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ABSTRACT

In the linguistic framework of Principles and Parameters theory (Chomsky 1981), acquisition of
a natural language grammar involves fixing the value of a finite set of finite-valued
parameters. Theoretical and computational analyses of several proposed classes of algorithms
for natural language parameter setting are reported here. These include cue-based algorithms
(Dresher and Kaye, 1990; Dresher 1994), the Triggering Learning Algorithm (Gibson and
Wexler 1994) and a class of algorithms that deduce parameter values from the output of the
parser (Fodor 1995).

Properties of parametric spaces that will allow for successful application of each type of
algorithm are identified. Computational analyses of some simplified natural language
parametric systems are performed to indicate whether there is preliminary evidence to suggest
that these properties can be expected to hold of the parameter spaces that underlie human
linguistic competence.
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Chapter 1

Introducticn

What does a speaker of a natural language know about that language that they didn’t
know already when they were born? Historically (see, for example, Joos 1957), some have
claimed that natural languages could differ from one another arbitrarily. On such a view,
languages would be entirely unrestricted in the way they group linguistic units into larger
structures, and in the way that they interpret these structures phonetically and semantically.
If this claim were correct, then natural language learners would clearly have to start from
scratch. Before exposure to their target language, learners could have no knowledge of the
shape of the linguistic system that awaited them. The forty year history of generative
grammar can be read as an extended refui.tion of such claims of unconstrained linguistic
variety. Arguments from the poverty of the stimulus, from the rapidity and uniformity of
language acquisition, and from the existence of linguistic universals have been used to motivate
the claim that language learning engages a rich, innate endowment that constrains linguistic
variation. Logically, the finite sets of linguistic data that learners are exposed to could be
compatible with any number of generalizations. Empirically, however, learners of a language
appear to draw the same generalizations rapidly and uniformly (See Crain 1991 for just one set
of examples of this type of evidence and argumentation based on experimental studies with
children. See also, of course, the vast generative linguistic literature that draws on native

speaker intuitions.)



In the late 1970s and early 1980s, a particularly restrictive view of this endowment was
articulated. The working hypothesis adopted by researchers developing this Principles and
Parameters framework (see, for example, Chomsky 1981) is that the child’s innate endowment
universally specifies the basic cognitive machinery or principles used to build, interpret and
license linguistic representations.! On this model, cross-linguistic variation arises because the
detailed operation of the machinery that this Universal Grammar (UG) provides is sensitive
to both the contents of the lexicon and, crucially, to the setting of a finite set of “switches” or
parameters that can take on a finite number of values. Under the Principles and Parameters
approach to linguistic explanation, then, our opening question receives a very different answer.
Besides the vocabulary of the language, there is surprisingly little for the natural language
learner of, say, a phonological or syntactic system to acquire.2

If the Principles and Parameters framework provides a correct description of the

learner’s innate endowment, then developmental psycholinguists face an obvious question.3

1 Generally, linguistic theories are stated “declaratively” without any strong commitment
about the details of the generative processes that underlie human linguistic ability.

2 Depending on your view of the lexicon, the answer could even turn out to be: nothing but the
vocabulary. For example, as the Principles and Parameters approach is developed in the
Minimalist Program (Chomsky 1992), cross-linguistic variation in word order is explained
largely by appeal to differences in the features associated with inflectional categories stored
in the lexicon. The lexical learning that needs to go on in such a system, however, has a very
parametric flavor to it. See Snyder (1995) for presentation of some parametrically varying
properties of language that do not seem to lend themselves to such an analysis.

None of this is meant tc suggest that lexical learning is even a remotely trivial problem, but
only to indicate the dramatic simplification of the learning problem from, say, the point of
view of a syntactician or a phonologist. Clearly, a difficult situation faces the learner
attempting to map words to meanings. Moreover, the learner also faces the problem of mapping
sounds onto lexical entries in the face of context-sensitive morphologically, phonologically and
ghonetically driven sound changes.

The Principles and Parameters framework is not the only competitor in the field of generative
grammar. For example, there has been an explosive growth of late in the development of
Optimality Theoretic approaches to linguistic constraints. See Prince and Smolensky (1993) for



How do human learners use the linguistic (and extra-linguistic) input that they receive to set
their parameters so that the grammar they end up with generates the target language that
they are exposed to?

Any answer to this question must satisfy certain criteria.

First and foremost, it must account for the overwhelming ~mpirical generalization that
neurologically unimpaired children master their native languages. That is to say, it must
satisfy Chomsky’s (1965) criteria of explanatory adequacy. In the language of the Principles
and Parameters framework, this means that for a learning algorithm to be considered as a
serious candidate description of the algorithm that humans use, it must (at least with a very
high probability) eventually converge to a set of parameter values that is capable of
generating the target language.

Satisfaction of this convergence requirement, while necessary, is clearly not sufficient.
Ahy serious candidate description of tl.1e human language acquisition device must also be
capable of acting under any informational and cognitive restrictions that the human la.nguage
acquisition device can be shown to labor under.

For example, the learning of a native language (with the exception of the lea;'ning of
new vocabulary items) seems to end, at the very latest, by adolescence. A learning device that

requires more linguistic (or extra-linguistic) information than would be available to a human

an introduction to this approach, which has seen greatest application in the area of phonology.
See alsu Grimshaw (1993) and Pesetsky (1993)—-two prominent examples of its initial
application in syntax. '

4 Obviously, if this always happered it would be difficult to explain language change in
linguistically homogenous environments. Moreover, there do seem to be minor variations in the
idiolects of speakeys in the same linguistic community. For the purposes of this thesis, however,
I will abstract away from these possibilities with the recognition that seriously accounting for
them could have important consequences for learning theory.



learner during his or her developmental phase clearly cannot be considered as an explanation
for human linguistic competence. Moreover, it is not enough to simply place a time bound on a
candidate algorithm; the learning device must be constrained to make do with the same types
of distributions of inputs found in the environments that young human learners are exposed to. In
particular, properties of the target language that are esoteric and not readily available in the
linguistic input that is available to alinost all learners cannot be relied on. On the contrary, it
is, in part, the fact that learners come to know such properties in the absence of relevant
information that drives the poverty of the stimulus argument for innate constraints.

In addition to these external constraints imposed by the learner’s linguistic
environment, candidate human language acquisition devices must also satisfy any other
constraints that can be derived from our knowledge of human psychology. For example,
candidate algorithms must satisfy any theoretically or empirically established restrictions on
the language learner’s ability to process or store information.

In the absence of detailed psychological evidence, it seems a reasonable approach to
start by proposing fairly tight limitations on the properties attributed to the human learner,
and to abandon these limitations when forced to by consideration of further psychological
evidence or co;lcrete consideration of the learning problem. As an example of the types of
limitations that have been proposed, Wexler and Culicover (1980) assume both that the
learner has no memory for past data and that the complexity of the class of transformational
grammars that they studied is bound in a particular way. Throughout, I will draw attention to
features of the learning algorithms that I consider that require psychological mechanisms that
go beyond the conceptually necessary abilities to change parameter values and to determine

whether a candidate hypothesis is in error.
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Finally, the candidate language acquisition device must contribute to (or at least be
compatible with) an explanation of what can be observed about the learner’s developing
grammatical knowledge. For example, if empirical documentation"could be provided that
traced out sequences of parametrically varying hypotheses for learners of particular target
languages, then a candidate human learning algorithm should contribute to an explanation of
these learning trajectories. If, of course, it were to turn out to be true that, after some point in
development, no evidence could be found that children misset certain parameters, a satisfactory
parametric learning theory would need to match this accomplishment. If Wexler’s (1996) Very
Early Parameter Setting hypothesis can be maintained, then the upper bound on the amount of
time to set (at least certain) parameters falls somewhere before children begin producing
utterances complicated enough to potentially reveal a missetting.

The question of how parameters are set has received widely contrasting answers. From
my point of view, the most dramatic divide in the parametric learning literature lies between
cue-based approaches of the sort exemplified by Dresher and Kaye (1990) and Dresher (1994)
and approaches that perform what I will call implicitly-guided mechanistic search (IGMS)
through the space of parametric possibilities (see, for example, Nyberg 1991; Clark 1992; Clark
and Roberts 1993; Niyogi and Berwick 1993; Gibson and Wexler 1994; Bertolo 1995).

As linguistic theory has developed, (at least certain) parameters typically interact
extensively. Changing even a single parameter can dramatically change the set of structures
that a language generates. Moreover, a single parameter value rarely suffices to guarantee that
a grammar will license a particular structure. Rather, the generation of structures typically
requires the contribution of several parametrically provided options. From the point of view of

a researcher interested in providing a compact description of linguistic variation, a massive
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interaction between pararmeters could turn out to be highly desirable. The Principles and
Parameters approach holds out the hope that differences between languages that, on the
surface, look radically different will reduce to a small set of differences in the settings of
highly interactive parameters. The learner, however, faces the problem of “seeing through”
this intricate interaction to the target parameter values.

A leading motivation of the cue-based approach is a belief that the interaction
between parameters is complicated enough that the component of UG that outlines the
parametric system (thus limiting the range of possible human languages) must be supplemented
with a sort of instruction manual that guides the learner through the parameter-setting
process. This additional UG component provides the learner with an ordered “flow chart” of
tests to apply to the input stream from the target language. The results of each test serve to
constrain the settings of the learner’s parameters, until, at the end of some branch of the flow
chart, the learner has set them all —hopefully to their target values.

What I am calling IGMS algorithms, on the other hand, embody a more optimistic
belief and a stronger hypothesis that the availability of the parametric system, in and of
itself, is largely sufficient for the work of language learning. Given the parametric system,
proponents of IGMS algorithms hypothesize that simple search strategies will lead the
learner to the target.

The typical IGMS algorithm relies primarily on cognitive mechanisms that, unlike an
instruction manual for parameter-setting, can receive some motivation that is independent of
the need to solve the learning problem. The key cognitive components in the IGMS-style work
referenced above are parsers capable of taking linguistic input and assigning structure to that

input (or failing to do so) in accordance with the setting of UG parameters. I take it that the
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claim that such parsers exist is relatively uncontroversial in any current version of
psycholinguistics that makes contact with work in generative grammar.> IGMS algorithms use
the output of these parsers in a mechanistic fashior to revise the learner’s hypotheses about
the way in which their grammar’s parameters should be set so as to generate the target
language. By use of the term mechanistic, I mean to inply that the processes that operate on
the parser output to produce parametric hypothesis changes do not have access to any domain-
specific information about the contents of UG, nor do they have any ability to make deductions
about the way that parameter values interact in the generation of the well-formed
representations of a language. By the use of the term implicitly guided, I mean to point out that
such algorithms rely primarily on the parameter space having an appropriate configuration so
that the pursuit of their mechanistic policies will lead to convergence.

This thesis will focus on Gibson and Wexler’s (1994) Triggering Learning Algorithm
(TLA) as an exemplar of the IGMS approach. The TLA attempts to change hypotheses
whenever it comes across an input that it is not able to parse with its current parameter settings;
the algorithm selects a potential new hypothesis by simply randomly choosing a single
parameter to “flip”. The new hypothesis is only adopted if it allows tne learner to process the
previously unanalyzable input.

Following earlier work in learnability (e.g., Wexler and Culicover 1980), the TLA is an
error-driven IGMS algorithm; the learner only revises its hypothesis when it encounters inputs

that it cannot accommodate with the current hypothesis. This, however, is not a defining

5 Some IGMS algorithms, such as the genetic algorithms in Clark’s (1992) proposal, also require
the parser to return some indication of what parameters, or at least how many parameters, a
particular structure violates. This, however, seems to beg a number of important questions.
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property of the IGMS approach, as I have presented it. For example, genetic algorithms for
language learning (Clark 1992; Clark and Roberts 1993), another branch of the IGMS family,
form new hypotheses by splicing together parameter values from a pool of old hypotheses
according to a mechanistic scheme that reflects the parsing success of the old nypotheses;
relatively successful hypotheses contribute more of the raw materiai used to create hypotheses
in the following generation. The leainer could change hypotheses after a stretch of input even
if all hypotheses in the current pool successfully parsed the input, so the scheme is not entirely
error-driven.

Unlike cue-based algorithms, which explicitly build in chains of deductive logic for
the learner to follow en route to the acquirable natural languages, IGMS algorithms essentially
rely on the parameter space having a structure that pulls the learner to the target grammar,
perhaps with some erro'rs and missteps along the way. Again, this is what I intend by the term
implicitly guided. The particular structure that an IGMS algorithm requires will clearly vary
somewhat with the details of the algorithm’s hypothesis revision policy, and an important
program for parametric learning theory is to establish general 1esults about the properties of
such learners.

In the sense sketched above, IGMS algorithms are more parsimonious than their cue-
based competitoss. Both cue-based and IGMS algorithms rely on a parametric specification of
the space of natural languages. IGMS algorithms, however, seek to do without any explicit
road map to the target grammar. Occam’s Razor, then, would dictate that, all else being equal,
IGMS algorithms should be preferred. Of course, all else is rarely ever equal when attention
turns to the time and resource requirements that different algorithms impose. At present, a

major consideration in favor of the cue-based approach is that, as will be seen below, its basic
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design philosophy, when it can be successfully applied, leads to a learning algorithm capable
of rapidly zeroing in on the target parameters. A key question here, of course, is what
properties of a parametric space make it is possible to successfully develop a cue-based
instruction manual. With IGMS algorithms, there is little room for clever devices that exploit
the particular content of linguistic parameters or the pattern of their interaction. Instead, the
adoption of a locally guided search algorithm requires the strong hypothesis that the pursuit
of simple policies for revising hypotheses on the basis of the parser’s output will lead the
learner quickly through a potentially vast parameter space.

As discussed above, the ultimate test for any proposed learning algorithm is to explain
(in concert with our other theories of human cognition) what we can observe about both the time
course of acquisition and the structure of the human mind/brain. The aims of this thesis are
considerably more modest. I intend to further lay out some issues involved in choosing between
approaches to the problem of parametric language learning. I will also provide some concrete
examples of their application to simplified phonological and syntactic spaces, and engage the
question of how some of the time and space requirements that these approaches demand might
scale up to succeed in the real parametric space—yet to be specified—that researchers in the
Principles and Parameters framework believe underlies human language. In particular, since
the size of parameter spaces are exponentially dependent on the number of parameters that
constitute them, a key concern will be the need to avoid learning strategies that are linearly
dependent on the size of these exponentially large parameter spaces.

In Chapter 2, I will briefly make the case that search algorithms that do not allow
data from the target language to provide any useful implicit guidance from the parameter

space as to what hypothesis to consider next are unlikely candidates for the human learning
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algorithm. Such algorithms appear regularly in literature that emphasizes certainty of
convergence in the learnability framework of identification in the limit (Gold 1967), but are
almost certainly inadequate in large parametric spaces.

In Chapter 3, the focus will be on cue-based algorithms. I will begin by articulating the
cue-based approach with an eye towards extracting what I take to be the key components of its
design philosophy. I will then lay out abstractly what I take to be the best possible and worst
possible types of parameter spaces that might confront the class of cue-based algorithms. The
focus will then turn to concrete examples of cue-based algorithms for the acquisition of
simplified, model parameter spaces. Dresher (1994) presents an instruction set designed to
acquire a fragment of the system of metrical phonological parameters developed in Idsardi
(1992) and Halle and Idsardi (1994). I will present the phonological system and the cue-based
algorithm, evaluate the success of the cue-based algorithm in satisfying the design philosophy
of the cue-based approach, and identify issues involved in extending the system to more
realistic approximations to the space that proponents of the Principles and Parameters
approach to metrical phonology might eventually develop. Next, I will briefly discuss possible
cue-based algorithms that successfully acquires languages in the 3-parameter syntactic space
that Gibson and Wexler (1994) apply the TLA to.

In Chapter 4, the focus turns directly to Gibson and Wexler’s TLA—this thesis’s running
example of the IGMS approach. I will explicitly present the algorithm and briefly describe
some of the learning results that Gibson and Wexler (1994) obtained. In particular, 1 will
describe their maturational extension of the TLA (MTLA), which suffices to ensure
identification in the limit of all languages . the space they investigate with arbitrarily

high, but not certain, probability. Next, I will demonstrate how a similar maturational
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extension, in combination with a linguistically reasonable restriction of the space, allow for in-
the-limit TLA acquisition of a simplified phonological system based on Idsardi (1992) and
Halle and Idsardi (1994) .

As discussed above, however, identification in the limit, while important, is a very
modest goal in the context of the systems of phonological and syntactic parameters considered
here, and is, in fact, easily guaranteed. As I will point out along the way, both of the finite
parametric spaces presented in Chapter 4 are free of the proper subset/superset relations among
languages that could potentially contribute to a general negative result for error-driven, IGMS
learners with no domain-specific knowledge about the effects of particular parameters. While
the unmodified TLA is actually restricted in such a way that identification in the limit is not
guaranteed even in the absence of subset/superset relations, very minor alterations to the
algorithm make it possible to ensure that, in the limit, the learner converges to the target with
probability 1 without greatly altering the characterization of spaces that would allow for
tractable acquisition. I will suggest one such set of alterations here. In this chapter, I will also
briefly discuss the issues that arise in spaces where proper subset/superset relations do exist.

With the problem of identification in the limit addressed and with a recognition that
the TLA makes minimal demands on the learner’s cognitive resources, it is possible to focus on
what I take to be more crucial questions about TLA-type algorithms’ expected time to
convergence. In Chapter 5, I will follow the lead of Niyogi and Berwick (1993) (who in turn
follow up a suggestion of Gibson and Wexler (1994)) and apply the mathematical theory of
Markov chains to gain some preliminary insights into the plausibility of applying the TLA to
systems like our models. Niyogi and Berwick’s (1993) paper provides an excellent overview of

the range of questions that can be addressed within the context of Markov chain theory.
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In Chapter 6, I will turn to a new set of syntactic parameters and examine the promise of
a novel approach to parameter setting that falls somewhere in the gap between cue-based and
IGMS algorithms. This approach, advocated in Fodor (1995) in a restricted form, aims to make
use of cues and to set parameters in a deductive fashion, unlike the typical IGMS algorithms
referred to above which are willing (at least in theory) to pursue a series of incorrect
hypotheses and parameter revisions on the way to the target grammar. However, it aims to do
so without explicitly storing the cues in UG, or, in fact, without making use of much more than
the constraints encoded in UG and the “logic” of the parser. In particular, for systems where
parameters can be identified with local configurations of a parse structure, a generalized
family of Fodorian learners, which I will call On-line Parsing Logic (OPL) learners, aims to set
parameters by noticing whick components of linguistic structure, and, therefore, which
parameter values, are necessary to accomplish a parse of an input form. This involves a denial
of a typical assumption of proponents of cue-based learning, who argue that, at least initially,
there is an epistemological gap between the abstract mental “language” that parameters are
couched in and the perceptually available properties of the input. The parser, Fodor
essentially claims, allows the learner to directly perceive the parameter values that are
compatible with the linguistic forms that a learner is exposed to. In a sense, an OPL's cues are
generated “on the fly” as a byproduct of the parser’s computations, voiding the need for explicit
representation in UG. This approach, however, requires that the learner parses in a special
exhaustive supergrammar mode. In this mode, the learner attempts to provide all humanly
possible parses of the sentences that it encounters. This approach is required, so that the
learner dnes not reach mistaken conclusions about the necessity of some parametrically

available structural component. I will discuss the convergence properties and resource
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requirements of OPL learners in terms of the vocabulary developed in Chapter 3. Chapter 6 will
also contain an illustrative application of OPL learning to our extended syntactic space and

point to several problems that arise there and some open issues concerning the OPL approach.
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Chapter 2

Parameter Setting as Search

As noted in the introduction, the move to the Principles and Parameters approach is a
move to a world where, from the point of view of the parametrized system, there are only
finitely many possible natural human languages. For example, in the domain of syntax, since
there are only a finite number of parameters to be set, and since these parameters can only take
on a finite number of values, it follows that (abstracting away from vocabulary and all the
complications that arbitrarily long words might introduce) there are only a finite number of
possible natural languages. Does this restriction trivialize the learning problem?

In a logical sense, the answer would seem to be yes. From the point of view of the
traditional learnability criterion of identification in the limit articulated by Gold (1967), the
move to a finite class of natural languages has a dramatic effect. The question of identification
in the limit is the question of whether a learning algorithm, exposed to a sequence of data
generated from a target language, will, at some point, hypothesize a grammar that generates
the target and, then, maintain that hypothesis forever after. In keeping with standard views
about the linguistic evidence available to children (see for example, Braine (1971); Brown and
Hanlon (1970); McNeill (1966); Marcus (1993); Wexler and Hamburger (1973)), learning
algorithms in this framework receive no direct evidence that would indicate that a particular
form was not generated by the target language. The standard identification in the limit
criterion also requires that an algorithm be able to converge to target languages independently

of the particular order of the input data that it receives, although the data stream must not
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systematically and eternally withhold evidence. If an adversarial caretaker chose to simply
repeat the same perfectly grammatical sentence over and over to a learner, the learner could
hardly be expected to demonstrate mastery of their target language. If a learning algorithm
had an unbounded sequence of input data to work with, it is possible to imagine that it might
undertake an exhaustive search for the target grammar in the parameter space by simply
enumerating and testing every member of the finite class of languages, either in serial or in
parallel, and seeing which ones fit the data that streamed in from their caretakers and other
members of their linguistic community.6

In the absence of noise—linguistic input data that the learner receives that does not
come from the target—the main logical complication that arises for such approaches is the
possible existence of subset/superset relations between languages.” Recall from work such as
Angluin (1978), Berwick (1985) and Manzini and Wexler (1987) that a superset language for a
target language is a language, other than the target, which generates all the linguistic
patterns that the target generates. Clearly, if the set of possible languages included languages
that were supersets for a target, then these superset languages could never be deductively
discarded through a process of elimination that simply considered whether a grammar could
cover all the examples it had seen so far. Problems with supersets arise in both parallel and

serial schemes of enumeration and elimination.

6 If data came from a mix of several target languages and the learner can reliably separate the
input stream, the problem for the multiingual learner is reduced to several instances of the
original problem.

7 The algorithms presented and developed in this thesis do not have any special mechanisms
for accommodating noise. In my mind, this is a major shortcoming. I will not, however, remedy
this shortcoming, but will attempt to provide discussion of the particular noise sensitivities
that the different algorithms have.
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In a parallel evaluation scheme, the learner would begin by considering all grammars
in the space as viable candidates. When data from the target could no longer be accommodated
by a candidate grammar, that candidate grammar would effectively drop out of the
competition. If there are several grammars that generate exactly the set of forms allowed by
the target language—that is to say if several grammars generate weakly equivalent
languages—, then the learner actually has no principled way of selecting a single grammar.8
Presumably, if the learner eventually does zero in on a unique hypothesis, it can only do so by
making a choice that is arbitrary from the point of view of the generative power of the
grammar. If, however, the languages generated by some grammars are proper supersets of the
target, such an arbitrary choice could be a mistake. In particular, it would be a mistake to select
a grammar that generated a superset of the target rather than the target itself.

In the more traditional serial scheme of enumeration and elimination, a grammar’s
position in a list of grammars crucially determines whether it will be chosen over other
grammars that are also capable of generating the data from the target language. Since the
learner tries out hypothesis grammars in a specified order, they will adopt the first grammar
that they encounter in the list that generates all the data from the target language. To avoid
mistakenly selecting a grammar that generates a superset of the target language, consideration
of hypotheses must be organized in such a way that a learner does not hypothesize a grammar
that generates a superset language until it has ruled out all of the corresponding subset

languages.

8 For my purposes, languages are weakly equivalent if they result in perceptually identical sets
of input data for the learner.
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To avoid superset mistakes, a learner engaged in exhaustive search must have some
additional capabilities that allow it to identify subset/superset relations among languages and
somehow decide that evidence that would argue in favor of the superset language was lacking.
Of course, this is really true of any learner. The learner must either avoid ever hypothesizing a
grammar that generates a superset of the target, or the learner must possess some means of
monitoring that evidence that would argue in favor of a superset of the target is lacking—
allowing the possibility of “retraction” from the superset. In the second case, the learner will
not strictly satisfy the criterion of identification in the limit. Identification in the limit does
not aliow the input text to eternally withhold evidence, but it is impossible to rely on crucial
evidence occurring with any fixed interval; the learner may be able to wait long enough to reject
a superset grammar with a great deal of confidence, but never with certainty.

Enumerative approaches to learnability predate the Principles and Parameters
framework and many theorems describing their applicability to classes of infinite languages
are to be found in Wexler and Culicover (1980) and the references cited there. More recently,
Bertolo (1995) provides a formal proof that ensures that a serial scheme that uses an
enumerative listing that places targets generating subset languages before targets generating
the corresponding superset languages will succeed for finite classes of languages even if the
membership of linguistic forms in languages is not decidable. This clearly covers the situation
that confronts a learner of a finite parametric system.

Wu (1994) provides a recent example of a fairly direct attempt to implement the first
strategy of superset avoidance mentioned above. His learner performs an exhaustive serial
search through a listing of grammars in a Minimalist (see Chomsky 1992) syntactic parameter

space consisting of fourteen parameters. Wu provides a simple algorithm that constructs a
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listing of grammars that is guaranteed to eliminate any difficulties due to subset/superset
relations among the languages that the grammar generates. As Bertolo (1995) notes, it is a non-
trivial finding that such a simple algorithm for computing an effective listing exists. Wu's
learner has the virtue of not needing to store a precomputed list of all the grammars in the
parametric space; instead, it can generate elements of the sequence on-line, as necessary. In the
sense of identification in the limit, then, Wu’s example, indicates how the move to finite
parametric systems can meet with success; a learner with very limited resources can effectively
compute an enumeration that can lead to identification in the limit.

In the parametric spaces that will occupy us in the rest of the thesis, matters are even
simpler. In the phonological parametric spaces derived from Idsardi (1992) and Halle and
Idsardi (1994), in Gibson and Wexler’s (1994) three-parameter syntactic space, and in the
extension of Gibson and Wexler’s syntactic space that is the focus of Chapter 6, there are no
proper superset/subset relations among languages. An exhaustive search approach is
guaranteed to succeed in such spaces, provided that any grammar that generates the target
language is deemed acceptable.

However, this exhaustive search approach, as exemplified by Wu (1994), will clearly
break down if natural language parameter spaces are very large, which they easily could be
since the number of possible grammars grows exponentially with the number of parameters.
With n parameters, and with some fixed upper bound on the number of parameter values, the
number of candidate grammars grows exponentially as Q(2"). This order of growth notation
adopted from computer science indicates that there are constants m and c, positive, such that if
n > m, then the number of grammars is greater than c*2" . (If, an upper bound rather than a

lower bound is desired then, greater than is replaced with less than and O(.) notation is used.)
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With n binary parameters, the space of possible parameter settings grows as exactly 2". With
multi-valued parameters the absolute rate of growth of the parameter space can only grow
larger. Computational problems whose resource requirements grow as (2"), where n reflects
some indication of the size of the problem, are generally considered intractable. Obviously, the
“real” parameter space encoded in UG has some fixed constant size, so that the number of
candidate grammars can be upper-bounded by a constant. Nonetheless, the exponential growth
“hidden” in this constant size is likely to be quite prohibitive if n is at all large. Berwick and
Weinberg (1984) and Barton, Berwick and Ristad (1987) provide a thorough discussion of the
dangers of operating in the exponential regime.

With this caveat about the fixed size of the real system in mind, I take the need to
avoid resource requirements that depend exponentially on the number of parameters in the
system as a key constra;int on theories of human language learning. In the enumerative
approach outlined above, and adopted by Wu as a proposal about the human natural language
learner, successful acquisition requires the learner to perform a certain fixed amount of
computation for the target grammar and for each candidate grammar in the enumeration that
precedes it. Minimally, before rejecting a grammar, the learner must check to see whether or not
it generates the current input. If attested human languages populate the tail end of the
enumeration, then the learner will clearly have to perform Q(2") computations in order to
reach it—an unacceptable result. If the learner takes 2n-1 steps to reach the target, the
learning scheme still requires Q(2"); choose c¢ less than 1/2. These arguments against
enumerative approaches, of course, do not depend on the claim that linguistic variation is

parametric. Wexler and Culicover (1980) provide an example of pre-Principles and Parameters
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argumentation against enumeration based on similar considerations of the resources available
to the learner.

Our current knowledge of the resource limitations confronting the human learner does
not allow for anything resembling a precise estimate of the point at which an exponentially
growing parametric space would definitively break an enumerative search scheme for
parameter setting. Nonetheless, consideration of common, although perhaps undermotivated,
speculation about the number of parameters in natural language suggests that parameter spaces
are large enough that any learning scheme that requires a learner to consider a sizable fraction
of the set of candidate grammars would be doomed.? Clark (1992) suggests a conservative
consensus estimate of between 30 to 40 parameters. This estimate translates directly into an
estimate of roughly a billion to a trillion possible natural language grammars. If such estimates
of the size of parameter spaces turn out to be overly pessimistic, either because there simply are
not that many parameters or because parameters are partitioned into manageably sized, non-
interacting modules that can be learned independently, then investigation of the properties of
learning algorithms in large parametric spaces may turn out to be something of a scientific dead
end. If, on the other hand, these estimates are correct or overly optimistic, it seems most likely
that exhaustive search approaches will not be viable, even though they might be perfectly
successful from the point of view of identification in the limit. Approaches based on a random,
error-driven search through the parameter space will not succeed for similar reasons. With no a

priori knowledge of the identity of the target grammar, a random search must expect, on

9 An estimate of the number of grammatically distinct languages of the world, past and present,
would straightforwardly provide a very conservative lower bound on the number of parameters,
on the assumption that parameters were binary.
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average, to consider half of the grammars in the space before finding the target.10 Again, this
halving of the size of the space does not change the fact that this search will grow as Q(2")—
an unacceptable result if parameter spaces are large.

Nonetheless, something is conceptually appealing about the trial-and-error approach.
If nature has essentially provided learners with a complete model of possible human
languages, shouldn’t that be enough? The Principles and Parameters view already includes the
belief that the learner comes equipped with a reconfigurable grammatical system. The learner
must be able to access and change parameter values if learning is to take place at all. Under
relatively straightforward views, the parser also directly provides the learner with the
ability to decide whether or not patterns are generated by a particular grammar.!1 Clearly,
some way of rejecting certain hypotheses and adopting others is required. How much more does
the learner require than these abilities and a modest amount of control structure of the sort
familiar to any beginning computer programmer? The rigidity that governs an enumerative or
strictly random search’s choice of new candidate hypotheses makes it impossible to avoid
search times that grow exponentially with the number of parameters. The itinerary of
hypothesis changes that the learner goes through is not dependent on the target l2nguage in
any useful way. Does the clear inadequacy of enumerative or random searches, however, mean
that the entire trial-and-error approach, which they are a special case of, is bankrupt? Could

the learner’s successes and failures in analyzing data from the target language be used to guide

10 1f there are m weak equivalents of the target that are equally as acceptable than this lower
bound on the expected search time should be adjusted appropriately.

11 The parser may not be able to provide a definitive decision in all cases. For example, in the
domain of syntax, it may simply break down in the face of deeply-nested examples of center-
embedding, Presumably, such examples are not part of the core of sentences that are used to fix
parameters.
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this search in a simple, non-domain-specific way that did not require a non-zero amount of
processing to be performed on a significant fraction of gramma.rs in the system? Could a simple
learner avoid considering vast regions of parameter space? To put it another way, does domain-
specific knowledge abolut the solution of the parameter setting problem need to be built into UG
or will an IGMS algorithm like the TLA suffice? Alternatively, could thc same domain-
specific knowledge that constrains the parameter space be used in a simple fashion to se

parameters.
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Chapter 3

Cue-based Approaches to Parameter Setting

3.1 Motivation

As will be discussed further in Chapter 4, IGMS algorithms are willing to tolerate
incorrect hypotheses en route to the target grammar. In the cue-based approach exemplified by
Dresher and Kaye (1990) and Dresher (1994), there is a much greater emphasis on the
correctness of intermediate partial hypotheses about the identity of the target grammar. In
addition to a general sense of the intricacy of parameter interaction, the need for an extensive
set of built-in instructions for parameter setting is further motivated by the perceived
difficulty of otherwise avoiding false beliefs about the target grammar in light of the claims

such as those in (3.1.1), adapted from Dresher and Kaye (1990).

(3.1.1)

a. The credit problem: When there 1s a mismatch between a target form and a
learner’s grammar, there is no way of reliably knowing which parameters must be
reset to yield a correct output.

b. The epistemological problem: There is a gap between the vocabulary in terms of

which parameters are couched and the learner’s analysis of the input.12

12 We will see in Chapter 6 that Fodor’s approach essentially denies the existence of this
second problem. OPL learners explicitly identify the vocabulary in terms of which parameters
are couched with features of the learner’s analysis of the input.
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To expand somewhat: a major problem for the learner of a parametric system is that
linguistic forms that the learner samples from the target language do not come labeled with the
parameter settings that were used to generate them. Somehow, the learner must work
backwards from the input they receive to discover parameter values that will generate the
target. It could have been otherwise, but, in the real world, this problem seems to be quite
complicated due to the extensive interaction between linguistic parameters.

Consider, for example, the problem that confronts a learner attempting to learn the
mapping from syllables to stress patterns when that lcarner hears the following schematic
word and its associated stress pattern. (L’s indicate light syllables. H's indicate heavy
syllables. Syllables in a language can be categorized as light or heavy on the basis of the
segments that make them up. The height of the column of “grid marks” above a syllable
indicates its relative prominence in the stress contour. A parametric system for stress will be

developed in more detail in following sections.)

3.12) * *

* %% ¥

LHLH
In particular, consider how the learner might go about determining how to set the parameters so
as to capture the fact that the second and fourth syllables in this word receive stress. It is
conceivable that the learner approaches this task in the same way that a student in an
introductory phonology class might—armed with their knowledge of the parametric system
governing stress assignment. Such a student would know that the process of binary foot

formation provides one parametrically available device for forming metrical groupings. They

might, then, surmise that the language responsible for generating (3.1.2) is just such a language.
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With the auxiliary hypothesis that the target language st.esses the rightmost member of
these binary constituents, it would be possible to generate the stresses in (3.1.2).

However, while this is one possible analysis, a careful student would note that there
are alternative analyses of the stress pattern in (3.1.2) that do not require binary constituents.
For example, in some languages all heavy syllables bear stress. Since both of the stressed
syllables in (3.1.2)happen to be heavy, it is possible to generate the appropriate stress without
any use of binary feet. Of course, these alternative analyses will diverge on other input
patterns. Here the complication is that the same pattern of data can be generated with very
different parameter settings. Parameter setting is alsc complicated because a small number of
changes in parameter settings can have drastic effects on the shape of a grammar’s outputs.

Hearing form in (3.1.2), then, does not allow the learner to draw any definite
conclusions about the setting of the parameters governing binary constituent construction. It is
easy to imagine, however, that there could be other data for the learner to use, either
individually or in combination with (3.1.2), to get more inferential leverage on the problem.
Moreover, the learner might make even more progress by taking previously established
parameter values into account. This is essentially the cue-based approach to parameter setting
that Dresher and Kaye (1990) and Dresher (1994) advocate. Of course, these authors dispense
with my fiction that the learner is actively reasoning about parameter setting. Instead, they
propose that all the necessary chains of inference are, in some sense, pre-compiled and encoded
in UG—essentially providing the learner with a set of step-by-step instructions detailing what
types of patterns of input data to look for and what conclusions to draw when these patterns are

or are not discovered. The ultimate aim of such cue-based algorithms is to provide a set of
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instructions that suffices for the acquisition of any learnable language in the linguistic space at
hand.

What are the circumstances under which this aim can be met in a way conducive to
learning in large parametric spaces? This question will be the focus of this chapter.

In Section 3.2 I will develop some vocabulary for the description of cue-based
algorithms. The development of the cue-based approach that I present in Section 3.2 will be
quite general. So general, in fact, that it is capable of describing exhaustive search algorithms
such as Wu’s which we have already rejected as potential candidates for natural language
learners in large parametric spaces.

In Section 3.3 I will briefly detail the points of difference between my general
development of cue-based algorithms and the more restrictive development held up as the
model in Dresher and Kaye (1990) and Dresher (1994). The more restrictive criteria stated in
what I will call Dresher and Kaye’s “design philosophy” for cue-based algorithms further
restricts the class of cue-based learners in a way that rules out exhaustive search algorithms.
Moreover, it can be shown to lead to rapid learning for large parametric systems that it can be
successfully applied to.

This notion of rapidity will be made precise in Section 3.4. In Section 3.4, I will also
point to a potential problem with cue-based approaches that, as far as I know, has not been
discussed in any detail elsewhere: since cues need to be explicitly encoded in UG, it is necessary
to ensure that the problem of dealing with an exponential time-dependence on the number of
parameters in the system is not simply traded for an exponential space or memory-dependence

on the number of parameters.
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After the discussion in Sections 3.1-3.4, the chapter will take a decidedly empirical
turn. Section 3.5 will be the site for an introduction to the Idsardi (1992) and Halle and Idsardi
(1994) system of phonological parameters. Section 3.6 will present Dresher’s (1994) outline of a
cue-based algorithm for acquisition of this system. The informal sketch in Dresher (1994) is, as
Dresher himself indicates, not complete. Dresher focuses on the learning paths for several
classes of languages in the space, but does not provide a general proof that the learner will
successfully acquire all languages in the space. I will attempt to fill in the gaps. Section 3.7
will evaluate the extended solution in terms of its satisfaction of Dresher and Kaye’s design
philosophy. Section 3.8 will discuss issues involved in extending the system to handle a larger
phonological fragment.

Finally, Section 3.9 will briefly present some possible simple cue-based learners for
Gibson and Wexler’s 3-parameter syntactic space, which, as we will see in the following
chapter, is a space that the simplest version of the TLA cannot be guaranteed to succeed in; the
algorithm can be made to succeed in this space if certain natural extensions are made. This
result is intended to foreshadow some issues that arise with the OPL learners presented in
Chapter 6, by drawing attention to a property of the parameter space that could lead to rapid
OPL acquisition. In particular, each language in the Gibson and Wexler space will be seen to

contain strings that are unique to it.

3.2 Cue-based algorithms

Like any inferential engine, cue-based algorithms are fueled by beliefs. The beliefs

that are important to cue-based algorithms acquiring natural language are beliefs about the
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membership and properties of the set of linguistic forms that make up the data stream from the

target language, or text in the sense of Gold (1967).

Definition 3.2.1

Call the beliefs that the cue-bz ied algorithm forms about the target language on the
basis of the data stream hypotheses. Call hypotheses that are deductively warranted on the
basis of the segment of the data stream that the learner has already observed observations.
Call all other hypotheses that are not contradicted by the data stream conjectures.13 Call the
aspects of the data that could potentially cause the learner to appropriately form an
observation or a conjecture possible cues for those observations or conjectures.

A particular cue-based learning algorithm will, in the course of acquiring a grammar,
actually form observations and conjectures in response to detecting certain possible cues. Some of
those observations and conjectures, in turn, will cause the learner to set parameters, or otherwise
reduce the set of candidate grammars. If, given any reduction in the set of candidate grammars
that the learner has already achieved, the learner’s language acquisition device, as
implemented, could, for some further segment of the data stream, actually reduce the set of
candidate grammars further (parametrically or otherwise) on the basis of a possible cue (and if
this reduction is deductively licensed given the learner’s current candidate set and the given

observation or conjecture), then call the possible cue that sets off this chain of events an

13 The learner might actually base their conjectures on a window of input that is somewhat
smaller than the larger text, but I will not generally make much of this distinction. 1 will
assume that no initial segment of the text will contain critical information that the learner
could not extract by beginning later in the text.
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implemented cue for the reduction, in the context of the particular learning algorithm and an

appropriately reduced candidate set.

Any particular algorithm will implement some subset of the vast logical space of
possible cues. In cases where confusion will not resuli, 1 will often refer to both possible and
implemented cues simply as cues. Note that cues do not have to be considered in combination
with the full set of beliefs that a learner has acquired, but simply on their current hypothesis
space.

A learner whose beliefs consist entirely of observations, in other words a learner whose
beliefs about the target language are based on positive evidence, does not resort to conjecture
and, in the absence of noise, cannot form any false beliefs. A learner that relies on indirect
negative evidence, by definition, does rely on conjecture. The absence of some feature of the data
stream in some initial segment of the tex’ is used to infer its absence in the target language. A
false inference could result in an incorrect reduction of the set of possible grammars and prevent
convergence to the target. In keeping with our desiderata for the language learner, for cue-based
systems that use indirect negative evidence, false inferences must be exceedingly rare.

Some distinctions based on the content of hypotheses will prove useful in later
discussion. In the absence of noise, it is convenient, and harmless, to gloss over the distinction

between languages and texts for languages.

Definition 3.2.2

Define a form observation as an observation that a particular form occurs in the target

language.
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Define a property observation as an observation that some form in the target language has the
specified property.

Define a form-presence conjecture as a conjecture that a particular form occurs in the target
language.

Define a form-absence conjecture as a conjecture that a particular form does not occur in the
target language.

Define a property-presence conjecture as a conjecture that some form in the target language has
the specified property.

Define a property-absence conjecture as a conjecture that no form in the target language has the

specified property.

As an example of the application of these definitions, consider the conclusions that a
learner might draw when it encounters the form, “John saw Bill”. The learner might develop a
form observation corresponding to the belief that “John saw Bill” was a sentence of the
language that they were learning.14 Upon hearing the same sentence, “John saw Bill”, the
learner would also be free to develop a property observation reflecting the belief that the

grammar that they were acquiring allowed sentences that were three words long. This is, of

14The notion of form observation might be relaxed somewhat to abstract away from lexical
particularities that do not matter for the syntax. After hearing the sentence “Jonn saw Frank”,
hearing the sentence “John saw Bill” in a similar context does not seem to warrant a
conceptually distinct observation. For example, if the learner had figured out the syntactic
categories of the words involved here and could also determine which noun phrase was the
subject and which was the object, on the basis of semantic context, then both of these utterances
might receive the same encoding—"Subject Verb Object”.
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course, only one among infinitely many property observations that a learner might be built to
form in response to this input. A learner might also develop any number of conjectures.
Form-presence and property-presence conjectures are included for completeness, but, for
obvious reasons, do not seem likely to play an important logical role in the development of cue-
based algorithms. There is little reason to conjecture about the presence of forms or properties
when they will eventually be revealed by the data stream if the learner simply waits.
Generalization of these definitions to sets of forms and properties should be straightforward.
How does the cue-based learner translate its observations and conjectures into beliefs
about the identity of the target grammar? Under the Principles and Parameters approach, the
learner begins life knowing that the grammar that generates their target language lies
somewhere in a finite set of candidate grammars. Initially, assuming all the languages in the
space are learnable, the learner has no reliable information about which grammar will turn out
to be the target.15 As observations and conjectures are formed, certain grammars become
incompatible with the learner’s beliefs and can be eliminated from the candidate set.
Eliminations that are deductively licensed by observations are guaranteed to be correct; the
learner who relies solely on observations will never discover that a grammar was erroneously
eliminated. Eliminations based on conjectures stand some non-zero, hopefully small, chance of
leading the learner astray. At the point that they form a conjecture, the learner may not yet

have encountered the crucial evidence that would contradict it.16 In the end, of course, if the

15 Universal grammar could conceivably encode some type of probabilistic, a priori beliefs
about the likelihood of different grammars.

16 The learner might also only consider a fixed window of evidence, so that contradictory
evidence might actually have been previously encountered in the text, but at a point that was
too early for it to do any good.
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cue-based hypothesis is correct the learner ideally selects a single grammar that generates the
target language.

I take this reasonably reliable, deductive narrowing of the candidate set as a central,
perhaps the central, property of the cue-based approach. It potentially stands in stark contrast
to the behavior of IGMS algorithms which, depending on the parameter space, are quite free to
form intermediate hypotheses that are inconsistent with the target grammar.

Notice, however, that at this level of generality it is possible, with only slight
modifications, to describe an enumerative learner like Wu's, which plausibility considerations
based on the size of natural language parametric spaces have already led us to reject. At the
outset, all possibilities are open to an enumerative learner. As the learner forms observations
corresponding to the belief that sentences that it encounters are part of the target language, it is
able to notice that these same sentences cannot be generated by certain grammars in the
enumeration. As a result, the learner proceeds forward in the enumeration and eliminates all
grammars that fall earlier in the enumeration from consideration. Eventually, the learner will
come to the a grammar capable of generating the target language and stop making progress
through the enumeration. In a strict identification in the limit paradigm, the learner would
never conclusively rule out grammars later in the enumeration. However, it is easy to see that
the learner might eventually conjecture the absence of forms that are not generated by the most
recently selected grammar in the enumeration. At this point, all later grammars could be
eliminated from consideration.

Given the extreme generality of this notion of cue-based learning, the interest in the
discussion of Dresher and Kaye’s design philosophy will lie in noting how the additional

constraints that they impose restrict the notion of cue-based learning in a way that, if they
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were right, would make for tractable acquisition. It will also be of interest to identify some
properties of systems where their approach can be successfully applied and some properties of
systems that will lead to breakdown. The development of some vocabulary, in this case
vocabulary for talking about the effect that observations and conjectures have on reducing the
candidate set of grammars, will facilitate later discussion both in this chapter and also,
conveniently, in discussion in Chapter 6, when I turn to consideration of Fodor’s proposal and
the more general class of OPL learners.

The enumerative learner performs a non-zero amount of work for each grammar that it
eliminates. A more efficient learner might eliminate large portions of the parameter space in a
single step. Ideally, for reasons that will be made explicit in section 3.4, candidate grammars
can be eliminated a parameter (or at least a parameter value) at a time. The following

definition provides some terms for talking about this desirable state of affairs.

Definition 3.2.3

Divide the parameters in a space into three disjoint (possibly empty) sets: 1) a set of
fixed parameters whose values have already been set, 2) a set of previously unset, but to-be-set
parameters with a corresponding set of candidate values that they will be set to, and 3) a set of
open parameters whose values are as of yet unset, and which are not currently being considered
for setting. The candidate values uniquely explain a hypothesis about the target language, in
the context of the fixed parameters, just in case the hypothesis holds true of the target
language only if, given the fixed parameters, the to-be-set parameters receive the candidate

values. Call a cue that leads to such a hypothesis (without contradiction from the data stream)
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a sufficient parametric cue for the candidate values of the to-be-set parameters in the context of

the fixed parameters.

Clearly, a sufficient parametric cue for the candidate values of a set of to-be-set
parameters (if such things exists for a space) can be used to extend the set of fixed parameters.
The cue that indicates that they should be set, by definition, would only be found in the target
language if they take on the indicated values. Fixing additional parameters eliminates entire
regions of the parameter space from consideration in a single step. The provision of a set of
previously fixed parameters allows previous conclusions about the identity of the target
grammar to provide inferential leverage on later decisions, since the candidate values of the
to-be-set parameters only need be justified in the more restrictive context of the previously set
parameters. A piece of evidence that would not conclusively allow a parameter to be set in the
early stages of acquisition could prove quite definitive once a number of other parameters have
been set. For example, in the absence of any information a particular form might be compatible
with several values of a given parameter, A. Once parameter B’s value is fixed, however, that
form might only be compatible with a single value of parameter A. If the form were observed at
that point it would be safe to set parameter A to the appropriate value, although it would not
have been safe to do so at the outset.

If a sufficient parametric cue relies on a fixed context, then, crucially, a learner who
makes use of such a cue must have some way of ordering its use of cues so that they do not trigger
parameter setting until the appropriate context of fixed parameters has been established.

Several features of Definition 3.2.3 deserve further discussion.
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First, note that the set of to-be-set parameters that can get set through appropriate use
of a sufficient parametric cue will always be minimal. If parameters are included in the set of
to-be-set parameters that do not actually need to be fixed in order to accommodate the data,
then there is a contradiction with the requirement that the form be licensed by the grammar
only in case all the to-be-set parameters receive their candidate values.

Second, note that such cues are only sufficient cues for assignment of those values that
they indicate. It is possible that the cue will only be available for some, but not all, of the
target languages that should fix the to-be-set parameters to those candidate values, In this
case, additional cues would need to be implemented to cover all of the possibilities, and ensure
learning of the other languages that should have their parameters fixed in this way. The
following definition provides the terms used to describe the situation when, given a set of fixed
parameters, a cue is guaranteed to work for all target languages that should receive a
candidate assignment of parameter values to the to-be-set parameters. This is clearly the more
desirable case if the aim is to make do with a small set of explicitly encoded cues. The key

change is changing “only if” to “if and only if” in the second sentence.!”

17 A final complication arises in spaces where grammars generate languages that are weakly
equivalent. Here a cue might be prevented from functioning parametrically, as defined, because
there is a grammar generating a weak equivalent that would be inappropriately eliminated by
applying the candidate assignment to the candidate extension of the fixed parameters. The
definitions above should be extended so that this state of affairs does not block such evidence
from counting as a parametric cue. If the learner has no principled way of choosing between
weak equivalents, one is as good as any other, and it is acceptable to let a cue-based algorithm
make the decision arbitrarily.
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Definition 3.2.4

Divide the parameters in a space into three disjoint (possibly empty) sets: 1) a set of fixed
parameters whose values have already been set, 2) a set of previously unset, but to-be-set
parameters with a corresponding set of candidate values that they will be set to, and 3) a set of
open parameters whose values are as of yet unset, and which are not currently being considered
for setting. The candidate values always explain a hypothesis about the target language, in
the context of the fixed parameters, just in case the hypothesis holds true of the target
language if and only if, given the fixed parameters, the to-be-set parameters receive the
candidate values. Call a cue that leads to such a hypothesis (without contradiction from the
data strean) a generally available parametric cue for the candidate values of the to-be-set

parameters in the context of the fixed parameters.

Note that the question of whether a candidate assignment uniquely explains a
hypothesis about the target language is independent of the question of whether or not that
hypothesis actually turns out to be true. An extremely ill-designed learner might form wildly
false beliefs about the target grammar. More importantly, though, a learner who makes use of
conjectures always stands some non-zero chance of adopting a false belief.

Third, note that in order for a learner to get off the ground using parametric cues, it is
necessary that some parametric cue be able to work when the set of fixed parameters is empty.

The following definition distinguishes those cues from the rest.

Definition 3.2.5

Label cues which apply with an empty set of fixed parameters independent.
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Label cues which require a non-empty set of fixed parameters dependent.

It is also possible to generalize these definitions to capture the notions of two cues being
independent of one another. Clearly, two cues that are independent are independent of one
another.

As the discussion of exhaustive search style learning above makes plain, cue-based
learning (in the broad sense) can proceed without extensive reliance on parametric cues. Such a
learner rules out hypotheses a grammar at a time rather than a parameter at a time. Of course,
some of the cues used to eliminate a single grammar could accidentally turn out to be parametric
cues as well if they happened to require a parameter to be set to a certain value because all
other grammars bearing different values of the parameter had already been eliminated.

The following definition provides for this more piecemeal approach to cue-based
learning and indicates the more general effect that a cue can have on the learner’s hypothesis

space.

Definition 3.2.6
A hypothesis rules out a grammar if and only if the observation is not true of the language
generated by the grammar. Call a cue that leads to such a hypothesis an eliminator for that

grammar.

As will be seen below, eliminators are not, in principle, welcome components of cue-

based systems for Dresher and Kaye (1990) and Dresher (1994). These systems claim to aim for a
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system based on parametric cues. In fact, they are even more restrictive in that they aim to
provide a single cue per parameter value.

With these definitions in place, it is possible tc provide two definitions that identify
different families of cue-based algorithms—one maximally general, the other a subset of the
first and potentially quite restrictive. It is an open question whether human parametric systems
are compatible with some member of the more restrictive class. These definitions essentially
formalize the notion of a cue-based algorithm as a sort of flow chart for parameter setting.

First, consider the most general instantiation of the notion of cue-based learning.

Definition 3.2.7

Represent an unrestricted cue-based algorithm as a tree whose nodes have the following
properties:

i) each node has a set of grammars associated with it; call these grammars compatible with
the node.

ii) all grammars in the finite system to be learned are compatible with the root node.

iii) the terminal nodes of the tree have sets with a single member associated with them—weak
equivalents can be eliminated arbitrarily; the grammars associated with terminal nodes are
the learnable languages in the space.

iv) also associated with each non-root node is an eliminator for some non-empty subset of
grammars in the set of grammars compatible with the node.

v) the set of grammars compatible with a daughter node is equal to the set difference of the set
of grammars compatible with the parent node and the set of grammars that the daughter node’s

eliminator rules out.



It should be clear how this representation translates into an algorithm. The learner begins at
the root node and then proceeds to monitor the input for cues corresponding to one of the root’s
daughter nodes. When such a cue is found, the learner moves to the appropriate daughter node
and begins once again to monitor for cues that would lead it, in similar fashion, to move further
down the tree. If the learner reaches a terminal node, it has converged to its guess about the
identity of the target grammar.

Note that this definition allows a node to have an arbitrary number of daughters. As
an example of the possibilities that this could afford, consider a parametric space such that
each grammar in the space generated at least one form that was unique to it. Each such form
could serve as a cue for the elimination of all the other grammars in the space. The
corresponding decision tree would be an extremely flat one.

More generally, the tree-based description of cue-based learning is useful because it
makes certain aspects of the time and space requirements of the algorithm plain.

The lengths of the paths from the root node to the terminal leaves provide a lower
bound on the number of processing steps that need to go on during acquisition. Of course, the time
required to gather the evidence that contributes to a particular cue could vary greatly. Some
grammars might be eliminated, or parameters cued, after the observation of a single easily
observable property of the input. Others might require the learner to amass a wide collection of
forms from the input stream, or to observe a long sequence of forms to ensure that none of them
have a particular property.

The various annotations on the nodes of the tree need to receive a mental

representation, and, therefore, occupy memory. On the cue-based approach, UG explicitly
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provides the set of cues that the learner will need to acquire any learnable languages in a
parameter space. Moreover, at any step in the acquisition process the learner must somehow
explicitly represent its hypothesis. This last requirement may or may not prove onerous. For
example, an enumerative learner like Wu's, which generates its enumeration on the fly, has a
fairly simple representational requirement.

The following definition picks out a more restricted class of cue-based algorithms that

must set a parameter at a time, rather than just eliminate a grammar at a time.18

Definitien 3.2.8

Represent a parametric cue-based algorithm as a tree whose nodes have the following
properties:

i) each node has a set of fixed parameters associated with it; call this background context
compatible with the node.

ii) the background context compatible with the root node is null.

iii) the terminal nodes of the tree have all parameters fixed and each learnable natural
language is represented by a terminal node—weak equivalents can be eliminated arbitrarily

via a suitable vacuous conjecture.

18 Actually, as things are developed here, the class of parametric cue-based algorithms is not
any more restrictive than the class of cue-based algorithms with respect to the class of
languages that it can learn. Intuition would suggest that the parametric cue-based learner is
more restricted because it can only employ cues that set a parameter at a time, not cues that
simply eliminate a grammar at a time. However, any potential restrictiveness is voided by the
lack of restriction on possible cues. To see this, consider that a parametric cue-based algorithm’s
cues could actually internally simulate the workings of an enumerative search. If there is to be
a distinction in the classes of languages that the two families can learn, there needs to be some
bound on the amount of time and input that it takes to perform a parametric cue-based learning
step.
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iv) also associated with each non-root node is a set of to-be-fixed parameters, the corresponding
set of values that they are to be set to, and an encoded parametric cue that would license the
learning algorithm to make corresponding extension from the set of fixed parameters of the

parent node to the set of fixed parameters of the daughter node.

Translating this representation into an algorithm is also quite clear.

The intuition behind these algorithms is that after successful piecemeal or parametric
elimination of candidate grammars, the learner would be left with a single grammar that
generates the target language. If the learner relies on conjecture, this situation cannot be
entirely guaranteed even if an algorithm with the appropriate structure is provided.
Proponents of cue-based algorithms that, by relying on conjecture, make use of indirect negative
evidence can only hope that the systems conjectures will be correct with high probability, and,
therefore, lead the algorithm to correctly converge with high probability. Ensuring high
reliability of cues based on indirect negative evidence could potentially require the learner to
process a considerable number of inputs. This would be the case if the property of the data
stream that the learner was monitoring for would be expected to occur infrequently in languages
that manifested it. If the learner never resorts to conjecture, then a correctly specified cue-based
algorithm will satisfy the requirements of the identification in the limit paradigm. All of the
eliminations, piecemeal or parametric, that a learner performs are guaranteed to lead the
learner along a path to a suitgble target. If a learner resorts to conjecture, then, the learner
could make an unwarranted step. A learner who took such an unwarranted step might, in fact,

never reach a leaf of the decision tree. Further cues on the incorrect branch could prove
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inapplicable. Alternatively, a learner might reach a leaf corresponding to a grammar that did
not generate the same set of forms as the target grammar.

With some empirical estimate of the distribution of forms in texts from target
languages, it is straightforward to estimate the probability that a learner will pursue a
particular branch of the decision tree. Since a learner only ever pursues one branch, the
probability of successful acquisition of a target is simply the sum of the probabilities of all
paths that lead from the root to a leaf that generates the same language as the target
grammar.

A learner who relies only on positive evidence can, in the limit at least, expect to be
driven to the target grammar. A learner who relies on the absence of a particular form or
property from the data stream can be misled if it does not wait long enough. If the particular
form or property can be expected to occur, on average, every n inputs, then it is possible for the
learner to wait long enough to build up an arbitrarily high level of confidence in the belief that

the form or property will never occur.

3.3 Dresher and Kaye’s design philosophy

With a couple of additional wrinkles, Dresher and Kaye (1990) and Dresher (1994)
essentially advocate a version of the parametric, cue-based learner that I have sketched
above. They provide the following list of properties that they believe hold true of algorithms

for natural language parameter setting:

48



(3.3.1)

o0 w

UG associates every parameter with a cue.

A cue is not an input sentence or form but is something that can be derived from input.
Cues must be appropriate to their parameters.

What the correct cue to any given parameter is must be empirically determined (by the
linguist not the learner, to whom it is supplied by UG). There is no parameter-
independent general algorithm for parameter setting.

Parameter setting proceeds in a (partial) order set by UG: this ordering reflects
dependencies among cues, and specifies a learning path.

A parameter which has a default state remains in it until the learner detects its cue,
which acts as the trigger to move to the marked setting.

The learning strategy is loosely speaking ‘deterministic’, in the sense that the learner
may not backtrack or undo parameter settings that have already been set.

Determinism does not hold in the following case: when a parameter is set to a new
value, all parameters which depend upon it (follow it in the order) revert to default.
Cues are local in the sense that each decision depends on finding a specific configuration
in the input, and acts on this without regard to the final result. Hence, learners are not
trying to match the input.

Cues become increasingly abstract and grammar-internal the further along the learning

path they are.

My aim here, is to briefly dissect this list of proposed properties of the human language

acquisition device in terms of the vocabulary developed in 3.2 with an eye towards both

developing a picture of the restrictiveness of the proposal and a means of evaluating how

closely our concrete examples of cue-based learners adhere to these guidelines.

Property A reflects the belief that it will be possible to develop a parametric cue-based

algorithm as opposed to simply an unrestricted cue-based algorithm—which can be trivially

constructed wherever enumeration succeeds. As will be seen in 3.4, this property is really a key
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to ensuring reasonable resource usage for the parametric acquisition of large spaces. Moreover, it
would appear that the claim is being made that the cues that are encoded in UG are generally
available, rather than just sufficient. Every parameter has a cue.

Property B’s motivation seems to be a belief that the parameters in a system are likely
to be highly interactive. Several potentially useful notions of interaction are developed in

Definition 3.3.2.

Definition 3.3.2

A subset of parameters fixed to certain values will interact to generate data that license a
hypothesis if and only if, with no other parameters fixed, the corresponding hypothesis is
uniquely (not necessarily, always) explained by the parameter assignment corresponding to the
fixed values of the parameters in the designated subset. Designate the degree of interactivity
of a hypothesis as the size of the non-empty set of interacting parameters. (If the set of

interacting parameters is empty, then the data have a disjunctive explanation.)

These definitions are straightforwardly generalized to capture the notion of parameter
interaction against the background of a set of previously established parameter values.

If the space tends to have a high degree of interactivity with respect to form
observations then a parametric cue-based learner that relied primarily on form observations
could require many highly specialized, encoded cues, all of which would need to be made
available in UG. Moreover many particular forms that could potentially serve as cues and
that, collectively, would be quite common in natural language data sets, could, individually,

prove, rather sparse. A learner might have to represent a large number of forms to look for,
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instead of relying on individually infrequent forms. In this case, the burden of supplementing
UG with enough cues to ensure a reasonable time course of acquisition could prove rather
problematic. Of course, if cues could be made available to the learner at no cost, high
interactivity is actually a boon for a learner because it allows for many parameters to be set in
one step. We will see in Chapter 6 that OPL learners potentially exploit this possibility. An
important question regarding such learners, of course, is whether the relevant cues are really to
be had, if not for free then at a reasonable cost.

On the other hand, it is possible that parameters do not interact to generate any of the
forms in the space. All the forms in the space could turn out to be generated by odd disjunctions of
parameters. Suppose, for example that the sentence “John saw Bill” were possible if and only if
parameter 1 received value A or parameter 7 received value B. In this case, then, no particular
parameter needs to be set to a particular value in order to generate “John saw Bill”. If most
forms in the parameter space had a disjunctive explanation, a parametric cue-based learner
who relied on form observations could be in trouble. Forms that have a disjunctive explanation
do not require any parameter values to be set in a particular way, so the learner cannot use them
as evidence for setting a parameter.

Dresher and Kaye’s (1990) and Dresher’s (1994) motivation for focusing on property
observations and property-absence conjectures is a belief that this focus on more abstract
properties of the input will lead to the discovery of easily encoded cues that (in the context of a
fixed background of set parameters) are not plagued by high interactivity and that can be
expected to occur in the input in a reasonable time span.

Property C is primarily an aesthetic criterion from the point of view of questions about

the time and space that the learner needs to be devote to language acquisition. It is not really
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easy to evaluate the meaning of this requirement, which is intended to prevent cues that are
linguistically “unnatural” in some way or other.

Property D is a simple assertion of the need for a cue-based approach and a rejection of
alternative approaches, for example those based on IGMS algorithms.

Property E is in keeping with the tree-based representation of cue-based algorithms
developed in 3.3.

Property I reemphasizes the claim made in B that Dresher and Kaye intend to limit
themselves to observing properties of forms rather than forms.

Property ] reflects the belief that there will be a high degree of dependence among cues.
Most of them will only operate successfully against a fixed background of previously set
parameters. Dresher and Kaye (1990) and Dresher (1994) aim to accommodate this dependence
by stating abstract cues that can be concretely instantiated once certain parameters have been
fixed.

Properties F, G and H represent a slight departure from my formulation. This limited
backtracking is not exercised in the Dresher (1994) paper that will be our focus here. The
formalisra I have developed here could be easily extended to handle this possibility without
significantly impacting the desirable properties of the parametric cue-based learner that I turn

to now.
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3.4 Cue-based Learning in Large Parametric Spaces

We have already seen that an unrestricted cue-based learner can effectively mimic an
enumerative learner. As a result we know that an entirely unrestricted approach will not do for
large parametric spaces.

Fortunately, from the point of view of coping with large parametric spaces, parametric
cue-based algorithms offer interesting possibilities that, in appropriate parameter spaces,
would guarantee that acquisition takes a tractable amount of time. In fact, the parametric cue-
based learner implements a design paradigm that is textbook computer science: divide-and-
conquer. At each step that a cue is applied to fix a parameter, the learner reduces the problem
that they are currently facing—finding the target grammar in a space of m candidates—to a
problem that is 1/nth that size—where n is the number of parameter values for the parameter
that gets fixed. If more than one parameter gets fixed in a single step, the reduction in the size
of the problem space is even greater.

Figure 3.4.1 provides a schematic view of the reduction of the size of the problem space
in a system with binary parameters. At the root node, all grammars in the space are still
possible. At the first level down, a parameter has been fixed one way or the other, and, as a
result, half of the grammars in the space have been eliminated. Another level down, and the

space is halved again.
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12 12

1/4 1/4 1/4 1/4

Figure 3.4.1
In this example, since each cue rules out half of the candidate grammars, the number of cues
utilized along a learning path en route to a target grammar at the terminals will be
(proportional to) logo2"—in other words, n. A successful learning path requires a number of cues
fhat is linear in the number of parameters. The number of parameters would need to be quite
enormous for this requirement, in and of itself, to overwhelm the learner.

It is easily shown (see for example, Cormen, Leiserson and Rivest 1990) that any
divide-and-conquer scheme that reduces the problem space at each step by at least some fixed
non-zero fraction will lead to a scheme that takes at worst a number of steps that is
logarithmically proportional to the size of an exponentially growing initial problem space.
Therefore, the number of steps required will be linear in the number of parameters to be set. (Of
course, the constant of proportionality could prove large enough to become somewhat daunting.
Eliminating a millionth of the remaining parameter space at a time would not be particularly

useful. Again, as discussed in length in Berwick and Weinberg (1984), there is need for some
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caution in applying this type of reasoning to the case of natural language learning since the
actual parameter space is fixed in size.)

Along these lines, it would also be acceptable, although slower in the absolute sense,
for a learner with multi-valued parameters to reject a single value of a parameter at each step.
To recognize the tractability of this approach, notice that since there is a maximum finite
number of values, v, that a parameter in the space can have, the fraction of the space
eliminated every time a parameter value is eliminated is at least 1/v.

On the other hand, a learner that is only required to reject certain combinations of
parameter values at each step without definitively setting the values of any parameter does
not necessarily maintain the desired property of guaranteeing that fixed fraction of the
candidate grammars, independent of the size of the space, get eliminated at any step. In fact,
this is exactly what the unrestricted parametric learner of Section 3.3 does. A breakdown in the
ability to satisfy the one parameter per cue (or the equally satisfactory, but weaker “eliminate
one parameter value” per cue) assumption, thus, leaves the learner potentially unable to
guarantee success in exponentially growing parametric spaces.

The learner needs to be able eliminate large regions of the parameter space in a single
step in order for cue-based acquisition to work in large parametric spaces. Unfortunately, while
ensuring that each learning step eliminates a fixed fraction of the remaining candidate
grammars does stave off intractable growth in the number of learning steps that the learner
needs to devote to language acquisition, it does not guarantee complete avoidance of the
“exponential” problems inherent in large spaces. There could still be “exponential” growth in

the contents of UG.
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Clearly, the cue-based approach as developed by Dresher and Kaye (1990) and
Dresher (1994) explicitly requires UG to provide a learner with all the cues that are actually
used in learning. It also, however, requires UG to provide the learner with all the cues that are
potentially used because the learner enters the world not knowing what grammar it will
eventually have to acquire. All of these cues must be encoded somehow in the instruction
manual for UG. At the very leust, there is one cue for each terminal in the tree. In a space with
2" grammars, then, the iearner might potentially have to store 2/ distinct cues just to make the
final parameter settings for target languages. Moreover, the cues at each decision point in the
tree structure could turn out to be distinct. This unhappy state of affairs is represented in Figure
3.4.2. In fact, every language might require an entirely different chain of cues along its learning
path.19 If the learner has pursued the leftmost branch of the decision tree in Figure 3.4.2, then
Cue A will be used to make the first parametric decision, while Cue C gets used to make the
second parametric decision. If, instead, the learner had pursued the rightmost branch in the
decision tree, then Cues B and F would be deployed. A fully binary tree will contain an+l 1

nodes.

19 Moreover, nothing prevents the possibility of target grammars having multiple terminal
nodes.
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Cue A Cue B

Cue C Cue D CueE CueF

/N [ N/ N / \

Figure 3.4.2

Here, the learner has bought a time course of acquisition that depends only linearly on the
number of parameters and their values at the cost of a storage requirement that is of the same
order c¢f the problem space—an unacceptable result given our ground rule about avciding
exponential dependence on the number of parameters in the system.

In the best case, however, it would be possible to, in some sense, share cues throughout
the tree structure and achieve a more compact representation. For example, if a single cue could
be assigned to each level in the decision tree, it would be pcssible to ensure that the number of
cues required was bounded by the product of the number of parameters and the maximum number
of values that any particular parameter could take on. If each cue were able to effectively fix
the value of one parameter, then it would take n cues to set n parameters. This possibility is
represented in Figure 3.4.3, although it is necessary to give the cues here some further

interpretation.
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Cue A Cue A

Cue B Cue B Cue B Cue B

/N /[ N/ N / N\

Figure 3.4.3

There are at least two possible ways to make sense of the identical cues in the tree
structure. First, and most simply, the space might be such that it is possible to provide cues that
show little if any dependence on the background context of fixed parameters. Second, a set of
meta-cues might be cleverly devised. The idea behind what I am calling the meta-cue
approach is to provide a set of abstract cues that, given a background context of fixed
parameters, can be used to quickly compute a cue for parameter setting that will work in the
context of that background. As always, whether or not this can be done is an open empirical
question. Discussion of Dresher’s (1994) system will provide some examples of the meta-cue

approach.
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3.5 An Example System of Phonological Parameters:

Metrical systems in phonology provide an attractive testing ground for parametric
learning schemes because quite sizable systems of interacting parameters have been proposed
and these systems tend to provide a relatively broad coverage of natural language data in a
diverse set of languages. Idsardi (1992) and Halle and Idsardi (1994) develop the system that
Dresher (1994) analyzes from the point of view of cue-based learning. There are a number of
alternative systems with comparable coverage of this phonological domain, but our focus here
will be squarely on this particular variant. I will further analyze this system in Chapters 4
and 5 from the point of view of the TLA. The system provides a parametrized algorithm that
maps from a string of syllabified phonemic material to a metrical structure and stress
assignment. In all the learning scenarios that I will consider, the learner is assumed to have
direct perceptual access to the string of syllabified phonemic material and the stress contour,
but cannot directly perceive metrical groupings. This assumption, of course, will eventually
need to be justified if any of these approaches are to have a hope of succeeding.

Pedagogically, the language Tiibatulabal provides a convenient and rapid introduction
to the basic workings of the system since it exercises most of the parametrically available
machinery that the system allows. In this section, I will present a version of the system that
corresponds to the one that I have implemented in the computer language LISP for analysis of
Gibson and Wexler’s TLA. Dresher’s analysis of the Halle and Idsardi system, unlike Dresher
and Kaye’s (1990) analysis of an alternative system of metrical parameters does not make use of

an explicit implementation; instead, it is based on a series of deductive arguments about the
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interaction of the parameters as described in the literature. The fragment that I have
implemented is closest to the presentation in Halle and Idsardi (1994), with an important
difference motivated by a proposal by Halle (p.c.) for a possible extension of the system
tentatively suggested by some facts from Ojibwa. Interestingly, this extension turns out to have
dramatic, and unfortunate, consequences for the TLA. This will be discussed in more detail in
Chapter 4. Dresher makes some further modifications to the system that I will present in the
course of consideration of his cue-based learner for the space.

For simplicity, I begin with the machinery used in generating a single level of stress.
L’s indicate light syllables. H’s indicate heavy syllables. The # symbol indicates word
boundaries. Several tiers, or lines, of metrical structure are built “on top” of the string of
syllables. The elements on these tiers, or grid marks, are indicated by asterisks. The height of

the column of asterisks above a syllable indicates its stress level.
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(3.5.1) Halle and Idsardi (1994), as exemplified by Tiibatulabal.

a. Initial syllabification and projection to Line 0.

* * * *

* # Line 0
L H L L #

[

#
#

b. Quantity Sensitivity: “Project Heavy Syllable”.

¥ * * [ * * * # Line O
# L L L H L L #

c. Edge Marking.
#* * * [+ * [ * # Line 0
#L L L H L L #

d. Iterative Constituent Construction:
Finish < Start

# ¥ [ > * [+ * [ * [ # Line 0
# L L L H L L #

e. Project Constituent Heads

# * * * §# Line 1
#* [ * * [ * * [ *[ # Line 0
# L L L L L #

Initially, as shown in (3.5.1.a), all syllables are projected to a tier called Line 0 to
indicate that they are potential stress-bearers. The asterisks that appear above them reflect
their stress-bearing status. Next, several parametrically regulated pieces of metrical-
construction machinery have an opportunity to add brackets to Line 0. These brackets serve to
group these grid marks into constituents. The metrical constituents that this system forms are
somewhat idiosyncratic. Unlike in more “standard” systems where the elements of a constituent

are grouped together by a matching left and right bracket, here a single bracket suffices to form
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a constituent. Constituents can be read off the representations in (3.5.1) as follows: All the
material on the inside of a bracket—to the right of a left bracket and to the left of a right
bracket—up to another bracket or a word boundary form a constituent. For example, in (3.5.1.b)
the first three grid marks are initially not grouped into any constituent, while the last three
syllables are grouped into a constituent by the left bracket to the left of the grid mark
associated with the heavy syllable.

The first bracket-inserting process, which inserted the bracket in (3.5.1.b), places a
bracket to the left of the grid mark associated with a heavy syllable. Brackets inserted by this
process are always oriented so that they group the heavy syllable into a constituent.
Parametrically, languages can choose to place no bracket at all, to place a bracket to the left of
the grid mark associated with the heavy syllable, or to place a grid mark to the right of the
heavy syllable. Tubatulabal chooses to place a left bracket. In my implementation, I have only
represented one notion of heavy syllable. In reality, there is cross-linguistic variation in terms
of whether syllables behave as light or heavy. The rough generalization is that in all
languages sensitive to syllable weight, a syllable with a long vowel counts as heavy.
Languages, however, can also opt to allow closed syllables—syliables with a consonant in their
coda—to count as heavy even if the vowel is not long.

In (3.5.1.c), a bracket associated with the edge of the word is put into place. Languages
do not have to exercise an edge marking option, but if they do, they can choose to place a left or
a right bracket to the left or the right of the leftmost or rightmost grid mark. Tiibatulabal
places a left bracket to the left of the rightmost grid mark.

In (3.5.1.d), the final bracket insertion process applies. This somewhat more

complicated device iterates through the structure, from one end or the other, placing brackets in
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any position that will not create a new single syllable constituent between the current position
and the starting position. That is to say, the process can look back at the portion of the
representation that it has already traversed, but not ahead to the portion of the representation
that is yet to come. A typical, but not necessary, effect of this process is to create new binary
constituents. So, I will sometimes refer to it as binary constituent construction, rather than the
more technically correct name for it—iterative constituent construction. In the version of the
system that I will consider, languages can choose to start from either the left or the right of the
word, and to place either left or right brackets (if, of course, they adopt iterative constituent
construction at all). Tiibatulabal proceeds from right to left, placing left brackets. The variants
that I’ll call the forward grouping iterative possibilities—moving from left to right with right
brackets and from right to left with left brackets—are an extension of the system that does not
appear in Halle and Idsardi (1994). They are motivated by general considerations of symmetry
and a tentative analysis of Ojibwa (Halle p.c.). In the unextended system, the direction of
motion in the process of bracket placement is correlated with the orientation of the bracket;
only backward grouping insertions were allowed. The system presented by Idsardi (1992) and
Halle and Idsardi (1994) also allows for parametrization of the size of iterative constituents to
accommodate languages such as Cayuvava which seem to require ternary constituents. This
parametric variation is not captured in my implementation.

Finally, once constituents have been formed, one member of each constituent is
projected—an additional grid mark is placed above it on Line 1. Languages can choose to select
either the leftmost or the rightmost member of a constituent. Tiibatulabal chooses to project the

leftmost. If such marks remain, they will be interpreted as secondary stresses.
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Many languages make a distinction between secondary and primary stress. With the
exception of the bracket inserting process that places brackets to the left or right of Line 0 grid
marks corresponding to heavy syllables, independently parametrized versions of the bracket
inserting processes and head projecting machinery used to build Line 1 from Line 0 are available
for the construction of and additional Line 2 on top of Line 1. Languages may impose some
additional restrictions on the operation of constituent formation on top of Line 1, since the
typical result in the world’s languages seems to be a single main stress. This is not discussed in
great detail in Idsardi (1992) or Halle and Idsardi (1994),

In some cases, the system requires the machinery used to generate two levels of stress
even though only a stressed /unstressed distinction appears on the surface. This phenomenon is
captured by allowing for an operation of conflation that essentially eliminates Line 1. For
example, stress placement in languages with a single antepenultimate main stress and no

secondary stresses can be analyzed in terms of conflation, as shown in (3.5.2).



(3.5.2) Example of the use of conflation:

a. Pre-conflation structure

# *] # Line 2
# * *] # Line 1
# [ * * [ > * 1 * # Line O
# S S S S S S #

b. Post-conflation gridmarks

# * #
¢+ * * * * "
# S S S S #

The grammar that generated the example in 3.5.2 is not sensitive to syllable weight, so I have
represented syllables simply as “S”. In the constituent construction on Line 0, this language
places a right bracket to the left of its rightmost syllable. The placement of this bracket has
the effect of maki'ng the final syllable “extrametrical”; it is not grouped into a constituent. The
first constituent that the leftward moving process of iterative constituent construction forms
contains the penultimate and the antepenultimate syllabie. The language that generated the
structure in (3.5.2) is left-headed on Line 0, so the leftmost member of the final constituent—
that is to say the antepenultimate syllable has a grid mark projected to Line 1. So too,
however, is the grid mark of the second syllable. In order to capture the fact that it is the
antepenultimate syllable that actually bears main stress, some additional process of selection
needs to occur. Within the context of the system, the selection could be implemented in a number
of ways. Here a right bracket is placed to the right of the rightmost syllable on right-headed
Line 1. Since the language description calls for no secondary stresses, Line 1 must be suppressed.

It is possible to imagine several ways of implementing this.
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As mentioned above, the typical interpretation of these bracketed grid structures is
that while stress level has some perceptual correlates, the bracket structure itself can only be
viewed indirectly through their effect on phonological processes.

The discussion above presents the core components of the parametric system as they
apply to the derivation of metrical structure for monomorphemic words. The system, with no
further parametric extension, is also capable of deriving metrical structure for multimorphemic
words. This part of the system is not modeled in the subsystems discussed in this thesis.

I will, however, discuss some additional issues that are involved in extending learning
analyses to data sets that are closer to the “real thing”. As always seems to be the case, the
“real thing” is not so simple. In addition to this core parametric system, Halle and Idsardi also
rely on an additional set of less systematized processes that affect bracket insertion to cover the
extensive range of cross-linguistic facts that their system handles. For example the analyses of
several languages deploy rules that are language-specific, but generally applicable within a
language. These rules insert or delete brackets in specified contexts. I take it that, in keeping
with the Principles and Parameters approach, the eventual hope here would be to provide a
circumscribed, parametrized set of these rules. Another set of bracket-adjustment processes,
however, originates in the lexicon. This does not appear to be entirely amenable to
parametrization. In order to capture lexical exceptions to stress generalizations, words are
allowed to emerge from the lexicon with some pre-specified information about the bracketing of
Line 0. These “extra-parametric” options will be discussed in more detail in Section 3.7, when 1

turn to questions about the extendibility of cue-based analyses.
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3.6 An Instruction Manual for Acquiring the Phonological
Fragment in Dresher (1994)

The language Selkup provides the running example for much of Dresher’s (1994) sketch
of a cue-based acquisition algorithm for a system modeled closely after Halle and Idsardi
(1994) and Idsardi (1992). Dresher also discusses the learning paths for several other
languages. Of course, as Dresher clearly recognizes, for a complete cue-based algorithm for a
system, it is really necessary to eventually provide learning paths that cover all attainable
targets in the space. In this section, I will say what I can to fill in the necessary learning paths.

In Selkup, stress falls on the rightmost long vowel; if there is no long vowel stress falls
on the initial heavy syllable. The analysis of Selkup that Halle and Idsardi provide is

summarized in 3.6.1.

(3.6.1) Line0:
Quantity Sensitivity: left bracket to the left of syllables with long vowels.
Edge Marking: left bracket to the left of the leftmost syllable.
Iterative Constituent Construction: none.

Headedness: left.
Line 1:
Edge Marking: right bracket to the right of the rightmost syllable.

Headedness: right.

Conflation: yes.
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The Line 0 parameters ensure that the initial syllable and all heavy syllables project grid
marks to Line 1. The Line 1 parameters pick out the rightmost of these Line 1 grid marks and
promotes it to Line 2; if there is no heavy syllable, the initial syllable turns out to the
rightmost Line 1 grid mark. The setting of the conflation parameter suppresses any secondary
stresses.

The chain of encoded cues that lead Dresher’s learner to the acquisition of Selkup is
shown in (3.6.2). The input data are assumed throughout to be monomorphemic forms drawn
from the target grammar. Following Dresher, I will be making the assumption that there are no
restrictions on the makeup of the strings of light and heavy that form the input to the structure
building/stress assignment algorithm. If this turns out to be false, it will be necessary to make

sure that the restrictions do not invalidate any of the system’s cues.

(3.6.2) Summary of learning path (results for Selkup)

a. Look for: Secondary stress.
Result: Fail.
Conclude: There is only one stress per word.
b. Look for: Identical word types with conflicting stress contours.
Result: Succeed.
Conclude: Stress is sensitive to quantity (distinguishes H and L syllables),

closed syllables are classified as H.

c. Look for: Identical word types with conflicting stress contours.
Result: Succeed.
Conclude: Closed syllables with short vowels are represented as L.
d. Look for: Stressed syllable at the left and right edges.
Result: Succeed.
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Conclude:

e. Look for:
Result:

Conclude:

f. Look for:
Result: -

Conclude:

g Look for:
Result:

Conclude:

h. Look for:
Result:

Conclude:

j- Look for:
Result:

Conclude:

There is no extrametrical syllable on the left or right, i.e. no
#*{ or ]*# on Line 0.

Stressed nonedge L always adjacent to H.

Fail.

There is no pre- or post-accenting, i.e. no *[ or }* on Line 0.
Stressed nonedge L.

Fail.

There is no construction of bounded constituents on Line 0.
Main stress in a constituent-sized span at either edge.
Succeed on the right.

Main stress (* on line 2) is assigned to the head of the rightmost
Line 0 constituent.

Position of stress in words with only light syllables.

Succeed on the left.

Line 0 constituents are left-headed; heavy syllables project (x
on Line 0.

Homogeneous settings on Line 0.

Succeed.

The left edge begins a Line 0 constituent: #[*.

As noted above, although the focus is on Selkup and several other languages, Dresher’s

clear intent is that the fully specified algorithm will succeed for all grammars in the space.

This section will review the developments in Dresher (1994), and, where necessary, fill in the

details to construct an algorithm that will acquire all languages in the space. As a perusal of

the cues for Selkup will indicate, Dresher’s modification of the Halle and Idsardi system

actually covers a slightly different range of phenomena. I will draw attention to these

differences as I proceed.



I will begin this development by presenting the learning path for Selkup. As I go, I will
indicate the dependence of later cues on earlier setting of parameters, and point out portions of
the decision tree that will need to be filled out. This filling out will occur after discussion of

Selkup is complete.

Step A: Conflation

The first cue in the learning path is, of necessity, independent. It must be applicable
even though no other parameters have been fixed. In particular, this cue—the absence of forms
with secondary stresses in the observed data stream—Ilicenses a property-absence conjecture. If
Dresher’s learner does not hear forms with secondary stresses, it eventually assumes that the
target grammar does not generate forms with secondary stresses.20 (Although the learner is
required to wait an adequate amount of time before drawing the conclusion that the language it
is learning does not contain forms with secondary stress, it need not hold detailed information

about the forms that it has seen in memory; a simple register or counter will suffice.) The flip

20 Dresher does not attempt to fully specify many of his cues. For example, he provides no
indication of how long a learner should wait before conjecturing the absence of secondary
stresses. At this point this seems like a reasonable omission since it seems likely that secondary
stresses will occur frequently for those grammars that produce them. It would not be reasonable
to expect the learner to use indirect negative evidence based cues for data that was expected to
be infrequent. In pre-Principles and Parameters learnability work, Wexler and Culicover (1980)
were able to establish a boundedness condition on transformations that made in-the-limit
acquisition of the class of transformational grammars that they studied possible for a learner
exposed only to degree-2 data. They were, therefore, able to rule out the need for their learner
to make use of more complex structures.

Estimating “cue durations” would involve extensive empirical consideration of the
distribution of particular phonological patterns in a wide variety of languages. Clearly, this
omission would have to be filled in for a complete theory.
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side of this cue, of course, would be the observation of a form with a secondary stress, which
would lead to the corresponding property observation and rejection of conflation. In the absence
of noise, a learner who rejects conflation can be sure of its choice—it is driven by positive
evidence. A learner who selects conflation, on the other hand, however, does so on the basis of
an inductive inference; it could turn out to be wrong. In this particular case, however, it seems
likely that languages that make a distinction between primary and secondary stress would
provide ample evidence for the distinction.

Here, I simply make the logic behind this cue more explicit than it is in Dresher (1994).
Dresher’s presentation is made in terms of default settings and cues for parameter change, but
this is easily translated into the scheme of observations and conjectures that I have developed.
Assume that the default setting for the parameter controlling conflation is +conflate; the
learner initially assumes that any secondary stresses that get generated in the course of a
derivation get “wiped out” in the phonetic output. Now, the learner will fail to acquire the
target if: (a) the target grammar requires —conflate, and whatever cue that the learner uses to
switch to the —conflate value doesn’t get triggered by the input data, or (b) the learner
mistakenly abandons the default setting. The learner will never fail if they use the presence of
secondary stresses to motivate a switch to —conflate. Clearly, the presence of secondary stresses
indicates that secondary stresses have not been eliminated. The only problem that could
potentially arise is that a grammar could have no secondary stresses on the surface and yet
require —conflate. This, however, is an impossible situation. The space of languages can be
partitioned into those languages that generate more than one mark on Line 1 in the course of
some derivation and those that don’t. If a language generates more than one mark on Line 1 in

the course of some derivation, but no secondary stresses appear on the surface, conflation must
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apply to remove the “extra” marks. If, on the other hand, a language never generates more
than one mark on Line 1 in the course of a derivation, it’s safe to apply conflation. The
projection from Line 1 to Line 2 is vacuous.

Selkup conflates.
Steps B and C: Quantity Sensitivity

Dresher orders the cue for conflation before the cues governing quantity sensitivity.
However, there is no real reason to set the learner’s conflation parameter before determining
whether or not the learner is quantity sensitive (and, if they are, what counts as a heavy
syllable). As will be seen directly, these decisions can also be made independently—that is,
they can be made with no fixed parameters. Dresher claims that the learner figures out
whether or not their language is quantity sensitive by accumulating information about whether
words with the same number of syllables consistently have the same stress pattern. (Again, it
seems likely that this type of evidence would be readily available.) If they do, then it is safe
te conclude that whether or not a syllable receives stress is wholly a function of position within
the word, not of weight. If not, something else must be causing a difference. The only something
else that this system can make use of is syllable weight, so the discovery of any such
differences points to quantity sensitivity. To put it in other words, if syllable weight never has
a measurable impact on the system, it is safe for the learner to conclude that syllable'weight
has no impact on the system.

Note that it is possible to construct a grammar that is quantity sensitive in its

parameter settings, but which does not exhibit quantity sensitivity overtly. For example
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consider a grammar with invariant initial stress that enforces this initial stress by placing a

right bracket to the right of the leftmost Line 0 grid mark, as in 3.6.3.

(3.6.3) Example of the use of conflation:

a. Pre-conflation structure

# * ? ? ? ? # Line 1
#$* )] * * * * * # Line 0
# S S S S S S #

Any other grid marks that get placed on Line I, including those attributable to constituent
structure reflecting quantity sensitivity, can be suppressed by promoting the first Line 1 grid
mark to Line 2 and then conflating. The components of the metrical structure that get erected as
a reflex of quantity sensitivity turn out to be irrelevant in the stress contour that ultimately
emerges. As a result, there are a number of weakly equivalent grammars that generate this
stress-initial language. In all cases, it is safe to choose one that is not quantity sensitive.2!

As mentioned above, there are at least two possible instantiations of the notion of
quantity sensitivity, Dresher proposes a second round of consistency checking to fix the value of
this parameter appropriately. The learner assumes that short-vowelled syllables that are
closed by a consonant count as light. In other words short-vowelled syllables that are closed by

a consonant and short-vowelled syllables that are not should be indistinguishable in their

21 The possibility presented in (3.6.3) could become of interest in a more enriched theory of the
data available to the learner. Other phonological processes sensitive to the metrical
constituency constructed by the system could provide the learner with additional information
about the bracketing of the structure.
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contributions to the stress contour. If this is not the case, then short-vowelled syllables that are
closed by a consonant need to be counted as heavy.

There is no principled reason that some version of these cues could not be monitored for
in parallel. The first set of cues—one for quantity sensitivity based on positive evidence, its
“flip side” based on indirect negative evidence—that determines whether or not a language is
quantity-sensitive at all comes before the second set of cues which fixes the boundary between
light and heavy syllables. So clearly, they can be deployed independently of the second. The
second set of cues requires the learner to assume one of the two possible groupings of syllable
types into light and heavy syllables and see if forms that this grouping predicts should be
identically stressed do, in fact, receive the same stress. There is no reason this test could not be
run at the same time as the first. Moreover, there is no reason that these cues need to wait for
the conflation parameter to be set. In other words, these three sets of cues are independent.

As with the conflation parameter, there are asymmetries in the nature of the evidence
used to set the quantity sensitivity parameters, a learner who selects for quantity sensitivity
does so because they have formed a guaranteed property observation. The learner who rules out
quantity sensitivity relies on indirect negative evidence. Similarly, the learner who selects the
more restrictive definition of heavy syllables does so on the basis of indirect negative evidence;
the learner who selects the less restrictive definition of heavy syllables does so because they
have directly observed that the more restrictive definition leads to conflicting stress contour
assignments. Unlike the case of the conflation parameter, however, here the learner can’t make
do with a simple register and really must store more explicit information about the forms that
it has seen. Conceptually, the first test requires the learner to maintain a table of stress

patterns with separate cells for words of different lengths. The first test requires the learner to
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maintain a table of stress patterns with separate cells for the various strings of light and
heavy syllables of different length. This may or may not turn out to be psychologically
acceptable.

Selkup is quantity sensitive and classifies closed syllables as H.

Step D: Rule out the left-to-the-right-of-the-leftmost and the right-to-the-left-of-the
rightmost edge marks

Here, I believe Dresher slightly misrepresents the Halle and Idsardi system. The
notion of extrametricality, the property of not being included in a metrical constituent, plays no
formal role in the Halle and Idsardi system. For example, no syllable is ever &irectly labeled
extrametrical, as it might be in other theories. Rather, certain patterns of bracket insertion
have the effect of preventing certain syllables from being grouped into any metrical constituent.
In monomorphemic words, for example, placing a left bracket to the right of the leftmost
syllable, as in (3.6.4.a), or a right bracket to the left of the rightmost syllable, as in (3.6.4.b)
can have the effect of creating an ungrouped syllable at the beginning or end of the word,

respectively.
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(3.6.4) “Extrametricality” in Halle and Idsardi

a. Left “extrametricality”

* * * * # Line 0

[ *
S S S S S %

# *
# L
a. Right “extrametricality”

* * * * * ] * # Line O
S S S S S L #

#
#
Note, however, that if the language is quantity sensitive, these particular edge mark options
no longer ensure “extrametricality”. In quantity sensitive languages, heavy syllables generate

their own brackets in way that guarantees that they are included in a constituent, as shown in

(3.6.5)—the bracket due to quantity sensitivity is indicated in bold in each case.

(3.6.5) “Extrametricality” and its interaction with quantity sensitivity in Halle and Idsardi
a. Left “extrametricality” with quantity sensitivity

# [*[ * * * * *
# H S S S S S

a. Right “extrametricality” with quantity sensitivity
* * * * ] *] # Line 0

$ *
# S S S S S H #

Since this is the case, the presence of a stressed syllable at an end of the word can’t be used to

definitively rule out “extrametricality”, in the sense of ruling out either of the edge marking
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options shown in (3.6.4). If Dresher had worked with a formal implementation of the system,
this issue would probably have received closer discussion.

It could turn out that Dresher’s notion of extrametricality, which as I interpret it would
make a syllable irrevocably ungroupable into a metrical constituent, is a better fit to the
empirical facts. It is in fact, consistent with the metrical theory implemented in Dresher and
Kaye (1990). Nonetheless, it is also easy to patch up the cue to work with the Halle and
Idsardi system as is. If the learner only considers stressed light syllables at the word
boundaries as evidence for rejecting the appropriate edge marking option, then it will not be
confounded by these cases.

This cue, as I have amended it, now refers to the notion of syllable weight. Strictly
speaking, then, the application of this cue must wait until after steps B and C. However, it is
possible to restrict the cue even further, so that this is no longer the case. If the learner only
considers stressed open, short-vowelled syllables at the edge, it is guaranteed not to mistakenly
consider a heavy syllable. These lightest of light syllables will not be heavy in any system. As
stated the cue will work for all languages. This generality, however, comes at a price.
Although a learner uses positive evidence in this case, it may have to wait longer for the
appropriate evidence to arise if the more general cue is adopted because I have restricted the
set of applicable forms.

Unlike the earlier cues, this test for eliminating an “extrametricality” option is only
intended to work in one direction. In Dresher’s cue-based algorithm, the failure to observe a
stressed, light syllable at an edge is not intended to license the conclusion that extrametricality
is at work. Dresher’s main interest in this cue is that it sets the stage for determining whether

languages build iterative constituents. This determination is made in Step F. The cue used in
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Step F relies on the assumption that iterative constituent construction is the only source of
stressed light syllables that do not fall at word boundaries. The present step rules out a class of
languages where this assumption does not hold true; the extrametrical bracket can produce a
stress on a word-internal syllable regardless of the syllable’s weight.

Note also that unlike the cues used in Steps A-C, the cues used here do not fix any
particular parameter values. Rather they eliminate certain combinations of values that govern
edge marking. This is a noteworthy deviation from the Dresher and Kaye design philosophy.

There is not “extrametricality” in Selkup.

Step E: Rule out pre- or post-accenting

Like the cue used in Step D, the cue used here is intended to rule out a source of stresses
on light syllables that don’t fall at the edge of the word. Again, the reasoning is that such
syllables that would potentially invalidate the cue in Step F. In pre- and post-accenting
languages, a heavy syllable results in a stress falling on the syllable next to a heavy syllable.

Here, Dresher is being admirably cautious; the phenomenon of pre- and post-accenting
is not even currently modeled by the Halle and Idsardi system, but Dresher wishes to protect
the cue-based algorithm against possible extensions of the system. I will not discuss this cue
further here. At any rate, it can also be made to be an independent cue if light is replaced with
lightest and heavy with heaviest.

This option is not exercised in Selkup.

Step F: Rule out iterative constituent construction
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As noted above, Steps D and E were intended to set the stage for the cue used at this step
by ruling out any options, other than iterative constituent construction, that would result in a
stress on a word-internal—that is to say, not initial and not final—light syllable. Dresher also
rules out one further complication by fiat. Dresher argues that the empirical intention of
quantity sensitivity is to provide a mechanism for stressing heavy syllables. He notes,
however, that as this notion is formulated in the Halle and Idsardi system, this is not
necessarily the result of quantity sensitive bracket insertion. Consider a right-headed language
that places a left bracket to the left of its heavy syllables. In such a language, the heavy
syllable will not necessarily, or even typically, receive a stress. As shown, in (3.6.6), it is quite

easy for the heavy syllable to “throw” its stress downstream to a light syllable.

(3.6.6) Quantity Sensitivity does not lead necessarily to stressed heavy syllables.

Dresher explicitly rejects this option by requiring the direction of quantity sensitive bracket
insertion to be correlated with headedness so that the stress stays with the heavy syllable
that generated the bracket. Relaxing this additional assumption would obviously invalidate
this cue.

This cue also explicitly relies on what I'll call Dresher’s contract on stress adjustment.
Dresher (1994) indicates that the empirical record suggests that something like this might be
true, but, of course, this is a crucial assumption. Again, admirably aiming to constrain the effect

that subsequent additions might have on the current set of cues, Dresher proposes that any
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additions to the system will obey the following restrictions: Languages can modify brackets in
such a way that syllables that would otherwise be stressed end up not receiving stress.
Languages cannot, however, modify brackets in such a way that syllables that would otherwise
end up being unstressed end up receiving stress. If this contract holds, the only remaining
possible source of a word-internal stress is iterative constituent construction.

As stated, this cue depends on the elimination of extrametricality, accomplished in
Step D, and the elimination of pre- and post-accenting, accomplished in Step E. Dresher does
not indicate how the decision about iterative constituent construction would get made, if a
grammar exhibited “extrametricality”. A slightly different cue, however, that is
demonstrably independent of the outcome of Steps D and Steps E will also do the trick. Consider
a string of light syllables. In fact, consider a longish string of lightest syllables so as to allow
for independence of the outcome of Steps B and C as well. If a stressed syllable occurs anywhere
other than the initial, second, penultimate or final position, iterative constituent construction
has occurred. With the resources of the system and the contract on stress adjustment, this is the
only possible source of such a stress. I have avoided dependence on Step D, which eliminates
the extrametrical bracketing options, by expanding the notion of the periphery of the word to
encompass two syllables. I have avoided dependence on Step E, which fixes quantity
sensitivity, by considering strings consisting only of lightest syllables. Such strings are not
subject to pre- or post-accenting. Again, doing so comes at a cost since I have restricted the set of
sentences that could trigger this decision.

Iterative constituent construction is positively cued. A learner who decides that there is
no iterative constituent construction relies on indirect negative evidence. Again, it is worth

pondering the cost of the generalized cue that I have constructed since it forces learners to
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examine longer words; words with syllables that are not initial, second, penultimate or final, of
necessity, are at least five syllables long. If this proves to be unreasonable, as it seems that it
might, then there will have to be some alternative means of ruling of determining whether
grammars with “extrametricality” have iterative constituent construction.

Selkup does not build constituents iteratively.

Step G: Assign Line 1 headedness

Dresher makes the simplifying assumption that, as a matter of parametric variation,
main stress picks out either the leftmost or the rightmost of the marks on Line 1. The
grammatical resources built up in Halle and Idsardi potentially allow for further possibilities,
but, in the spirit of evaluating the cue-based approach with reference to the model delimited
by Dresher, I will ignore these here.

In the cue-based algorithm that Dresher proposes, the cue for main stress location
depends on prior decisions about what how the learner groups syllables into constituents. The
key idea is that if learners can establish a boundary between material grouped into different
constituents, they can determine straightforwardly whether main stress falls within the
leftmost foot or the rightmost foot. If stress falls on a position to the left of the boundary, it
falls on the leftmost foot. If stress falls on a position to the right of the boundary, it falls on the
rightmost foot.

It is possible to employ a slight variant of this idea to develop a cue that doesn’t
depend on any decision about foot type. If a language never generates more than one mark on

Line 1, then the question of whether the leftmost or the rightmost mark on Line 1 receives stress
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arises only vacuously. The question of main stress location is only meaningful if more than one
mark gets projected to Line 1, or, equivalently, if more than one constituent gets formed one Line
0. If a) there were syllable strings that were universally divided into more than one constituent
in any language that formed multiple constituents and b) it were possible to definitively
identify a dividing point between the region containing the initial head and the region
containing the final head, a learner could use such syllable strings and fix main stress location
by following the same straightforward strategy of looking to see where main stress fell. There
are syllable strings that satisfy both a) and b), so that it is possible to indicate a “universal
division” between the left and the right half of the word. This argument is heavily sensitive
to disruption of the brackets by the currently extra-parametric portion of the system.

Given the resources of the system, in order for multiple constituents to arise, a language
must either be quantity sensitive or a language must construct iterative, binary constituents.
Consider the following syllable string fragment, where the ellipses are filled in by one or more

unspecified syllables

(36.7) .SHSSHS..

If a language ever forms more than Line 0 constituer t, it will do so here. In order to form
more than one constituent, a language must either a) be quantity sensitive or b) make use of
iterative constituent construction. If the language forms quantity sensitive constituents, then
clearly there will be two constituaents here. The left H will fall in one, while the right H will
fall in the other. A constituent boundary must lie somewhere between these two boundaries. The

constituents formed by quantity sensitive insertion take precedence over those inserted by
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iterative constituent construction; in its calculations, iterative constituent construction respects
the boundaries placed by quantity sensitive insertion. Therefore, the same argument holds for a
language that is both quantity sensitive and a builder of binary constituents. If a language is not
quantity sensitive, but does build binary constituents, then it is plain that the two H syllables
will not be in the same constituent because there would be nothing blocking the insertion of
bracket somewhere between the two H’s. Again, a constituent boundary must lie between them.

In the case where the language is quantity sensitive, then if the main stress falls on or
to the left of the left H, then the language is left-headed. If the main stress falls on or to the
right of the right H, then the language is right-headed. Here, I am assuming with Dresher
that a quantity-sensitive bracket always results in stress on a heavy syllable. If this
assumption is relaxed, it is still possible to get this universal divider argument to work with a
more complicated boundary region.

If the language is not quantity sensitive, then if the main stress falls on or to the left of
the first of the middle S’s then the language is left-headed. Otherwise it is right-headed.
This can be seen by considering all possible bracketings of the syllables in (3.6.7) that are
consistent with the operation of iterative constituent construction.

(3.6.7) .SH)SS)HS..

.S)HS)SH)S.

.S(HS(SH(S.

.SH(SS(HS.

In all cases, then a division between left and right in the word can be made between the
two middle syllables. Again, this modified cue could potentially run afoul of destressing

mechanisms if they had the effect of dismantling constituents in this region.
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Use of this cue in an independent fashion requires the learner to do without any
information about the quantity sensitivity ol the target grammar. In particular, the learner
cannot rely on any ability to correctly classify closed syllables with short vowels, which are
light in some languages, but heavy in others. However, the class of syllables with long vowels,
in the context of this system, are guaranteed to be treated as heavy if any syllable is treated as
heavy. Therefore, in order for this cue to operate independently, the H's above should be
interpreted as these heaviest of the heavy syllable—the syllables that are guaranteed to be
heavy. Note that the success of this cue depends on the assumption that languages will not
impose restrictions on the strings of syllables that make up the words of its languages.

The type of cue considered here looks a lot less natural natural than others presented
above, but it is not entirely clear how to determine what makes a cue sufficiently unnatural
that it should be excluded from consideration. For example, it is not clear that Dresher’s cue for
iterative constituent construction, used in F, is a direct consequence of the content of the
parameter. The only reason that stressed, word-internal, light syllables can cue quantity
sensitivity is that there are no other mechanisms in the system that could produce them.

There is clearly a price to pay for ensuring the independence of this cue: a rather
special string of syllables must occur in the middle of a long werd. In fairness to Dresher, his
approach is more elegant. The user uses a sort of meta-cue that relies on knowledge of previous
parameter settings. First, the constituent formation processes are determined and then the
learner simply looks to see whether the leftmost or the rightmost such constituent is stressed.
To really be able to determine the constituency of a word, however, it would be necessary to
have made a firm decision about whether or not a .anguage used the “extrametrical” options.

Both values of the parameier are positively cued.
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Selkup is right-headed on Line 1.

To summarize' up to this point: I have traced through the cues that are used to a) set the
conflation parameter, b) set the quantity sensitivity parameter, c) fix the notion of heavy
syllable, d) rule out LRL and RLR edge marking , e) rule out pre- and post-accenting, f)
determine whether a language builds iterative constituents and g) localize main stress to the
right or the left of the word. Along, the way I have indicated how to generalize the statement
of the cues to make them independent. As a result, it is clear how these decisions for all
languages in the system. For a learner of a language without extrametricality and iterative
constituents, like Selkup, it remains to show how to select the appropriate edge marking and
headedness values for Line 0. I'll review this logic here and then lay out which regions of the
parameter space still need to be handled. The following steps are dependent on what has gone
before. I leave it as an exercise for the reader to determine whether a clever generalization to

more independent cues can be provided. I have not attempted to do so.
Step H: Assign Line 0 headedness

Again, a string of light syllables plays an important role. Since such strings can't
possibly receive a bracket because of quantity sensitivity, they make the quantity sensitivity
parameters irrelevant. If it has already been determined that the language builds no iterative
constituents and does not allow the extrametrical edge rnarks, then a string of light syllables

will contain at most one constituent. This constituent will be created by the insertion of an edge
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mark. In the Halle and Idsardi system, there are four possibilities relevant to monomorphemic

words, shown in (3.6.7).

(3.6.7) a. LLL
# [* = * * * * # Line 0
# L L L L #
b. RRR
# * * * * * *] # Line O
# L L L L #
c. RRL
# *] * * * * * # Line 0
# L L L L L #
d. LLR
# * * * * * (* # Line 0
# L L L L #

Dresher, noting that either (3.6.7.a) or (3.6.7.c) lends itseif to an analysis of Selkup in this
system, states that he is omitting the RRL and LLR options from the system, which create
single syllable constituents at the edge of the word. Of course, this move restricts the expressive
power of the system because there are distinct languages in the system that only receive a
proper analysis by adopting one of these edge-trapping options. This done, however, it is clear
that a string of light syllables will form a single long constituent in a language without
“extrametricality” and iterative constituents. If the leftmost syllable in the constituent
receives stress, then the language is left-headed on Line 0. If the rightmost syllable in the
constituent receives stress, the language is right-headed on Line 0. The words actually need not

be as long as they are in (3.6.7); two syllables would suffice.
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With slightly strings of light syllables, Dresher’s cue can be generalized to
accommodate languages with “extrametricality” and without bounded constituents. For the
constituency shown in (3.6.8.a), stress will fall on either the second or the final syllable. If it
falls on the second syllable, the language is left-headed one Line 0. If it falls on the final
syllable it is right headed. In the mirror image case in (3.6.8.b), stress on the first syllable
diagnoses left-headedness, while stress on the penultimate syllable diagnoses right-
headedness.

(3.6.8) a. LRL

# *[ * * * *

* # Line 0
#L L L L L L #

# * * > * * ]* # Line O
# L L L L L L #

The learner simply needs to determine whether stress falls in the leftmost two syllable
window, or in the riglitmost two syllable window. Again, adopting this more general cue would
incur a cost in terms of the amount of evidence available; now four syllable words are required. |
make this generalization for the purposes of filling out the learning path. It may not, of course,
prove optimal.

Both values of the parameter are positively cued, in either Dresher’s or my scheme.

Selkup is left-headed on Line 0.

Step J: Fix value for Line 0 edge marking
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The final step in setting the parameters for Selkup involves simply trying out both
edge-marking parameters to see which accommodates the data. (Dresher assumes that there is
always an edge mark.) In this case, the two possibilities are weakly equivalent, so a tie is
broken in favor of the LLL edge mark because it is, in some sense, homogeneous with the left-
headedness of Line 0. Note that since the orientation of quantity sensitive brackets is
correlated with headedness, we now know that these brackets must be left brackets.

Selkup is now complete, as is any other language that does not build binary constituents
and does not make use of the “extrametrical” edge marks. As | have generalized ihe cues, no
further decisions hinge on “extrametricality” for languages without binary constituents. So, it
remains to be shown a) that there is a cue for definitively adopting an “extrametrical” edge
mark and b) that the direction of iterative constituent construction, the type of edge marking—
including the possibility of “extrametrical” edge marks—deployed .n Line 0 and the
headedness of Line 0 can all be determined for languages that adopt iterative constituents.

Dresher does not provide the first of these cues. In cases where there are no iterative
constituents constructed, however, there does not seem to be any compelling reason to not simply
add these edge marks to the final competition conducted in Step J, which is currently used to
select among the other edge marking options. As I have shown it is possible to generalize the
cues downstream of the “extrametricality” decision in a way that makes this
“extrametricality” decision irrelevant. The cues that follow it can still act appropriately. It
only remains to be seen whether the language uses an extrametrical mark. Instantiating
grammars for all the competing edge mark possibilitics, ruling out these that don't
accommodate the data and resolving ties arbitrarily will certainly lead to success in a space

like this one, where there are no subset/superset relations between languages. Moreover, it does
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not seem to violate Dresher’s intentions in this system, since he already proposes a slightly
smaller competition. Of course, it is does seem to violate the top-level design philosophy that
Dresher and Kaye (1990) and Dresher (1994) advocate.

Similarly, in discussion of the languages Maranungku and Garawa, Dresher proposes a
final problematic generate-and-test approach to fixing the direction of iterative constituent
construction and Line 0 headedness. In keeping with the contract that he establishes on
destressing, a stressed syllable never arises from “extra-parametric” manipulation of brackets.
Therefore, Dresher proposes simply to instantiate all candidate combinations, with their other
parameters fixed, ruling out those grammars that predict the absence of a stress in a position
where a stress actually occurs, and resolving ties in an essentially arbitrary manner. In the cases
he considers, there is no Line 0 edge marking, but clearly, the set of ce'mdidates could simply be
extended to accommodate the five edge-marking possibilities that Dresher allows from the
Halle and Idsardi system: 1) no edge marking, 2) LLL, 3) RRR, 4) “extrametrical” LRL and 5)
“extrametrical” RLR.

These competitions rule out some grammars on the basis of positive evidence, and ties
between weak equivalents are broken arbitrarily. If the learner does not explicitly have a way
of computing which grammars are equivalent, they are essentially assuming that no further
evidence will serve to distinguish the remaining competitors. Therefore, these final
competition steps rely, in part, on indirect negative evidence and could fail if insufficient data
are gathered.

Extended in this way, the algorithm now succeeds in the space, given the additional

limitations on the space that Dresher imposes along the way.
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3.7 How does the Instruction Manual Satisfy tlie Design
Philosophy of the Cue-based Approach?

As I have presented and extended it, the cue-based algorithm for the acquisition of a
fragment of the Halle and Idsardi system really need not make much use of the increasing
inferential leverage that fixing the values of certain parameters might provide. It proved
quite straightforward to eliminate some dependencies in the original system. Decisions about
the presence or absence of conflation, type of quantity sensitivity (if any), the presence or
absence of iterative constituent construction and headedness of Line 1 can all be made in the
absence of any knowledge of the other values of the parameters. This has the effect of
completely obviating questions about the growth of the initial segment of the decision tree. For
these independently cued decisions, there really is only one cue per decision.

| Of course, my efforts at generalizing these cues to ensure learnability are hardly
without cost. In each case, generalization of the cues limited the available evidence for
parameter-setting. As a result, the learner must expect to wait longer for the information it
needs to set parameters. Most of these generalizations were made so as to cover the learning of
languages in the system that were not covered in Dresher’s (1994) discussion. (One parametric
cue in the generalized system is dependent on earlier parameter settings. For languages that
don’t build iterative constituents, an explicit cue is provided for determining Line 0 headedness
that does depend on earlier parameter settings. Several non-parametric eliminations are also
potentially performed to rule out “extrametricality”, which seems to run counter to the top-

level strategy that Dresher and Kaye (1990) and Dresher (1994) advocate.)
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The alternative to this process of cue generalization would be to provide more order-
dependent cues for the relevant decisions. If these could be written as meta-cues (again, these
are abstra;:t cues that, on the basis of prior parameter setting, could be easily instantiated to
provide the learner with a concrete set of properties of the input stream to monitor for), then
the ordering requirement is not necessarily prohibitive. Where this cannot be done, of course,
additional, more highly specialized cues must be directly encoded in UG.

It is likely that an unwillingness to use such “unnatural” cues in tandem with an
inability to see what else to do that motivates the generate-and-test approach that Dresher
(1994) advocates to fix the final parameters of the system. The decisions that complete the
various paths in the decision tree, both in Dresher’s original proposal and my extension, get
made by simply instantiating the remaining possibilities and seeing which ones fit the data;
this is essentially a parallel, exhaustive search strategy. Of course, the cue-based algorithm
that I have presented is sufficient for acquisition of the restricted space, but it is hardly
necessary. Again, I take it, however, that Dresher moved to a generate-and-test strategy to fix
the final parameters because plausible cue stories seemed to simply require dependent cues that
could not be shared across the tree in a reasonable fashion.

The key question for the cue-based approach, given our concerns about resource
requirements, is where the line can be drawn between the part of the decision tree that relies on
independent or easily reconfigurable meta-cues and the final part of the decision tree that
essentially requires unique cue paths, or, equally bad, a generate-and-test strategy which will

not succeed in exponentially large regions of the decision tree.
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3.8 The Impact of Extending the Phonological Fragment on the
Cue-based approach

The fragment of the Halle and Idsardi system that Dresher (1994) analyzes is not the
real parametric system for stress. The question to be addressed in this section is the question of
how the cue-based algorithm is likely to scale up when the system is required to both
accommodate more data from languages that already exist in the system and more extensive
parametric variation. I will focus discussion on the impact of system extensions on parametric
cue-based algorithms.

Clearly, the danger for a particular parametric cue-based algorithm is that alterations
of the system will invalidate the deductive logic embodied in the algorithm'’s decision tree.

One way in which a parametric system could be altered is by modification of the data
sets of existing languages in the system. When new forms get added to existing languages in the
system, extended languages have the potential to more readily “trip” cues that are based on
positive evidence. Form observations or property observations (of single forms or of sets) might
no longer have the same unique explanations in the same background contexts of fixed
parameters, and a learner who relies on these is potentially subject to inappropriately setting
parameter values. On the other hand, adding forms in this way makes cues based on indirect
negative evidence more difficult to satisfy. This could prevent a learner from ever setting
certain parameter values.

In the domain of phonology, the contribution of the lexicon provides a particularly
pernicious source of potential cue invalidation. Lexical exceptions that cause a language to

generate data that mimics “exceptionless” data from other languages has a clear potential to
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lead the learner astray. If these lexical exceptions are few and far between, the learner might
be able to get by if evidence must pass some sort of frequency threshold to trigger parameter
setting. This strategy might also prove workable in the face of noise. Clearly, this issue
requires further consideration.

Removing forms from existing languages in the system has a mirror image effect. Cues
based on positive evidence might fail to apply for certain target languages because crucial data
are no longer available. Cues based on indirect negative evidence might inappropriately be
triggered because evidence that would have blocked them from applying is no longer available.

If a new parametric system modifies the set of languages in the original space and their
parametric labels—say by adding a new parameter—matters are more complicated. Clearly,
new parametric cues for any new parameters must be added to the system at an appropriate
point in the decision tree. Moreover, it is clearly possible for the old parameters to interact
with new parameter values in such a way that would invalidate previously developed cues.
Consider the case where a new dimension of parametric variation is added. Suppose that all
grammars in the original space implicitly had one particular value of the new parameter. All
cues for parameter setting in the original space, from the point of view of the larger space,
implicitly now rely on a the new parameter having a particular value. They may no longer
work once this assumption is relaxed.22

The paragraphs above discuss some possible effects of systemic modifications on

particular, existing, cue-based algorithms. Clearly since cue-based algorithms are “hand-

22 I the new parameter value could be set independently, then its cue could be placed towards
the root of the decision tree and the deductive logic of the old decision tree could be preserved
as a valid subtree. Of course, the other subtrees stemming from this level would need to be
developed.
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crafted” to accommodate particular spaces, the effects on the deductive logic of the system can
only be disruptive. What can be said about the more general impact of extending the parameter
space on the ease of developing parametric cue-based algorithms? I will defer this discussion
until Chapter 6, where I will address it, in part, by analyzing which spaces an OPL learner can

be expected to succeed in.

3.9 Cue-based Algorithms for the Gibson and Wexler space

Gibson and Wexler’s (1994) presentation of the TLA centers around an analysis of its
behavior in a space defined by three well-motivated syntactic parameters that govern phrase
structure (see Bach 1962, den Besten 1983, Bierwisch 1963, Haider and Prinzhorn 1986, Hoekstra
1984, Thiersch 1978, Travis 1984 among many others). The first parameter fixes the relative
base order of an XP’s head and complement, with the exception of the top-level CP projection,
which always has its head precede its complement. For example, in a grammar with this
parameter set to comp-final, as in English, the verb would precede its object in the base order.
The second parameter fixes the relative base order of an XP’s head and specifier positions,
with the exception of the CP, which, in the Gibson and Wexler system always has its specifier
precede its head. In a language with the value of this parameter set to spec-first, as in English,
a subject’s base order position would precede that of the IP, and, thus, the verb. The final
parameter captures the so-called V2 phenomenon exhibited by many Germanic languages. In V2
languages, the finite verbal item in a sentence—the auxiliary if there is one, otherwise the
tensed verb—moves from its base position to the C position. In addition, an XP such as the

subject, an object or an adverb must move from its base position to the specifier of CP. Since the
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CP is the top-level category in a phrase structure, and since, in the context of Gibson and
Wexler’s system, the CP is always configured as shown in 3.9.1, the moved XP occupies the first
position, while the moved verbal material occupies the second position—thus, the term V2, for

verb-second.

(3.9.1) [cp Spec-CP [c' C ...

For the eight languages in this three parameter system, Gibson and Wexler generated
the data sets for simple matrix clauses shown in (3.9.2). ‘Adv’ stands for adverb. This adverb
occupies a position immediately to the left of the auxiliary’s base position. ‘Aux’ stands for
auxiliary. ‘O’ stands for the object of a simple transitive. ‘O1’ stands for the first object of a
double object construction. ‘O2’ stands for the second object of a double object construction.
‘S’stands for subject. Note the explicit assumption that learners, on the basis of semantic
context, can distinguish between noun phrases acting as subjects, noun phrases acting as objects of
simple transitives, noun phrases acting as the first object in a double object construction and noun
phrases acting as the second object in a double object construction. Internal details of these NP
categories are suppressed in the representation that Gibson and Wexler adopt. See Gibson and
Wexler (1994) for further motivation of the system. From the point of view of the present
section, which will develop a cue-based algorithm for the acquisition of this particular system,

we can simply inspect the contents of the data set, and not worry so much about their origins.
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Table 3.9.2

Gibson and Wexler’s Parameter Space

Parameter Settings

Data in Defined Grammar

spec-final, comp-final, -V2:

spec-final, comp-final, +V2:

spec-final, comp-first, -V2:

spec-final, comp-first, +V2:

spec-first, comp-final, -V2:

spec-first, comp-final, +V2:

spec-first, comp-first, -V2:

spec-first, comp-first, +V2:

(VS)(VOS)(VO102S) (Aux VS) (Aux VOYS)
(Aux VO1 O2 S)(Adv V S) (Adv VO S) (Adv V O1 02 S)
(Adv Aux V S) (Adv Aux VO S) (Adv Aux VO1 02 5)
SVI(SVO)(OVS)(SVO0102)(01VO25)

(0O2V O1S)S Aux V) (S Aux VO) (O Aux VS)
(S Aux VO1 02) (O1 Aux VO2S) (02 Aux VO15)
(Adv VS) (Adv VO S) (Adv VO1 02 S)
(Adv Aux V S) (Adv Aux VO S) (Adv Aux VO1 O25)
(VS)(OVS)(0201VS)(VAuxS)(OV AuxS)
(0201 V Aux S) (Adv VS) (Adv O VS) (Adv O201 VS)
(Adv V Aux S) (Adv OV Aux S) (Adv O2 01 V Aux 5)
SV)(OVS)(SVO)(Sv0201)(01VO25)
(0O2VO1S)(SAuxV)(SAuxOV) (O Aux VS)

(S Aux 0201 V) (O1 Aux 02V S) (02 Aux O1V S)

(Adv V S) (Adv VO S) (Adv V0201 5)

(Adv Aux V S) (Adv Aux O V S) (Adv Aux 0201 V S)
BV)(SVO)(SVO0102) (S Aux V) (S Aux V O)

(S Aux VO1 O2) (Adv S V) (Adv SV O) (Adv SV O1 02)
(Adv S Aux V) (Adv S Aux V O) (Adv S Aux V O1 O2)
SV)(SVO)(OVS)(SVO102)(01VSO2)
(02VS01)(SAux V) (S Aux VO) (O AuxS V)

(S Aux VO1 02) (O1 Aux SV 02) (02 Aux SV O1)

(Adv V S) (Adv VS O) (Adv V S O1 O2)

(Adv Aux S V) (Adv Aux SV O) (Adv Aux SV 01 O2)
SV)(SOV)(S0201V)(SV Aux) (SO V Aux)
{S0201V Aux) (AdvS V) (AdvSO V) (AdvS0O201V)
(Adv SV Aux) (AdvS OV Aux) (AdvSO201 V Aux)
SV)(SVO)(OVS)(SVO201) (01 VSO2)
(O2VS01)(SAux V) (S Aux O V) (O Aux S V)
(SAux0201V) (01 AuxS0O2V) (02 AuxSO1V)

(Adv VS) (Adv VS O) (Adv V502 01)

(Adv Aux S V) (Adv Aux SO V) (Adv Aux 502 O1 V)

96



Given Gibson and Wexler’s work in generating all the forms in the languages, it is a
fairly simple matter to provide a cue-based algorithm for the acquisition of this system. Note
that the names of the comp-first/comp-final and spec-first/spec-final almost directly indicate
what properties of the input forms to attend to. To set the comp-first/comp-final parameter
look and see whether complements precede their heads in the base word order. If so, the
language is comp-first; if not, the language is comp-final. Similarly, to set the spec-first/spec-
final parameter, inspect the order of specifiers and heads in the base order. Of course, the
problem with this simple scheme, of course, is that the base order is only transparent for
languages where no movements transform the base word order.

In this “single-transformation” system, however, the base word order is entirely
unobscured when V2 movement is not allowed. Therefore, if a learner could establish that V2
movement was disallowed, the cues described in the above paragraph would work directly.
Here too, the name of the parameter suggests a cue for fixing the value of the V2 parameter.
Every sentence in all of the +V2 grammars has an auxiliary or a verb in the second position.
Each -V2 grammar has sentences that do not have this property. The spec-final, comp-final,
-V2 grammar has, for example, many sentences where the verb or auxiliary occurs in initial
position. In fact, the only way for a “V2” sentence to occur in this grammar is for an adverb to
appear. Inspection of the data for the spec-final, comp-first, -V2 grammar indicates that only
four of its twelve sentence types have a verb or auxiliary in second position. Similar
considerations of the data in the spec-first, comp-final, -¥/2 and spec-first, comp-first, --V2 cells
show that there is always ample evidence to set the V2 parameter to its negative value. Any
sentence which does not have a v.rb or auxiliary in second position can serve as a cue for setting

the V2 parameter to its negative to value. The internal instruction that the cue-based iearner
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needs to encode is clear: look to see if the verb or auxiliary is in second position. Failure to find a
non-V2 sentence, of course, leads to the conclusion that the language is +V2. Setting the V2
parameter to its positive value, on this particular cue-based scheme, uses indirect negative
evidence.

While the +V2 setting of the V2 parameter obscures the base order of the sentences that
a language generates, it does not do so completely and in all cases. The comp-first/comp-final
parameter can be set by noticing that certain V2 patterns leave the relative base ordering of a
verb and its complements intact. In sentences that contain an auxiliary, it is the auxiliary, not
the verb, that moves from its base position. Moreover, once it has been established that a
language is +V2, it is quite simple to determine what XP has moved from its base position to the
specifier of CP; the XP in first position has been moved. In the present system, if the moved XP
is an adverb, the subject, or one of the objects of a double object verb, then the base position of the
verb’s complements, relative to the verb, is directly visible in the surface string. For example,
in the spec-final, comp-final, +V2 language, the sentence ‘S Aux V O’ could be used to fix the
comp-first/comp-final parameter to comp-final because the object, which I have argued must
occupy its base position, follows the verb.

Similarly, in sentences that contain an auxiliary and a moved XP other than the
subject, the relative base ordering of the subject and verb provides a direct indication of the
value of the spec-first/spec-final parameter. For example, in the spec-final, cornp-final, +V2
language, the sentence ‘O Aux V S’ cues the spec-final value of the spec-{irst/spec-final
parameter because the subject follows the verb.

The learner can take any form with an unobscured context for the base order regulated

by these parameters and use it as a cue for the appropriate setting.
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The cue for setting the word order parameters that I have developed clearly depends on
the decision about the V2 status of the target. The word order cues might be stated separately,
with one version of each for the +V2 value, and one version of each for the -V2 value.
Alternatively, the cues might stated as follows: if the base order of the verb and the
complement (or the specifier and the verb, as the case may be) if the language is not V2, or if
the base order is not obscured for one of the reasons listed above, then the order of the verb and
complement in the string reflects the base order.

This first cue system for the space, while relatively natural, relies on indirect negative
evidence. The question might be raised the question of whether it is possible to construct any cue
system for the space that has a single cue per parameter value, but which does not rely on
indirect negative evidence. I leave this as an open question, but note that a fair answer would
not do something tricky like allow disjunctive cues that allowed the learner to look for either
form A, or form B, etc.

Alternatively, as another example of a cue-based system for the acquisition of the 3-
parameter space modeled after an observation in Fodor (1995), the following set of eight
independent form cues—one for each language—suffices to fix all three parameter values at
once. This system has the virtue of relying only on positive evidence. The cues in 3.9.3 are
simply forms from the data set that are uniquely generated by the language that they appear
in. A complete list of such forms appears in Table 3.9.4. Within the confines of the system, the

unique explanation of any of these forms requires a fixing of all unfixed parameters.
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(3.9.3)

spec-final, comp-final, -V2:

spec-final, comp-final, +V2:

spec-final, comp-first, -V2:
spec-final, comp-first, +V2:
spec-first, comp-final, -V2:
spec-first, comp-final, +V2:
spec-fitst, comp-first, -V2:

spec-first, comp-first, +V2:

‘AuxVO1025’

‘O2 AuxVO1¥s

‘Adv 0201V Aux S’
‘Adv Aux0201VS
‘Adv S Aux V O1 O2’
‘Adv Aux SV O1 02’
‘AdvS 0201V Aux’

‘Adv AuxS02 01V’

100




Table 3.9.4

Unique Data in Gibson and Wexler’s Parameter Space

Parameter Settings

Unique Data in Defined Grammar

spec-final, comp-final, -V2:
spec-final, comp-final, +V2:
spec-final, comp-first, -V2:
spec-final, comp-first, +V2:
spec-first, comp-final, -V2:
spec-first, comp-final, +V2:

spec-first, comp-first, -V2:

spec-first, comp-first, +V2:

(AUXV O1025) (AUX VO S) (AUX VS) (VO1 02 S)
(VOS)

(02 AUX V 01 S) (O1 AUX V 02 S)

(ADV 02 O1 V AUX S) (ADV O V AUX S)

(ADV V AUX S) (ADV 02 01 V S) (ADV O V S)

(02 01 V AUX S) (O V AUX S) (V AUX S) (02 01 V S)
(ADV AUX 02 01 V S) (ADV AUX O V S)

(ADV V 02 01 S) (02 AUX O1 V S) (O1 AUX 02V S)
(ADV S AUX V O1 02) (ADV S AUX V O)

(ADV S AUX V) (ADV S V O1 O2) (ADV S V O)
(ADV AUX S V O1 02) (ADV AUX S V O)

(ADV V S O1 02) (02 AUX S V O1) (O1 AUX 5 V 02)
(ADV S 02 O1 V AUX) (ADV S O V AUX)

(ADV S V AUX) (ADV S 02 O1 V) (ADV SO V)

(8 02 O1 V AUX) (S O V AUX) (S V AUX) (S 02 O1 V)
(SOoV)

(ADV AUX S 02 O1 V) (ADV AUX S O V)

(ADV V S 02 01) (02 AUX S O1 V) (O1 AUX S 02 V)

Less arbitrarily and more quickly, the learner might simply wait until they had
witnessed an instance of any one of the forms in an appropriate cell of Table 3.9.4. This, of
course, would impose an additional memory requirement on the learner: they would have to
explicitly store more forms in their UG-provided instruction manual. Of course, even the more
succinct system for the “instantaneous” acquisition of the system will be unable to scale up the
storage of the necessary cues to larger systems. It will not do to explicitly record even a single

sentence for each possible language. Moreover, in the succinct system, the cues may appear

rather sparsely in natural language input.
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Although, logically these “rapid acquisition” cues could be used to fix several
parameters at a time, this runs counter to Dresher and Kaye’s design philosophy since there is
not a single cue per parameter value. A major reason for viewing this, single-cue-per-parameter
value as a desirable feature of cue-based learning systems is that it eliminates some concerns
about exponential growth in the number of cues. As noted in discussion of the Dresher (1994)
system, it was indicated that the single-cue-per-parameter value approach was not entirely
satisfied there either. If this approach largely breaks down and the learner needs to find other
ways of coping with large regions of the hypothesis space, then we have an argument against a
cue-based approach. The key issue here is what will happen in the extension to larger systems.

As noted in discussion of Dresher’s system of cues for the Halle and Idsardi system,
addition of any data or languages that robs a candidate parameter assignment (to a candidate
extension in the background of a fixed context of set parameters) of its ability to uniquely
explain some aspect of the data robs the system of a potential parametric cue. For example, if
the V2 data in the Gibson and Wexler system were expanded to include non-V2 data from
special structures in V2 languages, then the first cue-based algorithm that I presented would
not extend easily to the new system. Similarly, expansion of the parameter set could, for
example, result in a non-V2 language capable of generating ‘O2 Aux V O1 S’—currently a dead
giveaway for the spec-final, comp-final, +V2 language. If this happened, obviously, this cue
would no longer work. This suggests that things will only become more difficult for a cue-based
learner as the parametric system becomes more complex. This is certainly the case as more
parameters are added.

Fodor’s (1995) proposal, discussed in Chapter 6 suggests a way of possibly exploiting

this same type information without explicit storage of the cues. If this were really true, then
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the tractability motivation for the single-cue-per-parameter value property would be

undermined.
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Chapter 4
The Triggering Learning Algorithp: in the Limit

The main purpose of this chapter is to present identification in the limit results
obtained from an application of the TLA, our paradigm IGMS algorithm, to several
phonological subspaces of the Halle and Idsardi model. In Section 4.1, I will introduce the TLA
and discuss its key features. In Section 4.2, I will briefly remind the reader of the difficulties
that Gibson and Wexler encountered in ensuring the learnability of the class of languages
contained in their three parameter syntactic space. I will also discuss several remedies that
they proposed. In Section 4.3, I will present results from the application of the TLA to several
parametric spaces derived from the Halle and Idsardi system. Here, as in the Gibson and
Wexler system, the TLA cauninot straightforwardly guarantee identification in the limit for the
class of grammars in the fragments without some additional, perhaps not unnatural,
assumptions. Following the lead of Gibson and Wexler, 1 then present one possible set of
modifications to the learning algorithm and the phonological fragment that leads to a
workable system. As was also probably true with the cue-based systems discussed in Chapter 3,
Section 4.3 will almost certainly leave the reader with questions about the robustness and
extendibility of the results obtained. In Section 4.4, I will do what I can to address these
concerns. I will also address the question of whether there are grounds for hope that
learnability results obtained with the TLA might somehow provide an independent source of
constraint on linguistic theory. It would be much more difficult for the cue-based approach to do

so because of its relative lack of constraint.
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4.1 The Triggering Learning Algorithm

In this section, I will first describe how the TLA works. Next, I will draw attention to
what, from my point of view, are its key features. Finally, I will discuss some potential
difficulties that natural language parametric systems could pose for the TLA. This discussion
will receive much elaboration in the following chapter.

Gibson and Wexler’s (1994) TLA is presented in (4.1.1).
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(4.1.1) a. Randomly select an initial hypothesis grammar from the set of all
possible parameter settings.
b. Analyze an input from the target language:
i. If the current grammar provides an analysis of the current
input, then keep the current grammar and start again at (b).
ii. If the current grammar cannot provide an analysis of the
current input, then randomly select a single parameter
to change, change it, and then:
1. If the new grammar provides an analysis of the
current input, then keep the new parameter
settings and start again at (b).
2. If not, then revert to the previous grammar by
unflipping the changed parameter and

start again at (b).

The algorithm is essentially an infinite loop. There is never any explicit decision that learning
has terminated; ideally, in the absence of noise, the learner will eventually stop encountering
inputs that they cannot analyze because they have succeeded in finding the right settings for
the parameters.23

The TLA algorithm embodies the following set of assumptions about parametric

learning:

23 Of course, it is easy to see that this aspect of the algorithm could be straightforwardly
modified by, for example, deciding to stop after a fixed number of inputs if no changes occurred.
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(4.1.2) a. Single Hypothesis Search:

The learner maintains a single hypothesis grammar at all times.

b. Error-Driven Learning:
The learner only changes hypotheses when it makes an “error”, that is to say
when it can’t correctly analyze an input because its parameter settings are
incorrect.

C. Single Value Constraint:
The learner can change at most one parameter value per input.

d. Greediness:
The learner only changes hypotheses if doing so will allow it to analyze an

input that was, otherwise, unanalyzable.

The first of these assumptions is simply an extreme version of the belief that the
resources that the learner has to devote to parameter setting are limited. As discussion of the
cue-based approach indicates, it is hardly a necessary assumption. The parametric cue-based
learner, for example, does not commit to a complete setting of parameter values until it
encounters the very last cue in a decision path. Indeed, cue-based algorithms do not commit to
the setting of any particular parameter until a body of evidence has been gathered in support of
it. It seems to argue the case for either approach on representational grounds: the amount of
information it takes to represent a hypothesis, under either assumption, is quite minimal.
There may, of course, be other reasons of psychological plausibility for requiring the learner to

have a fully specified grammar at every point in development.
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The second TLA assumption fits naturally, although not necessarily, with the
observation that children only receive positive evidence about the forms that their target
language generates.

Note also the restrictiveness of the evidence that the TLA is allowed to use. The notion
of a cue, both as abstractly developed in Chapter 3, and as concretely instantiated in Dresher’s
system, is quite broad. The cue-based learner can make parametric changes on the basis of
narrow form observations or quite broad property observations and conjectures. The cue-based
learner can also require a large amount of evidence to be gathered, categorized and tabulated
before any parametric decisions get made, and these decisions. In the language of cue-based
algorithms, the TLA can only consider form observations. Gibson and Wexler argue that
restricting the learner to making simple use of the parser is motivated on the grounds of
psychological plausibility. Indeed, the machinery that the TLA learner is almost conceptually
minimal so there can be no argument against it based on the amount of cognitive resources that it
demands. As noted in the introduction to the thesis, adoption of the TLA involves making a
strong hypothesis. Namely, that the constraints provided by UG are so strong that a simple,
constrained learner can learn parametric systems quickly and accurately. There are clear
scientific reasons for wanting to begin with such a hypothesis, and adopt additional cognitive
machinery only as forced to by investigation of the hypothesis’ empirical success.

Once these first assumptions of Single Hypothesis Search and Error-Driven Learning
have been made, something like the Single Value Constraint and Greediness are necessary to
prevent the learner from degenerating into a random walk through the space. To see why
something like the Single Value Constraint is crucial, consider the following: if an Error-

Driven learner engaged in Single Hypothesis Search through a binary space with n parameters
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were allowed to freely select the next hypothesis to consider, the chance of correctly selecting
the target grammar would be only 1/2". On average, then, the learner must expect to make 2/-1
such selections before correctly selecting the target grammar—an unacceptable result given our
assumptions about the size of the space. At the very least, then, something must limit the range
of new hypotheses available to the learner. The Single Value Constraint does exactly that. It
also imposes a meaningful notion of distance on the space; grammars that differ by m parameter
values are at least m TLA steps apart. However, although the Single Value Constraint cuts
down the number of choices and imposes a sort of spatial framework on the learning problem,
this, in itself, does not guarantee that the learner will not perform a random walk through the
parametric space. There is still nothing that forces a net motion in the direction of the target.
Since the TLA freely chooses its next move from the immediately neighboring grammars, an
Ungreedy learner with half the parameters set correctly has no bias to move either towards or
away from the target grammar. Worse, a learner who has n - 1 parameters set correctly and 1
parameter set incorrectly is much more likely to attempt a move away from the target, rather
than towards the target. Given that there is no useful bias in the criterion used to propose new
hypothesis grammars, there must be some useful bias in the criterion used to decide whether to
adopt a new hypothesis grammar. Otherwise, even with the addition of the Single Value
Constraint, the learner is still performing a random walk, albeit one with considerably smaller
steps. The hope is that Greediness provides an appropriate bias. Of course, variants on this
particular notion of Greed might turn out to be preferable. It is possible, for example, to imagine
relaxing the all-or-nothing aspect of greed. For example, changing a parameter value might

lead to a better set of partial parses.
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Again the strong claim that the TLA embodies is that the set relations between target
grammars, source grammars and their neighbors are such that, under a realistic distribution of
inputs from target languages, learners will tend to take TLA steps in the direction of the target
grammar, rather than away from the target grammar; there must be some target-directional
biases.24 The simplest way to imagine this happening would be for the overlap between
grammars to be a sharply decreasing function of their distance in parameter space. If this were
the case, and there were no other systematic relations among the forms in the space’s languages,
then the expectation is that if the learner opted to attempt a TLA step towards the grammar it
would be more likely to succeed than if it opted to attempt a TLA step away from the grammar.
This issue of target-directional biases will be a focus of Chapter 5. In the present chapter, our
emphasis is on identification in the limit.

Gibson and Wexler (1994) demonstrated that even from the point of view of
identification in the limit in a very simple system, the strong assumptions of Greediness and
the Single Value Constraint can result in the learner being unable to converge in the limit,
without some additional assumptions. In their syntactic system, Gibson and Wexler (1994)
discovered that for a number of targets there were a number of local maxima—states that were
not on any TLA path to the target grammar. A learner in one of these local maxima would

routinely encounter sentences that it was unable to analyze; since no neighboring grammar was

24 It may be acceptable for this bias to be absent at a great distance, as long as there is not an
active bias away from the target. For example, if the learner simply performed a random walk
through a binary space, then the expectation is that, on average, half of the parameters would
be set correctly. Thus, even without a target directional bias, the learner can expect to get
halfway to the target “for free”.
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capable of analyzing any of the “error-generating” sentences either, the learner became
permanently committed to a non-target grammar.25

In fact, it is surprisingly easy to find possible parametric systems which cause the TLA
approach to break down. Consider a binary two-parameter space with four grammars, each of
which generates a single unique sentencc. A TLA learrer who starts life with two parameters
set incorrectly will never be able to acquire the target; neither of the two one-parameter
changes that they might make would enable them to parse the input from the target grammar.
The parametric structures provided by UG must preclude such possibilities if the TLA is to
succeed.

The discussion above indicates that, in addition to certain considerations of simplicity
and psychological plausibility, the TLA’s properties must also be crucially motivated by a
belief in their feasibility in real parametric spaces. The learner, by hypothesis, does not have
the time or computational resources to engage in a full exploration of the space; variations on a
random walk through the space are similarly prohibitive. However, discussion in Gibson and
Wexler (1994) focuses primarily on the “prior” question of identification in the limit: Can the
TLA acquire the target grammar given an unbounded amount of time and input data? As noted
above, some fine-tuning of the algorithm are necessary at this stage to produce in-the-limit
modification, even before more difficult questions of computational feasibility are addressed.
The present chapter is also pitched at the level of identification in the limit. In the metrical

phonological system, the standard TL~ encounters some initial difficulties. I will present a

25 1t is also possible to have local maxima cycles where the learner interminably loops through
a set of non-target hypotheses. This situation does not arise in any of the systems discussed
here.
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partial solution to the problem of local maxima in the implementation of the Halle and
Idsardi system that depends on a both a slight modification of the parametric system and the
imposition of a maturational solution of the sort proposed in Gibson and Wexler (1994). Our
criterion of in-the-limit acquisition with high probability can be guaranteed given this set of
additional assumptions. In the next chapter, however, I will suggest that this line of analysis,
with its narrow emphasis on identification in the limit, might be premature until some more
basic results are established about the general tendency for a learner to move towards the
target. Gibson (1995), Broihier (1995a) and Broihier (1995b) all provide discussion of the
importance of such target-directional biases.26 Gibson (1995) presents some calculations

documenting such biases in the Gibson and Wexler (1994) three parameter space.

4.2 Gibson and Wexler’s (1994) results

Gibson and Wexler applied the TLA to the 3-parameter syntactic space developed
above in Section 3.9. They found six local maximum pairs—source and target grammars such
that a learner that proceeds through the parameter space via TLA-licensed steps will never be
able to make a transition from the source to the target. There were 56 possible pairs to consider.

These local maximum pairs are listed in Table 4.2.1.

26 James Thomas played an important role in the development of these ideas.
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Table 4.2.1
Gibson and Wexler’s Maxima

Source grammar

Target grammar

Spec-final, Comp-final, +V2
Spec-final, Comp-first, +V2
Spec-final, Comp-final, +V2
Spec-final, Comp-first, +V2

Spec-first, Comp-final, +V2

Spec-first, Comp-final, -V2
Spec-first, Comp-final, -V2
Spec-first, Comp-first, -V2
Spec-first, Comp-first, -V2

Spec-final, Comp-first, —-V2

Spec-first, Comp-first, +V2 Spec-final, Comp-first, -V2

Given that the algorithm allows the learner to begin in the source states of these local
maximum pairs, it is impossible to ensure identification in the limit for all of the grammars in
the space. If a learner begins in a local maximum for the target, or enters into a local maximum
from the target, it follows from the definition of a local maximum that the learner will never
attain the target. The three parameter syntactic space cannot be identified in the limit.

This negative learnability result, of course, follows from the adoption of both a
particuiar parametric space and a particular learnirg algorithm—the TLA as stated in (4.1.7).
In response, Gibson and Wexler consider a range of possible responses that involve modifying
the assumptions that led to the problematic maxima. The responses fall into the categories

indicated in (4.2.2):

113




(4.2.2) a. Accept the failure of identification in the limit for certain targets;
perhaps the space contains natural, but unattainable languages.
b. The parametric system is incorrect; modify it.
c. The TLA is incorrect as a description of learning; abandon it.
d. The TLA is incorrect as a description of learning; modify it.

Obviously, the line between (4.2.2.c) and (4.2.2.d) is not sharp. There is a lot of room between
(4.2.2.c) and (4.2.2.d) for adjustments to the TLA.

Perhaps most interestingly, in a variant on (4.1.2.d) Gibson and Wexler propose a
maturational restriction on the hypotheses that the learner is able to adopt. This move is
inspired by the observation that all of the source grammars in the local maxima pairs in Table
4.1.1. are +V2, and that all of the target grammars in the local maxima pairs in Table 4.1.1 are
-V2.If the learner is initially prevented from adopting a +V2 grammar, then they will not
start out in a local maximum for any target grammar. It also turns out that there are always
TLA-licensed paths between any ~V2 source and -V2 target. As a result, if the target grammar
were -V2, the learner could successfully acquire the target even with the maturational
restriction imposed. If, on the other hand, the target is +V2, there is no problem at all. Since
there are no maxima for +V2 grammars, acquisition of the +V2 grammars is guaranteed once the
maturational barrier is relaxed. There is one risk in this scheme. By the maturational
hypothesis, the learner begins with a -V2 grammar, if the target is also a -V2 grammar and
the maturational barrier relaxes before the target is acquired, then, it turns out, there are cases
where a sequence of input could drive the learner to a +V2 grammar that is a local maximum for

the target. Obviously, the maturational barrier needs to be maintained long enough to make
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this possibility reasonably unlikely. Here, as in discussion of cue-based algorithms that make
use of conjectures, the learning criterion has switched from straightforward identification in
the limit to identification in the limit with high probability. Gibson and Wexler also consider
allowing values in the parameter space to be initially unset, and, thereby, derive an
alternative solution which does strictly satisfy the requirements of in-the-limit identification.
I will be focusing on the maturational approach in this thesis because I believe it will have
greater applicability in large parameter spaces.

Bertolo (1995) provides detailed discussion of the use of maturational barriers as a tool
for circumventing local maxima. In applications reported in this thesis, however, I will not
make use of anything more complicated then a simple one-parameter maturational barrier of
the sort deployed by Gibson and Wexler.

At present, it is difficult to evaluate any predictions that might follow from Gibson and
Wexler’s maturational solution because the empirical record (see, for example, Wexler 1996 for
a summary) suggests that acquisition of the basic word order parameters proceeds so rapidly
that learners have fixed their values by the time that they begin to utter sentences containing

enough words to provide evidence about those vaiues.
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4.3 Application of the TLA to the phonological fragment

Given example words generated from the fragment of Halle and Idsardi’s system
presented in Section 3.5, how successful is the TLA, in the limit, at determining the target
parameter settings?

Even with the sort of thorough formulation of the system that Halle and Idsardi
(1994) provide, some implementation decisions are left open. In particular, it becomes critical to
be completely explicit about which grammars are neighbors. There is a fairly straightforward
way to cast the system described above in terms of binary parameters. This is illustrated in

(4.3.1).

(4.3.1) The Test System: Binary Formulation
a. Parameter 1: Quantity Sensitivity (YES/NO)
b. Parameter 2: Quantity Sensitivity Bracket Type (L/R)
c. Parameter 3: Edge Marking Line 0 (YES/NO)
d. Parameter 4: Edge Marking Line 0: Bracket Type (L/R)
e. Parameter 5: Edge Marking Line 0: Which Side of Selected Syllable? (L/R)
f. Parameter 6: Edge Marking Line 0: Selected Syllable (Leftmost/Rightmost)
g. Parameter 7: Iterative Constituent Construction (YES/NO)
h. Parameter 8: Iterative Constituent Construction: Direction of Insertion (L-R/R-L)
i. Parameter 9: Iterative Constituent Construction: Orientation of Bracket (L/R)
j- Parameter 10: Line 0 Headedness (L/R)
k-n Parameters 11-14 for Line 1 Edge Marking see c-f.
o. Parameter 6: Line 1 Headedness (L/R)
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Initial considerations, however, led to the following set of multi-valued parameters

shown in (4.3.2). In this system, languages make one choice “per process”.

(4.3.2) The Test System: Two Levels

a. Parameter 1: Quantity Sensitivity
0: No bracket.
1: Place a bracket to the LEFT of the grid mark associated with a heavy

syllable.
2: Place a bracket to the RIGHT of the grid mark associated with a
heavy syllable.

b. Parameter 2: Edge Marking Line 027
0: No edge marking.
1: Place a LEFT bracket to the LEFT of the LEFTMOST grid mark.
2: Place a LEFT bracket to the LEFT of the RIGHTMOST giid mark.
3: Place a LEFT bracket to the RIGHT of the LEFTMOST grid mark.
4: Place a RIGHT bracket to the LEFT of the RIGHTMOST grid mark.
5: Place a RIGHT bracket to the RIGHT of the LEFTMOST grid mark.
6: Place a RIGHT bracket to the RIGHT of the RIGHTMOST grid

mark.

c. Parameter 3: Iterative Constituent Construction (ICC)
0: No iterative constituent construction.
1: ICC from the LEFT with LEFT brackets.
2: ICC from the LEFT with RIGHT brackets.
3: ICC from the RIGHT with LEFT brackets.
4: ICC from the RIGHT with RIGHT brackets

27Why aren’t there nine options here? In principle, there are, but the missing two options—left
brackets to the right of the rightmost grid mark and right brackets to the left of the leftmost
grid mark—can’t create new constituents in the monomorphemic words considered here.
Therefore, they can’t affect stress.
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d. Parameter 4: Headedness Line 0
0: LEFT.
1: RIGHT.

e. Parameter 5: Edge Marking Line 1
see b.

f. Parameter 6: Headedness Line 1
see d.

The problem with a purely binary formulation—for example: +/- has iterative constituent
construction, from the left/right, with a left/right bracket, etc.—is that there is really a sort
of hierarchical arrangement here. If the “top” parameter is set to a particular value, then the
values of the other parameters have no effect, until the learner attempts to flip the first
parameter. All of the “hidden” parameter values need to be set in an appropriate way or else
such a change will fail. Moving to these multi-valued parameters avoids this difficulty. Of
course, it also can’t help but make satisfying the identification in the limit criterion easier for
the TLA since every grammar now has an expanded set of neighbors and, therefore, more
potential paths to the target. Collapsing parameters in this way could make a TLA-
unlearnable space TLA-learnable. On the other hand, as a result of this increased connectivity,
if any local maxima do remain in the space, there are more ways for the learner to fall into
them.

With these considerations in mind, the first space I chose to investigate is the one
described in (4.2.2). Note that the conflation parameter is not included. This was done
primarily for reasons of the time and space available for my investigation; my overall
implementation of Halle and Idsardi’s system is capable of generating conflation structures, but

I do not allow this option in the spaces described here. The system is, minus conflation,
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obviously very similar to the fragment analyzed in Dresher (1994), although I have not
unde:iaken a cue-based analysis of this particular variant.

For each of the 2940 (i.e. 3 x 7 x 5 x 2 x 7 x 2) possible parameter settings in the space, I
computationally generated all possible 1-6 syllable monomorphemic words composed of light
and heavy syllables. Six syllables is enough to tell apart all the languages in the space that
can, in principle, be distinguished. Each grammar, in turn, was considered as the target
grammar. Using a version of Gibson and Wexler’s (1994) search algorithm, a local maxima
search was performed for each target to identify source grammars that would never converge to
the target under the TLA. A new complication, not encountered by Gibson and Wexler, arises
here. In this space, there are a number of sets of grammar that are weakly equivalent. That is
to say, they produce exactly the same syllable-to-stress mapping, despite the fact that they
have different parameter settings. These maxima are eliminated from the results reported
here. If there really is no way for the learner to distinguish between weakly equivalent
grammars, converging to a given grammar should be as good as converging to one of its
equivalents. (It is possible that in a more complete system there would not be such weak
equivalents. For example, multimorphemic words might expose some otherwise undetectable
differences between grammars.) Similarly, if a grammar cannot reach the target grammar, but
it can reach a grammar that generates the same language as the designated target, this was
counted as a success. There are 838 distinct languages in the system.

The search discovered an abundance of local maxima. In fact, every target language
had local maxima. The number of maxima per target ranged from 8 to 1008. The mean number of
maxima per target language was 116. The median number of maxima per target was 66. In terms

of the targets, it is appropriate to group by languages because the learner will not be sensitive
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to which of several variant grammars that generate the target language speakers actually
happen to use.28

Of the 2940 grammars in the space, 2016 were maxima for some target pattern of data—
again, there were 838 distinct target patterns. For an unmodified TLA learner to successfully
acquire any grammar in the space, the learner would certainly have to begin in one of the
remaining 924 states. Of course, starting in a state that is not a local maximum does not
guarantee that data from some target grammar in the space could not eventually drive the
learner into a local maximum for the target. It turns out in this space that for each of the “non-
maxima” initial states there are target grammars such that a learner driven by the target
grammar could move to a local maximum for the target. In terms of the learner’s internally
represented mental hypotheses, it is appropriate to count by grammars.

Analysis of the space indicated that there is also no simple maturational solution of
the sort that Gibson and Wexler discovered in their 3-parameter syntactic space. Every
parameter value is instantiated in at least one source grammar in a local maximum pair. It will
not do to simply restrict the initial range of parameter values, because this will not prevent a
learner from initially adopting a grammar that is a local maximum for some target.

As mentioned above, Bertolo (1995) outlines a program for exhaustively searching
through all possible sets of maturational sequences for those, if any, that would incrementally

steer the learner successfully from some subset of the 924 candidate starting points to

28 This is true unless speakers with distinct grammars that speak weakly equivalent languages
have tendencies to produce different distributions of forms as a consequence: of grammatical
differences. These differences might, for example, affect the ease of producing or
comprehending certain forms.
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appropriate target grammars. I have not carried out this search for the present “maximum-
ridden” space.

Instead, in the interests of attaining a better concrete understanding of the problematic
interactions between parameters in the system-—something that proved difficult to do in the
space presented above—I next moved to a smaller subspace. The parameters shown in (4.3.3) are
those involved in the mapping from Line 0 to Line 1. In languages that do not conflate, this
mapping is, in some sense, independent of the mapping from Line 1 to Line 2. The parameters
that map from Line 0 to Line 1 make a contribution to the overall stress contour by virtue of the
grid marks that they project to Line 1—the secondary stresses. In languages that do not conflate,
then, their contribution is plainly visible. It is conceivable that learners that have somehow
previously established that their language does not conflate might employ a TLA learner to set
the Line 0 parameters. At this point, though, it is good to keep in mind the question of whether
the remaining subspace could, perhaps, prove small enough to make more exhaustive search

techniques seem tractable.
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(4.3.3) The Test System: One Level

a. Parameter 1: Quantity Sensitivity
0: No bracket.
1: Place a bracket to the LEFT of the grid mark associated with a heavy

syllable.
2: Place a bracket to the RIGHT of the grid mark associated with a
heavy syllable.

b. Parameter 2: Edge Marking Line 0
0: No edge marking.
1: Place a LEFT bracket to the LEFT of the LEFTMOST grid mark.
2: Place a LEFT bracket to the LEFT of the RIGHTMOST grid mark.
3: Place a LEFT bracket to the RIGHT of the LEFTMOST grid mark.
4: Place a RIGHT bracket to the LEFT of the RIGHTMOST grid mark.
5: Place a RIGHT bracket to the RIGHT of the LEFTMOST grid mark.
6: Place a RIGHT bracket to the RIGHT of the RIGHTMOST grid

mark.

c. Parameter 3: Iterative Constituent Construction (ICC)
0: No iterative constituent construction.
1: ICC from the LEFT with LEFT brackets.
2: ICC from the LEFT with RIGHT brackets.
3: ICC from the RIGHT with LEFT brackets.
4: ICC from the RIGHT with RIGHT brackets

d. Parameter 4: Headedness Line 0
0: LEFT.
1: RIGHT.

In all, 126 of the 210 languages in this space are distinct.
Identical analytical steps were followed here. The results of the search indicated that

51 of the target languages (corresponding to 80 of the grammars) had local maxima. Again, in a
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number of cases, there were quite a few maxima for a given target. For this space, the pattern of
local maxima more readily suggested a solution. Note, however, that this is one solution among
a space of other, still unexplored maturational, possibilities.

The solution that I will present here involves a combiraticr o’ »arameter space
modification and maturation. A modification of the parar.* - epar.  at eli..unates certain
options is made. With this done, a one-parameter maturational solution is readily available,
at the cost of a slight expansion of UG. Of course, this also involves a slight modification of the
IGMS program because the maturational restriction is, by definition, a modification of the

learning algorithm that is sensitive to the particular details of the parametric space.
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A particularly bad parameter interaction accounts for most of the maxima in the
system. A typical result of iterative constituent construction is the formation of new binary
constituents. However, two settings of the ICC parameter can also resuit in the formation of
single syllable constituents at the end of a word. If the ICC mechanism proceeds from left to
right inserting left brackets, it can result in the creation of a single syllable constituent at the
end of the word. The mirror image situation obtains when the ICC goes from right to left
inserting right brackets. Effectively, these forward-grouping settings force the end syllable to
be included in a metrical constituent. These ICC settings, in combination with certain other
parameter settings, as shown in (4.3.4.a) for example, can result in grammars that have what 1
will call an unavoidable final stress. For example, all words generated by the grammar in
(4.3.4.2) have a final stress. Moreover, the same holds for all of (4.3.4.a)'s neighbors. If all
words in the target grammar lack a final stress, as in (4.3.4.b), a learner who adopts (4.3.4.a)
will be irretrievably stuck; there is no one-step way out. If the forward-grouping option is
turned off, other options step up to ensure that the end syllable receives stress. More than one

parameter must be changed at a time to eliminate this stress.
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(4.3.4) a. Source Grammar with “unavoidable” final stress.

Quantity Sensitivity: 0—Quantity Insensitive

Edge Marking: 2—LEFT Bracket to the LEFT of the RIGHTMOST
grid mark
ICC: 1—ICC from the LEFT with LEFT brackets
Headedness: 1—RIGHT
i R * * *
( * * ( * * ( *

d L L H H

i i . * * *
( * * ( * ( *
H L L H
b. To~get Grammar with no final stresses.

Quantity Sensitivity: 0—Quantity Insensitive

Edge Marking: 6—RIGHT Bracket to the RIGHT of the
RIGHTMOST grid mark
ICC: 4—ICC from the RIGHT with RIGHT brackets
Headedness: 0—LEFT
i . * * *
* ) * * ) %* * )
H L L H H
ii. *
* * ) * * )
H L H

As mentioned above in Chapter 3, the two problematic ICC options depicted in (4.3.4)
are among the least well-motivated aspects of the system; they were tentatively suggested as
part of a possible analysis for Ojibwa. Therefore, it seems reasonable to consider how
learnability changes in the system if they are not included. When this was done, the resulting
126 grammar (3 x 7 x 3 x 2) space has the simple set of maxima shown in Table 4.3.5, which I
will show straight away has a simple maturational solution. (Interestingly, the space still

generates 104 distinct languages. Only 22 patterns of data were eliminated despite the fact
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there are 84 fewer grammars in the system.) In principle, this might be an argument for
modifying linguistic theory to accommodate learning results, although there are reasons to be
skeptical. I will have more to say about this below.

As discussed above, in certain parametric spaces it is possible to use maturational
barriers to prevent a TLA learner from entering into an inescapable local maxima. First, of
course, it is necessary to restrict the range of initial starting states, so that the learner never
begins in a state that is a local maximum for some target grammar. (If there happened to be
states that weren’t on a path to any local maxima for any target grammar, it would be enough to
simply start in one of these states. As determined, by a computational search of the system,
there are no such states in the system at hand. Every start state is on a path to a local maxima
for some target in the system when the learner is driven by data from that target.) Second, it is
necessary to block any paths to local maxima. Again, maturational restrictions on the range of
parameter values aim to perform this task in the following way: initially, when the learner
could potentially enter into a local maximum, the maturational restriction prevents them from
doing so. Later after some innately fixed amount of time has passed, the hope is that the
structure of the space is such that the learner will have reached a point in the space where
they are no longer on a possible path to any local maxima. Then, it is safe to remove the

maturational restriction on the learner.
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Table 4.3.5
Local Maxima without the forward-grouping ICC options:

QS Edge Mark ICC Head

Target: 0 4 FromR 1
Source: 0 0 From R 0
Target: 0 4 None 1
Source: 0 0 From R 0
Target: 0 4 None 0
Source: 0 0 FromL 0
Target: 0 3 FromL

Source: 0 0 From L 1
Target: 0 3 None 1
Source: 0 0 From R 1
Target: 0 3 None

Source: 0 0 From L 1

* The two stressless grammars that result from forming no constituents are also maxima for
many targets. I will assume that UG recognizes that these are unacceptable stopping states
and will restart the learning process if it gets caught up here.

The modified system allows just such a solution. Notice, as indicated in the boxed
column under Edge Mark, that all of the grammars displayed in the table that were maxima for
any targets had no edge mark. A computational analysis indicates that initially requiring an
edge mark, with two notable exceptions, allows the learner to avoid all maxima in the space.
These two exceptions are stressless grammars that form no constituents at all because they do
not adopt any bracket-inserting options. These grammars may actually be linguistically

motivated (see Idsardi 1992 for discussion), but they might, not implausibly, be viewed as
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something of a special case. If these grammars are eliminated from c~~sideration, then, at least
tentatively, the modified TLA remains a candidate learning algorithm for metrical phonology.

As in the syntactic domain, what we know about the acquisition of phonology does not
seem to bear on the claim that children begin life with the edge marking option turred off.
Fikkert (1994), for example, in one of the most extensive studies in this domain, provides a
detailed discussion of the acquisition of Dutch metrical phonology by a number of children. The
general result of the study, as in the syntactic case of word order parameters, is that very little
evidence can be found in this domain suggesting a parametric missetting of the sort that would
distinguish two adult grammars. The development that is displayed seems to be along a non-
parametric dimension governing how much of a word that the child realizes in its utterances.
This difficulty in testing the predictions of the TLA is not particular to this approach; if
children, empirically, set parameters quickly, before they are producing complex linguistic
structures, it will be difficult to catch children in the act of parameter change. This does not

constitute an argument for or against the approach.

4.4 The Impact of Extensions to the Parametric System on the
Identification in the Limit Approach

Above, 1 suggested tentatively that we had an example of a learnability result
possibly putting some constraint on linguistic theory. Indeed, an important question for
learnability research is whether formal analysis of the interaction between learning
algorithms and linguistic models will significantly inform and guide research in linguistic

theory and developmental psycholinguistics, or whether learnability research will primarily
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play the role of a check on the adequacy of theory in these areas; if no reasonable learning
algorithm consistent with what we know about the brain can be provided that leads from a
parametric system to an explanation of the course of acquisition, we will know that something
has gone wrong. Linguistic theory has undergoi.c very dramatic transformations over the course
of the past several decades, and it is safe to say that it continues to do so today, so it is
important to ask what can be learned from attempts to model the learnability of a “moving
target”. Learnability research could certainly result in a body of theoretical results detailing
the connections between particular instances or classes ot learning algorithms, particular
instances or classes of parameter spaces and their associated generative probability
distributions. The worry is that results will not fall somewhere in the useful middle ground
between overly particular and overly abstract and general.

Of course, there have been instances in which learnability considerations led to quite
concrete proposals about linguistic constraints. For example, Wexler and Culicover’s (1980)
learnability results pinpc'nted the need, given plausible psychological desiderata, for a
restriction on the scope of transformational operations to ensure the identification in the limit
of the infinite class of transformational grammars that they studied. The question is whether
such results can be derived in the more restrictive Principles and Parameters framework when
identification in the limit is much more easily attained.

Given a complete specification of (1) the topology of the hypothesis space provided by
Universal Grammar, (2) a model of the distribution of linguistic patterns produced by a speaker
at any given point in parametric space and (3) a learning algorithm that maintains
grammatical hypotheses that it changes as a result of its exposure to linguistic data, it is

possible, as we have seen, to compute the trajectories that the learning algorithm can and
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cannot follow through the hypothesis space. The TLA’s hypothesis space can be identified
with the parametric space that it is navigating. In the more general case, this need not be true.
For example, the hypothesis states maintained by a cue-based learner essentially consist of
lists of parameters that either have definitive values or are currently unset. Since the unset
option is not available in the parametric system, the space of hypothesis states and the space
of grammars cannot be matched up one to one. Nonetheless, it would still be possible to consider
the cue-based learner’s dynamics in its hypothesis space.

If linguists, aided perhaps by a corps of statistical corpora analysts, eventually become
quite confident that they have (1) and (2) right, and if developmental psycholinguists can
provide a good description of (4) the trajectory of linguistic hypotheses that children go
through on the way to adult competence, then, in principle, it should be quite straightforward
to determine whether the learning algorithm specified in (3) fits the bill.

Similarly, if the field eventually became quite certain about the specification of (2),
(3) and (4) it might be possible to rule out particular instances, or even entire classes of
parametric spaces. For a particularly simple example of how this might play out, consider the
following highly implausible, but possible example of how the world could have turned out.
Assume that neurological investigations reveal that the standard TLA is correct in all its
details, and that developmental psycholinguists discover that all children, everywhere, are
entirely successful in acquiring their target languages in the limit. In such a world, any
linguistic parameter space which had the property that all the data generated by any
particular grammar was uniquely generated by that grammar would be immediately
recognizable as a disastrous failure. Any learner who happened to start off more than one step

away from the target grammar would never move because, by hypothesis, the only state
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capable of generating data in the target language is the target language itself. A learner in any
state that did not border the target grammar would constantly receive error data, but since, by
hypothesis, only the target grammar is capable of providing an analysis of this error data,
learners in the nether regions of the space would remain fixed in place. If we knew that the
TLA were correct, there would be a straightforward argument for rejecting such a parameter
space.

Experience to date suggests that the first scenario described above is considerably more
plausible than the second. Linguistic theory appears to have made a considerable amount of
progress in the description of UG, in the absence of much detailed and concrete evidence about
the nature of the learning algorithms employed by humans learning natural language. It has
done so largely through the pursuit of its primary methodology of analyzing the range of
linguistic patterns and interpretations of linguistic patterns that speakers of a language find to
be acceptable, unacceptable, or somewhere in between. Given the current state of our
psychological knowledge, it seems harder to imagine independently establishing anything
beyond the most general properties of human natural language acquisition algorithms—for
example, motivating Principles and Parameters theory. It seems most likely that a linguistic
theory would be dropped on learnability grounds only in those cases where it was impossible to
provide any plausible learning algorithm.

A related concern is whether usefully general learnability results for a particular
algorithm, such as the TLA, can be attained in the absence of a full and correct specification of
the parametric system. As one pressing example of this concern, the reader of Section 4.3 is
probably left with the feeling that the analysis carried out above and the demonstration of a

positive learnability result for the maturationally extended TLA in the amended phonological
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space are tenuous. [ do not wish to dispel this feeling. The results presented in Section 4.3 are
highly, indeed unavoidably, dependent on the fine details of the parametric space. Instead, I
hope to discuss the conditions which govern whether or not a learning result for the TLA or
MTLA will carry over in any recognizable form when the parametric system is modified. In
particular, let us see how far we can pursue the optimistic possibility that our success in
providing a maturational solution in the final fragment discussed above will carry over to
larger systems.

The TLA essentially induces a graph structure (actually a set of related graph
structures—one per target grammar) on the learner’s hypothesis space. Grammars in the
parametric space correspond to the vertices of this graph structure. Directed edges run from a
first srammar to a second if it is possible to make a TLA transition from the first to the second.
Modifications to the hypothesis space can affect identification in the limit results for the TLA
or the corresponding identification in the limit with high probability results for the MTLA
only to the extent that they affect these graph structures.

An extension of the system could take several forms. Perhaps most simply, the sets of
linguistic forms contained in existing languages in the model might be altered, while the set of
languages and the overall neighborhood structure remains the same. Such an alteration of the
system would adding or deleting linguistic forms from the languages in the space. It seems quite
natural to expect such alterations as the modeling enterprise becomes more ambitious. For
example, Gibson and Wexler (1994) confine themselves to matrix clauses although clearly all
the languages in the space that they present also really generate multi-clause data. Similarly,

in both Dresher’s (1994) and my own efforts with the Halle and Idsardi system, the focus has
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been entirely on monomorphemic words. Deletions, on the other hand, would only seem to arise
if the action of the parameters was initially incorrect.

For simplicity, I will consider the addition or deletion of a single piece of data to a
single grammar in the space. The overall effects of the addition of data throughout the space
are the same whether the new data are added incrementally or en masse.

What consequences can the addition of a single piece of data have for the TLA-
connectivity of the space? Most simply put, the addition of data can result in the addition or
removal of edges in the graph structures reflecting TLA-connectivity for a particular target
grammar. The consequences are potentially most dramatic in the graph structure which has the
extended language as the target. Adding a new pattern to a designated target grammar
provides the target with a larger arsenal of potential error-inducers that could cause a learner
that is stuck in a maximum to attempt to change hypotheses. In order to have any effect, on the
graph structure, of course, a previously inaccessible neighbor of a state in the space must also
generate the form that is added to the target grammar. In this case a link from the state to its
neighbor is added. If a state that receives a new outgoing link was a maximum in the original
space, then the addition of this new link may make it a non-maximum in the new space. In order
for the maximum to be eliminated, at least one newly accessible neighbor must, itself, not be a
maximum.

Clearly, adding a form to the target grammar and not to other grammars in the space
can only result in the addition of new edges in the corresponding graph structure. Therefore, it
can only eliminate—never create—maxima. Note also that adding a form to the target

grammar has global effects on the connectivity of the space; it can potentially affect the
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connections between any two neighboring grammars, regardless of their distance from the
target.

Adding a new linguistic form to a non-target grammar can both add and delete links
between states, although it can only have a much more local effect on the connectivity of the
graph structure corresponding to that target. It can only affect the links between the extended
grammar and its one-parameter neighbors.

The set of outgoing links from the extended grammar can actually only be reduced. This
is the case because extension of the grammar must either leave the set of error-signals the same
or reduce its size by one. If the neighbors of the extended grammar are unchanged, then the
ability of these potential triggers to actually induce change is unaltered. If the set of outgoing
links that gets eliminated disrupts all previously existing paths to the target, then at least one
new local maximum is created. In addition, any other state in the space that crucially relied on
a path through the new local maximum also becomes a local maximum.

The set of incoming links to the extended grammar can only be expanded. A new
incoming link will be formed if the newly added form is generated by the target grammar, but
not by a neighbor that previously lacked an incoming link. If the extended grammar is not itself
a local maximum then any neighbor that manages to link into it by virtue of the extension is no
longer a local maximum. Similarly, any local maximum in the space that is capable of reaching
a newly linked neighbor of the extended grammar will shed its maximum status.

This exhausts the possibilities for edge modification that can be induced by the
addition of a single form to a state in the space. The effects of a larger set of additions can be
incrementally computed by adding a single new form at a time. However, some interesting

observations can be made here about the effect of adding a set of forms en masse. If the forms
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that get added to the space do not occur anywhere in the previous space, then they can only
result in increased connectivity. Connectivity only decreases when the addition of a form to a
grammar prevents that form from generating an error for a source grammar in the space. If all
the forms that are added do not occur in the original space, then previously existing triggers
will not be disrupted and new ones may be created.

The effect of removing a single form from a grammar is a sort of “mirror image” of the
effect of adding a single form. Removing a single form from the target grammar can result in the
elimination of edges throughout the space since it robs the target grammar of a potential error-
inducer. Removing a single form from a non-target grammar potentially increases its set of
outgoing links because the modified grammar generates less data, and, therefore, is potentially
more prone to encounter errors on data from the target. The set of incoming links is potentially
reduced since the modified grammar now generates fewer sentences for a neighbor grammar,
seeking to make a hypothesis change, to latch onto in accordance with the principle of
Greediness.

Obviously, learnability results are sensitive to these changes in connectivity. The
addition of edges can turn a space that was previously unlearnable by the TLA into one that is
learnable by the TLA. If a space was previously TLA-learnable, the addition of edges will not
change this. On the other hand, the elimination of edges potentially changes a TLA-learnable
space into a TLA-unlearnable. If a space was previously TLA-unlearnable, then the removal of
edges will not change this. Things are obviously more complicated if edges are both added and
eliminated.

Bertolo (1995) provides a sufficient condition on the extension of the data sets for

existing languages in the space not to disrupt previously obtained learnability results with the
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TLA. Essentially, if the data that gets added to a language does not occur in any of the other
unmodified languages, and if the data does not get added to any other language, then the data
will be inert from the point of view of the TLA learner. As discussed above, connectivity will
not decrease in virtue of the fact that the newly added forms do not occur anywhere in the old
space. Connectivity also will not increase, however, because none of the new patterns for any
target grammar in the space are generated elsewhere in the space. A greedy learner would not
be able to take advantage of the new patterns. Data that is unique to a particular language
cannot lead to the modification of the grammar. Clearly, this is far from a necessary condition
for ensuring the continued success of the TLA.

Bertolo’s interest is in specifying the conditions under which a learnability result,
either positive or negative, will be preserved under extensions of the system. One could also
imagine taking a more partisan, pro-TLA stance and focus on a search for conditions that would
preserve positive learnability results and eliminate negative learnability results. This would
clearly allow for a relaxation of the conservative criterion above.

The effects of adding and subtracting forms from the grammars in the space are
somewhat more complicated when the TLA is supplemented with a maturational timetable.
The effects on the mature connectivity graphs that result when all barriers have been dropped
are, of course, exactly the same as those described above for the original TLA. For the TLA, of
course, increased connectivity can only be beneficial for identification in the limit. If the
original space had no local maxima, then none will be introduced by increased connectivity. If
the original space had local maxima, increased connectivity could potentially eliminate some
of these maxima with no risk of creating new ones. Similarly, decreased connectivity can only

be detrimental.
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Whereas a successful TLA solution is robus. in the face of increased connectivity, a
maturational TLA solution may not be. With the maturational TLA, there is a tension between
two potential effects of increased connectivity. Increased connectivity could eliminate local
maxima in the mature space. If all the maxima in the mature space are eliminated by changes
in connectivity induced by the addition or subtraction of forms, then a maturational solution for
the original space will trivially extend to the new space. Of course, in the new space, the
maturational solution will not play any useful role. Instead, it will simply temporarily impede
the learner’s progress through parameter space.

The addition of new edges, however, clearly does not guarantee the elimination of all
the original maxima. Moreover, the elimination of edges has the potential to create new local
maxima that did not exist in the original space. If all maxima are not eliminated, then
increased connectivity can actually have a detrimental effect on a maturational solution. I will
consider how this could happen for both residual maxima from the original space and newly
created maxima.

Consider, first the case where residual maxima remain, but no new maxima are created.

Recall, as analyzed by Bertolo (1995), that maturational restrictions function to steer
the learner around local maxima in a space. When a successful maturational solution’s final
restriction on a parameter value gets released, the learner is, with high probability, no longer
on track to a local maximum. None of the terminal states that the learner can reach in the
presence of the maturational barrier is on a path to the maturational barrier. This is true
regardless of which target grammar the learner is exposed to. if there is more than one
“relaxation step” in the removal of maturational barriers, then the penultimate set of

parameters that are unlocked might have played an important role in guaranteeing that the
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set ~f terminal states that the learner reaches before the final restriction drops are “safe”. This
penultimate maturational barrier might, in turn, depend on a prior maturational barrier
ensuring that the learner ended up in an appropriate terminal state for the penultimate barrier.
And, so on. Each maturational barrier in the increasingly less restrictive sequence of barriers
has a set of terminal states that the learner will enter into given enough time, and given the
successful operation of previous maturational barriers.2? For all but the last set of terminal
states, a set of terminal states is safe if the set of states that can be reached from the terminal
set in between the current relaxation of the maturational barrier and the next relaxation of a
maturational barrier is itself safe. The last set of terminal states is safe if they are not on a
path to a local maximum in the fully mature space.

A new edge can disrupt a maturational solution by altering the set of terminal states for
a maturational barrier to include an unsafe state. By allowing the learner to pursue new
paths—when those paths are not blocked by the maturational barrier, of course—the addition
of a new edge has the potential to lead the learner to an unsafe state that it could not have
reached previously.

The loss of an edge also has the potential to disrupt a maturational solution even if it
does not create new local maxima. Instead of reaching the original set of terminal states for &
maturational barrier, the learner could be stopped short on the path to the original terminal
states in a new, unsafe terminal state that is on a “maturationally licensed” path to a local

maxima.

29 The learner might not necessarily reach a single steady state, because there could be cycles
between safe states.
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If the loss of an edge does create new local maxima, of course, then a maturational
solution could be disrupted if it does not steer the learner clear of newly created maxima.

The set of languages in the space might also be increased by the addition of a new
parameter to the system. Perhaps, the simplest case of parameter extension would be the case
in which all the grammars in the original system can be directly interpreted as implicitly
adopting a single value of the new parameter. For each new alternative value of the
parameter, there would be a separate subspace whose learnability might be investigated. The
simplest sub-case, here, occurs when there is only a single alternative value. In Bertolo’s (1995)
terminology, the question of interest is whether learning results obtained from sections of
parametric systems hold of the parametric system as a whole. A section, relative, to a target,
corresponds to the subgraph induced when states that do not have a subset of their parameters
set to certain designated values are removed from the system.

Consider first the consequences for the simple TLA.

If each section of a larger space corresponding to one of the values of a particular
parameter has no maxima for targets within it, then the larger space will have no maxima if
and only if every state in the larger space is always on a path to some state with the
alternative parameter value when driven by data from a target in a different section. In other
words, if the learner can always manage to set the ne'w parameter appropriately, the rest of
the required learning paths are guaranteed by the hypothesis that there are not within-
section maxima.

Note that this is a global condition that, as stated, can only be evaluated by

implementing the larger system.
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If sections of a larger space do happen to have local maxima, the larger space itself
may or may not have local maxima. The situation for within-section maxima can only improve,
since the merger of the sections essentially gives every state in the space more neighbors. Old
within-section links are preserved, and new between-section links are potentially added. A
learner may be able to make transitions between states that were previously impossible by
leaving the original section, following a path in the new section, and then returning to a state in
the original section that is on track to the target. A “maximum-voiding” path might even
require the learner to jump back and forth between sections numerous times. Of course, the trade
off is that any of the between-section source/target pairs could themselves turn out to involve
local maxima.

What consequences does section-wise extension of the space have on a maturational
solution that was discovered for one of the sections? Again, increased connectivity can have
mixed effects. Of course, if the merger of the sections eliminates all maxima in the mature space
navigated by the unmodified TLA, then a maturational solution is trivially preserved. The
barriers, of course, no longer play any useful role. For those within-section maxima that remain,
however, any increased connectivity via the other sections can only lead to trouble. The
maturational barriers discovered for a section are designed to restrict the set of paths that a
learner can pursue so as to prevent them from entering into a local maximum (with high
probability). Increased connectivity alters the sets of terminal states for maturational barrier.
Since the maturational solution ensured that all sets were safe in the section that it was
developed for, if the safety of any of these sets changes it can, obviously, only be for the worse.
Obviously also, the maturational barrier may fail to prevent within-section maxima in sections

of the space other than the one it was designed for. And, again, merger of the spaces raises the

140



possibility of between-section maxima that are not accommodated by the current maturational
solution and that cannot be remedied by maturationally restricting the learner to begin in a
particular section. 30

Of course, it is possible that while a merger of sections might void particular
maturational solutions developed for particular sections, it might lead to a space that lends
itself to different, simpler maturational solutions. Note, however, thai if every parameter
value is instantiated in some local maximum for the system, no maturational solution will be
available, unless, perhaps, some further non-parametric restrictions is made on the set of
possible start states.

More generally, changing the system both the basic neighborhood structure and the
contents of the states that populate the structure may change. In summary, it seems that there
is reason to be skeptical about the ability of particular maturational results to extend to larger
spaces.

In the domain of phonology, as was also discussed with the cue-based approach, certain
other domain-specific questions about the extendibility of results arise.

For example, in many empirically attested stress systems there are a considerable
number of lexical exceptions that stand out against the background of parametrically predicted
forms. Lexical exceptionality often allows the stress to surface in a variety of positions that
would not be predicted parametrically. To the extent that these lexical exceptions mimic forms
that are parametrically generated by other languages in the system, the connectivity of the

space that confronts a TLA learner that is naive about lexical exceptionality can only increase.

30 I have not treated the case where there are additional restrictions on the set of starting
states that are not reflected in the maturational locking of parameters.

141



The target language is essentially armed with an extra set of “error-inducers”. As we've seen
above, increased connectivity is typically beneficial for a simple TLA learner. For the
maturational TLA learner, there is a tradeoff between increased connectivity’s potential to
eliminate local maxima and its ability to thwart maturational barriers. In this case, however,
there is an additional wrinkle: a TLA learner now faces the prospect of encountering errors even
when they have converged to an appropriate grammar in the system. If these error-generating
patterns are generated by neighbors of this target grammar, then the learner is free to wander
back off into parameter space.

It is not clear how to accommodate lexical exceptionality in the TLA framework.
Perhaps lexical entries should themselves be parametrized to allow for a description of the
possible range of lexical exceptionality. A learner who found themselves unable to generate a
stress pattern for a particular form would, then, be confronted with the options of changing the
parametric system as a whole or specifying that the lexical item is exceptional, perhaps in
some UG-restricted way.

A related problem arises from language-particular, but general exceptions in the
application of the bracketing processes. For example, Idsardi (1992) argues that Latin prohibits
the placement of a left bracket to the right of the final syllable of a word. This prohibition is
capable of blocking the placement of a quantity sensitive bracket and, in interaction with the
other settings for Latin, ensures that the final syllable of a multi-syllabic word does not receive

stress. In (4.4.1), the settings for Latin are shown.
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(4.4.1) Latin: Final Extrametricality

Line 0: Project L for Heavy Syllables; Edge Mark RLR;
Iterate RL Binary; Head L; Avoid *(*#.

Line 1: Edge Mark RRR; Head R.

The structure in (4.4.2), shows the result of generating the Latin stress pattern for the word
reprimuntur. The ‘X’ illustrates a position where a bracket would have been placed as a result

of Latin’s quantity sensitivity.

(4.4.2)

# * #
# * * ) #
#1 * ¥ * 1 X * | #
# L L H H #

Without the Latin-specific restriction, the stress pattern would be as in (4.4.3).

(4.4.3)
" * "
# * * * ] #
#( * * [ * * [ #
# H "

It turns out that it is not possible for the TLA to set parameters and then learn, in some
unspecified way, this language-specific pattern of exceptionality. A learner attempting to
accommodate data from actual Latin and converge to the parameter settings for Latin minus the
bracket disruption will not be able to do so. Since there is no mechanism in the TLA for detecting
that the basic parameters are correctly, set, then if any neighbor of Latin minus bracket
disruption can accommodate data from actual Latin that Latin minus bracket disruption cannot,

then even if the learner manages to reach Latin minus bracket disruption, there is no guarantee
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that they will remain there. For example, consider the stress pattern for the fictitious word
muntur. In Latin, it would receive the stress in (4.4.4). In Latin minus bracket disruption,
however, it would receive the stress in (4.4.5). Moreover, there are neighbors of Latin minus
bracket disruption that generate the actual Latin pattern, as in (4.4.6). Therefore, there is

always a trigger for the learner to abandon the desired parameter settings.

(4.4.4)

# * #
# * ] #
#1 * ] * [ #
# H H "
(4.4.5)

# * #
# * ] #
#( * [ * [ #
# H H #
(4.4.6)

# * #
# * ] "
# * ] * [ #
# H #
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Chapter 5
Markov Chain Analysis of the Triggering Learning Algorithm

The strong hypothesis that goes hand in hand with the use of either the TLA or MTLA
is that neighboring states in a parametric space are connected in such a way that grammars
that are close in parametric space will at least tend to overlap in data space in a particular
way. In other words, UG must strongly constrain parametric variation so that the learner tends
to follow trajectories to the target grammar. The basic requirement necessitated by the
combination of Greed and the Single Value Constraint is that neighbors of incorrectly
hypothesized grammars tend to accommodate more error data when those neighbors are closer
to target, rather than when they are farther away. If this is not the case for a particular
incorrect hypothesis, then the learner will not be any more likely to accept a proposed
hypothesis that is closer to the target grammar than one that is further away.3! An important
possibility, not so extensively considered in the literature, is that this hypothesis could
generally turn out to be the right move to make even though the precise details of the TLA turn
out to be wrong from the point of view of identification in the limit.

The details could turn out to be wrong, for example, if every grammar turned out to be a
local maximum for a small, but non-negligible, number of targets in the space. In this case, there
would be no potential starting states for a TLA learner, even if most regions in the space turned
out to be beautifully suited to a learner guided by the combination of the Single Value

Constraint and Greed.

31 In situations where several weakly equivalent grammars generate the target language, their
is more than one grammar that it is appropriate to tend towards.
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This chapter is an initial effort to examine whether the basic pattern of “flow” that
the TLA pursues in parametric spaces will lead to tractable acquisition. Section 5.1, following
Niyogi and Berwick (1993), will suggest that not all maxima are created equal when it comes to
the sorts of problems that they raise for learners. It is possible for a maxima to be relatively
inert, in the sense that they are primarily only problems for learners who begin life inside of
them. It is also, however, possible for there to be maxima that attract Greedy learners from
throughout the hypothesis space. Section 5.2 argues for an emphasis on time course of
acquisition rather than the presence or absence of local maxima in initial investigation of the
feasibility of the guiding insight behind the TLA. Section 5.3 suggests a simple modification of
the TLA, involving a probabilistic violation of Greed, which ensures identification of the limit
with probability 1. This section also places Niyogi and Berwick’s (1993) comparison of the TLA
and random walk algorithms in an appropriate context. Section 5.4 provides some informal
motivation for believing that TLA-appropriate biasing conditions might exist in both Gibson
and Wexler’s three-parameter space and a variant of the metrical phonological space of Halle
and Idsardi that was considered in Chapter 4. Section 5.5 indicates how it is possible to
improve upon the sort of coarse considerations presented in Section 5.4. The rules governing the
TLA’s operation are such that analysis of the probability of TLA convergence to the target and
the expected number of steps to convergence can be carried out exactly within the context of a

well-developed branch of mathematics dealing with Markov Chains. More on this below.
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5.1 A Finer-grained Look at Local Maxima

The TLA imposes a geometrical pattern of connectivity between the states in
parametric space. Some transitions between neighboring states are possible; some transitions
between neighboring states are not. Of course, given the Single Value Constraint, no transitions
at all can be made between non-neighboring states. As discussed above, Gibson and Wexler
provide a detailed case study that shows how the geometry of possible transitions that the
TLA imposes can lead to certain types of trouble for the learner. These geometrically
discernible difficulties with the TLA come in the form of local maxima; in certain parameter
spaces, the TLA learner can either start in or, during the course of acquisition, find its way into
states which are not on any path to the target grammar (or a suitable equivalent grammar).
More formally, a local maximum set for a parametric system P , with respect to a target T, can
be defined as a set of states M which does not contain the target T, such that if a state A is in M
and a state B is not in M, then there is no sequence of TLA transitions from A to B. Equivalently
with respect to the set of the states that occupy some maximum set for a given target, there is no
sequence of transitions that begins in M and ends in T. Call the states that fall within some
local maximum set M, for a parametric space P, local maxima. Clearly, once a learner enters a
local maxima for a given target, failure for the TLA is inevitable. If the purpose is to ensure
identification in the limit, then maxima must be avoided at all cost.

There are several ways that a learner might find themselves in a local maximum for

the target.
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First, the learning algorithm could either begin with or, during the course of
acquisition, adopt a grammar that generates a superset of the target language. Since such a
superset grammar generates every linguistic pattern generated by the target grammar’s
implemented in the minds of the members of the learner’s linguistic community, the parser will
never report any errors, so no hypothesis changes will be attempted. If such a hypothesized
grammar does not generate a proper superset of the languages generated by these target
grammars, there is, in principle, no way that a learner could be expected to distinguish data
from the hypothesized grammar and the target grammar. Either the parametric model is not
yet rich enough to distinguish between the operations of two different sets of parameters that
would have different effects in interaction with additional parameters, or, perhaps, learners
simply converge to different parameter settings that generate the same data. In this second
case, it is perhaps possible that clever psycholinguistic experimentation would be able to tell
which of several weak equivalents a learner has settled on. If, on the other hand, the
hypothesized grammar is a superset grammar for the target, the consequences for the TLA are
clear: since the TLA has no mechanism for abandoning overly general hypotheses, a learner
who adopts a superset grammar will fail to acquire the target.

These subset/superset problems, however, are ones that would confront any learning
algorithm that was strictly error-driven. If a learner adopts a grammar that generates all the
sentences generated by the target language (and then some, in the case of proper supersets), then
a learner who depends entirely on parsing failures to initiate grammatical experimentation
will (in the absence of grammatically analyzable noise data that is not part of the target
language) never change its hypothesis. The TLA (depending of course on what natural language

parametric systems actually look like) is potentially subject to additional difficulties. It may
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be possible for the learner to find itself in points in parametric space where plenty of errors are
encountered, but, nor.etheless, there is no sequence of TLA transitions that will lead to a
grammar capable of generating the target language. Clearly, a learner in such a state will
never successfully acquire the target.

It is this second type of maxima—the consequence of pursuing the joint policies of Greed
and the Single Value Constraint—that I intend to focus on here. Here, too, I would like to make

several distinctions.
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By definition, there are no transitions out of a local maximum set M. It is possible that,
for a given target, there could also be no transitions into local maximum set M from states
outside of M. If this is the case, then the local maximum set M is isolated. The only way that a
TLA learner can find itself in M is to start in M. If the TLA learner does not begin life in an
isolated maxima set, it will find that it can’t get there from here. Figure 5.1 represents a case
where there are no paths from the target T to grammars in the local maximum set M. This is
graphically represented by the absence of any connecting edges. There are also no links from the

grammars B1 and B2 to grammars in M.

Figure 5.1: In isolated maxima, there are no transitions into the maximum set from without.

Conversely, if some sort of deus ex machina chose to intervene on behalf of the TLA or

MTLA learner and move it to a hypothesis that fell outside of a local maximum set M, it would
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never return there via TLA-licensed steps. For the TLA, then, isolated local maximum sets are

only a danger for learners with the misfortune to begin life inside of them.

Target: 9
T

Figure 5.2: A learner somehow displaced from an isolated maximum set, would never return.

Maxima sets with the geometry schematized in Figure 3, on the other hand, pose risks

for more than just their original occupants.
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Local Maximum Set:

Figure 5.3: In the general case there can be transitions from grammars that are not in any local

maximum set to grammars that are in a local maximum set

By definition, isolated local maxima cannot be reached from grammars that fall outside of the
isolated local maximum set. However, in the more general case, exemplified in Figure 3, it is
possible for grammars that are not in any maximum set to, nonetheless, have connections to
grammars that are in a maximum set. A maximum set with incoming connections has a sort of
basin of attraction. All the learners that begin life in the maximum set M end life in the
maximum set M. Moreover, a certain proportion of learners that begin life outside the local
maximum set will, at some point, in the course of acquisition, elect to pursue a path that leads
them into M. The probability of this happening depends on the set of triggers for hypothesis

change that are available and their distribution in the input.
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What does subsequent grammatical development look like for a learner who either
begins development with a hypothesis that falls in a local maximum set for their target
grammar, or adopts such as hypothesis somewhere along the way? The answer to that question
depends entirely on the number and pattern of connectivity of the attainable set of states
associated with the starting state.

For example, it could be the case that, for a learner driven by the target grammar, there
are no transitions at all out of the starting state; in this case, the prediction from the TLA is
that the learner’s final grammatical system is entirely determined by the initial random
choice that landed it in the local maximum. The amount of “frustration” that such a learner
experiences, m=asured in terms of the number of failed efforts Lo escape the local maximum, will
depend on the extent of the overlap between the probabilistic distribution of linguistic patterns
generated by speakers of the target language and the grammar that the learner starts with. If,
for example, by some fluke, the American dialect of English syntax turned out to be a TLA local
maximum for a more British variety, the learner would not necessarily encounter great
difficulties. If, on the other, hand the target were a “free word order” language, such as the
native Australian language Warlpiri, and the learner again began life with an unshakable
assumption that it was learning English, this initial wrong choice would have more drastic

consequences.32 In this case, the Jearner would be ignoring a lot of information—in the form of

32 This discussion may sound a little ridiculous, but, for the TLA and the MTLA, unless
additional work is done to populate the parameter space with more “childlike” grammars that
are somehow marked as unacceptable final states, these hypotheses seem to make the strong
claim that the learner, at all points, hypothesizes a possible adult grammar. Of course, as I
have pointed out earlier, there may be little evidence for “childlike” parameter setting.
(Gibson and Wexler’s unmarked proposal setting looks more like a parametric cue-based learner
with respect to the class of hypctheses that the learner entertains.) In fact, in a large, finite
parametric space, there is always a small, but non-zero, probability that the learner begins life
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repeated failures to parse—that indicates that its current grammatical hypothesis should be
abandoned.

It could also be the case that the learner was able to make several transitions among
grammars before settling into one of several non-target absorbing states—states with no
outward-bound transitions. After this absorption, the learner would be in the same situation as
a learner who began life in an absorbing state. Finally, states in the local maximum set could be
connected in such a way that the learner cycled indefinitely among a set of states—perpetually

seeming to be making progress, but never leaving the confines of the local maximum set.

5.2  Shifting the Emphasis to Time to Convergence

If human learners use the TLA or MTLA to set parameters for natural language systems,
then, in order to successfully acquire a target grammar with the same high probability
consistent with what we empirically observe, the learner must obviously avoid local maxima
with that same high probability. As Niyogi and Berwick (1993) point out, this requires that
the learner also, with high probability, avoid states that are likely to lead to maxima.
Whether or not it is easy to do so will depend on the number of local maxima sets for the
different target grammars in a parametric system, the size of these local maxima sets and the

attractive influence that these local maxima sets exert on the grammars that border on them.

with the grammatical system intact and need only acquire the lexicon of their target language.
Of course confusions in grammatical analyses that arose from difficulties in lexical acquisition
could potentially lead the learner to incorrectly abandon the correct grammar.
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The emphasis in Gibson and Wexler (1994) and Bertolo (1995) on strategies for ensuring
that the learner never enters into local maxima is, from my own point of view, somewhat too
narrow. As | have presented the issues in this thesis, I believe that a top-level question that
learnability research should address at this point, in the absence of detailed independent
information about the workings of the human language acquisition device, is whether or not
there are computationally feasible algorithms for human natural language acquisition that
fall within the class of IGMS algorithms that do not draw on (or implicitly and redundantly
encode) any sort of rich meta-knowledge about the relationship between parameter settings and
linguistic data. The discovery of any such algorithms would be a major discovery and would
contribute importantly to the ongoing debate about the need for explicit instruction manuals for
parameter setting.

Indeed, it is easy to see that guaranteeing identification in the limit with high
probability does not guarantee feasibility. A guarantee of identification in the limit is not a
guarantee of success in a reasonable amount of time with a reasonable amount of input data.

As we have seen, it is absolutely crucial for a TLA or MTLA learner to avoid falling into
local maxima. Once a learner falls into a maximum, the chances of recovery are exactly zero.
Imagine, however, that the learner were equipped with a mechanism that probabilistically
allowed the possibility of escaping from local maxima. The learnability situation could change
quite dramatically.

Most obviously, identification-in-the-limit type learnability can be guaranteed for a
finite parameter space by the addition of any mechanism that would guarantee a non-zero
transition probability between any non-target state and each of its neighbors. In the most

general case, where grammars can be in subset/superset relations tc one another, some questions
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arise as to what this mechanism might be. In the actual cases that concern Gibson and Wexler,
and that arise in the metrical phonological space considered here, however, it is trivial to
construct algorithms that will succeed in the limit. Most simply, a learner who randomly
jumped to a neighboring grammar every time it encountered an unanalyzable input would
eventually converge to the target grammar—where it would find that all inputs were
analyzable.

Since the problem of guaranteeing in-the-limit convergence of the TLA (modulo
subset/superset relationships between grammars), can be trivially solved by adding a
probabilistic component to the learning algorithm, I take this as a further indication, that, in
some sense, identification in the limit is only a small component of the real problem of interest.
Of course, if there were some overwhelming argument for adopting a TLA type algorithm
without any probabilistic component, then there would be strong argument for focusing research
on maturation and other techniques for restricting the paths that the learner pursues as ways of
avoiding local maxima. In the absence of such an argument, it seems valuable to explore other
strategies for dealing with local maxima within the context of a system that still respects the

TLA’s basic hunch about the general picture of transition probabilities between states.

5.3 The Triggering Learning Algorithm and Random Walk

The TLA avoids changing its hypothesis when it receives no information at all that
would help it decide whether it was, at least potentially, worth proceeding in a given
direction. It is somewhat difficult to see the virtue of patiently adhering to the requirements of

the Single Value Constraint and Greed in a space as small as the one that Gibson and Wexler
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(1994) consider, so this space does not really provide a fair arena for testing the hypothesis.
The TLA is essentially making a bet that the space will tend to produce useful pushes in the
right direction if it waits for them. In a small parametric space, where all states in the space
can be quickly explored by a learner willing to change hypotheses every time that an error is
encountered, patience may not be a virtue. Indeed, Niyogi and Berwick (1993) point out that,
given certain not-so-controversial assumptions about the probabilistic distribution of inputs
generated by languages in Gibson and Wexler’s 3-parameter syntactic space, the TLA is
outperformed by several different variants on a random walk through the space. However,
Niyogi and Berwick (1993) do not go on to make the crucial observation that raiidom walk
algorithms are doomed if natural language parameter spaces are large. As discussed in Chapter
2, the running time of a random walk algorithm will grow as Q(2"), where n indicates the
number of parameters. If natural language parameter spaces are large, then random walk cannot
be the right approach.

The important question is whether the TLA, or other IGMS algorithms, will overtake
random walk algorithms as the parameter spaces that linguists construct in their efforts to
model reality continue to grow, not whether the TLA can surpass random walk in an exceedingly
small space.33 It may, however, be possible to begin an initial assessment of the plausibility of
this approach even within smaller parameter spaces by comparing the convergence times of the
TLA to the convergence times for a suitably “penalized” random walk algorithm. As noted

above, intuition suggests that the TLA pays a cost for the “deliberate” nature of its exploration

33 Clearly, they need not do so. In fact, in certain spaces we have a guarantee that the learner
cannot hope to do better than a random walk. The example presented in (6.1.1) provides one
such case.
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of the parameter space. It pays a certain premium in terms of the quantity of state changes that
it makes in a fixed window of time in the hopes of profiting greatly from the increased quality
of decisions that it makes. One can imagine a random walk “algorithm” that was somehow
constrained to change states at roughly the same average rate as the TLA. The TLA had best
outperform such an algorithm even in smaller spaces. If Greed did not provide the learner with
any useful (or harmful!) directional guidance, then the race between the TLA and random walk
should be decided simply by who gets to take the most steps per input. If the TLA could not
outperform such a random walk process that was yoked to it in this way, hope that the TLA’s
deliberation will eventually pay off in larger spaces seems unwarranted, although not
impossible. One way of attempting to simulate the effects of yoking the average speed of
random walk to that of the TLA is to adjust the probabilities that the random walk algorithm
sees in the following way: for each state, set the probability that the random walk algorithm
encounters an error after examining one input equal to the probability that a TLA learner would
change hypotheses after examining one input. When the yoked random walk algorithm does
make a move, of course, it will distribute its moves equally among the current state’s neighbors.
The TLA, in accordance with Greed, will continue to distribute its moves to neighboring states to
reflect the proportion of the error signals that these neighboring states are capable of
analyzing. Comparison with a yoked random walk , thus, provides one analytic approach for
assessing the potential of the TLA approach.

A stronger response to this implied criticism of the TLA, of course, would be to scale up
to a larger space and demonstrate that the TLA begins to surpass even an unencumbered random
walk. Ultimately, of course, the TLA will have to beat random walk quite convincingly. If

parameter spaces are quite large it will not be enough, say, for the TLA to do twice as well as
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random walk, since, as is now familiar, cutting a problem that is ©(2") in half does not
constitute much of an improvement.

Of course, remember, random walk had the virtue that it would eventually reach the
target grammar, modulo superset grammars. The TLA and the MTLA cannot provide such
guarantees for all such spaces because of their strict adherence to Greed. However, the slightest
relaxation of Greed can lead to a guarantee that the TLA is also capable of learning a finite
parametric system in the limit, modulo superset grammars. Consider the following

modification of the TLA:

(5.3.1) a. Randomly select an initial hypothesis grammar from the set of all
possible grammars.
b. Analyze an input from the target language:
i. If the current grammar provides an analysis of the current
input, then keep the current grammar and start again at (b).
ii. If the current grammar cannot provide an analysis of the
current input, then randomly select a single parameter
to change, change it, and then:
1. If the new grammar provides an analysis of the
current input, then keep the new parameter
settings and start again at (b).
2, If not, then with small positive probability e

retain the current settings. Otherwise, revert to
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the previous grammar by unflipping the

changed parameter. Start again at (b).

In this version of the TLA, the learner decides with probability e to change states in response to
an error, even though this change does not allow the offending input to be successfully
analyzed.

To demonstrate that this guarantees learning in the limit with probability 1, modulo
superset relations, consider the following. If the hypothesis grammar is not capable of
generating the target, an error signal will almost certainly occur eventually.34 When this error
signal occurs, each neighbor of the hypothesis grammar will be considered as a candidate to
become the new hypothesis grammar. The TLA variant in (5.3.1) has been modified so that a
new candidate grammar will be adopted with a probability that is greater than or equal to e.
If, under the standard TLA, no triggering data existed that would drive a transition to the
candidate grammar, this probability will be exactly e. If the probability of making a
transition under the standard TLA was greater than zero, then the new transition probability
will be strictly greater than e. With the addition of the stochastic component, then, the
probability of any one-parameter transition from non-target grammar a to non-target grammar b

is non-zero. The probability of making a transition out of the target grammar, of course, remains

34 The identification in the limit framework actually does not require a text to repeat patterns
from the target language. With this in mind, it is clear to see how to make life difficult for a
TLA learner. For example, if two languages were identical except that each contained a single
form that was unique to them, a text for one of the languages could conceivably present the
unique form first and never thereafter. If a learner failed to exploit that occurrence, it is
conceivable that they could incorrectly adopt the other highly similar language. I will assume
that a learner who entertains an incorrect hypothesis that is not a subset of the target grammar
will receive a steady flow of error signals.
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zero ir. the absence of noise.3> Now, for every non-target state, there are paths with a finite
nuraber of steps to the target grammar that the learner has some finite probability of following.
In fact, if there are more than two grammars in the space, there will be many such paths from
each non-target grammar in the space.

For our purposes, however, one such path from each grammar in the space is sufficient to
establish identification in the limit with probability 1; call this path the state’s absorbing
path. Now consider what it would mean for the learner not to converge. This would require the
learner to never follow any of absorbing paths. Consider a learner beginning in a state S7 whose
absorbing path is length /7, and whose absorption probability is p1, After I steps, the learner
will be have reached the target with probability p7. With probability 1 - p7, the learner will
be in another non-target state S, whose absorbing path length is I2, and whose absorption
probability is p2. And, so on. Clearly, since there are a finite number of states, there is a
maximal absorbing path length l;;;5x and a minimal, but non-zero, absorption probability pmin.
The probability of remaining in the non-target states for ly;x steps is a most 1 - pyyipn. After n *
Imax steps, the probability of remaining in the non-target states will be at most (1 - pyin)". As
n goes to infinity this probability goes to zero. The probabilistically modified TLA algorithm
will converge.

Of course, I have suggested that identification in the limit should, perhaps, not be the

focus of research in this area. In fact it is clear that if the e parameter in the modified TLA

35 With respect to noise, adoption of this modified TLA comes at a cost. Whereas, the standard
TLA is only sensitive to noise that can be analyzed in accordance with Greed, the modified TLA
is potentially sensitive to any noise. To avoid repeated wandering off from the target, it seems
likely that the modified TLA would actually need to observe that failed standard TLA steps
out of a state occurred at a certain frequency that made it unlikely they were due to noise alone.
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algorithm is set low enough (say one in a billion), the behavior of the algorithm, for all intents
and purposes, would be identical to that of the TLA learning algorithm, although local
maximum states would have undergone a sort of metaphysical transformation into definitely-
not-but-might-as-well-be local maximum states. If e is set to one, we have a random walk
algorithm. If such a learner cannot analyze an error-generating form in a neighboring grammar,
it invariably decides to adopt the neighboring grammar anyway; it may as well not have
bothered checking for satisfaction of Greed.

Interesting possibilities, however, arise when e takes on a value somewhere between
negligible and certain. If e is chosen large enough, then the chance of a learner, at least
temporarily, escaping from standard TLA local maxima that do not involve proper supersets of
the target language improves. If e is chosen small enough, it might not eliminate the standard
TLA'’s overall bias to move in the direction of the target—if, of course, the standard TLA had
such a bias in the first place. If the standard TLA is not biased to seek the target from the
certain regions of parameter space, but is instead biased to seek a local maximum, then the
effect of e may or may not be strong enough to make a practical difference. The learner might
continually escape from the maximum set with probability at least e, only to find itself—with,
for all intents and purposes, overwhelmingly high probability—revisiting the same maximum
set again and again. States that, under the probabilistically modified TLA’s acquisition
regime, are “definitely-not-but-might-as-well-be” local maximum sets that have a strong pull
and a large basin of attraction will make the modified TLA practically unworkable despite
any guarantees of identification in the limit. Of course, the problem of local maximum states
with a basin of attraction confronts the standard TLA as well. If the problematic states in a

given parameter space have substantial basins of attraction, it may become necessary to turn
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once again to devices such as restrictions on the initial starting states and maturational barriers
that aim to keep learners out of particular regions of parameter space. Maturation could
resurface as a valuable piece of machinery, if there are regions in the space that do not contain
the target, and that are easy to fall into and hard to escape from. As Bertolo (1995) discusses in
detail, maturational restrictions basically provide barriers that prevent entry into certain
parts of parameter space during critical phases of development. They could clearly be deployed
as such here as well, although it would be less easy to guarantee their safety and effectiveness
due to the increzsed connectivity induced by the e parameter.

What do states that were local maxima under the standard TLA look like when
neighboring grammars are fully connected in this way, through the addition of a stochastic
escape hatch?

For purposes of developing some intuitions about the usefulness of the probabilistic
modification, it is convenient to focus first on the now-familiar example of Gibson and Wexler’s
(1994) eight-grammar space. Gibson and Wexler’s exhaustive analysis of this space identified
six source/target maxima pairs. As shown in Table 5.3.1, a learner who ended up in a local
maxima for a target would have ample opportunity to detect its plight. The table reports the
probabilities that an error will be registered on any particular input, given a uniform
distribution over forms in a target grammar. One virtue of an implementation of a system is that
such results are calculable.

I will work throughout with uniform distributions in this chapter, although any results
are obviously distribution-sensitive. In part, I am doing this because I believe this work will be

more interesting for the general issues that it raises rather than the more particular results
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reported. Clearly, study of natural language production data could help in the development of
more realistic models of the distribution of input forms.

In the very worst case, 50% of the forms from a target grammar generate errors for a
TLA learner trapped in a maximum in this space. There is, therefore, ample opportunity for a

learner to detect that a maximum grammar is in error.

Table 5.3.1
Lost Opportunities to Escape from Local Maxima in Gibson and Wexler’s (1994) 3-Parameter
Syntactic Space Assuming Unifcrm Distribution of Inputs

Max Grammar Target Grammar Probability of

Error
(SPEC-FIRST COMP-FINAL +V2) (SPEC-FINAL COMP-FIRST -V2) 5/6
(SPEC-FIRST COMP-FIRST +V2) (SPEC-FINAL COMP-FIRST -V2) 5/6€
(SPEC-FINAL COMP-FINAL +V2) (SPEC-FIRST COMP-FINAL -V2) 1/2
(SPEC-FINAL COMP-FIRST +V2) (SPEC-FIRST COMP-FINAL -V2) 3/4
(SPEC-FINAL COMP-FINAL +V2) (SPEC-FIRST COMP-FIRST -V2) 11/12
(SPEC-FINAL COMP-FIRST +V2) (SPEC-FIRST COMP-FIRST -V2) 11/12

Of course, once the standard TLA has fallen into a local maximum, it is completely unable to
learn anything more, despite the fact that its parser is quite consistently unable to analyze a
large fraction of the sentences that it receives as input.

Table 5.3.2 shows the probabilities that, under the same uniform distributions from the
target grammars, a learner will be drawn into a local maximum from a neighbor of the
maximum. Consider a learner with a given e value who has been trapped in a local maximum.
The probability that the learner will abandon the local maximum hypothesis on a given input
is at least e * p(error) for the given source/target pair. The probability is strictly greater than
this if there are triggers that lead to other local maximum grammars. The probability that a
given learner will return to the maximum in the next step after being ejected is simply the sum
over the probabilities of returning to the maximum from a neighbor weighted by the

probability of ejection to that neighbor. If there are no triggers at all out of the local maximum
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to other local maxima, then the learner is ejected to a neighbor uniformly at random, so the

return probabilities can be simply summed. This return probability has two components: one due

to the triggering process, one due to the e parameter. Table 5.3.2 presents the component due to

the triggering process for the Gibson and Wexler space.

Table 5.3.2

Probability of Attraction into Local Maxima for Grammars Neighboring on Local Maxima in
Gibson and Wexler’s (1994) 3-Parameter Syntactic Space Assuming Uniform Distribution of

Inputs
Source Grammar Target Grammar Neighbors P-max
(SPEC-FIRST COMP-FINAL (SPEC-FINAL COMP-FIRST (SPEC-FIRST COMP-FINAL 1/18
+V2) -V2; -V2)
(SPEC-FIRST COMP-FIRST 0
+V2)
{SPEC-FINAL COMP-FINAL 0
+V2)
(SPEC-FIRST COMP-FIRST (SPEC-FINAL COMP-FIRST (SPEC-FIRST COMP-FIRST 1/18
+V2) -V2) -v2)
(SPEC-FIRST COMP-FINAL 0
+V2)
(SPEC-FINAL COMP-FIRST 0
+V2)
(SPEC-FINAL COMP-FINAL (SPEC-FIRST COMP-FINAL (SPEC-FINAL COMP-FINAL 1/6
+V2) -V2) -V2)
(SPEC-FINAL COMP-FIRST 1/12
+V2)
(SPEC-FIRST COMP-FINAL 0
+V2)
(SPEC-FINAL COMP-FIRST (SPEC-FIRST COMP-FINAL (SPEC-FINAL COMP-FIRST 1/12
+V2) -V2) -V2)
(SPEC-FINAL COMP-FINAL 0
+V2)
(SPEC~FIRST COMP-FIRST 0
+V2)
(SPEC-FINAL COMP-FINAL (SPEC-FIRST COMP-FIRST (SPEC-FINAL COMP-FINAL 1/36
+V2) -v2) -V2)
(SPEC-FINAL COMP-FIRST 0
+V2)
(SPEC-FIRST COMP-FINAL 0
+V2)
(SPEC-FINAL COMP-FIRST (SPEC-FIRST COMP-FIRST (SPEC-FINAL COMP-FIRST 1/36
+V2) -V2) -v2)
(SPEC-FINAL COMP-FINAL 0
+V2)
(SPEC-FIRST COMP-FIRST 0
+V2)
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The most strongly attractive tug from a maximum in the space pulls a grammar in from a
neighbor in one out of six inputs, or 16.7% of the time. Since the probability of encountering an
error in a maximum is at least 50%, setting e to .33 will ensure that the learner is ejected from
the maximum at least 16.7% of the time. Therefore, inward movement due to the triggering
process will be countered by the ejection process. Given an equal amount of traffic into a
maximum and traffic out of a maximum, the maximum can no longer act as a basin of attraction.
In order to do this, e will have to be strictly greater than .33, so as to counter the “pull” exerted
by the random component.

Of course, there may not have been an appropriate bias towards the target even in the
original space; the probabilistic jolt provided by the e parameter certainly can’t provide one.
Even if a iearner equipped with a modified version of the TLA travels with a guarantee of
identification in the limit, they may not be any more inclined to seek the target than a random
walk algorithm. Moreover, upping the value of the e parameter, so as to escape from weakly

attractive maxima, could disrupt an existing general bias toward the target.

5.4 Target Directional Biases

The discussion of the Gibson and Wexler space above was intended to informally prime
intuitions about the possible impact of introducing a probabilistic, non-Greedy mechanism for
effecting hypothesis change that would minimize concerns about local maxima in spaces where
such maxima have limited attractiveness. However, it does not otherwise address concerns

about the time course of acquisition in large parametric spaces. In order for acquisition to
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succeed, it is not only necessary that the learner avoid becoming more or less stuck in regions of
the space that do not contain the target grammar. The space must also provide a positive bias
in the direction of the target that the learner can exploit. A learner must be more likely to take
steps in the right direction rather than the wrong direction.

If such target directional biases exist uniformly throughout the space, it is easy to show
that the TLA can be quite successful even in large parametric spaces. Consider, for example, the
following artificial n-parameter space modeled on discussion in Clark (1992). In this parameter
space, data takes the form of n-length strings. Each position in the string directly corresponds to
a parameter in the system. Each position in the string can be filled by a symbol that indicates
the value of that parameter in the language that generated it, or an unknown symbol that does
not give any indication of the value. Each string, then, gives the learner a direct, but usually
partial, look at the setting of parameters in the system. Let the data sets for languages in the
space consist of all possible strings formed by obscuring from 0 to n parameters in this way.

In this space, a TLA learner will only be able to move invthe direction of the target. The
learner will encounter errors when exposed parameter values do not match the parameter
values of its current hypothesis, and the learner will only move to a new state if it can
accommodate the exposed parameter values. Given the Single Value Constraint, the triggers
for movement in the system will be strings with a single parameter value that the learner
cannot accommodate with its present hypothesis. The learner will always be able to move in
the direction of the target because there are always appropriate forms that expose a single new
parameter value from the target. The direction of motion is completely, and exceptionlessly
biased towards the target. The details of how rapidly the learner moves toward the target

will depend on the distribution of forms in the input the learner receives.
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Of course, in this space the learner would be much better off with a different learning
algorithm that simply recorded all of the exposed parameter values.

More generally, if the assumption of uniform biasing held true, it would be
straightforward to calculate the effects that they would have on steps to convergence. The
effects can be quite dramatic. Small uniform biases can lead to rapid progress through the
space. This is suggested in Table 5.4.1, which displays the expected number of TLA steps to
convergence given a particular uniform pattern of biasing towards the target. In particular, the
biasing metric is the ratio of the probability that a “forward” TLA step in the direction in the
direction of the target satisfies Greed to the probability that a “backward” TLA step away
from the target satisfies Greed. As can be seen, even somewhat moderate biases can change the

expected time to convergence by several orders of magnitude.

Table 5.4.1

Expected Steps to Convergence

Number of Binary Parameters

Probability 10 20 30 40

Ratio

1 1.18e+03 1.11e+06 1.11e+09 1.13e+12
2 104 5.08e+03 2.76e+05 1.56e+07
3 41 600 9.5%e+03 1.63+05
4 25 197 1.58e+03 1.37e+04
5 18 102 526 2.93e+03
6 15 66 255 1.04e+03
7 13 49 154 502
8 12 39 107 294
9 11 33 82 197
10 10 29 66 144
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We cannot expect naturally parameter spaces to be so homogeneous, but, for the TLA Fypothesis
to work some set of appropriate biases must exist.

Gibson (1995) has presented some global results for the 3-parameter syntactic space
that suggests that the biases there are in the right direction.

A similar chart for the small phonological space from Chapter 4 that existed before
modification for TLA learning is presented in Table 5.4.2. (With our new algorithm, there is not
an issue of identification in the limit, so the considerations that led us to the solution proposed
there are not operative here.) Here, with the multi-valued parameters, the learner has the
option of making moves that do change its distance from the target. Changing an incorrect

parameter value to another incorrect parameter value results in no net progress towards the

target.
Table 5.4.2
Target Directional Bias Averaged over Target Grammars
Distance from target
1 2 3 4

P (no change) .89 .92 .94 .96
P (“sideways”) .04 .03 .03 .03
P (forward) .05 .03 .02 .02
P (backward) .02 .01 .008 .00

Several features of this table are worth noting. The TLA’s overwhelming bias in the space is to
do nothing. Even when the learner is a single step away from the target, the chance of revising
the grammar on any given input is only .89. However, at every distance from the target there is
a net bias to take steps towards the target rather than away from it. This provides some

preliminary, but extremely coarse, evidence that the TLA might find the type of bias that it
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requires in such a space. Although the net bias looks promising, though, it may not hold for
particular targets, and even if it helds for a particular target, it may not hold for particular
regions in the parameter space for that target.

The TLA might be modified by allowing the algorithm to check every neighbor of the
current hypothesis grammar when an error occurs; such a Super-Greedy TLA would never miss
out on an opportunity for hypothesis change, and could choose simply choose randomly among
its Greed-satisfying neighbors. Such an alteration, would not shape the overall bias of the
system to move in one direction or other, but could affect the absolute speed at which it does so.
This would be reflected in Table 5.4.2 by a reduction of the probability of no change, and a
rescaling of the other entries in each column. As long as the absolute probability of making a
move does not become too small, it is more appropriate to focus on the biases. Note, again, that
an error-driven random walk algorithm, which maximally exploits the opportunity to make
state transitions, will certainly be intractable in large spaces.

In light of the discussion about escaping maxima by adding a probabilistic escape
hatch, a calculation of the amount of error data available to a learner is also of considerable
interest. In the phonological space that has been considered here, each language generates a
single stress contour for each distinct string of syllables. The worst case for the probabilistically
modified TLA, then, would be if the syllable-to-stress mappings computed by source and target
grammars in a local maximum pair were highly overlapping. As shown in (5.4.3), this is
clearly not the case. In the worst case, 69% of the syllables receive the same syllable-to-stress
mapping. The summary figures are based on the same type of calculation used to compute the
results in Table 5.3.1, by computing the retio of the size of the set difference between the target

grammar and the maximum grammar to the size of the target grammar.
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(5.4.3) Detectability of errors
Greatest overlap for a source/target local maximum pair: .69

Average overlap for a source/target local maximum pair: .05

Under a uniform distribution of inputs, the learner stuck in even the most deceptive of maxima
in this space would still be unable to analyze almost one third of the inputs that it received.
Even with a relatively small value for e , the probabilistic TLA would find ample opportunity

to, at least temporarily, escape.

5.5 Markov Chain Analysis of the Triggering Learning Algorithm
in Metrical Phonolegical Space

Given a particular space, one does not have to make do with such coarse indications of
the time course of acquisition of a TLA-type strategy (where by TLA-type now I include the
probabilistically non-Greedy case). Rather, given a transition matrix indicating the
probability of transitions between the finite set of states in the parameter space, it is possible
to compute a closed form solution for both the expected probabilities of convergence, and
expected times to convergence for a given target from any source grammar.36 The key properties

of this transition matrix from the point of view of Markov chain theory are that: (1) entries are

36 It is also straightforward to compute standard deviations of convergence times. These could
also be quite useful in assessing the plausibility of a proposed learning algorithm, but I will not
carry out such calculations here. See Niyogi and Berwick (1993) for further discussion.
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greater than or equal to zero and less than or equal to one and (2) the sum of the entries in any
row is one. This ensures that for any transition matrix A, A[ij] can be interpreted as the
probability that an input from the target language will cause a transition from state i to state j.
Note that the probability of a transition between states, given a matrix for a target grammar,
depends only on the state that the learner is currently in—that is to say, the algorithm is
memoryless.37 Problems of this sort fall squarely within the realm of a well-developed branch
of mathematics dealing with Markov chains See, for example, Isaacson and Madsen (1976) for a
textbook introduction. Pursuing the implications of a footnote in Gibson and Wexler (1994),
Niyogi and Berwick (1993) provide the first paper to explicitly draw upon this literature and
apply it to the problem of analyzing the behavior of algorithms for parametric natural
language acquisition. In particular, they analyze the Gibson and Wexler space in considerable
detail.

The entries in a transition matrix representing the movement of a TLA type algorithm
depend, obviously, on both the set of triggers that generate movement between grammars and
their distribution in the input data received from different target languages. Where the matrix
calculations involved in the computation of this closed form solution proves to onerous (as it
might in larger spaces), numerical estimates of these properties of the system might be
developed via simulation of the learning algorithm. All results reported in this section some

from such closed form computations.

37 Of course, if memory can only take on a finite set of states, the learning process can still be
represented as a finite Markov chain process whose states reflect both the current hypothesis
and the contents of memory.
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This section will report a number of such results for the metrical phonological system.
As noted above, a certain amount of sophistication is required in order to use such results to
obtain any kind of estimate about what might happen in a “real” parametric sj .ce. For
example, our coarse study of the target directional biases in the metrical phonological space is
hopeful for the TLA; there is an overall tendency to move towards the target, rather than
away from it. However, the fact that doing nothing is far and away the dominant response of
the TLA, despite the ready availability of error signals for a random walk algorithm to
exploit, makes it seems quite likely that in this 4-parameter, 210 grammar space, random walk
will continue to beat out variants on the TLA.38 We may not yet have a large enough space for

the “deliberative” virtues of the TLA to be displayed.

38 Since the probabilistically Greedy TLA may void some concerns about local maxima, it may
be interesting to consider computing similar target directional bias and Markov chain
convergence results for a purely binary space.

The move to a binary space would certainly eliminate one category of wasted motion. It
would no longer be possible for a learner to make a step that did not either move it closer to the
target or further away. The overall effects of such a move, however, are potentially rather
complicated. For example, in the phonological space, the move would have the effect of
rescaling the distances of parameters. Consider, example, the edge marking options: 1) have an
edge mark (yes/no), 2) place a (left/right) edge-mark , 3) to the (left/right), (4) of the
(leftmost/rightmost) grid mark. In the present system, these options are treated as nine values
of a single parameter—seven of which have an effect in monomorphemic words. Therefore,
every grammar has eight neighbors that can be reached by a single flip of this parameter. In a
strictly binary formulation, only a proper subset of these neighbors will be a single step away.
(This is somewhat more complicated because the “no edge mark” grammar might be multiply
instantiated in the new space. Alternatively, the interpretation could be that obscured values
did not actually count in the computation of distance.) The transition probabilities between
grammars that are no longer neighbors obviously goes to zero, while the transition probabilities
between neighboring grammars simply needs to be reweighted to reflect the smaller size of
neighborhoods. If any forward motion in the original system involved transitions to neighbors
that were inaccessible in the new system, then the forward biasing of the space would be
correspondingly reduced. On the other hand, if any reverse motion in the system involved
transitions that were inaccessible in the new system, then the reverse biasing of the space
would be correspondingly reduced.
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In order to consider the effectiveness of Greed as a bias on the TLA’s motion through the
space, I will calculate and compare the probabilities of convergence and time to convergence for
a number of different processes that move through the parameter space: (1) the TLA, (2) a
yoked random walk “algorithm” whose net transition probabilities out of any given state have
been scaled to match those of the TLA, (3) a straightforward single-step, error-driven random
walk algorithm and (4) our probabilistic variant of the TLA, which chooses to violate Greed
and make a move in some fraction, e, of the times that the normal TLA procedure fails to
produce a move in response to an error. 39 The process in (2) deserves some further commentary.
It is not intended to be understood as a realistically implementable algorithm. Rather, as
suggested earlier in this section, it is to be understood as a simulation intended to answer the
question of what work Greed is doing in the system. Comparing (1) and (2) will address the
question of whether Greed is playing a useful role in guiding the learner around tlie maxima in
the system. If so, then worries about basins of attraction would be lessened considerably. If the
standard TLA does fairly well in the space as is, then a small boost in ¢ might be enough to
overcome any weakly attractive maxima in the system. Comparing (2) and (4) would allow for
another measure of the target directional bias of the system. This comparison will be sensitive
to the fact that the space might be too small for the virtue of Greed to be directly visible.
Without the “deliberation” penalty, does the TLA surpass random walk? Of course, since there

are known local maxima in the space variants (1) and (2) will not always converge to the target

39 1 will not be considering maturational variants of the TLA. One reason for not doing so is my
optimism that maturational barriers might not be vital for a probabilistically enhanced TLA.
Another reason, of course, is that doing so is more complicated since the transition matrix is not
“stationary” throughout the learning process. Rather, there are several distinct shifts in the
transition matrix that reflect the sudden availability of previously forbidden transitions.
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with probability 1. Comparing (3) and (4) will allow me to determine whether the actual space
that we have adopted is large enough that a TLA variant that can match random walk’s
guarantee of in-the-limit acquisition will begin to surpass it in this larger space.

Assuming a uniform probability distribution over the inputs and a uniform probability
distribution over initial starting states, I calculated the probabilities that the TLA learner and
its yoked random counterpart would converge to the target, given that it began in a state other
than a target or a maximum.40 This was done for each target grammar in the space. Our
criterion for convergence, allows the learner to end up in any grammar that generates the target.
In cases where there are weak equivalents of the target grammar, these weak equivalents were
simply connected to the target grammar with a link of probability 1. Of course, the convergence
results should be the same for any grammar that generates the target language, and, in fact,
they are. From the learner’s point of view, learning the trajectories that a learner follows

cannot be sensitive to undetectable differences in the grammars of the speakers around them.

Table 5.5.1
Probability of Convergence to Target Grammars
Target  TLAP __ Yoked P Target  TLAP _ YokedP _ Target _ TLAP __ Yoked P
(264 1) 100 100 (1641) 100 100 (064 1) 94.2 70.4
(26 40) 100 100 (16 40) 100 100 (06 40) 100 46.6
(2631) 100 100 (163 1) 100 100 (063 1) 99.8 16.2
(2630) 100 100 (1630) 89.5 50 (06 30) 91.5 11.9
(26 21) 100 100 (162 1) 99.9 50 (0621) 100 46.6
(2620) 100 100 (1620) 100 100 (0620) 94.2 70.4
(2611) 100 100 (1611) 100 100 (061 1) 100 46.6
(2610 100 100 (1610) 100 100 (06 10) 94.2 70.4
(26 01) 100 100 (1601) 99.9 50 (0601) 99.6 34
(26 00) 100 100 (1600) 100 100 (06 00) 99.6 34
(254 1) 100 100 (1541) 100 100 (054 1) 100 100
(2540 100 100 (1 540) 100 100 (054 0) 95.4 248

40 The stressless grammars are problematic here also. The transition matrices that arise when
these two grammars are the target are so close to singular, that the numerical calculations
involved are so subject to round-off error that MATLAB, the matrix mathematics package that
I used, cannot reliably compute them.
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(201 1) 100 100 (1011) 100 100 (00 1 1) 100 46.6
(2010) 100 100 (1010 100 100 (00 10) 94.2 70.4
(200 1) 100 100 (1001) 99.9 50 (000 1) * "
(2000) 99.9 50 (1000 100 100 (0000 * *

The data in Table 5.5.1 have several interesting properties. First, a perusal of the table
indicates that, all in all, the TLA’s probability of convergence is quite high—although
certainly not high enough that there is not room for improvement: This, in and of itself, suggests
that the space may not be so ridden with attractive local maxima, so as to require maturational
machinery once Greed is probabilistically relaxed in the way that I have suggested above.
More importantly, though, note that in every case that the probabilities of convergence to the
target language are different, the probability actually declines for the yoked random walk
“algorithm”. Rather than leading to basins of attraction that lure the learner away from the
target language, Greediness actually helps the learner in this space to avoid being attracted
into local maxima.

Table 5.5.2 indicates the expected number of inputs it takes for a learner to be absorbed
into either the target, a weak equivalent or a local maximum, given that it did not start in the

target or a local maximum.41

Table 5.5.2
Expected Inputs to Convergence
Target TLA Yoked Target TLA Yoked 'T‘arget TLA Yoked
(2641) 80 802 (1641) 106 1400 (06 4 1) 79 762
(26 40) 131 . 2724 (16 4 0) 124 874 (06 40) 112 793
(26 31) 664 3571 (1631) 471 5828 (063 1) 5870 1315

41 Here, the implementation of the convergence of weak equivalent grammars to the target
results in very slight discrepancies for weakly equivalent alternative targets. The learner is
penalized a single step if they find the designated target via one of its weak equivalents
because the scorekeeping here requires them to pursue the extra link to the designated target
grammar.
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793




(2110) 106 1400 (1 110) 80 802 (0110) 79 762
(2101) 1618 4749 (1 101) 265 7642 (010 1) 309 2731
(2100 218 5251 (1100) 81 1434 (01 00) 309 2731
(204 1) 80 802 (1041) 106 1400 (00 4 1) 79 762
(204 0) 131 2724 (104 0) 124 874 (004 0) 112 793
(203 1) 397 1839 (103 1) 572 6086 (003 1) 387 1446
(203 0) 171 7345 (1030) 581 1832 (003 0) 439 991
(2021) 581 1832 (1021) 171 7345 (0021) 439 991
(2020) 572 6086 (1020) 397 1839 (002 0) 387 1446
(201 1) 124 874 (101 1) 131 2724 (001 1) 112 793
(201 0) 106 1400 (1010) 80 802 (00 10) 79 762
(200 1) 250 2550 (100 1) 259 5625 (000 1) y :

(2000) 259 5625 (100 0) 250 2550 (0 0 0 0) * *

The first thing to note, perhaps, is that e, 2n the worst cases of the random walk algorithm do
not take anything like an impossible number of inputs. Clearly, we are not operating in a space
that is large enough to definitively rule out even this particularly slow random walk solely on
grounds of speed. However, the TLA is, in some sense, deriving a benefit from its policy of
Greed. The TLA is much quicker to reach a final state than the yoked random walk algorithm,
and we know already that the TLA is not trading off accuracy for speed. Indeed, for all but the
two highlighted grammars (aﬁd the ever-problematic stressless grammars where the
convergence time could not be reliably calculated because of the near-singularity of the
transition matrices), the TLA is anywhere from 2 to 47 times faster than its yoked counterpart.

We have, then, I believe, at least a preliminary example of what it might look like for
the TLA's “leap of faith” about biases towards the target to land on solid ground.

Of course, the price that the TLA pays for the guidance that Greed provides is a
reduction in the number of states that it explores for a given amount of input data. The simple
error-driven learner, whose properties were described in (2), makes a transition every time an

error signal occurs. These same signals also provide the impetus for the TLA. However, the TLA
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only makes a move if the neighbor that it happens to select as its new candidate hypothesis is
capable of generating the previously unanalyzable form.

To get an initial indication of how Greed fared against an unencumbered random walk
in the present space, I computed the expected times to convergence for the random walk
algorithm, a version of the probabilistically modified TLA algorithm with an e value of .1,
and a version of the probabilistically modified TLA algorithm with an e value of .01.
(Obviously, more could be done to explore the consequences of modifying the e parameter.
Intuition suggested, however, that at the .01 level the learner’s behavior would look very much
like the standard TLA'’s, although convergence is, of course, guaranteed. At the .1 level, given
the low overlap between grammars in the space, the effect of the non-Greedy steps might
become more visible. Tables 5.5.3.a—c report the expected convergence times from the best and
worst start states for a target grammar and the overall expected convergence times for each of

these TLA variants. Table 5.5.4 provides summary information.

Table 5.5.3.a
Inputs to Convergence
Target Rand . Rand  Rand  .1Best .1Avg . Worst .01Best .01Avg .0l
Best Avg Worst Start Start Start Worst
Start Start Start
(2641) 66 91 100 26 79 106 17 79 128
(26 40) 85 122 131 22 100 152 12 117 336
(26 31) 285 328 345 124 283 412 60 525 1072
(26 30) 257 295 305 97 193 243 44 200 378
(2621) 51 83 96 21 99 159 13 120 234
(2620) 66 96 106 23 90 136 15 101 257
(26 11) 51 83 96 21 98 159 13 120 234
(26 10) 66 96 106 23 90 136 15 101 257
(26 01) 84 106 113 31 85 111 14 81 131
(26 00) 239 276 285 85 185 240 33 210 466
(2541) 68 85 92 28 74 96 18 74 119
(2540 122 158 168 34 115 169 18 138 367
(2531) 282 326 344 148 385 538 75 976 1705
(25 30) 250 288 298 88 180 227 34 168 370
(2521) 66 91 100 26 79 106 i8 79 128
(2520) 249 288 298 89 188 233 38 178 378
(2511) 68 85 92 28 74 96 18 74 119
(2510) 126 164 174 46 141 189 28 151 320
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(2501) 84 106 113 31 85 111 13 81 131
(2500 234 270 280 75 167 217 26 150 378
2441) 127 166 177 50 155 209 33 177 305
(2440 124 161 172 47 130 179 32 137 268
(431) 259 300 312 1156 246 315 63 296 481
(2430) 248 285 295 98 193 238 49 183 290
(2421) 256 296 308 94 223 287 54 275 439
(2420 259 297 307 94 189 232 51 178 278
(2411) 127 165 176 36 130 180 18 139 267
(2410) 128 166 177 42 134 181 24 143 248
(2401) 254 294 306 108 256 330 59 350 585
(2400) 238 274 284 88 186 235 35 173 325
(2341) 68 85 92 28 74 96 18 74 119
(2340) 122 158 168 34 115 169 18 138 367
(2331) 141 183 198 52 198 296 29 336 654
(2 330) 242 279 289 81 178 226 38 163 3N
(2321) 277 318 331 133 294 377 99 473 867
(2320) 245 283 294 90 204 249 35 193 322
(2311) 68 85 92 28 74 96 18 74 119
(23 10) 126 164 174 46 141 189 28 151 320
(230 1) 458 516 585 393 1100 1652 101 2390 4434
(2300) 233 269 279 76 180 229 27 162 313
(2241) 127 166 177 50 1565 209 33 177 304
(2240 124 161 172 47 136 179 32 137 268
(2231) 274 316 328 145 265 337 96 324 527
(2230 255 295 306 125 2562 302 42 282 381
2221) 51 83 96 21 99 158 13 120 233
(2220) 260 300 31 140 265 311 77 343 476
2211) 127 165 176 36 129 180 18 139 266
(2210) 128 166 177 42 134 181 24 143 248
(2201) 84 106 113 31 85 111 13 81 131
(2200) 237 274 284 96 208 255 28 190 299
2141) 66 91 100 26 79 106 17 79 128
(2140 85 122 131 22 100 152 12 17 337
(2131) 298 343 362 145 328 452 77 445 741
(2 130) 257 295 305 92 184 232 31 182 391
(2121) 400 447 526 250 491 619 162 588 864
(2120) 378 421 504 243 425 597 125 456 654
2111) 51 83 96 21 99 159 13 120 234
(2110 66 96 106 23 90 136 15 101 257
(2101) 451 508 578 364 930 1339 138 1485 2584
(2100) 253 288 298 91 200 252 29 202 444
(2041) 66 91 100 26 79 107 17 79 128
(2040 85 122 131 22 100 152 12 117 337
(2031) 141 183 198 52 198 296 29 336 654
(203 0) 255 292 302 83 171 219 31 162 348
(2021) 399 446 524 288 556 777 171 652 931
(2020) 376 420 502 288 511 764 132 559 842
(201 1) 51 83 96 21 99 159 13 120 234
(2010) 66 96 106 23 90 136 15 101 257
(200 1) 157 186 195 86 221 273 42 246 350
(2000) 250 285 295 103 227 278 30 241 475
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Table 5.5.3.b
Inputs to Convergence

Target Rand Rand Rand .1 Best dAvg 1Worst .01Best .01 Avg 01
Best Avg Worst Start Start Start Worst
Start Start Start

64 1) 66 96 106 23 90 136 15 101 257
6 4 0) 51 83 96 21 99 159 13 120 234
631) 378 421 504 243 425 597 125 456 654
6 3 0) 400 447 526 250 491 619 152 588 864
621) 257 295 305 92 184 232 31 182 391
6 2 0) 298 343 362 145 328 452 77 445 741
611) 85 122 131 22 100 152 12 117 337
6 10) 66 91 100 26 79 106 17 79 128
60 1) 253 288 298 91 200 252 29 202 444
6 00) 451 508 578 364 930 1339 138 1485 2584
54 1) 128 166 177 42 134 181 24 143 248
54 0) 127 165 176 36 129 180 18 139 266
531) 260 300 311 140 265 311 77 343 476
530) 51 83 96 21 99 158 13 120 233
521) 255 295 306 125 252 302 42 282 381
520) 274 316 328 145 265 337 96 324 527
511) 124 161 172 47 130 179 32 137 268
510) 127 166 177 50 155 209 33 177 304
501) 237 274 284 96 208 255 28 190 299
500) 84 106 113 31 85 111 13 81 131
4 41) 126 164 174 46 141 189 28 151 320
4 40) 68 85 92 28 74 96 18 74 119
431) 245 283 294 90 204 249 35 193 322
430) 277 318 33t 133 294 377 99 473 867
421) 242 279 289 81 178 226 38 163 3N
420) 141 183 198 52 198 296 29 336 654
411) 122 168 168 34 115 169 18 138 367
410) 68 85 92 28 74 96 18 74 119
401) 233 269 279 76 180 229 27 162 313
400) 458 516 585 393 1100 1652 101 2390 4434
341) 128 166 177 42 134 181 24 143 248
340) 127 165 176 36 130 180 18 139 267
331) 259 297 307 94 189 232 51 178 278
330) 256 296 308 94 223 287 54 275 439
321) 248 285 295 98 193 238 49 183 290
320) 259 300 312 115 246 315 63 296 481
311 124 161 172 47 130 179 32 137 268
310) 127 166 177 50 1565 209 33 177 305
301) 238 274 284 88 186 235 356 173 325
300) 254 294 306 108 256 330 59 350 585
241) 126 164 174 46 141 189 28 1561 320
240) 68 85 92 28 74 96 18 74 119
231) 249 288 298 89 188 233 38 178 378
230) 66 91 100 26 79 106 18 79 128
221) 250 288 298 88 180 227 34 168 370
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(1t220) 282 3286 344 148 385 538 75 976 1705
(1211) 122 158 168 34 115 169 i8 138 367
(1210 68 85 92 28 74 96 18 74 119
(1201) 234 270 280 75 167 217 26 1580 378
(1200) 84 106 113 31 85 111 13 81 131
(1141) 66 96 106 23 90 136 15 101 257
(1140) 51 83 96 21 99 159 13 120 234
(1131) 66 96 106 23 90 136 15 101 257
(1130) 51 83 96 21 99 159 13 120 234
(1121) 257 295 305 97 193 243 44 200 378
(1120) 285 328 345 124 283 412 60 525 1072
(1111) 85 122 131 22 100 152 12 117 336
(1110) 66 91 100 26 79 106 17 79 128
(1101) 239 276 285 85 185 240 33 210 466
(1100) 84 106 113 31 85 111 14 81 131
(1041) 66 96 106 23 90 136 15 101 257
(1040 51 83 96 21 99 159 13 120 234
(1031) 376 420 502 288 511 764 132 559 842
(1030) 399 446 524 288 556 777 171 652 931
(1021) 255 292 302 83 171 219 31 162 348
(1020) 141 183 198 52 198 256 29 336 654
(1011) 85 122 131 22 100 152 12 117 337
(1010 66 91 100 26 79 107 17 79 128
(100 1) 250 285 295 103 227 278 30 241 475
(1000 157 186 195 86 221 273 42 246 350
Table 5.5.3.c
Inputs to Convergence
Target Rand  Rand  Rand  .1Best .1Avg .1Worst .01Best .01Avg .01
Best Avg Worst Start Start Start Worst
Start Start Start
(064 1) 46 69 77 i8 80 118 9 99 307
(0 6 40) 44 73 83 14 89 140 7 111 313
(06 31) 355 397 421 193 402 456 78 635 1230
(0 6 30) 304 342 365 166 344 399 49 458 811
(0621) 44 73 83 14 89 140 7 111 313
(06 20) 46 68 76 18 80 118 9 99 307
(061 1) 44 73 83 14 89 140 7 111 313
(06 10) 46 69 77 18 80 118 9 99 307
(0601) 68 90 129 46 153 201 17 267 560
(06 00) 68 90 129 46 153 201 17 267 560
(054 1) 56 81 88 23 102 132 10 109 219
(0540) 113 148 157 41 161 215 15 195 419
(053 1) 227 264 274 144 348 412 81 968 1521
(0530) 44 73 83 14 89 140 7 111 313
(0521) 46 68 76 18 80 118 9 99 307
(0520) 219 254 263 121 290 347 53 504 767
(051 1) 56 81 88 23 102 131 10 109 219
(0510 119 157 167 75 202 246 49 216 353
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(0501) 69 90 129 46 153 201 17 267 560
(0500 68 90 129 46 163 201 17 267 560
(0441) 119 157 167 75 202 246 48 216 354
(0 440) 56 81 88 23 102 132 10 109 219
(0431) 214 248 257 136 333 395 49 540 881
(04 30) 212 245 254 130 327 391 38 422 756
(0421) 213 247 256 117 307 374 42 663 1081
(0420) 148 185 209 116 241 293 42 328 571
(0411) 113 148 167 41 161 215 16 195 419
(0410 56 81 88 23 102 132 10 109 219
(0401) 208 241 250 138 364 434 41 666 1045
(0400 438 492 566 302 719 1020 56 877 1429
(0341) 56 81 88 23 102 132 10 109 219
(0340) 113 148 157 41 161 215 15 195 419
(0331) 148 185 209 116 241 293 42 328 571
(0330) 213 247 256 117 307 374 42 663 1081
(0321) 212 245 254 130 327 391 38 422 756
(0320) 214 248 257 136 333 395 49 540 881
(0311) 56 81 88 23 102 132 10 109 219
(0 310) 119 167 167 75 202 246 48 216 354
(0301) 438 492 566 302 719 1020 56 877 1429
(0300) 208 241 250 138 364 434 41 666 1045
(0241) 119 157 167 75 202 246 49 216 353
(0240 56 81 88 23 102 131 10 109 219
(0231) 219 254 263 121 290 347 53 504 767
(0230) 46 68 76 18 80 118 9 99 307
(0221) 44 73 83 14 89 140 7 111 313
(0220) 227 264 274 144 348 412 81 968 1521
(0211) 113 148 157 1 161 215 15 195 419
(0210) 56 81 88 23 102 132 10 109 219
(0201) 68 90 129 46 1563 201 17 267 560
(0200) 69 90 129 46 153 2061 17 267 560
(0141) 46 69 77 18 80 118 9 99 307
(0140 44 73 83 14 89 140 7 111 312
(0131) 46 68 786 18 80 118 9 99 307
(0130) 44 73 83 14 89 140 7 11 313
(0121) 304 342 365 166 344 399 49 458 811
(0120) 355 397 421 193 402 456 78 635 1230
o01t1t11) 44 73 83 14 89 140 7 111 313
(0t1t10) 46 69 77 18 80 118 9 99 307
(0101) 68 90 129 46 1563 201 17 267 560
(0100) 68 90 129 46 153 201 17 267 560
(0041) 46 69 77 18 80 118 9 99 307
(0 0 40) 44 73 83 14 89 140 7 111 313
(0031) 148 185 209 116 241 293 41 328 571
(0 030) 301 338 362 178 366 425 48 468 809
(0021) 301 338 362 178 366 425 48 468 809
(0020) 148 185 209 116 241 293 41 328 571
(0o011) 44 73 83 14 89 140 7 111 313
(0010) 46 69 77 18 80 118 9 99 307
(0001) 111 127 133 92 233 276 51 745 1029
(0000 111 127 133 92 233 276 51 745 1029
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The summary data in Table 5.5.4 suggests that there are cases where the target
directional bias is so strong that upping the value of the e parameter impedes learning. The
time from the best start state decline as e increases. These, however, are likely to be cases
where the learner starts in a state adjacent to the target grammar. As the pa.ameter space
grows, the chance of beginning this close to the target will become less and less likely.
Increasing the e parameter appears to have a beneficial effect on the worst cases in the
parameter spaces; in cases where Greed fails to pull the learner towards the target, a random
jolt appears to help. However, neither of these two values of the e parameter lead to a
performance that is better than random walk overall, although the differences between the
overall expected convergence times are not particularly striking. In fact, the probabilistic TLA
variant with an e value of .01 does better, on average, than the random walk algorithm many
of target grammars in the system. I am averaging here over languages. In general, one must be
concerned about the worst cases for learnable languages in the system. Here, random walk
appears to still be preferable, although the absolute number of inputs required for convergence

is small in al! cases.

Table 5.5.4
Inputs to Convergence

Rand Rand Rand .1 Best 1 Avg .1Worst .01Best .01 Avg 01

Best Avg Worst Start Start Start Worst
Start Start Start
Overall 219 256 275 111 259 342 49 365 643
Average
over
Languages
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Overall, then, for this system, the picture that emerges with respect to the TLA’s
prospects is mixed. Comparison of the TLA (or, indeed, the probabilistic variant of the TLA
with an e value of .01) with the yoked, random walk algorithm indicates that Greed is
providing useful guidance. Not enough useful guidance in this still small space, however, that
the learner is better off—at least with the standard TLA or either of the probabilistic variants
considered here. Consider, however, using the super-Greedy variant of the TLA, discussed
above, that exhaustively considered Greedy steps to its neighbors, and only made a random
step when no neighbor could satisfy Greed. Such an algorithm is virtually certain to push the
TLA over the top of random walk, given the slight differences that exist between the expected

running times presented in Table 5.5.4.

5.6 The Impact of Extending the Parametric System on the
Probabilistic Triggering Learning Algorithm Approacl:

Some hopeful examples have emerged for the general TLA approach in this chapter.
With the probabilistic modification we have a proof of convergence in the limit. We also have
evidence that useful biases are provided by Greed in the phonological space discussed in 5.5.

What can be said next? It seems that we are left with the key question of whether some
version of Greed, perhaps not an immutable and absolute one, will be good as linguists and
learnahility mocielers extend and modify parametric systems.

With respect to slight modifications of the data sets in a fixed parameter space
topology, at least, the hope is that convergence time results with the probabilistically

modified TLA will prove more robust than in-the-limit convergence results with the T. | -
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MTLA. Since most steps that this algorithm takes will be governed by either high frequency
forms or the random component, once the distribution of input forms is approximately correct one
would expect learning results to be reasonably robust. This is unlike the case of identification-
in-the-limit results with the TLA where the slightest alteration in the set of forms in a
language has the potential to dramatically alter the learning landscape.

With respect to extensions of parametric systems to encompass more and more
parameters, | have found little else to say other than the obvious. In the general vicinity of the
target, Greed must lead the learner to take steps in the direction of the target. There need not be
strong biases in the furthest reaches of parameter space, since a random walk algorithm, on
average, expects to be half way to the target (even more than half way when there are weak
equivalents.) If strong pressures exist, in general, and if the cost of these pressures is not long
periods of stasis due to an inability to satisfy Greed, then the approach will work well in large
parametric spaces. Although I have identified some artificial scenarios with appropriate
biases, it has proven difficult to translate this basic intuition into a set of reasonably general,
locally identifiable properties that would allow a researcher, without simply implementing

and testing the system, to identify extensions that will or will not satisfy this criterion.
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Chapter 6

The Parser as a Tool for Parameter Setting

If the parametric, cue-based approach succeeds in the limit for a space, then its
deductive winnowing of the parameter space results directly in an algorithm that only goes
through a number of hypothesis changes that is linear in the number of parameters. Of course,
for such a scheme to be tractable, exponential growth must not be hidden in the individual
steps that apply the cues, or in the storage of the cues in UG. The challenge for such an
approach is establishing that UG can provide a compact set of cues that ensure learning by
paring down the space a parameter or parameter value at a time. As more and more parameters
of linguistic systems interact it is unclear whether it will be possible to implement an easily
applicable, explicitly coded set of cues in UG that perform this function. Indeed, it can only
become more difficult. Dresher and Kaye (1990) and Dresher (1994) specifically intend for
there to be a single cue for each parameter, although, as we have seen from consideration of
Dresher (1994), this requirement may be difficult to satisfy in practice. Moreover, urges in the
direction of parsimony are hardly satisfied by the introduction of a complicated, domain-
specific device whose only function is to enable language acquisition.

The TLA and its ilk are quite parsimonious. Since, however, they do not pursue a policy
which deductively divides the space at each step, but rather rely on the Single Value
Constraint and Greed for their guidance, they are keenly reliant on the hypothesis that
distance in parameter space will translate into particular patterns of overlap among languages.

It seems that there is reason to believe that reliance on these type of properties is a general
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property of search algorithms that have only the TLA’s most limited access to UG. As shown in
Chapter 5, the TLA is easily modified to ensure identification in the limit with probability 1
for systems without subset/superset relations among languages, while maintaining many of the
potential benefits provided by Greed. On thn other hand, whether or not the TLA would find
appropriate biases in the direction of the target, so as to vastly outperform an error-driven
random walk in a large parametric system, remains an open question, although promising
results were obtained in the simplified phonological system. A randomly constructed transition
matrix that approximately respected the TLA’s Single Value Constraint would not be expected
to provide the critical biasing guidance that the TLA needs. To generally ensure the feasibility
of the TLA in the parametric spaces that underlie human linguistic competence it seems
necessary to either demonstrate its application to the “real thing”—an event that is unlikely
to occur in the immediate future—or to provide principled arguments to the effect that we can
expect the overlap relations in the space to be appropriate. It would be interesting if such
arguments could be provided in a way that made specific predictions about the nature of
parameters. It would be compelling finding if there turned out to be appropriate biases in the
actual spaces that proponents of the Principles and Parameters approach believe actually
exist. Such @ finding would provide convincing evidence in favor of a TLA-type approach.

A recent proposal made by Fodor (1995) promises a solution to the problem of language
acquisition (at least in certain domains) that combines the virtues of deductively warranted
beliefs with the ability to do without an explicit, domain-specific set of instructions for
acquisition. Acknowledging the fact that the complex pattern of interaction between
parameters makes it unlikely that a general-purpose inferential system would be able to

successfully navigate a large parameter space, and questioning the existence of appropriate
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biases for the TLA, Fodor proposes instead to deploy a special purpose inferential device that,
at least in some form, has substantial independent motivation—the human parser. (The
references providing general motivation for such a device are really are too numerous to cite; an
entire branch of psycholinguistics is devoted to the study of the properties of this device.)
However, as will be seen, her proposal involves deploying the parser in a mode not normally
posited for adult processing. In particular, Fodor requires an unlimited parallel parser. (See
Gibson (1991) and the references there for an argument for a limited parallelism). Care must be
taken that operation in this special mode does not lead to tractability problems in large spaces.

I refer to the parser as a special-purpose inference device because, given a parametric
specification of a language, it is capable of deducing what structures, couched in the internal
mental vocabulary of the grammar, should be assigned to the strings of a language. Fodor
essentially proposes that the parser provides a way of bridging the epistemological gap
assumed by Dresher (1994) and Dresher and Kaye (1990).42 On her proposal, not an
unreasonable one, a speaker of a +V2 language, like German, automatically constructs a
representation for ‘S V O’ sentences that directly reveals the parameter value as it is encoded
in UG—whether that be in terms of overt material in C, a strong feature on C, etc. Of course, a
speaker of a -V2 language, like English, forms a very different syntactic percept of the same
string. Therein lies the rub for a language learner.

In this chapter I will present and generalize Fodor’s proposals about how, unlike

adults, learners, with no parametric commitments, might be able to initially perceive this sort

42 In actuality, some of Dresher and Kaye’s (1990) and Dresher’s (1994) cues bridge the
epistemological gap in the sense that they require an instantiation and testing of competing
grammars.

190



of “parametric ambiguity” for sentences like ‘S V O’, and more, importantly, how certain
parametrically unambiguous sentences might push the learner to adopt particular values for
their initially open parameters. In Section 6.1, I will present Fodor’s (1995) proposal and
suggest two natural generalizations of the proposal. As indicated in Chapter 1, I will refer to
this class of learners as On-line Parsing Logic (OPL) learners, since they draw conclusions about
parameter setting by a simple inspection of the set of structures inferred by the parser.
Generalizations to Fodor’s proposal are motivated, in part, by difficulties that arise in
application to an extended parametric space, and, perhaps, even in the application to the
particular syntactic space—the familiar Gibson and Wexler three-parameter space—that
provides Fodor’s leading example. I will point out these difficulties throughout. In Section 6.2,
I will discuss the set-theoretic properties that must hold in order for these OPL learners to be
able to acquire a parametric space. In Section 6.3, I will describe an extended version of the
original Gibson and Wexler syntactic space due to Wexler, Gibson, Bertolo and myself. In
Section 6.4, I will describe the extent to which the OPL proposal is applicable to the current
space and point to several problems inherent in the set-theoretic relations among grammars in
the space. In Section 6.5, I will briefly describe a set of phrase structure rules for this space.
This discussion is intended to motivate discussion of the feasibility of the superparsing
approach. This set of rules, list in the Appendix, is capable of parsing all and only strings in
the data sets described in Section 6.3. and is suitable for use by an OPL learner. Section 6.5 will
also discuss the need for a defense of the scalability of this approach. It is important to ensure
that exponential growth is not pushed off into the resource requirements of the parsing process.
The terminology developed in Chapter 3 to discuss the effect of cues on the set of the

learner’s hypotheses carries over directly to discussions of hypothesis change for the learner
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that Fodor proposes, as well as several less restrictive variants that I will discuss here. As
indicated in Chapter 1, I will call the class of learners inspired by Fodor’s proposal On-line
Parsing Logic (OPL) learners. OPL learners behave essentially like parametric cue-based
systems in their deductive narrowing of the space of possible languages. As we will see, in fact,
given a parametric space and a member of the OPL family, it is possible, in principle, to
construct a cue-based learner (possibly an infinite one) that would exhibit an equivalent course
of acquisition. In my interpretation of the basic proposal, in fact, the system relies entirely on
what are, in some sense, the simplest possible cues—form observations. There are no special-
purpose devices outside of the parser that monitor for special properties of the input stream, or
store and analyze larger sets of data. Crucially though, unlike cue-based systems, OPL learners
do not explicitly encode this set of form observation cues in UG. Rather the learner determines
that forms provide cues on-line by a simple, mechanistic bit of reasoning about a set of parses

that it constructs.

6.1 Fodor’s (1995) Proposal

Fodor’s proposal is elegant and, conceptually at least, quite straightforward. Her
leading example is the Gibson and Wexler 3-parameter syntactic space. In this space, she notes
that a learner’s problems would largely be over if they could only somehow hear the syntactic
structures of their native language, rather than just the corresponding strings of syntactic
categories. The following example captures this insight. The ‘'S V O’ sentence “John saw Bill”
could come from a grammar that was either +V2 or -V2. The structure [cp John [¢’ saw [IP ...

Bill...}]], on the other hand could only have come from a +V2 grammar because the verb has
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moved into the C position, and this can only happen in +V2 grammars.43 In current conceptions
of syntax, parameter values tend to correspond to sets (often singleton sets) of discretely
identifiable pieces of the phrase structure used to assemble syntactic trees. For example, a +V2
grammar, in the spaces considered in this paper, can be identified by the presence of a matrix C
filled with finite verbal material. The presence of an XP in the matrix spec-CP positions also
diagnoses +V2. More abstractly, it has been proposed (see, for example, Chomsky 1992) that
the C position in +V2 languages is marked with a particular feature which has the effect of
drawing verbal material to it. Alternatively, empty matrix C’s and spec CP’s indicate that a
grammar is -V2.

A learner that was able, somehow, to produce all and only the possible phrase structure
analyses allowed by UG that corresponded to strings they heard from the target language
would be in a position to confidently adopt certain parameter values and reject others. If every
parse that resulted from a string made use of a piece of structure corresponding to a particular
parameter value, then that parameter value should be adopted; alternative values for the
parameter, on the other hand, should be rejected. If this superparsing process also returned
humanly impossible parses that expressed inconsistent parameter values, further caution would
be required.

As earlier discussion has made clear, for this proposal to be tractable in large
parametric spaces, the learner must be able to perform this search through possible parses in a
way that does not lead to a run-in with the problem of exponential growth. Clearly, it will not

do to simply reconfigure one version of the parser for each of the possible grammars in the

43 Recall that Gibson and Wexler assume that context indicates that John is the subject and Bill
is the object.

193




space. Fodor proposes, instead, that the learner parse with a single supergrammar that
contains all the universal elements of phrase structure, as well as all the components of phrase
structure that correspond to particular parameter values. If parameters are binary, then the
supergrammar wiil be on the same scale as an individual adult grammar. Among the set of 2n
parameter values for n parameters, there will be some parameter value which requires a
maximal number of phrase structure components. Any language that adopts this parameter
value will require at least this maximal number of phrase structure components. The entire
supergrammar, on the other hand, cannot require more than 2n times this maximal amount.

In particular, Fodor proposes that the learner uses the following algorithm: First, the
learner attempts to parse the input that it receives with the set of phrase structure components
that it has either assumed innately or has already been forced to adopt. If this initial parse
succeeds, then no modification needs to be made to the grammar and the learner can move on to
the next input. On the other hand, if the initial attempt at parsing fails, the learner, in the
absence of noise, is clearly missing some necessary structural component.44 The next step is to
attempt a new parse—this time, with the more extensive supergrammar providing additional
raw material for parse construction. Fodor’s particular proposal dictates that if this second
parsing effort with the full supergrammar, containing all parametrically available structures
that human language provides, yields a unique parse, then any parameter values that
contribute structural components to this parse are adopted by the learner. Fodor also claims
that the learner is not constrained in any way to be parametrically consistent within a parse;

the superparser might, then, build a structure that required, say, both a comp-final and a comp-

44 The learner must also be able to identify the relevant syntactic categories and features of the
words in the string, as must Gibson and Wexler’s TLA.
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initial piece of phrase structure. Clearly, in the absence of noise, the learner will not misset
parameters. If there really is a unique parse compatible with the input, then the language that
the learner is acquiring must require the parameter values expressed in this unique parse for its
generation. The only potential logical problem of learnability for a strictly Fodorian learner, or
indeed any of the OPL learners that I will present, arises if parameters fail to get set. This is
true because they rely only on positive evidence.

In its details, Fodor’s proposal is more stringent than the logic of cue-based parameter
setting requires in at least two ways. First, it fails to allow the learner to exploit previously
established parameter settings. If a learner has already rejected certain parameter values,
then there is no reason to keep the corresponding rejected structures in the supergrammar. A
sentence that would not receive a unique parse if the learner had not yet set any parameters
may well receive a unique parse in the context of a set of previously fixed parameters. Second,
even if the parsing effort yields multiple parses, in some cases there is enough information in
the set of successful parses to narrow the range of possible values for parameters. If all the
structures that the parser returns provide evidence for a particular parameter value, it is
plainly safe to adopt that parameter value and reject alternative values. Similarly, if none of
the structures makes use of a particular parameter value’s structures, it is safe to reject that
parameter value. This is a natural extension of Fodor’s proposal, and, in fact, one that she
mentions in passing. With strictly binary parameters, of course rejecting one value and accepting
another go hand in hand. It is only with multi-valued parameters that the possibility of
rejecting a parameter value without definitively sctting a parameter arises.

This OPL scheme requires the ability to parse and the ability to recognize which

parameter value a piece of syntactic structure corresponds to. Some form of the first ability is
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well-established in theories of human psycholinguistics. The second ability follows without
much effort from UG on the structural conception of parameters that Fodor argues for. The
learner must simply be able inspect a syntactic structure for the component pieces that express
particular parameter values. Note, however, that this scheme requires the learner to parse in
an exhaustive mode that may be quite different than the mode that the adult processor
normally uses. In the adult sentence processing literature, there is considerable debate between
proponents of serial processing views, who maintain that the human sentence processing
mechanism only pursues a single parse at a time, and proponents of limited parallelism, who
maintain that this mechanism is capable of holding several alternative partial parses in
mind. However, there does not seem to be any serious argument for the claim that the parser
maintains all alternative partial parses. Of course, these discussions have to do with within-
language ambiguity, so it is not clear that they bear directly on considerations of between-
language ambiguity of the sort that could confront and OPL learner. Nonetheless, it is clearly
crucial that the OPL learner constructs all parses that are humanly compatible with the
sentences that it processes. Otherwise, the absence of a possible parse from the set returned by
the parser could erroneously lead to a parameter value being eliminated.

Holding off on the question of whether such parsing is possible, notice what the OPL
proposal would accomplish in spaces for which there is no logical barrier to its application—a
key caveat. In earlier discussion of cue-based algorithms and in Fodor (1995), it was noted that
it was easy to provide form-based cues for the Gibson and Wexler space since every grammar
contained strings that it alone generated. The concern that I raised was that the need to
explicitly store these uniquely generated forms for each possible grammar in the space would

prove overwhelming in large parametric spaces. An OPL learner, however, can be viewed as a
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cue-based learner, driven by form observations, that does not need to explicitly know in advance
what forms it is looking for. In particular, any OPL learner is isomorphic to a parametric cue-
based learner with fully explicit form cues. Given a particular OPL learner and a parametric
space, it would be possible to deduce all the possible learning paths that the learner might
follow and to determine all the form observations that would drive the learner along those
paths. This done, it would be possible to explicitly encode this information in a (potentially
infinite) cue-based algorithm. The discussion of the form-based cues for the Gibson and Wexler
space focused on the dramatic possibility of setting all parameters at once, but this is clearly
not necessary.

In the following section, I will lay out the properties that must hold of binary
parameter spaces in order for OPL learners to be successful. I will do so for two variants: (1) the
particular learner that Fodor proposes, which requires a unique parse with the full
supergrammar in order to set parameters, (2) a learner that may inspect the entire set of parses
for the occurrence of a parametrically licensed structure, and that can eliminate structures
corresponding to rejected parameter values from the supergrammar. It should be
straightforward to generalize this discussion to the case of a learner that eliminates parameter
values for multi-valued parameters, but I will not do so here. The requirements for an
intermediate OPL learner which requires a unique parse, given certain previously fixed
parameter settings should be reasonably clear once the requirements for (1) are described.

Before I proceed, however, a side note. The potential problem of noise has not been
addressed extensively elsewhere in this thesis, but it seems worthwhile to suggest that OPL
learners might be extended in a way that could prove robust in the face of noise. Clearly, an

OPL learner will not change its hypothesis when it encounters a form that is not parsable given

197



the parameters that it has already fixed. The OPL learner could, however, be misled if it
encountered consistent with languages other than the target. This is also, of course, true with
the TLA and other IGMS algorithms. When the TLA changes a parameter value, there is no
presumption that the form that caused the change requires that parameter value. With OPL
learners, there clearly is. An OPL learner, suitably extended, would be able to simply keep
count of the number of input forms that motivated a particular parameter setting and, perhaps,
refrain from setting a parameter until its confidence that such a setting was motivated crossed

some crucial threshold.

6.2 The Logical Requirements on Parametric Spaces for OPL learning

Unique Parse, Full Supergrammar learner (UPFS)

The requirements on a binary parameter space for Fodor’s OPL learner—call this a
unique parse, full supergrammar (UPFS) learner are clearly stated in terms of the vocabulary
developed in Chapter 3. Since the learner does not restrict the membership of the
supergrammar during acquisition, any cues that act to set parameters must be independent. That
is to say, they must be capable of acting when there are no fixed parameters. As alluded to
above, there is plainly a sufficient condition on parameter spaces that will guarantee success. If
a grammar uniquely generates a particular string, then, in order to parse that string, the parser
must make use of some structural component from each of the grammars parameter values.
Otherwise, an alternative parse that did not require one of the grammar’s parameter values

would be possible. Note, however, that this would contradict the claim that the grammar
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uniquely generated the string. If each grammar in a parametric space generates unique strings,
then “one-trial” acquisition of a grammar emerges as a possibility. Upon encountering such a
string, the learner could successfully set all of its parameter values at once. This striking
possibility would be consistent with an extreme version of Wexler’s (1996) Very Early
Parameter Setting hypothesis, which is motivated by the empirical finding that there is very
little evidence to suggest that children have misset parameters during the course of acquisition.

Of course, this striking possibility is hardly necessary. While Fodor’s learner does
require a unique supergrammar parse for a string in order to set any unset parameters, that
unique parse need not shed light on the value of every parameter in the space. It is possible, and
almost certainly true, that certain syntactic structures will not make use of any of the structures
associated with any of the values of a particular parameter. For example, as Fodor notes, in the
Gibson and Wexler system, the string “V S” receives a unique, -V2 parse. Within the context of
the system, the structure is clearly spec-final. Its value for the comp-final parameter, however,
is indeterminate. It is impossible to tell the relative ordering of heads and their compiements
since the structure contains no complements. The string is uniquely explained by setting a subset
of the system’s parameter values, and it works even though no other parameters have been
fixed. More concretely, on hearing “VS” a learner in the Gibson and Wexler space can set its
grammar to -V2, spec-final. In order for a target language to be acquired, every parameter value
for the grammar that generates the target must participate in a unique explanation for some
string in the language. In particular, there must be independent, sufficient form-observation
type cues for each parameter, for each language in the space. The pressure to provide generally
available cues that would work for all languages is reduced by the elimination of the need to

explicitly encode the machinery for using cues.



However, the existence of such forms is a necessary, but not quite sufficient, condition for
the UPFS learner. The fact that the UPFS learner requires a unique parse with a supergrammar
that, on Fodor’s assumptions, could potentially return parses that are incompatible with a
single human grammar requires an additional condition to be satisfied.

Obviously, any “impossible” parses with incompatible parameter values could block
the applicability of crucial cues that would work if such incompatible parses were ruled out.

This must not be the case.

On-line form observer (OLFO)

Relaxing the requirement on unique parses, torcing the supergrammar parser to respect
previously fixed parameters and disallowing impossible parses puts us squarely in the domain
of parametric, cue-based learners that restrict themselves to form observations. I would like to
attend most closely to the logical requirements of this OPL variant, which I will call an On-
line Form Observer (OLFO). This variant can be placed in exact correspondence with the class
of parametric, cue-based learners that restricts itsclf to form observations. Given OLFO and a
parametric space, it is possible to exhaustively determine all possible learning paths and the
form observations that drives learners along them. Of course, the big difference here is that the
cues on the decision trees implicit in both types of algorithms do not receive explicit mental
representation for an OPL learner. Since there is no burden of explicit representation, very large
and, even, highly redundant decision trees with multiple paths to the same grammars become

reasonable if intractable complexity is not hidden in the “black box” of the parser.
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The general conditions under which such learners succeed are laid out in Chapter 3, but
these conditions are not stated directly in terms of the set-theoretic relations among the
languages in a parametric space. Doing so, I believe, leads to a clearer insight about problems
that can arise for the OLFO. It is easy to show that there are binary parametric spaces for
which it is not possible to provide a parametric, cue-based leainer that restricts itself to form
observations. The artificial parameter space in (6.1.1) provides such an example. The data
generated by the grammars in the space consist of the names of all other grammars in the space.
(The “strikethrough” is intended to draw attention to the fact that a form is not in the
language.) Here, no form is a sufficient iﬁdepent cue for any parameter, so the parameter setting

process can never begin.4>

(6.1.1)
Grammar 00 0: {669,001,010,011,100,101,110,111}
Grammar001: (000,064,010,011,100,101,110,111}
Grammar 010:{000,001,636,011,100,101,110,111)
Grammar011:{000,001,010,643,100,101,110,111}
Grammar 100: {000,001,010,011,+66,101,110,111}

Grammar101:{000,001,010,011,100,364,110,111}

45 An unrestricted cue-based learner could, in the limit, acquire such a space. A particular
language can be cued, for example, by the observation of all the sentences that it generates. Of
course, this is a space for which no learner can hope for a good outcome in an exponentially
growing space. The best that a learner can do here is to rule out a single grammar at every step;
hearing the name of a grammar indicates only that that particular grammar is not the target. |
have yet to construct an example that would thwart a parametric, cue-based learner, but be
amenable to the TLA in a large space.
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Grammar110:{000,001,010,011,100,101,+36,11 1}

Grammar111:{000,001,010,011,100,101,110, ++3}

When generally will the OLFO succeed and fail in binary parameter spaces? At each
point during acquisition, the OPL algorithm has fixed the settings of certain parameters, while
certain other parameters remain open. In effect, the OLFO learner has more closely pinpointed
the location of the target grammar: it falls within the subspace of grammars defined by all
possible settings of the open parameters. What property must hold of this subspace so that it
will be possible to continue setting parameters for any target grammars that fall within it?

Further OLFO parameter setting will be guaranteed if and only if each grammar in the
subspace generates forms that are only generated by a natural subclass of the subspace. My use of
natural class here is the typical one from linguistic theory. A class is said to be natural if it can
be specified by indicating the value of certain features (here parameters) and leaving the
value of others unspecified. If a particular target fails to generate such forms, then it will be
impossible for the learner to make further progress in parameter setting for the language
generated by this target. By hypothesis, no form that the language generates is consistent with
only a natural subclass of the sort that would result from further parameter setting, so the
OLFO cannot proceed for the particular target. If, on the other hand, a target does generate
such forms, then those forms will provide an appropriate parsing cue for the OLFO to fix
further parameters—in particular, those parameters that pick out the appropriate natural
subclass. By hypothesis, the forms are only generated by a natural subclass of the subspace. All
parses of such forms, then, must involve the parsing structures that define the parameters that

pick out the subclass. Otherwise it would be possible to construct some alternative parse for a
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language in the subspace that did not require them. This would mean that they were generated
by some grammar that fell outside of the natural class—a contradiction. If all grammars in the
subspace generate such forms, then OLFO parameter setting can always proceed.

Inductively, then, it is possible to see what must hold for the space as a whole to be
learned by this variant of the OLFO algorithm. There must be no non-trivial (i.e., single
member) subspaces of the parameter space that do not allow further parameter setting to take
place. In other words, there must be no non-trivial subspaces that contain languages without
any forms that, within the confines of the subspace, can only be generated by a natural subclass
of the subspace.

What can be said for parameter spaces that do contain such problematic subspaces? If
all languages in a problematic subspace are weakly equivalent, it would be possible to
postulate a final, additional “clean up” step that simply selected one of the weak equivalents.
If this is not the case, then this won’t help. Arbitrarily selecting a language in the space could
cause convergence to an incorrect grammar. An example of this most problematic of cases is
shown in (6.2.1). Clearly none of the languages are we;lkly equivalent; all the sets of sentences
are different. Nonetheless, no form is generated by a natural class in the system. Arbitrary

choice, here, stands a 3/4 chance of leading to failure to converge.

(6.2.1) Parameter A+, Parameter B+: {A, C, D)
Parameter A+, Parameter B+: (A, B, D)
Parameter A+, Parameter B+: (A, B, C}

Parameter A+, Parameter B+: {B, C, D}
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6.3 A Syntactic Test Space

In order for the OPL proposal to apply directly to a space, it must be possible to
decompose the structures in a linguistic space into independent, parametrically available or
universal components that “snap together”, tinker-toy style. This is definitely not the case in
the Halle and Idsardi system of parameters for metrical phonology. The constituent and
metrical structure that arises in that system is, in some sense, an epiphenomenon of the
parameter settings that a language adopts. A number of parametrized bracket insertion and
grid extension processes contribute to these structures in a highly interactive fashion. It is not so
straightforward to zero in on a modular piece of the structure and identify it as the reflex of a
single, particular parameter value. Perhaps other more “component-based” alternatives to the
Halle and Idsardi systems would lend themselves more directly to Fodor’s scheme.

From here on out the focus will be on syntax. The space presented in this section takes
the Gibson and Wexler parameter space as its starting point.

In the Gibson and Wexler space, remember, Fodor claimed that the UPFS learner could
clearly succeed. A simple demonstration of this pointed to the existence of unique strings for
every language. This would be true if the learner were simply a cue-based learner not subject to
additional requirements on the output of the parser. Note, however, that for the UPFS this
claim depends crucially on certain further assumptions about the superparser’s production of
impossible parses. Enforcing consistency of parameter values in a parse would eliminate this
possible concern, but, as will be shown, leads to complication of the grammar. As a reminder,

that system contained three parameters : a) a specifier-head parameter with values spec-first
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and spec-final, b) a complement-head parameter with values comp-first and comp-final and c)
a V2 parameter with values +V2 and -V2, which indicates that a finite verb moves from its
base position to the second position in root declarative clauses.

The space described in this section expands the base X-bar structure of a root clause in
keeping with the split-Infl hypothesis (see, for example, Emonds 1978, Pollock 1989). The basic
clausal architectures, ordered somewhat arbitrarily to reflect the base word order of English, is
shown in (6.3.1) and (6.3.2). Instead of a single IP level, there are now separate TP (Tense

Phrase) and AP (Agreement Phrase) levels.

(6.3.1) CP
/\
Spec-CP C
N
C TP
S 'I‘P/\T'
pec-
/\
T AP
/\,
Spec-AP A’
/\
A VP
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(6.3.2) CP

N
Spec-CP C
S
C TP+
/ \
Adjunct TP
Spec-TP T
N
T AP
N
Spec-AP A’
N
A VP

First, I will explicitly describe the base structures formed by “populating” this clausal
architecture with syntactic categories. Then, I will review the effect of the original
parameters and introduce the three new parameters indicated below in (6.3.4).

The following list exhaustively describes which categories occupy which base
positions before the application of any movement transformations.

. In every sentence, a subject occupies Spec-AP.
. A sentcnce may contain either an auxiliary and a verb, or a verb alone. It must contain

one of these two combinations. Auxiliaries originate in T. Verbs originate in VP. A fuller

specification of the contents of VP is given below.

. If the sentence does not contain an adjunct, the basic clausal architecture is as in (6.3.1).
If the sentence does contain an adjunct, the basic clausal architecture is as in (6.3.2) and the
adjunct occupies the slot labeled “Adjunct”.

. The following VPs are universally available in the base of all grammars:
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V, V Adverb, Adverb V.
. The following VPs, in combination with the universally available VPs exhaust the
possibilities for comp-final grammars:

V Object, V Object Adv, Adv V Object, V Object-1 Object-2, V Object-1 Objeci-2 Adyv,
Adv V Object-1 Object-2.
° The following VPs, in combination with the universally available VPs exhaust the
possibilities for comp-first grammars:

Object V, Object V Adv, Adv Object V, Object-2 Object-1 V, Object-2 Object-1 V Adyv,

Adv Object-2 Object-1 V.

To briefly summarize the VP possibilities. An adverb can optionally appear at the left
or the right edge of the VP. A verb can be (1) intransitive, (2) simply transitive with a single
object immediately adjacent to it on the side appropriate to the setting of the comp-final
parameter or (3) ditransitive with the first object immediately adjacent to the verb and the
second object immediately adjacent to the first object, again in accordance with the setting of
the comp-final parameter. The “flat” structure of the VP simply reflects the current
implementation in our system and should not be construed as making any strong claims about VP
internal phrase structure.

The original spec-first/spec-final parameter, as applied to the extended clausal
architecture determines the relative base order of Spec-AP and A’. Spec-CP, as in Gibson and
Wexler’s original system, still falls invariantly to the left of C’. It turns out that Spec-TP is

never occupied in the present parametric system, so its order relative to T’ is not so important.
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In the original system, the comp-first/comp-final parameter had the effect of
specifying a set of possible base VPs. It still has that effect here, as noted above. In addition, it
fixes the relative ordering of T and AP, and of A and VP. The relative order of C and TP is
independently parametrized, as will be discussed below.

In the original system, one transformation was possible if the V2 parameter was set to
its positive value. In +V2 languages in the current system, the rule in (6.3.3) is used to transform

the base structure.

(6.3.3) If the sentence contains an auxiliary, move the auxiliary to C. In addition, select a
single category from the tree that falls in the set {Subject, Object, Object-1, Object-2,
Adjunct} and move it to Spec-CP.

If the sentence does not contain an auxiliary, move the verb to C. In addition, select a
single category from the tree that falls in the set {Subject, Object, Object-1, Object-2,

Adjunct} and move it to Spec-CP.

The -V2 value of the parameter does not specify any motion.

The extended system provides the additional parametric options listed in (6.3.1)
(6.3.4) a. a parameter governing the relative order of C and TP.

b. a V-to-Agr parameter

c. a V-fronting parameter
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Recall that in the Gibson and Wexler (1994) system the relative ordering of C and the
unarticulated IP was fixed. The parameter in (6.3.4.a) relaxes this restriction in order to take a
step in the direction of capturing data from languages like Japanese and Korean that are
generally assumed to have C on the right. Note that this switch makes the usual name for this
parameter—V2—a misnomer. In a “+V2” language, with TP before C, the moved verbal
material—auxiliary or verb—ends up in final position.

The V-to-Agr and V-fronting (again a misnomer in certain cases, it might be better to
call it V-to-T) parameters have the effect of extending the possible range of landing sites for
moved verbal material. The V-to-Agr rule is stated in (6.3.5), while the V-fronting rule

appears in (6.3.6).

(6.3.5) +V-to-Agr:
If there is no auxiliary, move the verb to A. Otherwise, move the auxiliary to
A.
- V-to-Agr:

No movement is specified.

(6.3.6) +V-fronting:
If there is no auxiliary, move the verb to T.
~V-fronting:

If there is an auxiliary, move it to A.
The transformation rules are understood to apply in the following order: (1) V-to-Agr, (2) V-
fronting, (3) V2.
The addition c;f the V-to-Agr parameter is intended to allow the system to begin to

capture languages like French where the verb is argued to move to a category intermediate
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between C and V. For example, following Emonds (1978) and Pollock (1989), we have the
following alternation:
(6.3.7) a. Le chat ne chasse pas le chien.

“The cat isn’t chasing the dog.”

b. Ne pas aimer ses parents est une mauvaise chose.

“Not to love one’s parents is a bad thing.”
In (6.3.7.a), the finite verb has raised to the left of negation pas. Since pas is argued to be a
marker of the left edge of VP, the verb chasse must have moved from its base position. In the
present system the adverbial category plays the role of delineating an edge of the VP. Note

that we do not explicitly indicate which edge an adverb delineates. If adverbs bore this

[ information on their faces, if, for example, there were separate classes of "left-edge” and
“right-edge” adverbs, things would only become simpler for an OPL learner. Unlike the TLA,
which in some cases must exploit ambiguity to make progress, an OPL learner thrives on this
sort of disambiguating information. There are a number of different theories characterizing
what we have described as the V-to-Agr parameter (see, for example, Chomsky 1992, Bobaljik
1994). Our implementation is not sufficiently rich to involve us in detailed choices among
particular theories of this phenomenon.

The addition of the V-fronting parameter is intended to allow the system to begin to
capture “VSO” languages like Irish.

An additional parameter governing the presence of V2 movement in embedded clauses
has also been implemented for the system. This parameter is not incorporated into discussion in

this chapter which will focus entirely on data in root clauses.

210




Linguists might ask a lot of questions about the particular decisions that went into the
implementation of the system at hand. These, however, will not be addressed here. For the rest
of this chapter, I will simply take the system as a given and investigate the implications for
OPL learners.

In principle, there are 64 (26) grammars defined by these 6 binary parameters.
However, the 3 verb movements described by the V2, V-fronting and V-to-Agr parameters
shadow one another in the following sense. If a grammar is +V2, the finite verbal element—
auxiliary if there is one, otherwise the verb—ultimately moves to C. The fact that, on its way,
it might have stopped off in either Agr or T cannot be detected from the surface string. In this
case, the values of the V-fronting and V-to-Agr parameters are effectively obscured. Similarly,
if a -V2 grammar is +V-fronting, its value for the V-to-Agr parameter is obscured. As a result,
the number of distinct grammars in the space is reduced. Moreover, in matrix clauses—the source
of our data for this section—the positioning of C relative to TP can only potentially be observed
in +V2 languages. In -V2 languages, nothing occupies the C position.

There are at most 8 distinct +V2 grammars—one for each possible setting of the
unobscured spec-head, comp-head and C position parameters. There are at most 4 distinct -V2,
+V-fronting grammars because the C parameter has no effect for -V2 languages. Similarly,
there are 4 distinct -V2, -V-fronting, +V-to-Agr parameters. Finally, there are at most 4
distinct -V2, -V-fronting, -V-to-Agr grammars. From these considerations, then we can see that
there are at most 20 possible distinct languages in the space. We will see below that, among
these 20 groupings into possibly distinct languages, two additional pairs of groups also turn out

to be equivalent, at least with respect to the fragment of the grammar that has been

implemented so far-
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As we have seen above, the existence of such structurally distinct, but string-equivalent
grammars in a parametric system weak can cause a problem for OPL learners. If the target is one
of the weak equivalents, then no OPL learner will be able to satisfactorily set any parameters
that the set of weak equivalents of the target differ on. Clearly, no string could provide
definitive evidence for the setting of one of these parameters. If the weak equivalents
constitute a natural class, then the situation might be resolved by adding an additional final
step to the learning process which arbitrarily fixes unset parameters. If the weak equivalents
do not constitute a natural class, a learner who insists on a unique parse involving a piece of
structure corresponding to a parameter value in order to set a parameter will not be able to do so

under these circumstances, and the learner will be left with several parameters unset.

6.4 Form Cues for the Parameters in the Test Space

The system at hand has a number of groups of weakly equivalent grammars that will
quickly derail the UPFS learner, which requires unique parses as evidence for parameter
setting. For example, consider that every sentence in the grammar requires a C position, but only
+V2 grammars are capable of providing explicit evidence about the order of C. Therefore, there
will always be at least two parses for sentences from ~V?2 grammars—one with C on the left, one
with C on the right. The UPFS, therefore, will not be able to make any progress at all in
learning ~V2 grammars. Moreover, it is quite easy to construct impossible parses for every
possible parse in the space, as the following example shows. Any given grammar can only place
overt material in a subset of the heads in the system: +V2 grammars use only C and V,

grammars that are -V2 and +V-fronting use only T and V, grammars with no movement only use



A and V. The relative ordering of A and T and their complements is governed by a single
parameter, but since only one of these heads can be filled in any language, only one position is
“detectable” in the string. An unconstrained superparser, then, would always be free to adopt
any value for the comp-first parameter when it builds the level of phrase structure containing
such a head. In particular, the superparser can choose to make the ordering of the undetectable
head either compatible or incompatible with the ordering of other heads in the system. If the
UPFS is correct, then, clearly, these cases must prove to be an artifact of this system. Language
architecture must make it such that in order to build syntactic structures it is necessary to adopt
one parameter or another if there is not always evidence as to which should be adopted.

Let us consider, then, how the more powerful OLFO learner fares in the space. This is
the least restrictive of the OLFO variants we have considered, so any problem for the OLFO
will be a problem for the OPL approach in general, and for any cue-based system that relies
entirely on form observations. Since the space contains sets of weakly equivalent grammars,
there is already a problem for the OLFO learner, but the OLFO learner, unlike Fodor’s OPL, is
at least capable of setting parameters in this system up until the point where this weak

equivalence makes it logically impossible to definitively set a parameter. Table 6.4.1 groups

languages together into the weakly equivalent classes that were identified above from an
initial inspection of the mechanics of the parameter system. These groupings all constitute
natural classes, so if there were always a sufficient set of cues to allow the learner to narrow its
hypotheses to one of these natural classes, then a suitably extended OLFO could arbitrarily
choose one of the grammars in the subspace. This, of course, would represent a deviation from

OLFO’s otherwise straightforward reliance on positive evidence. Presumably, the learner
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would only do so after a substantial period in which it was unable to modify ifs hypothesis any
further.

For 16 out of the 20 natural classes of weak equivalents that were identified at the end
of Section 6.3, there are strings that are generated by all and only the grammars in that natural
class. These strings are listed in Table 6.4.1. Upon parsing one of these strings, the OLFO learner
would discover that all the parses that it was able to construct required the parameter settings
that defined the natural class. For example a sentence of the form, “Adjunct0 Adv Obj0 Subj0
Verb0” would lead the OLFO learner to fix its parameters to spec-final, comp-final, c-final,
+V2, while leaving the V-to-Agr and V-fronting parameters open. Table (6.4.1) exhaustively
lists the uniquely generated strings for the 20 natural subclasses that were picked out at the end
of Section 6.3.

it is important to note that while unique strings can allow many parameters to be set at
once, this is not a requirement of the OPL approach. Here, I am simply trying to establish the
logical limits of the OPL approach as applied to this space. Since there are unique strings found
in many of the weakly equivalent natural classes established above, I am focusing my attention

there.46

46 Preliminary evidence from simulation of OPL learning for the space indicates, in fact, that
unique strings are not required for the acquisition of certain of the weakly equivalent languages.
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1. Spec-final

Table 6.4.1

Unique Strings for Natural Classes in the System
2. Comp-final

3. C-final 4. V-to-Agr 5.V-fronting 6. V2

“Group
1

1

2

3

4

5

6

.D_ata

yes

yes
yes

yes

yes yes y/n y/n yes

yes
yes
yes

yes

y/n
y/n
y/n

no

yes
y/n

no

y/n

no
yes
no

y/n

no
no
no

yes

(ADJUNCTO0 ADV OBJ0 SUBJO VERBO)

(ADJUNCTO OBJ1-0 OBJ2-0 SUBJO VERBO)

(OBJ1-0 ADJUNCTO ADV OBJ2-0 SUBJO VERBO)
(OBJ2-0 ADJUNCTO ADV OBJ1-0 SUBRJO VERBO)
(ADJUNCTO ADV OBJ1-0 OBJ2-0 SUBJO VERBO)
(ADJUNCTO VERBO OBJ0O SUBJ0O AUXO0)

(OBJO ADJUNCTO ADV VERB(O SUBJO AUXO0)
(ADJUNCTO ADV VERBO OBJO SUBJO AUXO0)

(OBJ1-0 ADJUNCTO VERBO OBJ2-0 SUBJO AUXO0)
(OBJ2-0 ADJUNCTO VERBO OBJ1-0 SUBJ0 AUXO0)
(ADJUNCTO VERBO OBJ1-0 OBJ2-0 SUBJO AUXO0)
(OBJ1-0 ADJUNCTO ADV VERBO OBJ2-0 SUBJO AUXO)
(OBJ2-0 ADJUNCTO ADV VERBO OBJ1-0 SUBJO AUXO)
(ADJUNCTO ADV VERB(O OBJ1-0 OBJ2-0 SUBJO AUXO)
(OBJ1-0 ADV OBJ2-0 SUBJO VERBO)

(OBJ2-0 ADV OBJ1-0 SUBJO VERBO)

(OBJO ADV VERBO SUBJO AUXO0)

{OBJ1-0 VERBO ORJ2-0 SUBJO AUXO0)

(OBJ2-0 VERBO OBJ1-0 SUBJO AUXO0)

(OBJ1-0 ADV VERBO OBJ2-9 SUBJO AUX0)

(OBJ2-0 ADV VERBO OBJ1-0 SUBJO AUXO)

NONE

NONE

(ADJUNCTO ADV VERBO OBJ0 SUBJO)

(ADJUNCTO ADV VERBO OBJ1-0 OBJ2-0 SUBRJO)

{ADV VERBO OBJO SUBJO)

(ADV VERBO OBJ1-0 OBJ2-0 SUBJO)

(OBJ1-0 VERBO ADJUNCTO ADV OBJ2-0 SUBJO)
(OBJ2-0 VERBO ADJUNCTO ADV OBJ1-0 SUBJO)
(OBJO AUX0 ADJUNCTO ADV VERBO SUBJO)

(OBJ1-0 AUX0 ADJUNCTO VERBO OBJ2-0 SUBJO)
(OBJ2-0 AUX0 ADJUNCTO VERBO OBJ1-0 SUBJO)
(OBJ1-0 AUX0 ADJUNCTO ADV VERBO OBJ2-0 SUBJO)
(OBJ2-0 AUX0 ADJUNCTO ADV VERBO OBJ1-0 SUBJO)
(CBJ1-0 VERBO ADV OBJ2-0 SUBJO)

(OBJ2-0 VERBO ADV OBJ1-0 SUBJO)

(OBJO AUX0 ADV VERBO SUBJO)

{OBJ1-0 AUX0 VERBO OBJ2-0 SUBJO)

(OBJ2-0 AUX0 VERBO OBJ1-0 SUBJO)

(OBJ1-0 AUX0 ADV VERBO OBJ2-0 SUBJO)

(OBJ2-0 AUX0 ADV VERBO OBJ1-0 SUBJO)
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10

yes

yes

yes

no

no

no

no

no

yes y/n y/n

y/n

y/n

y/n

no

y/n

no

yes

no

y/n

yes

no

no

no

yes

({OBJ1-0 ADJUNCTO OBJ2-0 ADV SUBJO VERBO)
(OBJ2-0 ADJUNCTO OBJ1-0 ADV SUBJO VERBO)
(OBJO ADJUNCTO VERBO ADV SUBJO AUXO0)

(OBJ1-0 ADJUNCTO OBJ2-0 VERBO SUBJO AUXO)
(OBJ2-0 ADJUNCTO OBJ1-0 VERBO SUBJO AUXO)
(OBJ1-0 ADJUNCTO OBJ2-0 VERBO ADV SUBJO AUX0)
(OBJ2-~0 ADJUNCTO OBJ1-0 VERBO ADV SUBJO AUX0)
(OBJ1-0 OBJ2-0 ADV SUBJO VERBO)

(OBJ1-0 OBJ2-0 VERBO SUBJO AUXO)

(OBJ1-0 OBJ2-0 VERBO ADV SUBJO AUXO0)
{ADJUNCTO OBJO ADV VERBO SUBJO)

(ADJUNCTO OBJ2-0 OBJ1-0 ADV VERB0O SUBJO)
(OBJO ADV VERBO SUBJO)

(OBJ2-0 OBJ1-0 ADV VERBO SUBJO)

(ADV SUBJO VERBO)

(ADV SUBJO VERBO)

(VERBO SUBJO AUXO)

(ADV VERBO SUBJO AUXO0)

(VERBO A_V SUBJO AUXO0)

(ADJUNCTO COBJO VEREQ ADV SUBJO)

(ADJUNCTO OBJ2-0 OBJ1-0 VERBO ADV SUBJO)
(OBJ2-0 OBJ1-0 VERBO ADV SURJO)

(ADJUNCTO VERBO OBJO ADV SUBJO0)

(ADJUNCTO VERBO OBJ2-0 OBJ1-0 SUBJO)

(OBJ1-0 VERBO ADJUNCTO OBJ2-0 ADV SUBJO)
(OBJ2-0 VERBO ADJUNCTO OBJ1-0 ADV SUBJO)
(ADJUNCT0 VERBQO OBJ2-0 OBJ1-0 ADV SURJO)
(ADJUNCTO AUX0 OBJO VERBO SUBJO)

(OBJO AUX0 ADJUNCTO VERBO ADV SUBJQ)
(ADJUNCTO AUX0 OBJ0 VERBO ADV SUBJO)

(OBJ1-0 AUX0 ADJUNCTO OBJ2-0 VERBO SUBJO)
(OBJ2-0 AUX0 ADJUNCTO OBJ1-0 VERBO SUBJO)
(ADJUNCTO AUX0 OBJ2-0 OBJ1-0 VERBO SUBJO)
(OBJ1-0 AUX0 ADJUNCTO CBJ2-0 VERBO ADV SUBJO)
(OBRJ2-0 AUX0 ADJUNCTO OBJ1-0 VERBO ADV SUBJO)
(ADJUNCTQ AUX0 ORJ2-0 OBJ1-0 VERBO ADV SUBJO)
(OBJ1-0 VERBO OBJ2-0 ADV SUBJO)

(OBJ?-0 VERBO OBJ1-0 ADV SUBJO)

(OBJO AUX0 VERBO ADV SUBJO)

(OBJ1-0 AUX0 OBJ2-0 VERBO SUBJO)

(CBJ2-0 AUX0 OBJ1-0 VERBO SUBJO)

(OBJ1-0 AUX0 OBJ2-0 VERBO ADV SUBJO)

(OBJ2-0 AUX0O OBRJ1-0 VEREBO ADV SURJO)
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11 no  yes yes y/n y/n yes (ADJUNCTO SUBJO ADV OBJO VERBO)
(ADJUNCTO SUBJO OBJ1-0 OBJ2-0 VERBO)
(OBJ1-0 ADJUNCTO SUBJO ADV OBJ2-0 VEREO)
(OBJ2-0 ADJUNCT(O SUBJO0 ADV OBJ1-0 VERBO)
(ADJUNCTO SUBJO ADV OBJ1-0 OBJ2-0 VERBO)
{ADJUNCTO SUBJO VERBO OBJO AUXO0)
(OBJO ARJUNCTO SUBJO ADV VERBO AUXO)
(ADJUNCTO SUBJO ADV VERBO OBJO AUXO)
(OBJ1-0 ADJUNCTO SUBJO VERBO OBJ2-0 AUXO)
{OBJ2-0 ADJUNCTO SUBJO VERBO OBJ1-0 AUXO0)
(ADJUNCTO SUBJO VERBO OBJ1-0 OBJ2-0 AUXO0)
(OBJ1-0 ADJUNCTO SUBJO ADV VERBO OBJ2-0 AUXC)
(OBJ2-0 ADJUNCTO SUBJO ADV VERBO OBJ1-0 AUX0)
(ADJUNCTO SUBJO ADV VERBO OBJ1-0 OBJ2-0 AUXO0)
(OBJ1-0 SUBJO ADV OBJ2-0 VERBO)
(OBJ2-0 SUBJO ADV OBJ1-0 VERBO)
(OBJO SUBJO ADV VERBO AUXO)
(OBJ1-0 SUBJO VERBO OBJ2-0 AUXO0)
(OBJ2-0 SUBJO VERBO OBJ1-0 AUXO0)
(OBJ1-0 SUBJO ADV VERBO OBJ2-0 AUXO0)
(OBJ2-0 SUBJO ADV VERBO OBJ1-0 AUXO)

12 no yes y/n y/n yes no (VERBO SUBJO ADV)
(VERBO SUBRJO ADV)
(VERBO SUBJO OBJO)
(VERBO SUBJO ADV OBJO)
(VERBO SUBJO OBJ1-0 OBJ2-0)
(VERBO SUBJO ADV OBJ1-0 OBJ2-0)
(AUX0 SUBJO VERBO)
(AUX0 SUBJO VERBO ADV)
(AUX0 SUBJO0 ADV VERBO)
(AUX0 SUBJO VERBO OBJO)
(AUX0 SUBJu ADV VERBO OBJO)
(AUX0 SUBJO VERBO OBJ1-0 OBJ2-0)
(AUX0 SUBJO ADV VERBO OBJ1-0 OBJ2-0)

13 no yes y/n yes no no (ADJUNCTO SUBJO VERBO ADV OBJO)
(ADJUNCTO SUBJO VERBO ADV OBJ1-0 OBJ2-0)
14 no yes y/mn no no no  (ADJUNCTO SUBJO ADV VERBO OBJO) -

(ADJUNCTO SUBJO ADV VERBO OBJ1-0 OBJ2-0)
(SUBJO ADV VERBO OBJO)
(SUBJO ADV VERBO OBJ1-0 OBJ2-0)

15 no yes no y/n y/n yes (OBJ1-0 VERBO ADJUNCTO SUBJO ADV OBJ2-0)
(OBJ2-0 VERBO ADJUNCTO SUBJO ADV OBJ1-0)
(OBJO AUX0 ADJUNCTO SUBJO ADV VERBO)

(OBJ1-0 AUX0 ADJUNCTO SUBJO VERBO OBJ2-0)
(OBJ2-0 AUXU ADJUNCTO SUBJO VERBO OBJ1-0)
(OBJ1-0 AUX0 ADJUNCTO SUBJO ADV VERBO OBJ2-0)
(OBJ2-0 AUX0 ADJUNCTO SUBJO ADV VERBO OBJ1-0)
(OBJ1-0 VERBO SUBJ0 ADV ORJ2-0)

(OBJ2-0 VERBO SUBJO ADV OBJ1-0)

(OBJO AUX0 SUBJO ADV VERBO)

(OBJ1-0 AUX0 SUBJO0 VERBO OBJ2-0)

(OBJ2-0 AUX0 SUBJO VERBO OBJ1-0)

(OBJ1-0 AUX0 SUBJO ADV VERBO OBJ2-0)

(OBJ2-0 AUX0 SUBJO ADV VERBO OBJ1-0)
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16 no no yes y/n y/n yes (OBJ1-0 ADJUNCTO SUBJO ORJ2-0 ADV VERBO)
(OBJ2~-0 ADJUNCTO SUBRJO OBJ1-0 ADV VERBO)
(OBJO ADJUNCTO SUBJO VERBO ADV AUXO0)

(OBJ1-0 ADJUNCTO SUBJ0 OBJ2-0 VERBO ALTX0)
(OBJ2-0 ADJUNCTO SUBJ0 OBJ1-0 VERBO AUX0)
(OBJ1-0 ADJUNCTO SUBJ0 OBJ2-0 VERBO ADV AUXO)
(OBJ2-0 ADJUNCTO SUBJO OBJ1-0 VERBO ADV AUX0)
(OBJ1-0 SURJ0 OBJ2-0 ADV VERBO)

(OBJ2-0 SUBJ0 OBJ1-0 ADV VERBO)

(OBJO SUBJO VERBO ADV AUX0)

(OBJ1-0 SUBJ0 OBJ2-0 VERBO AUXO0)

(OBJ2-0 SUBJO OBJ1-0 VERBO AUXO0)

(OBT1-0 SUBJO OBJ2-0 VERBO ADV AUXO0)

(OBJ2-0 SUBJO OBJ1-0 VERBO ADV AUXO0)

17 no no y/n yes no no NONE
18 no no y/n y/n yes no NONE
19 no no y/n no no  no  (ADJUNCTO SUBJO OBJO VERBO ADV)

(ADJUNCTO SUBJC OBJ2-0 OBJ1-0 VERBO ADV)
(SUBJO OBJO VERBO ADV)
(SUBJO OBJ2-0 ORJ1-U VERBO ADV)

20 no no no y/n y/n yes (ADJUNCTC VERBO SUBJO OBJO ADV)
(ADJUNCTO VERBO SUBJO OBJ2-0 OBJ1-0)
{OBJ1-0 VERBO ADJUNCTO SUBJO OBJ2-0 ADV)
(OBJ2-0 VERBO ADJUNCTC SUBJO OBJ1-0 ADV)
(ADJUNCTO VERBO SUBJO OBJ2-0 OBJ1-0 ADV)
(ADJUNCTO AUX0 SUBJO OBJO VERBO)
(OBJO AUX0 ADJUNCTO SUBJO VERBO ADV)
(ADJUNCTO AUX0 SUBJO OBJO VERBO ADV)
{OBJ1-0 AUX0 ADJUNCTO SUBJO OBJ2-0 VERBO)
(OBJ2-0 AUX0 ADJUNCTO SUBJO OBJ1-0 VERBO)
(ADJUNCTO AUXO SUBJ0 OBJ2-0 OBJ1-0 VERBO)
(OBJ1-0 AUX0 ADJUNCTO SUBJO OBJ2-0 VERBO ADV)
(OBJ2-0 AUX0 ADJUNCTO SUBJO OBJ1-0 VERBO ADV)
(ADJUNCTO AUX0 SUBJO OBJ2-0 OBJ1-0 VERBO ADV)
{OBJ1-0 VERBO SUBJO OBJ2-0 ADV)
(OBJ2-0 VERBO SUBJ0 OBJ1-0 ADV)
(OBJO AUXC SUBJO VERBO ADV)
(OBJ1-0 AUX0 SUBJO OBJ2-0 VEREO)
(OBJ2-0 AUX0 SUBJC OBJ1-0 VERBO)
(OBJ1-0 AUX0 SUBJO OBJ2-0 VERBO ADV)
(OBJ2-0 AUX0 SUBJO OBJ1-0 VERBO ADV)

For groups 2, 3, 17 and 18, however, there is a problem for the OPL learner. It turns out
that the languages in groups 2 and 3 are all also weakly equivalent. So too, are the languages in
groups 17 and 18. However, neither of these larger groupings constitutes a natural class. The

focus on unique strings is clearly not the problem because, by definition of weak equivalence,

218



there is no evidence at all to tell apart the languages in these unnatural groupings.
Syntactically, the reason that these groupings arise is that for certain configurations of the
spec-final and comp-final parameters, there is no possible way for any element to intervene
between the A and T positions. For example in the base order shown in (6.4.2), nothing

intervenes between A and T in the linear order.

(6.4.2) cp
Spec-C{\C'
N
C TP+
AdjunctSite TP
T  SpecTP
N
T AP
o speap
N
A VP
=~

In these cases if the language is -V2, it will be impossible to generate strings that would
indicate whether verbal material had moved to A or, instead, to T. On the other hand, in these
same cases, the adverbs on the edge of the VP provide a way detecting whether the verb has, in
fact, left the VP. Therefore, languages, of this type, that are +V-fronting and +V-to-Agr, +V-
fronting and ~V-to-Agr, or ~V-fronting and +V-to-Agr will all be weakly equivalent. However,
they will be distinct from the corresponding -V-fronting and —-V-to-Agr grammar. Such a non-
natural grouping of 3 weak equivalents does not allow for any sort of final arbitrary setting of

parameters because one of the languages in the remaining subspace is not capable of generating
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the target language. The OLFO learner, in principle and independent of any details of the
parser, will be able to narrow things down to this point, but no further.

If further development of the space does not eliminate such non-natural groupings of
weak equivalents, then the OLFO might be forced to supplement its learning routine by doing
something undesirable like what Dresher’s cue-based algorithm for the metrical phonological
system did at the end of several learning paths—instantiate and test all the remaining
possibilities. Alternatively, the learner might perform some sort of error-driven random walk
through the subspace. As is clear from previous discussion, neither of these possibilities is
attractive if the non-natural groupings of weak equivalents encompass many languages.
Extending the range of possible forms in the grammars in the space might eliminate this
problem.

Gibson (p.c.) has made an observation that might lead to a device for appropriately
breaking the ties in the particular cases seen in this extended syntactic system. The class of
weakly equivalent grammars in the residual set are of the form {++, +-, -+}, while the non-
weakly equivalent grammar in the residual set is of the form --. Each parse of a sentence from
one of the weakly equivalent grammars will lead to two parses supporting the positive value of
each parameter and one parse supporting the negative value of each parameter. A suitably
modified learner that entered into a tie-breaking mode when it had gone for a considerable
length of time without setting any further parameters could interpret this as evidence for
setting both parameters to their positive values. This is a acceptable move to make in these

cases. Clearly, this proposal could encounter difficulties in more complex residual subspaces.
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6.5 Providing a Superparser for the Space

For the most part, this chapter has focused on the logical requirements of the OPL
proposal and treated the exhaustive mode, supergrammar parser as a “black box”. This section
will, at least tentatively, attempt to look inside.

A leading idea behind Fodor’s proposal is that it is possible to identify a parameter
value with a particular piece or set of pieces of phrase structure. Fodor’s presentation
emphasizes cases where a single piece of phrase structure is identified with a parameter value,
but this is clearly not necessary to her proposal. In fact, as I've argued, logically, it is equally
acceptable for the parameter to be identified with a set of phrase structure components that
come as an indivisible package; if a learner encounters a sentence that forces it to use one of the
phrase structure components in a designated set, they are forced to adopt the entire set. The
notion of setting a parameter to have one value or another implies that certain sets are
designated competitors; if a learner adopts one of these competitor sets, they are prohibited
from adopting any other.

Fodor (1995) does not provide any particular implementatio-  ut suggests that the
ability to superparse with all of the phrase structure components available in UG will not be
significantly more difficult than the ability to parse with an individual grammar, so as to
make the proposal tractable. The intuition seems to be that the fact that a human parser for an
individual language is capable of tractably analyzing primary linguistic data of the sort used

to acquire language, which seems to be the case, then a superparser grammar will have no
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difficulty operating in superparser mode. No explicit argument is given this effect, so I believe
it is important to give a rational reconstruction of what such an argument might look like if the

One, logically correct, but obviously flawed way to fill in Fodor’s idea would be to
have completely separate sets of phrase structure components for each grammar in the
parametric space, and to mark each rule in these sets with a full set of features corresponding to
the parameter values for that language. (This is in addition to any features that might be
needed otherwise.) These parametric features could act as the necessary “parsing chunks”. The
learner could then parse with this supergrammar, constraining parses to adopt consistent values
of the parametric features. After parsing, the learner could inspect the parses in the usual way
to see which parametric features were required of all parses. Clearly, however, this is
intractable because the number of rules in the supergrammar is now exponential in the number of
parameters in the space. If the smallest number of rules for a language is k, and there are n
parameters, then the supergrammar will contain at least k*(2") rules, while an individual
grammar would only contain at most k rules.

If it were possible to identify each phrase structure rule in the system as either
universally available, or as the reflex of a single parameter valuz, then the number of rules in
the supergrammar system would be linearly related to the number of rules in an individual
.grammar. If there are m universally available rules and n binary parameters, and if any given
parameter value had at least k; and at most k2 corresponding rules, or “phrase structure
chunks”, then the number of rules in an individual grammar would be in the range of m + n*k7
and m + n*k3.. For the supergrammar which adopts both values of each binary parameter, the

number of rules would be in the range of 2*(m + n*k7 ) and 2*(m + n*k.).
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Parsing with context-free phrase structure rules is known to be O(G2*n3), where n is the
length of the sentence to be parsed and G is a measure of the size of the grammar that can be
identified with the number of rules (see, Barton, Berwick and Ristad (1987) and the references
therein, particularly Earley (1968)). If the supergrammar contained only context-free phrase
structure rules, then since G is only roughly twice as large for the supergrammar, there would be
no differences between supergrammar and regular parsing with respect to this upper bound
measure; the constant introduced by doubling the supergrammar does not affect the order of
growth. For reasonably small G such that the “constants” of the human mind allowed parsing
with an arbitrary context-free grammar to work simply virtue of context-freeness, then, the
supergrammar scheme would also be expected to work, since it ony roughly doubles the size of
the grammar.

However, it is highly unlikely that, if the grammar is represented in terms of some
system of phrase structure rules, it is done so in terms of simple context-free rules. Typical
implementations for grammars that aim towards application to real systems use more
complicated machinery. For example, GPSG (Gazdar, Klein, Pullum and Sag (1985)) rules,
provide, among other things, a mechanism for specifying features on categories in phrase
structure rules and enforcing cross-categorial consistency between these features throughout a
tree. This allows, for example, facts about subject/verb agreement to be captured without
separate VP expansions for each case in a verbal paradigm. Although, they allow for more
concise grammatical development, such systems can be shown to be weakly equivalent to
systems that use only simple context-free rules. However, the proof of this equivalence depends

on explicitly “blowing” up the GPSG system and providing phrase structure rules corresponding
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to all possible combinations of the feature values for a given rule. As a result, the G contribution
of such a system depends exponentially on the number of features in a grammar. Therefore, the
fact that a parsing scheme is dependent only on G2 is no consolation in a system with a large
inventory of features.

One consequence of this line of argument is that parsing with even a single grammar
from the class that does this type of feature checking is not likely to be tractable solely in
virtue of its adherence to a formalism like GPSG. In order for a grammatical system that
employs such a formalism to be successful, it must embody additional constraints that allow it
to stay far below the upper bound results established for the grammatical framework as a
whole (except, perhaps, for cases where human parsing breaks down). Therefore, in such a
system, it is no longer possible to get an argument for the tractability of superparsing solely on
the basis of grammar size and the assumption that parsing with an individual grammar is
tractable. Moreover, the upper bound on grammar size that applies in supergrammar mode could
be even worse if some constant number of additional features were required per parameter solely
in order to get rules to interact appropriately for purposes of superparsing. This could happen if,
as was necessary in our test system, some constant number of additional features were required
per parameter solely to block incompatible parameter values, or otherwise get structural
components to interact appropriately for the purposes of superparsing. This would mean that
the number of features, which contributes to exponential growth in the equivalent context-free
phrase structure grammar, would grow with the number of parameters in the space. This is
clearly undesirable if an upper bound of O(G2"n3) were meant to provide any assurances.

To see how such a situation might arise consider the set of phase structure rules that

Bertolo'and I have developed for the syntactic space described in Section 6.2. They work in
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conjunction with an extended chart parser like the one that Gazdar and Mellish (1989)
implement to allow feature unification, and they aim to satisfy the design requirements of
having each rule express at most a single parameter value. Therefore, if a learner is forced to
use a rule particular to a parameter in the course of parsing, it has evidence for fixing certain
parameters, and thereby eliminating certain phrase structure rules from further consideration.
The supergrammar, shown in the Appendix, employs a number of features that the parser, via
the mechanism of feature checking, uses to keep track of what elements have moved from their
base positions and enforce the appropriate cooccurrence restrictions (for example, if the verb
has moved to C, it shouldn’t also occur in its base position). These would be required within any
given grammar that needed to enforce such restrictions. It >, however, uses several features
to enforce the consistency of parameter setting. For example, if a parse uses one phrase structure
rule that requires comp-first, all rules in the parse must be consistent with comp-first. The
alternative is to allow the learner using the superparser to build impossible parses that no
speaker of a given human language would be able to construct. As noted above, Fodor is
explicitly willing to entertain the possibility that this does in fact occur; the learner simply
would not be able to learn when an impossible parse “competed against” a unique humanly
possible parse. In practice, this seemed like an unworkable scheme to us. In the current space, as
shown above, it is impossible to get things to work. The need to include these additional
mechanisms introduces complexity into the parsing process that is motivated solely on the
grounds of making the OPL approach workable.

I'am currently viewing the construction of this parser as a sort of test of the concept of

OPL learners and do not have a strong commitment to this being the correct way to go in
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parsing.47 It may well be possible to establish that feasibility of superparsing in exhaustive
mode is a side effect of the feasibility of parsing with an individual grammar, but I do not
believe that this has not been done yet. For the OPL approach to work, however, the “black
box” of the parser must be developed in such a way that this entailment holds.

Of course, these possible worst case results for parsing complexity that I have
considered do not have anything to say about whether, given the content of the constraints
embedded in UG in a formalism such as the one discussed above, parsing or superparsing leads to
intractability. Adopting the OPL hypothesis requires a concomitant adoption of the belief that
for the particular linguistic systems encoded in UG, a logically sufficient set of cues can be
tractably analyzed by a learner operating in superparser mode. Moreover, these cues must be
readily available among the types of inputs that children receive. Whether this is true,

remains to be seen.

47 One particular aesthetic improvement this system could use might involve enriching the
feature system and recasting the rules in X-bar format, so that there really could be a single
parsing structure for all parameter values.

226



Chapter 7

Conclusion

Clearly, much remains to be discovered about the algorithms that human learners
might use for natural language parameter setting, and the final answer to this question may
ultimately need to await a more cc’>mplete specification of the parametric systems that underlie
human linguistic competence. This thesis has provided a step towards answering this question
by indicating some general properties of parametric systems that will have an impact of the
success of a variety of algorithms. Moreover, application of these algorithms to simplified
parametric models provides concrete examples of the type of situations that might confront
various proposals.

In Chapter 3, analysis of the cue-based algorithms for parameter setting pointed to
their desirable property of deductive narrowing. A parametric cue-based learner will make a
very limited number of hypothesis changes during the course of acquisition. Potential
difficulties arise, however, if either the amount of information that the learner needs to encode
in UG or the amount of computation that goes into a learning step depends linearly on the size of
the parameter space, or otherwise place empirically unsupportable demands on the learner’s
resources. Nothing in the general outline of the cue-based approach guarantees that such
problems will be avoided. Analysis of Dresher’s (1994) system for acquisition of a variant of
the Idsardi (1992) and Halle and Idsardi (1994) mode! of stress assignment indicated one
possible way in which large parameter spaces could prove problematic. The final parameter

setting steps in the system essentially require to initiate a search through the remaining
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candidate grammars. In a small space, such as the one considered, it is hard to argue
definitively against such a step. However, if the “residual” subspaces become larger as the cue-
based approach is scaled up to larger systems, such exhaustive searches will not be possible.

In Chapter 4, the in-the-limit behavior of the Triggering Learning Algorithm was
discussed. The version of the Halle and Idsardi metrical phonological system implemented
there provided an interesting exarr;ple of the type of interaction between parameters that could
prove problematic for the TLA approach. Certain clusters of parameter values in the original
system were capable of forcing forms to have particular properties even if one of the parameter
values changed. In particular, there were candidate grammars in the space that invariantly
required stress on one edge of the word. Since, for some of these grammars, all neighboring
grammars also enforced the same requirement, the learner was unable of acquiring any target
languages where the requirement did not hold. The elimination of one class of parametric
options greatly simplified the set of local maxima in the system and allowed for a simple
maturational solution.

Several reasonable strategies exist for accommodating local maxima in-the-limit
without fundamentally changing the desirable cognitive parsimony of the TLA. This thesis
has suggested that a key issue for the TLA is whether or not the learner, when exposed to input
from a target language, is biased to move in the direction of a grammar capable of generating
the target. Results from Gibson (1995) and the analyses performed in Chapter 5 for the TLA in
the metrical phonological space developed in Chapter 4 provide initial examples of spaces
where such biases exist.

Chapter 6 investigated the application of OPL learners that, like parametric cue-

based learners, deductively narrow the set of possible parameter values with each hypothesis

228



change. For an extended syntactic space of 6 parameters, certain logical difficulties arose
because of clusters of grammars that generated weakly equivalent languages. Whether or not
such patterns will arise in larger parameteric spaces and whether or not the superparsing

device that this approach requires will be tractable in such spaces remain open questions.

229



Appendix: Phrase Structure Rules from Chapter 6

The system uses a very simple set of atomic features. It could be made more
concise by using complex features. Conceptually, the system passes two types of
features down through the tree: (1) features about what movable elements occur above
and (2) features designed to enforce parametric consistency in a parse.

AP categories simply pass information about verb and aux movement on to the X-
bar categories that they immediately dominate. Similarly, X-bar categories pass simply
pass information about NP and adjunct movement on to the XPs that they immediately
deminatce.

When, an XP category receives feature information about NP and adjunct movement,
it routes that information to spec-XP, which does two things: (1) uses these features
to determine what can be realized in that spec-XP position and (2) passes down
appropriate features, which reflect what NPs and adjuncts have been realized either
above or in spec-XP, to X-bar.

X-bar categories, similarly, route features to their heads, which do two
things: (1) uses these features to determine what can be realized in that head
position, (2) passes down appropriate features, which reflect what verbs and
auxiliaries have been realized in or above the head.

(setq rules
‘A
;i; CP: Universal
{(Rule (XP -> spec-X X-bar)
;; Category requirements
(XP cat) = CP
(spec-X cat) = spec-C
{X-bar cat) = C-bar
;; Enforcing base-order consistency
(XP spec-head) initial
(XP comp-head) (X-bar comp-head)
(XP spec-head) (X-bar spec-head)
;; Message passing about XPs: In to spec
;i (XP obj~blocked) = (spec-X obj-blocked)
;; (XP objl-blocked) = (spec-X objl-blocked)
;i (XP obj2-blocked) = (spec-X obj2-blocked)
;i (XP subj-blocked) = (spec-X subj-blocked)
;; Message passing about XPs: Out of spec
(spec-X block-adjunct) = (X-bar adjunct-blocked)
(spec-X block-obj) = (X-bar obj-blocked)
(spec-X block-objl) (X-bar objl-blocked)
(spec-X block-obj2) (X-bar obj2-blocked)
(spec-X block-subj) (X¥-bar subj-blocked)
(spec-X V2) = (X-bar V2)
i; Message passing about X0s: Pass through
(XP higher-aux) = (X-bar higher-aux)
(XP higher-verb) = (X-bar higher-verb)
)

1)
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;; TP: spec-initial

((Rule (XP -> spec-X X-bar)
(XP adjunct-blocked) = 0
;; Category requirements
(XP cat) = TP
(spec-X cat) = spec-T
(X-bar cat) = T-bar
;i Enforcing base-order consistency
(XP spec-head) initial
(XP comp-head) (X-bar comp-head)
(XP spec-head) (X-bar spec-head)
;i Message passing about XPs: In to spec
(XP obj-blocked) = (spec-X obj-blocked)
(XP objl-blocked) (spec-X objl-blocked)
(XP obj2-blocked) (spec-X obj2-blocked)
(XP subj-blocked) (spec-X subj-blocked)
;; Message passing about XPs: Out of spec
(spec-X block-obj) = (X-bar obj-blocked)
(spec-X block-objl) (X-bar objl-blocked)
(spec-X block-obj2) (X-bar obj2-blocked)
(spec-X block-subj) (X-bar subj-blocked)
;; Message passing about X0s: Pass through
(XP higher-aux) = (X-bar higher-aux)
(XP higher-verb) = (X-bar higher-verb)
)

2)

;; TP: spec-final

((Rule (XP -> X-bar spec-X)
(XP adjunct-blocked) = 0
;i Category requirements
(XP cat) = TP
{spec-X cat) = spec-T
(X-bar cat) = T-bar
;; Enforcing base-order consistency
{XP spec-head) = final
(XP comp-head) (X-bar comp-head)
(XP spec-head) {X-bar spec-head)
;; Message passing about XPs: In to spec
(XP obj-blocked) = (spec-X obj-blocked)
(XP objl-blocked) (spec-X objl-blocked)
(XP obj2-blocked) (spec-X obj2-blocked)
(XP subj-blocked) (spec-X subj-blocked)
;i Message passing about XPs: Out of spec
(spec-X block-obj) = (X-bar obj-blocked)
(spec-X block-objl) {X-bar objl-blocked)
(spec-X block-obj2) (X-bar obj2-blocked)
(spec-X block-subj) (X-bar subj-~-blocked)
;; Message passing about X0s: Pass through
(XP higher-aux) = (X-bar higher-aux)
(XP higher-verb) = (X-bar higher-verb)
)

3)
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;; AP: spec-initial
{(Rule (XP -> spec-X X-bar)
;; Category requirements
{XP cat) = AP
(spec-X cat) = spec-A
(X-bar cat) = A-bar
;; Enforcing base-order consistency
(XP spec-head) initial
{(XP comp-head) (X-bar comp-head)
(XP spec-head) (X-bar spec-head)
;; Message passing about XPs: In to spec
(XP obj-blocked) = (spec-X obj-blocked)
(XP objl-blocked) = (spec-X objl-blocked)
(XP_obj2-blocked) = (spec=X obj2-blocked)

(XP subj-blocked) = (spec-X subj-blocked)
;i Message passing about XPs: Out of spec
(spec-X block-obj) = (X-bar obj-blocked)
(spec-X block-objl) (X-bar objl-blocked)
(spec-X block-obj2) (X-bar obj2-blocked)
(spec-X block-subj) (X-bar subj-blocked)
;; Message passing about X0s: Pass through
(XP higher-aux) = (X-bar higher-aux)

{XP higher-verb) = (X-bar higher-verb)

)

4)

;: AP: spec-final

((Rule (XP -> X-bar spec-X)
;; Category requirements
(XP cat) = AP
(spec-X cat) = spec-A
(X-bar cat) = A-bar
;; Enforcing base-order consistency
(XP spec-head) final
(XP comp-head) (X-bar comp-head)
(XP spec-head) (X-bar spec-head)
;i Message passing about XPs: In to spec
(XP obj-blocked) = (spec-X obj-blocked)
(XP objl-blocked) (spec-X objl-blocked)
(XP obj2-blocked) (spec-X obj2-blocked)
(XP subj-blocked) {spec-X subj-bloc!:ed)
;i Message passing about XPs: Out of spec
(spec-X block-obj) = (X-bar obj-blocked)
(spec-X block-objl) (X-bar objl-blocked)
(spec-X block-obj2) {(X-bar obj2-blocked)
(spec-X block-subj) {X-bar subj-blocked)
;; Message passing about X0s: Pass through
(XP higher-aux) = (X-bar higher-aux)
(XP higher-verb) = (X-bar higher-verb)
)

5)

;; spec~-C: +V2 adjunct
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({Rule (spec -> occupant)
;; Category requirements
(spec cat) = spec-C
(occupant cat) = adjunct
;; Messages sent down the tree
(spec V2) =1
(spec block-adjunct) = 1
(spec block-obj) = 0
(spec block-objl)
{spec block-obj2)
(spec block-subj)
)

nonon
oo

6}

;i spec-C: +V2 obj

((Rule (spec -> occupant)
;; Category requirements
(spec cat) = spec-C
(occupant cat) = obj
;: Messages sent down the tree
(spec V2) =1
(spec block-adjunct) = 0
(spec block-obj) = 1
(spec block-objl)
(spec block-obj2)
(spec block-subj)
)

0
0
0
7)

;; spec~-C: +V2 objl

((Rule (spec -> occupant)
;; Category requiremrents
(spec cat) = spec-C
(occupant cat) = objl
;; Messages sent down the tree
(spec V2) =1
(spec block-adjunct) = 0
(spec block-obj) = 0
(spec block-objl)
(spec block-obj2)
(spec block-subj)
)

1
0
0

8)

i; spec-C: +V2 obj2
((Rule (spec -> occupant)
;; Category requirements
(spec cat) = spec-C
(occupant cat) = obj2
;; Messages sent down the tree
(spec V2) =1
(spec block-adjunct) = 0
(spec block-obj) = 0

{spec block-objl) = 0
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(spec block-obj2)
(spec block-subj)
)

Hnon
oy

9)

;i spec-C: +V2 subjl

((Rule (spec -> occupant)
i; Category requirements
(spec cat) = spec-C
{occupant cat) = subj
;; Messages sent down the tree
(spec V2) =1
{spec block-adjunct) = 0
(spec rlock-obj) = 0
(spec block-objl)
(spec block-cbj2)
(spec block-subj)
)

Wwonon
[l = =]

10)

;: spec-C: ~V2
((Rule (spec ->)
;; Category requirements

(spec cat) = spec-C
;: Messages sent down the tree
(spec V2) = 0
(spec block-adjunct) = 0
(spec block-obj) = 0
{spec block-cbjl)
{spec block-obj2)
(spec block-subj)
)

0
0
0
11)

i ; spec-T: Universal

({Rule (spec ->)
;; Category requirements
(spec cat) = spec-T
;i Messages passed along
(spec obj-blocked) = (spec block-okj)
(spec objl-blocked) (spec block-objl)
(spec obj2-blocked) (spec block-obj?)
(spec subj-blocked) (spec block-sub),
)

12)

;; spec-A: -V2
((Rule (spec -> occupant)
;; Category requirements
(spec cat) = spec-A
(occupant cat) = subj
;; Messages received
(spec subj-blocked) = 0
;; Messages sent down the tree
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{spec-block-subj} =1
{ ubd) =1

13)

;; Messages passed-along

{spec obj-blocked) = (spec block-obj)
(spec objl-blocked) (spec block-objl)
(spec obj2-blocked) (spec block-obj2)
)

;i spec-A: +V2
({Rule (spec ->)

14)

;; Category requirements

(spec cat) = spec-A

;; Messages received

(spec subj-blocked) = 1

i i Messages sent down the tree

{spec block-subj) = 1

;; Messages passed-along

{spec obj-blocked) = (spec block-obj)
(spec objl-blocked) (spec Elock-objl)
(spec obj2-blocked) (spec block-obj2)
)

;; C-bar -> C TP: C-first
((Rule (X-bar -> X YP)

15)

(X-bar V2) = (X V2)

;: Category requirements

(X-bar cat) = C-bar

(X cat) = C

(YP cat) = TP

;i Message passing about XPs: Pass through
(X~-bar adjunct-blocked) = (YP adjunct-blocked)
(X-bar obj~blocked) = (YP obj-blocked)
(X-bar objl-blocked) (YP objl-blocked)
(X-bar obj2-blocked) (YP obj2-blocked)
(X-bar subj-blocked) (YP subj-blocked)

;; Message passing about X0s: In to X
(X-bar higher-aux) = (X higher-aux)

(X-bar higher-verb) = (X higher-verb)

; i Message passing about X0s: Out of X

{X indicates-higher-aux) = (YP higher-aux)
(X indicates-higher-verb) = (YP higher-verb)
)

;i C-bar -> C TP: C-final
{ (Rule (X-bar -> YP X)

(X-bar V2) = (X V2)

;i Category requirements

(X-kar cat) = C-bar

(X cat) = C

(YP cat) = TP

;; Message passing about XPs: Pass throuch
(X-bar adjunct-blocked) = {YP adjunct-blocked)
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(X-bar obj-blocked) = (YP obj-blocked)
(X-bar objl-blocked) (YP objl-blocked)
(X-bar obj2-blocked) (YP obj2-blocked)
(X-bar subj-blocked) (YP subj-blocked)
i Message passing about X0s: In to X
(X-bar higher-aux) = (X higher-aux)

(X-bar higher-verb) = (X higher-verb)

;; Message passing about X0s: Out of X

(X indicates-higher-aux) = (YP higher-aux)
(X indicates-higher-verb) = (YP higher-verb)
)

16)

i; C-bar -> C +TP: C-first

((Rule (X-bar -> X YP)
(X-bar adjunct-blocked) = (YP adjunct-blocked)
(X-bar V2) = (X V2)
;; Category requirements
(X-bar cat) = C-bar
(X cat) = C
(YP cat) = +TP
;i Message passing about XPs: Pass through
(X-bar obj-blocked) = (YP obj-blocked)
(X-bar objl-blocked) = (YP objl-blocked)
(X-bar obj2-blocked) = (YP obj2-blocked)
(X-bar subj-blocked) = (YP subj-blocked)
;; Message passing about X0s: In to X
(X-bar higher-aux) = (X higher-aux)
(X-bar higher-verb) = (X higher-verb)
;; Message passing about X0s: Out of X
(X indicates-higher-aux) = (YP higher-aux)
(X indicates-higher-verb) = (YP higher-verb)
)

17)

;; C-bar -> C +TP: C-final
((Rule (X-bar -> YP X)
(X-bar adjunct-blocked) = (YP adjunct-blocked)
(X-bar V2) = (X V2)
;; Category requirements
(X~-bar cat) = C-bar
(X cat) = C

(YP cat) = +TP

;i Message passing about XPs: Pass through
(X-bar obj-blocked) = (YP obj-blocked)
(X-bar objl-blocked) (YP objl-blocked)
(X-bar obj2-blocked) (YP obj2-blocked)
(X-bar subj-blocked) (YP sunj-blocked)

;; Message passing about X0s: In to X
(X-bar higher-aux) = (X higher-aux)

(X-bar higher-verb) = (X higher-verb)

i Message passing about X0s: Out of X

(X indicates-higher-aux) = (YP higher-aux)
(X indicates-higher-verb) = (YP higher-verb)
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18)

;:; +TP: Universal
((Rule (+TP -> AdjunctP TP)
(+TP adjunct-blocked) = (AdjunctP adjunct-blocked)
;i Category requirements
(+TP cat) = +TP
(AdjunctP cat) = AdjunctP
(TP cat) = TP
;i Enforcing base-order consistency
(+TP comp-head) = (TP comp-head)
(+TP spec-head) = (TP spec-head)
;i Message passing about XPs: Pass through
(+TP obj-blocked) = (TP obj-blocked)
(+TP objl-blocked) (TP objl-blocked)
(+TP obj2-blocked) (TP obj2-blocked)
(+TP subj-blocked) = (TP subj-blocked)
;; Message passing about X0s: In to X
(+TP higher-aux) = (TP higher-aux)
(+TP higher-verb) = (TP higher-verb)
)

i on

19)

;; AdjunctP -> adjunct: Universal

((Rule (AdjunctP -> adjunct)
(AdjunctP cat) = AdjunctP
(adjunct cat) = adjunct

(AdjunctP adjunct-blocked) = 0
)

20)

;; AdjunctP -> : Universal

((Rule (Adjunctp ->)
(AdjunctP cat) = AdjunctP
(AdjunctP adjunct-blocked) = 1

)
21)

;7 T-bar: head-initial

({Rule (X-bar -> X YP)
i Category requirements
(X-par cat) = T-bar
(Xcat) =T
(YP cat) = AP
;; Enforcing base-order consistency
(X-bar comp-head) initial
(X-bar comp-head) (YP comp-head)
(X-bar spec-head) (YP spec-head)
;; Message passing about XPs: Pass through
(X-bar obj-blocked) = (YP obj-blocked)
(X-bar objl-blocked) (YP objl-blocked)
(X-bar obj2-blocked) (YP obj2-hlocked)
(X-bar subj-blocked) (YP subj-blocked)
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;i Message passing about X0s: In to X
(X-bar higher-aux) = (X higher-aux)
(X-bar higher-verb) = (X higher-verb)
;; Message passing about X0s: Out of X
(X indicates-higher-aux) = (YP higher-aux)
(X indicates-higher-verb) = (YP higher-verb)
)

22)

;; T-bar: head-final

((Rule (X-bar -> YP X)
;; Category requirements
(X-bar cat) = T-bar
(Xcat) =T
(YP cat) = AP
;; Enforcing base-order consistency
(X-bar comp-head) final
(X-bar comp-head) (YP comp-head)
(X-bar spec-head) (YP spec-head)
;i Message passing about XPs: Pass through
(X-bar obj-blocked) = (YP obj-blocked)
(X-bar objl-blocked) (YP objl-blocked)
(X-bar obj2-blocked) (YP obj2-blocked)
(X-bar subj-blocked) (YP subj-blocked)
;; Message passing about X0s: In to X
(X-bar higher-aux) = (X higher-aux)
(X-bar higher-verb) = (X higher-verb)
i; Message passing about X0s: Out of X
(X indicates-higher-aux) = (YP higher-aux)
(X indicates-higher-verb) = (YP higher-verb)
)

23)

;; A-bar: head-initial
({Rule (X-bar -> X YP)
;; Category requirements
(X-bar cat) = A-bar
(X cat) = A
(YP cat) = VP
;i Enforcing base-order consistency
(X-bar comp-head) initial
(X-bar comp-head) (YP comp-head)
(X-bar spec-head) (YP spec-head)
;; Message passing about XPs: Pass through
(X-bar obj-blocked) = (YP obj-blocked)

=1 - - 1 3\
(X ban.Leba—L-bl—eek\_u) (YP vle bluuncul

(X-bar obj2-blocked) (YP obj2-blocked)
(X-bar subj-blocked) (YP subj-blocked)

;; Message passing about X0s: In to X
(X-bar higher-aux) = (X higher-aux)

(X-bar higher-verb) = (X higher-verb)

;; Message passing about X0s: Cut of X

(X indicates-higher-aux) = (YP higher-aux)
(X indicates-higher-verb) = (YP higher-verb)



24)

;; A-bar: head-final

((Rule (X-bar -> YP X)
;; Category requirements
(X-bar cat) = A-bar
(X cat}) = A
(YP cat) = VP
i Enforcing base-order consistency
(X-bar comp-head) final
(X-bar comp-head) (YP comp-head)
(X-bar spec-head) (YP spec-head)
;; Message passing about XPs: Pass through
(X-bar obj-blocked) = (YP obj-blocked)
{(X-bar objl-blocked) (YP objl-blocked)
(X-bar obj2-blocked) (YP obj2-blocked)
(X-bar subj-blocked) (YP subj-blocked)
;: Message passing about X0s: In to X
(X-bar higher-aux) = (X higher-aux)
(X-bar higher-verb) = (X higher-verb)
;7 Message passing about X0s: Out of X
(X indicates-higher-aux) = (YP higher-aux)
(X indicates-higher-verb) = (YP higher-verb)
)

25)

;i C -> aux; +V2
H If a +V2 language has an aux in C,
ii no aux can appear below.
Y Moreover, the verb must be in V.
((Rule (head -> occupant)
;i Category requirements
{head cat) = C
(occupant cat) = aux
;; Messages required to license
(head V2) =1
;; Messages sent down the tree
{head indicates-higher-verb) = 0
{head indicates-higher-aux) = 1
)
26)

i; C => verb; +V2
i: If a +V2 language has a verb in C,
i: no aux or verb can appear below.
((Rule (head -> occupant)

;i Category requirements

(head cat) = C

(occupant cat) = verb

;; Messages required to license

(head V2) =1

;; Messages sent down the tree

(head indicates-higher-verb) = 1
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27)

(head indicates-higher-aux) = 0

ii C —> ; =V2.

(}Rule (head ->)

28)

A -V2 language has an empty C.

;i Category requirements

(head cat) = C

;i Messages required to license
(head V2) =0

;; Messages sent down the tree
(head indicates-higher-verb) = 0
(head indicates-higher-aux) = 0
)

;; T -> aux; +V-front.

1
i
i

If neither an aux nor a verb appear

higher in the tree, then T could
potentially be realized as an aux.
for +v-front languages. If so, no
aux can appear in A.

Moreover, a verb must appear in V.

((Rule (head -> occupant)

29)

;; Category requirements

(head cat) = T

(occupant cat) = aux

;; Messages required to license
(head higher-verb) = 0

(head higher-aux) = 0

;i Messages sent down the tree
(head indicates-higher-verb) = 0
(head indicates-higher-aux) = 1
)

;i T -> verb; +V-front.

Vi

If neither an aux nor a verb appear

higher in the tree, then T could
potentially be realized as a verb
for +V-front languages. If so, no
verb ce.1 appear in A, or V.

Moreover, no aux can appear in A,

Rule (head -> occupant)

;; Category requirements

(head cat) =T

(occupant cat) = verb

;; Messages required to license
(head higher-verb) = 0

{head higher-aux) = 0
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30)

;; Messages sent down the tree
(head indicates-higher-verb) = 1
(head indicates-higher-aux) = 0
)

;i T -> ; Universal. If a verb appears higher in the tree

..
rr

((Rule (head -> )

31)

there is no possible movement to T.
No verb can appear below in V.

;i Category requirements

(head cat) = T

;; Messages required to license
(head higher-verb) = 1

(head higher-aux) = 0 ;; redundant
;i Messages sent down the tree
(head indicates-higher-verb) = 1
{head indicates-higher-aux) = 0

)

77 T -> ; Universal. If an aux appears higher in the tree

ii

ii

}}Rule (head -> )

32)

i
ii
s

e we Se owe s

’
’
'
’
1
.
‘
’
'

’
’
!
..
’
(

there is no possible movement to T.
A verb must appear below in V, an
aux can not appear below in A.

;; Category requirements

(head cat) = T

;i Messages required to license
(head higher-verb) = 0 ;; redundant
(head higher-aux) = 1

;i Messages sent down the tree
(head indicates-higher-verb) =
(head indicates-higher-aux) =
)

0
1

-> ; -V-front. This will only get incorporated into
a grammar when the parse does not
allow the other two universal
alternatives.

Therefore it will only get used by
languages that are -V2.

Languages that are +V2 will always
be able to use one of the
alternatives.

If the string cnontains an aux, it
still has a chance of being realized
below in A.

Rule (head -> )

;; Category requirements
(head cat) = T
;; Messages sent down the tree
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(head indicates-higher-verb) = 0
(head indicates-higher-aux) = 0
)

33)

;i A -> aux; Universal
i: If neither an aux nor a verb appear
i higher in the tree, then A could
i: potentially be realized as an aux.
; If so, a verb must appear in V.
H This rule can never apply in
languages that are either +V2 or
+V-front because there will be
either a verb or an aux higher in
; the tree.
(Rule (head ~-> occupant)

;; Category requirements

(head cat) = A

(occupant cat) = aux

;; Messages required to license

(head higher-verb) = 0

(head higher-aux) = 0

;i Messages sent down the tree

(head indicates-higher-verb) = 0

)

~. o~
v N we

— e~

34)

;7 A -> verb; +V-to-Agr.

i: If neither an aux nor a verb appear
i higher in the tree, then A could

HH potentially be realized as a verb
ii for +V-to-Agr languages. If so, no
Y verb can appear in V.

((Rule (head ~-> occupant)
;; Category requirements
(head cat) = A
(occupant cat) = verb
;; Messages required to license
(head higher-verb) = 0
(head higher-aux) = 0
;; Messages sent down the tree
(head indicates-higher-verb) = 1
)

35)

;7 A -> ; Universal. If a verb appears higher in the tree
I there is no possible movement to A.
H No verb can appear below in V.
((Rule (head -> )

;; Category requirements

(head cat) = A
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36)

;; Messages required to license
(head higher-verb) = 1

(head higher-aux) = 0 ;; redundant
;; Messages sent down the tree
(head indicates-higher-verb) = 1

)

;i A -> ; Universal. If an aux appears higher in the tree

.o
1

‘(I(Rule (head -> )

37)

.
ii
.
i
ii
..
i
;i
e
..
Vi
..
1
ii
..
s
ii
.
1’
HY)
.
s
ii

38)

there is no possible movement to A.
A verb must appear below in V.

;; Category requirements

(head cat) = A

i; Messages required to license
(head higher-verb) = 0 ;; redundant
(head higher-aux) = 1

;i; Messages sent down the tree
(head indicates-higher-verb) = 0

)

-> ; -V-to-Agr. This will only get incorporated into
a grammar when the parse does not
allow the other two alternatives.
Therefore it will only get used by
languages that are -V2 and -V-front.
Languages that are +V2 or +V-front
will always be able to use one of
the alternatives.

In the case where the sentence
contains an aux for -V2 and -V-front
languages, this is the only passible
slot for an aux, so the rule will be
blocked by the need to incorporate
all of the lexical material from a
string.

Rule (head -> )

;; Category requirements

{head cat) = A

;; Messages sent down the tree
(head indicates-higher-verb) = 0
)

i; VPs: All are either universal of comp-final/comp-
;i initial as indicated.
((Rule (VP -> V)

(VP cat) = VP

(V cat) =V

(VP higher-verb) = (
(VP obj-blocked) = 0
(VP objl-blocked) = 0

V higher-verb)
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(VP obj2-blocked) = 0
)
39)

({(Rule (VP -> V adv)
(VP cat) = vp
(V cat) = Vv
(adv cat) = adv
(VP higher-verb)
(VP obj-blocked)
(VP cbjl-blocked) =
(VP obj2-blocked) =
)

{V higher-verb)
0

0
0
40)

((Rule (VP -> adv V)
(VP cat) = VP
(Vcat) =V
(adv cat) = adv
(VP higher-verb) = (V higher-verb)
(VP obj-blocked) = 0
(VP objl-blocked) =
(VP obj2-blocked) =
)

0
0
41)

;: VP: head-initial

((Rule (VP -> V NP)
(VP comp-head) = initial
(VP cat) = VP
(V cat) =V
(NP cat) = NP
(VP higher-verb) = (
(VP objl-blocked) =
(VP obj2-blocked) =
(VP obj-blocked) = (NP obj-blocked)
)

V higher-verb)
0
0

42)

;; VP: head-final

((Rule (VP -> NP V)
(VP comp-head) = final
(VP cat) = VP
(Vcat) =V
(NP cat) = NP
(VP higher--verb) = (
(VP objl-blocked)
(VP obj2-blocked)
(VP obj-blocked) = (
)

higher-verb)

\"
0
0
NP obj-blccked)
43)

;; VP: head-initial
{(Rule (VP -> V NP adv)
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44)

(VP comp-head) = initial
(VP cat) = VP

(Vcat) =V
(adv cat) = adv

(NP cat) = NP

(VP higher-verb) = (
(VP objl-blocked)
(VP obj2-blocked)
(VP obj-blocked) = (
)

higher-verb)

v
0
0
NP obj-blocked)

;; VP: head-final
({Rule (VP -> NP V adv)

45)

(VP comp-head) = final

(VP cat) = VP

(Vcat) =V

(adv cat) = adv

(NP cat) = NP

(VP higher-verb) = (V higher-verb)
(VP objl-blocked) 0

(VP obj2-blocked) 0

(VP obj-blocked) = (NP obj-blocked)
)

;; VP: head-initial
((Rule (VP -> adv V NP)

46)

(VP comp-head) = initial

(VP cat) = VP

(Vcat) =V

(adv cat) = adv

(NP cat) = NP ‘

(VP higher-verb) = (V higher-verb)
(VP objl-blocked) = 0

(VP obj2-blocked) = 0

(VP obj-blocked) = (NP obj-blocked)
)

;; VP: head-final
((Rule (VP -> adv NP V)

47)

(VP comp-head) = final

(VP cat) = VP

(Vcat) =V

(adv cat) = adv

(NP cat) = NP

(VP higher-verb) = (V higher-verb)
(VP objl-blocked) = 0

(VP obj2-blocked) = 0

(VP obj-blocked) = (NP obj-blocked)
)
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;; VP: head-inital
((Rule (VP -> V NP1 NP2)

48)

(VP comp-head) = initial
(VP cat) = VP

(Vcat) = Vv
(NP1 cat) = NP1
(NP2 cat) = NP2

(VP higher-verb) = (V higher-verb)
(VP obj-blocked) = 0

(VP objl-blocked)
(VP obj2-blocked)
)

(NP1 objl-blocked)
(NP2 obj2-blocked)

;i VP: head-final
((Rule (VP -> NP2 NP1 V)

49)

(VP comp-head) = final
(VP cat) = VP

(V cat) =V
(NP1 cat) = NP1
(NP2 cat) = NP2

(VP higher-verb) = (V higher-verb)
(VP obj-blocked) = 0

(VP objl-blocked) (NP1 objl-blocked)
(VP obj2-blocked) (NP2 obj2-blocked)
)

;:; VP: head-initial
({Rule (VP -> V NP1 NP2 adv)

50)

(VP comp-head) = initial
(VP cat) = VP

(Vcat) =V

(adv cat) = adv
(NP1 cat) = NP1
(NP2 cat) = NP2

(VP higher-verb) = (V higher-verb)
(VP obj-blocked) = 0

(VP objl-blocked)
(VP obj2-blocked)
)

(NP1 objl-blocked)
(NP2 obj2-blocked)

;; VP: head-final
((Rule (VP -> NP2 NP1l V adv)

(VP comp-head) = final
(VP cat) = VP

(Vcat) =V

(adv cat) = adv
(NP1 cat) = NP1
(NP2 cat) = NP2

(VP higher-verb) = (V higher-verb)
(VP obj-blocked) = 0

(VP objl-blocked) = (NP1l obj. ..tocked)

N
1N
)}




(VP obj2-blocked) = (NP2 obj2-blocked)
)
51)

;; VP: head-initial

((Rule (VP -> adv V NP1 NP2)
(VP comp-head) = initial
(VP cat) = VP

(Vcat) =V

(adv cat) = adv
(NP1 cat) = NP1
(NP2 cat) = NP2

(VP higher-verb)

(VP obj-blocked)

(VP objl-blocked)
(VP obj2-blocked)
)

(V higher-verb)

0
(NP1 objl-blocked)
(NP2 obj2-blocked)

52)

;; VP: head-final

{(Rule (VP -> adv NP2 NP1 V)
(VP comp-head) = final
(VP cat) = VP

(Vcat) =V

(adv cat) = adv
(NP1 cat) = NP1l
(NP2 cat) = NP2

(VP higher-verb) (V higher-verb)

(VP obj-blocked) 0

(VP objl-blocked) = (NP1 objl-blocked)
(VP obj2~blocked) = (NP2 obj2-blocked)
)

53)

((Rule (V ~>)
(Vcat) =V
(V higher-verb) =1
)

54)

((Rule (V -> verb)
(Vcat) =V
(verb cat) = verb
(V higher-verb) = 0
)
55)

{(Rule (NP ->)
{NP cat} = NP
(NP obj-blocked) =1
)

56)

({Rule (NP -> obj)
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57)

(NP cat) = NP
(obj cat) = obj
(NP obj-blocked)

)

({Rule (NP1 ->)

58)

(MP1 cat) = NP1

(NP1 objl-blocked)
)

({Rule (NP1l -> objl)

59)

(NP1 cat) = NP1

(objl cat) = objl
(NP1 objl-blocked)
)

((Rule (NP2 ->)

)
60)

(NP2 cat) = NP2

(NP2 obj2-blocked)

((Rule (NP2 -> obj2)

61)
)]

(NP2 cat) = NP2

(obj2 cat) = obj2
(NP2 obj2-biocked)
}

(setq lexical_rules
' ((Word (wsubj)

(Word
(Word
(Word
{Word
(Word
(Word
(wWord

))

{cat) = subj)

(wobj)

(cat) = obj)
(wobjl)

(cat) = objl)
{wobj2)

(cat) = obj2)
(wverb)

(cat) = verb)
{waux)

(cat) = aux)
(wadv)

(cat} = adv)
{wadjunct)

(cat) = adjunct)
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