consisting of the regular
points of S has the structure of an open J-holomorphic submanifold of U. Following
the strategy outlined in Chapter 5, we exhibit S in the neighborhood of a regular
point x as the graph of a Lipschitz function <D : D -+ C. Thus S has the structure
of a Lipschitz submanifold near x. We then show that 4 is holomorphic at 0. The
proof of Theorem 31 follows when we allow x to vary through Sreg.
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Fix a point x E Sreg and let no be a stable direction through x such that v. =
vx(ro). Let {zo, z'} be hermitian coordinates on C2 centered at x such that ,o =
{z0 = 0}. In these coordinates, S is the graph of a function 4) : D,(r) -+ D(o)
which we define as follows.

Let 0, : DR -+ U be the family of disks parameterized by w E DR(KI), given to
us by Lemma 42. Recall also the map E in (16) which, at the point (x, {z0, zl}) E P,
coincides with 9:

E(X,{zOz})(w, z) = 0,(z) for all (w, z) E DR(rI ) x DR(ko)

Since Oo(DR) n S is finite and 0(0) = x, we have 9o(D,) n S = {} for all sufficiently
small r.

LEMMA 27. For all (j, fi, il}) in a neighborhood of (x, {z0 , z'}) in P, and all w
in a neighborhood D, of 0, the intersection

(17) E(j,jjo,j1})(w x DR) n S
contains precisely one point.

PROOF. Duplicating the proof of Lemma 20, we find that for all (z, {z, 2'})
sufficiently close to (x, {z0 , z'}) and all w sufficiently close to 0, the intersection (17)
is finite and contains at most vo = I(90, D,) points. Let k denote the number of
points.

Since x is regular, we can assume that each point y in (17) has multiplicity vy =
v,. The image of ( on each vertical fiber w x DR is J-holomorphic, so by
Proposition 24 (v),

(18) I (e(2,{2ol1 ),w x DR) > k - vo.

By the homotopy invariance of I, we also have

I (E(j,jjo,-1}), w x DR) = I (e(t,{zo,z1}), 0 X Dr) = VO ,

and the latter is compatible with (18) only if k = 1. This proves the lemma. 0

Consequently, for each w E Dr there is a unique point 4(w) E Dr(Ko) so that
9(w x Dr) n S = 9(w, 1(w)). This defines the function 4 : Dr(4) + Dr(KO).

Near x, S can be identified with its preimage under the diffeomorphism 9:

(19) -(S) = {(w, ((w)) I w E Dr}.

This is none other than the graph of <D. Since -1 (S) is closed, 1 is at least continuous.

LEMMA 28. Let x C Sreg and define (D : Dr -+ Dr so that (19) holds. There is a
constant k > 0 such that

|(P(w) - 1(w')I < k -1w - w'j for all w,w' E Dr.

In other words, <D is a Lipschitz function on Dr.

PROOF. Identify S near 0 with 9'(S) = {(w,<b(w)) I w E Dr} and use the
identifications of (16) to apply Proposition 24 (iv). For each point x = (w, 4D(w)),
we find coordinates {o, 2'} centered at x and 6, > 0 so that 01(S) is contained in
the region {LiO ; 6x42'l}. Taking r smaller if necessary, we may take 6 > 0 to be
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independent of x and {, V} to be arbitrarily close (in norm) to {zo, z1 }. Then any
other point x' = (w', 1(w')) must satisfy

6
zo(W) - z (x) I z (I') - z'(x),

or equivalently

Iw' - W D W) -4(W|

Allowing x to vary through Sreg, we obtain the next result.

COROLLARY 29. There is an open, dense subset of S that has the structure of a
Lipschitz submanifold of U.

LEMMA 30. Let x E Sreg and define 41 : Dr -+ Dr so that (19) holds. Then

Dr -+ Dr is holomorphic at 0.

PROOF. Since D(0) = 0, we need to prove that the function

_ (w)
(W) = ,) 1 w Dr\{0}

W

extends continuously over 0.
We know by Lemma 28 that N) is bounded on Dr \ 0. Therefore if OG fails to

be continuous at 0, we can find two sequences wi and w' converging to 0 such that
limO4(wi) : limO5(w'). For each i, set Ai = 94(wj) and A' = O4:(w'). We can
assume that lim IAi| lim IA'I, and that

2E > IA2 - A > E

for some E > 0, for all i and j.
Fix some j > i > 0 so that Iw'I < Iwi I and, for ease of notation, set

W=Wi ,W=W.3

w = A' = A'. =

By construction, the quadratic

AA 2 A'w -Aw'

satisfies: f (0) = 0, f(w) = 1(w), f (w') = 4(w'). Therefore the map

q: -+ U
(20) z -+ (z, f (z))

passes through the three points (0, 0), (w, 'D(w)), (w', 4D(w')) in S. To make this map
S-admissible, recall that S (or 0-'(S)) lies in the region {Iz'Ij 5 klz0I}, where k is
the Lipschitz constant of 4D. If p is chosen so that

(21) If (z)I > 2klzl for all z E OD,,

then both (20) and small perturbations of (20) will be admissible disks in U. Let us
take

k +A'
p = 100|W| -
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Then it is straightforward to check that (21) is fulfilled for this choice of p.
Note that k, IA'I and e are independent of IwI, so by taking i very large (so

that jwI = 1wil is very small), we can assume that p is less than the constant Ro of
Lemma 41. We can also assume that If(z)I <; 44(k + IA'I)p is less than the constant
C1 of Lemma 41. Therefore when ao, a,, a2 E C are sufficiently small, Lemma 41
gives us a function V), which depends smoothly on ao, a,, a2 , and z E D,, so that
the perturbed map

(22) a(z) = (z, f(z) + a2z 2 + aiz + ao +V'(z))

has J-holomorphic image in C2 . If IwI and Iw'I are sufficiently small, then by
Lemma 41 and the inverse function theorem, there exist unique ao, a1, a2 satisfying
the simultaneous equations

a2 w 2+aw+a + (w) = 0
a2 (W') 2 +aiw'+ao+0(w') = 0

ao + 0(0) = 0.

Hence a passes through the three points (0, 0), 0(w, (w)), 9(w', 1(w')) in S.
Now translate the origin to p = E and perturb a using Lemma 45 with m = 3,

(1 =0, C2 = w and (3 = w'. The hypotheses of Lemma 45 are satisfied when Iwi is
sufficiently small, for then

3

ER K - |I = IwIw'I+ IWIW - w'I + W'IIw' - I > Cp p
i=1 j:Ai

rjI~ P =IW I W W I> C. P3 2

j=1

where C is the constant of Lemma 45. We therefore obtain a 1-parameter family of
J-holomorphic S-admissible disks aa(Dp) C U, a E Dp, such that oa(Dp) and a,(Dp)
intersect discretely when a = a'. Applying Lemma 9, we find a full measure set of
a E D, such that ua(Dp) and S intersect discretely.

Fix one such a E D,. By construction, aa(Dp) n S contains at least the three
points 0(0, 0), 0(w, 1(w)), 0(w', )(w')), so I(aa, Dp) > 3v, by Proposition 24 (v)
and the assumed regularity of x E S. On the other hand, aa is homotopic through
admissible disks to ao = a, and a is admissibly homotopic to the quadratic map
q(z) = (z, f(z)). It is a simple matter to check that q is admissibly homotopic to the
doubly covered vertical disk

z + 0 (0, - z2), z E D,.

Therefore, by properties 2 and 3 of cohomology assignments,

I(-a, Dp) = I(a, D,) = I(q, D,) = 2 -I(0, D,) = 2vx.

We thus have 2v. = I(Ua, D,) > 3vx, which is impossible as v, > 0. Therefore our
initial assumption on the behavior of &P at 0 is false, and we conclude that 4 is
holomorphic at 0.

An immediate consequence of Lemma 30 is the following.
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THEOREM 31. If S C U is closed, S5j(S) < +oo and I is a positive cohomology as-
signment on S in U, then the set of regular points of S is an embedded, J-holomorphic
submanifold of U.
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CHAPTER 6

The Boundary Case

In standard transversality and intersection theory, there is no well-defined intersection
number between two maps f : M -+ X, g : N -+ X when one of M and N has non-
empty boundary. Under homotopy, points of intersection can slide off the boundary,
so the usual count of points (with or without sign) does not yield a well-defined
number. For this reason a cohomology assignment on S C X, which one should think
of as a generalized local intersection pairing with S, is defined only on the class of
S-admissible disks in X. The restriction -(OD) C X \ S guarantees that intersection
points do not slide off via the boundary OD.

If X 4 is an oriented manifold and Y2 C X is a 2-dimensional orientable sub-
manifold then it is possible to define an intersection pairing on the class of smooth
maps

{f : M2 -+ X I M is a surface and f (OM) C Y}.

Let f : (M, OM) -+ (X, Y) and g : (N, ON) -+ (X, Y) be two such maps and suppose
the following are true:

i) f and g are transverse in X;
ii) f lM and g IN are transverse in Y;

iii) The set {(p, q) c M x N I f(p) = g(q)} is finite and consists of
points (p, q) such that p E Int M, q E Int N, or p E OM, q E ON.

When these conditions are satisfied, we say that f and g are relatively transverse and
we define the relative intersection pairing of f and g to be the signed sum

(23) I(f,g) = Epq + 1 cp,q,

(p,q)EInt MxInt N (p,q)E9MxaN
f(p)=g(q) f(p)=g(q)

where ep,q = +1 if Tf(p)X and fTpM E gTqN are equal as oriented vector spaces,
and ,,q = -1 if the orientations are opposite.

Note that the sign -p,q at a point (p, q) E OM x ON is not determined by comparing
f*Tp(OM) e g*Tq(ON) to Tf(p)Y. In fact we have not specified an orientation on Y.

THEOREM 32. Let fo, f : (M,OM) -+ (X, Y) and g : (N,ON) -+ (X, Y) be
smooth maps of surfaces and suppose that fo and f1 are relatively transverse to g. If
F(t,p) = ft(p) is a homotopy between fo and f1 such that ft(OM) C Y for all t, then
I(fo, g) = I(fi, g).

Such a homotopy will be called a relative homotopy. Now if f : (M, OM) -+ (X, Y)
and g : (N, ON) -+ (X, Y) are any two maps (possibly not relatively transverse),
then we can find maps f': (M, OM) -+ (X, Y) and g': (N, ON) -+ (X, Y) relatively
homotopic to f and g respectively, so that f' and g' are relatively transverse. Then
I(f', g') is defined as above, and we set I(f, g) = I(f', g'). By Theorem 32, this
relative intersection number is well-defined.
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PROOF OF THEOREM 32. We can assume that F-1(Y) = I x OM and g- 1 (Y)
ON, that is,

(24)
the normal vector to I x OM in I x M (resp.to ON in N) is
mapped into the normal bundle of Y in X.

Because ft is required to map OM into Y for all t, we can not generically assume that
F is transverse to g along I x OM. However, by Sard's theorem we can perturb F so
that

(25)

(26)

F = FI IxIt m and g' = g1Int N are transverse in X, and

F+ = F|IxOM and g+ = 9|8N are transverse in Y.

Therefore the set W = {(tp, q) I F(t,p) = g(q)} equals the union W0 U W+, where

W = {(tp,q) E I x IntM x IntN I F0 (tp) = g0 (q)}

is a 1-manifold with boundary and possibly some ends in I x Int M x Int N, and

W+ = {(t,p,q) E I x M x ON I F+(t,p) = g+(q)}

is a 1-manifold with boundary in I x OM x ON.
If W' has any open ends, these will converge to I x OM x ON, so to points

in W+. We will presently show that after an arbitrarily small perturbation of F,
there can be at most finitely many points where this can happen, and that Wo is a
smooth manifold with boundary on (W1 x Int M x Int N) U W+. The perturbation
will leave F a relative homotopy and preserve (24), (25), (26) above. Moreover, an
interior intersection point of weight 1 converges to the boundary (in the sense that
W0 meets W+) only if it combines with a boundary intersection point of weight
- to become a single boundary intersection point with weight 1. Thus the total
intersection number (23) remains invariant as time t progresses.

+1

0 x M ---------- 1 x M

+1

t

FIGURE 6-1. Behavior of intersection points in I x M.
represent W' while dotted lines represent W+.

Solid lines

Let D+ = {(x,y) E R2 I x2 + y 2 < 1, y > 0} denote the upper half disk in R2 ,
with boundary a+D+ = {(x, y) E D+ I y = 0}. By our assumptions (24), (25) and
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(26), we can find coordinates X1 , Y1, X2 , Y2 on X near Y so that Y is given by the local
equations yi = Y2 = 0, and so that F and g have the following local expressions:

F : I x D+ - 1 Y1 2

(,x, y) (x, y, a (t, x, y), 0(t, X, y))

g : D+ -+W

(x, y) (x, y, 0, 0)

where 0(t, x, 0) = 0 for all t, x. Therefore W* is the set where y > 0, a = = 0, and
W+ is the set where y = 0, a = 0.

Since F+ is transverse to g+ in Y, it follows that F fails to be transverse to g at
the points (t, x, 0) where the matrix

~1 0 1 0 0- -1 0 1 0 0~
0 1 0 1 0 0 1 0 1 0
0 0 2a aa a = 0 0 aa aa aa

[o 0 a 1 0 p0 0 10a~ at a. ax ay at. JY=O .O0 ay -

does not have full rank. This occurs precisely when a(t, x, 0) = 0.

Suppose that a = 0 at the point (0, 0, 0). By making an arbitrarily small per-ay
turbation of a in the x direction, we can assume that a (0,0,0) $ 0. Then make a
change of coordinates so that a(t, x, y) = x. By Taylor's theorem, there are functions
f, g, h: I x D+ -+ R so that

(27) / = y - (tf + xg + yh)

in a neighborhood of (0, 0, 0). By making another arbitrarily small perturbation we
can assume that f, g and h are not zero at (0, 0, 0).

Thus in the vicinity of (0, 0, 0), we have W+ = {(t, x, y) I x = y = 0} and
W = {(t, x, y) I y > 0 and y - (tf + yh) = 0}. As f(0, 0, 0) and h(0, 0, 0) are both
nonzero, it follows immediately that Wo is a smooth manifold with boundary on W+,
and that (0, 0, 0) is isolated as a point of intersection of Wo and W+.

It remains to determine the weights 1, or , associated to the points of W0 , or
W+, located near (0, 0, 0). The sign of the weights equals the sign of the determinant

1 0 1 0
0 1 0 1

(28) 0 0 aa aa

0 0 a, 8
ax ay

which, for a = x, equals the sign of 2-. By (27), #y(t, 0,0) = tf(t, 0,0) for any t.

Hence the weight at (t, 0,0) E W+ equals j - sign(tf). On the other hand, at the
point (t, 0, y) E W , we have tf + yh = 0, and sign(t) = - sign(h) -sign(f). By (27),
O,3(t, 0, y) = y - f + h + y + 2), so when y > 0 and t are sufficiently small, we

have
sign(#y) = sign(yh) = sign(h) = - sign(tf).

Therefore the weight at (t, 0, y) E W* equals - sign(tf). The four possibilities are
depicted in Figure 6-2.
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FIGURE 6-2. WO (solid) meets W+
When sign(t) = - sign(hf), then y
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(dotted)
> 0.

transversally at the origin.

In any case, the sum of the weights is constant with respect to time t.
We have shown that, after an arbitrarily small perturbation, F is transverse to g

on the complement of a finite set of points in I x D+. The points where F and g are
not transverse are the boundary points of WO, where WO and W+ meet transversally.
The weights carried by points in W = W* U W+ change with t according to the four
pictures in Figure 6-2. Therefore the intersection number I(ft, g) is invariant with
respect to t in a neighborhood of the points W n W+. Outside of W* n W+, W is
a 1-manifold with boundary, so the usual argument (see [GP, Chap. 3]) shows that
I(ft, g) is everywhere invariant under time. We conclude that I(fo, g) = I(fl, g). L

We want to prove the following local recognition principle with totally real bound-
ary conditions.

THEOREM 33. Let J, w be an almost complex structure and compatible symplectic
form on C2 , and let Y c C2 be a real 2-dimensional plane that is everywhere totally
real with respect to J. Let U c C2 be open and let S C U be a connected closed subset
with boundary OS C Y, such that 5j2 (S) < +oo and j1 (OS) < +oo. If S carries
a positive relative cohomology assignment I in (U, Y n U), then there is a Riemann
surface E with boundary, a domain Q C E with boundary &+Q = Q n OE, and a
J-holomorphic map f : (Q, &+Q) -+ (U, Y) such that S = f(Q), OS = f(,+0), and
I = If.
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LEMMA 34. Let Y c C2 be a Jo-totally real 2-plane, and let U c C2 be an open
neighborhood of 0. If (S, OS) C (U, Y) is closed, and 59 (OS) < +oo, then the set

A = {A E S' I ((+D ) n OS is finite}

has full measure in S1.

LEMMA 35. If in addition to the hypotheses of Lemma 34 we assume that (S, OS)
has a positive relative cohomology assignment I in (U, Y), then (D+ (A)) n S is finite
for each A E A.

COROLLARY 36. Let Y C C2 be a totally real 2-plane, let U C C2 be open, and
let (S, OS) C (U, Y) be closed with b2(S) < +oo and 59(S) < +oo. Then A C S1

is open.

If A E A, then (D+ (A)) n S = {O} for all sufficiently small r. Therefore we set

vo(A) = 2 -I( , Dh(A))

for any sufficiently small r. If A' E A is sufficiently close to A, then

(D+ (A')) n S c (D+(A/)).

Hence : (D (A'), 9+D+ (A')) --+ (U, Y) is S-admissible and, by homotopy invariance,
I( , D (A')) = I( , D (A)). It follows that vo(A') <; vo(A) for all A' sufficiently close
to A in A. If in fact vo(A') = vo(A) for all A' in some neighborhood of A, then we call A
a stable (real) direction through 0. The set of stable directions in A will be denoted
As.

Next define the multiplicity of 0 in S to be

vo = inf vo(A)
AEA

and note that the infimum is taken over a set of positive integers. Therefore vo is a
positive integer and equals vo(A) for some A E A. The latter direction A must, by
definition, be stable.

LEMMA 37. The set As of stable directions in Y through 0 is an open subset of
Si.
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CHAPTER 7

Constructing Families of Pseudo-holomorphic Disks

Let U C C2 be an open subset containing the origin, and let Jo denote the standard
complex structure on C2 . Fix a metric g on U. Let J be a compatible almost complex
structure on U that is standard at the origin, and let w be a tame symplectic structure
on U that is standard at the origin. In terms of complex coordinates z0 = xl+ix2 , l =

X 3 + ix4 on U, we have wo =dx A dx 2 + dx 3 A dx 4 , and

[j 0 . 0 -
1o 0 j ' = 1 0

At a point z = (zO, z1 ) in C2 , write J as

iz Az Bz
Cz D]

where A, B, C, D are real 2x2 matrices. Since J = Jo at the origin, each of 1IA -
jI ,ID - j, |IBII, H1CII is small when lizil is small.

Next let DR denote the open disk of radius R in C. Given a smooth function
u : DR - C and a complex polynomial f : DR - C, our plan is to find a smooth
function 0 : DR -- C so that the map

q: DR C2

z ( (Z) + f (Z) + '0(z), z)

has J-holomorphic image in C2 . Note that this is weaker than asking for the map q
itself to be J-holomorphic (in the sense that Jdq = dqjo).

In terms of the complex Gaussian coordinates, we have q = (q, ide), with q =
u + f + V). Then the condition that q have J-holomorphic image is equivalent to the
equation

(29) B + Adq - dqD - dqCdq = 0

which, since J2 = -I, is equivalent to

1
(30) 0b= -Ou+ -j{B+ (A - j)dq - dq(D - j) - dqCdq}.

2

Let Qp be the (0,1)-form appearing on the right hand side of equation (30). To
solve (30), we look for b as a fixed point of a functional

"F(O) = (Qp)"

defined on a suitable Banach space.
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1. H6lder spaces and estimates for 0.

Let Kka(DR) be the Banach space of functions b : C -+ C of class Ck,a such that
the restriction of b to C\DR is holomorphic, and such that 1$1 -+ 0 as |zi -+ +o.
(Note then that 1,l9D, C Span{ei }n<O.)

For any 0 E Ck,,a(DR) , the holomorphic map 'jC\DR is uniquely determined by
/ IODR . Therefore the following H6lder norm on DR also defines a norm on k,,(DR

k

||b|| = ||0||k,a = 11011k,a;DR = S RiI|D/I$||;DR + Rk+,[D k ]oa;DR.
j=0

Here, 11 -I|0;DR denotes the Co norm on DR,

|IDIV)I0;DR = sup |ID0/I0;DR,

and [.], the H6lder norm, given by

sup(1) - 0(y) I
k4a;DR = sup

x,yEDR Ix y

Some relevant background on H6lder spaces may be found in [GT, Chap.4]. We will
need the following easily verifiable facts:

(1) If k' + a' > k + a, then Kk',a'(DR ) C Kk,a
(2) If sp E Kk,a 7, E Ik,Q' and k' + a' > k + a, then p0 E Ek,,
(3) If L E Kk+1,a(DR), then IID4'Ik,a 5 Ljk+1,a-

LEMMA 38. Let Q be an open, proper subset in R2 . Given a bounded function
V E Cc(Q), set

(31) (z)= s(w)dw dv.
27ri z - W

Then 0 E C1 (Q), and 2b= V in Q. Moreover, for any z E Q,

1/ 1
(32) zo/(z) = . W) 2 (p(z) - p(w))dw di .

Here 0 is any domain containing Q and s is extended to vanish outside Q.
The same methods used in [GT, Chap.4] to solve the Dirichlet problem for Pois-

son's equation yield the following estimates for 0.
LEMMA 39. Let B1 = BR(0) c B2 = B2R(0) be concentric balls in C. Let s E

C'(B2) , 0 < a < 1, and define b as in (31). Then 0 E C1,"(B1) and

||DO1|0;p1 + Ra[D/]a;p1 5 C- {||IIsIV0 2 + Ra[s]a; 2} 7
for some constant C = C(a).

COROLLARY 40. Let s E Coa(DR). For z E C, set

OiIW 1 (w)dw do.
27ri Da z ~

Then b E KVl"(DR) and

(33) |I5/I1,a;DR C(a)R -I|soI|0,a;D2R =C(a)R I soIj0,a;DR'
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PROOF. Extend <p to be 0 outside of DR. Then 4 is holomorphic in C\DR. Also,
101 -+ 0 as Izi -+ +oo. Therefore 4 E A1,'(DR), and (33) follows from Lemma 39. 0

2. The main lemma.

We are now prepared to find a solution to equation (30) on DR. To do so, let us
fix a cut-off function X : C -+ [0,1] with the property that X(z) = 1 for Izi 5 1, and
X(z) = 0 for jzj ;> 3/2. For any R > 0, define XR to be the function

XR(z) = X(z) ,z E C.

In Lemma 41, we use XR to define a cut-off equation on D2R (see (35) below) whose
restriction to the smaller disk DR is equation (30). We find a solution to this cut-off
equation by a fixed point argument in the Banach space KC2,,(D2R), and then restrict
this solution to DR to solve (30).

LEMMA 41. Let U C C2 be open, let g be a metric on U, and let J be a com-
patible almost complex structure that equals J at the origin. There exist constants
R0,Co, C1 > 0 depending only on g, J such that the following are true.

i) Let R < Ro . For each smooth map u : D2R -+ C with IIuI2,a;D2R <
R/C2, and each degree m complex polynomial f = a.z' + - - -+ ao
with 1|f||2,a;D2R < R, there exists a unique 4' E K 2 ,(D 2R) with

(34) || |I2,a;D2R CO ( (1U12,a;D2R + R1I fI2,a;D2R+ R 2)

that solves the equation
(35)

0 X R- -,9u+ (- q + ( A -j| -dqo - dqo - (D -j| - dqp ~q dq,

q = (q,, id) = (u+ f + , id).

In particular, the restriction of q, to DR has J-holomorphic image
in C2 .

ii) The function 4 is smooth.
iii) The function 4 is also C' with respect to the coefficients ao, . . . , am
of f. There exist constants ck depending only on k, J and g so that

aIc- Rk+1.
D~ak <C

iv) Suppose that the map

DR -+C 2

z - (u(z),z)

has J-holomorphic image. Then for any complex polynomial f =
amz' + - + ao, the function 4 obtained in (i) satisfies:

110112,a 5 CoR -11f||2,a;D2R -

PROOF. For each 4 E K2,(D 2R), let %e = (qp, id) = (u + f + 4, id) and define

(36) Q0 = -0u+ {Bq, + (A - j)qo -dqp - dqp - (D- j)q, - dqp -Cqo - dqV} .

47



The cut-off form XR ' QP lies in Coa(D2R), so by Corollary 40,

(37) F(V))(z) = 1 dw XR ' QV
27C z W

is a well-defined element of AK2,, (D2R). This defines a functional F : K 2," (D2R) -+

K 2 ,,(D2 R), and any fixed point 0* of F must solve (35) on D2R. Since XR =1 on DR,
0* solves equation (30) on DR. Consequently the image of q1 , DR is J-holomorphic
in C2 . We will look for a fixed point of F on a neighborhood of 0 in K 2,a(D2R).

Suppose there is a positive number e so that IIDpFj| 2,a K 1 when 110112,a < E--2
Then

1
T F ( ) - F (p) j < 1|1 - W11 for 4 , W E B E(0),

and

|F(O)| < -1111 + IIF(0)ii + IF(0)II for V E BE(0)
If IIF(0)|i (, then F maps Be(0) to itself and is a contraction there. So F has a
unique fixed point 0* E Be(0), which is what we want. Furthermore, |4,*H 2||F(0)||.
In the steps that follow, we will make the necessary estimates to find a suitable value
for e.
Step 1. There is a constant C depending only on J, X and a so that if R < 1 and

||qll1,a;D2 R 50R, then the following hold:

(38) |I(J - JO) o qll,a;D2R C Iql1,a;D 2R

(39) ||D(J - JO) o qll<,C;D2R

The proof follows from the fact that J equals J at the origin, and from the multi-
plicative property of H6lder norms.
Step 2. If R < 1 and ||ql12,a;D2R 50R, then

(40) IIDPF|1,a;D2R Co . (R + HqII2,a;D2R)

for some constant Co = Co(J, X, a).
Proof. Differentiating (36) and using Step 1, we obtain

IIDOQII 1,a < IID(J - JO) o qll1,, - (1 + 2||dqll1,a + jdq 11)

+ 211(J - JO) o q,a - 11 dq I 1,

+ 21(J - Jo) o qll, ' 11j dq+C1,a - dqjjj1,+

< C - (I + jjdqjj 1,)2 + 2Cj|qj|1,a * 11 dqll1,c, - (1+ l|dqll1,c,).

Now |I |111,a = 1, so that I I dq, < . It follows from Corollary
if 1ql 2 ,a < 50R , then

||DVpF 2 ,a;D2 R C(a)R ' XR - DVpQ1,a;D 2R <

" C - (R +|ql| 2,a)(1 +|dqja) +

" 151C - (R + qI2,a)-
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Step 3. If R < 1 and Ijqo112,a;D2R 50R, then at b = 0,

(41) ||F(0)I2,a;D2R 5 C1{JUjj2,a + (|IU|I2,a + 1f 12,a + R)2}

for some constant C1 = C1 (J, X, a).
Proof. When b = 0, then qO = (qo, idc) = (u + f, idc). Using (38) and (36), observe
that

||QOII1,a;D 2R 1 kl l,a;D2R + C IIl,a;D 2R -{1 + 2IgdqolI1,a;D2R + I dqO 1,a;D2R

As IjqoII2,a;D 2R 50R, it follows that

|IF(0)112,a;D 2R < C(a, X){R ,dujIa + 50CR2 . (1 + Idqo1|1,,) 21

< C(a, x){IIkJ2,c + 50C -(R + qoII2,a)21
< C1{Ij|2, + (R +1U12,a +lIflI2,.)21.

Step 4. Here, we use the results of Steps 1-3 to find a fixed point of F on an e-
neighborhood of 0 in K2,'(D 2R)-

Let Ro = 1/60Co(1 + C1), where Co and C1 are the constants of Steps 2 and 3,
respectively. Let R < RO and suppose that |lUII2,a;D2R < R/C1 , while If II2,Q;D2R <R
Define F: K2,'(D 2R) _+ [2,a (D2R) as in (37).

Next take e = 8C1 (1Uj|2 ,a + RI1fII 2,a + R2 ) and note that by our assumptions on

Iull,1f II and R, we have e < 24R. Thus if |14112,a < e , then q 112,a < 29R < 50R,
and so by Step 2,

IDOF|2,a;D2R < Co (R + HqII2,a;D2R)

< 30Co -R
1
2

Moreover by Step 3, |IF(0)112,a;D2R C1i{IuH 2,a+(lIUI2,a+Ij fl 2,a+R)2 1 <24C,(u21a+
RI1fI1 2,a + R2) =

We can therefore conclude that F is a contraction on Be(0) c Kk,, (D2R). Let 0/p*
be the unique fixed point of FB,(o). Then

|II)*12,a = IIF(V)*)I 2,Q 1|1* - 0l12,a + llF(0)l 2,a

and hence ||/*Il2,a 5 2||F(0)12,a;D2R- Since 0 0* = XR Q QP*, it follows that the
restriction of qp* to BR has J-holomorphic image. The smoothness of V* follows
from a standard bootstrap argument.

To prove (iii), consider q,Q, F as functions of a = (am,... ai, ao) E Cm and
E K2,'(D2R). Thus,

q(a, i)(z) = (u(z) + amzm + - + a1z + ao + O(z), z),

(42) Q(a, ?P)= -9 u+ {BIq" +(A-j)q|, -dq-dq-(D-j) a -dq-CjqO -dq},

F(a, '0) (XR ' Q(a, 0))
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From the equation /*(a) F(a,4*(a)), we find that * is differentiable with
respect to ak and

(43)60* WF6
(43) a 6F (a, *)] - (a, *)

Since |1 112,a = IDVFI| 2,a for 11112,a < e, it follows that

__* 6F 6Q
(44) 11 11 2,a < 211J (a, a) 112,ce < 2C(a)R|11 6Q (aala-

On the other hand, q/Jak = Pk , wherePk : C -4 C2 is the function z '- (zk, 0),
satisfying IIPkll,a;D2R < C - Rk. Differentiating (42) with respect to ak, we therefore
have

11 6 1'a II|D(J - JO) o qI -116q 11-(1+ 211dqII + Idq112)

6
+ 211(J - Jo) o q| -|| a(dq)| -(1 + |dq|)

< Ck Rk. (1 + jjdqI) 2 + Ck IIqII Rk- (1 + Idqj)
5 (51+50)-51ckRk

Combined with (44), this proves (iii).
Finally, to prove (iv), write Q as a function of f, @ :

Qf (0) = Q(a, 0).

To say that (u(z), z) is J-holomorphic is to say that Qo(0) = 0. In this case, there is
a constant C2 such that

||Qf (0)|| ! C2 -|lf|11
for all complex polynomials f of sufficiently small norm. But 11*|1' < 2||Ff(0)11'
< 2C(a)R -IIQf(0)II', so this does the trick. El

3. Families of disks.

Recall that on the open set U c C2 , we have a metric g and a compatible almost
complex structure J which equals Jo at the origin. Fix complex coordinates zo
x + ix2, z1 = X3 + iX4 in C2.

For example, if we take u = 0 in Lemma 41, then by (34) we have

sup 10*1 II0*||2,a;D 2R Co (RfII +R 2)
D2R

It follows that supD2R' 10* C' -R' for all R' < R, and hence $*(0) = 0.

COROLLARY 42. There exist constants Ro > 0 and C depending only on J and g
such that, for R < R0 , there is a diffeomorphism 0 : DR x DR -+ U C C2 with the
following properties:

i) For each w C DR, the map 0 = 0(w,) DR -+ U has J-
holomorphic image.

ii) For each w E DR, 0(w, 0) = (w, 0).
iii) For each w, dist(0(w, z), (w, z)) C R z|.
iv) There is a constant Ck = C(J, g, k) so that IDk(Gt)I < Ck R for

each w E DR-
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v) The image of 00 is tangent to the vertical line {z0 = 0} at 0.

PROOF. Let Ro be the constant of Lemma 41, and let R < Ro. Given w E DR,
take u = 0 and f = w in Lemma 41. Then we obtain a smooth function V, : D2R -+ C
for which the map

qw: DR -+ C2

Z (W +0 W2z, Z)

has J-holomorphic image.
Set 9(w, z) = (w + ob(z), z). By Lemma 41 (3), 9 is smooth in w and in z, and

I + &0 4DO =(jw 6z)
0 I

Moreover, there is a constant co so that lI6'/JwII 5 co -R for all R < Ro. Thus when
Ro is sufficiently small, DO is invertible, and by the inverse function theorem, 9 is a
diffeomorphism onto its image.

By construction, each Ow has J-holomorphic image. For any R' < R, (34) yields

sup Jow| I5 |@w||2,a;D 2R : Co (R'Iwl + (R')2) 2CoRR'.
D2 R/

Thus ow (0) = 0 and 0(w, 0) = (w, 0). A similar argument will prove (v).
Another consequence of (34) is that

R -sup IDowI ||4w||2,a;D2R 2CoJ2
D2R

Hence dist(9(w, z), (w, z)) 5 C I OW (z)| 5 C- supD2R IDol - IzI 5 CR - IzI. This
proves (iii).

From the proof of Lemma 41, recall that a b = {{B + (A - j)dq - dq(D - j) -
dq C dq} and that |I4'|I is sufficiently small that we have |IqIJ < 50R. In our case,
q = (q, id) = (w + Ow, id). By Corollary 40 and (38) we have, for each k > 0,

||||kca CR J|B + (A - j) -do - do . (D - j) - do - C - do||k--1a

< CR - |V|k-1,a - (1 + 21dolJIk1,a + I|do112_1,a)
< C - ||01|k_1,a - (R + IkbI1k,a) - (1 + IldolIkl,a)
* 51C - IkbI|k-1, (R + II/11ka) 11

*5 512 CR-|||-,.

This proves (iv). E

Let K denote the "vertical" line zo = 0, and ,'s the "horizontal" line z1 = 0.
Letting DR(K), resp. DR(K'), denote the disk of radius R in n, resp. K-, we interpret
9 as a map DR(K) x DR(K-') -+ C2 .

The above construction works regardless of our original choice of hermitian coor-
dinates in C2 . The set of such coordinates is parametrized by U(2), and there is a
natural map ir : U(2) -+ CP1 r U(2)/U(1) x U(1) which sends a choice of coordinates
to the corresponding vertical line. Let y -+ CP1 denote the tautological line bundle
and let E -+ U(2) denote the pullback of y via 7r. We refer to E as the "bundle of
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horizontal lines". Applying Corollary 42 for each choice of hermitian coordinates, we
obtain a bundle map

DR(E) x DR(E') U(2) x C2

U(2)

which, fiberwise, has all the properties (i)-(v) of Corollary 42.
COROLLARY 43. Let DR(y) be the radius R disk bundle in y. There exists a

constant Ro > 0 depending only on J and g so that for each R < Ro, there is a
smooth map : DR(y) -+ U with the following properties.

i) maps the zero section to 0 and embeds the complement of the
zero section.

ii) For each , E CP', (DR(I)) is J-holomorphic in C2 and is tan-
gent to K at 0.

iii) If {z, z1} are hermitian coordinates in C2 and no is the vertical
line z0 = 0, then IDR(Ko) : DR(Io) _+ C2 coincides with the map

00 : DR(o) _4 C2 obtained in Corollary 42.

PROOF. Fix no E CP' and choose a lift {z0 , z'} E U(2). The map 0o : DR(Ko) -+
C2 which, in coordinates {z0 , zl}, is defined by

0o(z) = (V) (z), z) , z E DR,

is tangent to no at 0 = Oo(0), by Corollary 42, (v). The V) in question is the unique
element of K 2,(D2R) with norm bounded by (34) satisfying the equation

(45) xR- {B + (A - j) - dO - dO - (D - j) - d - C -d}.2
If {JO, il} E U(2) also maps to no under 7r, then there exist A0, A, C U(1) so that
(i(x),2'(x)) = (AOz(x),Alz'(x)) for all x E C2. (In other words, {20,21} differs
from {z0 , zl} by the diagonal matrix with entries A0 , A,.) Let

0o(2) = ((i), ), 2 E DR,

be the map obtained by applying Corollary 42 in the coordinates {z0, 2i}. If we make
the substitution i = Alz and switch back to the coordinates {zo, z'}, then we find

90(z) = (Az), z,

and the function z ,X* y (Alz) also satisfies (45). Moreover, this function is an

element of A2,'(D 2R) whose norm yp(Alz) < | is bounded by (34). (It suffices

to check that the non-negative Fourier coefficients of the restriction to OD2R are all
zero, which is true because ' C K2,(D 2R).) By uniqueness, it follows that '(z) =

yO(Alz) for all z E DR.

Thus 9o and 00 define the same map DR(no) -+ C2, and we can define : DR(Ko) 4

C independently of the choice of lift for no. D
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Oo(DR) o(DR)

z0 z0

FIGURE 7-1. 0,(DR) versus b(DR)-

LEMMA 44. There is a constant RO > 0 so that the following are true. Fix
hermitian coordinates in C2 and let

-: DR U

z - (u(z), z)

be a map defined on DR for some R < RO, whose image is J-holomorphic. Let no
denote the tangent line to u(DR) at c-(O). For all K sufficiently close to no, there is a
perturbation a- : DR -+ U of o such that

i) UK(0) = O(0),
ii) o- is tangent to K at 0,
iii) J-K(DR) is a J-holomorphic subvariety of U.

PROOF. We can assume that u(0) = 0, and then pick hermitian coordinates
{zO, z1} so that Ko = {zo = 0}. For b E C, Ier identify Kb near Ko with the line
Z' - bz' = 0. The perturbation will take the form

(46) (u(z) + az + ao + 'ao,ai (z), z),

for suitable choices of ao, a, E C.
If ao, a1 are sufficiently small, then by Lemma 41 we can find P,,i so that the

image of (46) is J-holomorphic. This map passes through 0 at z = 0 provided

(47) ao + V#ao,a1 (0) = 0.

By Lemma 41 (iii), < coRo, so if Ro is sufficiently small, the map ao '+bao

ao + lao,al (0) is invertible, and takes the value 0 at ao = 0. Therefore the constraint
(47) defines ao as a smooth function of a1 .

Finally, consider the function b(a1) = a, + 0'(0), with derivative

db '=b 1 +0 (0).
dal 6a,

Again, we have '(0) < cRo < 1 provided RO is sufficiently small. In this case,
there is a neighborhood of a, = 0 that is mapped diffeomorphically by b onto a
neighborhood of b(0) = 0.
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In summary, we have 6 > 0 and smooth functions a,(b), ao(ai) = ao(a,(b)) for
Ibi < 6, so that each of the maps o-,, defined by (46) satisfies -,, (0) = 0 and a'b(0) =

(ai(b) + 0'o,al (0),1) = (b, 1). This completes the proof. l

LEMMA 45. There are constants R0 , 6,C > 0 depending only on J and g so that
the following hold.

i) Let R < Ro and let u : DR -4 C be a smooth map such that

(u, id DR) : DR -+ C2 has J-holomorphic image. If (1,...,4m are
distinct points in DR such that

(48) E JIi I -(, > CR"- 3,

i=1 jAi

then there is a 1-parameter family of maps

-a : DR __4 C 2 , a E C, jal < 6

so that each disk Ua(DR) is J-holomorphic and passes through (u((j3 ), (j)
for each j = 1, .... .,m. Furthermore, -o = (u, id IDR)-

ii) Each -a has the form

-a(z) = u(z)+al(z-zj)+ (z),z , zEDR,
\ j=1

where z = (z1, . . . , zm) depends smoothly on = ((, . . . ,m), and

|z - (I < CmR 3

for some constant Cm = Cm( J, g).
iii) If, in addition, H"'1 || > CR-+A, then -a intersects -a' dis-
cretely for all a' 4 a.

PROOF. When a E C and zj E C are sufficiently small, we obtain 0 depending
smoothly on a and z3 so that the map

q = u+ a (z - z) +O,id
j=1

has J-holomorphic image. The condition that q pass through the points (u(i), 0
amounts to having

(49) f ((i) + -f ((j) = a (( - z) + Of () = 0
j=1

for each i = 1,.. .,m. Fixing a in (49), we now solve for z = (zi, ... , zm) E C" in
terms of (= ((j,...,m)E C. For each i, set

gi(zi ..., zm) = a (ci - zj) E C,
j=1

hi(zi ... , zm) = Oa r(z-z,)(Ci) E C.
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Then gi((1,..., (m) = 0, and Taylor's formula with remainder yields

f (() + VP. ((j) = g(z) + hi(z)

= gi(O) + Eai(0) - (Zk - (k) + hi(C) + Rj((, z - (
k

(gi ( ) + hi() + Ri((,p),
k aZk

where we have set Pk = Zk - (k and p = (i,... ., pm), and where

1(,z (1 - t)( 1 z 192 (( + t) - pk - pi dt + 1E h(_ + tp) - pk dt
R 0k , 1 z k k -

is the remainder term. To solve equation (49) for zi,... , zm it is thus sufficient to
find a fixed point p of the function

G : p '-k -[Dg(()]~ 1 - (h(C) + R((, p)),

where [Dg(()] denotes the matrix 09i ()].
By lemma 41 we have the following estimates:

lh(()l < |I0aH(z-C,)l2,a 5 C - R - ja 7 - liz - (j|| I5 cm Rm+1 Jal,
j=1

R((, _p) Cm (Rm-2. lal 1I1 2 + Rm la_ lV),

< Cm (Rm-3. a 1I 2 + Rm-2 a| |_ + Ri|lal).

Moreover, the matrix [Dg(()] is diagonal and its (i, i)-th entry equals

=-a7 1((i (-).

Thus, by (48), j|Dg(()jj > CIaIRm-, and

DG| 5 Cm (R-3jp2 + R2|p +R

|G(O)j CmR35

for some constant Cm depending only on m.
Let E = 2CmR1. If p < e, then IDAGI < C(R + R- + RI) for some big constant

C. If RO is sufficiently small, it follows that IDLG < 1. By definition, we also have

IG(0)I < j. Therefore, as pointed out in the proof of Lemma 41, we can conclude
that G has a unique fixed point p of length IpI < 2CmR1. Taking (zi, ... , zm) =

((j + pi, .. , (m + Pm), we obtain the map ca = (u + a jmL1 (z - zj) + Oa(z-zj), id)

passing through each of the points (u((j), (i). By uniqueness, o0 = (u, id IDR)-
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Writing a f l(z - zj) = amzm + - - - + ao, we have

mU m O ak
= 6H(z - z)+Z6a a=O j=1 k=0 6ak a

Combined with Lemma 41 (iii), this gives us

6a" (0) |zj|-ECkR k+1. m-k

a=O j=1 k=O

m m-1

" ]7 I~| - C j( |{kI"-k - C Rm+1
j=1 k=O

" fJ 3I -C -Rm+3.
j=1

If ]7J3= 1 1(j > C Rm+', then the map a -+ Ua(0) is a local diffeomorphism of a
neighborhood of a = 0 onto its image. Thus, when a and a' are sufficiently small
and a 4 a', the range of Ca does not equal the range of -a,. By Aronszajn's unique
continuation principle [A], the images of Ua and Ua' therefore intersect discretely. D

4. Families of half-disks on a totally real plane.

The goal of this section is to produce families of pseudo-holomorphic half-disks
with boundary on a totally real 2-plane Y C 02. Working in a neighborhood U of
0, we can change the metric near Y to assume that Y is orthogonal to JY. Then
any orthogonal basis for Y is also a unitary basis for C2 = Y e JY and so defines
hermitian coordinates z' = x1 +iyl, z 2 = x 2 +iy 2 . With respect to these coordinates,
Y = {yl = y2 = 0} is a copy of the standard R E R C C2. Then using the reflection
principle we will obtain the results of this section as variations on the results of
Section 7.

Consider anew C2 with standard complex coordinates z' = 1+iy1 , z2 - X2 +iy 2

and let Y be the real 2-plane {(x, y1 Ix2 y 2 ) =1 _ y2 = 0}. On a neighborhood U
of the origin, we are given an almost complex structure J and a compatible metric
g, and both are standard at 0. A half-disk with boundary on Y is a smooth map
q : (D+, +D+) -+ (C2, Y) defined on the upper half-disk

D+ = {z = x + iy E C I x 2 +y 2 < l7y > 0},

which maps the boundary 9+D+ = {x + iy E D I y = 0} into Y. If q(z) = (q(z), z)
for all z E D+, then q : D+ - C must map a+D+ into R. Therefore q extends by
reflection to a smooth map D -+ C :

q(z) = q(z) for all z E D.

Now let D+ C C be the upper half-disk of radius R, let u : D- C be a smooth
function mapping a+DI into R, and let f(z) = amzm + + ao be a real polynomial.
Our task is to find a smooth function 4 : D -+ C so that the image of

q= (u+ f+, id)
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is J-holomorphic in U and so that the boundary q(a+D ) lies on Y. (We will call q
a J-holomorphic half-disk with boundary on Y.)

Let C+ denote the upper half plane {x + iy E C I y > 0}. Our search for 0 leads us
to define the Banach space IC2',(D+) consisting of functions 0 : (C+, R) -+ (C, R) of
class C2, on Int(C+) such that 10(z)I -+ 0 as Iz -+ +oo, and such that the restriction
of b to Int(C+ \ D+) is holomorphic.

If 0 E 2,a(Df+), then $ maps R C C+ to R, so the reflection of / is a map
C -+ C of class C2,, whose restriction to C \ DR is holomorphic. Thus K2,, (D+) can
be identified with the closed subspace of AZ2,, (DR) consisting of functions that are
symmetric with respect to the real axis, that is, )(2) = O(z) for all z E C.

LEMMA 46. Let U C C2 be open, and let J and g be a compatible almost complex
structure and metric on U, both standard at the origin. Let X : C -+ [0,1] be a smooth,
radially symmetric cut-off function satisfying x(z) = 1 for jz| < 1 and x(z) = 0 for

There exist constants R0 , C0,1 > 0 depending only on g, J and x such that the
following hold.

i) Let R < Ro, let u : (D+ ,+D2+R) -+ (C, R) be a smooth function
and let f(z) = anzm + ... + ao be a degreem polynomial with real

coefficients. Suppose that IuII2,a;D+ < and If 112,a;D+ < R. Then

there is a unique b E K 2,(D+) satisfying the estimate

(50) |l|IV)l 2,a;D+ < CO ' (I1U2,a;D+ + R1lfH 2 ,a;D2+ + R 2 )

which solves the following equation in Int(C+):
(51)

ao xR- -au+! (Blqo + ( A- j)|lqo - dqo - dqo - (D - j)|lq,- dqo Clqo dqp],

% = (q , id) = (u + f +,0 id) .

ii) The function b is smooth in Int(C+).
iii) The restriction q%|D+ : D+ -+ C2 is a J-holomorphic half-disk
with boundary on the standard totally real 2-plane R e R c C2

iv) The function b is C' with respect to the coefficients ao,... , am
of f. Moreover there exist constants ck = ck(g, J, x) such that

< Ck ' Rk+
Oak

v) If the map (u, id) : D+ -+ C2 has J-holomorphic image, then for
any real polynomial f = amzm + - + ao, the function 4 obtained
in (i) satisfies:

11 2,a;D+ C ' 2,a;D+ .2R -'2R

PROOF. The function u on D+ extends to a complex-valued function on D2R

satisfying u(2) = u(z) and the real polynomial f naturally satisfies f(-f) = f(z).
Identify K2 ,, (D+) with the closed subspace

E A2,"(D 2R) O(z)= (z)I
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of K2,, (D2R), and consider the restriction of the functional F defined by (37) to
K 2,(DIj). The proof and estimates of Lemma 41 can be duplicated to show that F
has a unique fixed point 4* E K2,"(DIj), if only we can show that F maps K2 ,a(D'j)
to itself. But the latter is straightforward: for any 4 E K2 , (DI), there is a function
77p satisfying 77(,) = p(z) on C such that the 1-form QP defined in (36) satisfies
dz A Qgp(z) = rh(z)dz A d2. Therefore

F0 (z) 1 XR -'7 (w d A
2 jXR z - w

1 X R '7V (fV A
1 jXR 7(w)dwdw

which is to say that F0 E C2,a (D2R)

We want to apply Lemma 46 to the following situation. Let U c C2 be open and
fix an almost complex structure J in U. Let g be any metric on U compatible with
J. A real 2-plane Y C C2 is totally real in U if at each point p E Y n U we have
TY n JTY Y n JpY = 0. In C2 , Y is totally real if and only if it is never a

Jp-complex line, for p E Y. Since C2 equals the direct sum Y e JY, any basis v1 , v 2

for Y is also a complex basis for C2 . By altering the metric g in a neighborhood of
Y in U, we can assume that for all p, Y is orthogonal to JY with respect to gp.
Hence any oriented orthonormal basis for Y is also a unitary basis for (C2 , J,, g,) and
defines hermitian coordinates z' = x1 + iyl, z 2 

- x 2 + iy 2 centered at p with respect
to which Y = {y 1 = y2 = 0}. We are therefore in a position to apply Lemma 46,
as we did Lemma 41 in Section 7, to construct families of J-holomorphic half-disks
with boundary on Y, tangent to prescribed directions, or passing through prescribed
points. Because we have altered the metric g near Y, the constants of Lemma 46 will
now also depend on Y, but in no way on u or f.

COROLLARY 47. Let Y be a totally real subspace of C2 and let z' = x 1 + y 1 , z2

x2 + iy2 be complex coordinates in C2 defined by an oriented orthonormal basis v 1 , v 2

for Y. There exist positive constants R0 , C depending only on J, g and Y so that,
for each R < R0 , there is a diffeomorphism 6 : DR x DR -+ U with the following
properties:

i) For each w E DR, the image of 0, = 9(w,-) : DR -+ U is a
J-holomorphic disk passing through Ow(0) = (w, 0).

ii) For each real w E DR, the restriction of 0,, to each of D+ and D-
is a J-holomorphic half-disk with boundary on Y, that is, 6(a+D+), 0(a-D-) c
Y are oriented curves passing through (w, 0).

iii) For w = 0, the oriented curve 00(a+D+) in Y is tangent at 0 to
the vector v2 , and the half-disk O0(D+) is tangent at 0 to the complex
line {z 2 = 0}.

iv) For each w E DR, dist(9(w, z), (w, z)) <; C R -jzj.
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v) There is a constant Ck = C(J, g, k, Y) such that |Dk (0,)1 < Ck -R
for all w E DR.

PROOF. Use Lemmas 41 and 46, and follow the proof of Corollary 42, making use
of the uniqueness property of 4). E

The set of oriented orthonormal frames in Y is parametrized by the group 0(2),
which double covers the space S' = SO(2) of oriented directions in Y. Each choice
of vertical direction v2 E S' determines a J-holomorphic half-disk with boundary on
Y, according to the following variation on Corollary 43.

COROLLARY 48. Let Y be a totally real subspace of C2. There exists a positive
constant Ro > 0 depending only on J, g and Y, and for each R < Ro there exists a
smooth map : S' x D+ - U such that the following hold:

i) maps S' x a+D+ into Y, maps S' x 0 to 0, and restricts to an
embedding S' x Int(D+) + U C C2.

ii) Given v E S', let z' = x1 +iy 1, Z2 =X+iy2 be complex coordinates
for which Y = {y1 = y2 = 0} and v spans the line {xi - y1 = -y 2 =

0}. Then with respect to these coordinates, (v, z) = (-v, -z) for
all real z E a+D+

iii) For each v E Sl, 6,(D+) = 6(v x D+) is a J-holomorphic half-
disk with boundary on Y; moreover the oriented boundary 6v(a+D+)
is tangent to the oriented vector v at 0.

iv) Let v1 , v2 be an oriented orthonormal basis for Y, and let z' =
x1 + iy1 , Z2 = X + iy 2 be the associated complex coordinates for C2

Then 6v2 : D+ -+ U coincides with the map 00|D : D+ -+ U
obtained in Corollary 47.

COROLLARY 49. Let Y C 2 be a totally real plane and let z' = x' + iy, 2

x + iy2 be complex coordinates in C2 defined by an oriented orthonormal basis v1 , v 2

for Y. There is a positive constant Ro = RO(J, g, Y) such that the following are true.
Let R < Ro and let

o: DR U C C2

Z (U(z), z)

be a J-holomorphic half-disk with boundary -(a+D+) contained in Y. Let or+ denote
the restriction of a to a+D+ and suppose that the tangent vector to o+ at 0 is a
positive multiple of v E S1 . Then for all v' E S' sufficiently close to v, there is a
J-holomorphic half-disk ov, : D+ -+ U such that

i) a (a+D+) is contained in Y,
ii) av'(0) = o,(0),
iii) o,+ is tangent to v' at 0.

LEMMA 50. Let U C C2 be open and let J, g be a compatible almost complex
structure and metric in U. Let Y C C2 be a totally real 2-plane for J. There exist
constants Ro, 6, C > 0 depending only on J, g and Y such that the following hold.

i) Let R < Ro and let u : D+ -+ C be a smooth map such that
(u, id) : D+ -+ C2 has J-holomorphic image and maps i9+D+ into
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Y. Let C1,...,, be distinct points in 9+D+ such that

~M-1
(52) ( .- > CR .

i=1 joi

Then there is a real 1-parameter family of maps

-a : D+ -+ C2, a E R,Ial < 6

such that each c-a(Df) is a J-holomorphic half-disk with boundary
on Y, passing through the m points (u((j), (). Furthermore, oo =

(u, id).
ii) Each Ua has the form

-a(z)= u(z)+afI(z-z)+V(z),z) zEDR,
j=1

where z = (z1,..., zm) depends smoothly on = (C1,...,cm), and

- I < CmRI for some constant Cm = Cm(J, g, Y).
iii) If in addition to the hypotheses, we have H7.= 1 | ( > CRm+2,
then Ua and -a/ intersect discretely when a' : a.
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APPENDIX A

The Sacks-Uhlenbeck argument

In this appendix we show how some obvious attempts to use a Sacks-Uhlenbeck type
argument to prove compactness for J-holomorphic curves in the symplectization of
a contact manifold M, might fail. For a basic description of the Sacks-Uhlenbeck
method, we refer the reader to [P] and [PW].

Fix an almost complex structure J on R x M such that J is compatible with da
on = Ker a amd J(Ot) = v,, the Reeb vector field associated to a. If u : E -+ R x M
is a J-holomorphic map of a punctured Riemann surface E into the symplectization
of M, then the Hofer energy of u equals

8(u) = sup u*d(Va),

where C denotes the set of functions V : R -- [1, 1] such that V' > 0.
LEMMA 51 (sup estimate for E). There exist h, C > 0 so that if u B, -+ R x M

is J-holomorphic and

sup u*d(Va) < h
O J Br

then

sup IVul < -
Br/2 r

PROOF. By scaling, it suffices to prove the result for r = 1. In this case, if
the result fails to hold, then for any h, C > 0, we can find a J-holomorphic map
u: B, -÷ R x M for which sup, fBr u*d(Va) < h and supBr/ 2 IVul C.

We will take a sequence hk -+ 0 , C= 1/h2 -+ +oo and Uk Br -+ R x M such
that

E(uk; Br) = sup Lu*d(Va) < hk and sup |Vuk >C.
J Br Br/ 2

The trick is to choose hk and Ck wisely.
Take points Zk E B,/ 2 such that IVuk(zk)l = supBr/ 2 IVukl. Applying Lemma 26

of [H] with X = Br, # = IVukl, X = Zk, and e = hk, we get x' = zk' E B,/ 2 and E' > 0
such that

a) ' < hk and IVuk (Z)I - E' > |Vuk(zk)| h
b) Izk - Z'1 < 2hk
c) 2IVuk(Z)I IVuk(z)I for all z C B, satisfying Iz - z'I < '

Now we can assume that hk < r/16 for all k, or at any rate for all sufficiently large
k. Therefore we have

a) e' < hk and IVuk(Z)| '

b) z' E B2, (zk) C Bor/8
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c) IVuk(z)I 5 21Vuk(Z4)I for all z E Be (z') C B,116 (Z') C Int(Br 4 ).

For convenience, relabel e' as Ek and z as Zk. Set Rk = IVuk(zk) and Hk =
H(uk(zk)). Recalling that ekRk -4+00 as k -4 oc, we define, for z E BekRk (0)

Vk(Z) = THk 0 Uk(Zk + Z
Rk

where TH is translation by -H in R x M. Thus we have a sequence of J-holomorphic
maps defined on increasing balls in C which satisfy:

1) sup, fB v d po) (u,; Br ) < hk -+ 0
2) IVVkIl 5 2 on BkRk, and IVvk(0)j= 1
3) For each k, Vk(0) lies in the compact set H- 1(0).

Thus we get a subsequence {Vk} that converges in C, to a J-holomorphic map
vo : C -+ R x M. Moreover,

6 (V0) = 0 |V00(0)| = I |V00 < 2 on C.

The first property implies that v. is constant, but this contradicts the second. With
this contradiction in hand, we have proved the lemma. El

The next result is a version of Lemma 51 for curves with boundary. Given a subset
A c C, we let A+ = {z E AjImz > 0}. So for example B+ is the closed upper half
disc of radius r in C. On the boundary a+B+ = {z E Br lImz = 0}, we require that
a map u: Bt -+ R x M take values in Y C 0 x M.

LEMMA 52. There exist h,C > 0 such that if u: B+ - R x M is J-holomorphic
with u(aO+B) c Y, and if

sup j u*d(<pa) < h
W JBfr

then
C

sup jVuj < -
Br

r/2

PROOF. Again, by rescaling, we can assume that r = 1. If the result fails to hold,
then we take a sequence hk -+ 0 with hk < r/16 for all k, and Ck = 1/h' -+ +oc. For
each k, there is a J-holomorphic map Uk : (Bt, +Bf) -+ (R x M, Y) with

supf u*d(pa) < hk and sup|VuIC .
W JBr B+r/2

Again, by Lemma 26 of [H], we get Ek > 0 and Zk E B, such that

a) Ek hk and IVuk(zk)I -. E>

b) Zk E B2h (zk) C Br/S(Zk) C B+b) Zk B~r~k(Zk)5r/8

c) Vuk(z)l 5 2IVuk(zk)l for all z E Be,(Zk) c Br/16 C (IntB3 r/ 4 )+.
As before, we set Rk = IVuk(zk)I and Hk = H(uk(zk)), and observe that Rkek -+ +00

as k -+ oo. Up to taking a subsequence, we can assume that Zk converges to zO E B.
There are two cases to consider: either Rk-dist(zk, O+B) -+ +oo, or Rk-dist(zk, O+B)

p < +00 (where dist(zk, O+B) is simply equal to Imzk.)
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In the first case, we renormalize as in the proof of Lemma 51 to get a sequence of
maps converging in C1 to a map v : C -+ R x M. As in Lemma 51, this leads to a
contradiction.

In the second case, set Pk = Rk - Imzk and defineVk : B+ (ipk) - R x M by the
formula

Vk (Z) = uk (~- + Rezk)
Rk

Then we have a sequence of J-holomorphic maps defined on increasing domains in
C+ satisfying:

1) supP fB Rk(ipk) vkd(pa) E uk; Br+ <hk 4 0

2) |Vvk| 1 2 on B+Rk(ipk), and |Vvk(ipk)I = 1
3) Vk(z) E Y when z E B+kRk (iPk) and Imz = 0.

We get a subsequence {vk} converging in CIc to a J-holomorphic map v : C+ 4
R x M with the properties

VOO(z) E Y for all z E R C C+ s (VO) = 0 1VW(ip)1 = 1.
The last two properties are contradictory, so this proves the lemma.

To complete the Sacks-Uhlenbeck argument, we would like to proceed in the fol-
lowing manner (see [P], [PW]).

1. The Covering argument

Consider a sequence ui: (D, iD) -+ (R x M, Y) or Uk : (E, i9E) -+ (R x M, Y) of
J-holomorphic maps with uniformly bounded Hofer-energy,

E(u; D) Eo for all k.

For the moment, fix a positive radius r and cover D by r-balls so that the r/2-balls
also cover, and so that any point of D lies in at most 10 balls. Let h be the minimum
of the h's occurring in Lemmas 51 and 52. Now suppose the following were true:

If D1 , D2 C E are disjoint open sets, then

(53) (u; D1 U D 2 ) = 9(u; D1 ) + 9(u; D2 ) for any qualifying u: E -+ R x M.

Then for any k, there are at most I = 10E0 /h "bad" balls on which Uk has energy
> h. As k -+ oo, the centers of these bad balls converge (up to taking a subsequence)
to xl,... , E D. Setting Q(r) = UiB,(xi), we have, thanks to Lemmas 51 and 52
above, a subsequence {Uk} that converges in C1 on D\Q(r).

(To see how this works, take K > 0 so that 1xi(k) - xil < r/4 for all i when
k > K. If x E D\Q(r), then for all i and all k > K, we have Ix - xi(k)I > r/2. Hence
x lies in a ball B,(yk) that is good for Uk, that is, E(uk; B,(Yk)) < h. It follows that
supB,2 (yk) Vuki 5 C/r and that IVuk(x)I 5 C/r, independently of k. This is true
for any x E D\Q(r), so we find

sup IVuk I C/r for all k
D\O(r)

Thus we get a subsequence that converges on D\Q(r) to a map D\Q(r) -+ R x M.)
Now let r -+ 0. We can assume xi(r),. . . ,xi(r) converge to 1,. . . , in D as

r - 0. For each r, we have a subsequence {Uk} that converges in C1 on D\Q(r). By
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taking a diagonal subsequence, we obtain a sequence {Uk} that converges in Cl,, to a
J-holomorphic map u,,. D\{ii,... , z -+ R x M.

Now to finish, we need the following Removable Singularities Theorem, which was
proved on page 3 of [HWZ].

THEOREM 53. Let u : D\0 -+ R x M be a J-holomorphic map with finite energy
9(u; D). Either the image of u lies in a compact region, in which case the singularity
is removable; or, u has a positive or a negative end, i.e. near the puncture, u is
asymptotic to a cylinder over a periodic orbit.

Unfortunately, Hofer's energy is not additive in the sense of (53). For let x : I -+
M be any trajectory of the Reeb vector field XQ, so that N(t) = X,(x(t)) for t E I.
Given a < b, define u : (a, b) x I -+ R x M by u(s, t) = (s, x(t)). This map u is
J-holomorphic, and for any p E C,

u*d(oa) = W(b) - o(a)
(a,b)x I

Therefore E(u) = sup,(o(b) - (a)) = j. But this is true for any a, b we like, so E
can't be additive.

2. p-energy.

The Sacks-Uhlenbeck argument with C substituted for the usual energy did not
work because E is not additive with respect to domains. Note however that for any
fixed o E C, the "p-energy" (or "C-energy")

E(u;)= u*wW

is additive: E ,(u; Di U D 2 ) = 9, (u; D1 ) + E.(u; D2 ) whenever D, n D2 = 0.
Now one might try to substitute E, for in the covering argument of the previous

section. To be precise, if {uk} is a family of J-holomorphic curves with S(uk) < Eo
for all k, then for any fixed o E C, we have a uniform bound

gw(uk) < E(uk) < Eo for all k

Since E, is additive on domains, the entire discussion of the previous section seems
to go through without difficulty, setting us on our happy way to completing the proof
of the compactness theorem.

Alas, the E-energy is not invariant under translations in R x M, and consequently
does not yield a sup estimate such as those in Lemmas 51 and 52. Without the
sup estimate, we can not begin to appeal to the Arzeli-Ascoli Theorem to get C'
convergence.

To see what goes wrong, consider again the renormalization step in the proof of
Lemma 51 or 52. We are assuming fixed some o E C, and we have hk 0, Ck -+ +00

and uk : D, -- R x M so that

/ u*pW,<hk and sup |Vuk; Ck
Dr <D,

From [H, Lemma 26] we get Ek - 0 and Zk E Dr/2 so that

EkRk -+ +00 , where Rk = Vuk(Zk),
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and IVuk(z) < 2Rk for all z E Be (k(Zk)
Now we renormalize by setting

Vk(Z) = Uk(z/Rk + Zk) for z E BekR,(0) C C

The resulting sequence of maps satisfy:

(54) IVvk(0)I = 1 1Vv (z) < 2 for z E Be Rk ()

Also, for each k, we have

JBEk Rk VkWW <hk

and the latter quantity goes to zero.
We can assume by taking a subsequence if necessary that zk -+ zo, in D,/2. If

Uk(Zk) = Vk(O) stays in a bounded region, then there is a subsequence that converges.
Together with the estimate (54), this implies that {Vk} has a subsequence converging
in Cic on C to a map vo, : C -+ R x M.

On the other hand, if H o uk(zk) -+ -oo then the " bubble is going off the
neck". To catch it, we translate the images in the target: set Hk = H o Uk(Zk)

and let TH, denote translation down by Hk in R x M. That is, if p E R x M, then
H(THk(p)) = H(p) - Hk . Now define instead

Vk(Z)=TH 0 Uk(z/Rk +Zk) for z E BkRk

Then H(vk(O)) = H(THk o Uk(Zk)) = Hk - Hk = 0, and we still have the estimate
(54), because we are using the translationally invariant cylindrical metric on R x M.

Therefore we get a subsequence {Vk} that converges in C1, to a map v, : C -+
R x M with H(voo(O)) = 0 and IVv..(0) 1= 1, that is, vo, is not constant.

As for the estimate on E,(u) = fI u*d(pa), note that this quantity is not invariant
under the translation THk. The E.-energy can increase under translation, and we could
wind up with E (Vk) > hk.

For a trivial example, let A be any constant with 1/2 < A < 1, and let p = A
on (-oo,To], p 1 on [0,+oo) and p' > 0 on (To,0). Suppose that u*da = 0. If
H o u(D,(z)) c (-oo, To), then clearly 6,(u) = 0. But the translate THO(Z) o u meets
the region H 1(ro, 0), so it has positive E.-energy.

Here is a slightly more interesting example. Suppose we have a trajectory x
R -+ M of the Reeb vector field, i.e. i = X|,. that is defined for all time t E R.
For example, if M has a closed characteristic parametrized by x : [0, T] -+ M, then
extend x periodically to be defined on the whole of R.

Take the standard complex stricture on R x R, which in coordinates (s, t) is
written j( 8,) = at. Given the trajectory x, define a map u : R x R -+ R x M by

u(s, t) = (-e- cost, x(e~ sin t))

Recall that on R x M, J is chosen compatible with da on (, and JM, = Xc,, JX, =
-0,-. Now since

-,,= e- (cos t) , - e- (sin t) X,
ut = e-(sin t) O + e- (cos t) X, ,

it is clear that Ju, = ut, and u is J-holomorphic.
Note that IVul = v2e-q, so that if s << 0, then JVul is big. We next use this

observation to prove that the sup estimate fails for many choices of p E C.
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LEMMA 54. Let V E C and let limVo p(T) = A , A E [1/2, 1]. Suppose that

lim (V(-r) - A) - Jrj = 0.
7--00

Then for any r <wr/2, the J-holomorphic map u : R2 -+ R x M given by

u(s, t) = (-e- cost, x(e- sin t))

satisfies

E,(u; D,.(s)) -+ 0 as s -+-oo

sup IVu2 -+ +oo as s -+ -oo
Dr/ 2(S)

PROOF. Since u is always parallel to a, and X,

u*d(pa) = j P'(H o u) Idu|2ds A dt
Dr (S) D' (S)2

In our case, H o u = -e-s cos t and we can bound the integral on the right by

/rS+rJp '(-e-s cos t)e -28dsdt

Make the substitutions e = cos t and u = -e--e in the interior integral to obtain

(55) j p'(-e~8 cost)e-2sds = A{(u1)u1 - (u2 )u 2 + j p(u)du}

Since V is everywhere increasing and V(u1) ;> A, (55) is bounded by

(56) 1A -V(U2)} U1 -

Noting that ui = -e-(s-'r) and u 2  -e-(s+r)f = e- 2rui and that 0 < cos r < cos t <
1, we see that

eo 2 r(56) - co 2r {s(_e- 8 r COSr) - A --

Hence

9. (u; D,(s)) Cr e2
r {s(--- cos r) - A} e--' cos r

and the constant C depends only on r. As s -+ -o, then also -e-s-' cos r -+ -o,
so the right hand expression goes to 0.

Finally, suPD,/ 2 (s) 2 = 2e 2(s-), which blows up as s -+ -oo. l

COROLLARY 55. Let V satisfy the conditions of Lemma 54. Then for any se-

quences hk -+ 0 and Ck -4 +oo, we can find a sequence of J-holomorphic maps

uk: Dr -+ R x M so that

E(,(u; Dr) < hk and sup IVuk2 > Ck
Dr/2

Next we show definitively that the sup estimate fails for any V E C.
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LEMMA 56. Let o E C. There are constants E, C > 0 and a sequence of J-
holomorphic maps Uk : D1 -+ R x M satisfying

C
E,(Uk;D1) < -

k

for all k.

PROOF.
assume that

Given k,
suPD,/ 2 IduI 2

(57)

and sup Idui|2 > Ck 2

D1/2

Fix any J-holomorphic map u : D1 -+ R x M with u*da = 0. We
Ho u< 0 on D. Set E = fD Idu1 2ds A dt.
consider v(z) = u(zk), z E D. We have E(v) = J f d12 = kE.
occurs at roeOo E D,/2 , then it is easy to check that

,an

If

sup |dv 2 > k 2 r2k- 2 sup Idu|2
D,-/2 D,-/2

As W E C, we know that lim,o cp'(T) = 0. Hence for any k, there exists rk
so that 0 < p' < 1/k 2 on (-oo,Tk). Set Vk(Z) = Tk 0 v(z) = Trk 0 u(zk). Then
H a Vk < rk on D, so the image of Vk is contained in H-1 (-oo, Tk). Therefore,

,(vk; D) =j vk( 'dr A a + W da) =j (Ho vk) dvk2 < I E(v) = E .

By (57), we also have supD, 2 Idvk 2 - SupD, 2 dv 12 > Ok 2 SupDr/ 2 Idu 2. So we are
done. 0
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