
Applications of abelian algebraic structures in

quantum computation

by

Kevin C. Zatloukal

B.S., University of Washington (2000)

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL 12 2016

LIBRARIES
ARCHIVES

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2016

@ Kevin C. Zatloukal, MMXVI. All rights reserved.

The author hereby grants to MIT permission to reproduce and to
distribute publicly paper and electronic copies of this thesis document

in whole or in part in any medium now known or hereafter created.

Author .. Signature red actedA uthor......
Department of Electrical Engineering and Computer Science

May 18, 2016

Certified by

Accepted by

I-'

Signature redacted
Aram W. Harrow

Assistant Professor
Thesis Supervisor

Signature redacted
Les& A.(ko]~dziejski

Chair, Department Committee on Graduate Students

2

Applications of abelian algebraic structures in quantum

computation

by

Kevin C. Zatloukal

Submitted to the Department of Electrical Engineering and Computer Science
on May 18, 2016, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science and Engineering

Abstract

Shor's groundbreaking algorithms for integer factoring and discrete logarithm [58],
along with their later generalizations 116, 35, 49, 18], demonstrated a unique ability
of quantum computers to solve problems defined on abelian groups. In this thesis,
we study ways in which that ability can be leveraged in order to solve problems on
more complex structures such as non-abelian groups and hypergroups.

This leads to new quantum algorithms for the hidden subgroup problem on nilpo-
tent groups whose order is a product of large primes, the hidden subhypergroup
problem on both strongly integral hypergroups and ultragroups, testing equivalence
of group extensions, and computing the component parts of the cohomology groups
of both group extensions and a generalization of simplicial complexes, amongst other
problems. For each of those listed, we also show that no classical algorithm can
achieve similar efficiency under standard cryptographic assumptions.

Thesis Supervisor: Aram W. Harrow
Title: Assistant Professor

3

4

Acknowledgments

I would first like to thank Aram Harrow for supervising all of the work that went

into this thesis. I am indebted to him not only for providing critical insights at many

points during this work but also for consistently encouraging me along the way. I

would also like to thank Ike Chuang and Scott Aaronson for serving on my both my

thesis committee and my qualifying exam committee and for the helpful feedback

that they provided. I am also thankful to the Center for Theoretical Physics at MIT

for providing a home for me during the time when much of this work was done.

I have been very fortunate to have collaborated with Juan Bermejo Vega. Many

of the fruits of that collaboration are described in chapter 5. More importantly, I was

lucky to meet such a wonderful person, who is not only a great collaborator but also

a great friend. I would like to thank the Max Planck Institute for Quantum Optics

as well for hosting me and giving me a chance to experience another culture while I

collaborated on this work with Juan.

I was remarkably fortunate to have received so much support from experienced

researchers as an undergraduate. I am indebted to Richard Ladner for taking me

under his wing when I was an aspiring computer scientist. It is no exaggeration to

say that I would have accomplished very little of what I have without having received

so much of his time and advice. I would like to thank Martin Tompa as well for

encouraging, advising, and supporting me as an undergraduate.

I am deeply grateful to my family for putting up with many absences while I

traveled and long hours when I did not, as well as for their encouragement and love.

This work was supported by NSF grant CCF-1111382 and the iQuISE IGERT

program at MIT.

This thesis is dedicated to my father, Jim Zatloukal, who lived a life nearly perfect

in every respect but its duration.

5

6

Contents

1 Introduction 15

2 Mathematical Background 19

2.1 Groups Theory 20

2.1.1 G roups . 20

2.1.2 C osets . 21

2.1.3 Conjugation and Normality 21

2.1.4 Important Types of Groups 23

2.2 Representation Theory . 30

2.2.1 Basic Definitions . 30

2.2.2 Examples of Representations 31

2.2.3 Basic Properties . 32

2.2.4 Examples of Representations of Important Groups 33

3 Quantum Computation 41

3.1 Quantum Mechanics . 41

3.1.1 Efficient Operation . 42

3.1.2 Example Transformations . 44

3.1.3 Approximate Transformations 46

3.2 Group Problems in Quantum Computation 48

3.2.1 The Hidden Subgroup Problem 48

3.2.2 Order Finding . 49

3.2.3 Abelian Group Decomposition 52

7

3.3 Solving the Hidden Subgroup Problem 54

3.3.1 Abelian Groups . 54

3.3.2 Non-abelian Groups . 57

3.3.3 Generalized Hiding Functions 60

4 An Application of Abelian Substructure 63

4.1 Weak Fourier Sampling of Nilpotent Groups 64

4.2 A Hiding Process for the Normal Closure 67

4.3 Algorithms for Average-Case Subset Sum 71

4.4 Quantum Algorithms for the Nilpotent HSP 72

4.5 Conclusion . 75

5 An Application of Translation Into Abelian Structures 77

5.1 Hypergroup Background . 79

5.1.1 The Hypergroup of Conjugacy Classes 80

5.1.2 The Hypergroup of Characters 81

5.1.3 Dual Hypergroups . 82

5.1.4 Subhypergroups and Quotient Hypergroups 84

5.2 Reducing the HKP to the HSHP . 84

5.3 Abelian Hypergroup Duality . 87

5.4 Solving the HSHP: Easy Case . 89

5.5 Solving the HSHP: General Case . 92

5.6 Solving the HSHP: Ultragroups . 95

5.7 Conclusion . 102

6 Applications of Cohomology 103

6.1 Group Cohomology . 104

6.1.1 General Approach . 105

6.1.2 Quantum Algorithms for Equivalence Testing 107

6.1.3 Classical Hardness of Equivalence Testing 116

6.1.4 Counting Equivalence Classes 118

8

6.2 Simplicial Cohomology . 120

6.2.1 Background . 121

6.2.2 Quantum Algorithms for Computing Betti Numbers 127

6.2.3 Simplicial Cohomology . 128

6.2.4 Classical Hardness of Simplicial Cohomology 130

6.3 Conclusion . 132

7 Summary 135

A Representation Theory 137

A.1 Irreducible Representations . 137

A.2 Character Theory . 140

A.3 Induced Representations . 143

A.4 Clifford Theory . 148

A.5 Representations of Supersolvable Groups 151

A.6 Representations of Nilpotent Groups 152

B Group Cohomology 155

B.1 From Extensions to Factor Sets . 155

B.2 Low-Degree Group Cohomology . 157

B.3 From Factor Sets to Extensions . 160

9

10

List of Figures

6-1 The main objects in group cohomology. 106

6-2 The 2-sphere, S 2 . 121

6-3 A 3-dimensional simplex. 123

11

12

List of Tables

7.1 A summary of problems solved in this thesis. 136

13

14

Chapter 1

Introduction

Motivation Shor's groundbreaking algorithms for integer factoring and discrete

logarithm [58] demonstrated the power of quantum computers to solve problems be-

lieved to be intractable for classical computers [171. Since then, researchers have

strived to understand the source of this quantum advantage and to find ways to

generalize it.

Quickly, the focus shifted from the more narrow number-theoretic problems con-

sidered initially by Shor to the Hidden Subgroup Problem (HSP), a more general

problem about finite groups [16, 35, 49]. This includes as special cases not only dis-

crete logarithm but also Simon's problem [59], for which an exponential speedup of

quantum algorithms over classical ones had also been demonstrated. Brassard and

Heyer [16, 35] showed that the techniques developed by Shor can be extended to

efficiently solve the HSP for all finite abelian groups.

Shortly after, Cheung and Mosca [181 showed, using the solution to the abelian

HSP along with Shor's order finding algorithm, that quantum computers can effi-

ciently decompose an abelian group, given as black box [4], into its cyclic factors.

This generalizes both the algorithms for factoring and discrete logarithm, in fact, for

order finding and a variant of the general abelian HSP. Indeed, the ability to under-

stand abelian groups, by decomposing them into their cyclic factors, makes essentially

every natural problem defined on abelian groups efficiently solvable.1

'See [561 for a list of common problems defined on groups.

15

A similar story occurred for infinite abelian groups in the form of vector spaces.

There, the ability to decompose a subgroup specified as column space of a matrix into

its cyclic components (i.e., eigenspaces) leads, after substantial work, to the ability

to solve linear systems 133].

In summary, prior work has demonstrated that quantum computers have a unique

ability to analyze and understand abelian algebraic structures. It is natural to wonder,

then, to what extent this ability extends to more complex structures such as non-

abelian groups.

Overview In this thesis, we will examine in detail ways in which we can solve

problems on more complex structures by leveraging, in various ways, the ability of

quantum computers to understand and solve problems on abelian algebraic structures.

The idea of using simple abelian groups (often vector spaces) in order to under-

stand more complex objects is ubiquitous in mathematics. For example, the approach

of approximating a nonlinear function near a point by its tangent plane (a vector

space) will be familiar to most. However, similar approaches are also used to ana-

lyze differential equations [27], topological spaces [34], differentiable manifolds [14],

non-abelian groups [24], amongst others.

Our aim is make this idea computational, that is, to show not only that we can

understand more complex structures by relating them to simple abelian ones but also

that we can use such relationships to solve problems more efficiently. Furthermore,

since quantum computers have a unique ability to solve problems on abelian algebraic

structures, this approach is more likely to be successful using quantum rather than

classical computation.

We will examine in detail three particular ways of leveraging the ability of quantum

computers to understand abelian algebraic structures in order to solve problems on

more complex ones:

1. Taking advantage of a well-organized collection of abelian substructures.

2. Translating a non-abelian structure into an abelian one.

16

3. Examining abelian groups of maps from our structures into an abelian group.

In the coming chapters, we will explain each of these approaches in detail. For

each, we will see multiple examples of how we can use that technique to design

quantum algorithms that solve problems more efficiently than previously possible.

Furthermore, in each case, we will be able to provide strong evidence that no classical

algorithm can achieve the same result.

Structure This thesis is organized as follows. We begin, in chapter 2, by reviewing

some mathematical background that will be necessary to understand our main results.

In chapter 3, we review some background on quantum computing in general as well

as existing quantum algorithms that will prove useful to us later on.

We begin the body of the thesis in chapter 4, where we show that the well-

organized collection of abelian subgroups in any nilpotent group allow us to solve

the HSP more efficiently. Next, in chapter 5, we show that translating a non-abelian

group into an abelian hypergroup allows us to efficient solve the HSP for normal

subgroups. Then, in chapter 6, we show that examining certain abelian groups of

maps into an abelian group allows us to efficiently test whether two group extensions

(non-abelian groups) are the same and also to efficiently prove that certain topological

spaces are not the same.

Finally, we provide a summary of the results in chapter 7.

17

18

Chapter 2

Mathematical Background

In this chapter, we will review some background material on mathematics that will

be necessary for understanding the main results.

We will assume that the reader is familiar with standard algebraic objects such as

groups, vector spaces, rings, and algebras (rings that are also vector spaces). However,

we will review their definitions and those standard results that we will need below,

starting with group theory in section 2.1. For proofs of these results, consult any

standard algebra text such as [43, 24].

We will assume that the reader is conversant with linear algebra including, for

example, direct sums and tensor products of vector spaces as well as invertible and

unitary transformations of the same. Definitions of these can also be found in algebra

texts like [43, 24] as well as the standard text on quantum computation [511.

We denote the integers and complex numbers by Z and C, respectively, and the

ring of integers modulo a prime p by Z. If V is a vector space (e.g., C'), then we

will denote the invertible and unitary transformations of V by GL(V) and U(V),

respectively. The identity transformation will be denoted by just I, as the space on

which it acts will be clear from context.

If a linear transformation is given by a matrix A (i.e., we have chosen a preferred

basis), then we denote the (i, j) entry of this matrix by [A] ,,. We denote the transpose

of A by AT and the conjugate transpose by At := AT. Following the usual convention,

we denote the (i, j) entry of the identity transformation (in any basis) by 6J,3.

19

We will work exclusively with the field of complex numbers in this thesis. In

particular, the scalars in our vector spaces (and algebras) will always come from C.

We will also always assume that our vector spaces possess an inner product, which we

denote (v I w) for vectors v and w. In fact, we will most often work not with simple

vector spaces but with Hilbert spaces. This requires no special assumptions as all

vector spaces will be finite dimensional.

2.1 Groups Theory

2.1.1 Groups

Recall that a group G is a set endowed with a special type of binary operation.

We will normally refer to this operation, when applied to x E G and y E G, as the

product of x and y and denote the result by the juxtaposition xy. In certain contexts

where the group is required to be abelian (that is, xy = yx for all x, y E G), we will

instead denote the operation by x + y and refer to the result as the sum of x and y.

For G to be a group, the product must be associative, it must have an identity

element, which, we will normally denote by e, and each x E G must have an inverse,

denoted x 1 , which satisfies xx-1 = e = x-1x.

If K is another group, then a map o : G -+ K is a homomorphism if, for any

x, y E G, we have p(xy) = p(x)o(y). If o is a bijection (one-to-one and onto), then

W is an isomorphism. In the latter case, G and K are isomorphic, denoted G - K,

and are really the same group, just labelled differently.

A subset H C G that is still a group (with the same product) is called a subgroup

and is denoted H < G. The identity and inverses in the subgroup H are necessarily

the same as those of the larger group G.1

The set of elements x E G such that p(x) is the identity is the kernel of W, which

we denote Ker W. The kernel and image of a homomorphism W are always subgroups,

that is, Ker W < G and Im W K.

'This is because identities and inverses are always unique in any group.

20

2.1.2 Cosets

The relation x -H y, defined to hold when there exists an h E H such that xh = y,

is an equivalence relation. The set of elements in the class of x is denoted xH :=

{xh I h E H} and referred to as a (left) coset of H. If we instead define x Hy to

hold when there exists an h E H such that hx = y, then the class containing x is the

right coset Hx := {hx I h E H}. The number of such cosets (whether left or right) is

denoted [G: H] and equals IGI/IH.

More generally, if H < G and K < G are two subgroups, then we can also define

an equivalence relation with x ~ y whenever there exists h E H and k E K such

that hxk = y. The class containing x is then the set HxK := {hxk I h E H, k E K},

which is called a double coset. (Left and right cosets are the special cases where H

or K, respectively, is the trivial subgroup {e}.)

2.1.3 Conjugation and Normality

For g, x E G, the congugate of x (by g) is the element g-1 xg, which we denote by

x9 . Once again, the relation x ~'cong y, defined to hold when there exists a g E G such

that xg = y, is an equivalence relation. The class containing x, called the conjugacy

class of x, is C: {x: I g E G}.

If H < G is a subgroup that contains all the conjugates of its elements, that is,

where h9 E H for every h E H and g E G, then H is called normal. We write H < G

to denote that H is a normal subgroup.

If H < G, then xH = Hx for any x E G, so we need not distinguish between left

and right cosets. This follows from the fact that xh = xhx-1 x = hxx = h'x for some

h' E H. This means that we can define multiplication on cosets since xHyH = xyH.

In this case, the cosets themselves form a group, called the quotient group of H,

which we denote G/H.2

If we have a firm understanding of a normal subgroup H < G and quotient group

G/H, then we have made substantial progress toward understanding G. Indeed, one

2 The identity is eH and the inverse of xH is x-1 H.

21

of the basic programs aiming to classify all finite groups proceeds by (1) classifying

those groups with no nontrivial normal subgroups and then (2) identifying all ways

that groups H and K can be put together into a group G such that H < G and

K G/H. Step (1) has been accomplished: this is the classification of finite simple

groups. Step (2) has been accomplished in the case where H is abelian: this is the

theory of group extensions.

If H < G is abelian and K a G/H, then G is said to be an extension of K

by H. The theory of group extensions describes all the ways in which this can be

done for fixed H and K. The groups that be constructed by a sequence of group

extensions starting from an abelian group are precisely the supersolvable groups,

which we discuss in section 2.1.4. Thus, the program described above has been

essentially carried out for classifying the supersolvable groups. 3

Normal subgroups arise in many circumstances. One of the most important ways

they arise, however, is as kernels of homomorphisms: we noted above that Ker o

is always a subgroup, and it is in fact normal since, if o(x) is the identity, then

o(xg) = so(g 1)p(x)W(g) = o(g-)(g) = p(g-'g) = p(e) is the identity.

In fact, we can see that every normal subgroup H < G arises as the kernel of a

homomorphism, namely, the map x i-+ xH, which is a homomorphism whose kernel

is precisely the subgroup H. This function G -+ G/H is called the quotient map.

If o : G -* K is an arbitrary homomorphism, then, since o is equal on cosets of

Ker o, we can define a new homomorphism @ : G/ Ker p -+ K by 3(x) = p(x Ker p),

which is, by definition, an injective map. This means that b is a bijection onto the

image Im p, which shows G/ Ker o a Im p. This is the First Isomorphism Theorem.

We will also make use, often implicitly, of the fact that, if H < G, then the

subgroups of G/H are in one-to-one correspondence with the subgroups K < G

satisfying H < K. This correspondence simply takes K < G to K/H < G/H.

Furthermore, it can be shown that K/H is normal in G/H iff K is normal in G. This

correspondence is often called the Fourth (or Lattice) Isomorphism Theorem. 4

3 The one difference is that this classifies supersolvable groups not up to isomorphism but rather
up to equivalence. The latter notion will be defined later on (see chapter 6).

4This result tells us, in particular, that, if we know the subgroups of H < G and of G/H, then

22

2.1.4 Important Types of Groups

Abelian Groups

Abelian groups are the simplest type of groups. Of abelian groups, the simplest kind

are the cyclic groups. These are simply Zm, for some m E Z, where the operation is

addition modulo m. The identity is 0 and the inverse of x E Zm \ {0} is m - x E 7Zm.

If A and B are any two groups (abelian or not), then we can form a new group on

the set A x B = {(x, y) I a E A, b E B} by defining the product of (u, x) and (v, y) to

be (uv, xy). The identity is the element (e, e) in this set', and the inverse of (u, x) is

(u- 1, x-'). The resulting group, which we also denote by A x B, is called the direct

product of A and B.

If A and B are themselves abelian, then we can see that A x B is also an abelian

group. Hence, one way to form more complicated abelian groups is to take direct

products of the cyclic groups. In fact, this is the only way to form abelian groups.

Theorem 2.1 (Fundamental Theorem of Finite Abelian Groups). Let G be an abelian

group. Then there exist primes p1,... , pm E Z and numbers t1 ,..., t E Z such that

G Zti x ... x Ztm.p 1 ZPm

Supersolvable Groups

A group G is called supersolvable if there is an increasing sequence of subgroups

{e} = No N1 :5 ... N = G, all normal in G, where [Nj+ : Nj] is prime V i E Zk-

This, in particular, means that the normal subgroup N < G is isomorphic to Z,

for some prime p, so it is abelian. Hence, G is put together out of the groups N1 and

G/N1 with N1 < G abelian. In the quotient group G/N1 , we also have an increasing

sequence of subgroups {e} L N /N1 5 N2/N1 < ... < N/NI = G/N1 . Hence,

G/N1 is itself supersolvable, and by induction, we can see that G can be built up a

sequence of group extensions: we start with the group Nk/Nk_1, which is abelian by

we know all the subgroups lying below H and above H in the lattice of subgroups of G.
5The first e refers to the identity of A and the second to the identity of B. We will avoid labeling

the identities of the various groups since it should be clear from context.

23

assumption, extend Nk_1/Nk-2 (also abelian) by it, extend Nk-2/Nk-3 by that, and

so on until we extend N1/N = N1 by G/N1 to get the full group G.

This shows that any supersolvable group can be built from an abelian group by

a sequence of extensions. On the other hand, if G is built by starting from a group

Ak and then extending by Ak-1, then Ak-2, and so on down to A 1, with all Ai's

abelian, then by the definition of extensions, G has an increasing sequence of normal

subgroups {e} N1 5 ... 5 Nk, where Ni+ 1/Ni 2 Ai+ 1 is abelian for each i E Zk-

This sequence can be extended to a longer sequence where with factor is cyclic of

prime order (instead of just abelian) using the decomposition from Theorem 2.1.

This allows us to show the supersolvable groups are precisely those that can be built

from an abelian group by a sequence of extensions, as claimed above.

One way to construct a supersolvable group is to form the semidirect product

of A and B, with A a abelian and B supersolvable. Like the direct product, the set

of elements is the cartesian product A x B. However, the product is generally a more

complicated operation than in the direct product.

To define a product operation for a semidirect product, we need a homomorphism

y : B -- Aut A, where Aut A denotes the set of automorphisms of A, that is, the set

of isomorphisms from A to itself.6 For any b E B, the image p(b) E Aut A is a map

A -+ A, which can be applied to any a E A to get some V(b)(a) E A. To simplify the

notation, we often write the application of V to b as a subscript, sb, which turns the

cumbersome notation o(b)(a) into the more sensible Vb(a).

With this homomorphism in hand, we define the product of (u, x) and (v, y) in

the semidirect product to be the element (uo,(v), xy). In that case, (e, e) becomes

the identity and (Vo (u 1), x-1) is the the inverse of (u, x), which tells us that the

semidirect product is a group. We denote this group by A A B or (more explicitly)

by A >x B. Note that the direct product is the special case where W is the trivial

homomorphism, that is, where every px is the identity map.

To see that the semidirect product A x B is supersolvable, we will show that it

6This is, in fact, a group where the product is composition; the identity map is the identity
element; and for each automorphism, the inverse mapping (also an automorphism) is its inverse.

24

is an extension of A. Since B is supersolvable by assumption, B is built up from an

abelian group by a sequence of extensions. Thus, forming an extension of A by B

gives a supersolvable group in A x B.

To show that A x B is an extension of A, let us define A' = {(a, e) a E A}. Since

this is isomorphic to A, it is abelian. Next, we must show that A' is also normal.

To see this, we compute the conjugate (a, e)(u'x) = (CP- 1(u- 1),x 1)(a,e)(u,x) =

(P- 1 (u-1),x-1)(au,x) = (po 1(u-1)VX 1(au),x-1 x) = (Vp 1(u 1 au),e). Now, since A

is abelian, we have u-1 au = a, and since 9-1 E Aut A, we must have p- 1 (a) E A.

Thus, we conclude that (a, e)(ux) e A', which proves that A' is normal.

Finally, we can see see that the cosets of A' in A x B are of the form (A, b)

{(a, b) I a E A}. These are in one-to-one correspondence with elements of B, and once

we quotient by A' and ignore the left element in each pair, what remains is isomorphic

to the group B. Thus, we have seen that A > B is an extension of B.

Example 2.2 (Dihedral Group). The simplest case for a semidirect product is to

choose both A and B to be cyclic groups, and the simplest possible choice for the

latter is B = Z2. Now, for any abelian group A, the map Vin, : A -+ A taking x E A

to x- 1 E A is an automorphism, and since (x- 1)- 1 = x, we can see that V? is the

identity map. Hence, the map p : Z2 -+ Aut A with yi(O) = I and V(1) = pin,, is a

homomorphism. If we take A = Z, then the resulting semidirect product Zn x O Z2

is called a dihedral group and is denoted by D2 n.

For the dihedral group, it is normal to write the group operation in both cyclic

groups as addition, so the inverse of x E Zn can be written as -x (mod n). Then the

group operation has (u, x)(v, 0) = (u + v, x) and (u, x)(v,1) = (u - v,+ 1).

Nilpotent Groups

The most important class of finite groups for us is the class of nilpotent groups.

As we shall see shortly, the nilpotent groups lie between the classes of abelian and

supersolvable groups: every nilpotent group is supersolvable but most are not abelian.

To define the nilpotent groups, first, recall that the center of G, denoted Z(G), is

the set of elements that commute with every other element in the group. In particular,

25

the center is itself an abelian group.

We can define the nilpotent groups recursively as follows: a group G is nilpotent if

it is trivial ({e}) or if Z(G) is nontrivial and G/Z(G) is nilpotent. Hence, the abelian

groups are nilpotent since, in that case, Z(G) = G and G/Z(G) = GIG {e} is

trivial. Continuing one step further, if G/Z(G) is abelian, then G is nilpotent. If G is

not abelian but G/Z(G) is abelian, then the group is called 2-nilpotent. Continuing

further, if (G/Z(G))/Z(G/Z(G)) is abelian, then G is nilpotent. If G/Z(G) is not

abelian but (G/Z(G))/Z(G/Z(G)) is abelian, then the group is called 3-nilpotent.

In general, G is nilpotent if we can eventually reduce it to {e} by repeatedly taking

the quotient by the center of what remains. If it takes k quotients to reduce G to {e},
then G is called k-nilpotent. If G is not nilpotent, then we will eventually reduce

to a group that is not abelian and has a trivial center (so taking the quotient by the

center does not reduce the group any further).

This recursive definition immediately implies that a nilpotent group is built up

by a sequence of extensions from an abelian group since, at each step, Z(G) is an

abelian, normal subgroup.7 Hence, every nilpotent group is supersolvable. If G is an

extension of H by K where H < G is contained in the center of G, then this is referred

to as a central extension. In other words, the nilpotent groups are the special case

of those supersolvable groups that are built up from an abelian group by a sequence

of central extensions.

We can make some definitions that will simplify our discussions of nilpotent

groups. Rather than working with repeated quotients, we can instead work entirely

in the group G. Let Z1 (G) := Z(G). By the Fourth Isomorphism Theorem, we

know that the subgroups of G/Z(G) are in one-to-one correspondence with sub-

groups of G containing Z(G). In particular, there is a subgroup of G containing

Z(G) that corresponds to Z(G/Z(G)). We define this to be Z2(G). Continuing on,

the subgroups of (G/Z(G))/Z(G/Z(G)) correspond to those of G/Z(G) containing

Z(G/Z(G)), which correspond to those of G containing Z2(G). Thus, there is a sub-

group of G containing Z2(G) that corresponds to the center of (G/Z(G))Z(G/Z(G)),

7For z E Z(G) and g E G, we have z9 = g-lzg = z since z commutes with g.

26

which we define to be Z3 (G). By this process, we get a sequence of normal subgroups

Z1 (G) Z2(G) 5 Z3(G) < ... in G. If G is nilpotent, then we eventually get

Zk(G) = G for some k and G is k-nilpotent.8

The simplest example of a nilpotent group that we are aware of is the following.

Example 2.3. The (finite) Heisenberg group is the set Z, for p prime, with a,

group operation defined by

(x, y, z)(x', y', z') = (x + z', y + y' + xz', z + z').

The identity is (0, 0, 0) and the inverse of (x, y, z) is (-x, -y + xz, -z).

This is in fact a special case of the following.

Example 2.4. A (k+ 1) x (k+ 1) matrix with elements in Z, is called unitriangular

if it is of the form

1 a1,2 a1, 3 ... al,k

0 1 a2,3 ... a2,k

0 0 1 ... akl,k

0 0 0 ... 1

for some a,, 's in Z,. We denote by UTk the group of such matrices with product

given by matrix multiplication.

A short calculation shows that the set of matrices that are only nonzero in the

upper-right corner (at al,k) is the center of the group. More generally, the t-th center,

Zt(UT k), consists of those matrices that are only nonzero in the t highest superdiag-

onals, i.e., only at a%,j with j - i > k - t. Hence, the group UTk is k-nilpotent.

The group UT is actually just the Heisenberg group.

One very large source of nilpotent groups are the p-groups. A group G is called a

p-group if IGI = p' for some m, where p is prime. It follows from the Class Formula

[43] that every p-group has a nontrivial center. Furthermore, since the size of a
8 The number k is also called the nilpotency class of k.

27

subgroup divides the size of the group, we have IZ(G) = p' for some f < m, which

means that IG/Z(G) = pm/p = pm-. Thus, G/Z(G) is also a p-group, so it also

has a nontrivial center. Arguing inductively, we see that every p-group is nilpotent.

This gives us a proof that the unitriangular matrix groups UT are nilpotent since

each is manifestly a p-group. As another special case, we can see that, if n = 2',

then D2n is a 2-group. Hence, while dihedral groups are usually not nilpotent, they

are in the special case where n is a power of 2.

Another way to construct nilpotent groups is to take direct products of groups

that we know are nilpotent. This follows since Z(A x B) = Z(A) x Z(B). Hence,

if A is k-nilpotent and B is e-nilpotent, then we certainly have Zmax{k,l}(A x B) =

Zmax{k,i}(A) X Zmax{k,1}(B) = A x B, meaning that A x B is max{k, f}-nilpotent.

In fact, the following standard result [431 shows, amongst other things, that taking

direct products of p-groups is actually the only way to make nilpotent groups.

Theorem 2.5. The following are equivalent:

1. G is a nilpotent group.

2. G is a direct product of its maximal p-subgroups' (for different primes p).

3. Every maximal subgroup of G is normal.

4. Every proper subgroup H < G is a proper subgroup of its normalizer.

The normalizer of H < G, denoted NG(H), is the largest subgroup of G in which

H is normal. Since H is a subgroup, we certainly have Hh = H for every h E H, so

we know that H < NG(H). In a nilpotent group, however, the theorem tells us that

the normalizer is always strictly larger, so there is some g E G \ H for which H9 = H.

Lastly, we will show that nilpotent groups can also be defined in a different manner,

not with centers but rather with so-called derived subgroups.

To explain this concept, we first need to define commutators. If x, y E G, then

we can see that xy = yxx-y-xy. If we define the commutator [x, y] x-1y-1xy,

9A p-subgroup of G is a subgroup that is itself a p-group.

28

then we have xy = yx[x, y]. The commutator [x, y] measures the extent to which x

and y commute (in particular, it is e if they do commute). They are often useful in

calculations because they allow us to swap the order of multiplication of x and y.

This has the cost of introducing a factor of [x, y], but if we know something about

commutators in that group, then it is often easy to deal with the extra factor. If our

group is nilpotent, then we will have quite a bit of information about commutators.

The derived subgroup of G, denoted [G, G], is the subgroup generated by the

commutators. (Unfortunately, the product of two commutators is not always a com-

mutator, so the set of commutators does not always form a subgroup. Instead, we

must take the smallest subgroup that contains all the commutators.) Let us define

G' := [G, G] and then, inductively, G' := [G'- 1 , G]. It is can be shown that there is a

k such that Gk = {e} iff G is nilpotent [24], and in fact, this is the same k such that

Zk(G) = G, i.e., the nilpotency class of G.

In a k-nilpotent group, every commutator [x, y] lies in the subgroup Zkl. More

generally, the elements of G', which are those that can be written as [[yi, Yi-1],.. .], y1]

for some y, , yi E G, lie in an even smaller subgroup [24]:

Theorem 2.6. Let G be k-nilpotent. Then, for 0 < i < k, we have G' < Zk-i(G).

We mention one final fact about p-groups that will be useful to us in developing

quantum algorithms. Since Z(G) is abelian, we know by Theorem 2.1 that it is of

the form Ztt x - x Z~pM for some pi's and ti's. This means that we can choose

1, - -,gi,m E Z(G) such that gi,j generates the part isomorphic to Z . More

generally, since Zj+1(G)/Zj(G) is abelian, it is isomorphic to a direct product of

cyclic groups, and we can choose gi,, . . . , gi,m, such that gi, Zi (G) generates the j-th

cyclic group in this direct product decomposition. Repeating this for i = 1,... ,k
where G is k-nilpotent gives a set of gij's that generators G and have the property

that each element of G can be written uniquely as fl,3 g1 for some eZ,1's in Z.

Unique representation is a useful feature that is typically assumed by quantum

algorithms for group problems, while it is typically not assumed by classical ones.

For our case, however, the discussion above shows that we can assume unique repre-

29

sentation without loss of generality.

Above, we defined a supersolvable group to be one that can be constructed by a

sequence of extensions. We have now seen two examples how to construct an group

extension: (1) a semidirect product as in a dihedral group and (2) a central extension

as in the Heisenberg group. Appendix B describes some of the deeper theory about

group extensions. In particular, we will see in the appendix that (1) and (2) are

essentially the only two ways to construct extensions: every group extension can be

thought of as just a combination of (1) and (2). This and other important facts about

extensions are proven by studying the properties of the second cohomology group of

the extension, something that will play a large role in chapter 6.

2.2 Representation Theory

2.2.1 Basic Definitions

A (complex linear) representation of a group G is a homomorphism G -+ GL(V)

into the space of invertible transformations of some vector space V. If p is a repre-

sentation, we will denote the vector space V that appears in the codomain by V and

the dimension of that vector space by dp:= dim V.

Suppose that p is a representation, with V, = C', and we choose another basis

for C". Let T E GL(C") be the change to this new basis. Then we can define a

new representation o : G -+ GL(Cn) just by changing to this basis: if we define

-(g) = Tp(g)T- 1, then or is also a representation.

While p and a are technically distinct representations, they do not differ in any

important sense. We will say that they are isomorphic as representations, meaning

that, while they are not identical, they are really "the same" representation.

More generally, suppose that p : G -+ GL(V) and a : G -+ GL(W) are two

representations of G. A linear transformation T : V -+ W satisfying o(g) = Tp(g)T 1

(or equivalently, a(g)T = Tp(g)) for all g E G - i.e., a map transforming p into o -

is called an intertwining map. If T is invertible, then T- 1 also transforms a into p

30

and we say that p and a are isomorphic.

To remove this redundancy of isomorphic representations, we can instead consider

the character of p defined by Xp(g) := tr p(g). By the cyclic property of the trace,

we have x, = Xp. Hence, the character functions are equal for all representations that

are identical after a change of basis. In fact, the opposite is also true: representations

with equal characters only differ by a change of basis. (See appendix A for details.)

Hence, the character function characterizes a representation up to the choice of basis.

2.2.2 Examples of Representations

Example 2.7. For any group G, we can define a representation triv : G -+ U(C)

by triv(g) = 1 for all g E G. This is called the trivial representation. We have

Xtriv - 1-

Example 2.8. For any group G, let VG be the vector space with a basis vector |g) for

each g E G. We can define a representation reg : G -* U(VG) by making reg(g) act

on Ih) by reg(g)|h) = Igh). This is called the (left) regular representation. For

this representation, we have xreg(g) = 0 for g =f e and Xreg(e) = 1G|.

We will sometimes use a subscript (e.g., regG) to clarify the group in question.

Example 2.9. Given two representations p and o-, we can define a new representation

p D a- : G -+ GL(Vp G V) by (p (u -)(g) = p(g) 9 a(g). This is called the direct sum

of the representations p and a. It has the property that xp1 , = xp + X,.

Example 2.10. Replacing D with 0 in the previous example gives the tensor prod-

uct of the representations p and o-. We can check that xpo,(g) = xp(g)x,(g) Vg e G

by direct calculation.

If p is a representation such that p(g) is a unitary transformation for every g E G,

then p is said to be a unitary representation. As indicated above, both triv and

reg are unitary representations. Furthermore, the direct sum and tensor product of

unitary representations are themselves unitary.

31

Appendix A describes a method of building representations of a group G from

those of a normal subgroup N <G. Such representations of G are said to be induced

from those of N. In particular, the appendix describes how the key representations

of any supersolvable group can constructed, starting from the trivial representation,

by a process of induction and forming tensor products.

2.2.3 Basic Properties

Since any representation p is, by definition, a homomorphism, we have p(e) = I. This

means that Xp(e) = tr I = n = dp, the dimension of p. Futhermore, for any g E G, we

have I = p(e) = p(gg- 1) = p(g)p(g- 1), which shows that p(g-') = p(g)-1 . Since we

are working over C, it is always possible to find a change of basis such that p(g) is a

unitary matrix for every g E G (see appendix A for details), and, in that basis, we

have p(g- 1) = p(g)t. Since characters are unaffected by a change of basis, this means

that X,(g- 1) = tr(p(g)t) = X,(g) for any representation p.

It also follows immediately that characters are class functions, that is, equal on

all elements of the same conjugacy class: if g, x E G, then we can see that X,(gm) =

tr(p(gx)) = tr(p(x~-gx)) = tr(p(x-')p(g)p(x)) = tr(p(x)-1 p(g)p(x)) = trp(g) =

X,(g), where we have used the cyclic property of the trace once again. The fact that

characters are class functions means that the vector space of characters has dimension

no larger than the number of conjugacy classes.

For any group, the most important characters to understand are the irreducible

ones (see appendix A for a formal definition) as any character can be written as

a sum of irreducible characters. Hence, understanding the irreducible characters is

sufficient to understand the whole space of characters. In particular, we can show

(see appendix A) that the irreducible characters themselves span the space of all class

functions and, hence, that the number of distinct irreducible characters is equal to

the number of conjugacy classes of the group. In particular, there are only finitely

many irreducible characters of any finite group.

The key feature that makes characters easy to work with is that they form an

32

inner product space. In particular, the sesquilinear 0 form

(xp I xo) := |G-E xp (g-') xo, = GI- p(g)xa(g)
gEG gEG

defines an inner product on characters. It can be shown (see appendix A) that

(x |xp) = 1 iff p is irreducible. Furthermore, if p and o- are both irreducible, then

(xp xo) = 1 if x, = x, and 0 otherwise. In other words, the inner product is 1 if p

and o- are the same representation and 0 otherwise.

Appendix A contains a more thorough review of representation theory, including

all of the results that we will need below along with sketches of their proofs.

2.2.4 Examples of Representations of Important Groups

Abelian Groups

We start with the simplest type of abelian groups.

Example 2.11. Let p be prime and wp the principle p-th root of unity. Then, for

each a E Z,, the map Xa given by Xa(x) :=wp" is an irreducible representation of Z.

We can see that

(XaIXa) = |GK-1 Xa(X)Xa(-X)
xEG

= IG EZopx-a
XEG

= GJ-1 1 = IG-'|G = 1,
XEG

which proves that each Xa is an irreducible representation.

Since Xa(1) 5 Xb(1) for a 4 b, we can see that all p such representations are

distinct. Now, we noted above that the number of irreducible representations is equal

to the number of conjugacy classes of G. In an abelian group, every element is in its

'0 We use physics conventions: a sesquilinear form (x I y) is linear in y and conjugate linear in x.

33

own conjugacy class (since xy = y-lxy = x when the group is abelian). This tells us

that Z, has p distinct irreducible representations, so the Xa's are all of them.

To extend to all abelian groups, we will use the following fact.

Theorem 2.12. If p and o- are irreducible representations of A and B, respectively,

then the map (a, b) i-+ p(a) 09 a(b) is an irreducible representation of A x B. Further-

more, every irreducible representation of A x B is isomorphic to one of this form.

Proof. The character of this representation is the map X,, defined by Xp,, (a, b) =

XP(a)X,(b). If p' and o' are another pair of representations of A and B, respectively,

then a short calculation shows that (Xp, I Xp,,') = (Xp I Xp') (X, Xa,'). From this, it

follows that (X,, IX,,,) = 1, which shows that these representations are irreducible,

and that (xp,a I Xp',,) = 0 if p 9 p' or a 9 a', which shows that these are all distinct.

Finally, since the number of conjugacy classes in A x B is equal to the number of

conjugacy classes in A times the number of conjugacy classes in B, it follows that

these are all the irreducible representations of A x B. LI

By the Fundamental Theorem 2.1, every finite abelian group is isomorphic to

Z X .. x Z t. for some primes pi, . . . ,pm and numbers ti, . . . , tm. Thus, it follows

from the above facts that every irreducible representation is of the form

m

Xai)-am~xji,.. IXm) fwt,
i=1

for some a 1,... , am with ai E Z tj and, furthermore, that every irreducible repre-

sentation is of this form. (Here, since these representations are 1-dimensional, we

do not even need to worry about non-isomorphic irreducible representations. Every

irreducible representation must be one of these exactly.)

Note that the elements a1 , . . . , am labelling the representation are themselves an

element of the group Z, t x ... x Zpt,. Hence, this also shows that the irreducible

representations of every abelian group are in simple 1-to-1 correspondence with the

elements of that group.

34

Supersolvable Groups

We return to our above example of supersolvable groups: the dihedral groups.

Recall that the dihedral group of the form Z x Z2 has a normal abelian subgroup

H < G isomorphic to Z,. H consists of the elements of the form (x, 0) for any x E Z,.

If we take the quotient by this group, then we are left with a group isomorphic to Z2 :

its two elements are the cosets (Z,, 0) and (Z,1).

Example 2.13. Let 7r : D2p --+ Z2 be the projection into the second component of

D2, = Z, X Z2. If xb, for b E Z2, is an irreducible representation of Z2, then XYb 0 r

is an irreducible representation of D2 , .

It is a general fact that, if <p : G -+ K is a homomorphism and p is a representa-

tion of K, then p o <p is a representation of G simply because the composition of two

homomorphisms is a homomorphism. Another general fact is that any 1-dimensional

representation, like this, is irreducible since it cannot be decomposed into representa-

tions of any smaller dimension. Hence, these are indeed irreducible representations.

Example 2.14. For each a E Z, with 0 < a < I(p - 1), the map

Pa((X, y)) (x) ()
0 ;gax 1 0

is an irreducible representation of D2, . More explicitly, we have

- ax 0 ad0 ax
Pa((X, 0)) = (and Pa((X, 1)) =

(0 w;ax)W; ax 0

Note that replacing a by -a gives a representation with an identical character (since

Xpa((X,0)) = wax + Wyax and Xpa((x, 1)) = 0), so we get all the distinct irreducible

representations just by taking a < 1(p - 1).

We can check most easily that this is irreducible by looking at the character Xpa

35

In paricular, we can calculate

(Xpa I =p, a (,~ + +-x(Pb wbox)
XEZp

= p(P6a,b + Poa,-b + P6 -a,b + P6 -a,-b) = 6 a,b,

verifying that the representations are distinct and irreducible."

To check that these are all the irreducible representations, it is easiest to use the

fact, from Proposition A.12, that the sum of the squared degrees of the irreducible

representations is equal to IGI. In this case, this sum is 2 - 12 + I(p - 1) - 22 = 2p, so

these are all the irreducible representations.

These irreducible representations of dihedral groups and the nilpotent groups we

consider in the next section can be derived using Wigner and Mackey's "method of

little groups" [57], which is a special case of the method described in section A.5.12

However, as we just saw, if we are handed the irreducible representations, it is much

simpler to verify that they are representations by checking that they are homomor-

phisms; verifying that they are irreducible, by checking the inner product of their

characters with themselves; and verifying that these are all the irreducible represen-

tations, by comparing the sum of the squared degrees to the size of the group.

Nilpotent Groups

Let us start with our simplest example of a nilpotent group.

Example 2.15. The Heisenberg group (over Zp) has two classes of irreducible repre-

"Although we will not need it here, it is not hard to check, using the machinery discussed in
Appendix A, that this representation is IndG X.. Indeed, just the fact that XPa is zero outside of
the normal subgroup H strongly suggests that pa is induced.

12The method of little groups applies to semidirect products. It is not hard to check that the group
of k x k unitriangular matrices is the semidirect product of the normal, abelian subgroup of matrices
nonzero entries only in the right-most column and the quotient by this subgroup. Furthermore, the
latter quotient is isomorphic to the group of (k - 1) x (k - 1) unitriangular matrices. Thus, it is
possible, at least in principle, to inductively construct the representations of k x k unitriangular
matrices, for all k, using just the method of little groups.

36

sentations. First, it has 1-dimensional representations of the form

Xa,b((X, Y, Z)) := pax+bz

for any a, b E Z,. As with the dihedral group, we can recognize this as the composition

of the homomorphism that quotients out the center with a character of the abelian

group Z' that remains. (Recall that, since the Heisenberg group is 2-nilpotent, taking

the quotient with the center must leave an abelian group.) As we noted above, this

must be an irreducible representation since it is a homomorphism and 1-dimensional.

The Heisenberg group also has p-dimensional representations. For each K E Z

with K : 0, there is one of the form1'

U-K((X, y, z)) := W"> w-Kz(r+x)Ir + x)(rj.
rEZ,

As usual, we can check that these are irreducible by verifying that (x,,xc) = 1.

We can check that these are all the representations, as we did above, by summing

the squared degrees of the representations. In this case, that gives us p2 .1+(pi).p 2 =

= |Z x ZP|, which confirms that we have found all the irreducible representations.

As we discussed above, the Heisenberg group can be generalized into k-nilpotent

groups for k > 2. Here, we look at the representations of the 3-nilpotent version.

Example 2.16. The group of 4 x 4 unitriangular matrices over Z has four classes

of irreducible representations. To define these, let us label the entries of a matrix as

1 u v x

0 1 y
g:= .

0 0 1 z

0 0 0 1

13Note that, since r, x C Zp, the expression "r + x" means addition modulo p. This applies to the
next example as well.

37

Then, for a, y, C E Z,,, there is a 1-dimensional representation

There are two classes of p-dimensional irreducible representations. First, for

,(E Z, with 03 0, there is a representation

'-8,+(g := CA)~c -Ow(r+x) Ir + uM

rEZ,

Second, for a, /, e E Z, with e $ 0, there is another representation

(g W w,,3+E 1 ur-Ez(r+w) Ir + w) (uI.
rEZ,

Lastly, for -y,6 E Z, with 6 5 0, there is a p2 -dimensional representation

p7 ,6(g) : '=,w+5' wy+sjzr, s)(r + u, s + v + rwl.
r,sEZ,

As above, we can check that each of these is a representation by verifying that it is

a homomorphism, that it is irreducible by verifying that the inner product of character

with itself is 1, and that these are all the irreducible representations, by verifying that

sum of the squared degrees is equal to the size of the group.

In this last example, the representations are becoming increasingly complicated.

However, as shown in Theorem A.24, every irreducible representation of a nilpotent

group can actually be written in a very simple form by using induced representations.

Induced representations are defined formally in section A.3. Informally, the idea

is to take a representation p of a subgroup H < G and extend it to all of G by making

it act like the regular representation of G/H on cosets of H while still acting like p

on H itself. The resulting representation is denoted Ind p.

Theorem A.24 says that every irreducible representation of a nilpotent group G

is of the form IndH p, where H < G is a subgroup of G containing Z(G) and sp is a

38

1-dimensional representation of H. Let us now describe, in detail, the representation

Indi P when V is 1-dimensional and K < G is normal."

The underlying vector space of Indi V has one copy of V. for each coset of K.

Since V is 1-dimensional, each V is just a 1-dimensional space, so we can take IxK),

for xK E G/K as a basis for Vnd.d

For elements k E K, action of IndK V on the subpace spanned by JeK) will be

just p(k), so in this subspace, it is exactly the representation p. More generally, on

the subspaced spanned by IxK), the action of k E K will be p(kx).

The overall action of IndV e combines permutation on different cosets of K with

the action just described for elements of K. In detail, if we let x1K,..., xmK be the

cosets of K, then every g E G is of the form xik for some i E {1,..., m} and k E K.

In that case, the action of g can be written as

m

(Indi G)(xik) := (x-1)y(xik)xj) |xixjK)(xjKJ
j=1

m

= p O(x-)Xzz)S(kxi) IxixjK)(xjK,
j=1

where t(i, j) is the index of the representative of the coset xizxK.

Ignoring the scale factors, we can see that (Indi (p)(g) simply permutes the cosets

as in the regular representation of G/K. In addition, however, there are two scalar

factors introduced. The first, W(ki), matches our above description of how IndKG W

acts on k E K. This part is independent of how we choose the representatives {xiK}

of the cosets of K. The second factor, p(X7JJix), is seemingly a pure function of

how we chose representatives. We will see later on, when we study group cohomology,

that these factors are also independent of the representatives chosen. In fact, the set

of numbers of the form x')xixj is an important quantity characterizing the group. 15

Let us now see how each of the representations of nilpotent groups we saw above

14We will not always have H normal in G even if G is nilpotent, as we will see in a moment.
However, this assumption simplifies the description significantly.

15In particular, as we will see later on, we always have x-1 xiXJ = e in a semidirect product,
which makes their induced representations especially easy to identify (and to construct using the
method of little groups).

39

can be described in these terms.

Example 2.17. Of the representations of the Heisenberg group, those of the form

Xa,b are already of the form described in the theorem: we can write these as IndG Xa,b

since Xa,b is already 1-dimensional and GIG is the trivial group, so inducing from G

to G does not change the representation.

Let A {(0, y, z) I y, z E Z,}. Then A is an abelian, normal subgroup. We can

write the other representations as a-, =a IndA XK, where XK is the 1-dimensional rep-

resentation of A defined by xK(0,y,z) :=w,"y.

Cosets of A are labeled simply by the x coordinate of (x, y, z). We can see that o-,

permutes these cosets as we would expect in an induced representation. Furthermore,

we can see that (xx', 0,0)- 1 (x,0,0)(x',0,0) = (0,0,0) for any x,x' E Z7, so the

induced representation only has only scalar factors of the form x,((0, y, Z)(r'0'0)=

xK((0, y - rz, z)) = W,Y-,rz. Thus, IndG x" matches the definition of o-, above.

From the theorem, we know that this must also be true for the higher nilpotent

generalizations of the Heisenberg group.

Example 2.18. The irreducible representations of the 4 x 4 unitriangular matrices

can be written as follows:

xQ,-Y,, = Indg <pajy)(with ,,,(g) a+YW+CZ

-, = Ind p with 6p+,((g) :wfv Cz

=Indg G with <papE(g) WPaU+ 3V+EY

= Ind 0 G with <py,6(g)

where Gu=0 is the set of matrices with element u being zero and GwO and Gu=v=o

defined analogously." In this case, the representations described this way are not all

identical to those given above. However, they have identical characters, which tells us

that they are isomorphic.

' 6 Note that this last subgroup, Gu=v=o, is not normal in G.

40

Chapter 3

Quantum Computation

In this chapter, we will review the basics of quantum computation. We will also

discuss some prior work that relates to problems discussed later on. Finally, we will

make an effort to develop tools that allow us to work, wherever possible, at a higher

level than vector spaces and matrices in subsequent chapters.

Unless otherwise stated, all of the foundational material discussed here can be

found in [51].

3.1 Quantum Mechanics

For us, a finite-dimensional quantum mechanical system will be a finite-dimensional

(complex) vector space V with a distinguished orthonormal basis, which makes it

into a Hilbert space using the standard sesquilinear inner product. We denote the

elements of this basis by 10),...,IN - 1), where N is the dimension of the space.

A state of the system is simply a normalized vector 10) E V. (That is, a vector

satisfying (0 1 V)) = 1.) Those states in the distinguished basis are classical, as they

normally correspond to states of some ordinary (non-quantum) system.

A quantum mechanical system operates under the following rules1 :

Preparation The system can be started in any classical state.

'Here, we focus only on discrete-time quantum mechanical systems. Continuous-time systems
replace the evolution rule below with the Schr6dinger equation.

41

Evolution At each step, the state can be changed from 14) to UI0), where U E U(V)

is any unitary transformation.

Measurement Alternatively, the state can be measured, which takes state 1') to
the classical state ji) with probability I (i 14) 12. (Normalization ensures that

these probabilities sum to unity.) The outcome of the measurement is the

label i of the classical state. Unlike the intermediate states of the system,

measurement outcomes are visible to outside observers.

Operation according to the above rules is termed physical. In particular, a non-

unitary transformation A is sometimes called non-physical since evolution according

to this transformation would not be physical.

It is worth noting that operation staying entirely in the classical states is always

physical. In particular, transformations that simply permute the classical states are

always physical since permutations are unitary transformations.

Later on, we will also consider quantum systems that operate on vector spaces

of the form V 0 W and perform measurements on only part of such states. By the

principle of deferred measurement [51], operation using intermediate measurements

is always equivalent to some operation that only performs measurement at the end,

where the entire state is measured. Hence, we can allow both partial measurements

and intermediate measurements without loss of generality.

If we have a state 14) E V 9 W, the probability of measuring label i on the first

part is given by I((i I 1)14) 12. We can see that this generalizes the case above. The

state remaining after measuring label i is ((il 0 1)4) scaled to have squared norm 1.

3.1.1 Efficient Operation

Physical operation describes that which is physically possible, in principle. However,

we are normally interested in operation that is efficient, meaning (loosely) that it

could be carried out with reasonable time and resources.

The building blocks of efficient operation are constant-sized quantum systems. A

quantum system with basis labeled by elements of Z2 is referred to as a qubit, and

42

more generally, a system with basis labeled by elements of Zd is a qudit. It is fair to

assume that preparation, evolution, and measurement of qudits with d = 0(1) can

be performed in constant time. (See [511 for a discussion of actual physical systems,

such as ion traps, that behave like qubits.)

By forming the tensor product of n qubits, we can construct a 2"-dimensional

quantum mechanical system V - C 2 0 ... 0& C2. We will think of each qubit as one

unit of space. Hence, the joint system represents n units of space, even though the

dimension of the underlying system is exponentially larger.

As noted above, we can assume that a unitary applied to only a single qubit can be

performed in constant time. Hence, transformations of the form - - -01 0 U® I 1 - - - ,

which act nontrivially on only a single qubit, take constant time on the joint system.

Moreover, since the tensor product of C = 0(1) qubits is isomorphic to a qudit with

d = 2C = 0(1), we may likewise apply transformations affecting only a constant

number of qubits in constant time.

In summary, we will think of our quantum mechanical systems as formed from

the tensor product of m qubits (or qudits with d = 0(1)), which represents m units

of space. We will assume the ability to perform arbitrary unitary transformations

on 0(1) qubits at a time, with each taking constant time. All other transformations

must consist of a sequence of such transformations, which requires time proportional

to the length of the sequence.

Following the usual computer science conventions, we will say that the operation

of a quantum mechanical system is efficient if it operates using poly(n) space and

its transformations require poly(n) time, where n is a parameter describing the size

of the problem in question, which will be problem-specific.

43

3.1.2 Example Transformations

Let us start with unitary transformations of individual qubits, operating on the vector

space C2 . Some of the most important examples are

0 1 1 01 1 1
NOT =,D,= and H= -.

1 0 0 ei4 2 (_ -1

The first, NOT, is a classical transformation as it permutes the classical states. The

second, a diagonal matrix with phase <$, is purely quantum in the sense that it has no

measurable affects on classical states.2 The third, called a Hadamard transformation,

takes the classical states into uniform superpositions. This is a critical component in

many quantum algorithms including, e.g., the solution to Simon's problem [59].

Transformations of two qubits operate on the space C2 & C2 = C4 . The most

important such transformation is

1 0 0 0

CNOT= ,
0 0 0 1

0 0 1 0/

called a controlled NOT, which applies a NOT transformation to the second qubit if

the first qubit is in state 1i) and leaves it unchanged if the first qubit is in state 10).

Surprisingly, this small set of examples already contains the full power of quantum

computation. In fact, just the set of three transformations, H, D,1 4 , and CNOT, is

already universal, meaning that an arbitrary unitary transformation can be approx-

imated to any accuracy by a sequence of transformations from this set [51J. Replacing

D,/4 by the even simpler D,/2 transformation still gives a universal set [15]. However,

replacing D,14 by D, gives a set of transformations that can be efficiently simulated

by a classical computer [30].

Above, we defined a qudit as a vector space with basis labeled by elements of the

2Note that replacing IV)) by eI10) has no effect on the probability of measuring state Ii) since
I(ile'0k{')I2 = le"'I2I(i I V)12 = I(i I V)12.

44

group Zd. More generally, for any group G, we can define a vector space with basis

labeled by elements of the group, VG := span{|g) I g E G}. For each g E G, we can

define a transformation

XG(g) := I gh){h|.
hEG

This is simply the regular representation of G. Since it permutes the basis states,

this is a classical transformation.

Next, if p is a representation of G, then its character X, gives rise to a transfor-

mation of VG defined by

ZG(xp) Xp (h)Ih)(h1.
hEH

This transformation is only physical if jXp(g)j = 1 for all g E G. The latter holds

for all representations of abelian groups. More generally, it holds whenever p is a

1-dimensional representation of G.

Two of the transformations we met above are special cases of these constructions.

Specifically, the NOT transformation is the special case NOT = Xz2 (1) and the

diagonal ir-phase transformation is D, = Zz2 (Xsign), where sign : Z2 -+ C is the sign

representation defined by sign(a) := (-1)a.

If a: G -+ G is an automorphism of the group G, then we can define

Ua := 1 ja(h))(hl.
hEH

Like XG(g), this is a classical transformation that simply permutes the classical states.

We have also seen a special case of this construction above, not for the group Z2

but rather the group Z2 X Z2 = Z2. The vector space for the latter group is isomorphic

to C2 & C2. If we define the map a: Z2 -* Z2 defined by a(a, b) = (a, a + b), which is

an automorphism, then the transformation U0 is the CNOT operation we saw above.

Finally, the most important transformation we will define for a general group is

45

the Quantum Fourier Transform (QFT). If G is abelian, then this is defined by

.FG 1 E1x(g)P)01,
I4 GI gEG XEd

where G denotes the set of irreducible representations of G. The orthonormality of

characters under their inner product implies that this is a unitary operation.

We have also met a special case of this operation above. For Z2 , the QFT is just

the Hadamard transformation, FZ2 H, if we choose our basis of representations

such that Itriv) = 0) and Isign) = 1).

It is worth noting that the QFT lies at the heart of all of the algorithms we will

see in this thesis. It the key element in the algorithms for solving all of the problems

on abelian groups that we will discuss below. Furthermore, when we study abelian

objects beyond groups, in a later chapter, we will again see that a QFT for those

objects remains the essential element of our algorithm. Hence, all of the quantum

speedups demonstrated in this work derived from use of a QFT, either directly or via

our reductions to problems on abelian groups.

3.1.3 Approximate Transformations

One natural worry with the above formalism is that actual physical systems intended

to behave like qubits will not, even in a carefully controlled environment, carry out

the unitary transformations exactly (to infinite precision). The best we can hope for

is that they carry out the desired transformations approximately.

Indeed, most physical implementations of qubits come with only a small set of

supported transformations, and other transformations must be approximated by a

sequence of those. While such approximations may be sufficient for experiments with

individual qubits or pairs of qubits, it is natural to worry that the errors could blow

up as we work with the large systems needed to demonstrate a substantial advantage

of quantum systems over classical ones.

Fortunately, this fear is unnecessary, as we can show (following [51]) that errors do

46

not accumulate beyond control. To state this precisely, let us first define a measure of

how well one unitary transformation U E U(V) approximates another transformation

W E U(V). We define the error of approximation by

E(U, W) := maxl|(U - W)4)I| over [4) E V with ('4) -1.

We will prove that E(Un ... U1, Wn... W1) < Z E(U, W7) by induction on n.

There is nothing to prove for n = 1. For n > 1, let U = Un ... U2 and W = W... W2.

Then, we can see that

II(UU1 - WW)I4)II = II(U1U + (-WU 1 + WU 1) + WW1)|4)II

= I((U - W)U 1 + W(U 1 - W1))I|)I

I(U - W)U1|)|| + IW(U1 - W10v)I4)

E(U, W) + E(U1 , W1)

Xs E"1 E(Uj, W)

by the induction hypothesis. This bound holds for all 1'); hence, taking the maximum

over all choices of 14) gives the desired result.

This "union bound" for quantum systems shows that we can limit the error to E

for a sequence of n transformations provided that we limit the error to e/n on each

individual transformation in the sequence. The latter requirement is rarely onerous.

In the particular case of error resulting from approximating arbitrary unitary

transformations by those from universal set, it is possible to show that this can be

accomplished with only a polynomial increase in the time required [51]. In fact,

the Solovay-Kitaev theorem [51] shows that we can achieve n/e error using only

poly log(n/E) transformations from our universal set, thus, increasing the total run-

ning by at most a poly log(n/c) factor.

In other words, if the operation of our quantum mechanical system is efficient in

the original model above, then it is also efficient in a more realistic model that accounts

for the limited accuracy and limited set of natively supported transformations of

47

actual physical implementations.3

3.2 Group Problems in Quantum Computation

3.2.1 The Hidden Subgroup Problem

Two of the most important early successes of quantum algorithms were the results of

Simon [59] and Shor [58]. Simon proved a separation between what can be computed

efficiently on quantum and classical computers in the presence of a certain oracle by

demonstrating a problem (now called "Simon's problem") that can be solved efficiently

on a quantum computer but not a classical one. Shor proved that quantum computers

can efficiently factor integers and compute discrete logarithms, both of which are

widely believed to be intractable on classical computers. (In particular, the security

of notable cryptographic protocols such as RSA and Diffie-Hellman are based on these

assumptions [17].) These groundbreaking results caused great excitement and led to

the rapid development of the field of quantum computation.

Much of the early work sought to understand generalize these results. Brassard

and Hoyer [16, 35] showed that Simon's problem and the discrete logarithm problem

are both special cases of a more general problem about finite groups, later termed

the Hidden Subgroup Problem [49]. (See also [31, 13, 20] for contemporaneous

efforts.) This problem will be important to much of what we discuss in this thesis,

so let us now define it formally.

In the Hidden Subgroup Problem (HSP) over a group G, we are given (as an

oracle) a function f : G -+ {0, 1}" that is promised to be constant on cosets of some

subgroup H < G. That is, we have f(g) = f(g') iff g' = gh for some h E H. The

function f is called the hiding function as it hides the subgroup H. The goal in

this problem is to identify the H and output a generating set for it.

We will say that an algorithm solves the hidden subgroup problem efficiently for

3We will ignore entirely the important question of how to compute effectively when uncontrolled
errors can affect the quantum system. See [511 for a discussion of techniques in quantum error
correction designed to address this problem.

48

an (infinite) class of groups 9 if it runs in time polynomial in log IGI for each G E g.

Brassard and Hoyer 116, 35] showed that the techniques developed by Shor can be

extended to efficiently solve the HSP for the class of finite abelian groups. We will

see a generalization of their result below.

First, we consider a variant of the HSP, termed the Hidden Kernel Problem (HKP)

[10], that will also be important for us later on. In this variant, the hiding function

f is a homomorphism G -+ K for some group K. Here, rather than being an opaque

label in the set {o, 1}m, as in the HSP, the value f(g) lies in a given group K. The

requirement that f is a homomorphisms means that we cannot, when constructing

f, permute the label space {0, 1}m arbitrarily so that non-identical labels provide no

information. In particular, Simon's problem is not an instance of the HKP.

Nonetheless, the HKP is still apparently hard for a classical computer. For exam-

ple, the discrete logarithm problem uses a hiding function that is a homomorphism of

the form f : Z_ -+ Z'. Hence, the HKP is still hard under standard cryptographic

assumptions, despite requiring the hiding function to be a homomorphism.

Below, we will see how to efficiently solve the abelian HSP (and the HSK) on a

quantum computer. But first, we look at some other important group problems that

can be solved efficiently on a quantum computer.

3.2.2 Order Finding

Above, we mentioned Shor's algorithm for computing discrete logarithms but not his

celebrated algorithm for integer factoring. That algorithm reduces integer factoring

to the problem of computing the order of an element in a finite group. That is, given

an element x E G, we wish to find the smallest n E Z such that X" = e.

Order finding is actually a special case of the HSP (or HKP) considered above.

However, it fits somewhat awkwardly into this framework.

To see why, let us consider how we would construct a hiding function that reveals

the order of x C G. The most natural approach would be to define f : ZIG -+ G by

f(t) = x'. If our algorithm is going to invoke this f, then we should assume that we

know its domain ZIGI, which means that we should know JGl. However, for integer

49

factoring, where G = Z', simply knowing IGI is enough to classically factor N = pq

into the primes p and q; hence, there is no way to perform this reduction efficiently.

One way to get around the problem is to instead define the hiding function as

f : Z -+ G, working with the infinite abelian group Z. This method works. In fact, it

is possible to view Shor's algorithm as a clever discrete approximation to the standard

abelian HSP algorithms (discussed below) applied to Z [11].

The above method works because it allows us to avoid revealing ZIG1. However,

it also has the cost of forcing us to deal with infinite groups. Fortunately, there is an

alternative way of accomplishing the former without accepting the latter. Namely,

we can specify G to the algorithm as a black-box group 14].
As the name suggests, a black-box group does not reveal the group itself. Elements

of the group are represented by opaque labels, and the algorithm is given only (1) the

label of the identity element, (2) labels of a generating set for the group, (3) an oracle

that takes the labels of two elements and returns the label of their product, and (4)

an oracle that takes the label of an element and returns the label of its inverse. (Note

that we are requiring that elements of the group have unique labels.4)

This is sufficient for integer factoring since we can efficiently multiply elements

from Z' and compute their inverses on a classical computer without ever having to

factor N. Thus, we will define the Order Finding Problem to take as input a black-

box group G and the label of an element x E G and to return as output the smallest

n E Z such that x" = e.5

It follows from the work of Kitaev [401 that the Order Finding Problem can be

solved efficiently on a quantum computer for an arbitrary abelian group. The tech-

niques involved are analogous to some of those we will discuss below, but working

with the infinite group Z (which should probably not surprise us per the discussion

above). As we are interested only in finite groups for the main results, we will not

have a need to look at these in any detail.

4 This is not assumed by some classical algorithms, but it is usually required in the quantum
setting since we want to use these labels as the basis for our Hilbert space.

5 It is worth noting that we can still efficiently compute (the label of) x' in the black-box model:
we can use the method of repeated squaring to compute xn with O(log n) oracle calls instead of
n - 1 calls of a naive evaluation.

50

It is worth noting that these method work even for non-abelian groups. This

is because the algorithm only works with the subgroup (x), which is abelian even

when G is not. Hence, Kitaev's work demonstrates that we can compute the order of

elements in arbitrary black-box groups.

In fact, order finding is only one of many problems about black-box groups that

can be solved efficiently on quantum computers. Babai and Beals [8] showed that

many problems about black-box groups could be solved classically assuming access to

oracles for factoring, discrete logarithm, and the constructive membership problem

on elementary abelian groups'. Since quantum computers can solve these problems

efficiently, all of these problems are solvable quantum computers.

Theorem 3.1 (adapted from [36]). Let G be a finite solvable black-box group.7 Then

there are efficient quantum algorithms to compute each of the following:

1. Constructive membership testing for (subgroups of) G.

2. Computing the order of G.

3. Find generators for the center of G.

4. Construct a composition series for G with nice representations of the factors.

5. Find generators for the Sylow subgroups of G

As noted above, we will assume that we have a unique label for each element of

G. This poses a problem for us only when we wish to work with the group GIN, for

a normal subgroup N < G, as it is not obvious, in that case, how to choose unique

labels for cosets xN E G/N since any x' = xn, for n E N, gives rise to the same

coset. However, the classical techniques of [8] combined with the quantum techniques

of [621 allow this case to be handled as well.

6 This means finding whether a given element is in the (sub)group and, if so, showing how it is
expressed in terms of the generators of that group.

7 All of this generalizes to non-solvable groups but with running time that depends in a more
complicated fashion on the structure of the non-abelian factors of the group, so we will focus, here,
on the simpler case of solvable groups.

51

Corollary 3.2 (from [36]). Let G be a finite solvable black-box group and N < G a

normal subgroup. Then each of the above problems can also be solved for G/N.

Using the ability to compute the center recursively gives us the following corollary:

Corollary 3.3. Let G be a finite nilpotent black-box group. Then there is an effi-

cient quantum algorithm finding a generating set {gij} 1 such that the gi,, 's generate

Zj(G)/Zj_1 (G) for each i E {1, ... , k}.

3.2.3 Abelian Group Decomposition

Suppose that G is an abelian group given to us as a black-box. By Theorem 2.1, we

know that G Z Zi x ... x Zgm for some primes pi , ... ,pm and ti, ... , tm E Z. The

goal of abelian group decomposition is to determine how to describe G in this

manner.

Specifically, in addition to the pi's and ti's, we want to find a set of generators

hi..., hm such that hi generates the i-th part in this decomposition, i.e., (hi) c Zg .

Furthermore, we want to be able to easily switch between these new generators and

the original generators, gi, ... , gm, that came with description of the black-box group

G. Specifically, for each 1 < i < m, we want numbers aij and b,, for 1 < j m,

such that hi = g ,, - -"" and gi = h$... h With these, we can efficiently

translate (by substitution) any expression involving the hi's into one involving the

gi's and vice versa.

Cheung and Mosca [18], followed by Bermejo-Vega, Lin, and Van den Nest [10],

showed that this problem can solved efficiently on a quantum computer. Their method

works by reducing abelian group decomposition to the two problems we discussed

above, the HKP and order finding.

We start by computing the order, di, of each generator gi. Then we consider the

homomorphism f : Zd, x ... x Zdm -+ G defined by f(x,... , xm) = g"- g'-. This

function can be computed efficiently using efficient multiplication in the group G. We

can then solve the HKP to find the subgroup K = Ker f.

52

At this point, we know that G ~ Zd, x - - - x Zdm/K since f is surjective.8 Cheung

and Mosca showed that we can then find the desired generating set hi, ... , hm, with

(hi) = Zi, and the aij's that relate the he's to the original generators using just

classical post processing. Bermejo-Vega, Lin, and Van den Nest later showed that

additional classical post processing can identify the bij's that relate the gi's to the

hi's. All of this classical post processing runs in time polynomial in log IGI.
As one simple application, we can use abelian group decomposition to compute

the size of the group: the size of the group is simply the product of the orders of the

hi's above, which can also be computed efficiently on a quantum computer, as we saw

earlier. A careful analysis these algorithms [48, 661 gives the following result:

Theorem 3.4. Let G be a black-box abelian group. If G is specified by a list of L

generators and every element in G has order at most M, then there is a quantum

algorithm that computes |G| in O(L3 log3 M) time.

Abelian group decomposition is a very powerful tool in quantum computation.

Indeed, Bermejo-Vega, Lin, and Van den Nest showed that it is complete for the

class of problems that can be solved efficiently on quantum computers that use only

quantum Fourier transforms over abelian groups along with automorphism gates and

a broad class of diagonal unitaries 191. Specifically, they showed that a classical

computer augmented with just the ability to perform abelian group decomposition

would be as powerful as all such quantum algorithms.

While we saw that abelian group decomposition can be solved by reducing to

order finding and the HKP, it is not hard to see that both order finding the HKP over

abelian groups can be reduced to abelian group decomposition.' In particular, this

implies that abelian group decomposition can be used both to solve integer factoring

and to compute discrete logarithms.

8 The function f is surjective iff the gi's generate G, and the latter was assumed.
9 The order of x E G is the size of the cyclic group (x). The latter abelian group decomposes

into just ZN, where N is the order of x. To find the kernel of f : G -+ K, we first decompose
G and K into products of cyclic groups. We can then write f as a matrix in terms of these new
generators. Using techniques described in [9, Theorem 1], we can classically find generators of the
kernel of this map, which are then translated into generators of the hidden subgroup via the abelian
decomposition of G.

53

This last fact demonstrates how the power of quantum computers to understand

abelian groups (in particular, to decompose them into their cyclic components) can be

applied to solve important problems that are believed to be intractable on classical

computers. In later chapters, we will see how this ability can be further applied

to solve even more sophisticated problems. But first, we return to the HSP to see

how this important problem, which is also used as a subroutine in abelian group

decomposition, can be solved efficiently on a quantum computer.

3.3 Solving the Hidden Subgroup Problem

3.3.1 Abelian Groups

We now describe the standard method [461 for solving the HSP for abelian groups or

the special case of the HKP.

Recall that we are given a hiding function of the form f : G -+ K. In the HSP,

we always have K = {0, 1}', but we will stick to the more general description.

Our algorithm will work in the Hilbert space VG 0 VK. The oracle for invoking f
operates by taking a state Ig) 09 k) E VG 0 VK to the state Ig) 9 If(g)k).

Recall also that the quantum Fourier transform, .7G, allows us to switch between

the basis labeled by elements of G and the basis labeled by representations of G.

(More on this below.) The algorithm starts using the basis of representations and

performs the following steps:

1. Initialize the state to Itriv) 9 le).

2. Apply the inverse quantum Fourier transform to the first vector space to prepare

54

a uniform superposition over the elements of G.

(Fa J I)1triv) ale) = (juiZ p(g)g)(pItriv) ale)
gEG pG

-E~triv(g)|g) (91e)

1 1 g) (9 e),
- g - GI E

where we have used the fact that triv(g) = 1 for all g E G.

3. Apply the oracle for f, giving us the state

1 Ig) a9 If(g)).
V/01G gEG

4. Measure the VK portion of the state.10

The probability of measuring k E K is I{g E GI f(g) = k}l/IG. If k = f(g) for

some g E G, then, by assumption, the set of elements mapping to k under f is

precisely gH. Hence, after the measurement, we have a coset state

IgH) 1 S Igh)
hEH

for some g E G. All such states have the same norm, so we can see that the

result is a uniform distribution over coset states.

10By the principle of deferred measurement [51], this measurement can be done at the end, but it
will simplify our discussion to use an intermediate measurement like this.

55

5. Apply the (regular) quantum Fourier transform to the remaining state.

pFG gH)) = p'p)I(g'| V h gh)('G 65hEH
S 1 E p(gh)Ip)

IGIHI pEG hEH

= E|G Hp(h) p(g)|p)

where we have used the fact that representations are homomorphisms, so we

have p(gh) = p(g)p(g).

6. Measure the remaining state.

We can see that the probability of measuring p is equal to IhEH p(h)1 2/ IGHHI.

Note that the factor of p(g) disappears when we take 1.12, so the final measure-

ment probabilities are unchanged by which coset we measured in step 4.

It remains to determine ZhEH p(h) for each choice of p E G. To analyze this, note

that we are only examining the restriction of p to the subgroup H, which we denote

Res G p. In fact, this sum is simply HI (triv I ResG p), the inner product of the trivial

representation with the restricted representation (up to a missing factor of IH-').

Hence, we can conclude that p is measured with probability IHI/IGI if ResG p trivH

and 0 otherwise. Thus, the quantum procedure above generates a uniformly random

element p E G with the property that its restriction to H is trivial.

To solve the problem, we need to be able to compute H from poly log IGI random

samples of such representations. This reduces to analyzing a system of modular

equations, and the computation required to determine H can be performed efficiently

on a classical computer. See [461 for details.

A couple of issues remain in showing that the quantum procedure is also efficient.

First, we must be able to efficiently implement the quantum Fourier transform,

.FG. Kitaev [40] showed that this can be done for any abelian group G. (Indeed, any

abelian group is a product of cyclic groups, and it turns out that the QFT for the

56

whole group is simply the product of QFTs for the cyclic parts, so all that is needed

is to show that we can implement the QFT for any ZN efficiently.)

Second, our quantum procedure started and ended in a basis labelled by the

irreducible representations of G, so we need to demonstrate that we can efficiently

prepare and measure states in this basis. Fortunately, this is easy to do. As we saw

in section 2.2.4, each irreducible representation of an abelian group G is uniquely

identified by an element g E G. Hence, we can simply use the normal basis of VG as

a basis of irreducible representations. This is precisely what is done in the standard

implementations of QFTs for such groups.

3.3.2 Non-abelian Groups

The quantum procedure defined above can be generalized to work on non-abelian

groups. In order to describe this, we first need to generalize the quantum Fourier

transform to non-abelian groups. We define the QFT for an arbitrary group G to be

dp

9GG p1 G j

This is equivalent to the earlier definition (up to a simple isomorphism) if all of

the irreducible representations are 1-dimensional. In this more general case, for each

irreducible representation p, we have replaced the label of p by the label of a particular

element in the matrix form p. By doing so, this transformation incorporates the full

information about the irreducible representations for each g E G.

This transformation is unitary provided that each matrix p(g) is unitary. As we

saw earlier, we can assume the latter without loss of generality.

57

Following the same procedure as above, in step 5, we produce the state

FG IgH) = p[p(g')]IijIp, i, j) ' Igh)
Vi g'EGp pij=1) HI hEH

pE= |G |H E d d E [p(gh)]jg |pij).
V-GIIHIpEd ij=1 (hEH

In step 6, as above, we measure the irreducible representation label p. In this case,

that means we are leaving unmeasured the matrix indices Ii, j). The probability of

measuring p is, hence, equal to the norm of the state

G Hdp E[p(gh)]j ji,j),

which is equal to

d 2 2

|G | =[p(gh)] = |G |H p(gh).
iGiiH t,j=l hEH IG H E

We can see that 11 Zh| H p(gh) 112 = 11P(g) ZhEH p(h)11 2 = 1IhEH p(g)11 2 because

multiplying by a unitary (in this case, p(g)) does not change the 11-11 norm." Hence, we

can see that, as in the abelian case, the measurement probabilities for the irreducible

representation labels are affected by which coset gH appears in step 4. (Also note

that the same would be true if we multiplied on the right by p(g) instead of on the

left. Hence, the results would be unchanged if we were given a hiding function that

was constant on right cosets instead of on left cosets.)

Likewise, as in the abelian case, only the restriction of p to H appears in the

formula for the probability of measuring p. In particular, suppose that we have

ResGH p $ LO-, then, since the 11-112 norm is unchanged by multiplying by a unitary

"To see this, note that 11Ail 2 = tr(AtA), so we have l1UAu1 2 = tr[(UA)t(UA)] = tr(AtUtUA) =
tr(AtA) = 11Al1 2 .

58

matrix (a fact we used above), we can rewrite this expression as

2 2 k 2 k 2

S p(h) = (ResG p)(h) i(h) =a (o-(h)
hEH hEH hEH i=1 i=1 hEH

The symmetry of ZhEHj u(h) suggests that we can simplify further. In fact, this

is an intertwining map. Using the terminology of Corollary A.4, it is precisely Ttriv,

which tells us that Ttriv = (IHI/d,)(triv I Xj) I. Next, we can see that ITtriv 112 =

IH12 1(triv I xO)1 2 = IH12 (triv I xa) since (triv I x,) is either 0 or 1. Putting this all

together, we have

2 k k

> p(h) = H12(triv I X,) = IH12 (triv I X,) = IH12 (trivI XRes P I
hEH i=1 i=1

which means that the probability of measuring p is dp(IHI/IGI)(triv IXRes p-

The above analysis is from [32]. Hallgren et al. go on to show that, if H < G is

normal, then the only irreducible representations p for which (triv I XResG) is nonzero

are those that are uniformly trivial on H. This means that we measure p with

probability (IHI/IG)d2 if H < Kerp and 0 otherwise.

It follows that H < G is contained in the intersection of the kernels of all the

measured irreducible representations. Hallgren et al. show that, after O(log G)

samples, the probability that the intersection is not precisely H is exponentially small.

Hence, we get an algorithm for solving the HSP in any group where all subgroups are

normal-the so-called Hamiltonian groups-assuming that we can efficiently compute

the QFT for such groups and compute the intersections of kernels of irreducible

representations. 12 Hallgren et al. show that these things can be done, giving an

efficient quantum algorithm for an interesting class of non-abelian groups.

Even though the QFT for a non-abelian group produces information along with

the matrix indexes, this part of the state is never examined by the above algorithm,

which measures only the irreducible representation label. This approach is called

1
2 We also need to show that we can prepare and measure in the basis of irreducible representations,

but that usually follows, as it does in this case, when we have an efficient QFT.

59

weak Fourier sampling, in contrast to strong Fourier sampling, where the

matrix index registers are also used.

3.3.3 Generalized Hiding Functions

Another important non-abelian result was that of Ivanyos, Sanselme, and Santha [371,
which gave an efficient algorithm for the HSP on groups of nilpotency class 2. The

latter class also includes the Hamiltonian groups as well as the Heisenberg group and

many others [6, 5]. As far as we are aware, their algorithm covers the largest general

class of groups for which the HSP can be solved efficiently.

We will have more to say on their result in the next chapter. However, we mention

one of their important observations here: since the standard method outlined above

for solving the HSP (on abelian or non-abelian groups) does not use the measured

value of the hiding function, the algorithm would operate identically if we multiplied

that part of the state by an arbitrary unitary.

More generally, we can replace the hiding function by any other quantum pro-

cess that produces states that are equal to those of a hiding function after applying

some unitary. The hiding function produces states jf(g)) with the property that

(f(g') I f(g)) is 1 if g' = gh for some h E H and 0 otherwise. Hence, we can see that

it is sufficient to have a quantum process that produces states with these orthogonal-

ity properties in some basis, not necessarily the standard basis of our vector space.

That is, we can use any quantum process taking, for g E G, the state 1g) 9 10) to

Ig) 9 jug), where the Iug)'s have the property that (ug, I ug) = 1 if g' = gh for some

h E H and 0 otherwise. We will call this a (quantum) hiding process for H.

Ivanyos et al. take advantage of this generality by constructing a more general

quantum process that hides a subgroup that they wish to find. We will use the same

approach in the next chapter.

Finally, the above discussion shows that having a process taking Ig) 0 |0) to

g)0 lug) is sufficient to produce uniformly random coset states of the hidden subgroup

H ; G via Fourier sampling. However, it is interesting to note that these two

capabilities are essentially equivalent.

60

If we have a quantum process taking 10) '-+ Ig.H) for a uniformly random g. E

G, then we can compose this with the process performing right multiplication-i.e.,

taking 1g) 0 Jg*H) to 1g) 9 regR(r)lg*H) = 1g) 0 lg*Hg)-to get a process suitable

for use in Fourier sampling. This holds since g~hg = g~h'g' iff hg = h'g' iff g' = h"g,

which shows that the resulting states are disjoint unless g' = h"g for some h" E H (in

which case, they are equal). The only minor difference is that measuring this will give

us a right coset, rather than a left coset, but, as we saw above, this gives identical

measurement outcomes in Fourier sampling.

61

62

Chapter 4

An Application of Abelian

Substructure

In this chapter, we turn to the main focus of this thesis, which is to examine ways

in which the ability of quantum computers to solve problems on abelian algebraic

structures can be leveraged to solve problems on non-abelian ones. We begin, here,

with the simplest such case, which occurs when a non-abelian algebraic structure

contains within it a well-organized set of substructures that are abelian.

The neatest example of this type is the class of nilpotent groups. As we saw

earlier, each nilpotent group has a nontrivial center, which is an abelian subgroup.

More importantly, if we quotient out by the center, we are left with a smaller nilpotent

group, which has the same properties including its own nontrivial center. As we will

see in this chapter, this tower of abelian subgroups provides enough structure to allow

us to solve interesting problems on non-abelian nilpotent groups by reducing them to

problems on the abelian subgroups.

The chapter is organized as follows. We start in section 4.1 by showing that the

nilpotent groups have special status with regard to the HSP: they are the only groups

for which weak Fourier sampling algorithm is always successful (Corollary 4.5). Then,

we turn to constructing more efficient algorithms. In section 4.2, we consider the prob-

lem of constructing a hiding process for the normal closure of the hidden subgroup,

and in section 4.3, we discuss the average-case subset sum problem. In section 4.4,

63

we use those two pieces to formulate useful results on solving the HSP on nilpotent

groups: we give an efficient quantum algorithm for HSP on k-nilpotent groups with

k = O(1) assuming an oracle for average-case subset sum (Theorem 4.10), we demon-

strate a polynomial quantum speedup for general nilpotent groups (Corollary 4.11),

and we give a subexponential time algorithm for nilpotent groups whose order is

divisible by only large primes (Theorem 4.12). Finally, we conclude in section 4.5.

4.1 Weak Fourier Sampling of Nilpotent Groups

In this section, we describe the close connection between successfully finding hidden

subgroups via weak Fourier sampling (WFS) and nilpotency. Specifically, we show

that the groups on which the HSP can always be solved by recursive application of

WFS are precisely the nilpotent groups.

An immediate consequence of the formula given in section 3.3.2, which describes

the probability distribution of the irrep label p produced by WFS, is that WFS cannot

distinguish H from any conjugate H9 since every character Xp is a class function: Xp is

identical on H and H9 , so the probability distribution gives us no information about

whether H or H9 is hidden. This shows that WFS cannot solve the HSP for every

H < G whenever G is non-abelian. Hallgren et al. do show, however, that for normal

subgroups, which have no conjugates, WFS is always successful.

That is not the end of the story, however, for non-normal subgroups. While it

is true that the distribution is identical for H and H9 , this does not rule out the

possibility that we could learn something collectively about H and its conjugates

that would allow us to make progress on finding H. We might hope, for example,

to find the normal closure of H - the smallest normal subgroup containing H and

every H9 for g c G. If the normal closure of H is not the whole group (which it

will never be in a nilpotent group, for example), then this would identify a smaller

subgroup K < G containing H and we could continue searching for H in K.

We refer to the approach just outlined as recursive weak Fourier sampling

(RecWFS). More formally, we apply WFS to the group G and use the distribution

64

on irrep labels produced to determine (information theoretically) a smaller subgroup

K < G such that H9 < K for all g E G. If H = K, then the method succeeds.1 If

K = G, on the other hand, then the method fails. Otherwise, we have H < K < G,

and we apply the same approach recursively to the smaller group K.2

The next result shows that RecWFS cannot be successful for non-nilpotent groups.

Theorem 4.1. If G is not nilpotent, then RecWFS fails for some H < G.

Proof. If G is not nilpotent, then it contains a proper self-normalizing' subgroup H

by Theorem 2.5. This means, in particular, that each of the conjugate subgroups Hg,

for g E G/H, is distinct, and this remains true if we restrict to any subgroup K < G

strictly larger than H.

By the formula from section 3.3.2, WFS will fail to distinguish H from its con-

jugates. And since H is self-normalizing, it will have [G : H] / 1 conjugates, all of

which must be included in K. When we restrict to K, it remains true that we have

[K : H] = 1 conjugates, which must be included in the next subgroup. While the

group may shrink on each recursive application, it can never shrink to K = H since H

always has conjugate subgroups in K. Since G is finite, we cannot continue to move

to smaller subgroups forever, so we eventually reach a K such that (H9 I g E G) = K,

at which point the method fails. II

The above theorem is not all there is to say for non-nilpotent groups, however,

because, even though these conjugate subgroups cannot be distinguished by WFS,

they may not be difficult to distinguish classically. As a trivial example, the above

theorem says that WFS fails for a family of exponentially large abelian groups if we

simply adjoin a constant size non-nilpotent factor to each. However, we could find a

hidden subgroup in this non-nilpotent part of the group efficiently by brute force.

The following result fixes most of this problem.

'As we will see below, we can identify whether we have reached this case without knowing H.
2This approach can be generalized by also identifying a J < G such that J < H9 for all g E G

and then recursing on K/J rather than K.
3H is self-normalizing if H9 = H iff g E H.

65

Corollary 4.2. If G contains a self-normalizing subgroup H with [G : H] exponen-

tially large and |HI prime, WFS and classical computation cannot find H efficiently.

Proof. As described in the previous theorem, there are [G : H] conjugates of H,

which is exponentially many, and these cannot be distinguished by WFS applied to

any group that contains H and all of its conjugates. With polynomially many queries,

we also cannot check more than a vanishingly small fraction of them classically, so

any algorithm of this sort will have a vanishingly small probability of succeeding. 4 LI

Typically, we focus on the problem of finding hidden subgroups that are as small

as possible, either trivial or cyclic of prime order, since that is the case that is,

intuitively, the hardest classically. Hence, this corollary tells us that WFS cannot

solve the typical hidden subgroup problems for non-nilpotent groups.

Our positive results will rely on the following basic fact.

Proposition 4.3. The probability of measuring irrep p by WFS is (IHIIGI)d' if

H C Ker p and strictly smaller if H g Ker p.

Proof. For any unitary U c C ", we note that Itr Ul n, as the left hand side is

the sum of the eigenvalues of U each of which lies on the unit circle. By the same

reasoning, we have equality iff U = I. For any representation p, this means that

|xp(g)| d, for any g E G, with equality iff g E Kerp. With this, the proposition

follows from our formula from section 3.3.2.

With this in hand, we can now prove the following theorem, which is the converse

to the negative result above.

Theorem 4.4. If G is nilpotent, then RecWFS succeeds (given sufficient time) for

any hidden subgroup H < G.

Proof. Proposition 4.3 tells us that WFS distinguishes those irreps whose kernels

include H. The intersection of those kernels is a normal subgroup K < G containing
4Here, we are using the fact that conjugates H9 and Hh have trivial intersection, so queries give

us no information about H unless we guess it correctly.

66

H. (In fact, it is the normal closure of H.5) K must be a proper subgroup of G since

H is contained in some maximal proper subgroup M < G and, in a nilpotent group,

maximal proper subgroups are normal.' In more detail, we have H9 < M9 = M, and

since K is the smallest normal subgroup containing all H9, K is contained in M as

well. Finally, since M is a proper subgroup, so is K < M.

The above argument shows that we can always find, by WFS, a strictly smaller

subgroup K < G that contains H. Since subgroups of nilpotent groups are nilpotent,

when we use WFS in K, we either find H or get an even smaller subgroup KP) < K.

Since G is finite and we shrink at each step by at least a factor of 2 in size, this

process must eventually reach KW = H for some n. L

All together, we have proven the following:

Corollary 4.5. RecWFS succeeds for every H < G iff G is nilpotent.

Corollary 4.5 shows that recursive weak Fourier sampling is successful, at least

information theoretically, for precisely the nilpotent groups. Hence, the nilpotent

groups are a natural class in which to look for efficient algorithms. Unfortunately,

WFS can take exponential time to identify a normal subgroup K < G containing

H for some nilpotent groups.7 Hence, we will need further tools in order to get

potentially efficient algorithms. We discuss the first of these in the next section.

4.2 A Hiding Process for the Normal Closure

In this section, we consider the problem of finding a process for hiding the normal

closure of the hidden subgroup H. That is, we want a quantum process that prepares,

for each g E G, a state lug) such that (ug, I ug) = 1 if g' = gh for some h E K and 0

5This follows from the results of Hallgren, Russell, and Ta-Shma [32J. In particular, their results
imply that any normal subgroup is the intersection if the kernels of the irreps that contain it. Hence,
the intersection of the kernels of the irreps that contain H is the smallest normal subgroup containing
H, i.e., the normal closure of H.

6If a maximal subgroup is not normal, then it is self-normalizing, so this follows from the fact
that nilpotent groups do not contain self-normalizing subgroups 2.5.

7The 3-nilpotent unitriangular matrices are an example.

67

otherwise, where K is the normal closure of H. We will show that this can be done

provided that we can solve the Average-Case Subset Sum Problem (AvgSSP).

The value of having such a hiding process is that the normal closure of H is,

by definition, a normal subgroup. As we saw earlier, we should be able to efficiently

produce a generating for set this (or any normal) subgroup by weak Fourier sampling.

In fact, in this case, this will leave us with an abelian HSP, which we know can be

solved efficiently.

We will describe a quantum process for hiding the subgroup HZk-l(G), where G

is a k-nilpotent group. For any g E G, since h9 = hlh, g) and Zk_1 (G) contains all

commutators, we can see that the normal closure of H is contained in HZk1 (G). In

principle, the normal closure of H could be a proper subgroup of this; however, there

is no harm in working with HZk-_(G) instead since it is also normal8 , and, as we

shall see, finding this subgroup will also give us the information we need to find H.

Let us start by considering the slightly easier problem of constructing a hiding

process for the subgroup HZ(G), a smaller group than HZkl(G) whenever k > 2.

As we saw before, it would be sufficient to find a way to prepare a coset state IgHZ(G))

since the action of right multiplication on this state is then a hiding process.

Unfortunately, there appears to be no easy way to prepare this state. Instead,

following 137], we construct a state that differs from this only by the presence of some

extra phases.

We begin by preparing a random coset state, IgH), which, as we saw above, we

can do using the hiding function for H. Then, we adjoin a new register and use an

inverse Fourier transform to create a superposition on the elements of the center

(F(G) 01) Itriv) 9 gH) = 1 E) z) 9 IgH)
Z(G) _|Z (G)| IZEZ(G)

Next, we perform a multiplication taking Iz) 9 Ix) to Iz) 9 Ixz). This leaves us with

I@) := zG)z) 0 gHz).
e Z(G) ZEZ(G)

8Recall that, for z E Zk-,(G) and any g E G, we have z9 E Zk-2(G) < Zk_1(G).

68

Applying an Fourier transform on the first part turns this into

(TZ(G)OI) I Z(G)0 >1 x(z)KX) 0 gHz)
zEZ(G) XEG

Z(G)| 5 KX) x(z)IgHz).
XE zEZ(G)

If we let lox) := (IHIIZ(G))-1/2ZhEH EZEZ(G) x(z)Ighz), then we can see that

(ox I x) = (IHIIZ(G)I)- 1 hEH EzEZ x(z)x(z) = 1. Hence, if we measure the first

part, we find a uniformly random X E Z(G) and are left with the state I4ox).

Let us see how close this is to the hiding process that we desire. We consider the

action of right multiplication on this state, defining lux) := regR(X) 4x), and check

whether these lux)'s satisfy the orthogonality properties needed to hide HZ(G).

First, we can see that ghzx = gh'z'x' iff hzx = h'z'x' iff x' = h"z"x for some

h" E H and z" E Z(G).' This shows that (ux I uX/) = 0 unless x' = h"z"x for some

h" E H and z" E Z(G).

Next, we can see that (ghz I ox) = X(z)/ IHIIZ(G)I, for all h E H, and, since

we have ghz - h' = ghh'z, we can see that (ghz I regR(h')4') = (gh(h') 1 z I'x) =

X(z)/ IHIIZ(G)I. In other words, since multiplication on the right by h' only per-

mutes states in the superposition with the same phase, we have regR(h)l4x) = lox).

So far, this is exactly what we want. On the other hand, we can see that

(ghz regR(z')OX) = (ghz(z')-1 I Ox) = x(z)x(z')/FIHIIZ(G)L. Hence, multiplica-

tion on the right by z' E Z(G) differs from the desired state by a phase of x(z').

We can remove this extra phase with the following approach. Instead of using a

single state lox), we will use a state of the form lox,) 0 ... 0 lo'x,) and have g E G

act by regR(g) 0 ... 09 regR(g), i.e., by multiplication on all parts. If g' # hzg for

some h E H and z C Z, then all parts will be orthogonal, so the combined state is

orthogonal. Furthermore, multiplying by h on all parts leaves all parts unchanged,

so the overall state is unchanged. Finally, multiplying by z on all parts picks up an

overall phase of X1(z) - - - Xk(z). If we find Xi's such that their pointwise product is 1

9 Note that we have used the fact that z and z' are in the center.

69

everywhere, then we have the state that we need to find HZ(G).

Each x is a representation of Z(G). We know from Theorem 2.1 that Z(G) ~

Zt x ... x Z ti for some pi's (primes) and ti's. We also know representations of

such groups are of the form X(xi,... ,Xe) = aix ... xw , where each WM is an M-th
P1 PI

root of unity. Thus, if we have a set of.uniformly random representations X1,.. , ,

we can find a subset whose pointwise product is zero if we can solve the following

problem in the special case B = 0.

Definition 4.6. Given a set of values A 1,..., Am, each chosen uniformly at random

from X := ZM, x ... x Zm,, and a number B E X, the Average-Case Subset Sum

Problem (AvgSSP) over X asks us to find a nonempty subset Ai ,...., Ai, that sums

to B in X.

Given an oracle that solves AvgSSP, we can see how to construct a hiding process

for HZ(G). Applying this idea iteratively to Z(G), Z2(G),..., Zk_ 1 (G), gives us a

hiding process for HZk-_(G).

Lemma 4.7. Given an efficient algorithm that solves AvgSSP when provided with

f (X) random values for each abelian group X, there is a hiding process for the

group HZk_1(G)/Zk_1(G) running in time polynomial log IGI and in the quantity

f(Z(G)) ... f(Zk_1(G)/Zk- 2(G)).

Proof. We start by preparing f(Z(G)) states of the form I0.,) with each Xj chosen

uniformly at random from the characters of Z(G). Next, we invoke the oracle to find

a subset of the x's whose pointwise product is zero. As we saw above, acting on this

set by simultaneous right multiplication gives a hiding process for HZ(G). Preparing

a superposition EZgG 1g) 9 10), applying the hiding process, and throwing away the

second part of this state, gives a coset state IgHZ(G)), for a uniformly random g.1 '

Thus, we have moved from a hiding process for H to a hiding process for HZ(G).

Since Z(G) HZ(G), we can identify the latter subgroup with HZ(G)/Z(G) 5

10Actually, this will give us a left coset of HZ(G), but as we saw above, the two behave identically
with respect to Fourier sampling. The only change is that, in the next round, we will use left
multiplication rather than right multiplication to construct the hiding process for HZ2 (G).

70

G/Z(G). We can repeat the above process with H replaced by HZ(G)/Z(G) and G

replaced by G/Z(G). That will gives us HZ(G/Z(G)) S HZ2(G). Repeating this for

i = 3, ... , k - 1 gives us the state HZk-_(G)/Zk_1(G).

It remains to analyze the total running time. Let T(i) denote the time required

for the hiding process of HZ(G)/Zj(G). For level i + 1, the time to prepare each

14') state is poly(log IGI) + T(i). Since we repeat this for mj+1 := f(Zj+1(G)/Zj(G))

states, the total time is T(i + 1) = mi+1 [(poly log IGI) + T(i)] + g(mj+1), where g(m)

is the running time of the AvgSSP algorithm. The solution to this is bounded by

(poly log IGI)mi ... mk-1 + O(g(m1 -.. mk-1)), which shows that the running time is

polynomial in (log IGI)mi - -mk_1.

It is worth noting that the space requirement of this algorithm is not nearly so

bad as the time requirement. At each point in time, we only need space to store the

each of the f(Zj+1 (G)/Zi(G)) states of the form 10.) at each level i = 1, . . . , k - 1.

Thus the overall space requirement is only O(log G) Ek=T1 f(Zj(G)/Zj_1 (G)).

4.3 Algorithms for Average-Case Subset Sum

The quantum hiding process described above depends on having an algorithm for

solving AvgSSP. It is well-known that AvgSSP can be solved in O(nM1 - - - ME) time

using dynamic programming [28]. We will be most interested in cases when M1 ... Mf

is exponentially large. In that case, this standard algorithm takes exponential time.

Using techniques developed in [26], we can reduce the time requirement to subex-

ponential. The following theorem will give us, the next section, an algorithm whose

running time is subexponential (in log(M1 ... MI)) provided that f = poly log M,

where M = maxi Mi.

Theorem 4.8. There is a polynomial time algorithm for AvgSSP when B = 0 pro-

vided that m = exp(Q(Vlog M1) + . . . + log M)).

Proof. The case f = 1 is proven in [26]. We extend to f > 1 by brute force. Let

mi = exp(C log M), the number of inputs required for f = 1 [26]. We require the

71

number of inputs m for the overall problem to be the product mi ... mi.

To solve the problem for f > 1, we split the inputs into groups of m, elements and

solve AvgSSP on each group using the algorithm of [26] applied to the the ZM1 part

of each number. This gives us, for each group of m1 numbers, a nonempty subset

that sums to zero in the ZMi part.

Replacing the solution for each group with the sum of those numbers in ZMi x

- x ZMe, gives us m 2 ... me numbers with zeros in the ZMi part. Next, we group

these numbers into groups of size m 2 and repeat as above but now using the ZM2 part.

For each group, we get a solution that sums to zero in this part, but furthermore,

since each number was already zero in the ZM, part, we can see that each solution

sums to zero in the ZMl x ZM 2 part.

Repeating this j times, leaves us with mi ... me numbers that sum to zero in

the ZM1 x ZMj part. Hence, if we repeat j = f times, we get a single number that is

zero in all copies. The set of inputs we added to produce this result is a solution. It

is routine to verify that the total running time is still polynomial in m. L

4.4 Quantum Algorithms for the Nilpotent HSP

Applying the algorithm for AvgSSP discussed in the last section to the method of

the previous section gives us a quantum hiding process for HZk_1(G)/Zk_1(G). Since

G/Zkl_(G) is an abelian group, we can find HZkl_(G)/Zkl_(G) efficiently using the

standard method. Identifying this subgroup of G/Zkl_(G) also identifies HZkl_(G)

(it's inverse image under the quotient map).11

This shows that we can reducing finding the subgroup HZk1 (G) to an abelian

HSP. But how does knowing this subgroup help us find H? The key idea comes from

the following lemma.

Lemma 4.9. Let H be a cyclic subgroup of a k-nilpotent group G, then HZk- 1(G) is

a (k - 1)-nilpotent group.

"More concretely, simply adjoining a generating set for Zk-l(G) to the inverse image of the
generators of HZk-_(G)/Zk-_(G) gives a generating set for HZk-_(G).

72

Proof. Let G' := HZkl1(G).

First, we will check that Zi(G') D Zj(G) for i = 0, ... ,k. If z E Z(G), then it

commutes with all of G, which includes G', so z E Z(G'). This is the case i = 1.

For i > 1, if z E Zj(G), then for all g E G, we have [z,g] E Zi_ 1 (G) c Zi_ 1 (G') by

induction. In particular this holds for those g E G', so we have z E Zi(G').

Now, an element of G' can be written as h'z for some i E Z, and z E Zk-(G). Let

h'z' be another element of G'. By the definition of Zk_1(G), both z and z' commute

with everything, including h E H, modulo Zk- 2 (G). Hence,

h'zhjz' = h'hizz' = h'h'z'z = hz jz'z = hjh'z'z = hjz'h'z (mod Zk- 2 (G)).

Thus, every h'z E G' is in the center of G' modulo Zk- 2 (G). Since Zk- 2 (G') D

Zk- 2 (G), the same is true modulo Zk- 2 (G'). Thus, we see that Zk-1(G') = G', which

shows that G' is (k - 1)-nilpotent. L

Once we have found HZk._(G), we have reduced to the problem of finding H in

HZk_1(G). The lemma shows that the latter is a (k - 1)-nilpotent group, which is

one smaller in nilpotency class than the k-nilpotent group G. Thus, we have reduced

to finding H inside of a simpler group.

Now, the lemma requires that H be a cyclic subgroup. However, as occurs in

many HSPs (see, e.g., [42, 5]), we can efficiently reduce to this case. For nilpotent

groups, this was shown in [37].12 This reduction adds only a O(log2 G) factor to the

total running time.

The above lemma allows us to prove the existence of useful algorithms for the

HSP on k-nilpotent groups by induction on k. We begin by showing that we can

efficiently solve the HSP on groups of small nilpotency class assuming we can solve

AvgSSP efficiently. This was previously shown for the dihedral group 152].

Theorem 4.10. Given an oracle for AvgSSP, there is an efficient quantum algorithm

for solving the HSP on k-nilpotent groups with k = 0(1).
12 Lemma 2 of [371 is stated only for p-groups. However, the technique works more generally by

replacing the refined polycyclic representation with a chief series for the nilpotent group. On the
other hand, we can also reduce to the p-group case here and then apply their Lemma 2 directly.

73

F

Proof. We prove this by induction on k. The case k < 2 is known (even without an

oracle for AvgSSP) from [37].

For k > 2, we apply Lemma 4.7. An application of Chebyshev's inequality tells us

that m = 2 log IXI values are sufficient for the existence of a solution to this instance of

AvgSSP with high probability. Thus, the hiding process given by Lemma 4.7 runs in

time polynomial in (poly log IGI) logk+1l IGI = poly log IGI time. Hence, the standard

results on abelian HSPs [46] tell us that we can find HZk-1(G) time polynomial in

log IG. By induction, we can find H within the subgroup HZkl_(G), which we know

is (k - 1)-nilpotent by Lemma 4.9.

Even with brute-force algorithms for AvgSSP, the above approach still gives a

polynomial speedup for groups of small nilpotency class.

Corollary 4.11 (due to Aram Harrow' 3). Let Bi := IZ(G)/Z_ 1 (G) and B

maxi Bi. Then the total time for solving subset sum instances in the above algortihm

using a brute-force approach is O(B poly log IGI). This is O(|G|" poly log IGI) for

k= log B/BlogBi = log B/ log IG1.

For our example of k-nilpotent unitriangular matrices, with k = 0(1), the cost

of classically solving the subset sum instances is O*(lG12/(k+l)), and the cost of the

quantum computation is only O(poly log IGI).
Finally, we can use Theorem 4.8, which gives a substantial speedup over the

brute-force algorithm, in order to get subexponential-time algorithms for the HSP on

nilpotent groups whose order is divisible by only large primes. This includes k = 0(1)

as a special case.

Theorem 4.12. Let G be a nilpotent group such that, for some e > 0, IGI is divisible

only by primes p with p ;; exp(log' IGI). Then there is a quantum algorithm solving

the HSP on G in exp(O(log-'IGI)) time.

Proof. As we saw in Lemma 4.7 and above, the overall cost of the algorithm is

(poly log IGI)] I f(Bi), where Bi = IZi(G)/Zj_ 1 (G)I and f(Bi) is the number of
13Personal communication.

74

samples needed to solve AvgSSP on the abelian group Bi.1

By Theorem 4.8, if X = Z, x x Z ,, we can take f(X) to be exp E(t1 log p1 +

+ fte log pf). We can upper bound the latter by exp E(tVlfogi p+ +t log pj).

Multiplying these together for each of the factor groups Zi 1(G)/Zi(G) gives a bound

of exp E(t1 logpi + + taVlog pa), where IGI factors as pt ... pt.

Let T := ti + - + tn. By the concavity of square root, we can see that

t 1 /logpi+- +tn /logpn = T(at/logp 1 +---+n -/logpn

K T(- logp1+.--+ t logn)1/2

- VT log IGI

This is O(logl-'Gl) provided that T = O(logl' Gl) for some E' > 0.

Let p be the smallest prime dividing JGJ. Then we can see that T = t1+.- -+-+tn 5

t1 'g+ - '+t'gn = log Gillogp. Hence, if p ;> exp(logE IGI) for some 6 > 0, then

T < log Gl/ logE GI = logl-' Gl.

4.5 Conclusion

In this chapter, we saw that there are improved algorithms for solving the HSP on non-

abelian groups when those groups contain a well-organized set of abelian subgroups,

namely, when those groups are nilpotent.

We saw, in section 4.1, that the nilpotent groups are precisely those groups for

which the HSP can be solved for every H < G using just the information provided

by weak Fourier sampling applied recursively.

We also saw, in section 4.4, that there are subexponential time algorithms for solv-

ing the HSP on nilpotent groups whose orders are divisible by only large primes. The

algorithm worked by using the supplied hiding function for H in order to construct a

hiding process for the subgroup HZkl(G)/Zkl(G). The latter is a subgroup of the

abelian group G/Zk._(G), so we can use the standard abelian HSP algorithms to find

14 Since the subgroup HZkl(G) on which we recurse is strictly smaller than G, the overall time
is dominated by the work done to find HZk-1(G).

75

this group. Once HZk-_(G) is found, we search for H recursively within this group

of smaller nilpotency class. This approach takes advantage of the well organized set

of groups Z, (G) 5 ... 5 Zk-1(G), each of which is abelian modulo the previous one,

in order to reduce the HSP on G to a sequence of HSPs on the abelian factor groups.

In the next chapter, we will see an entirely different way of using abelian algebraic

structures to solve HSPs on non-abelian groups.

76

Chapter 5

An Application of Translation Into

Abelian Structures

In this chapter, we look at a second way of leveraging the ability of quantum com-

puters to solve problems on abelian algebraic structures in order to solve problems

on non-abelian ones. This time, we will translate the non-abelian structure into an

abelian one that has nicer computational properties and preserves sufficient informa-

tion about the original structure in order to solve the problem of interest.

Our example in this chapter comes from the hidden kernel problem (HKP), first

described in section 3.2.1, which is a special case of the HSP where the hidden sub-

group is the kernel of a group homomorphism. Any such subgroup is normal (and

any normal subgroup is the kernel of some homomorphism). The values of the hiding

function now lie in a known group (rather than being opaque labels), which gives

extra information to the algorithms. However, as discussed in section 3.2.1, the HKP

is still at least as hard as discrete logarithm.

As we mentioned in the previous chapter, the groups in which all subgroups are

normal, the Hamiltonian groups, are 2-nilpotent, so the fact that we can solve the

HKP in such groups is already explained by the efficient quantum algorithm of Ivanyos

et al. [37] for the HSP on 2-nilpotent groups. Hallgren et al. showed, however, that

we can also find hidden normal subgroups and, hence, solve the HKP in any group,

in principle, even those that are not nilpotent [321. This is an important result,

77

yet it remains poorly explained in the sense that normality-the necessary condition

for their algorithm-seems specific to groups and does not connect to any broader

characterization of why this problem should be solvable by quantum computers.

In this chapter, we provide an alternative explanation of why this problem can

be solved efficiently on quantum computers, namely, that the HKP can be translated

into a related problem on an abelian algebraic structure. In accordance with our

general thesis, we will demonstrate that the latter problem can be solved efficiently

on a quantum computer under reasonable assumptions. All together, this provides

both a broader characterization of why the HKP is easy and also an example of how a

problem on a non-abelian algebraic structure (the HKP) can be solved by translation

into a related problem on an abelian one.

The chapter is organized as follows. We start in section 5.1 by reviewing the

basic properties of hypergroups. Next, in section 5.2, we show how to reduce the

HKP to the Hidden Subhypergroup Problem (HSHP). In section 5.3, we review some

background on Fourier analysis of hypergroups.

We then give algorithms for solving the HSHP. In section 5.4, we give an efficient

quantum algorithm for finding a hidden subhypergroup M c T when T/K is a group

(Theorem 5.4). Combined with our result from section 5.2, this shows that the HSP

is easy for class functions (Corollary 5.5).

Next, in section 5.5, we give an efficient quantum algorithm for the HSHP on

strongly integral hypergroups assuming that we can implement QFTs on normal sub-

groups (Theorem 5.9). Combined with our results from section 5.2, this gives a new

algorithm for the HKP and an alternative proof that the HKP is easy, assuming the

existence of QFTs on normal subgroups (Corollary 5.10).

In section 5.6, we give an improved algorithm for a special class of hypergroups

called ultragroups. We first give an efficient quantum algorithm for the HSHP on

ultragroups assuming that we can implement certain group, operations efficiently for

the hypergroup (Theorem 5.13), which is potentially more plausible than assuming

QFTs on normal subgroups. Combined with our results from section 5.2, this gives

an efficient quantum algorithm with much weaker assumptions for the HKP on nilpo-

78

tent groups (Corollary 5.15). Finally, this also allows us to show, under plausible

assumptions, that we can solve the HSHP for the hypergroups of characters of nilpo-

tent groups (Corollary 5.16), most of which are instances of the HSHP that cannot

arise by reduction from the HKP (because the hypergroups are usually not strongly

integral, for example) and, hence, cannot be solved by previously known algorithms.

We conclude in section 5.7.

5.1 Hypergroup Background

In this section, we review the basic properties of hypergroups, which were introduced

by Dunkl [25], Jewett [38], and Spector [60]. (See [54, 63, 44] for introductions to

hypergroups.) Although we will focus on applications of hypergroups to the study

of groups, hypergroups arise in many other areas such as combinatorial optimization

[23], cryptography 1221, error correcting codes [221, particle physics [50], and even the

study of non-abelian anyons in quantum computation [41, Appendix E]. (There are

likely other connections to quantum computation beyond this last result and our own

below since, as Litvinov noted, any space supporting a unitary Fourier transform "is

necessarily connected with the existence of a certain hypergroup" [441.)

Hypergroups generalize groups by removing the restriction that the product of

two element be one other element. Instead, they allow the product to be a probability

distribution over elements.

More formally, let T = {ao, a,, .. . , an } be a set of elements. If T is a hypergroup,

then, for any i, j E {0, . . . , n}, we have an associative product1

n

asa1 = Znk ak, (5.1)
k=O

where the numbers n ,..., n are non-negative reals summing to 1. The n .'s are

called the structure constants of T and uniquely define the hypergroup.

Like groups, every hypergroup has a (unique) identity element, conventionally

'Rather, this product must be associative once it is extended linearly to RT.

79

chosen to be element ao. This satisfies aoaj = ai = aiao for i E {0, ... , n}.

Hypergroups also have a generalization of the inverse element x- 1 of a group, called

the anti-element, which is unique and denoted by T. The group inverse property,

that xx- 1 = e, is generalized to the anti-element property: aj = aT iff n - > 0. In

other words, element a3 is the anti-element of ai iff the probability distribution for

ajaj (or ajai) has the identity, ao, in its support.

In summary, a hypergroup is a set of elements with (1) an associative product,

yielding a probability distribution on elements; (2) an identity element; and (3), for

each element, an anti-element with which the product has non-zero probability of

producing the identity element. It is not hard to show that the identity and anti-

elements are (as usual) always unique [54].

Many of our formulas will make use of the weight of an element a E T, which is

defined to be wa := 1/na, and is always at least 1. In particular, Z! is a true inverse

of a iff we have aa = ao, which holds iff Wa = Wa = 1. In fact, the subset of elements

of weight 1 not only all have inverses but they in fact form a group, called the group

of scalars, which is the largest subset of the hypergroup that forms a group 1541.
We can use the set T as the basis of a vector space, CT, which becomes a C-

algebra with product operation T x T -- CT as defined above for basis elements and

extended to all of CT by linearity. This is called the hypergroup algebra, denoted

A(T), and is the natural generalization of a group algebra CG, for a group G.

As with groups, a hypergroup T is called abelian if ab = ba for all a, b E T.

Every group G is also a hypergroup with algebra CG, but this hypergroup is not

abelian when G is a non-abelian group. Next, we will see two examples of different

hypergroups associated to a group G that are always abelian, even when G is not.

5.1.1 The Hypergroup of Conjugacy Classes

In this section (and the next), we look at a class of hypergroups arising from groups.

These will be especially important for us below. See [63] for a number of examples of

hypergroups that arise in ways other than from groups.

Let G be a finite group. For any g E G, recall that C := {ga I a E G} is the

80

conjugacy class of g. Let G be the set of distinct conjugacy classes of G.

Let C = {gi, g2,. .. } and D = {hi, h2 ,... } be two conjugacy classes. Then,

for any product, gihj, its conjugate (gihj)a = gghq is a product of conjugates, so

it can be written as gkhe for some k and f. Furthermore, if there are M distinct

products gi h,... ,giMhj, producing some element x, then the distinct products

gh hg,..., g, hq all produce xa. Thus, for each conjugacy class E arising in the

product of elements of C and D, we get a well defined number of "how many times"

that class arises, which we denote MCD. Thus, we have something resembling a

hypergroup product.2

To get a probability distribution, though, we must make a minor change. For

each C E ?, define cg to be (1/IC9|) C and take {cg Cg E ?} to be a new set of

elements. The structure constants become mCD MgDIEI/jCI jDj. Since the total

number of products of elements formed multiplying C by D is CI ID1, we can see that

ZEEEMqD I Ej = lCllDj, which means that these new structure constants, m,D,

define a probability distribution (indexed by E).

The identity element for this product is ce = {e}. Furthermore, we can see that

Ce arises in a product CgCh iff Ch contains g-1 , which occurs iff Ch = C-1. Thus,

for each cg, we have an anti-element T := cg-1. Hence, the set of conjugacy classes

defines a hypergroup with the cg's as elements.

A quick calculation shows that the weight of cg is wg = 1C| for each Cg E .

Finally, we note that this hypergroup is abelian, even if the underlying group is not

abelian. To see this, we calculate gh = hh-'gh = hgh = (hg)h (since hh = h), which

shows that gh and hg are in the same conjugacy class. Hence, if we are multiplying

conjugacy classes instead of elements, we do not distinguish between gh and hg, so

we get an abelian structure.

5.1.2 The Hypergroup of Characters

Let p, o E G be two irreducible representations of G. Recall that the pointwise prod-

uct of their characters xmx, is the character of the representation y 9 o. This repre-

2 Another way to think of this is to define C to be the sum gi + g2 + ... in the group ring ZG.

81

1

sentation is often not irreducible; however, it is equal to a direct sum of irreducible

representations. Thus, we have xIx, = EG , where is the number of

copies of r appearing in y 0 a, giving us something resembling a hypergroup product.

As above, we can scale these elements to get a probability distribution on out-

comes. Let us define X, = (1/d,)x, and take {X, p E G} as the new set of elements.

The structure constants become n', := N,[,dr/d,d,. Since the dimension of y 0 O

is dd,, we must have EIE, N,7,,d = dd,. This implies that these new structure

constants, n,, form a probability distribution (indexed by r).

The identity element of this product is Xtriv since Xtriv 1.

To find the anti-element, first recall that the coefficient N,7, is explicitly given by

(XiX, I X,), where (-.-) denotes the usual inner product on characters. From this, we

can see that NA" = (xpxa I xtriv) = (Xp I yXtriv) = (X I yo). Since X, and Y are

both irreducible, this is 1 if x, = - and 0 otherwise, which shows that Xtriv arises in

the product xgxji but not in any other product XjX,. Hence, we can see X, := Xc is

the anti-element of X,.

All together, this shows that the set of irreducible representations defines a hy-

pergroup with the X, 's as its elements.

A quick calculation shows that the weight of X, is wx, = d2.

Finally, we note that, in this case, our product is manifestly abelian since xjx,

denotes the pointwise product of these functions and each value lies in C, which is an

abelian group.

5.1.3 Dual Hypergroups

For any abelian hypergroup T, it is possible to define a dual hypergroup, T*, the

elements of which are the characters of T. These are the functions X : T -+ C with

the property that, once extended linearly to all of A(T), satisfy X(ab) = X(a)X(b)

for every a, b E .

This construction can be performed for an arbitrary abelian hypergroup (see [54,

3 Throughout this chapter, we will assume that all hypergroups are strong, which means that
the structure constants of the characters are nonnegative and, hence, form a hypergroup.

82

651 for details). In the case of the class hypergroup T, defined in the previous section,

it can be shown that the dual hypergroup is precisely G [541.

Since this construction can be performed for any abelian hypergroup, it can be

applied to T* to get T**. As is shown in [54, 65], this double dual is isomorphic to

T T**. This isomorphism can be constructing canonically by taking a E 7' to a

function %a defined by a(X) = X(a). In particular, this shows that both A(T) and

A(T*) are vector spaces of the same dimension and, hence, the hypergroups T, T*

have the same number of elements. In our case above, gives another proof that the

number of conjugacy classes is equal to the number of irreducible characters.

For any subset S C T, we define zs = EaES Wa to be the sum of the weights of

the elements in the subset. In particular, ruT is the total weight of all the elements

in the hypergroup.

For any hypergroup T, it is always the case that uur = zT. [65]. For our examples

above, this tells us that =y = wo. We can see that the former is EC gE Cg = IGI
and the latter is E,5 d', so this gives a proof of the familiar fact that Zj6E d2 = IGI.

As with groups, the characters of abelian hypergroups are orthogonal under a

natural inner product. For any X,, X, E T*, we define

(X, IX) := WX "WaX,(a)X,(a), (5.2)
aET

Then, it is possible to show that (X, I X,) = 61,v [65].

The fact that characters are orthogonal allows us to also define a quantum Fourier

transform (QFT) for any hypergroup T by

Fr a) := E X.(a)|X,).
X;ET* V

The character orthogonality relation, equation (5.2), implies that this is unitary.

(In addition to the QFT on T, it is possible to define hypergroup analogues of other

natural classes of gates defined over abelian groups. Furthermore, Van Den Nest's

vast generalization of the Gottesman-Knill Theorem to arbitrary abelian groups [19]

83

can also be extended to hypergroups. See [121 for details.)

5.1.4 Subhypergroups and Quotient Hypergroups

Analogous to a subgroup, a subhypergroup is a subset of the hypergroup that is

closed under taking products and anti-elements.

If K C T is a subhypergroup, then, for each a E T, we can define a coset a\/:

{x E T 1x E ab for some b E AF}. 4 It is possible to show that, for every a, b E T, the

cosets Wg and bW are either equal or disjoint [54]. This gives some hint that it should

be possible to define a product on hypergroup cosets like we can do on group cosets.

To do this, we identify aN with the element of A(T) given by EXW(wx/1WaV)x.

It is possible to show that the products of these elements in A(T) define a hypergroup

with structure constants

r~~fbN Z d (5.3)
dEcWV

for each a, b, c E T, and where the anti-element of aN is -AW [54]. This is called the

quotient hypergroup and denoted T/AT.

It is also possible to show that the weight of aN is wav = wag/g [54], a formula

that will be useful to us later on.

5.2 Reducing the HKP to the HSHP

Hallgren et al. showed that any normal subgroup N is the intersection of the kernels

of those irreducible representations whose kernels contain N [32]. This means that

the kernels of irreducible representations contain all information about the normal

subgroups of the group. Hence, it should not be surprising that we can find hidden

normal subgroups (the kernels of homomorphisms) using only information about the

hypergroup G, a fact that we will prove computationally in this section. As G is

an abelian hypergroup, this will demonstrate that we can find normal subgroups by

solving a related problem in the abelian algebraic structure G.

4Here and below, when we treat a probability distribution on elements as a set, we are referring
to the set of elements in the support of that probability distribution.

84

A natural problem on hypergroups is the hidden subhypergroup problem (HSHP),

first considered in [2]. In the HSHP, we are given, as an oracle, a hiding function

f : T -+ {0, 11* assigning labels to elements of the hypergroup that is promised to

hide some subhypergroup X c T, meaning that f(x') = f(x) iff nx' > 0 (i.e., xh

can produce x') for some h E K. The problem asks us to determine M via oracle

queries and quantum computation.

A subgroup is normal precisely when it is the union of a set of conjugacy classes

(whereas a non-normal subgroup is one that contains part of some conjugacy class

but not all of it), so a normal subgroup N < G consists of a set of conjugacy classes

of G, which we denote NG. Since normal subgroups are, in particular, subgroups,

we know that they contain the identity and inverses and are closed under products.

Thus, the set of conjugacy classes NG must contain ce, must contain c"-1 for every

n E N, and must be closed under products. In other words, the set NG also defines

a hypergroup, which is a subhypergroup of G. This means that a normal subgroup

N can be not only the solution to some HKP instance but also, in the form of NG,

the solution to some HSHP instance.

Below, we will formalize this argument into a reduction of the HKP to the HSHP.

In order to perform such a reduction, we must provide an oracle for the HSHP on the

hypergroup Z. Our construction requires us to assume that we can perform certain

computations with conjugacy classes, as laid out in the following definition.

Definition 5.1. Consider the following operations for working with conjugacy classes:

" Given a conjugacy class C, produce the size of this class, |Cl.

" Given an x E G, produce the pair (C, j), where x = xj in class C = {x1,... , xt}.

* Given a pair (C, j), produce the element xj from C.

If each of these operations can be performed efficiently, then we say that we can

compute efficiently with conjugacy classes of G.

We note that this assumption is trivial for abelian groups since each element is

in its own conjugacy class. For some common examples of non-abelian groups, such

85

as the dihedral and Heisenberg groups (and their higher nilpotent generalizations),

elements are normally encoded in this manner already, so no additional assumption

is actually required. For other common examples like the symmetric group, while

elements are not always encoded directly in this manner, it is not hard to show that

the above calculations can be performed efficiently. In general, while we must formally

make this assumption, we are not aware of any group for which these calculations

cannot be performed efficiently.

With this definition in hand, we can now state and prove our reduction.

Theorem 5.2 (HKP < HSHP). Let G be a group. Suppose that f : G -+ K is a

homomorphism into a group K. If we can compute efficiently with conjugacy classes

of G and K, then we can efficiently reduce this HKP to the HSHP on G.

Proof. Consider any element x E G. For any conjugate xg, for some g E G, we see

that f(xa) = f(a-1 xa) = f(a-1)f(x)f(a) since f is a homomorphism. Furthermore,

since a-'a = e, we see that f(a 1)f(a) = f(e) = e, which shows that f(a-1) = f(a)-.

Putting these together, we have f(X') = f(a)-lf(x)f(a) = f(x)f(a). This means that

the function f taking x to the conjugacy class label of f(x) is a well-defined class

function, 0 -+ K, whose kernel is the same as that of f (since x E Ce -> x = e).

Let N be the kernel of f. Using the facts that I is a class function, that f hides N,

and that N is normal, we can see that f(xn) = f((xn)a) = f(xana) = f(xa) = f(xan')

for any n, n' E N.5 This shows that f is constant on CN, for any C E C, which is a

coset of the subhypergroup NG. This shows that f is a hiding function for NG-

It remains only to show that we can compute f efficiently. Given a conjugacy

class C E 0, since we can efficiently compute with conjugacy classes of G, we can

translate the pair (C, 1) into an element x E C. Then, we invoke f to get an element

f (x) E K. Since we can efficiently compute with conjugacy classes of K, we can

translate f(x) into a conjugacy class D E K with f(x) E D. The value of f(C) is D,

and we have seen that this be computed efficiently.

While the HKP is perhaps the most natural setting for the problem of finding

5Note that f(xn) = f(x) implies that f(xn) = f(x) since I only makes more elements equal.

86

hidden normal subgroups, since the kernel of a homomorphism is always normal, it is

also possible to pose such problems as instances of the HSP if the hidden subgroup

N is promised to be normal. While these require a promise, they have the advantage

of being provably hard classically, whereas the HKP requires assumptions about the

hardness of certain cryptographic primitives. The next theorem gives a reduction

that applies in the HSP setting.

The theorem applies to the HSP with the assumption that the hiding function f is
a class function. This will occur iff G/N is abelian, where N is the hidden subgroup.

This problem is provably hard classically since it includes the abelian HSP, which is

known to be hard, as a special case.

Theorem 5.3 (class function HSP ; HSHP). Let G be a group. Suppose that we

are given a hiding function f : G -+ {0, 1}* that is also a class function. If we can

compute efficiently with conjugacy classes of G, then we can efficiently reduce this

HSP to the HSHP on the hypergroup ?.

Proof. As we saw in the previous proof, the assumptions about computing efficiently

with conjugacy classes of G imply that, given a conjugacy class C, we can efficiently

find an element x E C and apply f to get a label. Since f is a class function, the label

would be the same for any x' E C, so we have a well-defined function V -+ {0, 1}*.

The kernel of this map is the same as that of f, and, by the same argument as in the

previous proof, this is a hiding function for the subhypergroup NG, which we have

seen can be computed efficiently.

5.3 Abelian Hypergroup Duality

In the last section, we saw that the HKP, even for non-abelian groups, is reducible

to a problem on an abelian hypergroup. We will see in this section that, even though

hypergroup product operations are more complex, we gain much from the fact that

they are commutative. In particular, an abelian hypergroup and its dual hypergroup

of characters exhibit the same relationships that were used in solving the HSP for

abelian groups. Let us now describe these in more detail.

87

For any subhypergroup K C T, the annihilator is the subgroup of T* given by

K1 {= X,,, E T* I X,,(a) = 1 Va E KV}.

As with abelian groups, the annihilator K' is isomorphic to the hypergroup of char-

acters of T/.' More importantly, the hypergroup of characters of K is isomorphic

to T*/K . As with abelian groups, knowledge of K' is sufficient to identify K, as

we have (N')' = N. 7

Just as with abelian groups, the annihilator arises when we apply the Fourier

transform to a coset state. For hypergroups, the latter is a state of the form

aN) :=~ / eWaN IX),1 (5.4)
xeaW

for some a E T. It follows from 112, Theorem 4] that

-Fr Ia=) WX 2 (a)IXm). (5.5)

Note the sum is only over those X, E K'.

The aforementioned theorem from [12] applies to a hypergroup generalization

of so-called CSS stabilizer states. These are states that are uniquely described by

two mutually-commuting hypergroups of operators that act on the state in a simple

way. The theorem describes how the Fourier transform maps one CSS stabilizer state

to another. In this case, a coset state is uniquely described by its behavior under

the hypergroup of operators that perform multiplication by elements of K and the

hypergroup of operators that apply a fixed character function from K'. In particular,

it is stabilized by the former hypergroup. After the Fourier transform, we have a state

that stabilized by the Fourier transform of the former hypergroup operators, which are

operators that evaluate characters at elements of K. This means that the resulting

6The quotient can be defined in any hypergroup [54]. The elements of this hypergroup are the
distinct cosets of the form ag, for a E T.

7This is an important property of abelian groups that is maintained by abelian hypergroups but
not by non-abelian groups.

88

state is supported only on elements of K'.

5.4 Solving the HSHP: Easy Case

Given the relationships outlined in the previous section, the first approach that comes

to mind for solving the HSHP is to mirror the Fourier sampling technique that works

for abelian groups. Let us now describe that approach, which we call Hypergroup

Fourier Sampling (HFS), in detail.

We will work in a Hilbert space of the form Vr 9 W, where the elements ofT index

a basis for Vr and those of {0, 1}m (where our hiding function maps f : T -+ {0, 1})

index a basis for W. If we assume that we can implement the QFT Fr : VT -+ V*,

then it is reasonable to assume that we can also work with the Hilbert space V..

We perform the following steps.

1. Initialize the state to IXtriv) 9 10m).

2. Apply the inverse QFT to prepare a superposition over elements of T.

(.T'r I)IXtriv) &I0m Xtriv(a)Ia) O1?m)
aET

: S a ~I a) 0Om)
aET

3. Apply the oracle for f, giving us the state

Ea) 5 If(a)).
aET V

7 T

4. Measure the second Hilbert space.

This yields a coset state IaK), as in equation (5.4), where K C T is the

subhypergroup hidden by f. The probability of seeing the particular state

IaK) is equal to zWg/w- = wV.

5. Apply the QFT to the remaining state.

89

The result is the state in equation (5.5), supported only on characters of K'.

6. Measure the remaining state.

From equation (5.5), the probability of measuring X,, E K' is proportional to

Wx, IX,(a) 12 for a fixed choice of aN E T/. Combining with the distribution

on aN from step 4, we can see that the overall probability of measuring X, is

Pr[X, E K' = S "Ar WXWOAr IX,(a)12
aNiET/K T N

2Z.E'/rW WMg

= WX 2 Tt T (a)12, (5.6)

where we have used the fact that N' ' (T/K)* and wr = r..

This approach was first proposed by Amini et al. [2], though the analysis above

is from [12]. Below, we will see that, unlike what happens with groups, we cannot

always find K simply by intersecting the kernels of poly log 7 random samples of

X, E K' drawn from the above distribution. However, we will begin here with a

positive case.

Theorem 5.4. If there is an efficient quantum circuit implementing the QFT of T,

then the HSHP on T can be solved efficiently whenever the hidden subgroup K is such

that T/K is a group.

Proof. If T/K is a group, then wOg = 1 since all weights in a group are 1. The same

is true of wx, since (T/K)* is then also a group. Thus, by equation (5.6), we get a

uniform distribution over K', just as occurs in the HSP for abelian groups.

Hence, the standard results on the abelian HSP (discussed in section 3.3.1) tell us

not only that O(log IT/NI) = O(log TI) samples are sufficient to uniquely determine

K (as the intersection of the kernels of the measured characters) but also that this

intersection can be computed efficiently.

Specifically, the kernel of every measured character must include the core of T

[541, which is the (unique) smallest subhypergroup IC C T such that T/KC is a group:

90

since T/K is a group, by assumption, we must have KC C K (since IC is the smallest

subhypergroup for which this holds), which means K' C k-L. Hence, we may use the

abelian group techniques to find K/k inside of the group T/C. Adjoining generators

of K to (the inverse images of) those of K/C gives a generating set for K. E

Putting this together with our reduction from Theorem 5.3 gives an alternative

proof that we can efficiently solve the HSP when the hiding function is a class function.

Corollary 5.5. (class function HSP is easy) Let G be a group. Suppose that we are

given a hiding function f : G -+ {0, 1}* that is also a class function. If there is

efficient quantum circuit implementing the QFT of G and we can compute efficiently

with conjugacy classes of G, then there is an efficient quantum circuit for the HSP.

Proof. This follows immediately from Theorems 5.3 and 5.4 provided that we have

an efficient quantum circuit implementing the QFT for C. The latter exists, since we

have an efficient quantum circuit for the QFT of G, by the following lemma. E

Lemma 5.6. If there is an efficient QFT for a group G, then, with the appropriate

choice of basis for 0 and G, there is an efficient QFT for the hypergroup C (and G).

Proof. Let us identify the state ICx) with the superposition ICxI1/2 Zec2|g). The

Fourier transform of such a state is

FG ICx) G 9)

=_ 1 (1 d E [p| c~ icZdplp 0 Ip
dpEG L,j=1

___ I[Z g, ec, x p
1 dp~p) ®9 d EEp(g)]i'j i)

CG pEG i,j=1 ii

Now, by the Orbit-Stabilizer Theorem [24], the sum EgEC, p(g) can be written

as (ICx/IGI) EhEG p(gh). By Corollary A.4, the latter sum is (ICxI tr p(g)/dp) I =

91

(jC2|x,(g)/dp) I. Thus, we can see that

YG~ ~ 1 dx E pp)(ICAIx(g))
FGcx CX) C =1j-- Z,,FZP) i=1 dp Vd Ii-

- C I :;i dp 1
pG G ip

GI d p)O)

which can be written in hypergroup notation as

YG I C) wcxw xP x)(I d)

This matches the definition of YF? if we identify IXp) with d; E/2

Thus, we can see that, if we identify lc,) with IC,'-1/ 2 ZgECx Ig) and IXp) with

d,-1/2 ElI p, i, i), the Fourier transform of G implements that of G. l

It is worth noting that, if we identify the states Icx) and IXp) as in the previous

lemma, then the intermediate states of the algorithm considered above for the HSHP

are actually identical to those of the algorithm of Hallgren et al. for the HSP when

the hidden subgroup is normal.

We should also verify that we can efficiently prepare and measure in these bases.

This is possible for the IXp)'s under standard assumptions. (See [12] for details.)

Although not needed for the above algorithm, this is also possible for the Icx)'s under

the assumption that we can compute efficiently with conjugacy classes. (Indeed, the

assumption that we can compute efficiently with conjugacy classes largely amounts

to assuming that we can efficiently perform the same operations in the hypergroup of

conjugacy classes that are typically assumed for the dual hypergroup of characters.)

5.5 Solving the HSHP: General Case

Let us now demonstrate that the above approach does not work for all hypergroups.

Indeed, it does not even work for all hypergroups arising from groups.

92

Example 5.7. Our example will be the hypergroup of conjugacy classes of the Heisen-

berg group defined in section 2.1.4. This group is 2-nilpotent. Its center consists of

elements of the form (0, y, 0) for any y E Z,. For any (x, z) $ (0, 0), the conjugacy

class of (x, y, z) is C(x,y,z) = (x, 0, z)Z(G), which contains p elements. Each element

of the center must be in its own conjugacy class.

Now, suppose that the hidden subhypergroup is {ce}, and let us compute the prob-

ability of measuring X,,, where xa,, : G -+ C is a 1-dimensional representation of

G of the form xa,y(x, y, z) = wpx+,Z. By equation (5.6), since IXx,(a) = 1, we can

see that the probability of measuring Xx, is just >jGy wc/|vl-= (12. C|)/|G|2

Since there are p 2 - 1 classes of size p and p class of size 1, we can see that the above

sum is ((p 2 _ 1) .p 2 + p . 1 2) /p6 = 1/p 2 _ (1 /p4).

All together, there are p2 1-dimensional representations of the form x,,, so the

probability of measuring any 1-dimensional representation is p2 (1/p2 _ O(1/p4)) =

1 - O(1/p 2). Now, since IGI is exponentially large, p must be exponentially large,

which means that we will only ever measure such representations. However, every

such representation contains Z(G) in its kernel, so this shows that the intersection of

the kernels of poly log IGI samples will still contain Z(G) with high probability, which

is strictly larger than the hidden subgroup {ce}.

While this rules out the idea of simply intersecting the kernels of the characters

that we measure, it seems possible that an algorithm similar to those we considered

in an earlier section may work here. We will see below that this is indeed the case.

The key to proving this is the following lemma.

The lemma applies to a class of hypergroups that includes the conjugacy class

hypergroup of any group. We will say that a hypergroup T is strongly integral if

the weight wa, for any a E T, is not only an integer but also divides WT.

Lemma 5.8. Let K C T be the hidden subgroup. If T/M is strongly integral, then

the probability of measuring Xtiv in HFS is at most 1/2.

Proof. Using the facts that WXtriv = 1 and Xtriv = 1, we can see by equation (5.6)

that the probability of measuring Xtriv is equal to EZ eT/, W2 /Z72/w 1 . Defining

93

T':= T/, we can rewrite this as EaET, wa/ T,.

Let sa : Wa/WT,. By assumption, wa divides WT', SO Sa 1/2. We also know that

ZaET, sa = 1 by the definition of wT,. Hence, we can upper bound this probability

by the maximum value of si subject to the constraints E i = 1 and s 1/2

for all i E { 1, ... n}, where each si is now an arbitrary nonnegative real. We can see

that the latter is at most E si = Z" sij = } " si =

Thus, the probability of measuring Xtiv is bounded by 1/2. 0

With that in hand, we can now prove the following result, which applies, in par-

ticular, whenever T is the conjugacy class hypergroup of a group.

Theorem 5.9. Let T be a hypergroup such that the weights of both T and T* are

integral. If, for any subhypergroup AC C T containing the hidden subgroup K, there is

an efficient quantum circuit implementing the QFT of C and the quotient hypergroup

AC/K is strongly integral, then there is an efficient quantum circuit solving the HSHP.

Proof. By the previous lemma, if K = T, then we measure Xtriv with probability at

most 1/2. Hence, after O(log TI) samples, we will draw some X2 with p # triv with

high probability. We can then recurse on the subhypergroup AC = Ker Xp since the

hiding function for T becomes a hiding function for AC by restriction and since, by

assumption, there is an efficient QFT for C as well.

By Lagrange's Theorem for hypergroups [64], the weight of K divides T, so, each

time we recurse on a subhypergroup, it is smaller in weight by at least a factor of

1/2. Thus, it takes at most log ITI iterations to reach AC = K.

At that point, the above algorithm will only measure Xtriv. Hence, after O(log TI)

samples, all of which are Xtriv, we know with high probability that the current sub-

hypergroup AC is K.

Putting this together with our reduction from Theorem 5.2 gives an alternative

proof that we can efficiently solve the HKP.

Corollary 5.10 (HKP is easy). Let G be a group. Suppose that we are given a

homomorphism f : G -+ H hiding a subgroup N < G. If we can efficiently compute

94

the QFT of any subgroup K < G with N < K and compute efficiently with conjugacy

classes of G and K, then there is an efficient quantum circuit solving the HKP.

Proof. The restriction f K : K -* H is itself a group homomorphism (since f is), so

by our assumptions, Theorem 5.2, and Lemma 5.6, we can efficiently reduce to an

instance of the HSHP covered by Theorem 5.9 above.

As noted above, the assumptions about computing with conjugacy classes are

analogues for the conjugacy class hypergroup of facts that are frequently assumed

for the hypergroup of characters-plus, we are unaware of any group for which these

assumptions do not hold-so we do not see these assumptions as particularly onerous.

Recall that the algorithm of Hallgren et al., discussed in section 3.3.2, performs

weak Fourier sampling only in the group G. Then, to find Ker f, it computes the

intersection of the kernels of all characters that appeared as measurement outcomes.

In contrast, by recursing on smaller subgroups, our algorithm avoids having to com-

pute intersections of kernels, replacing this with the assumption that we can perform

QFTs over each of these subgroups.

In the next section, we will see that these assumptions can be even further reduced

for nilpotent groups.

5.6 Solving the HSHP: Ultragroups

The algorithm of the previous section has two limitations that may worry us. First,

it requires us to assume that we can implement the QFT for every subhypergroup

IC C T. That is not a real obstacle in principle (as we will see), but it could present

some practical difficulties. Second, the previous algorithm requires all of the quotient

hypergroups AZ/AC that arise in the algorithm to be strongly integral. The latter

holds for conjugacy class hypergroups, but, as far as we know, those might be the

only hypergroups for which it holds. For example, this assumption does not hold for

the hypergroup of characters of a group.

In this section, we will describe an algorithm that removes both of these limita-

tions. In particular, our algorithm will work for solving the HSHP on hypergroups

95

that are not conjugacy classes of groups. Hence, this algorithm can be used to solve

instances of the HSHP that do not arise from the HKP on groups. In order to do

this, however, we will need to make some other assumptions about the hypergroup,

which we will discuss later on.

First, let us show how we can remove the assumption that there is an efficient

circuit for the QFT of every subhypergroup IC C T.

Lemma 5.11. Let IC C T be a subhypergroup. If there is an efficient QFT for T,

then, with an appropriate choice of bases, there is an efficient QFT for KC.

Proof. As noted above, we always have K* ' T*/A L, so the cosets of AZ' are a

natural basis for the characters of)C. In detail, this basis is

XVIA'): /1IX,) = WXMVZ 7 XK)W10 FWX 11VJT~

XIX,,K-L zuv7X - X, X) VKj L L

where, in the second equality, we have used the definition wx~i : x,, /c- and

the relation above, which tells us that wr/wki = WK* = WK.

Now, since any X, E XvZ' has the same value on a E AZ, we can calculate

FT |a)

The last line is, by

characters of AZ.

= -awx" X (a)|jXv)
x2ET*

- X,)(a) Z Vi0-|X11)
XvhET*/KI Xsin EXC h

- wa L7X''(a XIVTXA'

TXPC-LET*//K

E z aWK (XvIA') (a) I XjA')

definition, the QFT for AZ since the elements of T*/AZ - are the

E

This QFT uses the usual basis vectors, 1a), for a E IC, but uses the superpositions

IXI') as the basis vectors for A*. By assumption, we can measure and prepare the

basis states for AZ, but the situation is less clear for KC*. We can measure a state XVAZ

96

I ~ ~ - -" 1, IMU 122M .",. 1, . . - .

just by measuring in the basis of T*: whichever IX,) is found lies in precisely one

coset XIC', which identifies an element of K*. On the other hand, it is not obvious

how we can prepare states of the form IXK+).

In order to accomplish this, we will make an assumption about the hypergroup

T, namely, that it is an ultragroup. This means that there exists a tower of subhy-

pergroups {ao} = To C ... c Tk = T, where each factor ''+1/7i is a group. For the

hypergroup of conjugacy class of G, this holds iff G is nilpotent [541.8

Ultragroups are especially useful for quantum computation because many of the

hypergroup product operations become unitary. In general, the fact that the product

is a probability distribution over elements tells us that the product operation preserves

the e-norm instead of the 2-norm. However, in an ultragroup, since multiplication

by any a E T1 is a permutation, the hypergroup product operation, which we denote

X(a) : CT -+ CT, is a permutation and, hence, unitary. Furthermore, for any

a E 7+1, the product operations X(aR) in the quotient hypergroup T/77 are likewise

a permutation, so, if we identify cosets with superpositions IbR), then the product

operation X(a) is a permutation on such coset states.

We will say that an ultragroup T has computable scalars if it meets the following

criteria for every subhypergroup tower KC C S C T:

1. We can efficiently find generators for the scalars of S/AZ, that is, find elements

a,, ... , at E S such that a, , af1C generate the scalars of S/C.

2. We can efficiently implement the group operations X(a)IbC) = Iabc) for every

a such that aKC is a scalar in S/IC. '

For the hypergroup of conjugacy classes of a nilpotent group, both conditions

hold. The first holds by corollary 3.2 assuming that we can compute efficiently with

conjugacy classes.10 For the second, we can implement the described operation just by

multiplying by an arbitrary element from the conjugacy class (all behave identically
8It is interesting to note that nilpotency translates naturally into hypergroups but neither solv-

ability nor super-solvability do the same.
9Here, it is assumed that a is an arbitrary element given by its label. Thus, we would be able to

implement the conditional multiplication Ia) & IbC) -+ Ia) 9 X(a)b) a, abk).
10We need the latter condition to turn elements in G into classes in G.

97

on such cosets), which we can, again, implement provided that we can compute

efficiently with conjugacy classes.

The next lemma tells us that, if T is an ultragroup with computable scalars, then

we can efficiently prepare superpositions over subhypergroups. Although we will not

need it for the algorithm below, this also answers the question about how to prepare

states of the form IXK'), at least whenever X, acts as a group on T*/KL, provided

that T* has computable scalars.

For the lemma, we need one more definition. We will say that a generating

set gi, . . . , ge for a subhypergroup IC C T of an ultragroup is nice if, for each i E

{ 1, ... , k}, a prefix of the list of generators, g1,..., gii for some ji, generates K n 'i.

Such a generating set always exist for an ultragroup.

Lemma 5.12. Let T be an ultragroup with an efficient product. If AC C T is a

subhypergroup given by a nice generating set, then we can efficiently prepare |).

Proof. The algorithm of Watrous [62, section 3.2] accomplishes this task if we replace

its group multiplication Mgi operation by the operation X(g'), which can be per-

formed efficiently by assumption. (Note that, even though we have subhypergroups

instead of subgroups, all of the operations used to construct these states for groups

can be performed in our context as well, by our assumptions, so the same algorithm

works here as well.)

In the previous chapter, we saw that a well-organized set of abelian substructures

allows us to perform certain computations more efficiently in groups. This lemma

gives an example where the same is true in hypergroups.

With these pieces, we can how show how to solve the HSHP for ultragroups.

Theorem 5.13. Let 7' be an ultra-group with computable scalars. If we can efficiently

produce nice generating sets for the kernels of elements in T* and there is an efficient

quantum circuit implementing the QFT of T, then there is an efficient quantum circuit

solving the HSHP.

"We will assume that ji is known for each i as well.

98

Proof. We apply the same approach as in the previous two sections, finding a de-

scending sequence of subhypergroups T = K(0) D K D : ... D K except that, rather

than recursing on each subhypergroup, we apply Lemma 5.11 to compute the QFT

for each IC within the Hilbert space CT.

We can apply each of the steps 1-6 as before except for steps 1-2, which prepare

the state IC). Instead, we prepare this state directly. Since T has computable scalars,

then we can prepare this state directly by Lemma 5.12 provided that our generating

set for K is nice. The latter holds for K0) = T by assumption since this is the kernel

of the trivial character. We will see below that this property can be maintained

inductively.

Next, we must show that, for each 0), we have good probability of measuring

a non-trivial character, which will give us a smaller subhypergroup (assuming one

exists) for the next iteration. By (5.6) with T = 10), we can see that the probability

of measuring X, E KC()* is now

2

Pr[X, E A('] = wx, 2 a"r IX1.1(a)12.

aifeKM/IA)(') /N

We can see that this probability is the same for every X, such that wx, = 1 since

every such character has IX,(a) 2 = 1 for every a E TIK [54]. In fact, this must hold

for every X, E (K()I_) 1 , where k is the length of the ultra-series for K(0/, as all

such characters are scalars. Hence, we conclude that the probability of measuring the

trivial character is at most 1/2 unless K0) = K since K(')/K is also an ultragroup. 12

If we measure a nontrivial character X,, then we take K(i+l) - (n Ker X,. By

induction, we have a nice generating set for K0), and, by assumption, we can produce

a nice generating set for Ker X,. Thus, we can get a nice generating set for K(+' by

the following lemma.

12As we might expect from groups, both subhypergroups and quotients of ultragroups are them-
selves ultragroups. If K < T is a subhypergroup, then it is not hard to check that K n T 5 ...

nTk = K is an ultraseries for K and AfT1 < ... < K is an ultraseries for T/K once we quotient
by K. For the latter, note that, if n E AV and t E R+j, then (nt)(iH) = nntt c K7. For every
x E nt, the product x-x appears in (nt)(Wt) with some positive probability, so this calculation shows
that xT C K7. Hence, we can see that, once we quotient by K7W, every element has an inverse, so
KWi+ 1 /K7T is a group.

99

Lemma 5.14. Let T be an ultragroup with computable scalars. If A, B C T be

subhypergroups given by nice generating sets, then we can efficiently produce a nice

generating set for A n B.

Proof. We will compute generators of (A n B) nf starting from i = 1 and working

our way up to i = k.

In the case i = 1, have generators for A = A n T7 and B = B n T, directly from

their nice generating sets. These lie within the abelian group 71, so this is really an

instance of abelian group intersection. The latter problem can be solved by noting

that A n B = (AL U B')': we can compute the annihilator H' efficiently in any

abelian group [46] and the union simply requires concatenating the lists of generators.

For i > 1, we have, inductively, a nice generating set for C A n B n 7_-.1. Since

T has computable scalars, we can find a nice generating set for the scalars of T/C,
which we denote T'. Since C is a subgroup of A and B as well, we can also find

nice generating sets for the scalars of A' of A/C and B' of B/C, both of which are

subgroups of the abelian group T'. Hence, by the same argument as in the case i = 1,

we can compute a generating set for A' n B' in T'. 1 3

Now, if xC is a scalar of T/C, then we must have xT C C.14 In particular, this

means that xT C 7_1, so we must have x E 77.15 Thus, we can conclude that

A'nB' c (AnBn7)/C. However, if x E AnBn77, then we have xT c AnB and

xT C 7'_, which means that xT C C. Thus, A' n B' is precisely (A n B n 77)/C.

Our generating set for A' n B' is a set of elements gi,... , gt E '77 such that

g.C,. . . , geC generate (A n B n '77)/C. Since C = A n B n Ti_1, adding our gener-

ators for C itself gives us a generating set for A n B n 77. Furthermore, we can

preserve that this is a nice generating set by adding the new elements gj, ... , gj after

the generators for C. E

Combining the theorem with the facts mentioned above about conjugacy class

hypergroups gives us the following corollary.

13Note that, even though T' may not be a well-known group like 71 in the i = 1 case, we can
always use abelian decomposition to write it as a product of cyclic groups.

4 An element x is a scalar precisely when x- is the identity. See [54] for a proof.
15This is the definition of 7i.

100

Corollary 5.15. Let G be a nilpotent group. If we can compute efficiently with

conjugacy classes of G and efficiently compute the QFT of C, then there is an efficient

quantum circuit solving the HSHP on C.

It is interesting to contrast this result with Theorem 5.9, which also covers these

hypergroups, at least in principle. In that algorithm, when we identified a smaller

subgroup K < G containing the hidden subgroup, we recursed on KG.

While that approach is workable in principle, it requires us to assume that we

can implement QFTs for each of these subhypergroups (corresponding to normal

subgroups of G), of which there could be exponentially many. The above corollary,

in contrast, only requires that have a QFT for C, making it probably more practical.

Finally, we note that our last theorem also gives us an algorithm solving the HSHP

on the character hypergroup of a nilpotent group. Theorem 5.9 does not apply to

these hypergroups as they are typically not strongly integral.

Corollary 5.16. Let G be a nilpotent group such that G has computable scalars. If,

for every X, C G, we can efficiently produce a nice generating set for (X2,)I, and

there is an efficient QFT for 0, then there is an efficient quantum circuit solving the

HSHP on C.

Proof. The conditions in the statement of the corollary cover all of the conditions of

Theorem 5.13 except that we have not stated that C is an ultragroup. However, this

follows from the general fact that T* is an ultragroup whenever T is.

To see this, note that 7Ti' C ... C ' C 70 ' = T* is a tower of subhypergroups

in 7*. To see that each factor is a group, we can calculate that

!- (T/ T)*/((T/)/ 14)

(7 (/)*/(Ti1/Ti)'

w (+1/s)*

where we have used standard facts about Af' mentioned earlier and (in the second

101

line) a standard isomorphism theorem about groups [43]. Since we know that 7+i/77

is a group by assumption, we know that (R+1/R)* is a group, which shows that this

is an ultraseries for T*, proving that it is an ultragroup. l

This last corollary shows, under plausible assumptions, that we can efficiently solve

the HSHP for hypergroup of characters of a nilpotent group. This is an instance of the

HSHP that does not arise from the HKP, providing good evidence that the solvable

instances of the HSHP includes problems that are not simply HKPs in disguise.

5.7 Conclusion

In this chapter, we have seen a second way in which the ability of quantum computers

to understand abelian structures can be leveraged to solve problems on non-abelian

ones. Specifically, we saw that we can solve the HKP on a non-abelian group G

by translating G into the abelian hypergroup ? and solving a related instance of

the HSHP on 0. While it was previously known that the HKP could be solved

efficiently (due to the normality of the hidden subgroup), this gives us an alternative

explanation for why the HKP is easy that generalizes beyond groups: it is the fact

that the hypergroup is abelian that gives us a precise duality between 0 and G and

allows us to solve this problem efficiently.

In the previous section, we also saw a second instance where having a nicely

structured set of abelian substructures allows problems to be solved efficiently. In the

previous chapter, we saw how the abelian factor groups of a nilpotent group allow

us to solve the HSP more efficiently. Here, we saw how the abelian factor groups of

an ultragroup allow us to solve the HSHP more efficiently. This last algorithm also

demonstrated that the HSHP can be solved on instances other than those arising

from the HKP.

In the next chapter, we will see a third way in which the ability of quantum

computers to understand abelian structures can be leveraged to solve problems on

non-abelian ones.

102

Chapter 6

Applications of Cohomology

In this chapter, we look at our final way of leveraging the ability of quantum com-

puters to solve problems on abelian algebraic structures in order to solve problems

on non-abelian ones and, as we will see, even some problems not defined on algebraic

structures. This approach, which is, in some ways, the most mathematically sophis-

ticated of those we have seen, uses a technique from homological algebra known as

cohomology. We will define this in some generality later in the chapter.

Cohomology can be applied to a wide variety of problems. It is used in algebra to

study groups, rings, modules, and more [47]. It is used in topology to find invariants

of general topological spaces [34] and of specific subtypes such as smooth manifolds

[14]. Cohomology has other applications to quantum computing (e.g., [1]), which we

will discuss in more detail at the end.

We will see examples from both algebra and topology in this chapter. We start

small, with a concrete example, motivated by a practical problem, and develop just

enough tools to solve it. Later in the chapter, we will consider cohomology in a

broader setting.

In section 6.1, we give efficient quantum algorithms for testing equivalence of

group extensions of A by K, when A is given as a black-box group and K is either

given as a multiplication table (Theorem 6.1) or is given as a black-box group and is

abelian (Theorem 6.6). We also show that both problems are classically hard under

standard cryptographic assumptions (Theorem 6.7).

103

In section 6.1.4, we consider the problem of computing the sizes of the component

parts of the cohomology group for extensions of A by K. This is of interest because

we can reduce the problem of counting the number of inequivalent group extensions

of A by K to this problem. We give an efficient quantum algorithm for the case when

A is given as a black box and K is given as a multiplication table (Theorem 6.8). We

then show that the same problem is classically hard under standard cryptographic

assumptions (Theorem 6.9).

Finally, in section 6.2, we consider the problem of computing the sizes of the

component parts of the cohomology group for A-complexes with coefficients in an

abelian group A. Our A-complexes are a generalization of simplicial complexes, which

are commonly used as triangulations of certain topological spaces. The problem we

consider is of interest because we can classically reduce the problem of computing the

size of the cohomology groups of simplicial complexes to this problem and the latter

is a topological invariant that allows us to distinguish non-homeomorphic spaces from

one another whenever the sizes of the corresponding groups are different. We give

an efficient quantum algorithm for the case when A is given as a black box and A is

given explicitly (Theorem 6.15). We then show that the same problem is classically

hard under standard cryptographic assumptions (Theorem 6.16).

We conclude in section 6.3.

6.1 Group Cohomology

In this section, our motivation comes from the problem of testing equivalence of group

extensions. That is, given two groups G1 and G2, both of which are extensions of

A by K, we want to know if there is an isomorphism 7: G, -+ G2 fixing A and K.

Recall that being an extension of A by K means that A < Gi is an abelian normal

subgroup and that taking the quotient by A leaves us with K, i.e., Ge/A r K. We

say that 7 fixes A and K if 7 is the identity on A and on cosets of A (the latter

being isomorphic to elements of K). In other words, two extensions are equivalent of

A by K if there is an isomorphism between them that respects the structure of such

104

extensions, their relationship to the groups A and K.

6.1.1 General Approach

As described in appendix B, the equivalence classes of extensions are characterized

by elements of the second cohomology group. We will start, here, by briefly reviewing

these concepts. For simplicity of presentation, we will focus on the case of central

extensions. However, all of the algorithms considered in this section extend to the

more general case (see [66 for details).

The most important object for us is Z2 (K, A), the group of cocycles.1 This

consists of all functions f : K x K -+ A that are normalized and satisfy the cocycle

condition. The former means that we have f(x, e) = e and f(e, x) = e for all x C K.

The latter means, for central extensions, that we have f(x, y) + f(xy, z) = f(x, yz) +

f(y, z) for all x, y, z E K.

One fact that will be important to us later on is that Z2 (K, A) is an abelian

group with the group operation being pointwise addition of functions. We can see

immediately that this operation is abelian since the function values lie in A, which

is an abelian group. Hence, it remains only to show that this really is a group. The

function that is uniformly identity is identity under pointwise addition, and it is not

hard to check that this function is indeed a cocycle. Likewise, for any f E Z2 (K, A),

the function -f is the inverse under pointwise addition, and it is not hard to check

that this is a also cocycle. Finally, for two functions f, g E Z2 (K, A), it follows

immediately that f+g is normalized, and we can see that (f+g)(x, y)+(f+g) (xy, z) =

f(x, y) + f(xy, z) + g(x, y) + g(xy, z) = f(x, yz) + f(y, z) + g(x, yz) + g(y, z) =
(f + g)(x, yz) + (f + g)(y, z), which shows that f + g is a cocyle.

The next object we need is B2 (K, A), the group of coboundaries. The elements

in this group are constructed as follows. Starting with any function h : K -+ A

that is normalized so that h(e) = e, we define Oh : K x K -+ A by (ah)(x, y) =

h(x) + h(y) - h(xy) for all x, y E K. We define B2 (K, A) to be the set of all functions

'We will leave off the " p" subscript that appears in the definitions in appendix B since this
function is uniformly identity for central extensions.

105

cocycles Z2 (K, A) = {f If : K x K -+ A normalized, cocycle condition}

coboundaries B2 (K, A) = {Oh Ih : K -+ A normalized} C Z 2(K, A)
cohomology H 2(K, A) = Z2 (K, A)/B 2(K, A)

Figure 6-1: The main objects in group cohomology.

ah formed in this manner. It is not hard to check (see appendix B) that 0h is actually

a cocycle, so we have B2 (K, A) C Z 2 (K, A).

Finally, the second cohomology group is H2 (K, A) := Z 2 (K, A)/B 2 (K, A), the

quotient of the two groups above. These definitions are summarized in Figure 6-1.

We can map an extension G to an element of H2 (K, A) as follows. For each element

x E K, we choose a representative f(x) of the corresponding coset in G. (That is, we

have 7r(f(x)) = x for each x E K, where 7r : G -+ K is the usual projection, taking

the quotient by A.) These choices can be made arbitrarily except that we require

f(e) = e. Then we define fG : K x K -+ A by fG(x, y) = f(x)f(y)f(xy)- 1 for each

x, y E K. It is not hard to check (see appendix B) that fG E Z 2(K, A).

As we can see, this map depends on our choice of representatives in f(x). However,

a different choice of representatives will give rise to a function fG that differs from fG

by some coboundary. In other words, we always have fG + B 2 (K, A) = fG + B2 (K, A).

Hence, the map taking G to fG + B2 (K, A) E H2 (K, A) is well-defined. Furthermore,

Theorem B.1 shows that, for extensions G, and G2 of A by K, the elements fG1 +

B2 (K, A) and fG2 + B2(K, A) are the same iff G1 and G2 are equivalent.

We can equivalently describe this by saying that the extensions are equivalent

iff fG1 - fG2 E B 2 (K, A). Hence, we can solve the equivalence testing problem by

reducing it, in this manner, to a membership testing problem: the extensions are

equivalent iff the element fG1 - fc 2 E Z2 (K, A) is inside the subgroup B2(K, A).

As shown by the author in [66], the above approach can be implemented classi-

cally in time O(IK6 JAJ3) if all the groups involved are given as input in the form of

multiplication tables. The multiplication table for a group G has size O(G[2), so the

above algorithm is efficient in terms of the size of its input. However, multiplication

tables can only be written down for fairly small groups.

106

In the next section, we will consider the equivalence testing problem when some

of the inputs are black-box groups. The classical algorithm above is no longer ef-

ficient in this setting because the input can now have size O(log G), which makes

O(JG1 2) exponentially large in the size of the input. Nonetheless, we will see that

there are efficient quantum algorithms. This should not surprise us since the groups

Z2 (K, A) and B2 (K, A) are abelian, and, as we know, quantum algorithms can solve

many problems on abelian groups exponentially faster than is possible with classical

algorithms.

6.1.2 Quantum Algorithms for Equivalence Testing

We start with a quantum algorithm for the simpler case when K is still given by a

multiplication table, while A, G 1, and G2 are all given as black boxes. This means

that the algorithm is allowed to run in time polynomial in IKI and still be efficient.

Hence, this algorithm is useful mainly in cases when IKI is small (e.g., O(log Al)).

Despite that limitation, this is still a potentially difficult problem. The exam-

ple of solving the HSP for abelian groups versus the dihedral group (an extension

of Z by Z2) shows that allowing extension by even a group of size 0(1) can make

computational problems substantially more difficult: the former has efficient quan-

tum algorithms, while only subexponential time algorithms are known for the latter

[42]. Indeed, we will see below that equivalence testing is already classically hard,

under reasonable assumptions, when IKI = 0(1), yet it can be solved efficiently by a

quantum algorithm.

Theorem 6.1. There exists an efficient quantum algorithm for testing the equivalence

of G1 and G2 , two central extensions of A by K, when G1, G2, and A are given as

black-box groups, the homomorphisms iri : Gi -+ K are given as oracles, and the group

K is given by a multiplication table (so efficient means poly(jK|, log Al) time).

Proof. As described above, we will solve the problem by reduction to membership

testing in a black-box abelian group. We will work with subgroups of the space of all

functions K x K -÷ A.

107

We first must show that we can efficiently implement these as a black-box group.

We represent elements as vectors of jK 2 elements of A. We can efficiently add such

vectors and compute inverses pointwise since we are allowed running time polynomial

in IKI: both operations amount to just IK 2 calls to the oracles for the black-box

group A. The identity in this group is simply 1K 2 copies of the identity of A, so we

can test for the identity as well using IK 2 calls to the oracles for A.

To test membership in B 2(K, A), we must provide a generating set for this group.

To do this, we can start with any generating set for the space of all normalized

functions K -+ A and then apply the map h -+ Oh. To see this, note that, if

si,... I st is a set of generators for the functions K -+ A, then any h : K -+ A can be

written as ais1 + - + atst for some integers ai E Z. A short calculation shows that

the map f '-* Of is actually a homomorphism, so we have Oh = a1 s, + - + atast,

which shows that Os,, ... , st is a generating set for B2 (K, A).

To make a generating set for the space of normalized functions K -+ A, we use

IKI - 1 copies of the set of generators for A, where the i-th copy has the generator

a3 E A in the (i + 1)-st element of the vector2 and the identity elsewhere. This requires

IKj times more generators than for JAl, which is only a polynomial increase.

Next, we must show how to generate the element fG1 - fG2 . As we saw above,

we can compute this pointwise difference efficiently, but first we need to generate the

elements fG, and fG2 . We can do this efficiently applying the definition fGi (x, y) =

&(x)&(y)fi(xy)- pointwise once we have chosen the fi(x)'s for each x EK.

To do the latter, we can simply select an element g E Gi at random and apply

the oracle 7ri(g) to get a representative g for 7ri(g) E K. We repeat this until we have

a representative for each k E K \ {e}.3 Now, for a black-box group like Gi, it is not

known how to choose elements uniformly at random; however, using random sub-

products [3] allows us to select elements such that each has probability (1 t e)/ Gil

in time polynomial in log IGiJ and log(1/f). Taking E to be, say, 0.1, we will get

representatives for each k E K after O(K I log IKI) trials with high probability by a

2This assumes the first element corresponds to e E K. That element is always e E A in a
normalized function.

3Recall that we always choose fG, (e) = e.

108

standard balls-and-bins argument [21].

Finally, it remains to perform the membership test, which reduces to computing

the size of an abelian group: we have fG1 - fG 2 E B2(K, A) iff the size of the subgroup

B2(K, A) is the same as the size of the group with fG1 - fG 2 added as an additional

generator. We saw above that we can produce all of the required generators, so

it follows from Theorem 3.4 that we can efficiently compute the sizes of these two

subgroups and compare them.

We can see that the above approach depends in a fundamental way on the fact

that I KI is small since each group element, in our representation, has size proportional

to IKI. To get an algorithm when K is a black-box group, we will need to assume

additional structure that allows us to represent these functions more compactly.

For the algorithm below, we will allow K to be given as a black-box, but we make

the assumption that K is an abelian group. As we saw in chapter 3, we can then

efficiently decompose K a Z, x ... x Z,-m, where each ri is a prime power. Since we

can efficiently translate between the original generators and the those of the product

decomposition, we will simplify our presentation by assuming that K is simply given

in this form.

To see why this helps, consider the problem of choosing representatives f : K -+ G.

Since K is now exponentially large, we cannot write down a choice for every x E K.

Instead, since K = Z, x ... x Zrm, suppose that we merely write down e(ei) for

i E {1, ... ,m}, where ej = (0,...,0,1,0,...,0) has a 1 in the i-th position only.

Since m = O(log IKI), these choices can be recorded in polynomial space, and, as we

will see, they give us enough information to make a choice for every x E K.

Let x E K, and write it as x = (x1,... , Xm) = x 1e1 + - + xmem for some xi's.

We will say that f is in factored form if we have

f(x) = f(ei)X1 ... f(em)xm (6.1)

for every x E K. When this holds, we have f(x)A = xif(ei)A + - + xme(em)A =

(X, Xm)A, which means that 7re(x) = x for all x E K, showing that these are valid

109

choices for representatives.

By choosing our representatives i : K -+ G in factored form, we can efficiently

record f and compute its values. As we saw, we only need to record f(ei), ... , ,e),

which requires only poly log IKI space. As we can see from equation (6.1), we can

then efficiently compute f(x) for any x E K.

We can use this approach to efficiently represent fG1 and fG2 , which is part of

what we need to determine whether fG1 - fG2 E B2 (K, A). Unfortunately, the latter

group is still too large to work with, for the same reasons we saw above. However, the

following result tells us that, when fG1 and fG2 are both in the factored form described

above, then, if they are equivalent, their difference is itself factored. Specifically, their

difference then lies in the group B}(K, A), which we define to be the set of all Oh,

where h : K -+ A ranges over all normalized functions that are factored as above.

Lemma 6.2. Let G1 and G2 be central extensions of A by K, with factor sets fG1 , fG2

K x K -+ A sets defined from representatives f1 : K -+ G1 and f2 : K -+ G2 in

factored form. Then, we have fG1 - fG 2 E B2(K, A) if fG 1 -fG 2 E B(K, A).

Proof. The reverse direction is immediate since every Oh E BF(K, A) is also in

B2(K, A) by definition.

For the forward direction, suppose that fG 1 - fG2 E B2(K, A). This means, in

particular, that G2 and G1 are equivalent, so there exists an isomorphism 7 : G2 -+ G,

that fixes A and K. In that case, i2 := Y 0 E2 : K -÷ G1 is a set of representatives in

G1 that give rise to same factor set fG 2 . To see this, note that, for all x, y E K, we

have 7 (fG 2 (x, y)) = fG2 (x, y) since y fixes A, but since 7 is an isomorphism, we also

have 7 (fG 2 (x, y)) = 7(f2 (X)f2 (Y)f 2 (XY) 1) = 7 (2 (X))-Y(f 2 (Y))Y(f 2 (xy)) 1 . Thus, it is

sufficient to show that fG1 - fG2 E B(K, A) when both factor sets are defined from

representatives chosen in the group G1.

We can now compute fG 1 - fG 2 as follows. Switching back to multiplicative

notation for G 1, for all x, y E K, we can see that

fG1 (Xy)fG 2 (X'Y) 1 fl(X) 1(y)$1(X + Y)1 (e2(X)2(y)2(X + y) 1) 1

= tli(X) 1(y)C1(x + y)'-i 2(x + y)e2(Y) 1 2()-
1.

110

Now, since e1 (x + y)- 1 A = (-x - y)A and i 2 (x + y)A = (x + y)A, we can see that

f 1 (x + y)~ 1e 2(x -i- y)A = A, which shows that f1 (x + y)-l 2 (x + y) E A. Since this

is a central extension, meaning that A is contained in the center of G1 , we can move

this term to the end, giving us

fG1(X, y)fG2(XY
1 = f 1 (X)f 1 (Y) 2 (Yy'C 2 (X> 1 ' 1 (X + y>'(2 (X + y)-

By the same argument, the term f1(y)i2 (y)- 1 is in A, so we can move it further back:

fG1(X, y)fG2 (X, y 1(X) 2 1 2 1(+ y)- 1 ' 2 (X + y)-

This is almost the same as (a, e')(x, y):

(a8 1eig1)(x,y) = e1 (x)i2()- 1
1 (y)i2(y) 1 (e1 (x + y)i2(x + y)-)-l

= f1(X)i2(X)Y 1 (y)i2(y) 1
2(X + y) 1 (x + y)- 1 ,

differing from fG 1 (X, Y)fG 2 (x, y) 1 only in the order of the last two factors. However,

we can show that the last two factors commute.

Let a := e1 (x+y)i2(x+y)~ 1, which we know is in A. This means that e1 (x+y) =

ae(x + y). Multiplying these factors in the other order gives i 2(x + y)-l1 (x + y) =

i 2 (x + y)-lai2(x + y) = ai2(x + y)- 1 i 2 (x + y) = a, where we have used the fact that

a is in the center of G1 . Hence, the product in either order is a.

Putting this together with the calculation above, we have shown that fG1 fG2

a fi'2 It remains only to show that ti2-1 is factored. To see this, write x E

K = Z,1 x ... x Zrm as x = (x1 ,. .. ,xm). Then, since f, is factored, we have

e(x) = f(e1)1 -. -- (em)xm, and likewise for 2. This means that

e1 (X) 2 (X)- 1 = f1(ei)x1 ... (em)xm(2 (ei)X1 ... (em)XM -

= f1(el)" ... f1(em)xmi2 (em)~xm .. .2(e1

As before, we can use the fact that e1(em)xme 2 (em)-xm is in A to move it to the end.

111

Repeating the process, we get

ei(x)e2 (x)' = f(ei) f2(ei) ... - (em)xm 2(em)

which is precisely the formula for a function in factored form.

The above lemma tells us that we need only look for fG1 - fG2 in the set B2(K, A).

In our earlier algorithm, we tested whether fG1 - fG2 E B2(K, A) by comparing the

size of B2 (K, A) to that of (fG, - fG2)B2 (K, A). In principle, we could test fG 1 -fG 2 E

B2(K, A) by comparing the size of B}(K, A) to that of (fG 1 - fG2)B2}(K, A).

To that end, from our earlier discussion, we know that B2(K, A) (unlike B2 (K, A))

has a small generating set. Hence, we can compute IB}(K, A)j. However, it is not

obvious that we can compute I(fG - fG2)BJ(K, A) .

In order to do so, we would need to work within some larger subgroup than

B(K, A) since we do not know, a priori, that fG1 - fG2 is in B}(K, A). It is not

clear that there is any subgroup large enough to contain fG1 - fG 2 but also small

enough to have a small generating set.4

Instead of comparing sizes, as before, we will develop a more direct approach for

testing whether fG1 - fG 2 lies in B2(K, A). The key idea we will need is the following.

Lemma 6.3. Let G be a central extension of A by K, and let f : K x K -+ A be a

factor set defined from representatives f : K -+ G in factored form. Then, there exist

ai's and bi 's, all from A, such that, for all x = (. .. , xm) and y = (yi.. . , yn) in

K =Z, x ... x ZXm, we have

m m

f(x, y) = a 1 bfi , (6.2)
i=1 j=i+1

where ai = f(ej)ri, b = [f(ej), f(ej)], and 6i is 1 if xi + yj > ri and 0 otherwise.

4 One natural idea is the space of all factor sets defined by representatives chosen in factored form.
However, the product of such factor sets need not be of the same form (as we will see shortly).

112

Proof. Starting from the definition, we have

f(x, y) = f()((y)(X + y)- 1,

where x + y = (xi + y, ... , Xm + YM) E Zrn X ... X Zr,. The i-th component of this

is (xi + yi) mod ri. As an integer, that is xi + yi - 6iri, where 6i is 1 if xi + yi > ri

and 0 otherwise. Thus, we can see that f(x+y) = t(e1)x1+y1-6 1ri -. e(em)'xm+ym- mrm

since f is in factored form.

Next, we note that e(ei)6 iri E A since 7r(f(e) 6iri) = 6iriei = 0 E K, as the i-th

component is taken modulo ri. This means that we can move such factors to the

front in our expression above, giving us

f(x, y) = e(ei)xl ... f(em)x'e(ei)Y1 ... f(em)ym x

(f(e1)x1+Y1-r1 -- - e(em)xmnYm-rmn)
1

= f(ei)'1 ... f(em)xme(ei)Y1 ... f(em)ym

t(em) x -ym+rm6m ... j(ei)-x-y1+rio1

= f(ei)ri6 ... e(em)rm" X

e(ei)xl ... f (em)'xm (ei)Y ... f(em) YM(em)xmYm ... (ei)" -Y'

a~' ... am x

f(ei)xi f(ein)xmf(e1)Y1 ... f (em)Ym(em)-XMYM ... eAe)i-yi.

We would like to cancel e(e)mn)-m~" with the f(em)x" and e(em)ym factors. Un-

fortunately, we cannot do so as f(em)xm is not adjacent to the other two factors.

However, we can move it back at the expense of introducing a factor of [(em), t(ei)]

for each factor e(ei) appearing in between e(em)x' and C(em)ym in the formula. Each

such factor is in A since K is abelian,5 so we can move them to the front as they

appear. Thus, we can cancel e(em)-xm-Y with the f(em)xm and f(em)ym factors at

the cost of introducing an overall factor of [e(em), f(e)]YI"xm -.. [f(em), (e..-1)] YM"'

5 That K is abelian says that all elements of G commute modulo A, which means that all com-
mutators lie in A.

113

I 1 11 1. 1 . .I -t-d6_ A.W_ -A I I 69MOMMIMM . I I - wiwian . , - I -

at the front.

We can repeat this for (emi) m,..., (ei)'1, in each case, cancelling the factor

of f(ei)-i-yi with the factors of f(ej)2i and f(ej)vi, but introducing factors of b ,

where b,, := [f(ej), e(ej)], for each j E {i + 1, ... , m}. This results in the formula

found in the statement of the lemma.

Corollary 6.4. Let G be a central extension of A by K. If h: K -+ A is normalized

and in factored form, then all bi, 's in equation (6.2) are zero for the coboundary h.

Proof. The previous lemma applies to oh with f = h. In this case, the constant bij

is given by [h(j), h(i)]. However, the values of h are in A, which is in the center of G,

so these commute with all of G, meaning that [h(j), h(i)] = e.

The above lemma leads to following characterization for fG1 - fG2 E B' (K, A).

Lemma 6.5. Let G1 and G 2 be central extensions of A by K, with factor sets fG1, fG 2

K x K -+ A sets defined from normalized representatives f1 : K -+ G1 and 2 : K -4

G2 in factored form. Let us call the ai 's and bi, 's appearing in equation (6.2) the a 's

and 3 i,j 's for fG1 and e, 's and j, 's for fG 2 . Then, we have fG1 - fG 2 E BF(K, A) iff,

for all I < i < j 5 m, we have /3,, = g, and ai - Eq has an ri-th root in A.

Proof. First, suppose that the latter condition holds. In particular, for each i E

{1, . . ,m}, let ci be the ri-th root of ai - qi, so that ai = Cci. Then, we define 2 by

f'2(ei) = cif2(e2) for each i and extend it to every other x E K per the factored form.

Now, let f' 2 be the factor set produced from the representatives &'. Since we have

changed 2 only by multiplying by factors (the ci's) in the center of A, the bij's from

equation (6.2) are unchanged, which means they still agree with those of fG 2 and,

hence, fG 1 . However, we now have e'2(ei)'i = cEif2 (ei)r = c ei = ai = 1(ej)rj. Thus,

we can see that the ai's from equation (6.2) are also the same for fG1 and f' 2 . So by

Lemma 6.3, we have fG1 fG2'

By construction, we know that fG 1 -fG 2 = fG 2 fG 2 E B 2 (K, A) because the latter

two only differ by their choice of representatives. Since both functions are factored,

by Lemma 6.2, we must have fG1 - fG 2 E B(K, A), which is the first condition.

114

For the other direction, we will prove the contrapositive. First, suppose that

$i,j k jj for some 1 < i < j K m. By Lemma 6.3, we can see that fG 1 (ej, ei) -

fG 2 (ej, ej =) j = ij - e E A. However, the previous corollary tells us that the

value of the factor set at (ej, el), which is the b2,3 from equation (6.2), must be zero

for any coboundary. Thus, we cannot have fG1 - fG 2 E BF(K, A).

Next, suppose that ai - Eq does not have an ri-th root for some 1 < i < m. We

can see that fG1 (ei, (ri - 1)ei) - fG2(ei,(ri - 1)ej) = f, (eijr - 2(e)ri = -- i.

However, if h : K -+ A is any coboundary, then Lemma 6.3 tells us that the value

of 9h at (es, (ri - 1)ej) is the ai from the equation, which is equal to h(e,)ri. The

latter manifestly has an ri-th root, namely, h(ei) E A. Thus, we, once again, cannot

have fG1 - fG 2 E BS(K, A), so we have shown that, if the second condition in the

statement does not hold, then neither does the first. F]

We can now give our second quantum algorithm by showing that we can efficiently

check the above characterization.

Theorem 6.6. There exists an efficient quantum algorithm for testing the equivalence

of G1 and G2 , two central extensions of A by K, both abelian, when G1, G 2, K, and

A are given as black-box groups and the homomorphisms 7ri : Gi -+ K are given as

oracles (so efficient means poly(log KI, log lA) time).

Proof. If we can choose representatives for each extension, then we compute the

ai's, /3 j's, ei's, and j's from the previous lemma using the formulas given in the

proof above. This requires only O(log KI) black-box operations for each of these

O(m 2) = O(log 2 IKI) indexes 1 < i < j m, which is efficient. Furthermore, we can

directly check #3 ,j = ,, within the same time bound.

To check whether ai - i E A has an ri-th root, we first write A as a direct product

A -2 Zt1 x ... x Zt, which we can do efficiently using the abelian decomposition

algorithm. Then, we write ai - e, as (c1, ... , c) under this isomorphism. Looking for

an ri-th root, amounts to solving the system of equations rix = cj (mod tj) in the

variable xj for 1 < j n. Equivalently, we can solve the equations rixj + tjy = cj

in the variables x3 and yj. This has a solution iff the greatest common denominator

115

10 WIM". I I I - .1. NWWAWW""M

gcd(ri, tj) divides cj. As we know, we can compute gcd efficiently, so we have shown

that we can efficiently test whether fG1 - fG2 E B2 (K, A) assuming we can choose

representatives for each extension.

Since we will work with representatives chosen in factored form, we only need to

choose representatives of each of the generators el,..., em of K = Zrn X x Zrm.

As discussed earlier, we can choose nearly uniformly random elements from each Gi.

Applying the oracle for the homomorphism 7ri translates these into nearly uniformly

random elements of K, along with a representative of that coset from Gj.6 Taking

O(log IKI) such samples gives us a generating set for K with high probability.

The fact that these elements generate K means that, for each i E {1, ... ,
there is some product of the generators that produces ej. To find these products,

we can simply perform the abelian decomposition algorithm once again using these

new generators. The output of that algorithm includes matrices that tell us how to

translate between the two types of generators efficiently.7

In summary, we have seen that we can efficiently choose representatives for the

generators of the space of the cosets of A in each extension, G1 and G2, which we

extend to representatives of all cosets by using the factored form. That allows us

to define factor sets for each extension and efficiently test whether they differ by a

coboundary via Lemma 6.3.

6.1.3 Classical Hardness of Equivalence Testing

In this section, we will prove that the two problems efficiently solved by quantum

algorithms in the previous section are classically hard under standard assumptions. In

particular, we will show that a classical algorithm for equivalence testing would allow

us to break the Goldwasser-Micali cryptosystem, which depends on the assumption

that testing quadratic residuosity is classically hard [29].

The inputs to an instance of the latter problem are a large natural number N and
6This follows since each coset has the same size.
7Technically, the algorithm will produce a set of generators e...... ,e' that may differ from

ei,..., em in some respects. However, we can simply use the former generators for the parts of the
algorithm described above. (There is no reason to prefer e, em.)

116

a y E Z'. The latter group is the set of elements in ZN with multiplicative inverses.

(We are also assured that the Jacobi symbol of y is +1, but this will not be needed

by our reduction.) The goal in this problem is to determine whether y is a quadratic

residue, that is, whether y has a square root in Z. To be efficient, the algorithm

must run in poly log N time.

Theorem 6.7. If there exists an efficient classical algorithm for testing equivalence of

G1 and G2 , two central extensions of A by K, when G 1 , G 2 , and A are given as black-

box groups, the homomorphisms 7ri : Gi -> K are given as oracles, and K is an abelian

group given by a multiplication table (so efficient means poly(|K|, log |Al) time), then

there exists an efficient classical algorithm for testing quadratic residuosity.

In fact, as we will see in the proof below, equivalence testing is already classically

hard if we take K = Z2 and A = Z'

Note that this theorem proves that both of the problems solve by our quantum

algorithms are classically hard. Since K is given by a multiplication table, this is

directly an instance of the problem solved by our first quantum algorithm. However,

since K is also abelian and a multiplication table is easily turned into a black-box

group,8 this is reducible to an instance of the second problem as well.

Proof. We will reduce to testing equivalence on two extensions of Z' by Z2. It is

well-known that the we can implement the group operations in Z' in poly log N time9

[211, so Z' is efficiently implementable as a black-box group. Since Z2 contains only

two elements, we can produce a multiplication table for it in constant time.

Recall that an extension of Z' by Z2 consists of pairs (x, a), with x E Z' and

a E Z2, and has a product of the form (x, a)(y, b) = (xyf(x, y), a + b). 10 Since f can

assumed to be normalized, we have f(0, 0) = f(0, 1) = f(1, 0) = 1, so f is determined

by the single value f(1, 1). We need f to be a cocyle, but a short calculation (since

8The multiplication table allows us to perform multiplication in constant time. After linear

time preprocessing of the multiplication table, identity checking and inverses become constant time
operations as well. Finally, we can simply use a list of all the elements as the list of generators.

9 1n particular, we can compute multiplicative inverses using the extended Euclid's algorithm.
10We are using multiplicative notation, since that is usual for Z, even though it is abelian.

117

there are only eight possible values for the x, y, z E Z2 that appear in the definition)

verifies that any value for f(1, 1) satisfies the cocycle condition. 1

We can represent elements of such extensions by a pair of labels, using only log N+

1 bits. We can check identity in O(log N) time, and we can multiply in poly log N

time since the latter requires (at most) two multiplications in Z'. The inverse of (x, a)

is (x-'f(a, -a)-', -a), and this requires only a constant number of multiplications

and inverses in Z', which, as noted above, can be performed in poly log N time.

Finally, the projections 7r : Gi H-4 Z2 are just the maps (x, a) '-+ a, which can be

implemented in constant time.

Thus, we have seen that we efficiently implement all of the black-box groups and

homomorphisms mentioned in the statement of the theorem for any extensions of ZN

by Z2. It remains to show that this allows us to test quadratic residuosity.

We choose the G1 to be the extension with fG, (1, 1) = 1 and G2 to be the extension

with fG2 (1, 1) = y. As we saw above, any value for f(1, 1) gives a valid extension.

By definition, these two are equivalent iff there is a normalized cochain f : Z2 -+ Z

such that (9f fG 2fGl-12 The latter is just fG2 since fG1 is uniformly identity.

Since these are all factor sets, they are all identity except at (1, 1). There, the

above equation says y = fG 2 (1, 1) = (0)(1,1) = (1WC()(+ 1 = E(1)2f(O)-1 =

f(1)2, where we have f(0) = 1 since f is normalized. Thus, we can see that the two

are equivalent iff y has a square root, f(1), i.e., iff y is a quadratic residue. E

6.1.4 Counting Equivalence Classes

Before moving on to another type of cohomology, we look at one final problem, which

is to count the number of equivalence classes of central extensions of A by K. As

we know from above, this is simply IH2(K, A)I. Since this is an abelian group, we

could use the abelian decomposition algorithm to compute this. Unfortunately, we do

"Alternatively, we can check that both f(x, y) + f (x + y, z) and f (x, y + z) + f(y, z) have value
zero unless at least two of {x, y, z} have value 1, in which case, it is f(1, 1). In particular, the value
can never be 2f(1, 1): e.g., if f(x, y) = 1, then x = y = 1, which means x + y = 0, so we have
f(x+y,z) =0.

12Once again, we are sticking with the usual multiplicative notation for Z', even though it is an
abelian group. In our earlier notation, this would have been the more familiar fG2 - fG1.

118

not have a convenient generating set for this group, so that approach is not available

to us. Nonetheless, the following theorem shows that it is still possible to solve this

problem efficiently.

Theorem 6.8. There exists an efficient quantum algorithm for computing the sizes

of the groups |Z2(K, A)| and |B2(K, A)I when A is given as a black-box group and K

is given by a multiplication table (so efficient means poly(IK, log |A) time).

Recall that we have H2 (K, A) = Z 2 (K, A)/B 2 (K, A) by definition, which means

that we can compute IH2(K, A)I as |Z2 (K, A)I/IB 2 (K, A)1. Hence, there is an efficient

classical reduction from computing the number of equivalence classes to the problem

solved by this algorithm.

Proof. We saw in Theorem 6.1 that we can represent B2 (K, A) as a black-box group.

We can then use abelian decomposition to write this as Z,1 X ... X Zrm for some

integers r1 , ... , rm, which are also produced by the algorithm. The size of this group

is r1 ... rm, which we can compute efficiently to get I B 2 (K, A)I.

Since we do not have a nice generating set for Z 2 (K, A), we instead use the

relationship 1Z2 (K, A)I = 1C2 (K, A)I/1B 3 (K, A)I. See [66] for definitions of these

groups. Here, we simply note that C2 (K, A) I can be computed by a simple formula

in terms of IA , which we can compute as above, and that IB 3(K, A) I can be computed

using the same approach as for B2(K, A), as the two groups are constructed in an

analogous manner (as suggested by their names). Hence, we can efficiently compute

the sizes of these two groups using techniques discussed already and then divide them

to get 1Z2 (K, A)I.

As with the equivalence testing problem considered above, we can also show that

this problem is classically hard under standard assumptions. In particular, we will

show that an efficient classical algorithm would allow us to factor semiprimes 13, which

would break the RSA cryptosystem [53].

13A semi-prime is an integer that is the product of exactly two primes.

119

Theorem 6.9. If there exists an efficient classical algorithm for computing IZ2(K, A) I
or |B2 (K, A) I when A is a given as a black-box group and K as a multiplication table,

then there is an efficient classical algorithm for factoring semiprimes.

In fact, as we will see in the proof below, this problem is already classically hard

if we take K= Z2 and A = Z'.

Proof. As in our last hardness result, we will consider extensions of Z' by Z2, where

N = pq is a semiprime. We start by showing that learning either JZ2(K, A)I or

JB2(K, A)I would allow us to determine L := p + q.

As we saw in Theorem 6.7, any normalized f : Z2 x Z2 - Z' is a cocycle.

All values of such functions are 1 except for f(1, 1), which is arbitrary. Hence, the

number of cocycles is 1Z2 (Z2 , ZN) = IZNJ. The latter number, given by Euler's

totient function [241, is (p - 1)(q - 1) = N - (p + q) + 1 = N - L + 1. Hence, if we

know JZ2 (Z2 , Z) 1, then we can compute L since N is known.

Theorem 6.7 also showed us that the coboundaries are those cocycles such that

f(1, 1) is a quadratic residue. The number of such residues is (p - 1)(q - 1)/4 =

(N + 1 - L)/4 [611. Hence, if we know JB2(Z2, Z)1, then we can compute L as in

the previous case.

Finally, to factor N, we note that p and q are the two solutions of the equation

N = x(L - x) = xL - x 2 or, equivalently, x 2 - Lx + N = 0 in the variable x. By the

quadratic formula, these solutions are (L \L2 - 4N)/2, which consists of operations

that be computed efficiently in terms of O(log N). 4 El

That completes our analysis of the cohomology of groups. Next, we look at the

computational problems related to another form of cohomology.

6.2 Simplicial Cohomology

In this section, we consider the problem of computing the cohomology of a simplicial

complex. Before we can define the problem, we need some background on simplicial

'4 We can compute the square root using binary seach, for example, taking advantage of the fact
that we know the solution is an integer.

120

f

V w

q

9

Figure 6-2: The 2-sphere, S2 .

complexes and their homology and cohomology. (For more details, see standard

references such as [47, 341.)

6.2.1 Background

Complexes

There are multiple types of simplicial objects for which one can define cohomology.

These types vary in their degree of generality. We will work with a definition closer

to that of a simplicial set (more general), although we will also discuss the notation

of an abstract simplicial complex (less general) as an example below.

We define a A-complex, A, to be a collection of sets, A', one for each non-negative

n E Z, and a collection of maps, an, defined on the corresponding A". The maps

must satisfy some additional conditions that we will explain below. (See [34] for an

alternative definition of the same concept.)

The set A' contains the n-dimensional faces of the complex. We say that A.is

n-dimensional if n is the largest integer for which A' is non-empty.

The map an is called a boundary map. It takes each face X E A" to an integer

linear combination of elements from A"- 1 . In symbols, we have an : A" a ZA"-1,

and we can extend this function linearly to O9 : ZA" -+ ZA"- 1 .

Most importantly, the collection of maps must satisfy the condition an o On+1 = 0

for each non-negative n C Z. This captures the notion that the boundary of any face

should be without boundary.

121

Example 6.10. The 2-dimensional sphere is shown in Figure 6.2.1. We have broken

S2 into two hemispheres labeled f and g. The boundary of these hemispheres is

the equator, which is broken into segments p and q. Finally, the boundary of those

segments are the points v and w.

We can make this into a A-complex as follows. First, we define A2 = {f, g},

A = {p, q}, and Ao = {v, w}, so that each face has the dimension that we would

expect geometrically.

Next, we define the boundary maps as follows:

02 f =p+q and a29g=-p-q

O1p=v-w and 01q=w-v

00 = 00w = 0

The first two equations say that p and q make up the boundary of f and g. We make

the boundary of g the negative of that of f to reflect that we are taking these segments

in the opposite direction. We do the same for the boundary of p and q: it is v - w for

p because this segment starts at w and ends at v, and it is w - v for q because that

does the opposite.

While the particular choices of signs may seem somewhat unintuitive, the conse-

quence is that we then have

a1 2f =01(p+q)=v-w+w-v=O

and, likewise, a1&2g = 0. We also have 0a1 =_ 0 simply because &o = 0.

Thus, we can see that this gives a valid A-complex that captures the geometry of

the 2-sphere.

Our next two examples describe abstract simplicial complexes and demonstrate

that these are just special cases of A-complexes.

Example 6.11. The standard k-dimensional simplex is the convex hull of the k + 1

points vo, vi, ... ,kE Rk, where v0 = (0,... , 0) and vi = ei for i E {1,.. . , k}. In gen-

122

V0

V 1 - V3

V 2

Figure 6-3: A 3-dimensional simplex.

eral, a simplex is an affine transformation of the standard simplex. See Figure 6.2.1

for an example.

We can make this into a A complex as follows. For each non-negative n E Z, we

define An to be any subset of n + 1 points from the set of vi's above. Each subset

{vioI,... , vi } represents the n-dimensional face that is the convex null of those points.

Next, we define the boundary map as follows:

n

an~vi07 ... ,vi,} = Z(-1){vio, ... ,v^j,, ... ,Vi}
j=0

where ^ means that this point has been removed from the set. One can check that the

faces appearing in this sum are indeed those that are on the boundary. For example,

if we consider the face {v 1, v 2, v3} in the simplex of Figure 6.2.1, then we find that

the sum is over the three adjacent edges, {v 1 , v2 }, {v1 , v3}, and {v 2, v3}, which indeed

make up the boundary of the bottom of the simplex.

It is not hard to check that this definition also satisfies i9nn+1 = 0. Every face

that appears in the result must be of the form {vio,... , v,,..., ve,... , Vi } for some

j 4 f because both of the boundary operators remove one point. Such a face appears

two times from the sum: once when vi, is removed by on+1 and vi, by 4n and once

when the opposite occurs. Next, note that, when vi, is removed first, vi, moves forward

one position, which means that it ends up with the opposite sign when removed by On

and, hence, that these two terms cancel. Since this argument applies to every face

that appears in the sum, we can see that the result is identically zero.

123

Thus, we see that any simplex can be represented as a A-complex in this manner.

Example 6.12. A simplicial complex is the union of a set of nicely-overlapping sim-

plexes. By the latter, we mean that, whenever two simplexes intersect non-trivially,

their intersection is a face of both simplexes.

We can make a simplicial complex into a A-complex by taking each An to be the

union of the face sets of the individual simplexes and by taking each On to act by the

same formula as above. By the same argument as above, we have nn+1 = 0, so this

gives us a valid A-complex.

A primary way that simplicial complexes arise is as tools for studying topological

spaces. As we just saw, topological spaces that are formed from nicely-intersecting

simplexes give rise to simplicial complexes in a straightforward manner. However, for

more general topological spaces, it is often possible to find a simplicial complex that

is homeomorphic to the space. (Such a simplicial complex is called a triangulation

of the space.) In that case, we can fully understand the topology of the space by

studying the simplicial complex, which is usually much simpler.

The homology and cohomology of a A-complex, which we will define next, turn out

to be topological invariants. That is, if two topological spaces are homeomorphic 5 ,

then any triangulations of the two spaces have isomorphic homology and cohomology

groups. In other words, if two spaces have triangulations with different homology

or cohomology, then they cannot be homeomorphic. Thus, the (co)homology of A-

complexes provides useful information for distinguishing non-homeomorphic spaces.

Homology

We start by defining the n-th chain group, Cn(A) := ZA", which is just integer

linear combinations of elements of A". An element of Cn(A) is called an n-chain.

As all of our chain complexes will be finite, we will always have C"(A) trivial for all

n sufficiently large.

15 Homeorniorphism is for topological spaces what isomorphism is for groups: the appropriate
notion of what it means for two differently presented objects to really be the same.

124

As we saw above, each A-complex has maps O, : A' -+ ZA"-' = Cn-1(A).

By extending a, linearly, we can define it on all integer linear combinations of faces.

This gives us a group homomorphism ., : C,(A) -+ C,_ 1 (A). Since the two functions

agree where both defined, it should cause no confusion to use the same name for both.

Next, we define the n-th cycle group Zn(A) := Ker& < C,(A) and the n-th

boundary group Bn(A) := Im9,O 1 5 C,(A).

By definition, a boundary is of the form o, 1 c for some c E Cn+ 1 (A). The defining

conditions of a A-complex tell us a,,+jc = 0 since 0 n8n 1 = 0, which shows that

every boundary is also a cycle (i.e., we have B,(A) 5 Z,(A)). Hence, we can define

the quotient Hn(A) := Za(A)/Bn(A), which is the n-th homology group. Elements

of this group are called homology classes.

Let us now look at a couple of examples, both from [47].

Example 6.13. We first return to the 2-sphere, whose A-complex we saw above.

An arbitrary 2-chain c2 E C2 (A) can be written as c2 = af + bg for some a, b E Z.

(See Figure 6.2.1 again for the definitions of f and g.) The boundary of this is

a2(af +bg) = aa2f +ba2g = a(p+q)+b(-p - q) = (a - b)(p+q). Hence, we can see

that c2 E Z 2(A) iff a = b iff c2 = a(f +g). In other words, we have Z2(A) = Z(f +g).

Meanwhile, B2 (A) is trivial since there are no 3-dimensional faces. This means that

we have H2(A) = Z(f + g) as well.

Next, consider an arbitrary 1-chain, c1 E C1 (A). We can write this as c1 = ap+ bq

for some a,b E Z. The boundary is a1 c1 = aOp + b9q = a(v - w) + b(w - v) =

(a - b)(v - w), so as above, we have c1 E Z1 (A) iff a = b iff c1 = a(p + q), which

means that Z1(A) = Z(p+q). On the other hand, our calculation of 02c 2 above showed

that B1 (A) = Z(p + q). Hence, in this case, we have H1 (A) = Z(p + q)/Z(p + q),

which is trivial.

Finally, since v and w have no boundary, we have Zo(A) = C0(A) = Zv + Zw.

Our calculation of &1c1 above shows that B0(A) = Z(v - w). If we instead write

Z0 (A) = Zw + Z(v - w), using w an v - w as our basis, then we can see that taking

the quotient by Bo(A) wipes out the second part, and we have Ho(A) = Zv.

125

Example 6.14. Next, we consider the real projective plane, P2 , whose points cor-

respond to lines through the origin in R3. Since each such line intersects S2 in two

diametrically opposite points, we can actually form a A-complex for P 2 by taking the

A-complex for S 2 and setting v = w, p = q, and f = g since, in each case, the two

faces are directly opposite one other.

We now have C2 (A) = Zf as g = f, and we can see that, for any a E Z, we have

02(af) = a(p + q) = a(p + p) = 2ap. This is only zero if a = 0, so, in this case, we

have Z2(A) = C2 (A) = H2(A). (Again, B2 (A) is trivial since there are no 3-chains.)

Next, we have C1 (A) = Zp, and we can see that, for any a E Z, we have 91(ap) =

a(v - w) = a(v - v) = 0. Thus, in this case, we have Z1 (A) = Zp. On the other

hand, our calculation above shows that B1(A) = 2Zp: since a2(af) = 2ap, we see that

the coefficients of 1-boundaries are always multiples of 2. This means that H1 (A) =

Zp/2Zp & Z2p.

Finally, since 0 = 0, we have ZO(A) = Zv, and, by our previous calculation, we

saw that B0 (A) is trivial, so we have HO(A) = Zv.

Finally, we note that each Cn(A) (and, hence, Zn(A) and Bn(A)) is a finitely

generated abelian group. Since quotients of finitely generated groups are also finitely

generated, this also means that Hn(A) is a finitely generated abelian group. Thus, it

follows from the classification of such groups that Hn(A) is of the form

where the pi's are primes and b and the ti's are positive integers.

The exponent b in this decomposition is called the n-th Betti number of A.

The remainder is the torsion coefficient. This decomposition splits Hn(A) into the

part that is purely infinite-cyclic and the part that is purely finite-cyclic. The Betti

number uniquely describes the former part, while the latter is uniquely described in

the familiar manner for a finite abelian group.

We saw both positive Betti numbers and a non-trivial torsion coefficient in our

examples above. In the remainder of this section, we will discuss computing each of

126

these parts of the homology groups.

6.2.2 Quantum Algorithms for Computing Betti Numbers

The algorithm of Lloyd, Garnerone, and Zanardi [45] computes the Betti numbers

of a simplicial complex by estimating the ranks of each cycle group, Z,(A), i.e., the

null space of the boundary map 0,. It accomplishes the latter by measuring the

eigenvalues of the boundary map 8,: when applied to a particular mixed state, the

probability of measuring each eigenvalue is proportional to the rank of the corre-

sponding eigenspace. By performing many samples, it can estimate the probability

of measuring an eigenvalue of zero and, thus, estimate the rank of the null space.

Their result was stated only for simplicial complexes, but their general approach

can be applied to an arbitrary A-complex provided that the boundary map can be

computed efficiently, which it can for all cases of which we are aware.16

In order to implement 0,., as a quantum operation, though, it is necessary to

work over C instead of Z. By the Universal Coefficient Theorem [47, 34], this has

the result of eliminating any torsion coefficient in the resulting homology groups.

However, working over C means that knowing the rank of the null spaces is sufficient

to also determine the rank via the Rank-Nullity Theorem and the fact that the rank

of each chain group is known (or easily estimated). Hence, finding the rank of the

null spaces, the Z,(A)'s, also tells us the ranks of the B,(A)'s and H,(A)'s.

While known classical algorithms run in time that grows polynomially in the

number of faces, the algorithm of Lloyd et al. runs in time that grows polynomially

in the logarithm of the number of faces. Thus, the algorithm provides an exponential

speedup, in principle, over the classical approaches.

One caveat, however, is that, if the algorithm requires the boundary map be

written down as a matrix at any point, then it must run in time at least linear in the

size of the matrix (because it requires linear time just to do that), which eliminates any

exponential speedup. Thus, in order to have an exponential speedup, the algorithm

needs to work on a matrix that is generated algorithmically.
16 In particular, the boundary map is row-sparse in all cases of which we are aware.

127

Such a situation arises in the context of so-called persistent homology. There,

each face corresponds to a set of vectors in R', for some fixed m, that are all within

distance E of one another, where c is a parameter. Lloyd et al. show that it is possible

to apply the boundary map efficiently by computing the matrix entries in quantum

parallel, eliminating the need to write them down in classical memory.

Thus, the algorithm of Lloyd et al. for computing persistent homology provides

a demonstration that quantum algorithms can compute estimates of the sizes of the

cycle groups and, hence, the Betti numbers exponentially faster than any known

classical algorithm.1 7

Below, we will discuss the hardness of another problem related to computing ho-

mology. This differs from the problem considered by Lloyd et al. in two respects.

First, it also requires working with the torsion coefficient rather than just the Betti

number. Second, we will see that it is classically hard to compute in the low-degree

cases (even n = 0(1)), whereas, for the problem just discussed, the classical algo-

rithms are efficient when n is small.

6.2.3 Simplicial Cohomology

For our hardness result below, we will switch from computing the homology of the

A-complexes discussed above to computing their cohomology.18 As we will see, this

affects only a couple of small changes, the more important of which is that it allows

us to choose coefficients from an arbitrary abelian group A.

In simplicial cohomology, rather than working with the chain group Cn(A) = ZA",

we work with the cochain group defined by C"(A, A) := Hom(Cn(A), A). That is,

each element of Cn(A) is a homomorphism Cn(A) -÷ A. Now, if An = {X 1, ... , Xt},

then we can write any c E Cn(An) as cxiex1 + - - - + cxtex,, where, for each i,

we have cx, E A and ex, is a vector with a 1 in the coordinate for Xi and O's

17It is worth noting that existing classical algorithms achieve exponentially smaller error in their
estimates of these values than the quantum algorithm. However, even when allowed exponentially
more error, no existing algorithm achieves the running time of the quantum algorithm.

18In the language of category theory, cohomology is simply applying the functor Hom(-, A) to
sequence of chain groups before computing homology. However, we will spell this out in detail below.

128

elsewhere. Then, since any f E Hom(Cn(A), A) is a homomorphism, we must have

f(c) = cx f(ex) + - - -+ cxf(ex). Hence, each f E Hom(C,(A), A) is determined

by the values (f(ex), ... , f(ex)), so elements of C"(A, A) can also be thought of as

vectors with one coordinate for each Xi E A", just like elements of Cn(A). The only

important difference, here, is that the coordinates are now chosen from A. 19

A more substantial change appears in the maps between cochain groups. Instead

of the boundary map an : Cn(A) - Cn_1 (A), we define a coboundary map a" that

takes f E Hom(Cn(A), A) to the map defined by

(49"f)(c) : = f(ac).

We can see that this definition requires c E Cn+1 (A) in order for the right hand side

to make sense. This means that a" takes Cn(A, A) to Cn+1(A, A). Thus, while the

boundary maps take n-chains to (n - 1)-chains, the coboundary maps take n-cochains

to (n + 1)-cochains.

With these definitions in place, we can define the other important objects analo-

gously to homology. Specifically, we define the n-th cocycle group to be Z"(A, A) :=

Ker a", the n-th coboundary group to be B"(A, A) := Im 4n-1, and the n-th homol-

ogy group to be H"(A, A) := Z"(A, A)/Bn(A, A). (The last makes sense because we

have On+ln = 0, 20 which means that B"(A, A) C Z"(A, A).)

While there appear to be substantial differences between homology and coho-

mology (especially between boundary and coboundary maps), these turn out to be

superficial. In particular, the Universal Coefficient Theorem for Cohomology [47, 34]

tells us that, when the chain and cochain groups are all finitely generated, the ho-

mology groups determine the integral cohomology groups and vice versa.21

19 1t is also possible to use coefficients in homology by taking a tensor product with A. Indeed,
that is implicitly what is done by Lloyd et al. when computing the homology over C instead of Z.

20For any f E C"(A, A) and c E Cn+2 (A), we have (On+ 1 8nf)(c) = f(OOn+1c) = f(0) = 0.
2 1There are some minor algebraic advantages to cohomology. (In particular, it has a well defined

product operation, making Hn(A, A) into a ring.) However, that will not matter for us here.

129

6.2.4 Classical Hardness of Simplicial Cohomology

We now consider computing cohomology with coefficients in an abelian group. Un-

like the case considered earlier (computing just the Betti numbers), the resulting

cohomology groups now depend on the torsion coefficient as well.

Theorem 6.15. Let A be a A-complex with efficiently computable coboundary maps.

If there exists a classical algorithm for computing the size of the 2-cocycle group or

2-coboundary group with coefficients in A, an abelian black-box group, that runs in

time polynomial in 1A2| and log Al, then there is an efficient classical algorithm for

factoring semiprimes.

Similar to our earlier cases, it follows from the proof that this problem is already

classically hard if we take A = Zx and have |A21 = 0(1).

Proof. Let K be a group. We construct a A-complex, A, with An containing one

element for each n-tuple (ki,... , kn) with each ki E K \ {e}. Here, we will only need

n < 3, so we may take A' empty for n > 3.

Next, we describe the boundary maps. These are given by the formulas:

03 [x, y, z] = [y, z] - [xy, z] + [x, yz] - [x, y]

92[x, y] = [y] - [xy] + [x]

91[x] = 0,

where any of the elements [., -] is zero if either component is e. It is straightforward

to check that we have 0203 = 0, and it is immediate that 0102=_ 0, so this meets our

definition of a A-complex. It is also clear that we can compute these maps efficiently

provided that we can efficiently compute products in K.

From the above formulas, we can see that f : Hom(C2 (A), A) is a 2-cocycle iff

0 = (03f)([xyz]) = f(03[x, y, z])

= f([y, z]) - f([xy, z]) + f([x, yz]) - f([x, y])

130

or, equivalently, f([x, y]) + f([xy, z]) = f ([x, yz]) + f([y, z]), which is the cocycle

condition of group cohomology. Specifically, if we identify f with the map f: K x K -+

A defined by f(x, y) = f([x, y]), then we can see that the 2-cocycles of this chain

complex are in 1-to-1 correspondence with cocycles of group cohomology.22

Likewise, we can see the 2-coboundaries are functions of the form (a2 h), with

h E Hom(Cl(A), A), and defined by

(&2h)([x, y]) = h(a2[x, y]) = h([x]) + h(Ey]) - h([xy]),

once again matching our definition of a coboundary from group cohomology.

Thus, we can see that the sizes of the 2-cocycles and 2-coboundaries of this complex

are the same as those of the groups Z2 (K, A) and B2 (K, A), defined earlier. (This

also shows where the superscript "2" comes from.) It then follows from Theorem 6.9

that the ability to classically compute the sizes of the groups of 2-cocycles and 2-

coboundaries would give an efficient classical algorithm for factoring semiprimes. E

As the proof shows, the group cohomology we saw earlier is actually just the

cohomology of a particular A-complex related to the group. In fact, the same complex

can be presented in a way that makes it essentially a simplicial complex (see [471).23

While the theory of group extensions dates to around the end of the 19th century,

the connection to simplicial cohomology was only made a few decades later. However,

the latter connection was impactful. MacLane called these the "decisive examples,"

which demonstrated that the topological idea of homology could be broadly useful

[471, leading to the development of homological algebra as a separate subfield.

While we have already seen, in Theorem 6.7, that the specific problem instance

constructed in the proof can be solved efficiently by a quantum computer, the follow-

ing result shows that the same is true of the general problem just considered.

Theorem 6.16. Let A be a A-complex with efficiently computable boundary maps.

There exists a quantum algorithm for computing the sizes of the cocycle groups or

22These functions are automatically normalized because [x, y] = 0 if either x = 0 or y = 0.
23The only difference is that some faces that would be present in the simplicial complex are not

present due to the normalization condition.

131

coboundary groups with coefficients in A, an abelian black-box group, that runs in

time polynomial in JAI := E | A'| and log JAl.

Proof. The technique used in Theorem 6.7 applies without change to an arbitrary

A-complex: we apply _n-1 to a generating set for C- 1 (A) in order to produce a

generating set for B"(A) and then compute the size of B"(A) using the abelian

decomposition algorithm.

Our generating set for C"- 1(A) will consist of functions fx,a E Hom(Cn_1(A), A),

where X E An-i is a face and a E A is a coefficient, and we take fX,a to be a on X

and 0 elsewhere. Letting X range over all faces of A"' and a range over a generating

set for A gives a generating set for Hom(Cn_1(A), A) of size O(|An- I|log IA|).
This becomes a generating set for B"(A) by applying the boundary map to each

function. In particular, we can efficiently evaluate each function a"'fX,a on the

faces in A" to get a representation of each function as a simple vector of values in

A, which we can use to present Bn(A) as a black-box group. Then, we use abelian

decomposition to find the size |B'(A)j.

We can also compute IZ"(A)I just as we did in Theorem 6.7, by the formula

IC"(A)I/IBn+1 (A)1, since IC"(A)I is simply IAI1AnI and we can compute IAI by abelian

decomposition. 1:1

These last two results, taken together, show that the exponential speedup of quan-

tum algorithms over classical ones for the final problem we considered in our section

on group cohomology is actually just a special case of an exponential speedup of

quantum algorithms over classical ones for computing the the number of cocycles and

coboundaries in the cohomology of A-complexes.

6.3 Conclusion

In this chapter, we saw a few example of how the constructions of cohomology lead

to problems in which quantum algorithms have exponential speedups compared to

classical ones. We saw this, first, in the problem of testing equivalence of group exten-

sions, a variant of the group isomorphism problem appropriate for group extensions,

132

and in a related problem about counting the number of the number of equivalence

classes of extensions. We later saw that this second example was actually a special

case of a problem related to computing the cohomology of a A-complex, which are

topological invariants and give us a way of distinguishing non-homeomorphic spaces.

The latter problem can also be seen as a complement to the result of Lloyd et al.

for computing the Betti numbers of A-complexes as it focuses the torsion coefficient

rather than the Betti number.

It is perhaps not surprising that the constructions of cohomology give us opportu-

nities to leverage the ability of quantum computers to understand abelian groups into

exponential speedups for problems on more complex structures. As we have seen, the

central objects of cohomology, chains, cocyles, coboundaries, and cohomology classes,

all live in abelian groups that are often very large. If we work with coefficients from

ZX for example, then they are exponentially large in log N. If we work with coeffi-

cients from Z or C, then they are infinite abelian groups. In both of these cases, we

have seen that the ability of quantum computers to work with such groups leads to

apparent exponential speedups.

Finally, it is worth mentioning that cohomology has other applications to quantum

computation outside of those discussed above. Let us briefly give some intuition for

why this occurs.

As Hatcher noted 134], we can think of the elements of Za(A) as those n-chains

that appear locally to be boundaries. To see this, recall that, for any boundary

9n+ic C Bn(A), we have an(onlc) = 0, so ad = 0 is a condition we can check on

any d E Cn(A) that will always hold for boundaries. Furthermore, this condition

is local because, as we noted above, &ad is usually very sparse. For example, in an

n-dimensional simplicial complex, which can have as many as 2" - 1 simplexes, no

face has more than n + 1 faces on its boundary.

The cycle group, Zn(A), contains those elements that pass this local test. If this

test always sufficed, we would have Z,(A) = Bn(A) and the homology group would be

trivial. Whenever we find that Ha(A) = Za(A)/B,(A) is non-trivial, it means that

it is possible for n-chains to look locally like boundaries without being boundaries.

133

Hence, Ha(A) tells us something useful about the difference between the local and

global views of these objects.

Differences between the local and global views of objects arise in quantum com-

puting, for example, with maximally entangled states, which appear the same locally

as tensor products of maximally mixed states. Abramsky et al. showed [1] that co-

homological techniques can be used to prove that certain states are nonlocal based

solely on their measurement outcomes. Hence, even in cases where the computational

problems are classically solvable, cohomological techniques have proven useful in the

study of quantum systems.

134

Chapter 7

Summary

In this thesis, we have examined ways in which we can leverage the ability of quantum

computers to understand finite abelian groups in order to solve problems on more

complex structures, namely, non-abelian groups, hypergroups, and A-complexes.

We considered three approaches in detail:

1. Taking advantage of a well-organized collection of abelian substructures.

We applied this approach to certain nilpotent groups' in order to solve the

hidden subgroup problem and to ultragroups in order solve the hidden subhy-

pergroup problem. For ultragroups, this technique also allowed us to prepare

uniform superpositions over subhypergroups, showing that a result of Watrous

for solvable groups [62] can be extended to ultragroups.

2. Translating a non-abelian structure into an abelian one.

We applied this approach to non-abelian groups, translating them into abelian

hypergroups, in order to solve the hidden kernel problem and the hidden sub-

group problem for class functions.

3. Examine certain abelian groups of maps from our structures into an abelian

group (i.e., cohomology).

'Specifically, those nilpotent groups whose order is divisible by only large primes.

135

Objects Technique Problem Solved
nilpotent groups2 substructure Hidden Subgroup Problem (HSP)
ultragroups substructure preparing subhypergroup superpositions
ultragroups substructure Hidden Subhypergroup Problem (HSHP)
non-abelian groups translation Hidden Kernel Problem (HKP)
non-abelian groups translation HSP for class functions
non-abelian groups cohomology testing equivalence of group extensions
non-abelian groups cohomology sizes of cocycle and coboundary groups
A-complexes cohomology sizes of cocycle and coboundary groups

Table 7.1: A summary of problems solved in this thesis.

We applied this approach to non-abelian groups in order to test the equiva-

lence of group extensions and to compute the number of equivalence classes.

We also applied it to A-complexes in order to compute the size of the tor-

sion coefficients of their cohomology groups-topological invariants useful for

distinguishing non-homeomorphic spaces.

Each of these problems, save one, can be solved on classical computers. For

each, however, we also gave strong evidence of an exponential speedup for quantum

algorithms versus classical ones, improving either from exponential to subexponential

time or from subexponential to polynomial time.

These results are summarized in Table 7. Along with those of Ivanyos et. al [37]

and Watrous [62], they provide a compelling demonstration of the power of quantum

computers to solve important problems on more complex finite structures by utilizing

their ability to solve problems on abelian groups.

2For those nilpotent groups whose order is divisible by only large primes.

136

Appendix A

Representation Theory

In this chapter, we review all of the representation theory background that we will

need in this thesis. Some proofs below are sketches. See the references for complete

proofs. Unless stated otherwise, all of this material can be found in [57].

A.1 Irreducible Representations

Initially, it appears as though the problem of identifying all the representations of a

finite group G may be intractable since there could be (and, in fact, are) infinitely

many non-isomorphic representations. In this section, we will take a giant step in

taming this problem by showing that it is sufficient to identify only the smallest rep-

resentations, as all other representations are built up from these in a simple manner.

A representation p is called irreducible if there is no nontrivial vector subspace

of V that is stable under multiplication by p(g) for every g E G. In symbols, there

is no nonzero subspace W <; V such that p(g)W < W for all g E G.

Theorem A.1 (Maschke). Every representation is isomorphic to a direct sum of

irreducible representations.

Proof. The function (vIw)i,, := EgEG(p(9)V I p(g)w) defines an inner product on

V. For any h E G, we can see that (p(h)vIw)i,, = EgIG(p(g)p(h)v I p(g)w) =

EgEG(p(gh)v I p(g)w) = 1 g=gh-1EG(p(g')v I p(g'h- 1)w) = (v I p(h--W)nv

137

Suppose that W <,; V, is a subspace stable under p(g) for all g E G. If v E W,

then, by definition, we have (v I w) = 0 for all w E W. For any h E G, this means

that, with the new inner product, we have (p(g)v w)ilv = (v I p(g-1)w)inv = 0 since

p(g-')w E W. Thus, the space W-L is also stable under p.

From this, we can write V = W E W', where W and W' are both representa-

tions using p restricted to that subspace. Since any 1-dimensional space is trivially

irreducible (as it has no proper subspaces), the theorem follows by induction on the

dimension V. E

A representation p : G -+ GL(V) is said to be unitary if each p(g) is a unitary

transformation, i.e., p(g) E U(V) C GL(V), for every g E G.

Theorem A.2. Every representation is isomorphic to a unitary representation.

Proof. The inner product (- I-)n, defined in the proof of Maschke's Theorem above

is invariant under multiplication by any p(h). That is, we have (p(h)v I p(h)w)in, =

(v J w)in, for every h E G, which says precisely that each p(h) is a unitary transfor-

mation (since we already know it is invertible).

If we choose a basis fi, .. . , fd that is orthonormal according to this inner product,

then the change of basis ej '-+ fi transforms p into a unitary representation. E

The following simple fact about irreducible representations has sophisticated and

important consequences.

Lemma A.3 (Schur). Let p and a be irreducible representations of G, and suppose

that T : V, -+ V, is an intertwining map. If p and a are not isomorphic, then T = 0,

and if p = a, then T is a scalar multiple of the identity map.

Proof. The kernel and image of T are stable under p and a, respectively. Since both

are irreducible, the kernel must be {0} or V, and the image must be {0} or V. If

the kernel is V (or equivalently, the image of T is {0}), then the lemma is proved.

Otherwise, the kernel of T is {0} and T is an isomorphism V 2-'- V, intertwining p

and o-, so p o a and we must be in the case p = a.

138

Let A be an eigenvalue of T (which always exists working over C), and consider

the map S = T - A I. Since Tp(g) = u(g)T and Ip(g) = p(g) = o-(g) = o(g)I, we

have Sp(g) = a(g)S for all g E G. Applying the argument above to S and noting

that Ker S - {O} by construction, we must have S = 0, or equivalently, T = A I. E

While the above requires an intertwining map, we can extend this result to arbi-

trary linear transformations if we symmetrize the map first.

Corollary A.4. Let p and a be irreducible representations of G, and suppose that

T : V -+ V, is an (arbitrary) linear transformation. Define the tranformation

S := |G-'joa(g) 1Tp(g).
gEG

If p and a are not isomorphic, then S = 0, and if p = a, then S = A I with A = tr T/dp.

Proof. A short calculation verifies that S : V, -+ V, is an intertwining map. The

result then follows from Schur's Lemma, with the exact value of A found by taking

the trace on both sides of S = A I.

The fact that T is an arbitrary linear map makes this last corollary much more

substantial than it may seem at first. In particular, expanding the right hand side of

the definition of S gives a linear function in the dp x d, coefficients of T. Whenever

the above result says that this is zero, it means this linear function must be zero

everywhere, which requires that every coefficient be zero. That leads to the following.

Corollary A.5. Let p and a be irreducible representations of G given in matrix form.

Then for every i, j E Zd, and k,E E Zd,, the sum

gEG

is zero if p and a are not isomorphic and 6i,ktj,e/dp if p = a.

Proof. This follows from the above discussion. Looking at the (k, j) entry of S gives

the above sum for the coefficient on [T]jj.

139

Finally, we derive one more consequence that will be important in the next section.

Corollary A.6. Let p be an irreducible representation of G, and suppose that f

G -+ C is a class function. Then the linear transformation T E GL(V,) defined by

Tf :=E f(g)p(g)
gEG

is A I with A = (IG|/dimV)(f IP), where (-I-) is the same inner product we defined

for characters (and which makes sense for any class function).

Proof. We can see that p(x- 1)Tfp(x) = ZgEG f (pg = Zh=gxEG f(hx 1)p(h) =

ZhEG f(h)p(g) = Tf, where f(h') = f(h) for any h, x E G since f is a class function.

This shows that Tfp(h) = p(h) -Tf, which says that Tf is an intertwining map. Thus,

Tf = A I by Schur's Lemma.

To calculate the value of A, we take the trace of both sides. We have tr(A I) =

A dim V and tr Tf = ZgEG f(g) tr p(g) = ZgEG f(g)XP(g) = IGI (f I x,). I

A.2 Character Theory

In section 2.2, we defined the character Xp of a representation p and noted that it

removed redundancy by identifying isomorphic representations. In this section, we

will show that characters equate only isomorphic representations and no others (i.e.,

they are in 1-to-1 correspondence with isomorphism classes of representations), they

allow us to easily identify irreducible representations, and they give us a second basis

for the space of class functions.

We begin by showing that the irreducible characters are orthonormal under the

inner product we defined before.

Theorem A.7. Let p and o- be irreducible representations of G. Then (x I x,) is 1

if p p r and 0 otherwise.

Proof. Choosing an arbitrary basis for V and V, we may assume that they are given

in matrix form. By the definition of trace, we have Xp(g) = l 1[p(g)]j,j and likewise

140

for x,. Hence, we can see that (XO, I XP) =Zi E 1d IGI- 1 EgEG [9u1)k,k[P(9)i,i-

By Corollary A.5, this sum is zero when p and o- are not isomorphic, and when p a,

the sum is %= k= 6i,k/dp = 1. El

We have already seen that an arbitrary representation p is isomorphic to a direct

sum of irreducible representations. If U1,... , O are the irreducible representations

appearing in this direct sum decomposition of p, then we have p a m1 o-i D e mkO,

for some m 1 , , mk E Z with mi > 0. (Here, ma denotes the direct sum of m copies

of o-.) This means that Xp = Ek (since Xoeo, = xo, + xo,), and, hence, that

(Xp I X,,) = mi gives the number of copies of a- in the direct sum decomposition of p.

These observations are also sufficient to prove that character are in 1-to-1 corre-

spondence with isomorphism classes of representations (i.e., that they characterize

the isomorphic representations).

Theorem A.8. Representations have identical characters iff they are isomorphic.

Proof. We have seen that isomorphic representations have identical characters. Now,

suppose that representations p and y have identical characters. Expanding our set of

irreducible representations to include those appearing in the direct sum decomposition

of ^y as well, we can write p 2 miOr E ... -Mkg and y a nial e --D nkuk, where

some of the mi's and ni's may now be zero. Applying Theorem A.7, we can see that

(Xp IX,) = rmi. Since Xp = Xy,, we conclude that mi = ni for all i. Thus, p and y are

both isomorphic to mio (... - mkuk and, hence, to each other. I

Let p and 'y be two arbitrary representations, and write p a m1U1 E G) - mkUk

and y nia E ... E nkUk as in the proof above. By the linearity of the inner product

and our formula for the inner product of irreducible characters (Theorem A.7), we

can see that (Xp I Xy) = Ek mini.

This calculation shows that (Xp I x) is actually the dimension of the space of

intertwining maps between V and V,. (In symbols, (Xp|Xy) = dim HomG(Vp, Vy).)

Schur's Lemma tells us that the space of maps between the same irreducible repre-

sentation is actually 1-dimensional, so the space of maps from the direct sum of m

141

copies into the direct sum of n copies is isomorphic to the space of m x n matrices,

which has size mn. When we have multiple inequivalent irreducible representations,

we can make independent choices for each isomorphism class, so the dimensions add.

We will use this correspondence again in section A.3.

This formula also allows us to immediately derive the following consequence.

Theorem A.9. Let p be a representation of G. Then (Xp I X) is a positive integer,

and it is 1 iff p is irreducible.

Proof. We have (Xp I X,) = E1 m', which is always positive and equals 1 iff k = 1

and mi = 1, i.e., if p is isomorphic to the irreducible representation a-. El

This last result demonstrates that the irreducible characters form an orthonormal

basis for the space of all character functions. As we noted in section 2.2, characters are

also class functions, so the irreducible representations form a basis for some subspace

of the space of class functions. The following theorem shows that this subspace is, in

fact, the whole space.

Theorem A.10. The irreducible characters form an orthonormal basis for the space

of class functions on G.

Proof. Let f : G -+ C be any class function from the space orthogonal to that spanned

by the irreducible characters. For any irreducible representation p, the map Tf from

Corollary A.6 must be zero since (f I ,) = 0 by assumption (as T, is irreducible when

Xp is). Since an arbitrary character is equal to a sum of irreducible characters, we

can see that (f I xp) = 0 and, hence, T = 0 for any representation p.

Next, we apply this to the regular representation. In that case, we have 0 =

Tfle) = EgEG f(g) reg(g)je) = ZgEG f(g)g), which means that f(g) = 0 Vg E G. So

the only class function orthogonal to the space spanned by irreducible characters is

the zero function, which means the irreducible characters span the whole space. E

The technique used above, of proving new results by applying the basic theorems

to a carefully chosen (reducible) representation, will reoccur throughout this chapter.

An important consequence of this theorem is the following.

142

Theorem A.11 (Column Orthogonality). Let X0 1 ,... I O be the complete set of

irreducible characters of G. Then, for any g, h E G, the sum E, (g)x,, (h) is

IG|/|Cj if h E Cg and zero otherwise.

Proof. Let fg be the function that is 1 on Cg and 0 elsewhere. By Theorem A.10,

we can write fg = EZ I(f I x,,)x,,. By the definition of fg, we have (f I Xi) =

-5,(g)lCgI/(G. Hence, for any h E G, we have fg(h) = (ICgJ/IGJ) E k ,(g)x, (h).
Substituting the definition of fg(h) on the left gives the desired result. E

Finally, we give one simple application of these results.

Proposition A.12. Let xe1,... , XO be the complete set of irreducible characters of

G. Then EZk d = |G|.

Proof. The number of copies of o occurring in the regular representation is (Xreg I Xo)

and since Xreg is nonzero only at e, we can see that (Xreg I xo) = G -xreg(e) Xo(e) =

IG--1 GIdoy = dj. By the direct sum decomposition, the dimension of reg is EZ= 1 da,,

but we also know that this dimension is IGI by the definition of reg.

Now that we have proven the essential facts about representations and characters

in general, we will move on to more sophisticated ways of constructing actual repre-

sentations. Our goal in the final section is to show how to construct all the irreducible

representations of supersolvable groups.

A.3 Induced Representations

Let p be a representation of a subgroup H < G. The induced representation,

denoted IndH p, is a representation of G that merges the representation p on the

subgroup H with the regular representation of G to get a representation of the whole

group.

The cleanest way to construct the induced representation is as follows. We start

with the vector space VregG & Vp. We want to have g E G act just on the left

part by regG(g) 9 I, and we want to have h E H act on just the right part by

143

I op(h), so we quotient out the vector space of differences between the two, i.e.,

regG(h) v) 0 w) - Iv) 9 p(h)Iw) for every h E H, Iv) E VregG, |w) E V. Then Ind Gp

acts on the quotient of these two vector spaces, which we denote VregG OH Vp-

We can describe this more concretely after noting that, if h E H acts only on

Vp, then only the coset gH affects how g affects Vreg0 . Choosing a set of representa-

tives gi, . . . , g, for the cosets in G/H, the underlying vector space of IndG p will be

ej| Igi) 9 V. Now, when g E G acts on this space, it will take Igi) to the unique

Igj) such that ggiH = gjH. However, the product ggi (in G) need not be exactly gj.

Instead, we will have ggi = gjh for some h E H. In fact, we have h = g'ggi. This

part in H will act on V instead. The operation corresponding to g under IndH p will

take lgi) 91w) to Igj) 9 p(g,'ggj)jw) for the one gj such that g, ggi E H.2

Example A.13. Indf,} triv{e} is just the regular representation of G. More generally,

if N < G is a normal subgroup, then IndG trivN is the regular representation of GN

since triv simply throws away the N part of each element.

It is follows quickly from these definitions that induction is transitive.

Proposition A.14. For any representation p of a subgroup K < H < G, we have

IndH IndK p = IndK p.

Proof. From our first definition, the representation IndH Indi acts by the regular

representation on Vregg OH Vregy OK Vp- We will focus on the first two parts, VregG OH

VregH. The action of any h E H is, by construction, equivalent on the two parts, we

may take the operation of every g E G to be identity on the VregH subspace. Hence,

we can get an equivalent representation by dropping this subspace, which leaves us

with Vreg, OK V and the action of g E G on it being regG(g) 01, so this is Indi p.

We can also easily describe the character of IndG p.

Theorem A.15 (Frobenius Formula). The character of the representation IndG p is

given by xIndg (g) = ZxEG/H Zp(gx), where jp(g) = xp(g) if g E H and 0 otherwise.

'The subscription "IF on the 9 refers to the fact that we have modded out the differences
between the two representations of the subgroup H.

2While it may seem that this construction depends on the choice of representatives, our first
definition manifestly does not and the second is merely a more concrete description of the former.

144,

Note that it does not matter which representative we choose for each coset in

G/H. If we choose xh instead of x, then the sum contains Xp(gxh) = Xp((gx)h) and,

since Xp is a class function on H, this is still Xp(gx). (Also, (gx)h E H iff gx E H.)

Proof. The only parts of the operator for g that appear in the trace are those that

show up on the diagonal. This means that we need ggi = gih, i.e., g71 ggi = ge E H.

The sum above includes only those gi and, for those, the trace of the operation p(ggi)

on V, is Xp(ggi) by definition.

It is also possible to turn a representation of the group G into a representation of

the subgroup H < G simply by restricting the function to that subgroup. If a is a

representation of G, then we denote its restriction to H by by ResH 0'

While seemingly simple, the operation of restriction has a close relationship with

induction. The following lemma shows that every intertwining map between a repre-

sentation p of H and ResH a can be uniquely extended to an intertwining map between

Indi p and o-. That is, these two spaces of intertwining maps are isomorphic.3

Lemma A.16. Let a be a representation of G and p be a representation of H < G.

Then HomG(IndG p, o-) HomH (p, ResG a).

Proof. For brevity, let # Indi p. Let S E HomH(p, Res a-) be an intertwining

map, and let T E HomG(IndG p, a) be another that is equal to S on the subspace

Ie) 0 V. Then, for any lgi) 9 1w) E VregH 0H V, since we have 0(g71)(gj) 9 1w)) E

le) 0 V,, we know that T0(g7 1)(|gj) 9 1w)) = Siw). This means that T(Igi) | 1w)) =

To(e)(Igi) 0 w)) = To (gi) (gz- 1)(|gi) 01w)) = a(gi)To (g- 1)(|gi) 91w)) = o-(gi)SIw).

Thus, if we know that T matches S on the subspace Ie) 0 V, then we know how it

acts everywhere, which means that there can be at most one such T for each S.

On the other hand, starting with an S E HomH(p, ResH o), we can define a T by

'In fact, this says a lot more. Though we will not need it here, in the language of category theory,
this lemma shows that Ind and Res are so-called adjoint functors.

145

T(Igi) 0 1w)) := o-(gi)S~w). Then, just using the properties of S, we can see that

TVb(g)(|gi) 0 1w)) = T(Igj) 0 p(g 1 ggi)|w)) = o-(gj)Sp(gf'gg)|w)

= a-(g gi ggi)S w) = o-(mgg)SIw) = a W o (gi)SIw)

= -(g)T(|gi) | 1w)),

which shows that T is an interwining map.

Thus, we have established a 1-to-1 correspondence between the two types of in-

tertwining maps, which completes the proof. El

The following is an immediate consequence.

Theorem A.17 (Frobenius Reciprocity). Let o- be a representation of G and p be a

representation of H < G. Then (XlndHp Xo)G = (Xp I H

Proof. As noted before, the inner product of two characters is also the dimension

of the space of intertwining maps between the corresponding representations, so this

follows immediately from the lemma.

The next result shows how the operations of restriction and induction interact.

Theorem A.18 (Mackey's Decomposition Formula). Let p be a representation of

H < G, and let K < G be another subgroup. Then we have

ResK IndH p - & Ind pX,
xEK\G/H

where Hx:= K n Hx and p' is the representation of Hx defined by px(g) := p(gx).

Note that the above definition makes sense since px is defined on Hx : if g E Hx

then g = hx 1 for some h E H, which means that px(g) = p(gx) = p(hx 1x) = p(h)

and p is defined on H.

Proof. In Ind G p, we can take Igi) 0 V into Jgj) 0 V by applying the operator corre-

sponding to gjg,- 1. Once we restrict to the subgroup K, we can only take the Igi) 0 V

146

into those Jgj) 0 V such that gj E Kgi. In other words, the spaces correspond-

ing to cosets giH and gjH only interact if we have gH E KgiH or, equivalently,

KgjH = KgiH. Hence, cosets that do not lie in the same double coset of K\G/H

have no interaction, which means that our representation is a direct sum over such

double cosets. It remains only to determine the structure within each double coset.

If we pick a gi E K\G/H, then we can see that the subset of k E K such that the

operator for k takes lge) 0 V to itself consists of exactly those such that k = gehgT1

for some h c H, so this is precisely the set Hg,. For k1, k2 E K, we get the same

G/H coset in KgeH iff k1g1H = k2gtH iff (k2ge)> 1 (k1ge) E H iff g 1 kik1g E H iff

kIlki E H1e1 iff k2H9fe = kiHg1 '. This shows that the distinct G/H cosets in KgeH

are in 1-to-1 correspondence with cosets of K/Hg,, which shows that the subset of

ResK IndH p corresponding to Kg1H is isomorphic to (XEK/H V, as a vector space.

Finally, from the definition, when taking I kige) 0 V to I k2ge) 0 V,, the operator for

k in ResK IndH p takes Ikige) 0 1w) to Jk2ge) 0 p((k29g)- 1 k(kige))Jw). The operation

on V is p((k 2ge)- 1k(kige)) = p(gI1 k2ckkig) = pge(k2lkki), which is, by definition,

the operator for k in Ind K pul taking 1ki) 0 Vg, to 1k2) 0 Vpgt. So we can see that

this is indeed the representation IndH, p91 (up to a vector space isomorphism). E

This theorem also gives us a formula for the character of ResK IndH p since the

character of a direct sum of representations is just the sum of the characters of those

representations and we know the characters of each representation appearing in the

sum above from Frobenius's formula.

We can also say exactly when an induced representation is irreducible.

Theorem A.19 (Mackey's Irreducibility Criterion). Let p be a representation of

H ; G. Then IndH p is irreducible iff (1) p is irreducible and (2), for every x E G,

the representations px and ResH. p contain no common irreducible representations

(i.e., zero inner product).

Proof. Since a representation is irreducible iff its inner product with itself is 1, we

merely need to compute this inner product, which we can do easily using Frobenius

147

reciprocity and Mackey's decomposition formula:

(xInad p I XIna G)G (X pI XResG Ind p)H

= Z (XP IXInd H p) H
XEH\G/H

= Z (p,~e~plH x)x
xEH\G/H

When x = e, we have px = p and ResH p = p since Hx = HfnHe = H. Since (pIp)

is an integer no smaller than 1, we can only have (IndG p I Ind p) = 1 if (PIP) = 1

and every other term in the sum is zero. These are conditions (1) and (2) above. El

An important special case is when H is a normal subgroup. In that case, we

have Hx = H, which means that Hx = H and IndH px is just px. Hence, the

irreducibility criterion becomes much simpler.

Corollary A.20. Let p be a representation of N < G. Then IndG p is irreducible iff

p is irreducible and px 9 p for every x) e in GN.

We can see that (Xp I Xp) = (xpx I xp) since the latter just reorders the sum, so

p is irreducible iff px is. Hence, if p is irreducible, then (Xp I Xpx) is either zero or

one depending on whether p and px are equivalent or inequivalent. Thus, another

way of stating the corollary is that IndG p is irreducible iff {px x E G/N} is a set of

irreducible, inequivalent representations. This will come up again in the next section.

A.4 Clifford Theory

Clifford Theory describes how irreducible representations of G are built out of irre-

ducible representations of a normal subgroup N <G. The main result is the following.

Theorem A.21 (Clifford). Let p be an irreducible representation of G, N < G a nor-

mal subgroup, and p an irreducible representation of N occurring in ResN p. Define

148

IG(p) to be the set of x E G such that px y p (called the inertia group of Ia). Then

ResGp (g(®
XEG/IG(,p)

where e E Z divides [IG(p) : N]. In fact, we have p & Ind,() V), where 4 is an

irreducible representation of IG(p) such that Res(1ep

Proof. Vp is isomorphic to a direct sum of irreducible representations of N, at least

one of which is, by assumption, V,. Let V9, be the subspace of V corresponding to

V, under this isomorphism. For g E G, p(g)f,, is another representation of N, where

n E N acts by p(n)p(g)|v) = p(ng)|v) = p(gn9)jv) = p(g)p(n9)jv) E p(g)V ,, using

that n- E N since N is normal. I.e., this representation on p(g),, is equivalent to p-9.

We can see that UgEG pXg)V is a subspace of V. Since it is stable under every

p(g), it is itself a representation. But since p is irreducible, this must be all of VI.

Since p(g) is invertible (i.e., it is a vector space isomorphism), each space p(g),,

has the same dimension as f,,. As noted above, each representation p/g is an irreducible

representation of N since y is. Thus, p(g) must permute these spaces: if any Iv) is

common to p(gi)V, and p(92)Vy, then since the span of {pa9i(n)Iv) In E N} is the

whole space for either i C {1, 2}, they are the same space.

Now, we can define a subgroup K < G such that k E K if p(k), = V>. We

certainly have N < K. We can also define a larger subgroup IG(L) such that g E IG(p)

if p(g)VI, a V, as representations. We then have N < K < IG(p) G.

Let 4, be the representation obtained by restricting p to IG(p) and to the subspace

UgEI(,)/K p .g)V> We can see that ResG(7)'O 4, pEDe, where e = [IG(y) : K] divides

[IG(y) : N] = [IGO() : K][K : N].

By the same arguments as above, we can see that the p(g)V1 's are representations

of IG(p) corresponding to 09. But now these are all inequivalent by construction (as

they contain pg's that are inequivalent). Thus, by the discussion at the end of last

section, we must have p = Ind() . E

It is possible to say more about the representation 4 that appears in Clifford's

149

Theorem. It is actually constructed in a simple way from p and a representation of

IG(p)/N. However, the pieces involved in this construction are not ordinary repre-

sentations but rather so-called projective representations. See [39] for details.

Thankfully, the situation becomes drastically simpler if we require that N has

prime index in G, which will be the main case of interest in this thesis, as we will

see in the next section. In the remainder of this section, we will determine how p is

related to other irreducible representations of G whose restriction to N contains A.

The key calculation is the following. This and the corollary that follows are from [54].

Lemma A.22. Let p be a representation of G, N < G a normal subgroup, and p an

irreducible representation occurring in ResN p. Then the irreducible components of

IndN p are all of the form p 0 V, where V is an irreducible representation of GIN.

Proof. By Mackey's decomposition formula, we know that ResG Indi y ZXEG/N

If x E IG()/N, then we have px 2 x, so we can write this also as ResG Ind 2 G A

[IG(p) : N] EZEG/IG(,) AX a ([IG() : N]/e)e ExEG/IG(p) Yx (IG() N)/e) ResG p,

where we have rewritten ResN p using Clifford's Theorem.

Now, let = Ind G triv, and consider the representation p 09. Since 0 (n) is a [G:

N]-dimensional identity matrix for n E N, we can see that Xp&,p(n) = Xp(n)XP(n) =

XP(n)[G: N] = [G: N](e/[IG(p) : N])XIfldo,(n) = e[GN: IG(,)XIndop(n). For g g N,

we know that both xO(g) = 0 and XlndN (g) = 0 by the Frobenius formula (or by

noting that Ind5 y permutes the y blocks). Thus, we have Xp®sJ, e[G : IG() XIndG y

for all g E G, which means that p 04' r e[G : IG(y)] IndN p.

As noted in the proof of A. 12, every irreducible representation of G/N occurs in

the regular representation of G/N, which is 4 above. Thus, p 0 9' contains every

irreducible representation of the form p 9 cp, where o is an irreducible representation

of G/N, so the same must be true of the IndG i by our isomorphism above. E

It follows immediately, by Frobenius reciprocity, that the set of irreducible repre-

sentations o- of G such that ResN o- contains p (i.e., (Res N- I p)N > 0) is precisely

the set of irreducible representations of G contained in Ind G ft. In more detail, we

have the following.

150

Corollary A.23. Let N < G be a normal subgroup, and let p and 0- be two irreducible

representations of G such that ResN p - Resv a. Then p a c9 0 , where o is a

1-dimensional irreducible representation of G/N.

Proof. By the previous paragraph, we must have p 2 a 0 for some irreducible

representation of G/N. However, we cannot have Resi p Resi a unless p and a

have the same dimension, which means p must be 1-dimensional. 0

A.5 Representations of Supersolvable Groups

Let G be a supersolvable group. By definition, there is a normal series {e} = No

N1 ... Nk = G with the property that [Ni+ 1 : Ni] is prime for each 0 < i < k.

Let p be a representation of Ni+ 1 and p a representation of Ni contained in

ResZ+1 p. Since there are no subgroups that lie strictly between Ni and Ni+1, we

either have IG(I) = Ni or IG(p) = Ni+1. In the former case, Clifford's Theorem tells

us we have p = IndN' y. In the latter case, it tells us that Res' p /.

Furthermore, whether we have y9 2 y or pa9 # p for any g E Ni+ 1 \ Ni (and hence

all g E Ni+1 \ Ni since Ni+ 1 /Ni is generated by one element) is independent of which

p we are talking about. Hence, either every representation of Ni+ 1 whose restriction

to Ni contains p is induced from y or none are.

Let a be another irreducible representation of Ni+ 1 whose restriction to Ni con-

tains p. As just noted, either both p and a are induced or neither is. In the former

case, we have p, a Ind+1 p, so these are the same representation. In the latter

case, by Corollary A.23, we have a p 9 o for some 1-dimensional irreducible rep-

resentation p of G/N and, since the characters of these representations are different,

they are inequivalent. Hence, in the latter case, the number of inequivalent irreducible

representations of Ni+ 1 whose restriction to Ni contains p is exactly [N,+ 1 : N,].4

The above is described in more detail in [7]. Although we will not need it in this

thesis, the authors also make the observation that, in the case where p9 y (so

4Since the size of Ni+i/Ni is prime, it is abelian, and in that case, the number of inequivalent
irreducible representations is equal to the size of the group.

151

p = p 9 p), p and it both operate on the same vector space and agree for all n E Ni,

so we have p9(n) = p(ng) = p(n9) = p(g)'p(n)p(g) = p(g)-'p(n)p(g), which shows

that p(g) E HomG(Mg, P) is an intertwining map. Conversely, if X E HomG(P, 1)

is any intertwining map scaled so that Xg = I, then defining p(gin) := X'p(n)

gives a representation of Nj+1 = (g)Ni. Furthermore, they show that, if we choose

appropriate bases for all of these representations, then there is always an intertwining

map that is a monomial matrix, and the latter can be constructed by working through

the Ni's in a bottom-up fashion.

A.6 Representations of Nilpotent Groups

The results of the previous section show that every representation of a supersolvable

group with normal series No 5 - - - < Nk is built up by starting with the trivial

representation of No = {e} and then, for each i = 1,... , k, extending it to a rep-

resentation of Nj+1 by either using induction or taking the tensor product with a

(1-dimensional) representation of Nj+1/Nj. For nilpotent groups, however, we can

refine this description even further 143].

Theorem A.24. Every irreducible representation of a nilpotent group G is of the

form Indi Gp for some subgroup H < G containing the center, Z(G), and some 1-

dimensional representation V : H - C.5

Proof adapted from [43]. We will prove this by induction on I G I. The result is imme-

diate for all abelian groups, including the case GJ = 1, since all irreducible represen-

tations of such groups are 1-dimensional.6

Likewise, we can quickly dispatch the case when p has a non-trivial kernel. If

Ker p = {e}, then p can be viewed as an (irreducible) representation P of G/ Ker p,

and, since the latter group is strictly smaller, the induction hypothesis tells us that

5In particular, this shows that every irreducible representation of a nilpotent group is monomial.
6This follows from the fact that we cannot have an isomorphism from an abelian group to a non-

abelian one. In particular, the image of the group under the representation must be a commuting set
of operators, which can be simultaneously diagonalized. This would contradict irreducibility were
the vector space not 1-dimensional.

152

p = Ind/ Kr p for some H < G. If we define p : G -+ C by p(g) = p(g Ker p), then

this gives us a 1-dimensional (hence, irreducible) representation of K. It is routine

(but tedious) to verify that we then have p = IndH (P.

Thus, we are left to deal with the case where G is a non-abelian, nilpotent group

and the representation p has a trivial kernel. In this case, let x E Z2 (G) \ Z(G).

Then the subgroup (x)Z(G) is normal: since x is in the center of G/Z(G), for every

g E G, we know that (xZ(G))g = x9Z(G) = xZ(G), which shows that (x)Z(G) is

normal. We can also see that (xiz)(xiz') = -+jzz'= (xjz')(x'z) for any z, z' E Z(G),

so (x)Z(G) is also abelian.

We will apply Clifford's Theorem with normal subgroup N := (x)Z(G) to any

representation p of G. Let y be an irreducible representation of N arising in ResN p

Since N is abelian, we know that ft must be 1-dimensional.

We first note that IG(p) cannot be all of G. Suppose not. Then Res%() e

This means that there is a change of basis U such that Up(n)U 1 = P(n) I for any

n E N, so we have p(n) = U~p(n) I U = p(n) I. Hence, for any g E G, we have

p(ng) = p(g)tp(n)p(g) = p(g)tp(n) I p(g) = y(n) I = p(n). Now, since x E N \ Z(G),

there is some g such that xg # x, and since p is an isomorphism onto its range,

we must have p(x9) f p(x). However, xg c N as well since N is normal, so this

contradicts what we just showed.

Clifford's Theorem tells us that p a Ind,,(,,) 4, where V' is an irreducible represen-

tation of IG(p). By the previous paragraph, JIG(M)l is strictly smaller than IGI, so by

induction, we have 4 - Ind,(') p for some normal subgroup H < IG(p). This means

that p ! IndG Ind'G (/I) = IndG p, with the last equality by Proposition A.14. 0

153

154

Appendix B

Group Cohomology

In this chapter, we review the background on group cohomology that we will need in

this thesis. (For a more detailed treatment, see [551.) Our eventual goal is a proof

that group extensions are in 1-to-1 correspondence with elements of the corresponding

second cohomology group.

Recall that G is said to be an extension of A by K if A < G is an abelian normal

subgroup and G/A =' K. If G' is another extension of A by K, then we say that

G and G' are equivalent if there exists an isomorphism - : G -+ G' that leaves A

and K fixed. In detail, the latter means that (1) 7 is the identity on H and (2) y

leaves each g E G in the same coset of A. We can write condition (2) in symbols as

7r'(y(g)) = ir(g), for all g C G, where 7r: G -+ K and 7r' : G' -+ K are the usual

projections that take the quotient by A. This definition captures what it means to

be "the same" extension of A by K.

Notation Since A is an abelian group, we will use additive notation-writing a + b

instead of ab-for calculations that take place entirely within A.

B.1 From Extensions to Factor Sets

Let G be an extension of A by K. In this section, we will describe two pieces of

information derived from G. In the next section, we will see that these two pieces of

155

information, in fact, completely characterize the extension up to equivalence.

First, we can define a homomorphism OG : K -+ Aut A into the automorphism

group of A by taking the coset gA to the inner automorphism a '-4 ag. Note that this

is well defined (i.e., independent of our choice of representative for the coset gA) since,

if g' = gb, for some b E A, then ag' = agb = (gb)-'a(gb) = b-g'agb = b-'aab = a9

since b, a9 E A and A is abelian. We will denote the value of this homomorphism

applied to x by px rather than p(x) since this is itself a function and this notation

lets us write px(a) rather than V(x)(a).

Second, we can define a map fG : K x K -+ A from pairs of elements from K into

A. To construct this map, we first choose a set of representatives of each the cosets.

For each x E K, let e(x) be an element of the coset mapping to x, i.e., satisfying

7#(x)) = x. The values of e: K -+ G can be arbitrary except that we fix e to be the

representative for the coset A = eA. We then define fG(x, y) := f(x)f(y)f(xy)-

The map fG is called a factor set. It has two important properties:

1. Normalization: For any x E K, we have f(x, e) = f(e, x) = e.

This follows from our choice of f(e) = e since we have f(x, e) = f(x)e(e)e(x) 1 =

(x)f (x)-= e and similarly for f(e, x).

2. Cocycle Condition: For any x, y, z E K, we have

f(x, y) + f(xy, z) = V(y, z)) + f(x, yz).

To see this, we first note that, by definition, we have f(x)f(y) = f(x, y)I(xy).

Then, we have (t(x)e(y))f(z) = f(x, y)f(xy)f(z) = f(x, y)f(xy, z)f(xyz) and,

on the other hand, f(x)(e(y)(z)) = e(x)f(y, z)C(yz) = f(y, z)(X)e(x)I(yz) =

Wx(f(y, z))f(x, yz)e(xyz). Cancelling f(xyz) gives the equation above.

In chapter 2, we saw two examples of group extensions: semidirect products and

central extensions. Let us look at the above maps for these two types of extensions.

In a central extension, by definition, we have A ; Z(G). This means that a9 =

g-lag = a for every a E A and g E G. As a result, the homomorphism o is the

156

identity since Sox is the identity for every x E K. We will see below that the converse

is also true: if o is the identity, then G is a central extension.

In a semidirect product, the quotient G/A a K is isomorphic to a subgroup of

G itself. In detail, if G = A >, K, with product (a, x)(b, y) = (aox (b), xy), then K

is isomorphic to the set of elements { (e, x) x E K}. This forms a subgroup since it

contains (e, e) and (e, x)(e, y) = (Vx(e), xy) = (e, xy).

Hence, in this semidirect product, we can choose f(x) = (e, x) as the representative

of the coset (e, x)A, where A is the subgroup {(a, e) I a E A}. In that case, we have

fG(x, y) = (e, x)(e, y)(e, xy)~ 1 = (e, xy) (e,xy 1 = (e, e), which shows that fG is

uniformly identity. We will see below that the converse is also true: if fG is uniformly

identity, then G is a semidirect product.

More generally, this last example shows that fG is a measure of how close e is to

being a homomorphism. If f is fully a homomorphism, then fG is uniformly identity.

If there is even a subgroup of K on which e is a homomorphism, then fG is uniformly

identity when restricted to that subgroup.

Putting these examples together, we can see that V describes the way in which

G looks like a semidirect product and fG describes the way in which G looks like a

central extension. In a pure semidirect product or central extension, we need only one

of these pieces of information as the other can be uniformly identity. In the general

case, we think of any extension as a combination of a semidirect product described

by V and a central extension described by fG.

B.2 Low-Degree Group Cohomology

In this section, we will show that the two pieces of information described above, after

one minor change, characterize the extension up to equivalence. This minor change

is required to fix the fact that the function fG described above is not well-defined.

Specifically, as described, the function fG depends on our choice of representatives

for each of the cosets of A in G.

If we should choose a different set of representatives f' : K -+ G, then, for any

157

x E K, by definition, we still have e(x)A = e'(x)A, so e(x) and f'(x) simply differ by

some element in A. Let us define h(x) : '(x)e(x)- 1 E A to be this element. Then,

the two functions are related by e'(x) = h(x)f(x). (Also, note that we always have

h(e) = e since we required f(e) = e'(e) = e.)

Now, let fG' be the factor set defined using f' instead of f. Then, we can see that

fG(x,y) = f'()(y)

= h(x)e(x)h(y)f(y)f(xy)-h(xy)-1

= h(x)h(y)e(x)e(x)t(y)e(xy)-lh(xy)-1

= h(x)h(y)(x)fG(x, y)h(xy)-'

= h(x)h(y)e(x)h(xy) lfG (x, y)

= h(x)W,(h(y))h(xy) 1 fG(x, y),

where, on the second-to-last line, we have used the fact that all the values are in A and,

hence, commute with one another. If we define (Oh)(x, y) := h(x) +px(h(y)) - h(xy), 1

then the above calculation shows that fA - fG + Oh.

Thus, we can see that different choices of representatives for the cosets of A in G

lead to factor sets that differ just by Oh for some h : K -+ A. Furthermore, reversing

the above calculation shows that, if we have fG =- fc + h, for some h : K -+ A, then

these factor sets just differ by choices of coset representatives.

To formalize this, let Z (K, A) denote the set of all cocycles, that is, all functions

f : K x K -+ A that satisfy the normalization and cocycle conditions. As we

saw above, all factor sets are cocycles. Next, we let B (K, A) denote the set of all

coboundaries, which are simply functions of the form Oh for some h : K -+ A,

where we require h(e) = e to preserve normalization. Finally, we define the second

cohomology group to be H (K, A) Z (K, A)/B2 (K, A). 2

In other words, elements of the second cohomology group are cosets of the form

f + B2 (K, A) in the space of cocycles. From our discussion above, we can see that

'All of these values are in A, so we can use additive notation here.
2The reason for the superscript "2" relates to the fact that these are all functions of two variables.

158

the coset fG + B'(K, A) is well-defined-independent of our choice of representatives.

Furthermore, this coset tells us a great deal about the extension G. The following

theorem shows that the coset characterizes the extension G up to equivalence.

Theorem B.1. Let G and G' be two extensions of A by K with conjugation of

A by K given by o : K -+ Aut A. Then G and G' are equivalent extensions iff

fG+B 2(K, A) = f+ B 2(K, A).

Proof. Suppose that G and G' are equivalent. Then, there is an isomorphism y : G -+

G' that fixes A and K. If fG is a factor set for G using representatives f : K -* G, then

we can define a set of representatives for G' by t' :yo e. This means that fG' is given

by f (x, y) = f'(x)f'(y)f'(xy)- 1 = '(E(x))-(e(y))'(t(xy))-- = -y((x)f(y)(xy)-'), for

each x, y E K, using the fact that y is a homomorphism. This shows that fA(x, y) =

7(fG(x, y)), but since fG(x, y) E A and -y fixes A, we in fact have f6 G fG, which

certainly implies that fG + B2 (K, A) fG + B2 (K, A).

Now, suppose that fG + B (K, A) fG + B (K, A). This means that fG and fG

differ by 9h for some h : K -+ A. Let e and e' be the coset representatives giving the

factor sets fG and fG, respectively.

We can define a map 7 : G -+ G' as follows. First, note that any element g E G

lies in a unique coset of A, which is E(x)A for some x E K, so we can write g = af(x)

for a unique a E A. 3 We then define -y(g) = y(af(x)) = ah(x)'(x).

We can see that -y(a) = y(ae(e)) = ah(e)e'(e) = a, so y fixes A. Also, for any

x E K, we have ir'(y(af(x))) = 7r'(ah(x)e'(x)) = x since ir'(e'(x)) = x, by definition

of f', and since multiplication by ah(x) E A does not change the coset of A. This

calculation shows that y fixes K as well.

It remains only to prove that 7 is a homomorphism.4 Since y fixes A we have

-y(e) = e. Now, let g = a?(x) and h = be(y) be arbitrary elements of G. Then, we

can see that 7(gh) = 'y(ae(x)be(y)) = y(apo(b)f(x)e(y)) = 1(apo(b)fG(x, y)e(xy)) =

ap(b)fG(x, y)h(xy)f'(xy) since apx(b)fG(x, y) E A. On the other hand, we have

y(g)7(h) = 'y(ae(x))-y(bf(y)) = ah(x)f'(x)bh(y)e'(y) = ah(x)yP(bh(y))e'(x)f'(y) =

3Recall that A is normal, so left and right cosets are identical.
4Note that the fact that -y fixes A and K implies that it a bijection.

159

ah(x)px(bh(y))fG(x, y)e'(xy). Cancelling the factors of f'(xy), everything that re-

mains is in A, which is abelian, and we can see that y(gh) = -y(g)>(h) provided

that fG(x,y) + h(xy) = fG(x,y) + h(x) + Wx(h(y)) or, equivalently, fG(x,y) =

fA(x, y) + (Oh)(x, y), which holds by assumption. E

B.3 From Factor Sets to Extensions

Above, we showed that we derive a factor set fG and homomorphism W from an exten-

sion, both of which provide useful information about the extension G. In this section,

we will show that it is also possible to start with a factor set f and homomorphism

W and (re-)derive the group. Hence, these two pieces of information actually tell us

everything there is to know about the extension, up to equivalence.

Let W : K -+ Aut A be a homomorphism and f : K x K -+ A be a cocycle. We

will construct a group, denoted Gf, as follows. The set of elements will be simply

A x K, and the product is given by

(a, x)(b, y) = (a + Wx(b) + f(x, y), xy),

for any a, b E A and x, y E K.

It remains only to check the group axioms. First, we can verify that (e, e) is

the identity since (e, e)(b, y) = (e + pe(b) + f(e, y), y) = (b, y), where f(e, y) = e

follows from the normalization property of f and We is the identity since W is a

homomorphism. We likewise have (a, x)(e, e) = (a + Wx (e) + f(x, e), x) = (a, x).

Next, we can check that (a, x)- 1 = (-W.-1(a+ f(x, x-1)), x- 1) is an inverse since

(a, x)(-WP-1(a + f(x, x- 1)), x-) = (a - Wxx-1(a + f(x, x-1)) + f(x, x-1), xx-1) =

(a - a - f(x, x 1) + f(x, x-'), e) = (e, e). Since we have an identity, this right inverse

must also be a left inverse.'

Lastly, we must check associativity. On the one hand, we have ((a, x)(b, y))(c, z) =

'In general, let G be a group, a E G an element, and b E G a right inverse for a. This means that
bab = be = b. If every element has a right inverse, then we have ba = babb- 1 = (bab)b- 1 = bb-1 = e,
by the previous equation, which shows that b is also a left inverse for a.

160

(a + cpx(b) + f(x, y), xy)(c, z) = (a + po(b) + f(x, y) + poy(c) + f(xy, z), xyz), and,

on the other hand, we have (a, x)((b, y)(c, z)) = (a, x)(b + poy(c) + f(y, z), yz) =

(a + po(b) + Pxy(c) + ox(f (y, z)) + f(x, yz), xyz). These are the same provided that

f(X, y) + f(xy, z) = sOx(f(y, z)) + f(x, yz), which is precisely the cocycle condition

that is assumed to hold for f.

If we have an extension G with homomorphism V and factor set fG, then we can

also construct GG as above. However, the previous theorem tells us that the resulting

group is equivalent (and, hence, isomorphic) to G since it has the same cocyle fG.

We now have all the pieces necessary to show the 1-to-1 correspondence between

elements of the second cohomology group and (equivalence classes) of extensions.

Theorem B.2. There is a bijection between H (K, A) and the equivalence classes of

extensions of A by K with homomorphism p.

Proof. The bijection operates as taking the coset f + B (K, A) to the equivalence

class of the group Gf. The previous theorem tells us that this map is well-defined

(any choice of cocycle from this coset gives rise to a group in the same equivalence

class) and that this map is injective since two groups are in the same class iff their

cocycles are from the same coset of B (K, A). Finally, we can see that this map is

surjective since G is in the class that is the image of fG + B2 (K, A). L

Finally, recall that the semidirect product A > W K has a factor set that is uniformly

identity. This means that identity coset e + B (K, A) E H (K, A) corresponds to the

equivalence class of this semidirect product group.

161

162

Bibliography

[1] Samson Abramsky, Shane Mansfield, and Rui Soares Barbos. The cohomology of
non-locality and contextuality. In Proceedings of the 8th International Workshop
on Quantum Physics and Logic, pages 1-14. EPTCS, 2011, arXiv:1111.3620.

[2] Massoud Amini, Mehrdad Kalantar, and Mahmood M. Roozbehani. Hidden
subhypergroup problem. 2006, arXiv:quant-ph/0609220.

[3 LIaszl6 Babai. Local expansion of vertex-transitive graphs and random generation
in finite groups. In Proceedings of the twenty-third annual ACM symposium on
Theory of computing, pages 164-174. ACM, 1991.

[41 Liszl6 Babai and Robert Beals. A polynomial-time theory of black-box groups
I. In C. M. Campbell, E. F. Robertson, N. Ruskuc, and G. C. Smith, editors,
Groups St Andrews 1997 in Bath, I, volume 260 of London Mathematical Society
Lecture Note Series. Cambridge University Press, 1999.

[51 Dave Bacon. How a clebsch-gordan transform helps to solve the heisenberg
hidden subgroup problem. Quantum Information & Computation, 8(5):438-467,
2008, arXiv:quant-ph/0612107.

161 Dave Bacon, Andrew M. Childs, and Wim van Dam. From optimal measurement
to efficient quantum algorithms for the hidden subgroup problem over semidirect
product groups. In Proceedings of the 46th IEEE Symposium on Foundations of
Computer Science, pages 469-478. IEEE Computer Society, 2005, arXiv:quant-
ph/0504083.

[71 Ulrich Baum and Michael Clausen. Computing irreducible representations of
supersolvable groups. Mathematics of computation, 63(207):351-359, 1994.

[81 Robert Beals and Liszl6 Babai. Las Vegas algorithms for matrix groups. In
Proceedings of the 34th Annual Symposium on Foundations of Computer Science,
pages 427-436. IEEE Computer Society, 1993.

[91 Juan Bermejo-Vega and Maarten Van den Nest. Classical simulation of abelian-
group normalizer circuits with intermediate measurements. Quantum Informa-
tion & Computation, 14(3-4):181-216, 2014, arXiv:1201.4867.

163

[101 Juan Bermejo-Vega, Cedric Yen-Yu Lin, and Maarten Van den Nest. The com-
putational power of normalizer circuits over black-box groups. Quantum Infor-
mation & Computation, Submitted, arXiv:1409.4800.

111] Juan Bermejo-Vega, Cedric Yen-Yu Lin, and Maarten Van den Nest. Normalizer
circuits and a gottesman-knill theorem for infinite-dimensional systems. Quan-
tum Information & Computation, Submitted, arXiv:1409.3208.

[121 Juan Bermejo-Vega and Kevin C. Zatloukal. Abelian hypergroups and quantum
computation. 2015, arXiv:1509.05806.

[13] Dan Boneh and Richard J. Lipton. Quantum cryptanalysis of hidden linear
functions. In Advances in Cryptology-CRYPTO '95, pages 424-437. Springer,
1995.

[14] Raoul Bott and Loring W. Tu. Differential Forms in Algebraic Topology. Grad-
uate Texts in Mathematics. Springer, 1982.

[15] P. Oscar Boykin, Tal Mor, Matthew Pulver, Vwani Roychowdhury, and Farrokh
Vatan. A new universal and fault-tolerant quantum basis. Information Processing
Letters, 75(3):101-107, 2000.

[16] Gilles Brassard and Peter Hsyer. An exact quantum polynomial-time algorithm
for simon's problem. In Proceedings of the Fifth Israel Symposium on the Theory
of Computing Systems (ISTCS '97), pages 12-23. IEEE Computer Society, 1997,
arXiv:quant-ph/9704027.

[17] Johannes A. Buchmann. Introduction to Cryptography. Undergraduate Texts in
Mathematics. Springer, 2nd edition, 2004.

[18] Kevin K. H. Cheung and Michele Mosca. Decomposing finite abelian groups.
Quantum Information & Computation, 1(3):26-32, 2001, arXiv:cs/0101004.

[19] Efficient classical simulations of quantum Fourier transforms and normalizer cir-
cuits over abelian groups. Maarten van den nest. Journal of Quantum Informa-
tion & Computation, 13(11-12):1007-1037, 2013, arXiv: 1201.4867.

[201 Richard Cleve, Artur Ekert, Chiara Macchiavelo, and Michele Mosca. Quan-
tum algorithms revisited. Proceedings of the Royal Society of London A,
454(1969):339-354, 1998, arXiv:quant-ph/9708016.

[21] Thomas H. Cormen, Charles E. Leiserson, and Ronald R. Rivest. Introduction
to Algorithms. MIT Press, 1996.

[22] Piergiulio Corsini and Violeta Leoreanu. Applications of Hyperstructure Theory.
Advances in Mathematics. Springer, 2003.

[23] Etienne de Klerk and D.V. Pasechnik. On semidefinite programming relaxations
of association schemes with application to combinatorial optimization problems.
CentER Discussion Paper, 2009-54, 2009.

164

[24] David S. Dummit and Richard M. Foote. Abstract Algebra. John Wiley & Sons,
Inc., third edition, 2004.

[251 Charles F. Dunkl. The measure algebra of a locally compact hypergroup. Trans-
actions of the American Mathematical Society, 179:331-348, 1973.

[26] Abraham D. Flaxman and Bartosz Przydatek. STA CS 2005: 22nd Annual Sym-
posium on Theoretical Aspects of Computer Science, Stuttgart, Germany, Febru-
ary 24-26, 2005. Proceedings, chapter Solving medium-density subset sum prob-
lems in expected polynomial time, pages 305-314. Springer Berlin Heidelberg,
2005.

[27] Gerald B. Folland. Fourier Analysis and Its Applications. Pure and Applied
Undergraduate Texts. American Mathematical Society, 2009.

[28] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theroy of NP-Completeness. Series of Books in the Mathematical Sciences.
W.H. Freeman, 1979.

[29] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Com-
puter and System Sciences, 28(2):270-299, 1984.

[30] Daniel Gottesman. Stabilizer Codes and Quantum Error Correction. PhD thesis,
California Institute of Technology, 1997.

[31] Dima Grigoriev. Testing the shift-equivalence of polynomials using quantum
machines. Journal of Mathematical Sciences, 82(1):3184-3193, 1996.

[32] Sean Hallgren, Alexander Russell, and Amnon Ta-Shma. Normal subgroup re-
construction and quantum computation using group representations. In Proceed-
ings of the thirty-second annual A CM symposium on Theory of computing, pages
627-635. ACM, 2000.

[33] Aram W. Harrow, Avinatan Hassadim, and Seth Lloyd. Quantum algorithms
for solving linear systems of equations. Physical Review Letters, 103, 2009,
arXiv:0811.3171.

[34] Allen Hatcher. Algebraic Topology. Cambridge University Press, 2001.

[35] Peter Hoyer. Conjugated operators in quantum algorithms. Physical Review A,
59(5), 1999.

[36] Galbor Ivanyos, Frederic Magniez, and Miklos Santha. Efficient quantum al-
gorithms for some instances of the non-abelian hidden subgroup problem. In
Proceedings of the thirteenth annual ACM symposium on parallel algorithms and
architectures (SPAA '01), pages 263-270. ACM, 2001, arXiv:quant-ph/0102014.

[37] Gabor Ivanyos, Luc Sanselme, and Miklos Santha. An efficient quantum algo-
rithm for the hidden subgroup problem on nil-2 groups. Algorithmica, 62(1-
2):480-498, 2012, arXiv:0707.1260.

165

[38] Robert I. Jewett. Spaces with an abstract convolution of measures. Advances in
Mathematics, 18:1-101, 1975.

[39] Gregory Karpilovsky. Clifford Theory for Group Representations. North-Holland,
1989.

[40] Alexei Y. Kitaev. Quantum measurements and the abelian stabilizer problem.
Electronic Colloquium on Computational Complexity, 3(3), 1996, arXiv:quant-
ph/9511026.

[41] Alexei Y. Kitaev. Anyons in an exactly solved model and beyond. Annals of
Physics, 321(1):2-111, 2006, arXiv:cond-mat/0506438.

[42] Greg Kuperberg. A subexponential-time quantum algorithm for the dihedral
hidden subgroup problem. SIAM Journal on Computing, 35(1):170-188, 2005,
arXiv:quant-ph/0302112.

[43] Serge Lang. Algebra. Graduate Texts in Mathematics. Springer, third edition,
2005.

[44] Grigory L. Litvinov. Hypergroups and hypergroup algebras. Journal of Soviet
Mathematics, 38(2):1734-1761, 1987, arXiv:1109.6596.

[45] Seth Lloyd, Silvano Garnerone, and Paolo Zanardi. Quantum algorithms for
topological and geometrical analysis of data. Nature Communications, 7, 2016,
arXiv: 1408.3106.

[46] Chris Lomont. The hidden subgroup problem - review and open problems.
2004, arXiv:quant-ph/0411037.

[47] Saunders MacLane. Homology. Classics in Mathematics. Springer, 1995.

[48] Michele Mosca. Quantum Computer Algorithms. PhD thesis, University of Ox-
ford, 1999.

[491 Michele Mosca and Artur Ekert. The hidden subgroup problem and eigenvalue
estimation on a quantum computer. In Selected papers from the First NASA
International Conference on Quantum Computing and Quantum Communication
(QCQC '98), pages 174-188. Springer-Verlag, 1998, arXiv:quant-ph/9903071.

[50] A. Dehghan Nezhad, S. M. Moosavi Nejad, M. Nadjafikhah, and B. Davvaz.
A physical example of algebraic hyperstructures: Leptons. Indian Journal of
Physics, 86(11):1027-1032, 2012.

[51] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information. Cambridge University Press, 2000.

[52] Oded Regev. Quantum computation and lattice problems. SIAM Journal on
Computation, 33(3):738-760, 2004, arXiv:cs/0304005.

166

153] Ronald L. Rivest, Adi Shamir, and Leonard Adleman. A method of obtaining
digital signatures and public-key cryptosystems. Communications of the ACM,
21(2):120-126, 1978.

154] Richard L. Roth. Character and conjugacy class hypergroups of a finite group.
Annali di Matematica Pura ed Applicata, 105(1):295-311, 1975.

[55] Joseph Rotman. An Introduction to the Theory of Groups. Graduate Texts in
Mathematics. Springer, 1994.

[56] Akos Seress. Permutation Group Algorithms. Cambridge Tracts in Mathematics.
Cambridge University Press, 2003.

[571 Jean-Pierre Serre. Linear Representations of Finite Groups. Graduate Texts in
Mathematics. Springer, 1977.

[581 Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM Journal on Computing, 26(5):1484-
1509, 1997, arXiv:quant-ph/9508027.

[59] Daniel R. Simon. On the power of quantum computation. SIAM Journal on
Computing, 26(5):1473-1483, 1997.

[601 R. Spector. Mesures invariantes sur les hypergroupes. Transactions of the Amer-
ican Mathematical Society, 239:147-165, 1978.

1611 Walter D. Strangl. Counting squares in Z. Mathematics Magazine, 69(4):285-
289, 1996.

[62] John Watrous. Quantum algorithms for solvable groups. In Proceedings of the
thirty-third annual A CM symposium on Theory of computing, pages 60-67. ACM,
2001, arXiv:quant-ph/0011023.

[63] N. J. Wildberger. Finite commutative hypergroups and applications from group
theory to conformal field theory. In Applications of Hypergroups and Related
Measure Algebras, volume 183 of Contemporary Mathematics, pages 428-449.
AMS, 1995.

[641 N. J. Wildberger. Lagrange's theorem and integrality for finite commutative
hypergroups with applications to strongly regular graphs. Journal of Algebra,
182:1-37, 1996.

[651 N. J. Wildberger. Duality and entropy for finite commutative hypergroups and
fusion rule algebras. Journal of the London Mathematical Society, 56:275-291,
1997.

167

[66] Kevin C. Zatloukal. Classical and quantum algorithms for testing equivalence of
group extensions. In Simone Severini and Fernando Brandao, editors, 8th Confer-
ence on the Theory of Quantum Computation, Communication, and Cryptogra-
phy (TQC 2013), volume 22 of Leibniz International Proceedings in Informatics,
pages 126-145, 2013, arXiv:1305.1327.

168

