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Abstract

This thesis demonstrates that acoustic variability, acoustic measurement error, and phoneme
classification error can be interpreted as predictable entailments of articulatory variability.
Speech production theory is tapped to explain sources of variability in the acoustic signal,
including random variation in a turbulent spectrum, increased losses at the glottis, and
coloration of the spectrum by subglottal and back cavity resonances. Measurements of
the burst front cavity resonance, and of formant frequencies, which are defined as the
eigenfrequencies of the vocal tract, are developed using both knowledge-based and HMM
design methods, and are evaluated using the tools of acoustic phonetics and of statistical
speech classification.

The error or uncertainty of both rule-based and HMM algorithms is evaluated by com-
parison to the measurements of human judges on a test set. Measurement error of the
rule-based algorithm is evaluated using aggregate statistical models, including explicit mod-
els of outliers and heteroskedasticity, and a non-parametric model of the effect on error of
phonetic context. Measurement uncertainty of the HMM formant tracker is calculated by
the HMM itself during the measurement process. The uncertainty models generated by the
HMM formant tracker are compared to formants transcribed by human judges, and shown
to provide imperfect but generally acceptable predictions of the measurement error.

Acoustic variability and acoustic measurement error are evaluated using the tools of
phonetic classification. Context-independent linear discriminant classification of stop place,
using tokens from the TIMIT multi-speaker database, is shown to be 89% correct using
manual formant and burst spectral measurements, but only 76% correct using automatic
measurements. It is demonstrated that the difference between the classification of man-
ual and automatic measurements can be accurately predicted using a heteroskedastic error
model. Context-dependent classification experiments using both rule-based and HMM for-
mant measurements result in 83-84% correct classification over the TIMIT TEST database.
The pattern of classification errors as a function of phonetic context is shown to be similar
to the pattern of errors of human listeners, indicating that the types of acoustic variability
which confuse the classifier may be similar to the types of variability which confuse human
listeners.

Thesis Supervisor: Kenneth N. Stevens
Title: Clarence J. LeBel Professor of Electrical Engineering
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Chapter 1

Introduction: The Acoustic
Correlates of Place

The sounds of English can be classified in terms of the quantized rotations, translations,
and stiffnesses of about six articulators: the lips, tongue blade, tongue body, soft palate,
pharynx, and vocal folds (Chomsky and Halle, 1968). Every phonetic distinction which
enters the acoustic signal is placed there by the actions of these six or so articulators.
It follows that a computer which is capable of tracking the salient changes in these six
articulators over time should be capable of recognizing most of the linguistic content of an
utterance.

Not all changes in the vocal tract shape, however, are linguistically salient. A listener
(who can’t see the speaker) has no information about tongue and lip positions except what
he can get from the formant frequencies and amplitudes during a vowel or glide, or the front
cavity resonances during a stop release or fricative. Since this is the only information about
the tongue and lips available to the listener, it follows, again, that a computer capable of
tracking the formants and front cavity resonances over time should be capable of recognizing
most of the linguistic information carried by the tongue and lips, including consonant place
ana vowel quality.

The prospect of a compact, complete representation of the linguistic information in the
signal prompted the development, in the 1970s and 1980s, of several speech recognizers
based partly on formant analysis (see e.g. Klatt, 1977). All of these recognizers failed,
in part, for the same reason: the formant tracking algorithms made mistakes, and the
higher-level knowledge sources were unable to recover from the low-level mistakes. More
recently, several phonetic studies have explored the possibility of using formant tracks to
discriminate consonant place (Kewley-Port, 1982, Sussman et al., 1991) and vowel quality
(Hillenbrand et al., 1995). These phonetic studies almost without exception rely on human
Jjudges to measure the formant frequencies, because automatic formant tracking algorithms
are considered unreliable. Both the early recognition studies and the more recent phonetic
studies assume that formant measurements must be perfect in order to be useful. Since the
formant measurements produced by a tracking algorithm are never perfect, the algorithms
have been judged to be useless.

This thesis proposes the use of imperfect automatic formant and front cavity reso-
nance measurements as a tool in the analysis of phonetic variability. Phonetic classification
(specifically, classification of consonant place) is used in this thesis as an experimental tool
for analysis of the variability in automatic formant and burst spectral measurements, but
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F2 Locus Plot, 2 Genders, 11 Vowels, 6 Stops (o=!labial,+=alveolar,x=velar)
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Figure 1-1: F2 onset (first measurable F2) as a function of F2 target (40ms after consonant
release), measured by human judges in 131 stop tokens from TIMIT.

phonetic classification is not the primary goal of this thesis. Rather, this thesis seeks to
demonstrate that acoustic variability, acoustic measurement error, and phoneme classifica-
tion error can all be interpreted as the product of articulatory variability, and that the most
useful analysis of any one of these manifestations of speech variability is often an analysis
which considers all four.

This thesis seeks to develop methods of analysis which draw on the accumulated knowl-
edge of both acoustic phonetics and speech recognition. First, a series of speech production
models are drawn from the field of acoustic phonetics, which describe in detail the articula-
tory sources of all of the types of acoustic variability considered later in the thesis. Second,
the field of speech recognition contributes several useful statistical models, including mix-
ture Gaussian error models and a hidden Markov formant tracking algorithm. Finally, the
production and the statistical models are used jointly, together with a few results from
speech perception studies, to study and interpret the results of three phoneme classification
experiments.

1.1 Measurements Used in this Thesis

Before we try to model measurement error, we first must decide what to measure. Following
the philosophy set out above, we will try to measure formant and front cavity resonance
information at consonant releases. This section will explorc what that might mean in a
little more detail.

Sussman et al. (1991) have demonstrated discrimination of consonant place on the basis
of “locus equations,” that is, by modeling the onset frequency of the second formant (F2) as
a linear function of its frequency at the center of the vowel. Figure 1-1 is a plot of onset F2
versus vowel center F2, measured by human judges on 66 voiced and 65 unvoiced stop-vowel
syllables from the TIMIT database (Zue et al., 1990). (The labeling of these 131 syllables
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F3 Locus Plot, 2 Genders, 11 Vowels, 6 Stops (o<=labial,+=alveolar,x=velar)
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Figure 1-2: F3 onset (firsc measurable F3) as a function of F3 target (40ms after consonant
release), measured by human judges in 131 stop tokens from the “test” subdirectory of
TIMIT.

will be described in more detail in chapter 3 of this thesis). This plot is not nearly as clean
as the plots in Sussman’s study, but it includes a lot of variation specifically excluded in
that article: these tokens are extracted from a varie.y of word contexts, and are produced
by more than 100 different speakers, with no preliminary averaging of tokens. Despite the
extra variability, there is potentially useful information in this plot. Labial and velar onset
frequencies seem to rise in parallel as a function of the vowel target, while alveolar onsets
are entirely confined between 1500 and 2500 Hertz (except one /duh/ ! with an onset at
1200 Hertz). Labial onsets, in fact, are mostly separate from the other two clouds, with the
lowest onset frequencies for almost every possible target.

Figure 1-2 is a plot of F3 onset frequency versus vowel center F3, for the same 131 stop
releases. The three places of articulation are not as well separated in this plot as they were
in figure 1-1, but there is at least a tendency for the F'3 onset of labial stops to be lower,
for each F3 target, than the onset frequencies of alveolar and velar stops. Perhaps if we
combine information from figures 1-1 and 1-2, we can do a little better at separating out
the labial stops.

Figure 1-3 displays information from the two previous plots, compressed into two di-
mensions using linear discriminant analysis. Linear discriminant analysis (LDA) is generally
considered a bad algorithm for phonetic classification, because it ignores all information ex-
cept the means of each cloud, and the total average covariance. One of the main points of
Sussman’s study, in particular, was that inter-phoneme differences in covariance, which are
not modeled by LDA, are important in classifying stops. Despite the obvious drawbacks of
LDA, it will be used extensively in this thesis for simple, preliminary classification tasks.

'Phonetic quality is represented, in this thesis, using TIMIT notation. For example, /d/ is the voiced
alveolar stop release, and /uh/ is the lax high back vowel.
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F2 and F3 Composite Measures (o=labial, +=alveolar,x=velar)

1m T L] L] ¥
__1000}
= . .
% + + +
t- + X x
o 80or + + 1
d + +
3 xx + x b
2 ° X HF+ $xt ¥ ¥x )35
c 600} o + + x +, x X B
o o g © +r; R xg
[o] x
5 ° 0% oot & g4t B o X *  x
« o °©0,08% k% + %
@ 400} o x x J
= ox® R x
[e} + X

2 o o ° ox +
3 o & x © x
ézoo- o .
3
2

0- e

o o

—200 A R . R ; A

-200 0 200 400 600 800 1000 1200

F2 Composite Measure (Onset-0.66°Target)

Figure 1-3: Composite F2 and F3 measurements, designed to differentiate lip and tongue
places of articulation.

Reasons for this choice will be discussed in section 1.5.

In figure 1-3, the abscissa is an LDA composite of F2 measures, and the ordinate is an
LDA composite of F3 measures. Both composite measurements were designed to separate
the data into two clouds, one cloud consisting of labial stops, the other consisting of alveolar
and velar stops (which we can collectively refer to as “lingual” stops). In this figure, by
combining the F2 and F3 locus plots, we have vastly improved the separation of labial and
lingual stops. In fact, figure 1-3 may represent the best labial/lingual separation we can get
(on this data set) using measurements of F2 and F3. It is time to add another measurement.

Blumstein and Stevens (1979) suggest a classification scheme which takes advantage of
the fact that alveolar and velar stops are released into a resonant front cavity, while the
turbulent burst of a labial stop is released directly into open space. The resonant shaping
of an alveolar or velar stop can add 10 to 20 dB to its amplitude, making alveolar and velar
stops typically more intense than labials. Figure 1-4 plots the amplitude of the largest peak
in the F2-F6 range of the burst spectrum, as measured by human judges on the same 131
stops, against an LDA composite of the four formant measurements introduced previously.
Amplitudes are measured in decibels, with reference to an arbitrary constant. TIMIT
recording levels are normalized (Zue et al., 1990); observations by the judges suggest that
variation in the recording level probably accounts for no more than 6-10dB of the range of
variability in each cloud.

The separation in figure 1-4 is quite good. A reasonable curved boundary between the
labial and lingual clouds would result in six or seven errors, or an error rate of abouvt 5%. A
linear boundary, calculated, for example, using LDA, would result in at least eight errors.

Now that we’ve identified most of the labial stops, we need measurements to separate
the velar and alveolar stops. Figure 1-5 shows the front cavity resonance, at release of the
alveolar and velar stops from the previous figures, plotted as a function of F2 onset. The
separation is almost total: the front cavity resonance of velar stops only rises above 2500
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Burst Amplitude vs. Composite Formant Measure (o=labial,+=alveolar,x=velar)
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Figure 1-4: Amplitude of the highest peak in the F2-F6 range of the burst spectrum, plotted
against a composite formant measurement designed to separate lip and tongue stops. 131
tokens, measured by human judges, from the “test” subdirectory of TIMIT.
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Figure 1-5: Frequency of the front cavity resonance, as a function of F2 onset. 88 alveolar
and velar stop releases, extracted from the “test” subdirectory of TIMIT, measured by
human judges.
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Hertz in front vowel context, that is, when the F2 onset is high, and there is only one
alveolar token with a front cavity resonance below 3000 Hertz. In fact, the phonemically
alveolar token at 2000 Hertz is not phonetically alveolar: the preceding vowel, an /er/, has
pulled the tongue blade back to a retroflex place of articulation. A linear boundary between
the alveolar and velar stops in this figure results in complete separation of alveolar and velar
tokens; the retroflex alveolar should perhaps receive special handling, because of the novel
place of articulation. 2

To summarize: with only four formant measurements and two burst spectral measure-
ments, we have succeeded in separating all but 6 or 7 out of 131 manually labeled utterances.
As a classification argument, of course, this reasoning is somewhat circular. First, we are
testing on the training data. Chapter 5 will demonstrate that a simple pairwise LDA
classifier, trained on a separate training set, classifies this data with 89% accuracy.

Second, the argument in this section is somewhat circular because the human judges,
who had access to the orthography, may have introduced some bias into the measurements.
The question of measurement bias is an important one, which is difficult to avoid when
asking human transcribers to make complex measurements. The only way to directly ad-
dress the question of measurement bias is by coding the measurement procedures into an
algorithm, and testing for differences between the algorithm and the measurements it is
supposed to imitate. If human measurements can be used to classify speech, and if al-
gorithms can imitate human measurements, then it should be possible to classify speech
automatically using the algorithms. The problem of classifying speech using human mea-
surements has been addressed here briefly; the problem of writing algorithms to imitate
human measurements will be the subject of this thesis.

1.2 Previous Studies: Automatic Formant Tracking

Many high quality automatic formant trackers have been developed over the years. This
section will discuss only the two which have contributed most directly to the work in this
thesis: an LPC-based tracker, which was used to provide inputs for the rule-based system
described in chapter 3 of this thesis, and an earlier hidden Markov model (HMM) tracker,
the design of which provided much of the foundation for the tracker developed in chapter 4.
This section will discuss these two formant trackers in chronological order, beginning with
the HMM tracker.

1.2.1 An HMM formant model

One of the first formant trackers to make use of a global dynamic programming search
algorithm was the HMM formant tracker developed by Kopec (1986).

In Kopec’s HMM formant tracker, the formant frequencies are viewed as hidden “states”
of the speech production mechanism, which condition the production of output spectra.
The search space consists of the set of possible formant frequency combinations, simplified
by either vector or scalar quantization, in order to reduce the computational load. The
transition probabilities are trained on data, and are generally monotonically decreasing as
a function of the absolute change in {requency.

2Stops with retroflex and lateral right contexts were omitted from this database, specifically to avoid
confounding alveolar, retroflex, and lateral places of articulation. The retroflex stop shown in figure 1-5
assimilated retroflex articulation from its left context, which was not examined prior to analysis.
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Kopec’s tracker uses a discrete output model. The spectrum of a speech frame being
examined is first vector quantized using an LPC distance metric, and the local probability
of affiliation with each candidate formant is determined by table lookup. These local output
probabilities are then combined with the transition probabilities using the forward-backward
algorithm, and the resulting @ posteriori formant probability distribution is used to calculate
the conditional expected value of the formant.

The formant frequencies generated by Kopec’s algorithm were tested as additional fea-
tures in an HMM digit recognizer with explicit duration models, whose other acoustic
features included the LPC spectrum, and the low-pass and total spectral energies (Bush
and Kopec, 1987). As with all previous attempts to use formants in speech recognition,
there was no attempt to explicitly model the measurement uncertainty of the formants,
and the recognition algorithm may therefore have suffered from formant tracking errors.
Since the recognition algorithm was given the same LPC spectra from which the formant
frequencies were calculated, the authors argue, the possibly erroneous formant frequencies
were effectively a corrupted version of information already available to the recognizer. Even
so, the first derivative of F2 was found to increase digit recognition scores. First derivatives
of F1 and F3 decreased recognition scores very slightly, while static information about any
formant significantly decreased recognition scores.

1.2.2 Finding the roots of the LPC polynomial

Linear predictive coding (LPC) was first proposed as an algorithm for efficiently finding the
resonant frequencies of the vocal tract (Atal and Hanauer, 1971), and is still used for that
purpose. The formant tracker developed by Talkin (1987) and distributed by Entropic Signal
Processing (1993) consists of two stages: a signal processing stage, which generates formant
candidates by solving for the roots of an LPC polynomial, and a dynamic programming
stage, which finds the most likely sequence of formants from the set proposed by LPC.

In his 1987 presentation, Talkin suggests several technical guidelines for LPC analysis.
Perhaps the most interesting of these is his discussion of window choice. Talkin suggests
that a window with high spectral sidelobes can significantly degrade a spectrum with a
large dynamic range. The formant tracker distributed by Entropics uses, by default, a
49ms cosine-to-the-fourth (cos**4) window. This window has a temporal and frequency
resolution similar to that of a 16ms rectangular window or 32ms Hanning window, but has
much lower spectral sidelobes than either.

In the second stage of the formant tracking algorithm, all possible mappings between
the LPC roots and the desired formants are enumerated, and a Viterbi algorithm is used
to find the optimum alignment. Local formant assignment costs are proportional to the
bandwidth of the LPC root, and to the absolute deviation between the root frequency
and an average formant value. Transition costs are proportional to the change in formant
frequency, divided by an estimate of overall spectral change.

1.3 Previous Studies: Acoustic Cues for Place Classification

In deciding what to measure, this thesis will depend on several previous acoustic phonetic
studies which have explored the acoustic correlates of consonant place. Most of the acous-
tic correlates of stop consonant place proposed in the literature fall into three categories:
descriptions of the spectral shape of the onset, measurements of formant motion, and time-
frequency spectral plots, commonly referred to as dynamic spectra. Of the various acoustic
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correlates of place proposed for nasal consonants, formant and dynamic spectral measure-
ments are the only acoustic features which have been proven to be useful for classification.

1.3.1 Onset spectral measurements for classification

O.e of the first studies investigating the use of onset spectra to classify the place of stop
consonants was published by Halle, Hughes, and Radley in 1957. In this study, the authors
gated twenty milliseconds from the releases of 99 stops (11 contexts, 3 places of articulation,
3 speakers). The authors noted first that velar stops in front vowel contexts were “acute,”
with strong peaks above 2000 Hertz, while velar stops in back vowel context were “grave,”
with spectral peaks at much lower frequencies. The authors therefore adopted a two-tiered
classification system. A stop was first classified as either acute or grave, on the basis of a
ratio of high-frequency to total spectral energy. Acute stops were then judged to be velar if
most of the energy was concentrated between 2000 and 4000 Hertz, and alveolar otherwise.
Grave stops were classified as labial or velar based on measurements of the peak frequency,
and of the dominance of the largest spectral peak. These measures resulted in about 79%
correct classification of place.

Blumstein and Stevens (1979) classified the onset spectra of stops (band-limited to 5000
Hertz) by fitting them to fixed templates. The templates were developed in part based on
speech production theory, and in part based on the analysis of 30 training tokens produced
by two speakers. The templates were then tested using pre-emphasized LPC spectra with
a 26 millisecond window, band-limited at 5000 Hertz, from the onsets of 450 stops uttered
by six speakers. The labial template was characterized as “diffuse falling,” and required
the largest high frequency peak and the largest low frequency peak to fall within 10dB
of each other, with variability allowed below about 1500 Hertz. The alveolar template
was characterized as “diffuse rising,” and required the largest two spectral peaks, with the
exception of a possible F2 peak near 1800 Hertz, to fit within a pair of reference lines
separated by 10dB and rising at about 10dB per kiloHertz. Finally, the velar template was
characterized as “compact,” and effectively required a single peak between 1200 and 3500
Hertz to be about 10dB larger than all other peaks in this range. Using these templates,
the authors were able to classify the test tokens with about 85% accuracy.

1.3.2 Formant frequency information

It has been known, since the perceptual work of Delattre, Liberman, and Cooper in 1955,
that formant frequencies may signal the place of a stop, but the degree to which formant
frequencies are actually used for this purpose in naturally occurring consonants has been
the subject of considerable controversy.

In 1961, Lehiste and Peterson measured formant transitions at the release of 1263 conso-
nants (one speaker), and found so much overlap between the different consonants that they
declared formants to be useless for the classification of naturally occurring stops. Their
conclusion was quantified in 1982 by Kewley-Port, who measured, by hand, three-point
approximations to the formant trajectories in 120 test tokens uttered by a single speaker.
She found that the onset frequencies of F2 and F3, taken together, correctly classified 97%
of the tokens given a known vowel context (and given a classifier trained on the test data),
but stop place identification independent of vowel context was only 68% correct.

Sussman, McCaffrey, and Matthews (1991) modeled vowel-dependent formant coarticu-
lation as a simple linear relationship between the formant at voice onset and the formant at
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vowel center. They found that the degree of coarticulation - the correlation between these
two measures - varied significantly depending on the place of articulation, and that correct
modeling of this correlation was essential to correct classification. They used a quadratic
discriminant to classify the average of five repetitions of each of 600 test syllables (3 stops,
10 vowels, 20 speakers), and achieved 77% correct classification of these average utterances.

1.3.3 Dynamic spectral information

Most recent classification studies have used dynamic spectral information as input, typically
computed as a simplification of periodic spectra in the first 40 to 70 milliseconds after
consonant release. Kewley-Port (1983) classified the three voiced stops with 88% accuracy
by using a template method, based partially on the templates of Blumstein and Stevens, with
40 millisecond sequences of LPC spectra (step 5ms) as input. Waibel et al. (1989) used
highly-trained speaker-dependent neural networks (three speakers; training and test sets
each contained 2620 tokens per speaker), with 150 millisecond mel-frequency spectrograms
as input (step 10ms), to classify the three voiced stops with 98.5% accuracy.

In a study comparing several acoustic feature sets, Nossair and Zahorian (1991) realized
their best classification performance using a 60 millisecond smoothed cepstrogram (step
10ms) on training and test databases which each consisted of 1260 tokens from 15 speakers
(5 male, 5 female, 5 children). The first seven cepstral coefficients (including the spectral
mean) were temporally smoothed using a third-order discrete cosine representation, and
then modeled using a Gaussian classifier. The six English stops were classified with 94%
accuracy; place classification given the voicing of a stop was also roughly 94% correct.

Nossair and Zahorian compared their results with a dynamic spectral representation,
described above, to the results achieved with a static onset cepstrum, and with formant
frequency and amplitude tracks. The static onset cepstrum was calculated with a 26ms
window (meant to imitate the window used by Blumstein and Stevens) and bilinear fre-
quency warping, and yielded 82% correct place classification. Formant frequencies and
amplitudes were calculated using an automatic formant tracker; the first three formant
frequencies alone yielded 65-70% correct classification, while the combination of formant
frequencies and amplitudes yielded 80-85% correct classification.

1.3.4 Classification using TIMIT

All of the published studies reviewed above report classification scores using isolated or
stressed monosyllables. In contrast, the speech heard by humans in normal conversation
contains stop releases in a wide variety of phonetic and prosodic contexts, and this added
variability presumably makes identification of the place of a stop somewhat more difficult.

All of the experiments reported in this thesis rely on data from the TIMIT database
(Zue et al., 1990), a national standard for the development of phonetic classifiers. TIMIT
consists of transcribed sentences read by 630 speakers. Stop release tokens in TIMIT occur
in a wide variety of phonetic and prosodic contexts.

One of the first classification studies using data extracted from TIMIT was published
by Lamel (1988), who classified stop consonants using a rule-based classification system.
Based on manual transcriptions of formant frequency, burst information, and voice onset
time, Lamel reported 90% correct classification of stop consonant place.

Most state of the art classifiers depend on a sort of dynamic spectral representation,
usually consisting of mel frequency cepstral coefficients (MFCCs) and their temporal deriva-
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Spoken | Number Classified As:
Place of Tokens || labial alveolar velar

labial 530 9%0% 6 4
alveolar 652 3 91 6
velar 903 2 6 92

Table 1.1: Stop place classification scores derived from the data of Chun (1996). The
classifier is trained using the TIMIT TRAIN database (3696 sentences), and classification
scores are reported for the TIMIT DEV database (400 sentences).

tives. Chun (1996) reported classification results using 36 time-averaged MFCCs (12 coeffi-
cients x 3 frames), 24 MFCC derivatives (12 x 2), and the logarithm of segment duration.
Results for the classification of place of unvoiced and voiced stops have been extracted from
his data, and are shown in table 1.1; overall classification of stop place is 91% correct.

1.4 Discussion: Acoustic Correlates of Place

The available studies show remarkable agreement on the sufficiency for place classification of
the three reviewed types of acoustic correlates. Burst spectral cues are apparently sufficient
to classify place with 80-85% accuracy. Formant frequencies, taken alone, are sufficient to
classify place with about 65-70% accuracy (Sussman et al. apparently achieved higher rates
by averaging out some of the relevant variability). Dynamic spectral cues are sufficient to
classifv place with greater than 90% accuracy across speakers, and with 98.5% accuracy
using Waibel’s highly trained speaker-dependent model.

This thesis proposes to study formant frequencies and burst spectral cues for use in the
classification of consonant place. Our experiments in section 1.1, and in chapter 5, support
the conclusions of Lamel (1988), who found that a combination of formant frequencies and
burst spectral information measured by human judges can be used to classify the place of
TIMIT stop consonants with about 90% accuracy. Since the best reported classification of
stop place in TIMIT is about 91% correct (Chun, 1996), we can conclude that burst spectral
measurements and formant frequencies measured by human judges are sufficient to classify
stop place with an accuracy roughly equal to the state of the art.

Duplicating the measurements of human judges automatically, however, is difficult. Au-
tomatic measurements of formant frequencies and burst spectral measurements do not seem
to have been used together for classification in the past, but Nossair and Zahorian’s (1991)
automatic measurements of formant frequency and amplitude provided significantly worse
classification than a periodic cepstral measurement. Formant and burst spectral measure-
ments, it seems, suffer degradation caused by acoustic measurement error, while a dynamic
cepstral representation does not. If the primary goal of this thesis were classification, there-
fore, it would be logical to begin with a state of the art dynamic cepstral representation.

In this thesis, phonetic classification is not the primary goal. Instead, classification is
used here as a tool for the analysis of speech production variability, and the primary goal
is an integrated analysis of variability in production, acoustics, and phonetic classification.
The goal of an integrated analysis is most easily reached if the acoustic measurements reflect
known relationships between articulation and acoustics.

Formant frequencies, and the front cavity resonance of a burst spectrum, can be defined
in either articulatory or acoustic terms. In this thesis, both measurements are defined in
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articulatory terms (as the eigenfrequencies of the vocal tract, and of specified vocal tract
cavities, respectively), but the acoustic definition (as a particular set of ordered spectral
peaks) is closely related, and often results in almoest identical parameter values. Since
formant frequencies and the front cavity resonance can be defined in either articulatory or
acoustic terms, they are not strictly either articulatory or acoustic measurements. Rather,
the measurements of formants and front cavity resonance 2t a particular stop release can be
defined as a physical instantiation of aspects of the theory of acoustic speech production,
effectively serving as a bridge between uniquely articulatory and uniquely acoustic measures.

As a bridge between articulation and acoustics, formant frequencies and the burst front
cavity resonance are uniquely suited for the integrated analysis of variability proposed in
this thesis. All error analysis and classification experiments in this thesis are therefore based
on acoustic measurements of formant frequency and burst spectral characteristics.

1.5 Discussion: Classification as a Tool for the Analysis of
Variability

The goal of this thesis is an analysis of acoustic speech variability in terms of the known
relationships between articulation and acoustics. In order to make the results as accessible
as possible to other researchers, the experiments in this thesis use data from a large speech
database (TIMIT) which is available to all interested researchers from the Linguistic Data
Consortium, a broad consortium of companies, universities, and government agencies based
at the University of Pennsylvania. The choice of a purely acoustic database, however, limits
the degree to which articulatory explanations of variability can be confirmed using statistical
methods.

Two types of variability are the focus of most of the analysis in this thesis. First,
measurement errors are analyzed extensively: production models are developed to analyze
the sources of measurement error, and statistical tools are used to describe the distribution
and context dependence of error. Second, variability in formant frequencies and burst
spectral measurements is analyzed as a function of consonant place, and of phonetic context.

Acoustic measurement variability as a function of phonetic category is generally ana-
lyzed, in the literature, using one of two types of statistical tool. Analysis of variance (and
other similar tools) seeks to determine whether the difference between categories, compared
to the variation within a category, is too large to have been produced by random variation.
Classification analysis, on the other hand, seeks to determine whether there is any overlap
between categories, that is, whether the difference between categories is sufficiently large to
completely separate the categories.

Variation of acoustic measures as a function of consonant place, and the interaction
between measurement error and consonant place, are primarily analyzed in this thesis using
the tools of phonetic classification. Classification analysis is chosen as a more useful tool
than analysis of variance for three reasons.

First, classification analysis is, in a sense, less forgiving than analysis of variance. Anal-
ysis of variance seeks only to find out whether the phonemes are separated; classification
analysis attempts to find measurements which separate them with no overlap.

Second, classification analysis using formant and burst spectral measurements can be
easily compared to results published in the literature. Thus, for example, the effect of mea-
surement error is characterized in chapter 5 of this thesis as a drop in a phonetic classification
score, from 89% using manual measurements, to 76% using automatic measurements. Both
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numbers can be compared, with reasonable confidence that the comparison is warranted,
to the classification scores obtained by other researchers using the TIMIT database.

Third, the separation of consonant place using classification analysis can be compared to
the ability of human listeners to discriminate stops. Variability in the acoustic production of
speech sounds is easily measured, but it is often more difficult to characterize the relationship
between acoustic variability and perceptual errors. Chapter 5 will compare the error pattern
of a phonetic classifier, as a function of phonetic context, to the error patterns of human
listeners. This analysis is intended to suggest that the sources of perceptual error may be
modeled by analyzing the sources of classification error, although any more rigorous pursuit
of this suggestion is beyond the scope of this thesis.

For the reasons given above, phonetic classification is used extensively in this thesis as
a tool for the analysis of speech production variability. Before proceeding, however, we still
need to discuss the choice of a classifier structure.

In this thesis, acoustic measurement error and phonetic classification error are treated
as manifestations of acoustic variability. It turns out that the relationship between classifi-
cation error and acoustic variability can be modeled very precisely by feeding a parametric
model of the acoustic measurement distribution to the classification rules of a parametric
classifier. This method for modeling classification error will be described in section 5.1.

Of the available parametric classifiers, a classifier based on linear discriminant analysis
(LDA) is perhaps the easiest to visualize, and to analyze numerically. In an LDA classifier,
a set of acoustic measurements is first weighted and summed to produce a one or two dimen-
sional linear discriminant representation, and then the linear discriminant representation
is classified using a fixed classification threshold. The linear discriminant representation of
the data can be plotted for visual inspection (as in section 1.1), and the probability of a
measurement crossing the threshold and being misclassified can be expressed in closed form
as the integral of the acoustic measurement distribution (as shown in section 5.1).

Linear discriminant analysis is not the best structure for phonetic classification, as
discussed in section 1.1, but it lends itself well to an analysis of classification error as a
function of acoustic variability. In this thesis, classification is a tool, used in the pursuit
of better models of variability. Since LDA classification lends itself to the more important
analysis goals, it is used in most of the reported classification experiments in this thesis.

1.6 Thesis Outline

The goal of this thesis is an integrated analysis of spe:ch production variability, in which the
descriptive power of statistical models is combined with the explanatory power of speech
production models. The organization of the thesis is designed to build the reacer’s under-
standing of speech variability in three stages. First, chapter 2 describes variability in models
of speech production, and the link between articulatory and acoustic variability. Second,
chapters 3 and 4 describe the link between acoustic variability and acoustic measurement
error. Finally, chapter 5 describes the dependence of classification error on acoustic mea-
surement error, and chapters 5 and 6 discuss the extent to which the relationship between
acoustic variability and phonetic classification can be nsed as a model of the relationship
between variability and human speech perception.

Chapter 2 demonstrates that models of speech production can be used to explain, and
under certain circumstances to predict, characteristics of acoustic variability. A model of
turbulence noise is developed to show that in some cases, the form of variability in the speech
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spectrum can be derived entirely from physical principles, without considering variations in
speaker anatomy or speaking style. The more common case, in which anatomy and speaking
style play an important role in the form of variability, is exemplified by a discussion of the
transfer function amplitudes of front and back cavity resonances during frication. In this
case, it is argued that physical principles can set useful limits on the range of variability,
but that more detailed knowledge of the form of variability must be gathered empirically.
A method for the empirical study of variability is proposed, in which variability in acoustic
phonetic measurements is described using statistical models, and explained using speech
production models.

Chapters 3 and 4 describe procedures for combining production knowledge and empirical
observation in the design of acoustic measurement algorithms. In chapter 3, a knowledge
engineering approach is attempted, in which a trained phonetician designs rule-based algo-
rithms to imitate his own formant and burst spectral measurements on a training corpus.
The size and frequency of measurement errors produced by the finished algorithms are then
evaluated on an independent test set, and aggregate statistical models of the distribution
of error are developed. Finally, the usefulness of aggregate models of measurement error in
studies of speech production variability is discussed. It is argued that many acoustic mea-
surement errors can be predicted by the presence of ambiguities in the acoustic spectrum,
that this information is useful, and that the aggregate error models developed in chapter 3
ignore this information.

Chapter 4 demonstrates that the uncertainty in a given formant measurement can be
predicted from the presence of measurable ambiguities in the acoustic spectrum. A novel
procedure for combining production knowledge and empirical observation is suggested, in
which production knowledge guides the design of an HMM formant tracking algorithm,
which is then trained on empirical data. It is shown that in formant tracking applications,
an HMM formant tracker is able to generate a posteriori estimates of the measurement
uncertainty for each formant, based on the information about acoustic cues contained in
the model structure and parameters. The a posterior: uncertainty estimates generated by
the proposed formant tracker are evaluated by comparison to the known measurements of
two human judges on a test set.

Finally, chapter 5 describes several phonetic classification experiments which explore
the relationships among acoustic variability, acoustic measurement error, and classification
error. First, linear discriminant classification of place is tested using both manual and
automatic acoustic measurements. The difference between the performance using manual
measurements and the performance using automatic measurements is taken to be the effect
of measurement error, and it is shown that the difference in classification performance is
well predicted by the aggregate error models of chapter 3. Second, both rule-based and
HMM measurement algorithms are used in context-dependent classification of place over a
large database. While the total classification score is somewhat disappointing, the pattern
of errors as a function of phonetic context is shown to be similar to the pattern of errors
of human listeners, indicating that the kinds of acoustic variability which most confuse the
classifiers may be the same kinds of variability which confuse human listeners.

Chapter 6 summarizes conclusions, and suggests future work.
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Chapter 2

Speech Production Theory

The speech production mechanism can be modeled as the filtering of a variety of high-
impedance, nonlinear sources through two linear filters (Fant, 1960). The first filter, T(f),
represents the vocal tract transfer function from a source flow S(f) to the volume velocity
at the mouth,

Un(f) =T(£)5(f) (2.1)

The second filter is the radiation characteristic R(f), which models the conversion from
mouth flow to radiated sound pressure,

F:(f) = R(f)Un(f) (2:2)

In this thesis, the radiation characteristic is assumed, throughout, to be the characteristic
of a simple point source,

R(f) = jeLesmmtere (2.3)

where p is the density of air (approximately 0.00112g/cm3), and r is the distance between
the mouth and the microphone.

This chapter covers variability in the source spectrum S(f), variability in the transfer
function T'(f), and finally, predicted correlations between T'(f) and the place of articulation
of a consonant. The first two sections each conclude with a discussion of measurement issues
stemming from, respectively, source variability and transfer function variability; when work
in these sections is believed to be original, it is identified as such. Readers who are not
already familiar with speech production theory may find this review overly concise, and
may wish to refer to the more thorough presentations in Flanagan (1972) or Stevens (in
preparation).

Although this chapter is intended to serve as a review of speech production theory, it is
also intended to contribute to our understanding of speech variability. This chapter begins
by reviewing standard acoustic phonetic models of average speech production, of the type
which are often used in speech analysis and speech synthesis. After establishing models
of average production, however, some of the sections in this chapter proceed to develop
acoustic phonetic models of the range, or even of the probability distribution, of speech
production variability. Some of these models will be used in chapter 3 as background for
the design of acoustic correlate measurements, but all of them are also intended to serve
as examples in support of one of the hypotheses central to this thesis. The discussions of
variability in this chapter are intended to support the hypothesis that speech production

29



5

:
AL AALLL AAMLLLLY LALLI L

-2000 _

t fc <IN T m,.l—_&a—hl.gg_u_‘_..g:
1 1.080 1.120
Transient Aspiration Voicing

Frication

Figure 2-1: During the release of an unvoiced stop, four distinct acoustic sources are ac-
tivated. The source contributions overlap in time; for example, ringing of the transient
continues past the onset of frication.

models, which have been used successfully in the past to 2xplain sample acoustic correlate
measurements, are also helpful in explaining the aggregate distribution of acoustic correlate
variability.

2.1 Speech Sources

During the release of a stop, threc or four distinct acoustic sources are activated, in the
sequence shown in figure 2-1, with some temporal overlap between sources. First, when the
oral constriction is released, the pressure drop across the constriction is equalized with an
audible air flow transient, which may excite the transfer function with sufficient strength to
ring audibly for several milliseconds. During and after the ringing of the transient, turbulent
flow develops in the constriction, generating frication sources at the constriction for 5-20
milliseconds or more.

As pressure drops in the vocal tract, frication ceases, and the source of excitation shifts to
the glottis. If the stop is unvoiced and syllable initial, the vocal folds are actively held open
for 40-100 milliseconds after release, during which time the turbulent glottal jet generates
audible aspiration noise. If the stop is voiced, on the other hand, regular sonorant voicing
begins as soon as the oral pressure is low enough, and usually within 25 miliiseconds after
release.

This section reviews the spectral shapes of transient, turbulent, and voicing sources.

2.1.1 Transient source

When the oral constriction is first opened during release of a stop, the pressure drop across
the constriction is equalized with an audible air flow transient.

Given an adequate model of the variable resistor in figure 2-2, it is possible to ap-
ply standard transmission line theory to predict the shape of the acoustic transient. The
relationship between pressure and flow across most vocal tract constrictions can be ap-
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Figure 2-2: Transmission line model of the vocal tract configuration immediately after
release of a stop. The characteristic impedance of the vocal tract is Zy, the constriction
resistance is R.(t), the glottal impedance is set to infinity, and the radiation impedance is
set to zero. The back cavity is charged to a non-zero pressure, which is equalized quickly
as the admittance of the constriction grows.

proximated using a conservation of energy constraint, as follows. Assuming that the area
At upstream from the vocal tract is much larger than the area A, of the constriction, the
average velocity of individual air particles v needs to increase considerably upon entering
the constriction in order to maintain a constant volume velocity Uy = vA. By equating the
increase in kinetic energy to a corresponding loss in potential energy, we derive Bernoulli’s

equation (Flanagan, 1972):
2
Pt () ”

where k£ = 1 is a constant which depends on the shape of the constriction. The equivalent
acoustic resistance of the constriction can be derived by linearizing equation 2.4 for small-
scale perturbations to a relatively steady-state gross flow, U = Uy + dU:

kon

P=PF+RdU, R = A2

(2.5)

Based on equation 2.4 and standard transmission line theory, Massey (1994) has shown
that the flow through the constriction initially grows in direct proportion to the constric-
tion area. Assuming that the area of the constriction at the moment of release is well
approximated by some power of t, A.(t) = agt?®, the initial flow transient spectrum (before
consideration of the radiation characteristic) is proportional to agf~(®+1) at higher frequen-
cies. Empirically, Massey has shown that the transient spectrum typically shows an f~2
dependence.

2.1.2 Turbulent sources

Stevens (1971) has described two types of sources which are important in the production
of what we perceive as turbulence noise. Figure 2-3 shows schematized circuit models for
these two sources.

The first source, called a “monopole source,” consists of random fluctuations in the flow
through the constriction. These random fluctuations can be modeled as a flow source in
parallel with the constriction impedance, as shown in figure 2-3a. The spectrum of the
flow source has a low-pass characteristic, as shown in figure 2-4a. The amplitude of this
source may vary considerably, depending on the length of the constriction, and depending
on whether or not there are any flow obstacles upstream from the constriction.
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(a) Turbulent signal: Monopole flow source
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(b) Turbulent signal: Dipule pressure source

Figure 2-3: Circuit models for the monopole and dipole turbulent acoustic sources. Radia-
tion impedance and impedance of the back cavity are ignored; the mouth flow U, (t) is just
the flow through a short circuit at one end of the transmission line. The monopole source
Uc(t) is in parallel with the constriction impedance; the dipole source P,(t) is connected in
series, typically 1-3cm downstream from the constriction.

(a) Monopole Turbulent Source Spectrum (after Pastel, 1987)
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(b) Dipole Turbulent Source Spectrum (after Shadle, 1985)
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Figure 2-4: (a) Monopole turbulent source spectrum, based on the radiated spectra reported
by Pastel (1987). (b) Flow source spectrum composed of the product of a dipole turbulent
source, based on spectra reported by Shadle (1985), and a coupling factor G.(f) which
assumes a vocal tract area of 5cm? and a distance of 2cm between constriction and source.
Amplitudes reported by Pastel and Shadle have been adjusted to represent 300Hz bands, a
flow of 420 cm3/s, and a constriction area of 0.08 cm?.
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The second source, called a “dipole source,” is caused by the collision of turbulent
vortices with obstacles downstream from the constriction. These collisions cause random
pressure fluctuations, which can be modeled as a series pressure source as shown in figure 2-
3b. The amplitude of this source depends on several factors, including at least the shape
and angle of the flow obstacle (Gordon, 1969). The shape of the obstacle, and therefore
the shape of the total turbulent source spectrum, depends significantly on the location and
shape of the constriction.

The transfer function between the dipole pressure source, P;(f), and the mouth flow
U (f) contains veros at frequencies approximately equal to nc/2z, where t is the distance
from the constriction to the flow obstacle, and n = 0,1,2,.... For most acoustic purposes,
these zeros in the transfer function can be combined with the source spectrum to form an
equivalent flow source spectrum Us(f):

Us(f) = GNPAS), Gelf) = Ziosin zle

(2.6)

where Zj is the characteristic impedance of the vocal tract. For an obstacle about 2cm
downstream from the glottis, the spectrum of the equivalent flow source has roughly the
frequency dependence shown in figure 2-4b.

Aspiration

The jet of air coming through the glottis is always turbulent, and therefore always produces
turbulent noise. During modal voicing, however, this turbulence noise is usually hidden
by the voicing spectrum. Aspiration usually becomes audible when the glottis is actively
opened in order to produce an /h/, or the aspirated onset of an unvoiced stop.

In aspiration, the dipole source dominates most of the spectrum. Since the coupling
function G¢(f) has a zero at low frequencies, and because the radiation spectrum is propor-
tional to f, aspiration only strongly excites poles with frequencies above about 1000 Hertz.
In particular, during the early part of aspiration after a stop release, the first formant is
usually below 500 Hertz, and is therefore only weakly excited by the aspiration source. Since
the bandwidth of the first formant is also quite wide during aspiration (see section 2.2.2),
it is often difficult to find any spectral evidence for the first formant during aspiration.

Frication

When an oral constriction, formed by the tongue or lips, is at least as narrow as the
glottal constriction, pressure builds up across the oral constriction, and flow through the
constriction becomes turbulent. This frication turbulence generates monopole and dipole
acoustic sources similar to the sources produced at the glottis during aspiration.

As with aspiration, the shape of the frication source spectrum depends on the relative
contributions of the monopole and dipole sources, and therefore, on the efficiency of the flow
obstacles which cause dipole sources. Since the efficiency of the flow obstacle is a function
of place of the consonant, it is possible that place of the consonant may be reflected in
the shape of the source spectrum. During release of a velar stop, for example, Stevens (in
preparation) has calculated that the dipole source dominates the spectrum above 2000-3000
Hertz, and the monopole source dominates the lower-frequency spectrum. During release of
an alveolar stop, the dipole spectrum is typically 5-10dB more intense than that of a velar,
giving the source spectrum a high-pass characteristic. During release of a labial stop, the
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Schematized glottal flow pulses and spectrum
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Figure 2-5: Schematized glottal flow waveform and spectrum.

dipole spectrum is typically 5-10dB less intense than the dipole spectrum of a velar, giving
the source spectrum a low-pass characteristic. Stevens notes, however, that these relative
amplitudes are quite variable, and may depend on both speaker and phonetic context.

2.1.3 Glottal vibration

In normal glottal vibration, the pressure drop between the trachea and the vocal tract
drives a jet of air through the glottis, which in turn drives the vocal folds to vibrate, much
like a flag flapping in a strong wind (Titze, 1994) . The opening and closing of the glottis
modulates the glottal jet into a series of somewhat triangular flow pulses. This pulse train
excites the vocal tract transfer function, and a delayed, filtered version of the pulse train is
radiated from the mouth.

Figure 2-5 shows a schematized glottal flow waveform and spectrum, based on the
parametrized model of Fant, Liljencrants, and Lin (1986). The waveform is periodic with pe-
riod T0, and the spectrum is only non-zero at frequencies which are multiples of F0 = 1/T0.
The waveform is roughly triangular, and there is a slope discontinuity at the instant of glot-
tal closure. The slope discontinuity in the waveform transforms into a magnitude DFT
proportional to 1/f2 at high frequencies, equivalent to a log-magnitude DFT with a slope
of -12dB/octave.

2.1.4 Measurement issues: time-averaged power spectrum

Glottal vibration and transient sources are deterministic: a model of a voicing or transient
source, adequately fitted to the data, tells us exactly the form of the Fourier transform
S(f). Given the form of S(f), and a measurement X (f) of the spectrum of speech radiated
from the moutbh, it is possible to estimate the transfer function (at frequencies where S(f)
is non-zero) by just dividing, T(f) = X(f)/(R(f)S(f)).
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Turbulent sources are stochastic: the Fourier transform X(f) of any finite length turbu-
lent signal is a random vector. A model of a turbulent source can describe the expected value
of the source spectrum, and perhaps even the distribution of its components, but no model
will ever predict the exact value of an observation of X(f). There is a tendency, in speech
analysis, to assume that any observation of the Fourier transform of the radiated speech
waveform is approximately equal to its expected value, E[X(f)] = R(f)T(f)E[S(f)]. This
section sketches an original derivation of the probability density of the squared spectrum
|X(f)|?, and demonstrates that | X (f)|? is often quite different from its expected value. The
time-averaged power spectrum (discussed in, for example Shadle 1985) is then presented
as a better estimate of the expected value E[|X(f)|%], and, by way of proof, an original
derivation of its probability density is presented.

If a turbulent acoustic signal is modeled as a stationary Gaussian random process, and
assuming that the radiation characteristic has removed any mean flow, the acoustic signal
z(t) is completely characterized by its power spectrum (Papoulis, 1984), that is, by the
Fourier transform of the autocorrelation:

P = [

0o

E[z(0)z(7)] e 92T dr (2.7)

where the operator E[] denotes expectation, and E [z(0)z(7)] is the autocorrelation of z.
Linear system theory tells us that the power spectrum of radiated speech is calculated by
multiplying the power spectrum of the source, P;(f), by the squares of the transfer function
and radiation characteristic:

P:(f) = [R()PIT(HPPs(S) (2.8)

Thus, if we know the power spectrum of the source, and given a good estimate of the
radiated power spectrum, the vocal tract transfer function can be estimated by simple
division. The shape of the source power spectrum has been described in section 2.1.2.
This section considers the problem of accurately estimating the power spectrum of radiated
speech.

The power spectrum is often estimated using a magnitude-squared short-time Fourier
transform (squared STFT):

T/2 ,
PN 2XUF X = [ wiae st (29)

where w(t) is some window function which is zero for |t| > T/2, and z(t) are samples of
the radiated speech signal. The squared STFT is a biased estimator of P(f), but it is an
unbiased estimator of the smoothed power spectrum

2nE [|X(F)F] = Pe(f) » W2(f) (2.10)

where W (f) is the transform of w(t), and * indicates convolution.

The real part Re{X(f)} of the Fourier transform is just a weighted sum of zero-mean
Gaussian random variables, and is therefore itself a zero-mean Gaussian random variable.
The square of any zero-mean Gaussian random variable is a scaled first order x? random
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variable, where the order of the x? variable can be denoted with a subscript:

Re(X(N)): _
ERe(X(N = X (210)

where the probability distribution of a x2 variable can be found in, for example, (Drake,
1988). If Re{X(f)} and Im{X(f)} can be assumed to be have the same variance,

a1 ,
E[Re{X(/)Y’] = E [Im{X(1)}*] = 3E [IX())P?] (2.12)
then their squares can be added to produce a scaled second order x? random variable:
I , 1+ x32 5 el .
XU = RAX (NP + (X (DY = I g [1x (0] = R [ix(nE] 2
The variance of x3 is 4, so

Var(X(N)P) = (E[IX(nP])* (2.14)

In other words, the squared STFT is a particularly inefficient estimator of the power spec-
trum: the ratio of the standard deviation of the estimate to its expected value is 1.0. !

The inefficiency of the Fourier transform as an estimator of the power spectrum is well
known. Pzpoulis suggests reducing the estimator variance by smoothing the spectrum. This
thesis makes use of a time-averaged power spectrum (see for example Shadle, 1985) which
is functionally equivalent to power-spectral smoothing (using appropriate windows), but
requires significantly less computation.

A time-averaged power spectrum P.(f) is the average of several squared STFT spec-
tra, computed using temporally sequential windows. If the signal is considered station-
ary, and the windows do not overlap, then each squared DFT |X,(f)|?, n = 1,...,N, is
an independent, identically distributed estimate of the power spectrum. In particular, if
Var(Re{X})=Var(Im{X}), samples of the average squared spectrum are x? variables of
order 2N:

—~ 1 Y X3 .
P(f) = 3 2o 1Xa( )P = Z2E [|X ()] (2.15)
n=1

By taking logarithms, we can separate P;(f) into a purely deterministic mean component,
and a zero-mean random component:

—— 2
10log19 P-(f) = 10logy E [| X(f)[?] + 1010y % (2.16)
Based on equation 2.16, it is possible to calculate confidence limits on the amplitudes
of spurious peaks and valleys in a time-averaged power spectrum. For example, a spectral
estimate composed of the average of two consecutive spectra is distributed as a x3/4 random

!The assumption that Var(Re{X})=Var(Im{X}) is satisfied by white noise filtered by an LTI system,
but may not be satisfied for other stochastic signals. Without using this assumption, Papoulis (p. 494)
derived an inequality stating that the standard deviation of | X (f)|? is greater than or equal to its expected
value. Equation 2.13 can be viewed as a special case of his result, in which the more restrictive assumption
allows us to derive the probability distribution exactly.
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variable. Based on standard x? tables, we can calculate that about one percent of all such
spectral samples are more than 11dB below their expected values, and one percent are more
than 5.2dB above. Notice the imbalance between positive and negative variation: random
spectral nulls are much more likely than random spectral peaks.

If neighboring frequency components are indepe’n\dcnt (as is true of Gaussian wl te
noise processes), a random spectral null or peak in P;(f) almost always has the shape and
width of the transformed window, W2(f). Using a 6ms Hanning window, for example, any
grid of spectral samples separated by frequencies of 2/0.006 ~ 330H 2z can be viewed as
independent. If the spectrum is computed as the average of two consecutive 6ms Hanning
windows, the analysis of the previous paragraph suggests that about one out of every
hundred 330Hz bands measured in running speech (with non-overlapping windows) contains
a randomly generated spectral peak of 5.2dB or more, while an equal number contain
a randomly generated spectral null of 11dB or more. The half-power bandwidth of these
spectral peaks and nulls is equal to the half-power bandwidth of W ( f), which, for a Hanning
window, is slightly less than the 330Hz band spacing.

In reality, time-averaged power spectra are almost always computed using overlapping
temporal windows. If rectangular windows are used, it is possible to prove linear dependence
between STFT transforms computed using overlapping windows, so there is no theoretical
advantage to using overlapping windows. If non-rectangular windows are used, the spectral
samples computed using overlapping windows are correlated, but not linearly dependent, so
using overlapping windows may improve the spectral estimate. Windows with tapered edges,
for example, are minimally dependent on waveform samples at the edges of the window;
heuristically speaking, therefore, a spectral estimate P,(f) computed using windows which
overlap by about T/2 should contain more information about the power spectrum than an
estimate computed using non-overlapping windows.

2.2 Speech Filters

This section discusses the relationship between positions of the articulators and the vo-
cal tract transfer function. Factors which may make formants or front cavity resonance
peaks difficult to measure, including pole-zero pairs and changes in formant bandwidth, are
discussed in some detail.

2.2.1 All-pole models

The vocal tract during a vowel is often modeled as an acoustic transmission line, with no
side branches, and with no coupling through the glottis between the vocal tract and the
trachea. To the extent that this model is correct, the vocal tract transfer function can be
modeled with an all-pole spectrum:

SnSp

)5 5%) (217)

11011(.{)= 1:[1(3_

where s = j27 f is the complex radial frequency in Hertz, s, = j27Fn—wBn is the complex
pole frequency, composed of the formant frequency Fn and bandwidth Ba, and s}, is the
complex conjugate of s,. For example, if the vocal tract is modeled as a uniform tube of
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length [, the formant frequencies are quarter-wave resonances of the tube:

_ (2n - 1)c

Fn m

(2.18)
During the frication burst of a velar or alveolar stop, the cavity in front of the constriction
can be productively modeled as a short uniform tube of length s, with no coupling through
the constriction to the back cavity. According to this model, the transfer function T'(f) is as
given in equation 2.17, but with resonant frequencies Fy, which are quarter-wave resonances
of the front cavity
_(2n-1)c
- 4ly

The frication burst of a labial stop is not shaped by a resonant cavity. If there is no coupling
to the back cavity, the source flow spectrum S(f) of a labial burst is radiated directly, with
a transfer function of T'(f) = 1.

Note that we use a different notation for front cavity resonances Fyy, than for formants
Fn. In this thesis, an indexed formant frequency Fn always refers to the nth resonance of
the entire vocal tract, and front cavity resonances are differentiated by the subscript f. Since
the front cavity is part of the vocal tract, the front cavity resonances are always a subset of
the formants, {Fy;, Fy2,...} C {F1,F2,...}. The correspondence between the sets {Fpn}
and {Fn} depends on the location of the consonantal constriction; this correspondence is
discussed in more detail in section 2.3.

At the frequency of a vocal tract resonance, equation 2.17 can be approximated as

Fin (2.19)

Fn (%' Fj2
|Tep(Fn)| = Bn (J_—_I-Il FnTF—]z) H(Fn) (2.20)

In circuit theory, the first term on the right, Fn/Bn, is called the Q of the pole. The sec-
ond term reflects the influence of lower-frequency formants, and the higher-pole correction
H(Fn) reflects the influence of higher-frequency formants.

The higher-pole correction can be large. If the vocal tract is uniform, circuit theory
suggests that the higher pole correction is sufficiently large to make the amplitude of a
formant peak |T(Fn)| independent of the formant frequency Fn, and dependent only on
the bandwidth Bn. Stevens (in preparation) has shown that the amplitudes of resonances
in the transfer function of a uniform tube are approximately

A

where S is the average formant spacing. If the vocal tract is not uniform, however, formant
amplitudes depend significantly on the relative formant spacing. For non-uniform tubes,
therefore, equation 2.21 may not be a good approximation, and equation 2.20 may be used
to represent the influence of relative formant frequencies on amplitude.

2.2.2 Factors which influence formant bandwidth

Flanagan (1972) lists five sources of loss which contribute significantly to the formant band-
widths Bn, and therefore to the formant amplitudes: losses caused by viscosity, heat con-
duction, non-zero wall admittance, non-zero glottal admittance, and non-zero radiation
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Figure 2-6: Circuit used for calculating the contribution of constriction losses to bandwidth.
Resistance R, and inductance L. are shown in parallel with a constriction source flow Uy;
vocal tract is shown as a transmission line with characteristic impedance Z.

impedance. Of these losses, only radiation losses and glottal losses (and constriction losses,
which have the same form as glottal losses) will be important in this thesis.

The impedance of any constriction in the vocal tract, including a constriction at the
glottis, can be represented by a resistance and inductance in parallel with a source flow Uy,
as shown in figure 2-6. The resistance R, and inductance L. can be calculated, based on
Bernoulli’s equation and Newton’ law, to be

kpU 0 plc
~——, L.=~— 2.22
Rc AZ b [ Ac ( )
where I, and A, are the length and area of the constriction, Uy is the average flow through
the constriction, and k is a constant that depends on the constriction shape, but is usually
close to unity. If the vocal tract is modeled as a uniform tube, with a constant characteristic

impedance Zj, the contribution of constriction losses to the bandwidth of each formant is

RcZoc

Bre % TR+ @nFnL)?)

(2.23)

where [; is the length of the vocal tract.

Flanagan (1972) estimates that glottal losses typically add about 60Hz to the bandwidth
of F1, and are less important for the higher formants. Klatt and Klatt (1990) suggest, how-
ever, that differences in glottal configuration from speaker to speaker may cause considerable
variation in glottal losses; their measurements, as well as those of Hanson (1995), show a
range of about 12dB in the implied bandwidth of F1. Phoneme-dependent differences in
glottal configuration can also cause different amounts of loss. Equations 2.22 and 2.23
suggest that the contribution of glottal loss to the bandwidth of low-frequency formants
is proportional to the square of the glottal area, so that if the glottal area doubles in size
during aspiration, the bandwidth of F1 will quadruple.

The radiation impedance can also be represented by a series resistance and inductance,
as shown in figure 2-7, but the radiation resistance turns out to be a function of frequency.
If the mouth is modeled as a circular opening in a sphere, the radiation resistance is

2
R.(f) = m (2.24)
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Figure 2-7: Circuit used for calculating the contribution of radiation losses to bandwidth.
Radiation inductance L, and resistance R,(f) are shown in series with the vocal tract
transmission line.

where the correction term K(f) is approximately 1.5 between the frequencies of 2000 and
6000 Hertz (Stevens, in preparation). If the vocal tract is modeled as a uniform tube, with a
constant cross-sectional area A, and characteristic impedance Zy = pc/A,, the contribution
of the radiation impedance to each formant bandwidth is

_ R.c _ K(f)(Fn)%A,
T w1 Zl, cl,

Bn (2.25)

Given a 17cm vocal tract with an average area of 5cm?, the contribution of radiation losses
to bandwidth is roughly (Fn/350)? Hertz.

When the vocal tract is not uniform, the contribution of wall losses, glottal impedance,
and radiation impedance to the bandwidth of each formant depends on details of the vocal
tract shape. For example, consider the three-tube model of /i/ shown in figure 2-8a. The
second resonance of this configuration is a half-wave resonance of the back cavity. The
energy distribution of this resonance is strongly coupled to the glottal impedance, but almost
completely decoupled from the radiation impedance; the bandwidth might be calculated
using the circuit model shown in figure 2-8b, where the four-pole network includes models
of wall losses in the pharynx region. The third formant is a quarter-wave resonance of the
front cavity, and is therefore strongly coupled to the radiation impedance. The third formant
is largely decoupled from the glottis, but instead of a glottal impedance, the bandwidth of
the third formant is influenced by the constriction impedance, which can be modeled with
the lumped element representation shown in figure 2-8c.

There is little recent work available on the relationship between vocal tract shape and
formant bandwidths. The effect of vocal tract shape on formant bandwidth can be mod-
eled quickly using available articulatory synthesizers (Maeda, 1982, Lin, 1990) , but these
synthesizers have apparently never been used for a comprehensive study of bandwidth. Lin
(1990) suggests that a comprehensive model of lower formant bandwidths would be difficult,
given our current lack of knowledge about the distribution of wall losses inside the vocal
tract. Higher formant bandwidths, on the other hand, depend primarily on the radiation
impedance, for which we have fairly precise models (Flanagan, 1972), and should therefore
be more susceptible to analysis by synthesis.

2.2.3 Pole-zero pairs

Often during the release of a consonant, the constriction at which acoustic sources are
produced becomes large enough to allow coupling between the cavities in front of and
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(a) Three-tube model: Production of an /i
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(b) Circuit model: Back cavity resonances
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Figure 2-8: Three-tube model of the vocal tract, and circuit models of the back and front
cavities, during production of an /i/. Ly, and R, are the glottal resistance and inductance,
L. and R, are the constriction resistance and inductance, and L, and R, (f) are the radiation
resistance and inductance.
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behind the source. When this happens, the spectrum is colored by local perturbations near
the resonance frequencies of the back cavity.

Every resonance of a cavity upstream from the acoustic source contributes a complex
pole pair and complex zero pair to the transfer function. A pole-zero pair can be modeled
as a local multiplicative perturbation to the transfer function: at frequencies far from the
pole-zero pair, the effect of the zero cancels the effect of the pole, and the total amplitude
of the perturbation Ty,(f) is a constant.

3p8p (8 — 8:)(s — 57)

8283 (s — 8p)(s — s3) (2:26)

sz(f) =

When the constriction is completely closed, there is no coupling between the back cavity
and the front cavity, and the pole frequencies s, = —7B, + J2nF, and zero frequencies
8; = —mB; + j2rF, are exactly equal. When the constriction is slightly open, the back
cavity pole and zero frequencies separate, and the pole, in particular, becomes more visible
in the radiated spectrum.

The peak amplitude of the pole-zero perturbation can be approximated by assuming
that the frequencies of the pole and zero are much larger than their bandwidths. Under
this approximation, the peak amplitude of the perturbation is the Q of the pole, multiplied
by a factor which depends on the separation of the pole and zero:

F2
()

The following sections discuss the frequencies and amplitudes of pole-zero pairs which
may color the transfer function during aspiration and frication, respectively.

F,

|Tp2(Fp)| = B_: (2.27)

Subglottal resonances in aspiration

Ishizaka et al. (1976) measured the input impedance of the subglottal system on Japanese
tracheotomized subjects. They found the first two resonances of the subglottal system to
be at roughly 640 and 1400 Hertz, with Qs of roughly 10 and 18dB.

For a volume velocity source at the glottis, zeros in the transfer function occur at peaks
of the subglottal impedance, which are usually very close to the measured resonance fre-
quencies of 640 and 1400 Hertz. Poles of the transfer function occur at frequencies for which
the sum of the subglottal, glottal, and supraglottal impedances is zero. In particular, it can
be shown that the frequencies of the first two subglottal zeros are below the corresponding
pole frequencies for any reasonable F1 and F2 (see Fant et al. 1972 for a discussion).

Given the pole and zero frequencies, the peak amplitudes of subglottal pole-zero per-
turbation functions |Tp,,(f)| can be calculated using the subglottal Qs found by Ishizaka et
al., and the formula in equation 2.27. For example, if the first two pole-zero pairs in the vo-
cal tract transfer function are at (800Hz,640Hz) and (1500Hz,1400Hz), as in the aspiration
spectra of one of the subjects of Fant et al. (1972), the amplitudes of the transfer function
perturbation Tp,(f) at the frequencies of the two poles are roughly |T},,(800)| =5dB and
|T5-(1500)| =1.5dB.

Under normal circumstances, an LPC formant tracker ignores subglottal resonances, be-
cause the poles do not contribute to the global shape of the spectrum. Section 2.2.5 considers
circumstances under which subglottal resonances may interfere with LPC measurement of
the vocal tract formants.
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(b) Alveolar/Velar frication: Front and back cavities

Figure 2-9: Source-filter models of frication at the lips, and of frication at a tongue con-
striction.

Back cavity resonances in frication

We have previously described the transfer function of a frication burst, from equivalent
source flow Us(f) to mouth flow U, (f), as being an all-pole spectrum, with peaks at the
front cavity resonant frequencies Fy, (section 2.2.1). Often, however, the constriction is
large enough to allow coupling to the back cavity, and resonances of the back cavity cause
pole-zero perturbations in the transfer function.

In a model which allows coupling to the back cavity, the transfer function of a labial stop
is entirely composed of pole-zero pairs, as shown in figure 2-9a. There is no front cavity,
but there are back cavity resonances at every formant frequency.

Frication produced at a tongue blade or tongue body constriction is filtered by poles
and zeros associated with the back cavity, and also by poles associated with the front cavity
(figure 2-9b). Zeros occur at peaks of the back cavity impedance, that is, at resonant
frequencies of the back cavity. Poles occur at frequencies for which the sum of the back
cavity, constriction, and front cavity impedances is zero, that is, at the resonant frequencies
of the vocal tract—the formant frequencies.

The amplitude of the spectral peaks corresponding to each back cavity resonance depend
on Q = Fpn/Bpy, and the ratio F,,/F;, of the frequencies of the spectral pole and zero.
Empirically, labial and velar stops produced with a palatal constriction (in syllables like
“keel” and “pyew”) often have well-separated pole-zero pairs near the frequency of the
constriction resonance, which is typically F3 or F4. Alveolar stops which are released
quickly may have strong pole-zero pairs at the frequencies of F2 and F3.

2.2.4 Nasalization

In order to pronounce a nasal consonant with no loss of sonorant voicing, the velopharyngeal
port must be opened prior to oral closure, and kept open until after the oral constriction
is released. During closure, or when the oral constriction is smaller than the opening
of the velopharyngeal port, the transfer function is dominated by resonances of the nasal-
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pharyngeal system (Fujimura, 1962). When the velopharyngeal port is smaller than the oral
constriction, but still open, the transfer function is dominated by the oral formants, but
there are still pole-zero pairs near the frequencies of the nasal-pharyngeal resonances. Chen
(1991) has documented the presence of pole-zero pairs at about 300 Hertz and 1000 Hertz
in the speech of hearing impaired subjects, corresponding to the first two nasal resonances
reported by Fujimura.

The spectrum of a vowel immediately after release of a nasal consonant can be approxi-
mately modeled as an all-pole transfer function T,,(f), modified by pole-zero perturbations
Tp.(f) at approximately 300 and 1000 Hertz. The pole-zero perturbations continue to color
the spectrum until the velopharyngeal port closes. Typically, the velopharyngeal port closes
within 10-20ms after release of a nasal consonant, but there is considerable variability, de-
pending primarily on segmental and prosodic context.

After release of a nasal consonant, pole-zero perturbations may interfere with the mea-
surement of formant frequencies. Specifically, the large pole-zero perturbations at about
300Hz and 1000Hz are likely to interfere with measurement of F1, and possibly of F2 as
well. This interference will only affect formant measurements while the velopharyngeal port
is open, and therefore typically only for the first 10-20ms following release.

2.2.5 Measurement issues: LPC

Linear predictive coding, or LPC (Atal and Hanauer, 1971) is the commonly used name for
a group of algorithms which efficiently compute the poles of an all-pole spectrum. If any
spectrum can be modeled as the product of a flat source spectrum and an all-pole transfer
function, X (f) o< T(f), LPC can be used to estimate the resonances of the transfer function
().

LPC assigns pole frequencies in order to minimize an error term. This section analyzes
the error term as the product of a local term representing the fit to an individual peak,
and a global term representing the global spectral fit. Based on this analysis, an original
qualitative analysis is given of the conditions under which large formant frequency errors
are expected to occur.

Local and global spectral error terms

Rabiner r and Schafer (1978) show that the LPC algorithm finds a unity-gain, all-pole esti-
mate T( f) of the spectrum X (f) which minimizes the error term

Is 2
/ XE 4 (2.28)
o [T(f)?
where f; is the sampling frequency, and
58"
0= =0=m (229

The error term in equation 2.28 is a global spectral error, but since the radiated spectrum
is in the numerator, a given fractional error near a peak of X (f) is weighted more heavily
than the same fractional error near a valley. The result is that each pole estimated by LPC
is a compromise between a global spectral fit, and a local fit to a single spectral peak.
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If the order of the model is chosen correctly, the estimated formant frequencies Fn are
usually close to the true formants F'n. In evaluating the possibility of a formant frequency
error, it is instructive to evaluate the LPC error term at the formant frequencies. If T'(f) is
all-pole with the form given in equation 2.17, the integrand in equation 2.28 near a formant
frequency is approximately

|T(Fn)|? \/ 4(Fn — Fn)? + Bn’ = (Fj*)(Fn? — F"3'2) ’ H(Fn) 2
(Fn)° 1 =% ol (2.30)
|T(Fn)|2 Bn j=1 (Fj")(Fn2 - Fj2) ) \H(Fn)

Here, the error integrand has been separated into a local error term, expressing the depen-
dence of error on bandwidth, and two global error terms, expressing the dependence of error
on the relative formant frequencies. The first term on the right hand side of the equation
shows the local constraint: the estimated formant frequency is loosely constrained within
about half a bandwidth of the true formant, but if the difference |[Fn — Fn| is larger than
about half a bandwidth, the error increases sharply. The second and third terms show the
global constraint: the relative formant positions of the model T'(f) must be similar to those
of the observed spectrum.

Subglottal resonances

Equation 2.30 shows that LPC usually ignores a pole-zero perturbation in the spectrum,
even if the amplitude of the pole is large, because if LPC assigns too many complex pole pairs
to any given frequency band, the relative spacing of the formant frequencies will be incorrect.
According to this reasoning, LPC only assigns a complex pole pair to a spectral perturbation
if it also fails to assign a pole pair to a nearby formant. Since the LPC error metric weights
spectral errors by the amplitude of the DFT spectrum, a spectral perturbation usually does
not “steal” a complex pole pair in this manner unless the perturbation amplitude is greater
than the amplitude of the neighboring formant peak.

We have seen in section 2.2.3 that under normal circumstances, the amplitude of a
pole-zero spectral perturbation is usually considerably less than the amplitudes of nearby
formants. For a perturbation to have a higher amplitude than a nearby formant, the
formant must be unusually weak. There are several reasons why this might happen; this
section discusses three.

First, during aspiration, a formant may be temporarily wiped out by a spectral null
caused by random variation in the source spectrum. According to the calculations in sec-
tion 2.1.4, roughly one out of every 100 independent samples of the time-averaged power
spectrum is affected by a random spectral null of -11dB or more. If the spectrum is cal-
culated using a 6ms Hanning window, the bandwidth of the spectral null is 2/0.006 ~ 330
Hertz, which is sufficiently wide to temporarily wipe out a formant.

Second, the bandwidth of the formant may become so large that there is no resonant
peak at the frequency of the formant. This is most often a problem with the F1 peak
during aspiration, because of the large glottal area. If, for example, the average glottal area
doubles during aspiration, then the glottal inductance L, and resistance R, in equation 2.23
decrease by factors of 2 and 4, respectively. Decreasing Ry by a factor of 4 increases the
first formant bandwidth B1 by a factor of 4, to more than 200 Hertz, which is sufficiently
large to nearly wipe out the F1 resonant peak in the spectrum. The enlarged glottal area
in aspiration also provides increased separation of the first subglottal pole and zero, with
the result that the first subglottal pole is often more prominent than F1 in the aspiration
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following release of an unvoiced stop.

Third, two formants which are close together may merge into a single spectral peak. The
resonance curve of an excited formant always contributes to the spectrum, but a nearby
formant with a higher amplitude (and narrower bandwidth) often tilts the resonance curve
so severely that there is no convex peak at the frequency of the lower-amplitude formant.
For convenience, this phenomenon can be referred to as “formant merger,” where the lower-
amplitude formant is said to merge with the higher-amplitude formant. If there is a sub-
glottal resonance near the merged formants, or if the global spectral shape is ambiguous,
LPC occasionally assigns a single complex pole pair to the merged formants. Hillenbrand,
Getty, Clark and Wheeler (1995) found that about 3% of their vowel nuclei contained an
F2-F3 merger which could not be resolved by interactively changing the LPC analysis order,
while about 1% of tokens contained an unresolvable F1-F2 merger.

A subglottal resonance which is ignored by LPC analysis may still cause problems for
formant tracking. If a moving formant frequency crosses the frequency of a pole-zero pertur-
bation, linear system theory predicts that the frequency of the formant skips discontinuously
across the frequency of the subglottal resonance (Hanson and Stevens, 1995). The size of
the discontinuity depends on the relative amplitudes of the subglottal and supraglottal
impedance, and is typically between about 200 and 300 Hertz.

2.2.6 Measurement issues: frication spectrum

The burst spectrum often contains spectral perturbations at the frequencies of back cavity
and even subglottal resonances, as well as peaks corresponding to the front cavity reso-
nances. This section discusses and compares factors influencing the amplitudes of front
and back cavity resonances in a frication spectrum. As part of this discussion, original
quantitative limits on the amplitudes of front and back cavity resonance amplitudes are
derived.

The discussion below focuses on amplitudes of the transfer function between an equiv-
alent source flow U,(f) and the mouth flow Uy, (f). To compute actual radiated spectral
amplitudes, the transfer function amplitudes discussed below must be multiplied by the
amplitudes of the equivalent flow source U;(f) and the radiation characteristic R(f). As
discussed in section 2.1.2, there is usually a downward tilt in the spectrum U, (f)R(f) at high
frequencies, but the tilt depends significantly on the relative amplitudes of the monopole
and dipole frication sources, and therefore on the shape and position of the constriction.

At very low frequencies, the frication spectrum is dominated by the monopole source,
and is not at all well modeled by a simple spectral tilt. Figure 2-4a indicates that the
monopole frication spectrum has a concentration of energy below about 700Hz (although
this is difficult to see, because the figure only shows frequencies above 500Hz). Empirically,
radiated frication spectra often contain one or more large peaks at low frequencies, typically
below about 700Hz.

Front cavity resonances

Transient and frication sources at the release of a stop excite the resonances of the front
cavity, with local perturbations caused by resonances of the back cavity and constriction.
If the front cavity is modeled as a uniform tube, the resonance frequencies are as reviewed

in section 2.2.1:
(2n - 1)e

i

28,
ﬂBfn

Fpn = [Tap(Fn)| ~ (2.31)
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where Sy = c/2l; is the average front cavity resonance spacing, and Top(F'n) is the all-pole
component of the transfer function.

The bandwidths of high-frequency front cavity resonances depend largely on radiation
losses, while the bandwidths of low-frequency resonances may be controlled by losses at the
constriction. Since radiation losses are proportional to Ffzn, equation 2.31 predicts that the
transfer function amplitude of a high-frequency front cavity resonance should fall as 1/ an.
If we ignore the constriction inductance, the contribution of the constriction to bandwidth
can be approximated as a fixed constant,

Zoc
B.~ nls R,

(2.32)

where Zj is the characteristic impedance, and R, is the constriction resistance. With this
approximation, the amplitude of resonance peaks in the transfer function can be written:

~ c? - / c2Zy
|Tap(Fyn)| = TK()A;(f2+ FZ)’ fe= m (2.33)

The cutoff frequency f. varies considerably depending on the area of the constriction and
the area of the front cavity, but is typically in the mid-frequency range. If, for example,
R, =~ 100 acoustic ohms, and Ay = 5cm?, f. is approximately 2000Hz.

If the front cavity is modeled as a uniform tube, equation 2.31 specifies that all of
the front cavity resonances are odd multiples of the first resonance frequency Fy,. In this
case, equation 2.33 can be used to compute the relative amplitudes of transfer function
resonance peaks in different frequency bands, regardless of the exact resonance frequencies.
If Fyy is much larger than f., for example, equation 2.33 predicts that |T,,(Fy2)|, the
transfer function amplitude of the second front cavity resonance, is 20log(9) =19dB below
|T'(Fyy)|. If the cutoff frequency f. is somewhere between Fy, and Fy2, as might be true
at the release of a velar stop, the difference between their transfer function amplitudes will
be somewhere between 0 and 19dB. The differences in amplitude of the radiated spectral
peaks will typically be somewhat less, because the product R(f)U;(f) usually has a slightly
positive tilt during frication.

Back cavity resonances

Resonances of the subglottal system, the back cavity, and the oral constriction often con-
tribute multiplicative pole-zero perturbations to the transfer function. The amplitude of
the transfer function at the frequency F}, of a back cavity resonance is approximately the
amplitude of the pole-zero perturbation T;,(f), as given in equation 2.27:

2
[Ty (F)| ~ § ((%) -1) (2.34)

The amplitude of the perturbation can be estimated if we recognize that, as discussed in
section 2.2.3, the poles are at formant frequencies of the entire vocal tract, while the zeros
are at resonant frequencies of the back cavity. For poles and zeros below the frequency
of the first front cavity resonance, it can be shown that the pole and zero frequencies are
interleaved, F;) < F,) < F;3 < Fp3 < ..., so that the spacing between a pole and zero will
never be larger than half the spacing between adjacent formants. If the average spacing of
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vocal tract formants is S, we can use the inequality F, < F, +S/2 in equation 2.34 to get

S(S+4F) S

R T (2.35)

|Tp=(Fp)| <
Section 2.2.1 mentions that the amplitude of a formant peak in a vowel transfer function,
assuming a uniform vocal tract, is approximately 2S/7B. Essentially, then, equation 2.35
shows that the transfer function amplitude of a back cavity resonance should be less than
or equal to the transfer function amplitude of the corresponding formant in the following
vowel.
The relative amplitudes of back cavity and front cavity resonances can be computed by
combining equations 2.35 and 2.31:

[Ty (Fp)] < (S/Bp)
|Tap(Fyn)|l = (2S5/7Bgn)

Since the vocal tract formant spacing S is much less than the front cavity spacing S ¢ for
most consonantal configurations, equation 2.36 demonstrates that the amplitude of a back
cavity resonance will be much less than the amplitude of any front cavity resonance with a
similar bandwidth.

The bandwidth of a low-frequency front cavity resonance is controlled by constriction
losses (see equation 2.33), and is therefore similar in size to the bandwidths of back cavity
resonances. The bandwidth of a high-frequency front cavity resonance, however, is con-
trolled by radiation losses, and, at very high frequencies, may be significantly larger than
the bandwidths of some back cavity resonances. Thus we find that the transfer function
amplitude of a front cavity resonance is larger than the transfer function amplitudes of any
back cavity resonances, unless the front cavity resonance is at very high frequency. The
words “very high frequency” will be made slightly more quantitative in the empirical study
of section 3.3.3.

(2.36)

2.3 Evolution of Vocal Tract Resonances at Release of a Con-
sonant

This section describes, for each class of consonants, the theoretical basis for predicted
correlations between consonant place and measurements of the vocal tract resonances. This
section describes the correlations we expect to see in the measurements later in this thesis,
but it is not strictly necessary as background reading for the thesis.

2.3.1 First formant trajectory

For all three places of articulation, the first vocal tract resonance at release is a Helmholtz
resonance, which can be calculated by modeling the back cavity as an acoustic capacitor,
and the front cavity as an inductor in parallel with the inductance of the vocal tract walls
(figure 2-10). Given the length and area of the constriction I, and A, and the volume of
the back cavity Vj, the first formant frequency can be approximated as

1 Lo+l 1 [ 1 A&
B oV~ VG T 1 (2.37)
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Figure 2-10: Low-frequency lossless circuit model of the vocal tract after releasé of a stop,
used for calculating the first formant frequency. The back cavity is treated as a lumped
capacitor Cp, which resonates with the parallel inductances of the yielding wall, L,,, and
stop constriction, L.

ar

(a) Labial release, uniform VT (b) Labial release before an /i/

Figure 2-11: Simplified tube models of the vocal tract immediately after release of a labial
stop, with different shapes of the back cavity.

where, in the second step, the lumped element values L. = pl./A. and Cy = pc?/V} have
been used. The resonant frequency of the closed vocal tract, 1/2wv/L,,C}, has been mea-
sured at about 220 Hertz.

Equation 2.37 predicts that, after F1 begins to rise away from the closed-tract reso-
nance, the frequency of F1 rises in proportion to the square root of the constriction area.
The constant of proportionality depends on the shape of the constriction. Labial and alve-
olar consonants, for example, have short constrictions (typically 1-2cm), so equation 2.37
predicts that F1 should rise quickly at release of a labial or alveolar consonant. The con-
striction of a velar consonant is typically 3-5 times as long as that of a labial or alveolar,
so equation 2.37 predicts that F1 should rise about half as fast. Empirically, most of the
F1 transition usually occurs within about 20 ms following the release of a labial or alveolar
stop, and within about 50 ms following the release of a velar stop.

2.3.2 Labial releases

The resonances of the vocal tract immediately after release of a labial consonant can be
estimated using a model similar to that shown in figure 2-11a. The back cavity, consisting
of the entire vocal tract, is nearly closed at both ends; there is no front cavity.

If the back cavity is modeled as a uniform tube, the formants F2,F3,... immediately

after release take the values ne

Fn= 5 (2.38)
If the vocal tract length [ is about 17cm, the formants at onset are roughly F2=1040 Hertz,
F3=2080 Hertz, etc. As the constriction area increases, these formant frequencies rise
toward the vowel target formants.

During labial closure, the tongue often moves toward the configuration of the following
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(a) Velar release, back context (b) Velar release, front context

Figure 2-12: Simplified tube models of the vocal tract immediately after release of a velar
stop, with backed and fronted tongue positions.

vowel, so that the back cavity may be significantly non-uniform at release. Changes in the
back cavity shape can affect both the onset frequency and rate of change of formants at
release of a labial stop.

Manuel and Stevens (1995), for example, have modeled a labial stop followed by a high
front vowel using a model similar to that shown in figure 2-11b. In this model, the palatal
constriction resonance starts at c/4x, where z is the length of the constriction. By the time
the lip area is the same as the constriction area (typically about 10ms after release), the
palatal constriction resonance doubles in frequency to c¢/2z, while the resonance of the back
cavity remains nearly unchanged. If the constriction is 7cm in length and the back cavity is
10cm, for example, the constriction resonance rises from about 1300 to about 2500 Hertz,
while the back cavity resonance is constant at about 1800 Hertz.

2.3.3 Velar releases

At release of a velar consonant, the vocal tract resonances can be divided into resonances
of the front cavity, back cavity, and constriction. The actual lengths of the front cavity
and constriction depend significantly on the following vowel. This section describes velar
stops using the traditional distinction between backed and fronted constrictions (e.g. Halle,
Hughes, and Radley, 1957), because this traditional distinction is a useful predictor of the
cavity affiliations of F2 and F3 (see below). Lehiste and Peterson (1961), however, argue
that the location of an English velar closure varies continuously depending on the following
vowel, and that the front and back allophones described below should be considered as
points o a continuum, rather than well-separated phonetic categories.

If the consonant is followed by a typical back vowel (e.g. /aa/ or /ah/), the stop closure
can be modeled using a tube model similar to the one shown in figure 2-12a. In this model,
the front cavity is roughly 6-8cm long, and the first two front cavity resonances are at 1100-
1500 and 3300-4500 Hertz. The transfer function amplitude at the frequency of the first
resonance is controlled by constriction losses, while the amplitude of the second resonance
is controlled by radiation losses, as discussed in section 2.2.6. The relative amplitudes will
vary considerably depending on the areas of the front cavity and of the constriction. As a
representative example, if the front cavity area is 5cm?, and the constriction resistance is
about 80 acoustic ohms, then the transfer function amplitudes of the first two resonances
are roughly 20dB and 6-10dB, depending on frequency. The peaks in the radiated sound
spectrum are at these amplitudes, scaled by the radiation characteristic, and by a linear
combination of the monopole and dipole frication sources discussed in section 2.1.2.

In back vowel context, F2 usually starts at the frequency of the first front cavity res-
onance, while F3 starts at the half-wave resonance of the back cavity. If the constriction
is about lcm long, for example, and for a 17cm vocal tract, the front cavities given above
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Figure 2-13: Simplified tube models of the vocal tract immediately after release of alveolar
and retroflex stops.

would correspond to back cavities of 8-10cm in length, with F3 onset frequencies of roughly
1800-2200 Hertz.

A model of a velar release before a front vowel is shown in figure 2-12b. Before a front
vowel, velar stops in English tend to become palatalized, with a long palatal constriction
(typically 4-5cm) and a short front cavity (typically 3-4cm). The first front cavity resonance
is typically 2000-3000 Hertz, and has a transfer function amplitude of 17-23dB. Because of
the high impedance of the constriction, the separation F,/F;, of the zero and pole associated
with the first constriction resonance is often large, and the pole (typically at about 4000
Hertz) is often prominent in the frication spectrum.

In front vowel context, F3 usually starts at the frequency of the first front cavity res-
onance, and F2 starts at the half-wave resonance of the back cavity. Empirically, the first
back cavity resonance is in the same range (roughly 1800-2200 Hertz) regardless of whether
the velar is backed (in which case the resonance becomes F3) or fronted (in which case it
becomes F2).

2.3.4 Alveolar, retroflex, and lateral releases

Production of an alveolar constriction (figure 2-13a) constrains the position of the tongue
more than does production of a velar and labial constriction. The length of the front cavity,
between the tongue tip and the lips, is usually 1-2cm in length (depending on the degree
of lip rounding); if the radiation inductance is taken into consideration, the effective front
cavity length is roughly 1.5-2.5cm. The tongue body is always fronted to support the tongue
tip. At the release of an alveolar, F2 is approximately a half-wave resonance of the back
cavity. Constraints on the tongue body position (Manuel and Stevens, 1995) cause the onset
frequency of F2 after an alveolar stop to be considerably less varicble than the F2 onsets
of velar and labial stops: this frequency is typically 1500-1900 Hertz for male speakers, and
1900-2200 Hertz for females (Sussman et al., 1991).

The onset frequenc, of F3 is approximately a full-wave resonance of the back cavity.
Basic acoustic theory predicts that the frequency of a full-wave back cavity resonance should
be twice that of the half-wave resonance. Empirically, the onset frequency of F3 after
alveolars is higher than it is at labial and velar releases, but is usually less than twice the
frequency of F2.

Assuming a front cavity of 1.75-3cm in length, the first front cavity resonance in the
frication transfer function is between 3000 and 5000 Hertz (usually the onset frequency of
F4 or F5). If the cross-sectional area is about 3cm?, the transfer function amplitude at
the resonant frequency is between 12 and 21dB. When an alveolar stop is released quickly,
transient ringing or back cavity coupling often introduces large perturbations in the burst
spectrum. Stevens and Blumstein (1979) found large back cavity resonances at the frequency
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of the first subglottal resonance (700-1000 Hertz), and at the onset frequency of F2.

The shape and position of an alveolar constriction is rarely influenced by the features
of a neighboring vowel, but a neighboring phoncme which requires a specific tongue blade
configuration often dramatically changes the shape of an alveolar consonant. When an
alveolar consonant is followed (or sometimes preceded) by a retroflex glide or vowel (/r/
or /er/), the tongue blade closure during the consonant moves back behind the alveolar
ridge, effectively adopting the retroflex place of articulation. When an alveolar consonant
is followed by a lateral phoneme (/1/ or /el/), the closure is often released on one side of
the tongue, rather than at the tip, effectively adopting the lateral place of articulation.

A retroflex stop (figure 2-13b) has a much longer front cavity than an alveolar stops. In
the neighboring retroflex vowel or liquid, F3 is usually a front cavity resonance, often with
a frequency below 2000 Hertz (Peterson and Barney, 1952), corresponding to a front cavity
length of about 4.5cm. At the release of a stop or nasal which has assimilated retroflex
articulation, the front cavity may be slightly shorter than 4.5cm; empirically, the front
cavity resonance of a retroflex stop tends to be between 2000 and 3000 Hertz. The onset
value of F3 tends to be associated with the front cavity resonance, while the onset frequency
of F2 is associated with the back cavity.

Lateral vowels and liquids are characterized by a low F2, a possible pole-zero pair at the
usual frequency of F3, and a cluster of resonances near the usual frequency of F4 (Stevens,
in preparation). If an alveolar stop is released directly into a lateral configuration, the
formant frequencies at onset usually match the formant frequencies of a typical lateral, and
may have little relationship to the typical onset formants of an alveolar.

2.4 Summary and Discussion

This chapter has developed production models to explain, first, the correlation between
resonant frequency measurements and the place of articulation of a consonant, and second,
the types of source and filter variability which make resonant frequencies difficult to measure.
These discussions have been intended to serve two purposes. First, discussions in this
chapter provide specific background for the design of acoustic correlate measurements in
chapter 3. Second, the models of variability in this chapter are intended as general examples
of the power of speech production modeling to explain acoustic variability.

2.4.1 Acoustic correlates of place

In the design of algorithms to measure formant and front cavity resonance frequencies,
chapter 3 will refer to several of the speech production models developed or reviewed in this
chapter. This section reviews briefly some of the important results from this chapter which
will be used again in chapter 3.

Burst spectrum

The burst spectrum of a stop is primarily shaped by the resonances of the front cavity,
if there is one. The burst for a labial stop, with no amplification from front cavity res-
onances, is usually lower in amplitude than that for an alveolar or velar stop. The front
cavity resonance frequency of an alveolar or velar stop, if measured correctly, almost always
determines the place of the stop.
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Errors in measurement of the front cavity resonance may be caused by back cavity
resonances, which appear as pole-zero pairs in the transfer function of a fricative burst. In
general, the burst spectra of quickly released stops, usually labials and alveolars, contain
more evidence of back cavity resonances than the spectra of more slowly released stops,
usually velars, although there is considerable variability depending on phonetic context.

The transfer function amplitude of a front cavity resonance is usually higher than that
of back cavity resonances in the same spectrum. Because of radiation losses, however, the
bandwidth of a high-frequency front cavity resonance can be quite wide, with the result
that very high frequency front cavity resonances will occasionally be lower in amplitude
than back cavity resonances in the same spectrum.

The spectrum of a fricative burst is also shaped by variation in the source spectrum. The
relative amplitudes of high-frequency and low-frequency peaks vary considerably depending
on the relative amplitudes of the monopole and dipole turbulent sources. Often, there will
also be a large peak below about 700 Hertz, corresponding to low-frequency energy in the
monopole turbulent source.

Formant motion

Knowledge of formant motion into the following vowel can provide information about con-
sonant place.

During aspiration, the first subglottal resonance is often mislabeled as F1, so that mea-
surements of F1 in aspiration are often meaningless. F1 may also be obscured at the release
of a nasal consonant, because of pole-zero pairs corresponding to resonances of the nasal-
pharyngeal system.

Higher formants are also difficult to track during aspiration. Variations in the source
spectrum may occasionally zero out a formant with a randomly generated spectral null.
Subglottal resonances may contribute pole-zero pairs to the spectrum, which may, under
certain conditions, be mistakenly identified as formants. Finally, even if a formant is tracked
correctly, the spectral peak corresponding to a formant which crosses the frequency of a
subglottal pole will occasionally skip discontinuously across the pole, with an instantaneous
discontinuity of 200-300 Hertz.

2.4.2 Production models of variability

This chapter has developed or reviewed production models of variability in the turbulent
source spectrum, of bandwidth variation and subglottal resonances in aspiration, and of
front and back cavity resonances in frication.

The introduction to this chapter proposed the hypothesis that speech production models
can help to explain the aggregate statistical distribution of acoustic correlate measurements.
Based on the examples in this chapter, it is now possible to discuss limitations and impli-
cations of the hypothesis in more detail.

Production models can be used with different degrees of success to model different
kinds of variability. Random or chaotic variation in the source spectrum, for example, is
caused by a nonlinear physical process which varies little from speaker to speaker. In this
case, since variability is generated by a known physical process, it is possible to derive
an explicit probability density based entirely on physical modzls of turbulent flow (the 2
model developed in section 2.1.4).
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Variability in the transfer function amplitude of back cavity resonance peaks, on the
other hand, was shown to depend on the separation of the associated pole and zero fre-
quencies, which, in turn, depends on the speed of stop consonant release. It is therefore
only possible to derive a theoretical distribution of back cavity spectral amplitudes if we
already happen to know the distribution of stop consonant release rates. The distribution
of release rates, however, depends at least partly on decisions and physical characteristics
of the speaker.

With the exception of turbulent source variation, all of the acoustic correlate variability
discussed in this chapter depends on anatomical and stylistic differences between speakers.
The bandwidth of F1, for example, depends on the area of the glottis, which is governed
by both anatomy and speaking style. The bandwidth of front cavity resonances depends
on the area of the constriction and the area of the lip opening, both of which are under the
stylistic control of the speaker.

When the distribution of an acoustic correlate is under the control of the speaker, the
predictive power of theoictical models is limited. A detailed probability distribution can
only be obtained from empirical measurements of either the acoustic correlate (e.g. back
cavity spectral peaks) or the articulatory correlate (e.g. stop consonant release rate). In
most cases, the acoustic correlate is easier to measure than the articulatory correlate.

Production models can help to explain the variability of speaker-controlled parameters
in two ways. First, a production model can predict physical limits on the range of variability.
Sometimes these limits are extremely weak, but chapter 3 will demonstrate that even an
extremely weak bound on the expected variability can be helpful in the design of acoustic
correlate measurements.

Second, a production model can be used to evaluate measured acoustic correlate dis-
tributions, by defining a relationship between acoustic and articulatory parameters. Since
acoustic correlates are usually easier to measure than articulatory correlates, it is probably
easier to predict the distribution of the articulatory measurement from the distribution of
the acoustic correlate, rather than the other way around. If predictions of articulatory
variation based on one acoustic correlate are confirmed by predictions from other acoustic
correlates, or by direct articulatory measurements, this confirmation then helps to develop
our knowledge of speech production.

The development of models of variability in this chapter, therefore, leads to the sug-
gestion of a particular methodology for learning more about speech production, in which
measured distributions of acoustic parameters are combined with speech production knowl-
edge to predict equivalent articulatory distributions. If the acoustic measurements can be
automated, the proposed method promises rapid collection and confirmation of detailed
descriptions of speech production variability.

The next chapter describes the development and evaluation of rule-based algorithms for
the measurement of certain acoustic parameters related to the place of a consonant release.
In the original plan for this thesis, these algorithms were designed for the purpose of learning
about speech variability, using the methodology described above. Unfortunately, it turns
out that the measurement algorithms developed in chapter 3 are prone to measurement
error. Rather than predict articulatory distributions on the basis of erroneous acoustic
measurements, chapter 3 turns instead to the more conservative task of modeling the dis-
tribution of measurement error, using both statistical and speech production knowledge to
help build our understanding of the sources and characteristics of acoustic measurement
error.
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Chapter 3

Rule-Based Measurement
Algorithms

This chapter describes a knowledge-based approach to minimizing and characterizing error
in the measurement of formants and front cavity resonances near the release of a stop
consonant. The output of a commercial formant tracker, and time-averaged power spectra
of the burst, are modified and searched, by rule, to imitate the measurements of a human
judge on a training set; the resulting algorithms are referred to in this thesis as rule-based
algorithms. The measurement error of the algorithm, as compared to a human transcriber,
is then modeled in the same way that differences between two human judges are measured:
errors on a test set are measured, and, depending on the number of tokens in the test set,
confidence limits are computed for the error mean, error variance, and probability of large
errors.

The explicit goal of this chapter is to design formant and burst spectral measurements
which imitate, as closely as possible, the measurements made by a human judge. The
implicit goal is to create algorithms which can be used in every application for which
manual measurements have previously been used, specifically, in speech sound classification
(introduced in section 1.1, and covered in more detail in chapter 5) and for inference of the
distribution of articulatory variables (introduced in section 2.4.2).

Phonetic classification and articulatory inference require detailed knowledge about any
possible errors in an acoustic measurement. This chapter will develop four types of error
model. First, the mean and standard deviation of a simple additive Gaussian error model
will be calculated. Errors in the measurement of frequency parameters will be shown to
contain outliers not well modeled by a Gaussian; these outliers will be modeled using mixture
Gaussian models, and using a non-parametric analysis of the phonetic contexts in which
they occur. Finally, errors in the measurement of amplitude parameters, and of F1 at stop
release, wil! be shown to be correlated with the correct value of the measurement, and
therefore to require a heteroskedastic error model.

3.1 Signal Representation

In order to draw as much as possible on the prior experience of the judges, the measurements
in this chapter are formulated in terms of signal representations typically used in interactive
phonetic analysis.
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3.1.1 LPC-based formant frequencies

In many experiments in this thesis, estimated formant frequencies during aspiration and
voicing are based on the roots of an LPC polynomial, as computed by the Entropic Signal
Processing System formant tracking algorithm discussed in section 1.2.2.

The order of LPC analysis is based on speaker gender. It is generally agreed that LPC
analysis is most useful if one complex pole pair is allocated to each expected formant, plus
two complex pole pairs to represent variations in the spectral tilt. In the Entropic formant
tracker, speech is downsampled to a 10000 Hertz sampling rate before LPC analysis. Males
and females are expected to have five and four formants, respectively, in the first 5000 Hertz,
so male voices were analyzed using fourteenth order LPC analysis (7 complex pole pairs),
and females were analyzed using twelfth order analysis.

3.1.2 Time-averaged power spectrum of the burst

During transient and frication excitation, the transfer function is not well modeled by an
all-pole model. The speech production theory sketched in chapter 2 suggests that measure-
ments of the frequency and amplitude of the front cavity resonance, and of the number of
measurable back cavity resonances in the spectrum, may be useful for classification.

In this chapter, burst spectral information is measured from a time-averaged power
spectrum P;(f), computed using the algorithm discussed in section 2.1.4. DFT spectra are
first computed using 6ms Hamming windows, and with zero preemphasis. DFT amplitudes
are squared to provide an estimate of the power spectrum, and 7-10 consecutive overlapping
power spectra are averaged to form a smoothed spectral estimate (step 1ms; number of
spectra to average depends on the experiment). The Hamming windows are located as
late as possible in the signal, provided that the first window is centered on or before the
transcribed release, and the last window is centered no less than 2ms prior to the transcribed
voice onset.

3.2 Knowledge Representation and Algorithm Design

This section describes the knowledge-based development of algorithms for accurate measure-
ment of formants during aspiration and voicing, and of front cavity resonance information
during frication. In this section, the prior knowledge of a human transcriber is formalized
using Bayesian a priori distributions. These a priori distributions, combined with some
knowledge of the randomness in the signal representation, are used to derive measurement
algorithms which maximize an a posterior: probability of correctness. It should be noted
that human judges are more likely to think in terms of measurement algorithms and rules
than they are to think in terms of Bayesian priors; the Bayesian analysis pursued here is
merely an attempt to formalize the knowledge representation.

3.2.1 Burst front cavity resonance

Both speech production theory and articulatory measurements suggest that the place of
articulation of a stop is almost uniquely specified by the length of the front cavity. In almost
all cases, the first front cavity resonance frequency Fy; is related to the front cavity length
ly by the simple formula Fy; = ¢/4ly, so that a correct measurement of the first front cavity
resonance frequency almost always specifies place of articulation. This section presents

56
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Figure 3-1: Schematized a prior: distribution of possible front cavity resonance frequencies.
F2(t+20) and F3(t+20) are the F2 and F3 measurements 20 milliseconds after release,
which are assumed to be the first reliable formant measurements. With no knowledge of
the stop or vowel identity, the most we can say is that the front cavity resonance must be
between the vicinity of F2(t+20) and some fixed upper bound.

Bayesian models of theoretical and empirical knowledge about front cavity resonance peaks,
and shows how the models can be used to specify a measurement algorithm.

A priori distribution

Prior studies indicate that the front cavity resonance of a velar stop usually equals the onset
frequency of F2 or F3 of the following vowel, while the front cavity resonance of an alveolar
stop usually equals the onset frequency of F4, F5, or perhaps F6 (e.g. Stevens, 1996). With
no other a priori information about the placement of the front cavity resonance, it seems
reasonable to assume that the front cavity resonance is equally likely to be at any of these
formant frequencies.

Unfortunately, formant measurements at release are unreliable, and an estimate of the
front cavity resonance range based on erroneous formant measurements might, in the worst
case, not include the real resonance peak. There are two solutions: we can use measurements
from aspiration or voicing (at least 20 ms after release), or we can use a constant frequency
threshold representing the most extreme expected formant.

Measurements of F4, F5, and F6 are likely to be erroneous, even if measured in clear
voicing, so it is probably most useful to assume that the front cavity resonance of an alveolar
is equally likely to take any frequency below some reasonable constant upper bound. The
value of this upper bound will be determined empirically in section 3.3 to be roughly 6300
Hertz.

F2 and F3 can usually be measured with some accuracy within 20-30 milliseconds after
release, but the formant frequencies 20-30 milliseconds after release may be different from the
onset frequencies at the moment of release. In order to make use of a delayed measurement
of F2, we will have to make allowance for a reasonable amount of formant motion at onset.

This chapter assumes the simplified a priori distribution shown in figure 3-1. In this
distribution, the front cavity resonance is assumed to be equally likely to take any frequency
between the F2 onset region and about 6300 Hertz. The F2 onset region is defined as the
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set of frequencies within some maximum distance of a post-frication F2 measurement. This
maximum distance will be determined empirically in section 3.3 to be roughly 200 Hertz.

Variance in the signal representation

In looking for front cavity resonances, we begin with the assumption that a front cavity
resonance always appears as a convex peak in the DFT spectrum. This assumption greatly
simplifies analysis, and is almost always true. According to human judges, the front cavity
resonance was marked by a peak in all of the 84 alveolar and velar training tokens, and 143
of the 144 alveolar and velar test tokens.

According to the model, then, if there is a front cavity resonance, there are always one or
more convex peaks in the burst spectrum between the F2 onset frequency and 6000 Hertz,
one of which must be associated with the front cavity resonance. Of the other peaks, some
may be caused by random fluctuations in the source spectrum, some may be caused by
back cavity or constriction resonances, and, if the first front cavity resonance is beiow 2000
Hertz, one may be the second front cavity resonance. If there is no front cavity resonance
(that is, if the stop 1s labial), there may be peaks caused by back cavity resonances and
random fluctuations, or there may be no clearly defined spectral peaks.

The amplitude disizibutions of front cavity resonances, back cavity resonances, and ran-
dom spectral fluctuations were explored in section 2.2.6. In that section, we concluded that
the first front cavity resonance is almost always the largest peak in a burst spectrum, with
the possible exception of some high-frequency alveolar resonances. In a Bayesian analysis,
the dominance of the front cavity resonance can be represented by a model in which the
probability distribution of front cavity resonance amplitudes is a monotonically increasing
function of amplitude. The simplest such model, assuming we begin with a log-magnitude
spectrum, is one in which the distribution of front cavity resonance amplitudes, Py(Fyy), is
logarithmic between an arbitrary minimum amplitude and an arbitrary maximum ampli-
tude, independent of the amplitudes of any other peak in the spectrum:

T P.(F,
PI‘(PI(FII)) o lOg (iﬁ) , XmInN < Pz(Fﬂ) < Xmax (3.1)

The theory in section 2.2.6 suggests that equation 3.1 should be modified slightly, to rep-
resent the negative correlation between amplitude P;(F;;) and frequency Fy,. Section 3.3
will describe a simple empirical rule, in which the amplitude of a high-frequency front cav-
ity resonance is occasionally as much as 1dB lower than the amplitudes of lower-frequency
back-cavity resonance peaks in the same spectrum.

Algorithm design

Given the amplitudes and frequencies of convex peaks in a burst spectrum, figure 3-1 and
equation 3.1 can be combined to determine the a posteriori probability distribution of the
front cavity resonance. The resulting distribution is shown in figure 3-2.

According to the model, the probability of the front cavity resonance equaling any
frequency which is not a convex peak, or which is outside of the range shown in figure 3-1,
is zero. What remains is a discrete set of frequencies, corresponding to the convex spectral
peaks F¢p in the range of interest. The a posteriori probability of the front cavity resonance
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Front Cavity Resonance Prob, Given DFT Peak Moasurements
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Figure 3-2: Schematized a posteriori probability distribution of the front cavity resonance
frequency F¥y, given a particular burst spectrum. In the example shown, five convex spectral
peaks have been identified in the frequency range of interest, with log amplitudes of 74, 60,
74, 67, and 40dB, respectively (measured relative to an arbitrary minimum amplitude).
According to formulas specified in the text, the a posteriori probability of the front cavity
resonance being located at any of these five peak frequencies is proportional to the log
amplitude of the corresponding spectral peak.

equaling any peak in this set is proportional to the log amplitude of the peak:

_rPTE =\ log(Py(Fen))
Pr(Ffl Fen|Pr(Fe1), -y Pr(Fen)) Z,A-Ll log(P:(f’,_-i)) (3.2)

A maximum likelihood estimation algorithm based on equation 3.2 simply picks the
largest spectral peak in the range of interest. If two peaks have nearly the same amplitude,
further information is needed to differentiate the two. Empirical investigations in section 3.3
will suggest that, for the particular microphone and analysis conditions used here, if two
peak amplitudes differ by less than 1dB, the peak which is higher in frequency should be
preferred.

3.2.2 Other burst spectral measurements

Other burst spectral measurements may also be useful in distinguishing between the three
stop places of articulation. This section briefly discusses measurements of burst spectral
amplitude, and of the number of back cavity resonances.

In addition to the front cavity resonance measurement described above, there should also
be some way of identifying bursts which have no front cavity resonance, since in these cases,
the peak-finding algorithm described above produces a meaningless answer. According to
the production theory in section 2.3, the front cavity resonance of an alveolar or velar stop
gives the burst spectrum a 10-20dB boost at the resonant frequency. This implies that
velar stops are 10-20dB more intense than labial stops in the F2-F3 region of the spectrum,
and alveolar stops are more intense than labials in the F4-F5-F6 region of the spectrum
(provided that the recording levels are similar). Amplitude measurements in these two
frequency ranges are therefore used to discriminate labial stops from each of the other two
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places of articulation, with the exact frequency ranges determined empirically in section 3.3.

According to section 2.2.2, stops which are released quickly have a lower constriction
impedance, and therefore more coupling between the front and back cavities, than stops
which are released slowly. Section 2.3 suggests that labial and alveolar stops are released
more quickly than velars. To the extent that this is true, there should be more back cavity
resonances visible as pole-zero pairs in the burst spectra of labials and alveolars than in the
burst spectrum of a velar. If this distinction exists, it should be possible to take advantage
of it by simply counting the number of significant peaks in the burst spectrum, where the
definition of “significant” will be determined empirically in section 3.3.

3.2.3 Formant frequencies above F1

The roots of a carefully measured LPC polynomial provide a good estimate of formant
frequencies during voicing, and an LPC root-finding algorithm, such as that used by the
Entropic formant tracking algorithm, is a good place to start when looking for formants.
During aspiration, however, LPC may occasionally mistakenly find a tracheal resonance
instead of a formant, while during frication, production theory predicts that only front
cavity resonances show up as roots of the LPC polynomial. Human transcribers are very
good at making use of their knowledge of formant continuity to fill in sections of a formant
track which are missing from the signal. This section presents a Bayesian model of human
knowledge about formant tracking, and then apply the model to derive an algorithm for
smoothing the poles of an LPC formant tracker.

A priori distribution

Formants are the natural frequencies of a given physical system (the vocal tract, between the
glottis and the lips), and as such, they are constrained to change continuously as a function
of tire, except occasionally when a formant crosses the frequency of a subglottal resonance
(see section 2.2.5). We can model this constraint by modeling the a priori likelihood of a
formant’s location at each time as a bell-shaped curve, centered on the formant value which
would be predicted using continuity constraints.

Figure 3-3 shows a simple a priori distribution, in which the formant prior at time ¢
is a function only of the measured formant at time ¢ + At, for some suitable step size At.
The width of the bell-shaped curve should be determined empirically, but it should also
be made large enough to allow for occasional discontinuities of 200-300 Hertz as a formant
crosses the frequency of a subglottal resonance. Section 3.3 will determine a general width
parameter which is a function of the width of this curve.

Signal variance

Careful LPC analysis can generally be assumed to produce accurate formant measurements
during modal voicing, that is, beginning one or two pitch periods after the transcribed voice
onset. LPC analysis of an aspiration spectrum produces occasional errors, as discussed in
section 2.2.5. LPC analysis of a frication spectrum, during the first 20 milliseconds or so
following a stop release, is generally expected to measure only formants which happen to
be associated with the front cavity, and to largely ignore back cavity resonances.

Formant tracking errors can be small errors, in which the frequency of a peak is shifted
slightly because of a random spectral null, or large errors, in which the LPC polynomial
models entirely the wrong peak. Formally, we can assume that measurement errors € are
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Figure 3-3: Schematized a priori distribution of a given formant frequency, as a function of
a later measurement of the same formant. With no information about the consonant or the

vowel, we can only predict that the formant is continuous, hence a bell-shaped distribution.

normally distributed over a narrow region with probability 1 — P, and normally distributed
over a much broader region with probability P:

P(e) = (1 - P)N(oil) + PN(aiz), o2 > oy (3.3)

where N(z) is the unit normal distribution.

Our knowledge that formant errors are more likely during frication than during voicing
is easily incorporated into equation 3.3 by making P a function of time. The likelihood of
formant errors during frication can be represented by a large P during the first 20ms after
release. Formant errors during aspiration are less likely, so P can be slightly lower during
aspiration. Finally, if formant errors during modal voicing are judged to be impossible, P
can be set to zero beginning 10-20ms after the onset of voicing,.

Measurement design

Equation 3.3 and figure 3-3 can be combined to specify an algorithm which smooths each
formant track backward from the vowel toward consonant release. The empirical study
discussed in section 3.3 will determine that LPC formant measurements after about 20ms
of voicing can be considered to be reliable. Working backward from the vowel, the a
posteriori probability distribution of a formant at time ¢, given the formant measurement
at time t + At, can be calculated by multiplying the error model of equation 3.3 by the
continuity model shown in figure 3-3.

Figure 3-4 shows two examples of a posterior: distributions which might be used in the
extension of a formant F'n(t4- At) backward in time to Fn(t). In the top part of the figure,
the LPC polynomial at time t has a root which is close to Fn(t + At), and this root is
therefore judged to be the most likely extension of the formant. In the bottom part of the
figure, the closest LPC root at time t is far from Fn(t + At), and is therefore judged to be
an unlikely extension of the formant. Since the LPC polynomial provides no other formant
candidates, the maximum likelihood estimate of the formant is just Fn(t) = Fn(t + At).
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Figure 3-4: Schematized a posteriori probability distributions for two formant frequency
tracks. In the upper plot, the LPC root at time ¢ is close to the formant at t + At, and is
therefore judged to be a continuation of the formant. In the lower plot, the closest LPC root
at time ¢ is far from the formant at time ¢+ At, and is therefore judged to be a measurement
error.

3.2.4 First formant measure

The first formant is subject to the same continuity constraints as all of the higher formants,
but the first formant must also satisfy one additional constraint: at the release of a conso-
nant, the frequency of the first formant should always rise. Transient ringing and subglottal
resonances at release of a stop, and nasal resonances at release of a nasal, often introduce
strong peaks between roughly 600 and 1000 Hertz which hide the rise of the first vocal tract
formant.

Figure 3-5 shows an a priori distribution of F1(t), as a function of Fi(t + At), which
represents both the continuity of F1 and the fact that F1 is expected to rise as a function
of t. The distribution is bell-shaped, but asymmetric. F1 is expected to rise: the expected
value of F1(t) is lower than F1(t+ At). Given no other information, however, the maximum
likelihood estimate of F1 at time ¢ is still F1(t) = F1(t + At).

The model of measurement uncertainty for F1 should be the same as it is for other
formants, although the probability of an erroneous measurement P may be higher for F1
during aspiration than it is for other formants.

If P = 0 during modal voicing (i.e. beginning 10-20ms after voice onset), F1 can be
smoothed backward in time from the vowel, just like the other formants. Tracing backward
into the release, F1 at time t + At is connected backward to the lowest root Fy;(t) of the
LPC polynomial at time ¢. If Fy(t) is lower than F1(t + At), as shown in figure 3-6a, then
F3y is usually the most probable formant at time ¢. If F;(¢) is higher than F1(t + At) by
more than some threshold value, F;,(t) is judged to be a subglottal or nasal resonance, and
the maximum likelihood estimate of the formant is F1(t) = F1(t + At).
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Figure 3-5: Schematized a priori distribution of F'1 at time ¢, given a measurement of
F1(t+ At). Distribution is skewed, representing our expectation that F1 rises as a function
of t.
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Figure 3-6: Schematized a posteriori distributions of F1 at time t, given an LPC root Fy(t)
which is (a) 75 Hertz below F1(t + At), or (b) 75 Hertz above F1(t + At).
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3.3 Imitating Human Performance on a Training Set

The presentation in section 3.2 describes the algorithm design process as an exercise in the
application of speech production theory. In fact, speech production theory allows many
variations on each of the described algorithms. This section describes experiments in which
the precise forms of the algorithms described above, and the values of their temporal and
frequency thresholds, are adjusted by a human judge to meet an empirical performance
criterion.

3.3.1 Training data

The algorithms outlined in section 3.2 were adjusted by a human judge (the author of
this thesis) so that the algorithms would imitate his measurements on a training set of
consonant releases, with as few large measurement errors as possible. The training set
consisted of 20 tokens of each consonant, split evenly by speaker gender, with right contexts
drawn at random from the vowels, glides, and liquids in TIMIT (including 11 alveolar
tokens in retrofiex context, but none in lateral context). This database is referred to in this
thesis as the KB Train (knowledge-based training) database; a list of tokens is provided in
appendix A, section A.l.

The judge attempted to produce measurements of the true vocal tract resonances 20ms
and 50ms after consonant release, and of the true front cavity resonance at the instant
of release. In addition to measurements of the vocal tract resonances, two burst spectral
amplitudes and a convex peak count were measured. Measurements of low-frequency and
high-frequency spectral amplitude are designed to represent, as much as possible, the ampli-
tudes of front cavity resonances in velar and alveolar stop spectra, respectively. The convex
peak count is defined as the number of convex peaks in the spectrum within some thresh-
old distance of the spectral maximum; the amplitude threshold was adjusted to represent,
as accurately as possible, the distinction between “compact” velar spectra and “diffuse”
alveolar spectra.

All measurements were performed non-interactively, using a spectral representation sim-
ilar to that available to the automatic measurement algorithms. Burst spectral information
was measured from a single time-averaged power spectrum, consisting of the average of
seven consecutive squared DFT spectra (step 1ms). Formant frequency measurements were
based on a list of candidate formants generated by the ESPS formant tracker, combined
with time-averaged power spectra 20ms and 50ms after consonant release. The judge was
given the identity of each consonant, and its phonetic context.

3.3.2 Formant measurement algorithms

An algorithm for automatic measurement of onset and vowel target formants is defined by
the application of simple smoothing rules. All automatic formant measurements are based
on roots of the LPC polynomial, as calculated by the formant tracker packaged with the
Entropic Signal Processing System. No gross formant measurement errors were found in the
training data more than 10ms after the transcribed voice onset, so formant tracks proposed
by the ESPS tracker are assumed to be 100% correct beginning 20ms after the transcribed
voice onset. Earlier formants are smoothed backward from the vowel toward the release,
with a 5ms step between analysis frames.
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First formant measures

At each time ¢, the first formant F'1(t) is estimated on the basis of the first root of the LPC
polynomial, F;(t), and of the known first formant at time ¢ + 5ms, F1(¢t + 5). If F,(t)
is too high, it is judged to be a subglottal or nasal resonance, and the formant estimate
is F1(t) = F1(t + 5). If F,,(t) is sufficiently low, it is judged to be a continuation of the
formant track: F1(t) = F(t). A threshold specifying that F;(t) < Fy (¢t + 5) + 50 Hertz
was determined to divide these two cases for almost all training tokens.

Second and third formant measures

At each time ¢, the nth formant Fn(t) is estimated on the basis of its known value at time
t + 5ms, Fn(t + 5), and of the root of the LPC polynomial F;;(t) closest in frequency to
Fn(t + 5). The formant track Fn(t) must be allowed to jump discontinuously across the
frequency of a subglottal pole, but should otherwise be constrained to be as continuous
as possible. In the KB Train database, a small number of measured formant tracks were
discontinuous by more than 300Hz in 5ms, but none were discontinuous by as much as
400Hz, so a rule was implemented requiring formant frequency discontinuities to be less
than 400Hz. If the absolute difference between Fr.(t + 5) and Fy;(t) is less than 400 Hertz,
then Fn(t) = F;;(t), else Fn(t) = Fn(t +5).

3.3.3 Burst spectral measurement algorithms

All burst spectral measurements depend on the defirition of a frequency band of interest,
corresponding to the frequency band in figure 3-1 in which the front cavity resonance has a
non-zero a prior: probability of occurrence. This band-limited spectrum will be referred to
as the front cavity resonance spectrum.

The front cavity resonance spectrum, and the four burst spectral measurements derived
from it, are defined by a small number of rules. Application of these rules to the convex
peaks of the burst spectrum produced measurements similar to those transcribed by the
human judge.

Front cavity resonance spectrum

The front cavity resonance spectrum is defined to be a band-limited portion of the time-
averaged power spectrum of the burst, where the power spectrum was computed, in this
experiment, as the average of 7 consecutive squared DFT spectra (step 1ms), with zero
preemphasis.

A high-frequency boundary at 6300 Hertz was found to be high enough to include all
alveolar front cavity resonances in the training data. The low-frequency boundary was
defined as being 200 Hertz belew a measurement of 2. The measurement of F2 20ms after
release was determined to be early enough to reliably indicate the frequency of a velar front
cavity resonance, but late enough to be rarely influenced by frication noise.

Front cavity resonance frequency

The highest-amplitude peak in the front cavity resonance spectrum was found to correspond
to the front cavity resonance in almost all cases.

In three cases, the front cavity resonance spectrum of a non-retroflex alveolar stop
contained a back cavity resonance, at the frequency of F2, with an amplitude equal to or
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Figure 3-7: Amplitudes of the highest peak in the F2/F3 and F4/F5/F6 range, velar (top)
and non-retroflex alveolar (bottom) tokens only.

1dB higher than that of the front cavity resonance (figure 3-7). In order to correctly identify
the front cavity resonances of these three training tokens, a rule was implemented favoring
the highest in frequency out of any set of peaks with amplitudes within 1dB of each other.

In the burst spectra of the 11 retroflex alveolar stops in the KB Train database (not
shown in the figure), the front cavity resonance frequency was always the largest peak in
the spectrum, with no peaks of similar amplitude at higher frequency. All but one of the
11 retroflex stops had front cavity resonance frequencies between 2000 and 3500 Hertz.

Number of peaks

As a measure of compactness, the number of “significant” peaks in the front cavity resonance
spectrum is counted. A definition of “significance” in terms of relative amplitude was found
to provide a reasonable measure of compactness: a “significant” peak is defined to be a
peak whose amplitude is no more than 10dB below the amplitude of the largest peak in the
front cavity resonance spectrum.

Amplitude measures

Burst amplitude measurements were designed to discriminate between labial stops, which
do not have a front cavity resonance peak, and alveolar and velar stops, which do. It
was discovered that, in the KB Train database, the best discrimination between these two
classes is provided by a pair of frequency bands which, combined, cover a range slightly
larger than the front cavity resonance spectrum. Low-frequency amplitude is measured
to be the amplitude of the highest peak in the band between 1000 and 3400 Hertz, and
therefore often includes strong back cavity resonances at the release of an alveolar stop.
The high-frequency amplitude is measured to be the peak amplitude in the band between
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2700 Hertz and 7400 Hertz.

If there is no peak in a band, it is not clear how the “peak amplitude” should be defined.
In classification experiments, it is useful to assign bands without peaks a “peak amplitude”
measure which is lower than any peak amplitude observed in the same band in tokens
which do have peaks, but not too much lower. In experiments in this thesis, two alternate
and equally arbitrary conventions were adopted: the “peak amplitude” measure of a band
with no peaks was sometimes set to 15dB below the overall DFT peak amplitude, and
was sometimes set to the amplitude of the lowest in-band spectral valley. Neither of these
performed better than the other in classification experiments.

3.4 Statistical Models of Measurement Error

An automatic measurement algorithm is not useful for phonetic studies without reliable
estimates of the aggregate measurement error. This secticn describes experiments in which
the performance of the algorithms described above was compared to the transcriptions of
human judges on a test set. The distribution of measurement errors was then modeled using
several statistical models, and confidence limits on the error were computed.

3.4.1 Reference measurements

The algorithms described in section 3.3 were tested on a database consisting of 324 con-
sonant releases: nine consonants (six stops, three nasals) x two genders x eighteen right
contexts. This database is referred to in this thesis as the Error Modeling database; a list
of tokens is given in appendix A, section A.2.

Two human judges, each with at least five years of phonetic training, attempted to
measure vocal tract resonances at the given stop releases (one of the judges was the author
of this thesis). Judges were given full information about each sentence, including the tran-
scription, and were allowed to use any spectral representations which they found useful in
estimating the requested measurements.

The judges were instructed to measure vocal tract resonance frequencies as accurately
as possible at six specified times in each waveform (at ten millisecond intervals, from 5 ms
to 55 ms after the transcribed release). One of the judges relied primarily on DFT spectra
computed with a 14 ms Hamming window, supplemented by LPC spectra computed with a
20 ms window; the other judge chose to use time-averaged DFT spectra with a 10 millisecond
averaging window.

In addition to the vocal tract resonance measurements, judges were asked to make
several measurements on the burst spectra of the stop releases. First, for velar and alveolar
stops, judges were asked to measure the first front cavity resonance frequency. Second,
judges were asked to measure the amplitudes of the highest peaks in two bands, which were
defined in terms of formants: the “low-frequency” band was defined as the band containing
the speaker’s typical F2 and F3, while the “high-frequency” band contained the speaker’s
typical F4, F5, and F6. Finally, the judges were asked to estimate the “diffuseness” of the
spectrum, on a scale from 1 (most compact) to 5 (most diffuse).

Roughly one-third of the consonants were transcribed by both judges. After transcrib-
ing these syllables individually, the judges compared their measurements to make sure that
they were choosing the same peak for each frequency measurement. Remaining differences
between the judges should therefore be entirely caused by differences in the signal repre-
sentations used.
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Measure N [rg | Mean | Std Dev | Min | Max
F1 (Hertz) 561 [ 0.99 [[-13 [ 36 -158 | 100

F2 (Hertz) 700 1 098 || 1 47 -257 | 237

F3 (Hertz) 662 | 0.99 || 6 55 220 | 225

Resonance (Hz) 63 {0.97 | 10 50 -170 | 131

Low Freq Amp (dB) || 86 [0.97 | 16.0 | 3.2 3.7 1270
High Freq Amp (dB) || 87 | 0.96 || 15.5 | 3.1 6.2 | 215
Diffuseness 88 10.93 | 0.3 1.0 -2 3

Table 3.1: Signed differences between the two human judges on tokens which were tran-
scribed by both. F1, F2, and F3 include six measurements per token, for mere than 100
tokens. The burst spectral measures are the front cavity resonance frequency, low frequency
and high frequency amplitudes, and relative diffuseness.

The difference between the judges’ scores on each measurement are presented in table 3.1.
In this table, r, is a test of the goodness of fit of a Gaussian model, which will be described
in the next subsection. The high values of ry in table 3.1 indicate that all differences are
relatively well modeled by a Gaussian distribution, except that differences in the diffuseness
measure are always small integer values (usually 0 or 1), and are therefore not well modeled
by a Gaussian. Since each judge was allowed to choose his own spectral representation,
there is a large mean difference in the amplitude measurements.

3.4.2 Confidence limits for a Gaussian error model

Measurements of the two judges were combined to form a reference set, against which the
algorithm was tested. For all tokens transcribed by both judges, the two sets of measure-
ments were averaged. Amplitude measurements of one judge were linearly shifted by the
amount of the average difference before averaging; frequency and diffuseness measurements
were averaged with no prior adjustment.

The algorithms described previously were used to automatically measure formant fre-
quencies, burst front cavity resonance and amplitudes, and diffuseness (measured as the
number of large peaks in the burst spectrum). These measurements were compared to the
reference measurements produced by human judges, and the difference will be referred to
as the “measurement error” of the algorithm.

Table 3.2 gives estimates, and 99% confidence limits, for the error mean and error
standard deviation of each measurement. In this table, the large average difference be-
tween automatic and manual measurements of spectral amplitude is caused by the different
spectral representations used by humans and machine. There are also significant differences
between the automatic and manual measurements of F1, F3, and the front cavity resonance,
which can not be easily explained in terms of differences in spectral representation.

Differences shown as significant in table 3.2 should be interpreted with caution, because
of the low quantile correlation coefficients r, listed in the table, and the obvious nonlinearity
of the Q-Q (quantile-quantile) plots shown in figure 3-8. A Q-Q plot (Johnson and Wichern,
1992) displays the measurement errors, sorted in increasing order, plotted against an equal
number of samples drawn uniformly from a Gaussian distribution. If the measurement errors
are also drawn from a Gaussian distribution, the Q-Q plot should be a straight line, and the
normalized correlation r, between the ordinate and abscissa should equal 1.0. Instead, all
of the ry coefficients in table 3.2 are significantly less than unity (p < 0.01), although errors
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Formant Measures

Measure [N [r, ] Mean (99% Limits) ]| Std Dev (99% Limits)
Onset F1 (Hz) 594 [0.91 | -43 (-55,31) 114 (106,123)
Vowel F1 (Hz) H827 084 || -26 (-34,-18) 86 ( 81, 92)
Onset F2 (Hz) 871 [0.85 71 (-20, 18) 214 (201,228)
Vowel F2 (Hz) 925 [0.73 6 (-10, 22) 188 (177,200)
Onset F3 (Hz) 7862 [ 0.1 40 ( 21, 59) 216 (203,230)
Vowel F3 (Hz) [o19 [0.78 || 38 (21, 59) 193 (182,206)
Burst Soectral Measures

Resonance (Hz) " 142 1 0.77 -156 (-304,-8) 674 (584,794)
Low Freq Amp (dB) || 214 [ 0.98 || -51.5 (-52.8,-50.2) 7.3 (6.5,8.3)
High Freq Amp (dB) || 214 | 0.99 || -56.6 (-57.5,-55.6) 5.3 (4.7,6.1)
Diffuseness 214 | 097 || -0.2 (-0.5,0.0) 1.5 (1.3,1.7)

Table 3.2: Mean and standard deviation of differences between automatic measurements and
measurements transcribed by human judges, with bilateral 99% confidence limits. “Onset
F1” includes measurements 0, 10, and 20ms after release, “Vowel F1” includes measurements
30, 40, and 50ms after release.
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Figure 3-8: Q-Q plots describing the degree to which the measurement error fits a Gaussian
model: if the errors fit a Gaussian model, the plot should be a straight line. Low-amplitude
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errors are approximately Gaussian, but there are many outliers.
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Figure 3-9: The cumulative probability of finding a measurement error greater than any
given frequency, with 95% confidence limits. Plots have been truncated at 500 Hertz, in
order to make the threshold behavior near 150 Hertz more visible.

in the measurement of spectral amplitudes and number of peaks (not shown) can probably
be considered Gaussian for most practical purposes.

The reason that the errors do not fit a Gaussian model is clearly displayed in figure 3-8.
In this figure, the smaller errors fit the normal error model quite well, but the larger errors
(both positive and negative) are much larger than the errors that would be produced by a
Gaussian model.

Measurement errors which are too large to come from a normal distribution are often
called outliers, and often result from the amplification of small errors by a nonlinear process.
In this case, the process of peak picking is decidedly nonlinear: a slight change in the relative
amplitudes of formant and subglottal resonances, for example, can cause LPC to choose the
wrong peak. These large outliers are qualitatively different from the low-amplitude errors,
which are caused by more normally distributed sources of error, including possibly peak
centering strategies, and differences in signal representation.

The next two subsections cousider approaches to che modeling of these outliers.

3.4.3 Explicit modeling of outliers

In experimental situations, a useful model of measurement error should include, first, an
estimate of the likelihood of the outliers, and second, an estimate of their size. This section
considers techniques for explicitly modeling measurement outliers using nonparametric tools
and mixture Gaussian distributions.
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Outlier Tq
Measure Threshold || All Errors | Small Errors | Large Errors
F1 121 Hz 0.872 0.991 0.954
F2 156 Hz 0.799 0.997 0.954
F3 169 Hz 0.853 0.997 0.976
Resonance || 180 Hz 0.768 0.985 0.979

Table 3.3: Separation of measurement errors into low-amplitude “normal errors” and high-
amplitude “outliers.” Measurements are F1, F2, and F3 (six measurements per consonant
release) and the front cavity resonance (one measurement per stop release).

A non-parametric model

Figure 3-9 shows, for the front cavity resonance and all three formants, the probability
of encountering an error larger than the given threshold. 95% confidence limits for each
measurement are shown using dotted lines. The confidence limits were calculated to three
decimal places by iteratively testing the parameters of a binomial distribution. Notice that,
for each measurement, the probability of an error drops off steeply until a sort of threshold
is reached, and drops off more slowly thereafter. For practical purposes, errors above this
threshold can be considered outliers, and errors below this threshold can be considered
relatively normal.

Table 3.3 lists approximate values of the threshold for each measurement. The three
formant thresholds are each calculated as the inverse of the decay constant in an expo-
nential probability model, where the models were estimated by fitting straight lines to the
logarithms of the curves shown in figure 3-9. The exponential probability model does a poor
job of modeling details of the distributions, but the estimates of the thresholds for formant
outliers were considered reasonable, and are therefore used in table 3.3. The front cavity
resonance threshold, on the other hand, was read directly from figure 3-9: the threshold,
180 Hertz, is the start of the long flat section in figure 3-9, and seems to represent a natural
boundary in that distribution.

As a measure of the normality of each subset of the errors, table 3.3 lists Gaussian
quantile correlations r, separately for both low-amplitude and high-amplitude errors. Our
previous characterization of the low-amplitude errors as “normal errors” seems to be justified
by the r, statistics, which rise when high-amplitude errors are removed. Surprisingly, the
degree of normality also seems to rise when the low amplitude errors are removed. This
seems to imply that the “outliers” may also be normally distributed, but with a much larger
variance than that of the low-amplitude errors.

A concentric mixture Gaussian model

The idea that low-amplitude and high-amplitude errors are independently Gaussian, with
similar means but different variances, can be modeled using mixture Gaussian models. We
can define a “concentric mixture Gaussian model” to be a model composed of two Gaussians
with the same mean:

ple) = (1= P) x N (f;—l") +Px N(e;”) (3.4)
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Figure 3-10: Mixture Gaussian models of the formant and front cavity resonance measure-
ment errors (shown: log probability density). Formant mixtures were constrained to have
the same mean; the front cavity resonance model was not so constrained.

where N(z) is the unit normal distribution, € is the error, and p, oy, 02, and P are trainable
parameters.

Concentric mixture Gaussian models trained for the three formant measurement errors
are shown in figure 3-10. The front cavity resonance is very poorly modeled by a concentric
mixture Gaussian, so the means of the two Gaussian elements were allowed to diverge,
creating the slightly skewed distribution shown in the figure.

The parameter P, for each mixture Gaussian model, is slightly higher than the corre-
sponding probability of an outlier shown in figure 3-9. This is a natural consequence of
the form of the mixture Gaussian model, which explains almost all outliers using the wide
Gaussian element, but adds both Gaussian elements together to explain tokens toward the
center of the distribution.

3.4.4 The effect of context on outlier probability

The test set contains nine consonants (three nasals and six stops), and a wide variety of
right contexts, including two glides, three retroflex sounds, two lateral sounds, two types of
schwa, and nine unreduced vowels. Speech production theory suggests that some of these
syllables have clear, easy to measure formants, and others are subject to more frequent
€errors.

Contexts likely to cause large measurement errors were identified by visual clustering
of the test data, with guidance from speech production theory. The resulting definitions of
“high-error” and “low-error” contexts are given in table 3.4.

The best predictor of error in an F1 measurement is found to be identity of the conso-
nant. Nasal and aspirated consonants cause frequent peak-picking errors near the consonant
release, while only the aspirated consonants with longer voice onset times (/t/ and /k/)
cause a noticeable increase in error rate between 30ms and 50ms after release.
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Time High-Error Number of Measurements
Measurement after Release | Contexts High-Error | Low-Error
Vowel F1 30-50ms Jtk/ 130 697
Onset F1 0-20ms same, plus /m,n,ng,p/ 379 215
Vowel F2 30-50ms Jw,r,Ly/ 209 716
Onset F2 0-20ms same, plus /g,p,t,k/ 503 368
Vowel F3 30-50ms Jw,rer,axr,lely/ 357 562
Onset F3 0-20ms same, plus /g,p,t.k/ 571 293
Peak Frequency | 0 Velar + [y/ 27 115
Alveolar + /w,aa,ae,r,er/

Table 3.4: Definitions of seven frequency measurements, and of contexts in which the mea-
surements are more likely to suffer peak-picking errors. High-error contexts were chosen on
the basis of speech production theory, and of observation of the measured errors.
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Figure 3-11: Cumulative histograms, showing the probability of finding an error larger
than the abscissa coordinate. The solid lines are the measured probabilities for low-error
and high-error contexts; the dotted and dashed lines show 95% confidence limits for the
low-error and high-error contexts, respectively.
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Figure 3-11 shows the probability of finding outliers greater than any given frequency,
for both high-error and low-error contexts, with 95% confidence limits. Apparently, most
F1 errors larger than about 100 Hertz can be attributed to the effect of the consonant,
although a small number of very large errors (400-500 Hertz or more) are also found in
low-error contexts.

Errors in F2 and F3 near consonant release are influenced by identity of both the conso-
nant and its right context, but beginning about 30ms after release, it appears that only the
right context strongly influences error rate. Both F2 and F3 are frequently mis-identified
during glides and liquids, because of frequent mergers between neighboring formants (/y/
and /r/ show frequent F2-F3 mergers, /w/ shows frequent F1-F2 mergers, and F3 is often
weak or ambiguous in /1/). F3 is also often lost during syllabic liquids: during retroflex
sounds, F3 often merges with F2, while during lateral sounds, F3 is often extremely weak.

As shown in figure 3-11, the context classes in table 3.4 are relatively effective at pre-
dicting the frequency of ecrors in all F3 measurements, and in F2 measurements at least
30ms after release. The F2 onset measurements in high-error and low-error contexts are
not significantly different, indicating that the selected contexts are not a good predictor of
F2 onset measurement errors.

The front cavity resonance measurements show a clear division, at about 200 Hertz,
between small amplitude “normal errors” and large amplitude outliers. Of the 27 “outliers,”
12 occur in the contexts specified in table 3.4. Alveolar bursts in low context (/aa/ and
/ae/) often contain strong back cavity resonances which are mistaken for the front cavity
resonance. The front cavity resonance of a retroflex stop, and of a velar in /y/ context,
often appears as a broad mass of energy composed of several smaller peaks; the measurement
algorithm and the human transcribers often choose peak locations which differ by several
hundred Hertz. Finally, the burst in the syllable /dw/ is often weak, with no clear front
cavity resonance; this was the only context in which voicing of the stop was useful in
predicting front cavity resonance measurement errors.

3.4.5 Correlations between measurements and measurement errors

The discussions in sections 3.4.2 to 3.4.4 assume that the error in measuring a formant
frequency is uncorrelated with the true underlying value of the formant. This assumption,
called the homoskedasticity assumption, is common in statistical analysis, and it allows
us to build powerful error models, as described above. Real-world measurement processes,
however, are often heteroskedastic, that is, measurement errors are often correlated with the
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