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A RELATIVE SZEMERÉDI THEOREM

David Conlon, Jacob Fox and Yufei Zhao

Abstract. The celebrated Green-Tao theorem states that there are arbitrarily long
arithmetic progressions in the primes. One of the main ingredients in their proof
is a relative Szemerédi theorem which says that any subset of a pseudorandom
set of integers of positive relative density contains long arithmetic progressions.
In this paper, we give a simple proof of a strengthening of the relative Szemerédi
theorem, showing that a much weaker pseudorandomness condition is sufficient. Our
strengthened version can be applied to give the first relative Szemerédi theorem for
k-term arithmetic progressions in pseudorandom subsets of ZN of density N−ck .
The key component in our proof is an extension of the regularity method to sparse
pseudorandom hypergraphs, which we believe to be interesting in its own right.
From this we derive a relative extension of the hypergraph removal lemma. This is
a strengthening of an earlier theorem used by Tao in his proof that the Gaussian
primes contain arbitrarily shaped constellations and, by standard arguments, allows
us to deduce the relative Szemerédi theorem.

1 Introduction

The Green-Tao theorem [GT08] states that the primes contain arbitrarily long arith-
metic progressions. This result, along with their subsequent work [GT10] on deter-
mining the asymptotics for the number of prime k-tuples in arithmetic progression,
constitutes one of the great breakthroughs in twenty-first century mathematics.

The proof of the Green-Tao theorem has two key steps. The first step, which
Green and Tao refer to as the “main new ingredient” of their proof, is to establish a
relative Szemerédi theorem. Szemerédi’s theorem [Sze75] states that any dense subset
of the integers contains arbitrarily long arithmetic progressions. More formally, we
have the following theorem, which is stated for ZN := Z/NZ but easily implies an
equivalent statement in the set [N ] := {1, 2, . . . , N}.
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author was supported by a Simons Fellowship, NSF grant DMS-1069197, by an Alfred P. Sloan
Fellowship, and by an MIT NEC Corporation Fund Award, and the third author was supported by
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Theorem 1.1 (Szemerédi’s theorem). For every natural number k ≥ 3 and every
δ > 0, as long as N is sufficiently large, any subset of ZN of density at least δ
contains an arithmetic progression of length k.

A relative Szemerédi theorem is a similar statement where the ground set is no
longer the set ZN but rather a sparse pseudorandom subset of ZN .

The second step in their proof is to show that the primes are a dense subset
of a pseudorandom set of “almost primes”, sufficiently pseudorandom that the rel-
ative Szemerédi theorem holds. Then, since the primes are a dense subset of this
pseudorandom set, an application of the relative Szemerédi theorem implies that the
primes contain arbitrarily long arithmetic progressions. This part of the proof uses
some ideas from the work of Goldston and Yıldırım [GY03] (and was subsequently
simplified in [Tao]).

In the work of Green and Tao, the pseudorandomness conditions on the ground
set are known as the linear forms condition and the correlation condition. Roughly
speaking, both of these conditions say that, in terms of the number of solutions to
certain linear systems of equations, the set behaves like a random set of the same
density. A natural question is whether these pseudorandomness conditions can be
weakened. We address this question by giving a simple proof for a strengthening
of the relative Szemerédi theorem, showing that a weak linear forms condition is
sufficient for the theorem to hold.

This improvement has two aspects. We remove the correlation condition entirely
but we also reduce the set of linear forms for which the correct count is needed. In
particular, we remove those corresponding to the dual function condition, a pointwise
boundedness condition stated explicitly by Tao [Tao06a] in his work on constellations
in the Gaussian primes but also used implicitly in [GT08].

To state the main theorem, we will assume the definition of the k-linear forms
condition. The formal definition, which may be found in Section 2 below, is stated
for measures rather than sets but we will ignore this relatively minor distinction
here, reserving a more complete discussion of our terminology for there.

Theorem 1.2 (Relative Szemerédi theorem). For every natural number k ≥ 3 and
every δ > 0, if S ⊂ ZN satisfies the k-linear forms condition and N is sufficiently
large, then any subset of S of relative density at least δ contains an arithmetic
progression of length k.

One of the immediate advantages of this theorem is that it simplifies the proof of
the Green-Tao theorem. In addition to giving a simple proof of the relative Szemerédi
theorem, it removes the need for the number-theoretic estimates involved in estab-
lishing the correlation condition for the almost primes. A further advantage is that,
by removing the correlation condition, the relative Szemerédi theorem now applies
to pseudorandom subsets of ZN of density N−ck . With the correlation condition,
one could only hope for such a theorem down to densities of the form N−o(1).

While the relative Szemerédi theorem is the main result of this paper, the main
advance is an approach to regularity in sparse pseudorandom hypergraphs. This
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allows us to prove analogues of several well-known combinatorial theorems relative
to sparse pseudorandom hypergraphs. In particular, we prove a sparse analogue of
the hypergraph removal lemma. It is from this that we derive our relative Szemerédi
theorem. As always, applying the regularity method has two steps, a regularity
lemma and a counting lemma. We provide novel approaches to both.

A counting lemma for subgraphs of sparse pseudorandom graphs was already
proved by the authors in [CFZ14]. In this paper, we simplify and streamline the
approach taken there in order to prove a counting lemma for subgraphs of sparse
pseudorandom hypergraphs. This result is the key technical step in our proof and,
perhaps, the main contribution of this paper. Apart from the obvious difficulties
in passing from graphs to hypergraphs, the crucial difference between this paper
and [CFZ14] is in the type of pseudorandomness considered. For graphs, we have
a long-established notion of pseudorandomness known as jumbledness. The greater
part of [CFZ14] is then concerned with optimizing the jumbledness condition which
is necessary for counting a particular graph H. For hypergraphs, we use an analogue
of the linear forms condition first considered by Tao [Tao06a]. This says that our
hypergraph is pseudorandom enough for counting H within subgraphs if it contains
asymptotically the correct count for the 2-blow-up of H and all its subgraphs.

We also use an alternative approach to regularity in sparse hypergraphs. While
it would be natural to use a sparse hypergraph regularity lemma (and, following our
approach in [CFZ14], this was how we initially proceeded), it suffices to use a weak
sparse hypergraph regularity lemma which is an extension of the weak regularity
lemma of Frieze and Kannan [FK99]. This is also closely related to the transference
theorem used by Green and Tao (see, for example, [Gow10] or [RTTV08,TTV09],
where it is also referred to as the dense model theorem).

With both a regularity lemma and a counting lemma in place, it is then a straight-
forward matter to prove a relative extension of the famous hypergraph removal
lemma [Gow07,NRS06,RS04,RS06,Tao06b]. Such a theorem was first derived by
Tao [Tao06a] in his work on constellations in the Gaussian primes but, like the
Green-Tao relative Szemerédi theorem, needs both a correlation condition and a
dual function condition.1 Our approach removes these conditions. The final step in
the proof of the relative Szemerédi theorem is then a standard reduction used to
derive Szemerédi’s theorem from the hypergraph removal lemma. The details of this
reduction already appear in [Tao06a] but we include them here for completeness.
In fact, the paper is self-contained apart from assuming the hypergraph removal
lemma.

In Section 2, we state our results, including the relative Szemerédi theorem and
the removal, regularity, and counting lemmas. In Section 3, we deduce the relative
multidimensional Szemerédi theorem from our relative hypergraph removal lemma.
In Section 4, we prove the removal lemma from the regularity and counting lem-
mas. We will prove our weak sparse hypergraph regularity lemma in Section 5 and

1 The problem of relative hypergraph removal was also recently considered by Towsner [Tow].
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the associated counting lemma in Section 6. We conclude, in Section 7, with some
remarks.

2 Definitions and Results

Notation. Dependence on N . We consider functions ν = ν(N), where N (usually
suppressed) is assumed to be some large integer. We write o(1) for a quantity that
tends to zero as N → ∞.
Expectation. We write E[f(x1, x2, . . .)|x1 ∈ A1, x2 ∈ A2, . . .] for the expectation of
f(x1, x2, . . .) when each xi is chosen uniformly and independently at random from
Ai.

2.1 A relative Szemerédi theorem. Here is an equivalent weighted version
of Szemerédi’s theorem as formulated, for example, in [GT08, Prop. 2.3].

Theorem 2.1 (Szemerédi’s theorem, weighted version). For every k ≥ 3 and δ >
0, there exists c > 0 such that for N sufficiently large and any nonnegative function
f : ZN → [0, 1] satisfying E[f ] ≥ δ,

E[f(x)f(x + d)f(x + 2d) · · · f(x + (k − 1)d)|x, d ∈ ZN ] ≥ c. (1)

A relative Szemerédi theorem would instead ask for the nonnegative function f
to be bounded above by a measure ν instead of the constant function f . For us, a
measure will be any nonnegative function on ZN . We do not explicitly assume the
additional condition that

E[ν(x)|x ∈ ZN ] = 1 + o(1),

but this property follows from the linear forms condition that we will now assume.
Such measures are more general than subsets, as any subset S ⊆ ZN (e.g., in
Theorem 1.2) can be thought of as a measure on ZN taking value N/ |S| on S and
0 elsewhere. The dense case, as in Theorem 2.1, corresponds to taking ν = 1. Our
notion of pseudorandomness for measures ν on ZN is now as follows.

Definition 2.2 (Linear forms condition). A nonnegative function ν = ν(N) : ZN →
R≥0 is said to obey the k-linear forms condition if one has

E

⎡
⎣

k∏
j=1

∏
ω∈{0,1}[k]\{j}

ν

(
k∑

i=1

(i − j)x(ωi)
i

)nj,ω
∣∣∣∣∣x

(0)
1 , x

(1)
1 , . . . , x

(0)
k , x

(1)
k ∈ ZN

⎤
⎦ = 1 + o(1)

(2)
for any choices of exponents nj,ω ∈ {0, 1}.

Example 2.3. For k = 3, condition (2) says that

E[ν(y+2z)ν(y′ +2z)ν(y+2z′)ν(y′ +2z′)ν(−x+z)ν(−x′ +z)ν(−x+z′)ν(−x′ +z′)
·ν(−2x−y)ν(−2x′ −y)ν(−2x−y′)ν(−2x′ −y′)|x, x′, y, y′, z, z′ ∈ ZN ] = 1+o(1)
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and similar conditions hold if one or more of the twelve ν factors in the expectation
are erased.

Our linear forms condition is much weaker than that used in Green and
Tao [GT08]. In particular, Green and Tao need to assume that pointwise estimates
such as

E[ν(a + x)ν(a + y)ν(a + x + y)|x, y ∈ ZN ] = 1 + o(1)

hold uniformly over all a ∈ ZN . Such linear forms do not arise in our proof. More-
over, to prove their relative Szemerédi theorem, Green and Tao need to assume a
further pseudorandomness condition, which they call the correlation condition. This
condition also does not arise in our proofs. Indeed, we prove that a relative Szemerédi
theorem holds given only the linear forms condition defined above.

Theorem 2.4 (Relative Szemerédi theorem). For every k ≥ 3 and δ > 0, there
exists c > 0 such that if ν : ZN → R≥0 satisfies the k-linear forms condition, N is
sufficiently large, and f : ZN → R≥0 satisfies 0 ≤ f(x) ≤ ν(x) for all x ∈ ZN and
E[f ] ≥ δ, then

E[f(x)f(x + d)f(x + 2d) · · · f(x + (k − 1)d)|x, d ∈ ZN ] ≥ c. (3)

We note that both here and in Theorem 1.2, the phrase “N is sufficiently large”
indicates not only a dependency on δ and k as in the usual version of Szemerédi’s
theorem but also a dependency on the o(1) term in the linear forms condition. We
will make a similar assumption in many of the theorems stated below.

We prove Theorem 2.4 using a new relative hypergraph removal lemma.2 In the
next subsection, we set up the notation for hypergraphs and state the corresponding
pseudorandomness hypothesis.

2.2 Hypergraphs. We borrow most of our notation and definitions from
Tao [Tao06a,Tao06b].

Definition 2.5 (Hypergraphs). Let J be a finite set and r a positive integer. Define(
J
r

)
= {e ⊆ J : |e| = r} to be the set of all r-element subsets of J . An r-uniform

hypergraph on J is defined to be any subset H ⊆ (
J
r

)
.

Definition 2.6 (Hypergraph system). A hypergraph system is a quadruple V =
(J, (Vj)j∈J , r, H), where J is a finite set, (Vj)j∈J is a collection of finite non-empty

sets indexed by J , r is a positive integer, and H ⊆ (
J
r

)
is an r-uniform hypergraph.

For any e ⊆ J , we set Ve :=
∏

j∈e Vj . For any x = (xj)j∈J ∈ VJ and any subset
J ′ ⊆ J , we write xJ ′ = (xj)j∈J ′ ∈ VJ ′ to mean the natural projection of x onto the

2 Green and Tao [GT08] prove a transference result that allows them to apply the dense version
of Szemerédi’s theorem as a black box. This allows them to show that the optimal c in (3) can be
taken to be the same as the optimal c in (1). The proof in this paper goes through the hypergraph
removal lemma and thus does not obtain the same c. Nevertheless, one can obtain our result with
the same c by modifying the argument to an arithmetic setting, as done by the third author in a
follow-up paper [Zh14].
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coordinates J ′. Finally, for any e ⊆ J , we write ∂e for the set {f � e : |f | = |e| − 1},
the skeleton of e.

Definition 2.7 (Weighted hypergraphs). Let V = (J, (Vj)j∈J , r, H) be a hyper-
graph system. A weighted hypergraph on V is a collection g = (ge)e∈H of func-
tions ge : Ve → R≥0 indexed by H. We write 0 and 1 to denote the constant-valued
weighted hypergraphs of uniform weight 0 and 1, respectively. Given two weighted
hypergraphs g and ν on the same hypergraph system, we write g ≤ ν to mean that
ge ≤ νe for all e, which in turn means that ge(xe) ≤ νe(xe) for all xe ∈ Ve.

The weighted hypergraph ν plays an analogous role to the ν in Theorem 2.4, with
ν = 1 again corresponding to the dense case. We have an analogous linear forms
condition for ν as a weighted hypergraph. We use the following indexing notation.
For a finite set e and ω ∈ {0, 1}e, we write x

(ω)
e to mean the tuple

(
x
(ωj)
j

)
j∈e

. We

also write x
(0)
e :=

(
x
(0)
j

)
j∈e

and similarly with x
(1)
e .

Definition 2.8 (Linear forms condition). A weighted hypergraph ν = ν(N) on the

hypergraph system V = V (N) = (J, (V (N)
j )j∈J , r, H) is said to obey the H-linear

forms condition (or simply the linear forms condition if there is no confusion) if one
has

E

⎡
⎣∏

e∈H

∏
ω∈{0,1}e

νe(x(ω)
e )ne,ω

∣∣∣∣∣x
(0)
J , x

(1)
J ∈ VJ

⎤
⎦ = 1 + o(1) (4)

for any choices of exponents ne,ω ∈ {0, 1}.

Example 2.9. Let H be the set of all pairs in J = {1, 2, 3}. The linear forms
condition says that

E

⎡
⎣ ∏

ij=12,13,23

νij(xi, xj)νij(x′
i, xj)νij(xi, x

′
j)νij(x′

i, x
′
j)

∣∣∣x1, x
′
1 ∈ V1,

x2, x
′
2 ∈ V2, x3, x

′
3 ∈ V3

⎤
⎦ = 1 + o(1)

and similarly if one or more of the twelve ν factors are deleted. This expression
represents the weighted homomorphism density of K2,2,2 in the weighted tripartite
graph given by ν, as illustrated in Figure 1b (the vertices of K2,2,2 must map into
the corresponding parts). Deleting some ν factors corresponds to considering various
subgraphs of K2,2,2, e.g., Figure 1c.

In general, the H-linear forms condition says that ν has roughly the expected
density for the 2-blow-up3 of H as well as any subgraph of the 2-blow-up. Our

3 By the 2-blow-up of H we mean the hypergraph consisting of vertices j(0), j(1) for each j ∈ J ,
and edges e(ω) := {j(ωj) : j ∈ e} for any e ∈ H and ω ∈ {0, 1}e. We actually do not need the
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H:

(a)

V1

V2 V3

H-linear forms
condition: & subgraphs, e.g.,

(b)

V1

V2 V3

(c)

V1

V2 V3

Figure 1: Linear forms conditions for H = K3. See Example 2.9

linear forms condition for hypergraphs coincides with the one used by Tao [Tao06a,
Def. 2.8], although in [Tao06a] one assumes additional pseudorandomness hypotheses
on ν known as the dual function condition and the correlation condition.

2.3 Hypergraph removal lemma. The hypergraph removal lemma was first
proved by Gowers [Gow07] and by Nagle et al. [NRS06,RS04,RS06]. It states that
for every r-uniform hypergraph H on h vertices, every r-uniform hypergraph on n
vertices with o(nh) copies of H can be made H-free by removing o(nr) edges. As first
explicitly stated and proved by Tao [Tao06b], the proof of the hypergraph removal
lemma further gives that the edges can be removed in a low complexity way (this
idea will soon be made formal). We will use a slightly stronger version, where edges
are given weights in the interval [0, 1]. This readily follows from the usual version
by a simple rounding argument, as done in [Tao06a, Thm. 3.7]. We state this result
as Theorem 2.11 below.

Definition 2.10. For any set e of size r and any Ee ⊆ Ve =
∏

j∈e Vj , we define the
complexity of Ee to be the minimum integer T such that there is a partition of Ee

into T sets Ee,1, . . . , Ee,T so that each Ee,i is the set of r-cliques of some (r − 1)-
uniform hypergraph, meaning that there exists some Bf,i ⊆ Vf for each f ∈ ∂e so
that 1Ee,i

(xe) =
∏

f∈∂e 1Bf,i
(xf ) for all xe ∈ Ve.

Theorem 2.11 (Weighted hypergraph removal lemma). For every ε > 0 and
finite set J , there exists δ > 0 and T > 0 such that the following holds. Let
V = (J, (Vj)j∈J , r, H) be a hypergraph system. Let g be a weighted hypergraph
on V satisfying 0 ≤ g ≤ 1 and

E

[∏
e∈H

ge(xe)
∣∣∣x ∈ VJ

]
≤ δ.

Footnote 3 continued
full strength of this assumption. It suffices to assume that ν has roughly the expected density for
any subgraph of a weak 2-blow-up of H, where by a weak 2-blow-up we mean the following. Fix
some edge e1 ∈ H (we will need to assume the condition for all e1). The weak 2-blow-up of H with
respect to e1 is the subgraph of the usual 2-blow-up consisting of all edges e(ω) where ωi = ωj for
any i, j ∈ e\e1. This weaker version of the H-linear forms condition is all we shall use for the proof,
although everything to follow will be stated as in Definition 2.8 for clarity.
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Then for each e ∈ H there exists a set E′
e ⊆ Ve for which Ve\E′

e has complexity at
most T and such that ∏

e∈H

1E′
e
(xe) = 0 for all x ∈ VJ

and for all e ∈ H one has

E[ge(xe)1Ve\E′
e
(xe)|xe ∈ Ve] ≤ ε.

We prove a relativized extension of the hypergraph removal lemma. A relative
hypergraph removal lemma was already established by Tao in [Tao06a], where he
assumed the majorizing measure satisfies three conditions: the linear forms condi-
tion, the correlation condition, and the dual function condition. We again show that
a linear forms condition is sufficient.

Theorem 2.12 (Relative hypergraph removal lemma). For every ε > 0 and
finite set J , there exists δ > 0 and T > 0 such that the following holds. Let
V = (J, (Vj)j∈J , r, H) be a hypergraph system. Let ν and g be weighted hyper-
graphs on V . Suppose 0 ≤ g ≤ ν, ν satisfies the H-linear forms condition, and N is
sufficiently large. If

E

[∏
e∈H

ge(xe)
∣∣∣x ∈ VJ

]
≤ δ,

then for each e ∈ H there exists a set E′
e ⊆ Ve for which Ve\E′

e has complexity at
most T and such that

∏
e∈H

1E′
e
(xe) = 0 for allx ∈ VJ

and for all e ∈ H one has

E[ge(xe)1Ve\E′
e
(xe)|xe ∈ Ve] ≤ ε.

In Section 4 we will deduce Theorem 2.12 from Theorem 2.11 by applying the
weak regularity lemma and the counting lemma which are stated in the next two
subsections.

2.4 Weak hypergraph regularity. The Frieze-Kannan weak regularity
lemma [FK99] allows one to approximate in cut-norm a matrix (or graph) with
entries in the interval [0, 1] by another matrix of low complexity. A major advan-
tage over simply applying Szemerédi’s regularity lemma is that the complexity has
only an exponential dependence on the approximation parameter, as opposed to
the tower-type bound that is incurred by Szemerédi’s regularity lemma. Unfortu-
nately, these regularity lemmas are not meaningful for sparse graphs as the error
term is too large in this setting. Following sparse extensions of Szemerédi’s reg-
ularity lemma by Kohayakawa [Koh97] and Rödl, a sparse extension of the weak
regularity lemma was proved by Bollobás and Riordan [BR09] and by Coja-Oghlan
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et al. [CCF09]. In [CCF09], they further generalize this to r-dimensional tensors
(or r-uniform hypergraphs), but it only gives an approximation which is close in
density on all hypergraphs induced by large vertex subsets. In order to prove a
relative hypergraph removal lemma, we will need a stronger approximation, which
is close in density on all dense r-uniform hypergraphs formed by the clique set of
some (r − 1)-uniform hypergraph. In Section 5, we will prove a more general sparse
regularity lemma. For now, we state the result in the form that we need.

The weak regularity lemma approximates a weighted hypergraph g on V by
another weighted hypergraph g̃ of bounded complexity which satisfies 0 ≤ g̃ ≤ 1.
One can think of g̃ as a dense approximation of g. The following definition makes
precise in what sense g̃ approximates g.

Definition 2.13 (Discrepancy pair). Let e be a finite set and ge, g̃e : Ve → R≥0 be
two nonnegative functions. We say that (ge, g̃e) is an ε-discrepancy pair if for all
subsets Bf ⊆ Vf , f ∈ ∂e, one has

∣∣∣∣∣∣
E

[
(ge(xe) − g̃e(xe))

∏
f∈∂e

1Bf
(xf )

∣∣∣xe ∈ Ve

]
∣∣∣∣∣∣
≤ ε. (5)

For two weighted hypergraphs g and g̃ on (J, (Vj)j∈J , r, H), we say that (g, g̃) is an
ε-discrepancy pair if (ge, g̃e) is an ε-discrepancy pair for all e ∈ H.

One needs an additional hypothesis on g in order to prove a weak regularity
lemma. The condition roughly says that g contains “no dense spots.”

Definition 2.14 (Upper regular). Let e be a finite set, ge : Ve → R≥0 a nonnegative
function, and η > 0. We say that ge is upper η-regular if for all subsets Bf ⊆ Vf ,
f ∈ ∂e, one has

E

[
(ge(xe) − 1)

∏
f∈∂e

1Bf
(xf )

∣∣∣xe ∈ Ve

]
≤ η. (6)

A hypergraph g on on (J, (Vj)j∈J , r, H) is upper η-regular if ge is upper η-regular
for all e ∈ H.

Note that unlike (5), there is no absolute value on the left-hand side of (6). The
upper regularity hypothesis is needed for establishing the sparse regularity lemma.
Fortunately, this mild hypothesis is automatically satisfied in our setting. We will
say more about this in Section 6.2.

Lemma 2.15. Let V = (J, (Vj)j∈J , r, H) be a hypergraph system. Let ν and g be
weighted hypergraphs on V . Suppose 0 ≤ g ≤ ν and ν satisfies the H-linear forms
condition. Then g is upper o(1)-regular.

Define the complexity of a function g : Ve → [0, 1] to be the minimum T such that
there is a partition of Ve into T subgraphs S1, . . . , ST , each of which is the set of
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r-cliques of some (r−1)-uniform hypergraph (see Definition 2.10), and such that g is
constant on each Si. We state the regularity lemma below with a complexity bound
on g̃, although the complexity bound will not actually be needed for our application.

Theorem 2.16 (Sparse weak regularity lemma). For any ε > 0 and function
g : V1 × · · · × Vr → R≥0 which is upper η-regular with η ≤ 2−40r/ε2 , there exists
g̃ : V1 × · · · × Vr → [0, 1] with complexity at most 220r/ε2 such that (g, g̃) is an
ε-discrepancy pair.

The special case r = 2 is the sparse extension of the Frieze-Kannan weak regu-
larity lemma.

2.5 Counting lemma. Informally, the counting lemma says that if (g, g̃) is an
ε-discrepancy pair, with the additional assumption that g ≤ ν and g̃ ≤ 1, then the
density of H in g̃ is close to the density of H in g. This sparse counting lemma is
perhaps the most novel ingredient in this paper.

Theorem 2.17 (Counting lemma). For every γ > 0 and finite set J , there exists
an ε > 0 so that the following holds. Let V = (J, (Vj)j∈J , r, H) be a hypergraph
system and ν, g, g̃ be weighted hypergraphs on V . Suppose that ν satisfies the H-
linear forms condition and N is sufficiently large. Suppose also that 0 ≤ g ≤ ν,
0 ≤ g̃ ≤ 1, and (g, g̃) is an ε-discrepancy pair. Then

∣∣∣∣∣E
[∏

e∈H

ge(xe)

∣∣∣∣∣x ∈ VJ

]
− E

[∏
e∈H

g̃e(xe)

∣∣∣∣∣x ∈ VJ

]∣∣∣∣∣ ≤ γ. (7)

As a corollary, Theorem 2.17 also holds if the hypothesis 0 ≤ g̃ ≤ 1 is replaced
by 0 ≤ g̃ ≤ ν. Indeed, we can use the weak regularity lemma, Theorem 2.16, to
find a common 1-bounded approximation to g and g̃. The result then follows from
Theorem 2.17 and the triangle inequality.

To summarize, to get a counting lemma for a fixed hypergraph H in a subgraph
of a pseudorandom host hypergraph, it suffices to know that the host hypergraph
has approximately the expected count for a somewhat larger family of hypergraphs
(namely, subgraphs of the 2-blow-up of H).

3 The Relative Szemerédi Theorem

In this section, we deduce the relative Szemerédi theorem, Theorem 2.4, from the
relative hypergraph removal lemma, Theorem 2.12. We use the relative hypergraph
removal lemma to prove a relative arithmetic removal lemma, Theorem 3.3. This
result then easily implies a relative version of the multidimensional Szemerédi theo-
rem of Furstenberg and Katznelson [FK78]. This is Theorem 3.1 below. The relative
Szemerédi theorem, Theorem 2.4, follows as a special case of Theorem 3.1 by setting
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Z = Z ′ = ZN and φj(d) = (j − 1)d. One may easily check that the linear forms con-
dition for the resulting hypergraph is satisfied if ν : ZN → R≥0 satisfies the k-linear
forms condition.

The statement and proof of Theorem 3.1 closely follows the write-up in Tao
[Tao06a, Thm 2.18], adapted in a straightforward way to our new pseudorandomness
conditions as well as to the slightly more general setting of functions instead of
subsets. Earlier versions of this type of argument for deducing Szemerédi-type results
(in the dense setting) from graph and hypergraph removal lemmas were given by
Ruzsa and Szemerédi [RS78], Frankl and Rödl [FR02], and Solymosi [Sol03,Sol04].

Theorem 3.1 (Relative multidimensional Szemerédi theorem). For a finite set J
and δ > 0, there exists c > 0 so that the following holds. Let Z, Z ′ be two finite
additive groups and let (φj)j∈J be a finite collection of group homomorphisms φj :
Z → Z ′ from Z to Z ′. Assume that the elements {φi(d) − φj(d) : i, j ∈ J, d ∈ Z}
generate Z ′ as an abelian group. Let ν : Z ′ → R≥0 be a nonnegative function with
the property that in the hypergraph system V = (J, (Vj)j∈J , r, H), with Vj := Z,

r := |J | − 1, and H :=
(
J
r

)
, the weighted hypergraph (νe)e∈H defined by

νJ\{j}((xi)i∈J\{j}) := ν

⎛
⎝ ∑

i∈J\{j}
(φi(xi) − φj(xi))

⎞
⎠

satisfies the H-linear forms condition. Assume that N is sufficiently large. Then, for
any f : Z ′ → R≥0 satisfying 0 ≤ f(x) ≤ ν(x) for all x ∈ Z ′ and E[f ] ≥ δ,

E

⎡
⎣∏

j∈J

f(a + φj(d))
∣∣∣a ∈ Z ′, d ∈ Z

⎤
⎦ ≥ c. (8)

Example 3.2. Let S ⊂ ZN ×ZN . Suppose the associated measure ν = N
|S|1S satisfies

E[ν(x, y)ν(x′, y)ν(x, y′)ν(x′, y′)ν(x, z − x)ν(x′, z − x′)ν(x, z′ − x)ν(x′, z′ − x′)
· ν(z − y, y)ν(z − y′, y′)ν(z′ − y, y)ν(z′ − y′, y′)|x, x′, y, y′, z, z′ ∈ ZN ] = 1 + o(1)

and similar conditions hold if any subset of the twelve ν factors in the expectation
are erased. Then any corner-free subset of S has size o(|S|). Here a corner in Z

2
N

is a set of the form {(x, y), (x + d, y), (x, y + d)} for some d 	= 0. This claim follows
from Theorem 3.1 by setting Z = ZN , Z ′ = Z

2
N , φ0(d) = (0, 0), φ1(d) = (d, 0),

φ2(d) = (0, d).

As in [Tao06a, Remark 2.19], we note that the hypothesis that {φi(d) − φj(d) :
i, j ∈ J, d ∈ Z} generate Z ′ can be dropped by foliating Z ′ into cosets. However,
this results in a change to the linear forms hypothesis on ν, namely, that it must be
assumed on every coset.

We shall prove Theorem 3.1 by proving a somewhat more general removal-type
result for arithmetic patterns.
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Theorem 3.3 (Relative arithmetic removal lemma). For every finite set J and
ε > 0, there exists c > 0 so that the following holds. Let Z, Z ′, (φj)j∈J , ν be the
same as in Theorem 3.1. For any collection of functions {fj : Z ′ → R≥0}j∈J satisfying
0 ≤ fj(x) ≤ ν(x) for all x ∈ Z ′ and j ∈ J , and such that

E

⎡
⎣∏

j∈J

fj(a + φj(d))
∣∣∣a ∈ Z ′, d ∈ Z

⎤
⎦ ≤ c, (9)

one can find Aj ⊆ Z ′ for each j ∈ J so that

∏
j∈J

1Aj
(a + φj(d)) = 0 for all a ∈ Z ′, d ∈ Z (10)

and

E[fj(x)1Z′\Aj
(x)|x ∈ Z ′] ≤ ε for all j ∈ J. (11)

Theorem 3.1 follows from Theorem 3.3 by setting fj = f for all j ∈ J and
ε < δ/(r + 1). Indeed, if the conclusion (8) fails, then Theorem 3.3 implies that
there exists Aj ⊆ Z ′ for each j ∈ J satisfying (10) and (11). The Aj ’s cannot have
a common intersection, or else (10) fails for d = 0. It follows that {Z ′\Aj : j ∈ J}
covers Z ′, and hence (11) implies that E[f ] ≤ ∑

j E[fj1Z′\Aj
] ≤ (r + 1)ε < δ, which

contradicts the hypothesis E[f ] ≥ δ.

Proof of Theorem 3.3. Let V = (J, (Vj), r, H) be as in the statement of Theo-
rem 3.1. Write ej := J\{j} ∈ H. Define the weighted hypergraph g on V by setting

gej
(xej

) := fj(ψj(xej
)) for all j ∈ J

where ψj : Vej
→ Z ′ is defined by

ψj(xej
) =

∑
i∈ej

(φi(xi) − φj(xi)) = a + φj(d) (12)

where
a =

∑
i∈J

φi(xi) and d = −
∑
i∈J

xi. (13)

Then, for all x ∈ V and a, d defined in (13), we have
∏
j∈J

gej
(xej

) =
∏
j∈J

fj(a + φj(d)). (14)

The homomorphism x 
→ (a, d) : V → Z ′ × Z given by (13) is surjective: the image
contains {(φi(d) − φj(d), 0) : i, j ∈ J, d ∈ Z} and hence all of Z ′ × {0}. Moreover,
the image also contains {(−φi(d), d) : i ∈ J, d ∈ Z}. Together, these sets generate
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all of Z ′ ×Z. It follows that (a, d) varies uniformly over Z ′ ×Z as x varies uniformly
over VJ , and so (14) implies that

E

⎡
⎣∏

j∈J

gej
(xej

)
∣∣∣x ∈ VJ

⎤
⎦ = E

⎡
⎣∏

j∈J

fj(a + φj(d))
∣∣∣a ∈ Z ′, d ∈ Z

⎤
⎦ ≤ c.

By the relative hypergraph removal lemma, for c small enough (depending on J and
ε), we can find a subset E′

j ⊂ Vej
for each j ∈ J such that

∏
j∈J

1E′
j
(xej

) = 0 for all x ∈ VJ (15)

and
E[gej

(xej
)1Vej

\E′
j
(xej

)|xej
∈ Vej

] ≤ ε/(r + 1) for all j ∈ J.

For each j ∈ J , define Aj ⊆ Z ′ by

Aj := {z′ ∈ Z ′ : |ψ−1
j (z′) ∩ E′

j | > r
r+1 |ψ−1

j (z′)|}. (16)

In other words, Aj contains z′ ∈ Z ′ if the hypergraph removal lemma removes less
than a 1/(r + 1) fraction of the edges in Vej

representing z′ via ψj .
For any z′ ∈ Z ′\Aj , on the fiber ψ−1(z′) the function gej

takes the common
value fj(z′). Furthermore, by (16), on this fiber, the expectation of 1Vej

\E′
j

is at
least 1/(r + 1). Hence

E[fj(x)1Z′\Aj
(x)|x ∈ Z ′] ≤ (r + 1)E[gej

(xej
)1Vej

\E′
j
(xej

)|xej
∈ Vej

] ≤ ε.

This proves (11). To prove (10), suppose for some a ∈ Z ′, d ∈ Z we have a+φj(d) ∈
Aj for all j ∈ J . Let V a,d

J ⊂ VJ consist of all x ∈ VJ satisfying (13). Then ψj(xej
) =

a+φj(d) for all x ∈ V a,d
J by (12), and in fact ψ−1

j (a+φj(d)) is the projection of V a,d
J

onto Vej
. By (16), more than an r

r+1 fraction of this projection is in E′
j . It follows

by the pigeonhole principle (or a union bound on the complement) that there exists
some x ∈ V a,d

J such that xej
∈ E′

j for every j ∈ J . But this contradicts (15). Thus
(10) holds. �

4 The Relative Hypergraph Removal Lemma

Proof of Theorem 2.12. By Lemma 2.15, ν is upper o(1)-regular, so we can apply
the weak sparse hypergraph regularity lemma (Theorem 2.16) to find functions g̃e :
Ve → [0, 1] for every e ∈ H so that (g, g̃) is an o(1)-discrepancy pair. By the counting
lemma (Theorem 2.17), we have

E

[∏
e∈H

g̃e(xe)

∣∣∣∣∣x ∈ VJ

]
= E

[∏
e∈H

ge(xe)

∣∣∣∣∣x ∈ VJ

]
+ o(1) ≤ δ + o(1).
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The dense weighted hypergraph removal lemma (Theorem 2.11) tells us that for
each e ∈ H we can choose E′

e ⊂ Ve for which Ve\E′
e has complexity Oδ(1) (i.e., at

most some constant depending on δ) and such that
∏
e∈H

1E′
e
(xe) = 0 for all x ∈ VJ

and, as long as δ is small enough and N is large enough, we have

E[g̃e(xe)1Ve\E′
e
(xe)|xe ∈ Ve] ≤ ε/2 for all e ∈ H. (17)

As Ve\E′
e has complexity Oδ(1), there is a partition of Ve\E′

e into Oδ(1) hypergraphs
Fei each of which is the set of r-cliques of some (r−1)-uniform hypergraph. We have

|E[(g̃e − ge)(xe)1Ve\E′
e
(xe)|xe ∈ Ve]| ≤

∑
i

|E[(g̃e − ge)(xe)1Fei
(xe)|xe ∈ Ve]|

≤
∑

i

o(1) = Oδ(1)o(1) ≤ ε/2 for all e ∈ H.

(18)

We used that (ge, g̃e) is an o(1)-discrepancy pair on each of the terms of the sum,
and the final inequality is true as long as N is large enough. Combining (17) and
(18) we obtain

E[ge(xe)1Ve\E′
e
(x)|xe ∈ Ve] ≤ ε for all e ∈ H.

This proves the claim. �

5 The Weak Regularity Lemma

Let X be a finite set and g : X → R≥0. Let F be a family of subsets of X which
is closed under intersection, X ∈ F , all subsets of X of size one are in F , and such
that, for every S ∈ F , there is a partition of X which contains S and consists of
members of F . For t ≥ 2, the family F is t-splittable if for every S ∈ F there is a
partition P of X into members of F such that S ∈ P and |P | ≤ t. The complexity
p = p(f) of a function f : X → R≥0 is the minimum p for which there is a partition
X = S1 ∪ · · · ∪ Sp into p subsets each in F such that f is constant on each Si. We
call (g, g̃) an ε-discrepancy pair if for all A ∈ F ,

∣∣E[(g − g̃)1A]
∣∣ ≤ ε.

All expectations are taken with the uniform measure on X. For P a partition of X,
let gP be the function on X given by gP (x) = E[g1A]

E[1A] when x ∈ A ∈ P . That is, gP (x)
is the conditional expectation of g(x) given the partition P and is constant on any
part A of the partition.
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The function g we call upper η-regular if for every A ∈ F , we have

E[g1A] ≤ E[1A] + η.

If g is upper η-regular, A, B ∈ F , and F is t-splittable, then

E[g1B\A] ≤ E[1B\A] + (t − 1)η. (19)

Indeed, in this case B\A can be partitioned into t − 1 sets in F (we first split with
respect to A and then consider the intersections of the parts of the partition with
B). Applying the upper η-regularity condition to each of these sets and summing
up the inequalities, we arrive at (19).

Following Scott [Sco11], let φ : R≥0 → R≥0 be the convex function given by

φ(u) =

{
u2 if u ≤ 2,
4u − 4 otherwise.

For a partition P of X, let φ(P ) = E[φ (gP )], which is the mean φ-density of g with
respect to the partition P . As φ takes only nonnegative values and φ(u) ≤ 4u, we
have

0 ≤ φ(P ) ≤ 4E[gP ] = 4E[g].

Also, by the convexity of φ, it follows that if P ′ is a refinement of P , then φ(P ′) ≥
φ(P ).

Lemma 5.1. Let X and F as above be such that F is t-splittable. Let 0 < ε, η < 1
and T = t20/ε2 . For any g : X → R≥0 which is upper η-regular with η ≤ ε

8tT , there
is g̃ : X → [0, 1] with complexity at most T such that (g, g̃) is an ε-discrepancy pair.

Proof. Let α = ε2

4 . We first find a partition P of X into members of F with |P | ≤
t5/α = T such that for any refinement P ′ of P into members of F with |P ′| ≤ t|P |,
we have φ(P ′) − φ(P ) < α. In order to construct P , we first recursively construct a
sequence P0, P1, . . . of finer partitions of X into members of F so that |Pj | ≤ tj and
φ(Pj) ≥ jα. We begin by considering the trivial partition P0 = {X}, which satisfies
φ(P0) ≥ 0. At the beginning of step j +1, we have a partition Pj of X into members
of F with |Pj | ≤ tj and φ(Pj) ≥ jα. If there exists a refinement Pj+1 of X into
members of F with |Pj+1| ≤ t|Pj | and φ(Pj+1) ≥ φ(Pj) + α, then we continue to
step j+2. Otherwise, we may pick P = Pj to be the desired partition. Note that this
process must stop after at most 5/α steps since 5 > 4(1 + η) ≥ 4E[g] ≥ φ(Pj) ≥ jα,
where the second inequality follows from g being upper η-regular. We therefore arrive
at the desired partition P .

Let P beX = S1 ∪ · · · ∪ Sp. Let g̃ : X → [0, 1], where g̃ = gP ∧ 1 is the minimum
of gP and the constant function 1. We will show that (gP , g̃) is an ε

4 -discrepancy
pair and (gP , g) is a 3ε

4 -discrepancy pair, which implies by the triangle inequality
that (g, g̃) is an ε-discrepancy pair. As g̃ has complexity at most |P | ≤ T , this will
complete the proof.
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We first show (gP , g̃) is an ε
4 -discrepancy pair. Note that gP − g̃ is nonnegative

and constant on each part of P . If Si ∈ P and gP − g̃ > 0 on Si, then also gP > 1
and g̃ = 1 on Si. As g is upper η-regular, we have E[g1Si

] ≤ E[1Si
] + η and hence

E[(g − g̃)1Si
] ≤ η. Therefore, by summing over all parts in the partition P , we see

that if A ∈ F ,

0 ≤ E[(gP − g̃)1A] ≤ E[(gP − g̃)] ≤ η|P | ≤ ηT ≤ ε

4
,

and (gP , g̃) is an ε
4 -discrepancy pair.

We next show that (gP , g) is a 3ε
4 -discrepancy pair, which completes the proof.

Suppose for contradiction that there is A ∈ F such that

|E[(gP − g)1A]| >
3ε

4
.

Let B be the union of all Si ∩ A, where Si ∈ P , for which both E[1Si∩A] ≥ tη and
E[1Si\A] ≥ tη.

We claim that for each Si ∈ P , we have

|E[(gP − g)(1A∩Si
− 1B∩Si

)]| ≤ 2tη. (20)

Indeed, if B∩Si = A∩Si, then the left hand side of (20) is 0. Otherwise, E[1A∩Si
] ≤ tη

or E[1Si\A] ≤ tη. In the first case, when E[1A∩Si
] ≤ tη, we have 1B∩Si

is identically
0, as well as

E[g1A∩Si
] ≤ E[1A∩Si

] + η ≤ (t + 1)η

and

E[gP 1A∩Si
] =

E[g1Si
]

E[1Si
]

E[1A∩Si
] ≤ (E[1Si

] + η)
E[1Si

]
E[1A∩Si

] ≤ E[1A∩Si
] + η ≤ (t + 1)η,

from which (20) follows. In the second case, when E[1Si\A] ≤ tη, we again have 1B∩Si

is identically 0, so that

E[(g − gP )(1A∩Si
− 1B∩Si

)] = E[(g − gP )1A∩Si
] = E[(g − gP )(1Si

− 1Si\A)]

= E[(g−gP )1Si
]−E[(g − gP )1Si\A] =−E[(g − gP )1Si\A],

and similar to the first case, using (19) to estimate E[g1Si\A] and E[gP 1Si\A], we get
(20).

Notice that

|E[(gP − g)1A] − E[(gP − g)1B]| = |E[(gP − g)(1A − 1B)]| ≤ |P |2tη ≤ ε

4
,

where the first inequality follows by using (20) for each part Si and the triangle
inequality. Hence,

|E[(gP − g)1B]| ≥ |E[(gP − g)1A]| − |E[(gP − g)1A] − E[(gP − g)1B]| >
3ε

4
− ε

4
=

ε

2
.
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Let P̂ be the refinement of P where Si is also in P̂ if B ∩ Si = ∅ and otherwise
Si ∩ B and Si\B are parts of P̂ , and let P ′ be a refinement of P̂ into at most t|P |
members of F . The refinement P ′ exists as F is t-splittable and is closed under
intersections, P consists of members of F , A ∈ F , and Si ∩ B = Si ∩ A ∈ F
if Si ∩ B ∈ P̂ . As P ′ is a refinement of P̂ which is a refinement of P , we have
φ(P ′) ≥ φ(P̂ ) ≥ φ(P ). Let R ∈ {Si, Si ∩ B, Si\B}, where Si is a part of P that is
refined into two parts in P̂ , so that E[1R] ≥ tη. Letting u = E[g1R]

E[1R] , we see, since g

is upper η-regular and using (19), that u ≤ 1 + tη(tη)−1 = 2 and hence φ(u) = u2.
It follows, by considering the functions pointwise, that φ(gP̂ ) − φ(gP ) = g2

P̂
− g2P .

Hence,

φ(P ′) − φ(P ) ≥ φ(P̂ ) − φ(P ) = E[g2
P̂
] − E[g2P ] = E[g2

P̂
− g2P ] = E[

(
gP̂ − gP

)2]

≥ E[(gP̂ − gP )1B]2 = E[(g − gP )1B]2 >
ε2

4
= α.

The third equality above is the Pythagorean identity, which uses that P̂ is a refine-
ment of P , and the second inequality is an application of the Cauchy-Schwarz
inequality. However, since P ′ is a refinement of P consisting of members of F with
|P ′| ≤ t|P |, this contradicts φ(P ′)−φ(P ) < α from the definition of P and completes
the proof. �

To establish the weak hypergraph regularity lemma, Theorem 2.16, we use
Lemma 5.1 with X = V1 × · · · × Vr and F being the family of subsets of X which
form the r-cliques of some r-partite (r−1)-uniform hypergraph with parts V1, . . . , Vr.
Noting that F is 2r-splittable in this case, we obtain Theorem 2.16.

6 The Counting Lemma

The three main ingredients in our proof of the counting lemma (Theorem 2.17) are
as follows.
(1) A standard telescoping argument [BCLSV08] in the dense case, i.e., when ν = 1.
(2) Repeated applications of the Cauchy-Schwarz inequality. This is a standard

technique in this area, e.g., [Gow01,Gow07,GT08,Tao06a].
(3) Densification. This is the main new ingredient in our proof. At each step, we

reduce the problem of counting H in a particular weighted hypergraph to that
of counting H in a modified weighted hypergraph. For an edge e ∈ H, we
replace the triple (νe, ge, g̃e) by a new triple (1, g′

e, g̃
′
e) with 0 ≤ g′

e, g̃
′
e ≤ 1 and

such that (g′
e, g̃

′
e) is an ε′-discrepancy pair for some ε′ = oε→0(1). By repeatedly

applying this reduction to all e ∈ H (we use induction), we reduce the counting
lemma to the dense case.

We developed the densification technique in our earlier paper [CFZ14], where we
proved a sparse counting lemma in graphs. We have significantly simplified a number
of technical steps from [CFZ14] in order to extend the densification technique to
hypergraphs here.
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6.1 Telescoping argument. The following argument allows us to prove the
counting lemma in the dense case, i.e., when 0 ≤ g ≤ 1.

Lemma 6.1 (Telescoping discrepancy argument for dense hypergraphs). Theo-
rem 2.17 holds if we assume that there is some e1 ∈ H so that νe = 1 for all
e ∈ H\{e1}. In fact, in this case,

∣∣∣∣∣E
[∏

e∈H

ge(xe)

∣∣∣∣∣x ∈ VJ

]
− E

[∏
e∈H

g̃e(xe)

∣∣∣∣∣x ∈ VJ

]∣∣∣∣∣ ≤ |H| ε. (21)

Lemma 6.1 uses only the assumption that (ge, g̃e) is an ε-discrepancy pair for
every e ∈ H and nothing about the linear forms condition on ν. Recall that for each
fixed e ∈ H, the condition that (ge, g̃e) is an ε-discrepancy pair means that for all
subsets Bf ⊆ Vf , f ∈ ∂e, we have

∣∣∣∣∣∣
E

⎡
⎣(ge(xe) − g̃e(xe))

∏
f∈∂e

1Bf
(xf )

∣∣∣∣∣xe ∈ Ve

⎤
⎦

∣∣∣∣∣∣
≤ ε. (22)

This is equivalent to the condition that for all functions uf : Vf → [0, 1], f ∈ ∂e, we
have ∣∣∣∣∣∣

E

⎡
⎣(ge(xe) − g̃e(xe))

∏
f∈∂e

uf (xf )

∣∣∣∣∣xe ∈ Ve

⎤
⎦

∣∣∣∣∣∣
≤ ε. (23)

Indeed, the expectation is linear in each uf and hence the extrema occur when the
uf ’s are {0, 1}-valued, thereby reducing to (22).

Proof. Let h = |H| and order the edges of H\{e1} arbitrarily as e2, . . . , eh. We can
write the left-hand side of (21), without the absolute values, as a telescoping sum

h∑
t=1

E

[(
t−1∏
s=1

g̃es
(xes

)

)
(get

(xet
) − g̃et

(xet
))

(
h∏

s=t+1

ges
(xes

)

) ∣∣∣∣∣x ∈ VJ

]
. (24)

For the t-th term in the sum, when we fix the value of xJ\et
∈ VJ\et

, the expectation
has the form

E

⎡
⎣(get

(xet
) − g̃et

(xet
))

∏
f∈∂et

uf (xf )

∣∣∣∣∣xet
∈ Vet

⎤
⎦ (25)

for some functions uf : Vf → [0, 1] (here we used the key fact that ges
≤ 1 for all

s > 1 and g̃es
≤ 1 for all s). Since (get

, g̃et
) is an ε-discrepancy pair, (23) implies

that (25) is bounded in absolute value by ε. The same bound holds after we vary
xJ\et

∈ VJ\et
. So every term in (24) is bounded by ε in absolute value, and hence

(24) is at most hε in absolute value. �
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6.2 Strong linear forms. The main result of this subsection tells us that ν can
be replaced by the constant function 1 in counting expressions. Though somewhat
technical in detail, the main idea of the proof is quite simple and may be summarized
as follows: we use the Cauchy-Schwarz inequality to double each vertex j of a certain
edge in turn, at each step majorizing those edges which do not contain j. This method
is quite standard in the field. In the work of Green and Tao, it is used to prove
generalized von Neumann theorems [GT08, Prop. 5.3], [Tao06a, Thm. 3.8], although
the statement of our lemma is perhaps more similar to the uniform distribution
property [GT08, Prop. 6.2], [Tao06a, Prop. 5.1].

We begin by using a similar method to prove a somewhat easier result. It shows
that if ν satisfies the H-linear forms condition then (ν, 1) is an o(1)-discrepancy pair,
which implies Lemma 2.15.

Lemma 6.2. Let e be a finite set, Vj a finite set for each j ∈ e, and Ve =
∏

j∈e Vj .
Then, for any function ν : Ve → R and any collection of Bf ⊆ Vf for f ∈ ∂e,

∣∣∣∣∣∣
E

⎡
⎣(νe(xe)−1)

∏
f∈∂e

1Bf
(xf )

∣∣∣xe ∈ Ve

⎤
⎦

∣∣∣∣∣∣
≤E

⎡
⎣ ∏

ω∈{0,1}e

(νe(x(ω)
e )−1)

∣∣∣∣∣x
(0)
e , x(1)

e ∈Ve

⎤
⎦
1/2|e|

.

(26)

Lemma 6.2 follows from a direct application of the Gowers-Cauchy-
Schwarz [Gow01] inequality for hypergraphs (see [CFZ]). We include the proof here
for completeness.

Proof. For ∅ ⊆ d ⊆ e, let

Xd :=
∏

ω∈{0,1}d

(ve(xe\d, x
(ω)
d ) − 1), Yd :=

∏
f∈∂e
f⊇d

∏
ω∈{0,1}d

1Bf
(xf\d, x

(ω)
d ),

and
Qd := E[XdYd|xe\d ∈ Ve\d, x

(0)
d , x

(1)
d ∈ Vd].

Then (26) can be written as |Q∅| ≤ Q
1/2|e|
e . By induction, it suffices to show that

Q2
d ≤ Qd∪{j} whenever j ∈ e\d. Let Yd = Y �j

d Y ��j
d where Y �j

d consists of all the
factors in Yd that contain xj in the argument, and Y ��j

d consists of all other factors.
By the Cauchy-Schwarz inequality, we have

Q2
d = E[E[XdY

�j
d |xj ∈ Vj ]Y

��j
d ]2 ≤ E[E[XdY

�j
d |xj ∈ Vj ]2]E[(Y ��j

d )2] ≤ Qd∪{j},

since Qd∪{j} = E[E[XdY
�j
d |xj ∈ Vj ]2] and 0 ≤ Y ��j

d ≤ 1, where the outer expectations

are taken over all free variables. This shows that Q2
d ≤ Qd∪{j}. Hence, |Q∅| ≤ Q

1/2|e|
e ,

as desired. �
The next lemma is very similar, except that now we need to invoke the linear

forms condition.
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Lemma 6.3 (Strong linear forms). Let V = (J, (Vj)j∈J , r, H) be a hypergraph system
and let ν be a weighted hypergraph on V satisfying the linear forms condition. Let

e1 ∈ H. For each ι ∈ {0, 1} and e ∈ H\{e1}, let g
(ι)
e : Ve → R≥0 be a function so

that either g
(ι)
e ≤ 1 or g

(ι)
e ≤ νe holds. Then

E

⎡
⎣(νe1(xe1)−1)

∏
ι∈{0,1}

⎛
⎝ ∏

e∈H\{e1}
g(ι)e (x(ι)

e )

⎞
⎠

∣∣∣∣∣x
(0)
J , x

(1)
J ∈ VJ ; x(0)

e1
=x(1)

e1
=xe1

⎤
⎦ = o(1).

(27)

In (27), the notation x
(0)
e1 = x

(1)
e1 = xe1 means that x

(0)
j , x

(1)
j , xj are taken to be

the same for all j ∈ e1. Recall that we write o(1) for a quantity that tends to zero
as N → ∞.

Proof. For each ι ∈ {0, 1} and e ∈ H\{e1}, let ḡ
(ι)
e be either 1 or νe so that g

(ι)
e ≤ ḡ

(ι)
e

holds. For ∅ ⊆ d ⊆ e1, define

Xd :=
∏

ω∈{0,1}d

(νe1(xe1\d, x
(ω)
d ) − 1),

Yd :=
∏

ι∈{0,1}

∏
e∈H\{e1}

∏
ω∈{0,1}e∩d

{
g
(ι)
e (x(ι)

e\e1
, x

(ω)
d , xe∩e1\d) if e ⊇ d

ḡ
(ι)
e (x(ι)

e\e1
, x

(ω)
e∩d, xe∩e1\d) if e � d

}
,

and
Qd := E

[
XdYd

∣∣x(0)
(J\e1)∪d, x

(1)
(J\e1)∪d ∈ V(J\e1)∪d, xe1\d ∈ Ve1\d

]
.

We observe that Q∅ is equal to the left-hand side of (27) and

Qe1 = E

⎡
⎣ ∏

ω∈{0,1}e1

(
νe1(x

(ω)
e1

) − 1
) ∏

ι∈{0,1}

∏
e∈H\{e1}

∏
ω∈{0,1}e∩e1

ḡ(ι)e

(
x
(ι)
e\e1

, x
(ω)
e∩e1

)

∣∣∣∣∣x
(0)
J , x

(1)
J ∈ VJ

]
= o(1)

by the linear forms condition (4).4 Indeed, after we expand
∏

ω∈{0,1}e1 (νe1(x
(ω)
e1 )−1),

every term in Qe1 has the form of (4) (since ḡ
(ι)
e is 1 or νe). Thus Qe1 is the sum

of 2|e1| terms, each of which is ±(1 + o(1)) by the linear forms condition, and they
cancel accordingly to o(1).

We claim that if j ∈ e1\d then

|Qd| ≤ (1 + o(1))Q1/2
d∪{j}, (28)

4 This is where the weak 2-blow-up of H arises, since the estimate Qe1 = o(1) only relies upon
knowing that ν has roughly the expected density for certain subgraphs of the weak 2-blow-up.
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from which it would follow by induction that

|LHS of (27)| = |Q∅| ≤ (1 + o(1))Q1/2r

e1
= o(1).

Now we prove (28). Let Yd = Y �j
d Y ��j

d where Y �j
d consists of all the factors in Yd that

contain xj in the argument, and Y ��j
d consists of all other factors. Using the Cauchy-

Schwarz inequality and Y ��j
d ≤ Y

��j
d , where Y

��j
d denotes the expression obtained from

Y ��j
d by replacing all g’s by ḡ’s, one has

Q2
d = E[E[XdY

�j
d |xj ∈ Vj ]Y

��j
d ]2 ≤ E[E[XdY

�j
d |xj ∈ Vj ]2Y

��j
d ] E[Y ��j

d ]

≤ E[E[XdY
�j
d |xj ∈ Vj ]2Y

��j
d ] E[Y ��j

d ] = Qd∪{j} E[Y ��j
d ] (29)

where the outer expectations are taken over all free variables. The second factor in
(29) is 1 + o(1) by the linear forms condition (4) as Y

��j
d consists only of ν factors.

This proves (28). �
6.3 Counting lemma proof. As already mentioned, the main idea of the fol-
lowing proof is a process called densification, where we reduce the problem of count-
ing H in a sparse hypergraph to that of counting H in a dense hypergraph by
replacing sparse edges with dense edges one at a time. Several steps are needed to
densify a given edge e1. The first step is to double all vertices outside of e1 and to
majorize ge1 by νe1 . We then use the strong linear forms condition to remove the
edge corresponding to e1 entirely. This leaves us with the seemingly harder problem
of counting the graph H ′ consisting of two copies of H\{e1} joined along the vertices
of e1. However, an inductive hypothesis tells us that we can count copies of H\{e1}.
The core of the proof is in showing that this allows us to replace one of the copies
of H\{e1} in H ′ by a dense edge, thus reducing our problem to that of counting H
with one edge replaced by a dense edge.

Proof of Theorem 2.17. We use induction on |{e ∈ H : νe 	= 1}|. When
|{e ∈ H : νe 	= 1}| = 0 or 1, the result follows from Lemma 6.1. Now take e1 ∈ H so
that νe1 	= 1.

We assume that |J | is a fixed constant. We write o(1) for a quantity that tends
to zero as N → ∞ and oε→0(1) for a quantity that tends to zero as N → ∞ and
ε → 0. We need to show that the following quantity is oε→0(1):

E

[∏
e∈H

ge(xe)

∣∣∣∣∣x ∈ VJ

]
− E

[∏
e∈H

g̃e(xe)

∣∣∣∣∣x ∈ VJ

]

= E

⎡
⎣ge1(xe1)

⎛
⎝ ∏

e∈H\{e1}
ge(xe) −

∏
e∈H\{e1}

g̃e(xe)

⎞
⎠

∣∣∣∣∣x ∈ VJ

⎤
⎦

+E

⎡
⎣(ge1(xe1) − g̃e1(xe1))

⎛
⎝ ∏

e∈H\{e1}
g̃e(xe)

⎞
⎠

∣∣∣∣∣x ∈ VJ

⎤
⎦ . (30)
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The second term on the right-hand side of (30) is at most ε in absolute value since
(ge1 , g̃e1) is an ε-discrepancy pair and g̃ ≤ 1 (e.g., see proof of Lemma 6.1). It remains
to show that the first term on the right-hand side of (30) is oε→0(1).

Define functions ν ′
e1

, g′
e1

, g̃′
e1

: Ve1 → R≥0 by

ν ′
e1

(xe1) := E

⎡
⎣ ∏

e∈H\{e1}
νe(xe)

∣∣∣xJ\e1
∈ VJ\e1

⎤
⎦ , (31)

g′
e1

(xe1) := E

⎡
⎣ ∏

e∈H\{e1}
ge(xe)

∣∣∣xJ\e1
∈ VJ\e1

⎤
⎦ , (32)

g̃′
e1

(xe1) := E

⎡
⎣ ∏

e∈H\{e1}
g̃e(xe)

∣∣∣xJ\e1
∈ VJ\e1

⎤
⎦ . (33)

We have g′
e1

≤ ν ′
e1

and g̃e1 ≤ 1 (pointwise). In the rest of this proof, unless otherwise
specified, expectations are for functions on Ve1 with arguments varying uniformly
over Ve1 . The linear forms condition (4) implies that E[ν ′

e1
] = 1+o(1) and E[(ν ′

e1
)2] =

1 + o(1), so that5

E[(ν ′
e1

− 1)2] = o(1). (34)
The square of the first term on the right-hand side of (30) equals

E[ge1(g
′
e1

− g̃′
e1

)]2 ≤ E[ge1(g
′
e1

− g̃′
e1

)2] E[ge1 ] ≤ E[νe1(g
′
e1

− g̃′
e1

)2] E[νe1 ]

= (E[(g′
e1

− g̃′
e1

)2] + o(1))(1 + o(1)).
(35)

The first inequality above is due to the Cauchy-Schwarz inequality. In the final step,
both factors are estimated using Lemma 6.3 (for the first factor, expand the square
(g′

e1
− g̃′

e1
)2 and apply Lemma 6.3 term by term). Continuing (35) it suffices to show

that the following quantity is oε→0(1):

E[(g′
e1

− g̃′
e1

)2] = E[(g′
e1

− g̃′
e1

)(g′
e1

− g′
e1

∧ 1)] + E[(g′
e1

− g̃′
e1

)(g′
e1

∧ 1 − g̃′
e1

)] (36)

(here a ∧ b := min{a, b}). That is, we are capping the weighted hypergraph g′
e1

by
1. Since ν ′

e1
is very close to 1 by (34), this should not result in a large loss. Indeed,

since 0 ≤ g′
e1

≤ ν ′
e1

, we have

0 ≤ g′
e1

− g′
e1

∧ 1 = max{g′
e1

− 1, 0} ≤ max{ν ′
e1

− 1, 0} ≤ |ν ′
e1

− 1|. (37)

Using (37), g′
e1

≤ ν ′
e1

, and g̃′
e1

≤ 1, we bound the magnitude of the first term on the
right-hand side of (36) by

E[(ν ′
e1

+1)
∣∣ν ′

e1
−1

∣∣]=E[(ν ′
e1
−1)

∣∣ν ′
e1

−1
∣∣]+2E[

∣∣ν ′
e1

−1
∣∣]

≤ E[(ν ′
e1

−1)2]+2E[(ν ′
e1

−1)2]1/2=o(1)

5 In fact, the only assumptions on ν needed for the proof of Theorem 2.17 are (34) and the strong
linear forms condition, Lemma 6.3, as well as analogous conditions for other choices of e1 ∈ H and
allowing some subset of the functions νe to be replaced by 1.
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by the triangle inequality, the Cauchy-Schwarz inequality, and (34). To estimate the
second term on the right-hand side of (36), we need the following claim.

Claim. (g′
e1

∧ 1, g̃′
e1

) is an ε′-discrepancy pair with ε′ = oε→0(1).

Proof of Claim. We need to show that, whenever Bf ⊆ Vf for all f ∈ ∂e1, we have

E

[
(g′

e1
(xe1) ∧ 1 − g̃′

e1
(xe1))

∏
f∈∂e1

1Bf
(xf )

∣∣∣xe1 ∈ Ve1

]
= oε→0(1). (38)

Define g′′
e1

: Ve1 → R≥0 by g′′
e1

(xe1) =
∏

f∈∂e1
1Bf

(xf ). So the left-hand side of (38)
is equal to

E[(g′
e1

∧ 1 − g′
e1

)g′′
e1

] + E[(g′
e1

− g̃′
e1

)g′′
e1

]. (39)

Using 0 ≤ g′′
e1

≤ 1, (37), the Cauchy-Schwarz inequality, and (34), we can bound the
magnitude of the first term in (39) by

E[
∣∣ν ′

e1
− 1

∣∣] ≤ E[(ν ′
e1

− 1)2]1/2 = o(1).

The second term of (39) is equal to

E

⎡
⎣

⎛
⎝ ∏

e∈H\{e1}
ge(xe) −

∏
e∈H\{e1}

g̃e(xe)

⎞
⎠ g′′

e1
(xe1)

∣∣∣∣∣x ∈ VJ

⎤
⎦ .

This is oε→0(1) by the induction hypothesis applied to new weighted hypergraphs
where the old (νe1 , ge1 , g̃e1) gets replaced by (1, g′′

e1
, g′′

e1
), thereby decreasing |{e ∈ H :

νe 	= 1}|. Note that the linear forms condition continues to hold. Thus (38) holds,
so (g′

e1
∧ 1, g̃′

e1
) is an ε′-discrepancy pair with ε′ = oε→0(1). �

We expand the second term of (36) as

E[(g′
e1

−g̃′
e1

)(g′
e1

∧1−g̃′
e1

)] = E[g′
e1

(g′
e1

∧1)]−E[g′
e1

g̃′
e1

]−E[g̃′
e1

(g′
e1

∧1)]+E[(g̃′
e1

)2]. (40)

We claim that each expectation on the right-hand side of (40) is E[(g̃′
e1

)2]+oε→0(1).
Indeed, by (32) and (33) we have

E[g′
e1

(g′
e1

∧ 1)] − E[(g̃′
e1

)2]

= E

⎡
⎣

⎛
⎝(g′

e1
(xe1) ∧ 1)

∏
e∈H\{e1}

ge(xe) − g̃′
e1

(xe1)
∏

e∈H\{e1}
g̃e(xe)

⎞
⎠

∣∣∣∣∣x ∈ VJ

⎤
⎦ ,

which is oε→0(1) by the induction hypothesis applied to new weighted hypergraphs
where the old (νe1 , ge1 , g̃e1) is replaced by (1, g′

e1
∧ 1, g̃′

e1
). This is allowed as (g′

e1
∧

1, g̃′
e1

) is an ε′-discrepancy pair with ε′ = oε→0(1), the new ν still satisfies the linear
forms condition, and |{e ∈ H : νe 	= 1}| has decreased. The claims that the other
terms on the right-hand side of (40) are each E[(g̃′

e1
)2]+ oε→0(1) are similar (in fact,

easier). It follows that (40) is oε→0(1), so (36) is oε→0(1) and we are done. �
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7 Concluding Remarks

Conditions for counting lemmas. In this paper, we determined sufficient condi-
tions for establishing a relative Szemerédi theorem and, more generally, a counting
lemma for sparse hypergraphs. We have assumed that the hypergraph we want to
count within is a subgraph of a pseudorandom hypergraph. The main question then
is to determine a good notion of pseudorandomness which is suffficient to establish
a counting lemma.

There is a marked difference between this paper and our previous paper on graphs
[CFZ14] in terms of the type of pseudorandom condition assumed for the majorizing
hypergraph. In this paper, we prove a counting lemma for a given hypergraph H by
assuming that the underlying pseudorandom hypergraph contains approximately the
correct count for each hypergraph in a certain collection of hypergraphs H derived
from H. That is, for each H ′ ∈ H, we assume that our pseudorandom hypergraph
contains (1 + o(1))pe(H′)nv(H′) labeled copies of H ′, where p is the edge density of
the pseudorandom hypergraph.

The approach used in [CFZ14] is equivalent, up to some polynomial loss in ε, to
assuming that the number of labeled cycles of length 4 in our pseudorandom graph
is (1+ε)p4n4, where ε is now a carefully controlled term and the question of whether
H can be embedded in our pseudorandom graph depends on whether ε is sufficiently
small with respect to H and p. It is possible to adapt the methods of this paper so
that the notion of pseudorandomness used for hypergraphs is more closely related
to this latter notion. However, for the purposes of applying the results to a relative
Szemerédi theorem, the current formulation seemed more appropriate.

Gowers uniformity norms. For a function f : ZN → R, the Gowers U r-norm of
f is defined to be

‖f‖Ur = E

⎡
⎣ ∏

ω∈{0,1}r

f(x0 + ω · x)

∣∣∣∣∣x0, x1, . . . , xr ∈ ZN

⎤
⎦
1/2r

,

where x = (x1, . . . , xr). The following inequality, referred to as a generalized von
Neumann theorem, bounds the weighted count of (r+1)-term arithmetic progressions
from functions f0, . . . , fr in terms of the Gowers uniformity norm:

∣∣∣E
[
f0(x)f1(x + d)f2(x + 2d) . . . fr(x + rd)

∣∣∣x, d ∈ ZN

]∣∣∣ ≤ ‖fj‖Ur

∏
i�=j

‖fi‖∞ .

This fundamental fact is an important starting point for Gowers’ celebrated proof
[Gow01] of Szemerédi’s theorem as well as many later developments in additive
combinatorics. For a sparse set S ⊆ ZN of density p, this inequality implies the
correct count of (r + 1)-term arithmetic progressions in S as long as ‖ν − 1‖Ur =
o(pr), where ν = p−11S (a more careful analysis shows that it suffices to assume
‖ν − 1‖Ur = o(pr/2)).
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Gowers [Gow10]6 and Green [GreenPC] asked if ‖ν − 1‖Us = o(1) for some large
s = s(r) is sufficient for ν to satisfy a relative Szemerédi theorem for (r + 1)-
term arithmetic progressions. Note that this is precisely a linear forms condition
and we proved in this paper that a different linear forms condition is sufficient.
However, we do not even know if such a condition implies the existence of (r + 1)-
term arithmetic progressions in ν. Clearly s(r) cannot be too small and indeed we
know from the recent work of Bennett and Bohman [BB] on the random AP-free
process that one can find a 3-AP-free S ⊂ ZN such that ν = (N/|S|)1S satisfies
‖ν −1‖U2 = o(1). Therefore, if s(2) exists, it must be greater than 2. More generally,
they show that s(r) > 1 + log2 r. In a companion note [CFZ], we show that if a
measure ν satisfies the stronger condition ‖ν − 1‖Ur = o(pr), where p = ‖ν‖−1

∞ , then
the relative Szemerédi theorem holds with respect to ν for (r + 1)-term arithmetic
progressions. This strengthens the consequence of the generalized von Neumann
theorem discussed above.

Corners in products of pseudorandom sets. Example 3.2 illustrates the rela-
tive multidimensional Szemerédi theorem applied to a pseudorandom set S ⊂ Z

2
N .

However, the situation is quite different for S × S ⊂ Z
2
N with some pseudorandom

set S ⊂ ZN . Indeed, S × S ⊂ Z
2
N does not satisfy the linear forms condition in

Example 3.2. Intuitively, this is because the events (x, y) ∈ S ×S and (x, y′) ∈ S ×S
are correlated as both involve x ∈ S.

However, we may still deduce the following result using our relative triangle
removal lemma. Recall that a corner in Z

2
N is a set of the form {(x, y), (x+d, y), (x, y+

d)}, where d 	= 0.

Proposition 7.1. If S ⊂ ZN is such that ν = N
|S|1S satisfies

E[ν(x)ν(x′)ν(z − x)ν(z − x′)ν(z′ − x)ν(z′ − x′)
· ν(y)ν(y′)ν(z − y)ν(z − y′)ν(z′ − y)ν(z′ − y′)|x, x′, y, y′, z, z′ ∈ ZN ] = 1 + o(1)

and similar conditions hold if any subset of the ν factors are erased, then any corner-
free subset of S × S has size o(|S|2).
Proof (sketch). Let A be a corner-free subset of S×S. We build two tripartite graphs
Γ and G on the same vertex set X ∪ Y ∪ Z with X = Y = S and Z = ZN (note
that unlike the proof of Theorem 3.1 we do not take X and Y to be the whole of
ZN here). In Γ, we place a complete bipartite graph between X and Y ; between Y
and Z the edge (y, z) ∈ Y × Z is present if and only if z − y ∈ S; and between X
and Z the edge (x, z) ∈ X × Z is present if and only if z − x ∈ S. In G, between X
and Y the edge (x, y) ∈ (X, Y ) is present if and only if (x, y) ∈ A; between Y and
Z the edge (y, z) ∈ Y × Z is present if and only if (z − y, y) ∈ A; and between X
and Z the edge (x, z) ∈ X × Z is present if and only if (x, z − x) ∈ A.

6 This question can be found in the penultimate paragraph in §4 of the arXiv version of [Gow10].
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The vertices (x, y, z) ∈ X × Y × Z form a triangle if and only if (x, y), (z −
y, y), (x, z − x) ∈ A. These three points form a corner, which is degenerate only
when x + y = z. Since A is corner-free, every edge of G is contained in exactly one
triangle (namely the one that completes the equation x + y = z). In particular, G
contains exactly |A| triangles. After checking some hypotheses, we can apply our
relative triangle removal lemma (as a special case of Theorem 2.12) to conclude
that it is possible to remove all triangles from G by deleting o(|S|2) edges. Since
every edge of G is contained in exactly one triangle, and |G| has 3|A| edges, we have
|A| = o(|S|2), as desired. �

One can easily generalize the above Proposition to Sm ⊂ Z
m
N (as before, S ⊂

ZN ). Here a corner is a set of the form {x,x + de1, . . . ,x + dem}, where x ∈ ZN ,
0 	= d ∈ ZN , and ei is the i-th coordinate vector. Then, for any fixed m, any corner-
free subset of Sm must have size o(|S|m), provided that ν = N

|S|1S satisfies the linear
forms condition

E

[ m∏
i=1

(
ν(x(0)

i )ni,0ν(x(1)
i )ni,1

∏
ω∈{0,1}{0}∪[m]\{i}

(x(ω0)
0 −

∑
j∈[m]\{i}

x
(ωj)
j )ni,ω

)

∣∣∣x(0)
0 , x

(1)
0 , . . . , x(0)

m , x(1)
m ∈ ZN

]
= 1 + o(1)

for any choices of exponents ni,0, ni,1, ni,ω ∈ {0, 1}.
A more general result concerning the existence of arbitrarily shaped constella-

tions in Sm is known, provided that S satisfies certain stronger linear forms hypothe-
ses. We refer the readers to [CMT,FZ,TZ13] for further details. In particular, the
multidimensional relative Szemerédi theorem holds in Pm, where P is the primes.

Sparse graph limits. The regularity method played a fundamental role in the
development of the theory of dense graph limits [BCLSV08,LS06]. However, no sat-
isfactory theory of graph limits is known for graphs with edge density o(1). Bollobás
and Riordan [BR09] asked a number of questions and made explicit conjectures on
suitable conditions for sparse graph limits and counting lemmas. Our work gives
some natural sufficient conditions for obtaining a counting lemma in a sequence
of sparse graphs GN . The new counting lemma allows us to transfer the results
of Lovász and Szegedy [LS06,LS07] on the existence of the limit graphon, as well
as the results of Borgs, Chayes, Lovász, Sós, and Vesztergombi [BCLSV08] on the
equivalence of left-convergence (i.e., convergence in homomorphism densities) and
convergence in cut distance. The famous quasirandomness results of Chung, Gra-
ham, and Wilson [CGW89] also transfer, namely, that an appropriate relationship
between edge density and C4-density (of homomorphisms) determines the asymp-
totic F -density for every graph F . We will explain these connections in more detail
in future writing.

Existing applications of the Green-Tao method. Though our discussion has
focused on the relative Szemerédi theorem, we have proved a relative version of



GAFA A RELATIVE SZEMERÉDI THEOREM 759

the stronger multidimensional Szemerédi theorem. Following Tao [Tao06a], this may
be used to prove that the Gaussian primes contain arbitrarily shaped constella-
tions, though without the need to verify either the correlation condition or the
dual function condition. It seems likely that our method could also be useful for
simplifying several other papers where the machinery of Green and Tao is used
[CM12,GT10,Le11,Mat12a,Mat12b,TZ08]. In some cases it should be possible to
use our results verbatim but in others, such as the paper of Tao and Ziegler [TZ08]
proving that there are arbitrarily long polynomial progressions in the primes, it will
probably require substantial additional work.

Sparse hypergraph regularity. In proving a hypergraph removal lemma for sub-
graphs of pseudorandom hypergraphs, we have developed a general approach to
regularity and counting in sparse pseudorandom hypergraphs which has the poten-
tial for much broader application. It is, for example, quite easy to use our results
to prove analogues of well-known combinatorial theorems such as Ramsey’s theo-
rem and Turán’s theorem relative to sparse pseudorandom hypergraphs of density
N−cH . We omit the details. In the graph case, a number of further applications
were discussed in [CFZ14]. We expect that hypergraph versions of many of these
applications should be an easy corollary of our results.

Counting in random hypergraphs. There has been much recent work on count-
ing lemmas and relative versions of combinatorial theorems within random graphs
and hypergraphs [BMS,CG,CGSS14,ST,Sch]. Surprisingly, there are a number of
disparate approaches to these problems, each having its own strengths and weak-
nesses. We believe that our results can be used to give an alternative framework for
one of these approaches, due to Conlon and Gowers [CG].7 Their proof relies heavily
upon an application of the Green-Tao transference theorem, which we believe can
be replaced with an application of the sparse Frieze-Kannan regularity lemma and
our densification technique. However, the key technical step in [CG], which in our
language is to verify that the strong linear forms condition, Lemma 6.3, holds when
ν is a random measure, would remain unchanged.

Sparse arithmetic removal. In Theorem 3.3, we proved an arithmetic removal
lemma for linear patterns such as arithmetic progressions. More generally, an arith-
metic removal lemma claims that if a system of linear equations Ma = b over the
integers has a small number of solutions a = (a1, a2, . . . , an) with ai ∈ Ai for all
i = 1, 2, . . . , n then one may remove a small number of elements from each Ai to
find subsets A′

i such that there are no solutions a′ = (a′
1, a

′
2, . . . , a

′
n) to Ma′ = b

with a′
i ∈ A′

i for all i = 1, 2, . . . , n. Such a result was conjectured by Green [Gre05]
and proved by Král’, Serra, and Vena [KSV12] and, independently, Shapira [Sha10].
Both of these proofs are based upon representing a system of linear equations by a
hypergraph and deducing the arithmetic removal lemma from a hypergraph removal

7 This should at least be true for theorems regarding graphs and hypergraphs, though we feel
that a similar approach should also be possible for subsets of the integers.
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lemma. Such an idea was first used by Král’, Serra, and Vena [KSV09] with graphs
(instead of hypergraphs). In [CFZ14], we adapted the arguments of [KSV09] to sparse
pseudorandom subsets of the integers using the removal lemma in sparse pseudoran-
dom graphs. Likewise, our results on hypergraph removal in this paper may be used
to prove a sparse pseudorandom generalization of the arithmetic removal lemma
[KSV12,Sha10] for all systems of linear equations.
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Comput. 13 (2004), 263–267.
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Math. Proc. Cambridge Philos. Soc. 156 (2014), 255–261.

David Conlon

Mathematical Institute, Oxford OX1 3LB, UK david.conlon@maths.ox.ac.uk

Jacob Fox and Yufei Zhao

Department of Mathematics, MIT, Cambridge, MA 02139-4307, USA
fox@math.mit.edu

yufeiz@math.mit.edu

Received: September 10, 2014
Accepted: October 20, 2014

http://arxiv.org/abs/1204.1884

	A relative Szemerédi theorem
	Abstract
	1 Introduction
	2 Definitions and Results
	2.1 A relative Szemerédi theorem.
	2.2 Hypergraphs.
	2.3 Hypergraph removal lemma.
	2.4 Weak hypergraph regularity.
	2.5 Counting lemma.

	3 The Relative Szemerédi Theorem
	4 The Relative Hypergraph Removal Lemma
	5 The Weak Regularity Lemma
	6 The Counting Lemma
	6.1 Telescoping argument.
	6.2 Strong linear forms.
	6.3 Counting lemma proof.

	7 Concluding Remarks
	Acknowledgments
	References




