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What is Ramsey-equivalent to a clique?

Jacob Fox∗ Andrey Grinshpun† Anita Liebenau‡ Yury Person§

Tibor Szabó¶

December 3, 2013

Abstract

A graph G is Ramsey for H if every two-colouring of the edges of G contains a
monochromatic copy of H. Two graphs H and H ′ are Ramsey-equivalent if every graph
G is Ramsey for H if and only if it is Ramsey for H ′. In this paper, we study the problem
of determining which graphs are Ramsey-equivalent to the complete graph Kk. A famous
theorem of Nešetřil and Rödl implies that any graph H which is Ramsey-equivalent to Kk

must contain Kk. We prove that the only connected graph which is Ramsey-equivalent to
Kk is itself. This gives a negative answer to the question of Szabó, Zumstein, and Zürcher
on whether Kk is Ramsey-equivalent to Kk ·K2, the graph on k+ 1 vertices consisting of
Kk with a pendent edge.

In fact, we prove a stronger result. A graph G is Ramsey minimal for a graph H
if it is Ramsey for H but no proper subgraph of G is Ramsey for H. Let s(H) be the
smallest minimum degree over all Ramsey minimal graphs for H. The study of s(H) was
introduced by Burr, Erdős, and Lovász, where they show that s(Kk) = (k−1)2. We prove
that s(Kk ·K2) = k − 1, and hence Kk and Kk ·K2 are not Ramsey-equivalent.

We also address the question of which non-connected graphs are Ramsey-equivalent to
Kk. Let f(k, t) be the maximum f such that the graph H = Kk + fKt, consisting of Kk

and f disjoint copies of Kt, is Ramsey-equivalent to Kk. Szabó, Zumstein, and Zürcher
gave a lower bound on f(k, t). We prove an upper bound on f(k, t) which is roughly
within a factor 2 of the lower bound.
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1 Introduction

A graph G is H-Ramsey or Ramsey for H, denoted by G → H, if any two-colouring of the
edges of G contains a monochromatic copy of H. The fact that for every graph H there is a
graph G such that G is H-Ramsey was first proved by Ramsey [10] in 1930 and rediscovered
independently by Erdős and Szekeres a few years later [6]. Ramsey theory is currently one of
the most active areas of combinatorics with connections to number theory, geometry, analysis,
logic, and computer science.

A fundamental problem in graph Ramsey theory is to understand the graphs G that are
Kk-Ramsey, where Kk denotes the complete graph on k vertices. The Ramsey number r(H)
is the minimum number of vertices of a graph G which is H-Ramsey. The most famous
question in this area is that of estimating the Ramsey number r(Kk). Classical results of
Erdős [4] and Erdős and Szekeres [6] show that 2k/2 ≤ r(Kk) ≤ 22k. While there have been
several improvements on these bounds (see, for example, [3]), despite much attention, the
constant factors in the above exponents remain the same. Given these difficulties, the field
has naturally stretched in different directions. Many foundational results were proved in the
1970s which showed the depth and breadth of graph Ramsey theory. For instance, a famous
theorem of Nešetřil and Rödl [9] states that for every graph H there is a graph G with the
same clique number as H such that G→ H.

Szabó, Zumstein, and Zürcher [11] defined two graphs H and H ′ to be Ramsey-equivalent if
for every graph G, G is H-Ramsey if and only if G is H ′-Ramsey. The result of Nešetřil and
Rödl [9] above implies that any graph H which is Ramsey-equivalent to the clique Kk must
contain a copy of Kk. In this paper, we study the problem of determining which graphs are
Ramsey-equivalent to Kk. In other words, knowing that G is Ramsey for Kk, what additional
monochromatic subgraphs must occur in any two-colouring of the edges of G?

In [11] it was conjectured that, for large enough k, the clique Kk is Ramsey-equivalent to
Kk · K2, the graph on k + 1 vertices consisting of Kk with a pendent edge. We settle this
conjecture in the negative, showing that, for all k, the graphs Kk and Kk ·K2 are not Ramsey-
equivalent. Together with the above discussion, this implies the following theorem.
Theorem 1.1. Any graph which is Ramsey-equivalent to the clique Kk must be the disjoint
union of Kk and a graph of smaller clique number.

It is therefore natural to study the following function. Let f(k, t) be the maximum f such
that Kk and Kk + f ·Kt are Ramsey-equivalent, where Kk + f ·Kt denotes the disjoint union
of a Kk and f copies of Kt. It is easy to see [11] that f(k, k) = 0 and f(k, 1) = R(Kk) − k.
For t ≤ k − 2, Szabó et al. [11] proved the lower bound

f(k, t) ≥ R(k, k − t+ 1)− 2k

2t
, (1)

where R(k, s) is the Ramsey number denoting the minimum n such that every red-blue edge-
colouring of Kn contains a monochromatic red Kk or a monochromatic blue Ks.

We prove the following theorem which, together with (1), determines f(k, t) up to roughly a
factor 2.
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Theorem 1.2. For k > t ≥ 3,

f(k, t) ≤ R(k, k − t+ 1)− 1

t
.

While our proof does not apply for t = 2, we may get an upper bound on f(k, 2) by taking a
complete graph on R(k, k) vertices. This is Ramsey for Kk by definition, but is not Ramsey

for Kk + fK2 for any f larger than R(k,k)−k
2 , since for such an f the graph Kk + fK2 has

more than R(k, k) vertices. This is within roughly a factor of 4 of the lower bound.

A graph G is H-minimal if G is H-Ramsey but no proper subgraph of G is H-Ramsey. We
denote the class of all H-minimal graphs byM(H). Note that G is H-Ramsey if and only if G
contains an H-minimal graph, so determining the H-Ramsey graphs reduces to determining
the H-minimal graphs. Also, two graph H and H ′ are Ramsey-equivalent if and only if
M(H) =M(H ′).

A fundamental problem of graph Ramsey theory is to understand properties of graphs in
M(H). For example, the minimum number of vertices of a graph in M(H) is precisely the
Ramsey number r(H). Another parameter of interest is s(H), the smallest minimum degree
of an H-minimal graph. That is,

s(H) := min
G∈M(H)

δ(G),

where δ(G) is the minimum degree of G.

It is a simple exercise to show [8] that for every graph H, we have

2δ(H)− 1 ≤ s(H) ≤ r(H)− 1.

Somewhat surprisingly, the upper bound is far from optimal, at least for cliques. Indeed,
Burr, Erdős, and Lovász [2] proved that s(Kk) = (k−1)2. This is quite notable, as the simple
upper bound mentioned above is exponential in k.

Szabó, Zumstein, and Zürcher [11] proved that s(Kk · K2) ≥ k − 1, where Kk · K2 is the
graph on k+ 1 vertices which contains a Kk and a vertex of degree 1. We prove the following
theorem, showing that their lower bound is sharp.
Theorem 1.3. For all k ≥ 2,

s(Kk ·K2) = k − 1.

Note that Theorem 1.3 implies that Kk and Kk ·K2 are not Ramsey-equivalent. Indeed, for
k = 2 this is trivial, and for k ≥ 3 we have (k − 1)2 = s(Kk) > s(Kk ·K2) = k − 1. Hence,
Theorem 1.1 is a corollary of Theorem 1.3.

Organization: In the next section, we prove Theorem 1.3, showing that s(Kk ·K2) = k− 1;
this implies Theorem 1.1. In Section 3, we prove Theorem 1.2 giving an upper bound on the
maximum number f = f(k, t) such that Kk is Ramsey-equivalent to Kk + f ·Kt. The final
section contains relevant open problems of interest.

Conventions and Notation: All colourings are red-blue edge-colourings, unless otherwise
specified. For a graph G, we write V (G) for the vertex set of G and v(G) for the number of
vertices of G.
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2 Hanging edges

In this section, we study the minimum degrees of graphs that are Kk ·K2-minimal. Our plan
is to construct a graph G that contains a vertex v of degree k − 1 which is “crucial” for G
to be Kk · K2-Ramsey. That is, G → Kk · K2, but G − v 9 Kk · K2. Thus, any minimal
Kk ·K2-Ramsey subgraph G′ ⊆ G has to contain v and hence have minimum degree at most
k − 1. We therefore obtain the upper bound for Theorem 1.3.

We now proceed to develop tools useful for proving Theorem 1.3. The following theorem of
Nešetřil and Rödl [9] states that there is a Kk-free graph F so that any two-colouring of the
edges of F has a monochromatic Kk−1.
Theorem 2.1. For every k ≥ 2 there is some graph F so that F is Kk-free and F → Kk−1.

By a circuit of length s in a hypergraph H = (V, E) we mean a sequence e1, v1, e2, v2, . . . , es, vs
of distinct edges e1, . . . , es ∈ E and distinct vertices v1, . . . , vs ∈ V such that vj ∈ ej ∩ ej+1

for all 1 ≤ j < s, and vs ∈ es ∩ e1. In particular, if two distinct hyperedges intersect in two
or more vertices, we consider this as a circuit of length 2. By the girth of a hypergraph H we
denote the length of the shortest circuit in H. The following lemma is proved in [5] by a now
standard application of the probabilistic method [1].
Lemma 2.2. For all integers k,m ≥ 2 and every ε > 0 there is a k-uniform hypergraph of
girth at least m and independence number at most εn, where n is the number of vertices in
the hypergraph.

We will need a strengthening of Theorem 2.1 which states that there is a Kk-free graph F so
that any two-colouring of the edges of F has a monochromatic Kk−1 inside of every ε fraction
of the vertices.
Definition 2.3. We write F

ε→ Kk to mean that for every S ⊆ V (F ), |S| ≥ εv(F ) implies
F [S]→ Kk.
Lemma 2.4. For every ε > 0 and k ≥ 2 there exists a graph F which is Kk-free and
F

ε→ Kk−1.

Proof. The case where k = 2 is trivial, so we will assume that k ≥ 3. Take F0 to be as in
Theorem 2.1. By Lemma 2.2 there is some v(F0)-uniform hypergraph H = (V, E) of girth at
least 4 and independence number less than ε |V |. We construct a graph F on vertex set V .
The edges of F are created by placing a copy of F0 inside of each hyperedge in E .

Since H has girth at least 4, any triangle of F must be contained in a single hyperedge of H.
Therefore, the vertex set of any copy of Kk in F must be contained in a single hyperedge of
H as well. However, a single hyperedge forms just a copy of F0 in F and F0 has no copy of
Kk, so F has no copy of Kk.

Since H has independence number less than ε |V |, any set S of at least ε |V | vertices must
contain some hyperedge. Hence, F [S] contains a copy of F0. As F0 → Kk−1, we also have
F [S]→ Kk−1.

From this F we construct a gadget graph G0 with a useful property, namely that a particular
copy of Kk is forced to be monochromatic.
Lemma 2.5. There exists a graph G0 with a subgraph H isomorphic to Kk contained in G0

such that
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1. there is a colouring of G0 without a red Kk ·K2 and without a blue Kk and

2. every colouring of G0 without a monochromatic copy of Kk · K2 results in H being
monochromatic.

In order to prove that H must be monochromatic in the above lemma, we will employ a
technique we call colour focusing.
Lemma 2.6. (Focusing Lemma) Let G = (A ∪ B,E) be a complete bipartite graph with a
colouring χ : E → {red, blue} of its edges. Then there exist subsets A′ ⊆ A and B′ ⊆ B with
|A′| ≥ |A|/2 and |B′| ≥ |B|/2|A|, such that

(a) for every vertex a ∈ A, the set of edges from a to B′ is monochromatic, and

(b) χ is constant on the edges between A′ and B′.

Proof. Define, for some vertex b ∈ B, the colour pattern cb of b to be the function with domain
A that maps a vertex a ∈ A to the colour of the edge {a, b}. Consider the most common of
the 2|A| possible colour patterns the vertices in B might have towards A and call it c. We
define B′ ⊆ B to be the set of vertices having colour pattern c. By the pigeonhole principle
|B′| ≥ |B|/2|A|. Now, each vertex a in A has only edges of colour c(a) to B′, which proves
part (a). Then, each vertex in A has either only red or only blue edges to B′. Therefore,
for some colour c ∈ {red, blue}, at least half of the vertices in A have only edges of colour c
towards B′. This is the set we choose to be A′, concluding the proof of part (b).

We now use part (a) to prove Lemma 2.5.

Proof of Lemma 2.5. If k = 2 then taking G0 to be a single edge suffices. We will henceforth
assume k ≥ 3. Take ε = 2−k

2
and let F1, . . . , Fk−2 be copies of the graph F from Lemma

2.4. Add complete bipartite graphs between any two of these copies. Add a copy H of Kk

and connect it to every vertex in every Fi. The resulting graph is G0 (see Figure 1). To
show G0 9 Kk ·K2, colour all edges inside every Fi and inside H red, and all the remaining
edges blue. The largest red clique is H, with only blue edges leaving H. The Fi are Kk-free,
and any edge leaving Fi is blue as well. Since the graph of blue edges is (k − 1)-chromatic
(F1, . . . , Fk−2, H is a partition into independent sets), the largest blue clique has order k− 1.
This verifies (1).

For (2), assume χ is a red-blue colouring of the edges of G0 without a monochromatic Kk ·K2.
We show that this forces H to be monochromatic. By taking A = V (H) and B = V (F1) in
part (a) of the Focusing Lemma, we find a subset S1 ⊆ V (F1) such that |S1| ≥ 2−kv(F ) and
for each a ∈ A the edges from a to S1 are monochromatic (see Figure 2a). Then |S1| > εv(F ),
hence F1[S1] → Kk−1. Fix a monochromatic copy H1 of Kk−1 contained in S1, and assume
without loss of generality that H1 is red. We claim that all edges between V (H) and S1 (and
in particular to V (H1)) are blue. Indeed, if one vertex i of H had red edges to S1, then i
along with H1 and one (arbitrary) other vertex v of S1 would form a red copy of Kk ·K2, a
contradiction to our assumption on the colouring χ.

We now iterate this argument. Assume we have found red cliques H1, . . . ,Ht−1 in F1, . . . , Ft−1
with vertex sets V1, . . . , Vt−1, respectively, and that all the edges between these cliques as well
as to H are blue. By part (a) of the Focusing Lemma, in Ft there is some subset St ⊆ V (Ft)
of the vertices of size at least 2−tkv(Ft), so that each vertex v ∈ V (H)∪V1 ∪V2 ∪ · · · ∪Vt−1 is

5



F1

F2

F3

F4

Figure 1: The gadget graph G0 in Lemma 2.5 for k = 6. A thick line indicates that the
vertices of the corresponding sets are pairwise connected.

monochromatic to St. Since |St| > εv(Ft), we have Ft[St]→ Kk−1. We find a monochromatic
copy of Kk−1 in St and call it Ht. Assume for contradiction that Ht is blue. In this case as
before, all the edges between Ht and H as well as between Ht and H1, . . . ,Ht−1 would have
to be red, otherwise there would be a blue Kk ·K2. But if all these edges are red, then any
two vertices of Ht together with H1 form a red Kk ·K2 (see Figure 2b). Hence, Ht must be
red, and as before all edges between Ht and H as well as between Ht and H1, . . . ,Ht−1 must
be blue.

After applying this argument to Fk−2, we have a collection H1, . . . ,Hk−2 of red (k−1)-cliques
and complete bipartite blue graphs between any two of H,H1, . . . ,Hk−2. Now, if some edge in
H were blue, this edge along with one vertex from each of H1, . . . ,Hk−2 and any (arbitrary)
other vertex from H1 would create a blue Kk ·K2. Therefore, every edge of H must be red,
as desired.

The following lemma completes the proof of Theorem 1.3.
Lemma 2.7. For every k ≥ 3 there is a graph G which contains a vertex v of degree k − 1

F2

F3

F4

F1[S1]

(a) Colour-focusing between H = K6 and F1.

F3

F4

F2[S2]

(b) There cannot be a blue K5 in F2[S2].

Figure 2: Illustrating the proof of Lemma 2.5.
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so that G→ Kk ·K2 but G− v 9 Kk ·K2.

Proof. Take k − 1 copies G1, . . . , Gk−1 of the gadget graph G0 from Lemma 2.5, and let
H1, . . . ,Hk−1 be the copies of Kk guaranteed to be monochromatic in any colouring without
a monochromatic Kk ·K2. Pick one vertex vi in each Hi, and insert all edges between the vi,
so they form a Kk−1. In addition, pick an arbitrary vertex vk 6= v2 from V (H2) and insert an
edge between it and v1. Finally, add a vertex v to the graph, and connect it to v1, . . . , vk−1.
This completes the construction of G (see Figure 3). Clearly, deg(v) = k − 1.

G1

G2

G3G4

G5

v1

v2

v6

v3v4

v5

v

Figure 3: An example of the graph G in Lemma 2.7 for k = 6.

To see that G − v 9 Kk ·K2, colour each Gi so it has no red Kk ·K2 and no blue Kk. By
property (2) of the gadget G0 this also means that every Hi is monochromatic red. Colour
the edges between {v1, . . . , vk−1} and the additional edge {v1, vk} blue. Since none of the
Gi had a red Kk ·K2 and we did not add any red edges, this colouring has no red Kk ·K2.
The Gi have no blue Kk, and for i = 1, . . . , k − 1 the vertex vi has no blue edges leaving Gi

except those to the other vj . But the edge {v2, vk} is red, therefore there is no blue Kk and
in particular no blue Kk ·K2.

Finally, we show that G → Kk ·K2. Let any colouring of G be given, and suppose none of
the copies of G0 contains a monochromatic copy of Kk · K2. Then all of H1, . . . ,Hk−1 are
monochromatic. We claim they have the same colour. Indeed, if Hi and Hj had different
colours, then the edge vivj would induce a monochromatic Kk · K2 with whichever copy of
Kk had the same colour as its own.

So all of the Hi have the same colour; without loss of generality, let this colour be red. If any
of the edges vivj , for 1 ≤ i < j ≤ k − 1 or for i = 1, j = k were red, then along with Hi it
would form a red Kk ·K2. Similarly, if any of the edges vvi were red, then along with Hi it
would induce a red Kk ·K2. Otherwise, all these edges are blue and then v, v1, . . . , vk−1 and
vk form a blue Kk ·K2, as desired.

3 Clique with some disjoint smaller cliques

Recall that Kk + f ·Kt denotes the disjoint union of a Kk and f copies of Kt. Also, f(k, t)
is the largest number f so that Kk and Kk + f ·Kt are Ramsey-equivalent. In this section,
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Kh

F1

F4

F3

F2

G0 =

Figure 4: An illustration of G(h,G0, F1, F2, F3, F4) when G0 = C4. A thick line indicates that
the vertices of the corresponding sets are pairwise connected.

we prove Theorem 1.2, which gives an upper bound on f(k, t) for t ≥ 3 and determines it up
to roughly a factor of 2.

Proof of Theorem 1.2. Let f =
⌊
R(k,k−t+1)−1

t

⌋
+ 1. We will construct a graph G with the

following two properties.

(G1) G→ Kk and

(G2) G9 Kk + f ·Kt.

Construction of G.
G will be constructed by combining a number of smaller graphs. For a positive integer h and
graphsG0, F1, . . . , Fn0 where n0 is the number of vertices ofG0, defineG = G(h,G0, F1, . . . , Fn0)
as follows.

Take pairwise disjoint sets VH and Vi, 1 ≤ j ≤ n0, such that |VH | = h and |Vj | = |V (Fj)|.
Set V := VH ∪

⋃n0
j=1 Vj . Label the vertices of H as v1, . . . , vh. The edge set E is defined as

follows.

• G[VH ] ∼= Kh,

• G[Vj ] ∼= Fj for all 1 ≤ j ≤ n0,
• viw ∈ E(G) for all 1 ≤ i ≤ h, and all w ∈ ⋃n0

j=1 Vj ,

• for all u ∈ Vi, w ∈ Vj , uw ∈ E(G) if and only if ij ∈ E(G0).

That is, our gadget graph consists of one copy of each Fj together with a copy of a complete
graph on h vertices. Furthermore, we place a complete bipartite graph between Fi and Fj

whenever ij is an edge in G0, and a complete bipartite graph between VH and
⋃n0

j=1 Fj (see
Figure 4).

Set h := R(k, k − t + 1) + k − 1 and ε0 := 2−h−1. Let G0 be a graph (given by Lemma 2.4)

8



such that

Kk−1 6⊆ G0 and G0
ε0−→ Kk−2. (2)

Now, set n0 := v(G0) and assume without loss of generality that V (G0) = [n0]. For every
1 ≤ j ≤ n0, we define Fj iteratively. First, let ε1 := 2−(h+n0) and let F1 be a graph (given by

Lemma 2.4) such that Kt 6⊆ F1 and F1
ε1−→ Kt−1. For 2 ≤ j ≤ n0, assume we have defined

ε1, . . . , εj−1 and F1, . . . , Fj−1. We then set

εj := 2−(h+n0−j+
∑j−1

i=1 v(Fi)) (3)

and let Fj be a graph (given by Lemma 2.4) such that

Kt 6⊆ Fj and Fj
εj−→ Kt−1. (4)

Define the graph G := G(h,G0, F1, . . . , Fn0), and take V = V (G), E = E(G). Take H to be
the copy of Kh.

We now show that G fulfills the two conditions (G1) and (G2) above.

The graph G has property (G2).
To see that G 9 Kk + f · Kt, colour all edges inside H and inside the copy of each Fj

red, and all edges between H and Fj ’s blue. Then the largest blue clique has size k − 1
(since G0 is Kk−1-free). So any monochromatic copy of Kk + f · Kt would need to be red.
Since all the Fj ’s are Kt-free, the red copy of Kk + f · Kt needs to lie inside H. However,
v(Kk + f ·Kt) = k+ ft ≥ k+R(k, k− t+ 1) > v(H). So H cannot host a copy of Kk + f ·Kt.

The graph G has property (G1).
Let χ : E → {red, blue} be a 2-colouring ofG. We apply a similar “colour-focusing” procedure
as in the proof of Lemma 2.5. This technique is used to obtain Lemma 3.1, which shows that
there is a vertex subset for which the colouring is highly structured. From this lemma, it is
not difficult to prove that there must be a monochromatic Kk.

Lemma 3.1. There exist a subset J ⊆ [n0] and subsets Wj ⊆ Vj for each j ∈ J such that the
following holds.

(a) |J | ≥ n0/2h = 2ε0n0,

(b) for all j ∈ J , Wj is the vertex set of a monochromatic Kt−1 under χ,

(c) for all i, j ∈ J with ij ∈ E(G0), there exists cij ∈ {red, blue} such that for all u ∈
Wi, w ∈Wj, χ(uw) = cij.

(d) for all vi ∈ VH , there exists ci ∈ {red, blue} such that for all u ∈ ⋃
j∈J Wj, χ(viu) = ci.

The structure of the sets J and Wj in Lemma 3.1 is depicted in Figure 5. Before proving the
lemma, we first show how it implies that there is a monochromatic Kk in G, which implies
(G1).

Proof of (G1) assuming Lemma 3.1.
Let J ′ ⊆ J with |J ′| ≥ |J |/2 be such that all Wj with j ∈ J ′ are monochromatic of the same
colour. Consider the induced subgraph G′0 := G0[J

′] of G0. Let χ′ be the edge-colouring of G′0

9



where each edge ij ∈ E(G′0) has colour χ′(ij) := cij . Since |J ′| ≥ |J |/2 ≥ ε0n0 by property

(a), and since G0
ε0−→ Kk−2 by definition of G0, there exists a monochromatic copy of Kk−2

in G′0 under χ′. Let I ⊆ J ′ denote the vertex set of this monochromatic copy, and assume
without loss of generality that it is blue. Then, for all i, j ∈ I, i 6= j, the sets Wi and Wj are
connected by complete bipartite graphs, all edges being blue under χ. The monochromatic
Wj with j ∈ I ⊆ J are all the same colour. If they were all blue, the union of the Wj with
j ∈ I, each of which is of order t − 1 by property (b), form a monochromatic blue clique of
order (k− 2)(t− 1) ≥ k (since k > t ≥ 3), and thus there is a monochromatic Kk. Therefore,
we may assume from now on that each Wj , j ∈ I, is a red Kt−1.

Consider now the vertices in VH . Any such vertex has either only red edges or only blue edges
to

⋃
j∈J ′Wj , by property (d). We call vi ∈ VH red if ci = red, and blue otherwise. Suppose

there exist two vertices, vi, vj ∈ VH which are both blue, such that χ(vivj) = blue. Then they
form a blue Kk with one vertex from each Wj , j ∈ I. So we can assume that for two blue
vertices vi, vj ∈ VH we have χ(vivj) = red. But then we can also assume that there are at
most k − 1 blue vertices inside H, since otherwise they form a red Kk inside H. So, there
are at least v(H) − (k − 1) = R(k, k − t + 1) red vertices Vred ⊆ VH in H. By definition of
R(k, k − t + 1), Vred contains either a red Kk−t+1 or a blue Kk. In the second case, we are
done. In the first case, the vertex set Vred ∪Wj contains a red Kk for any j ∈ I, so we are
done as well.

Proof of Lemma 3.1.
We prove the lemma in two steps. First, we apply part (a) of the Focusing Lemma with
A = VH and each V (Fj) as B in order to ensure property (d). Then, in order to ensure
property (c), we restrict to smaller and smaller sets inside V (Fj) by repeatedly applying part
(b) of the Focusing Lemma. These two steps are illustrated in Figure 6.

Recall that we are given a 2-colouring χ : E → {red, blue} of the edge set of G. First we
show that there exists an index set J ⊆ [n0] and subsets V ′j ⊆ Vj for each j ∈ J such that the
following properties hold.

(a) |J | ≥ n0/2h,

Kh

F1

G0[J ]

W2

W3

W4

Figure 5: The colour patterns we find with Lemma 3.1.
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(b′) for all j ∈ J , |V ′j | ≥ v(Fj)/2
h, and

(d′) for all vi ∈ VH , there exists ci ∈ {red, blue} such that for all u ∈ ⋃
j∈J V

′
j , χ(viu) = ci.

To see this, for each j ∈ [n0] apply part (a) of the Focusing Lemma to the complete bipartite
graphs between VH and Vj to obtain subsets V ′j ⊆ Vj of size at least v(Fj)/2

h such that for
each vertex v ∈ VH and j ∈ [n0], the set of edges between v and V ′j is monochromatic. In
other words, for each index j ∈ [n0] there is a function cj : Vh → {red, blue} where cj(vi) is
the colour of the edges from vi to V ′j . There are 2h possible functions, so there must be a set

J ⊆ [n0] of at least n0/2
h indices with a function c such that for any j ∈ J we have cj = c.

Choosing ci := c(vi) guarantees property (d′).

Kh

F1

G0[J ]

F2

F3

V ′
2

V ′
3

F4

V ′
4

(a) Color-focusing of vertices of Kh.

Kh

F1

F2

F3

V ′′
2

V ′′
3

F4

V ′′
4

(b) Color-focusing of the complete
bipartite graphs

Figure 6: The colour patterns we find in G.

In the remainder of the proof we consider only the vertices in the sets V ′j we have just defined.
We will maintain subsets V ′′j ⊆ V ′j , starting with V ′′j = V ′j , and keep reducing their size until
the edges between them are monochromatically coloured for each pair.

For ease of notation we assume J = [`]. For each pair i, j ∈ J with ij ∈ E(G0), we apply part
(b) of the Focusing Lemma for the complete bipartite graph between the sets V ′′i and V ′′j ,
where V ′′i plays the role of A and V ′′j plays the role of B if i < j. These applicatons are done
one after another, in an arbitrary order, and after each of them the participating subsets V ′′i
and V ′′j are redefined to be the subsets A′ ⊆ A = V ′′i and B′ ⊆ B = V ′′j given by the Focusing
Lemma. Hence, after an application for the pair i, j, the edges between the sets V ′′i and V ′′j
are monochromatic.

Let i ∈ J be an arbitrary index. The set V ′′i participates in an application of the Focusing
Lemma (i − 1)-times as the set B and (` − i)-times as the set A. The size of V ′′i might be
reduced with each application, but the Focusing Lemma gives us a lower bound on the new
size: it is at least half of the old size if V ′′i participated as A and it is at least the 2−|V

′′
j |-

fraction if V ′′i participated as B together with some other set V ′′j as A (with j < i). Since we
know how many times V ′′i participated as the set A and how many times as the set B, we
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have a bound on its order at the end:

|V ′′i | ≥
v(Fi)

2h
· 1

2`−i
· 1

2
∑i−1

j=1 v(Fj)
≥ v(Fi) · 2−(h+n0−i+

∑
j<i v(Fj)) = εi · v(Fi),

where we used property (b′) to estimate the size of V ′i at the beginning.

Since we applied the Focusing Lemma for every pair i, j ∈ J, ij ∈ E(G0), there exist cij ∈
{red, blue} such that the edges between V ′′i and V ′′j are monochromatic of colour cij , for every
such pair.

It is now straight-forward to see that Lemma 3.1 follows. Since each Fi
εi−→ Kt−1 and by the

above V ′′i at the end has size at least εiv(Fi), V
′′
i does host a monochromatic Kt−1. Let Wi

be the vertex set of this Kt−1. Now, since Wi ⊆ V ′′i ⊆ V ′i , (c) and (d) follow.

As we saw earlier, the proof of Lemma 3.1 completes the proof of Theorem 1.2.

4 Open problems

Despite the progress made in this paper, we note the following interesting problems that
remain open.

Recall that f(k, t) is the maximum f such that Kk and Kk + f ·Kt are Ramsey-equivalent.
We determined f(k, t) up to roughly a factor 2 for k − 1 > t > 2. It would be of interest to
close the gap between the lower and upper bounds.
Problem 4.1. Determine f(k, t).

A special case of this problem already asked in [11] is the following. Note that we have shown
that f(k, k−1) ≤ 1. That is, if Kk and Kk+Kk−1 are Ramsey-equivalent, then f(k, k−1) = 1
and otherwise f(k, k − 1) = 0. It is easy to see that f(2, 1) and f(3, 2) are 0. We conjecture
that for larger k we have f(k, k − 1) = 1.
Conjecture 4.2. For k at least 4, Kk and Kk +Kk−1 are Ramsey-equivalent.

We proved that every graph (other thanKk) that is Ramsey-equivalent toKk is not connected.
This naturally leads to the following question.
Question 4.3. Is there a pair of non-isomorphic connected graphs H1, H2 that are Ramsey-
equivalent?

An interesting special case of this question is about pairs of graphs such that one contains
the other. This motivates the following question.
Question 4.4. Is there a connected graph H which is Ramsey-equivalent to a graph formed
by adding a pendent edge to H?

We have recently shown [7] that Kt,t and Kt,t · K2, the graph formed by adding a pendent
edge to Kt,t, are not Ramsey-equivalent. Furthermore, we proved s(Kt,t · K2) = 1 while it
was shown in [8] that s(Kt,t) = 2t− 1.

We do not have a good understanding of how large of a connected subgraph can be added to
Kk and still be Ramsey-equivalent to Kk. For example, we have the following problem.
Problem 4.5. Let g(k) be the maximum g such that Kk is Ramsey-equivalent to Kk +K1,g,
the disjoint union of Kk and the star K1,g with g leaves. Determine g(k).
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We only know that g(k) is at least linear in k and at most exponential in k.
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[5] P. Erdős and A. Hajnal. On chromatic number of graphs and set-systems. Acta Mathe-
matica Hungarica, 17:61–99, 1966.
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