
Online Neuron Reconstruction
by

Jonathan Stoller

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2016

c○Massachusetts Institute of Technology 2016. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Electrical Engineering and Computer Science

May 16, 2016

Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Nir Shavit
Professor

Thesis Supervisor

Accepted by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Dr. Christopher J. Terman

Chairman, Masters of Engineering Thesis Committee





Online Neuron Reconstruction

by

Jonathan Stoller

Submitted to the Department of Electrical Engineering and Computer Science
on May 16, 2016, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract
In this thesis, I designed an algorithm that traces neurons through the images of various
datasets extracted from mouse brains. The algorithm is implemented in Python and relies
on the output of a recently developed Fully Convolutional Neural Network (implemented
in C) that runs on the underlying images.
The images themselves are generated using state of the art technologies that provide high
resolution and extremely accurate representations of the original brain matter. The algo-
rithm is part of the combined efforts of MIT’s Computational Connectomics Group.
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Chapter 1

Introduction

Recent improvements in imaging technologies have provided neuroscientists with a deluge

of data. Terabytes, even petabytes of brain imagery can be generated within a number of

hours, or at most a few days. Processing this data, however, remains a challenge.

One particular problem of interest is that of tracing a single neuron. The data associated

with a single neuron is a tiny fraction of the total data available. Developing a method that

could trace a single neuron would be advantageous in many ways - ideally providing neu-

roscientists with a tool that could generate results in real time, due to the smaller quantity

of data involved.

1.1 Online Neuron Reconstruction

The goal of this thesis was to develop an algorithm that would provide an automatic, com-

puterized way of tracing a neuron through brain images, providing neuroscientists with real

time results to certain queries.

Online Neuron Reconstruction (ONR) works in real time by accessing the preprocessed,

raw brain imagery, processing only those images that are necessary for the algorithm’s op-

eration (henceforth, the terms ONR and algorithm are used interchangeably). The primary

tool used by ONR is a Fully Convolutional Neural Network (FCNN) that accepts raw im-

ages as inputs and outputs an intermediate data type that is used by the algorithm.

Working in this way, and utilizing the fact that the imagery is aligned and of excellent qual-
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ity and high resolution, the algorithm is able to apply techniques that grant it the speed it

needs to provide real-time, "online" results.

1.2 Connectomics - Overview

Mapping the neuroanatomical structure of the brain has been a long term challenge in

neuroscience. In the last few years, this objective has seen new light through Connectomics,

a field that deals with studying and creating models of the neural connections within the

brain. There are many challenges related to Connectomics. The largest problem concerns

the sheer volume of data that has to be processed and analyzed. The first milestone in

Connectomics was the mapping of the neural structure of the C. elegans worm. Despite the

small amount of neurons involved1, the entire process, which was done by hand, lasted ten

years. Recently, scientists and engineers have begun to map small sections of the mouse

brain. Overall, the brains of mice are comprised of ∼ 70,000,000 neurons. However, at

present, only very small subsets of the brain are being analyzed (our project focuses on one

cubic millimeter).

Despite the deceptively small volume these subsets occupy, the size of their corresponding

image datasets can be huge, spanning from terabytes to even petabytes of memory.

1.2.1 Brain Imagery

The images used by the MIT Computational Connectomics Group are generated by a

method known as Electron Microscopy (EM). Essentially, EM employs special micro-

scopes that fire beams of electrons on the original brain tissue. By analyzing the stream

of electrons returned from the brain tissue, the microscope is able to generate images of

extremely high quality. All the images used by the algorithm and by the MIT Computation

Connectomics Group (MCCG) have been provided and aligned by Harvard’s Hanspeter

Lab [1].

1302
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1.3 Motivation

One of the many tasks that require optimization in the field of neuroscience is the tracing

of individual neurons throughout a dataset of images. In other words, given a particular

neuron, how can the various components in its structure (e.g., the soma, pre/post synaptic

connections, etc.) be identified?

At present, there is no program or algorithm that can be used to answer this question in

a fast enough manner. The only way to track a neuron is for an experienced researcher

to spend hours, painstakingly sifting through hundreds of images until finding the various

components of the neuron in question.

For example, the research of Morgan et al. [2] revolved around the study of postsynaptic

thalamocortical neurons located in an image dataset comprised of 100 trillion voxels. The

work done by the researchers could surely have been aided by an approach capable of

quickly tracing individual neurons, rather than having to wait for the analysis of an entire

dataset that contained huge amounts of irrelevant data.

1.4 Usage

ONR can be used directly from the command line, by providing a number of arguments.

Asides from the arguments, the only input required is the raw brain imagery. Due to the

enormous size of the data, the three dimensional data set is divided into a large number of

vertically aligned stacks of two dimensional images. The algorithm navigates through this

data set, applying the FCNN only where necessary.

Given an initial three dimensional sequence of coordinates (corresponding to a voxel within

a neuron), the algorithm traces the neuron throughout the three dimensional space.

In accordance with the underlying two dimensional data representation, the algorithm out-

puts the approximate location of the neuron’s "centers" within the various two dimensional

images it traverses, as well as the set of voxels belonging to it within each image.

As an example, the algorithm can be called in the following way:

13



python tracer.py 8 7 4 0 290 932 2 50 4 0 1

tracer.py is the name of the root script that executes the algorithm.

The order of the arguments, as shown above, is as follows:

(1) 3D coordinates of the set of images containing the starting voxel

As mentioned previously, the imagery is distributed into vertically aligned sub-

sets. Each subset, or block, has a set of 3D coordinates that uniquely identify it.

(2) 3D coordinates of the starting voxel within the specified block

(3) The vertical direction of exploration

Most likely, the neuron expands vertically in both directions, i.e., in both positive

and negative vertical (Z) directions. This argument allows the user to specify

whether the algorithm should trace the expansion of the neuron in both direc-

tions, or in just one of the two directions.

(4) Maximum depth of vertical traversal

This argument provides the user with a way of instructing the algorithm to termi-

nate after exploring a certain vertical depth (e.g., a value of fifty would cause the

algorithm to terminate after tracing the neuron through a depth of fifty images in

the Z direction).

(5) Sparsity of gathered points (sub sampling factor)

The output of the algorithm includes the voxels belonging to the neuron. In order

to make the output smaller, it is possible to output a sub sampling of these voxels.
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For example, a sub sampling value of 2 would cause the algorithm to output ev-

ery 2nd voxel along the X and Y axes, i.e., 1
4 (= 1

2
2
) of the total voxels belonging

to the neuron.

(6) Data type

The envisioned use case of the algorithm is to serve as a tool for neuroscientists

to quickly analyze new datasets that have not yet been processed. That being

said, if the data has already been processed, it is possible to utilize the already

existing output of the FCNN, thus speeding up the running time of the algorithm.

(7) Forking

The algorithm has a notion of uncertainty that allows it to terminate when it

is relatively unsure as to how to continue tracing a neuron through the dataset.

Typically, when the algorithm reaches such a point, it can still make an educated

guess as to where the neuron continues. The Forking parameter instructs the

algorithm to produce additional "forks", or "branches" that continue the tracing

along such paths.

It is important to note that the tracing of the neuron along such forks is more

prone to error. The algorithm’s output includes a confidence score that indicates,

for each image traversed (on every fork), the likelihood that the computed results

are correct.

1.5 Contributions

∙ ONR provides neuroscientists with a way of reconstructing the structure of a neuron

in real time, on raw brain imagery.

∙ ONR can also be used as a way of improving the results of a dense segmentation.

Dense segmentations are the primary tool used to analyze an entire dataset of brain
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imagery. The output of a dense segmentations maps every voxel in the three dimen-

sional space to a unique neuron.

Currently, while extremely powerful, dense segmentations are prone to making split

errors (i.e., erroneously splitting a single neuron into two distrinct neurons). Running

ONR on the output of a dense segmentation can allow neuroscientists to identify such

errors and fix them by merging the split neurons into a single neuron.

16



Chapter 2

The Brain Imagery

The brain imagery used by ONR was prepared by the Hanspeter Group from Harvard. The

process involved a number of distinct stages[3] that will now be outlined.

2.1 Creating the dataset

The ONR datasets were extracted from brain tissues whose sizes were approximately 0.1

mm3. The brain tissue was sliced at an extremely fine granularity (29 nm) using a diamond

knife.

After slicing the tissue, the resulting sections were scanned using an electron microscope

that employed backscattered electron detection [3], providing a resolution per section of

3x3 nm, or in total 3x3x29 (XYZ axes, respectively). Recently, the procedure has incor-

porated a new microscope capable of speeding up the process by employing a number

of scanning beams working in parallel[4]. For computational reasons this resolution was

down-sampled to 6x6x29. That being said, when finer details are required, our systems use

the original resolution instead.
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2.2 Properties of the dataset

One crucial property of the dataset is that the images are aligned. Alignment was achieved

via the use of affine image transformations [3]. The fact that the data was both aligned and

of such high resolution allowed ONR to make use of various techniques that previously

could not have been applied.

Generating such a high resolution comes with a price - the resulting images take up a very

large amount of storage. For example, at a resolution of 3x3x29 nm the images generated

from a 0.13 mm3 volume require a few terabytes of storage.

Figure 2-1: A sample image generated by the Hanspeter Group
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2.3 FCNN

As stated above, ONR does not make direct use of the images. Instead, it invokes a FCNN

on the raw imagery that outputs a probability map in which values of 1 correspond to voxels

that are considered to be membranes, and values of 0 correspond to the interior of a cell.

Figure 2-2 is the FCNN probability map outputted for the image displayed in Figure 2-1.

Figure 2-2: An example of a FCNN probability map

Note that while most of the image is white or black (corresponding to values of 1 or 0,

respectively), various shades of gray also appear. The reason for this is that the values in

the probability map directly correspond to the probability of the underlying voxel being a

membrane, and the FCNN is often uncertain as to the correct designation. For the most

part, ONR sets a threshold, conceptually binarizing the values into 1s and 0s.

19



2.3.1 Training the FCNN

The accuracy of the FCNN is a result of the extensive efforts that went into its construction

and training. The training data of the neural network was a dataset that was manually

annotated, providing a groundtruth that was used not only by the FCNN, but also by the

ONR algorithm.
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Chapter 3

Related Work

The need for an algorithm capable of reconstructing neurons in real time from brain im-

agery has existed for many years. The first attempts at reconstructing neuronal structures

using computers date back to the mid-1960s.

Many solutions, with varying degrees of success, have been developed. For various reasons

that will be discussed in this section, these solutions were not an appropriate choice for the

imagery used by our group.

3.1 Kalman filters

In 1960, R. E. Kalman released a seminal paper that introduced what came to be known as

Kalman filters [5]. Over the course of the last fifty years, Kalman filters have performed

very well at predicting future states of noisy data. At first glance, it appears that Kalman

filters would be an ideal tool for ONR. Indeed, Kalman filters have been used successfully

in the past in similar endeavors. One such example involved tracing neurons in the optic

tract of an embryonic zebra fish:
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3.1.1 Axon tracking

Jurrus et al [6] describe the method for tracking a neuron’s axon throughout the imagery of

the optic tract: After the initial processing of the imagery, a Kalman filter tracking method-

ology was developed that allowed the researchers to follow an axon through several slices

of images. As stated in the paper, the location of the axon in each image slice is predicted

using the Kalman filter, through the use of contours and optic flow that serve as velocity

and positional estimates.

Nonetheless, while the Kalman filter approach was very good at tracking axons within the

optic tract imagery of zebra fish, it would not provide an ideal solution for our mouse brain

imagery, for a number of reasons:

Firstly, the Kalman filter approach requires two seconds of searching per image slice. The

optic tract imagery had a total of 100 images, which brought the total search time to 200

seconds. However, the mouse brain imagery that we are working with has approximately

2,000 images, and this number will increase significantly when we process larger portions

of the brain. Furthermore, each of our image slices has a resolution of 3x3x29 nm, while

the optic tract imagery had a resolution of 26x26x50 nm. In addition to the increase in

resolution, our images are also vertically aligned with each other (unlike the images of the

zebra fish). These two improvements suggest that it would be possible to develop a new

algorithm to track neurons that could incorporate these advantages into its operation. A

rough estimate shows that using the Kalman filter approach to track neurons in our image

set could require roughly an hour of work, which is far too slow for our goal of online

reconstruction.

3.2 Segmentation based approaches

Many approaches for reconstructing neuronal structures revolve around the use of Dense

Segmentation (DS). The major difference between DS and techniques such as Kalman fil-

ters and ONR is that DS reconstructs all neurons in the dataset, rather than a single neuron.

There are many variants of DS, but for the most part they follow a similar process. One
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form of DS, as employed by the Lichtman Lab at Harvard [7], works as follows:

1. Every image in the dataset is passed through a classifier, such as a Random Forest

classifier or a convolutional neural network. For every voxel in each image, the

classifier determines the probability of it being a cell membrane (as opposed to the

interior of a cell).

After the classifier finishes computing, each image has a probability map that is the

same size as the original image.

2. A watershed is run on the probability maps at different heights. This creates a set of

different watershed transformations for each of the original images.

3. Using the resulting set of watershed transformations, an integer programming al-

gorithm attempts to determine the best watershed transformation for each original

image, such that the set of all chosen watershed transformations are optimally com-

patible with each other (compatibility is assessed using parameters such as over-

lap/similarlity between adjacent images, etc.)

This is a brief description of one DS approach. The important thing to note is that while

DS is a very powerful tool that yields accurate results for the entire dataset, it necessarily

has to perform many computational steps across the entire dataset.

The corrolary of this fact is that it is far slower than a technique such as ONR that merely

seeks to reconstruct a single neuron, and can afford to ignore the vast majority of data.

So while DS is an excellent tool for many applications, it cannot (currently) be considered

a valid tool for online reconstruction.
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Chapter 4

The Online Neuron Reconstruction

Algorithm

In this section I will present the ONR algorithm in detail and describe its implementation.

Some helpful terminology:

∙ layer - refers to the set of images with the same Z coordinate

∙ neuron_local - the area of a neuron within a given layer

∙ neuron_cont - the area of the continuation of neuron_local within a subsequent layer

4.1 The Algorithm’s objective

At a basic level, the algorithm’s objective can be described as follows:

Given a voxel that represents the (approximate) center of a neuron,

find the center of the same neuron in the subsequent layer.

Repeat...

Using the terminology introduced above, this could be rephrased as:
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Given the center of neuron_local, find the center of neuron_cont.

Repeat...

This presents us with two questions:

1. How do we determine the center of a neuron within a given layer?

2. How can we find neuron_cont given neuron_local?

4.2 Determining the center of a neuron

ONR uses two primary methods to determine the center of a neuron within a given layer

(i.e., the two dimensional XY center): Calculating the center by averaging the voxels be-

longing to the neuron; Applying the Euclidean Distance Transform.

4.2.1 Treating the center as an average of the voxels

The first method is straightforward: Given a set of voxels belonging to a neuron within

a layer, the algorithm calculates the average X and Y values. It then treats the computed

average of the two values as the center of the neuron.

This method is convenient and simple, but it suffers from certain disadvantages.

Firstly, it’s possible that the average of the voxels lies outside the actual body of the neuron,

as illustrated by Figure 4-1.

The second disadvantage is slightly more subtle. Although the images that are used by the

algorithm are of very high quality, a certain amount of noise is almost unavoidable (noise

can be caused in a number of ways, including post-mortem damage to the brain tissue).
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Figure 4-1: Occasionally, averaging the coordinates yields a center that is outside the body of the
neuron

Such "noise" often exhibits itself in the form of a blotted out area within the image, ob-

scuring or entirely replacing whatever neuron or other brain tissue existed at the original

location.

ONR has a hard time dealing with such noise. If the computed center of the neuron falls

within a noisy area, the algorithm may fail to continue the search, terminating prematurely.

Consequently, this method for determining the center of a neuron is only used when the

algorithm is confident that the center lies within the body of the neuron, and does not

overlap with a noisy area.

In most cases, this method is supplemented with the following approach.

4.2.2 Euclidean Distance Transform

The Euclidean Distance Transform (EDT) is an algorithm that operates on images. For

each voxel in an image, EDT computes its euclidean distance from the nearest zero valued

voxel. In the probability maps generated by the FCNN, neuron membranes are given a

value of 1, while voxels that are inside the body of a neuron are given a value of 0.
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Applying EDT to the probability maps (that are effectively the same as images) allows us

to determine the distance of a voxel from neuronal membranes and from noisy areas that

are treated by the algorithm as membranes.

Thus, after computing the average of the coordinates of the voxels within the body of the

neuron, the algorithm calls EDT on a large patch of voxels centered around the computed

average (the size of the patch will vary based on the size of the neron).

The algorithm will use the EDT values to decide which voxel should be designated as the

neuron’s center. The decision is a function of the voxels’ proximity to the computed aver-

age, as well as the distance from membranes and noisy areas.

Supplementing the previous method with EDT provides ONR with a robust way of de-

termining a neuron’s center within a given layer. That being said, ONR will avoid using

EDT when possible, due to its relatively high computational cost. For a more detailed

explanation of EDT see Felzenszwalb (2004) [8].

4.3 Finding the continuation of a neuron

Having discussed how the algorithm determines the center of a neuron, it is time to turn to

the primary question: Given neuron_local, how can neuron_cont be determined?

Recall that the input to the algorithm includes the approximate center of a neuron within a

given layer. Assuming the algorithm can invoke subroutine find_area to find the area

of the neuron within the current layer (this subroutine will be expanded on later in this

section), the algorithm can proceed to find the continuation of the neuron as follows:

1. Using the assumption that the XY location of the center of neuron_cont is relatively

close to the center of neuron_local, invoke find_area on the same XY location

within the subsequent layer (i.e., only the Z coordinate is changed).
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2. Compare the resulting area with the area of neuron_local. If the overlap is sufficiently

high, declare the discovered area as neuron_cont.

If the overlap is not high enough, continue invoking find_area on all unexplored

locations in the subsequent layer, within a certain radius of the original location. The

magnitude of the radius is primarily a function of the size of the neuron.

3. If the algorithm fails to find neuron_cont within the subsequent layer, explore the

next two layers as well.

Note that once the algorithm has traced a neuron through a number of layers, it can opti-

mize its search by utilizing additional information, such as the neuron’s average XY drift

from layer to layer and information regarding the shape of the neuron.

Furthermore, there are certain biological insights that are used by the algorithm to verify

that a continuation is valid, such as the fact that a neuron cannot be enclosed within the

body of another neuron.

One weakness of the algorithm (that will hopefully be addressed in the near future) is

that it does not allow backtracking:

As described above, when failing to find a replacement within a subsequent layer, the al-

gorithm will search for a replacement within the following two layers. For example, if the

center of neuron_local is at XYZ location (10,30,5), the algorithm will search for the

continuation at Z layers 6,7 and 8.

However, on rare occasions the neuron will not immediately advance to the next layer, but

rather loop back to previous layers (using the aforementioned example, looping back to

layer 4 before continuing to layer 6), as demonstrated in Figure 4-2). In such cases the al-

gorithm will not discover the continuation of the neuron, and the tracing will be terminated

prematurely.

That being said, as stated, such occurrences do not appear to be frequent.

In this section we have described the general strategy of the algorithm: Given the center of a

neuron within some layer, ONR will attempt to iteratively discover the centers of the neuron
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Figure 4-2: Failure to backtrack: After tracing the blue portion of the neuron, the algorithm would
terminate the search at the beginning of the red portion, as it cannot backtrack

within subsequent layers (the entire algorithm will run once for the positive Z direction, and

once again for the negative Z direction) until it either fails to find a continuation or until it

reaches the end of the dataset. One critical component, which will now be discussed, is the

find_area subroutine.

4.4 The find_area subroutine

Given a voxel as an input, find_area will attempt to discover the area of the neuron the

voxel is contained within. In other words, find_area returns all voxels that belong to

the same neuron as the inputted voxel.

In practice, the subroutine consists of a number of methods. The subroutine first attempts

to apply the floodfill method (see below). If the overlap between neuron_local and the area

discovered by the floodfill method is not sufficiently high, the subroutine will apply the

rectangle search method. Failing that, it will attempt the next method, etc.

If all available methods fail, the algorithm will search for a valid continuation within a

subsequent layer, as explained previously.
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4.4.1 Floodfill

The starting voxel provided to the algorithm is treated by Floodfill as the first voxel belong-

ing to the neuron. Floodfill then examines each of its neighboring voxels. Any voxel that

is not a cell membrane is considered to be part of the area of the neuron as well.

Floodfill then recursively reapplies this approach to all these voxels (the neighboring voxels

that were not cell membranes), examining their neighboring voxels. Floodfill continues in

this manner until it has effectively "filled" the interior of the neuron, i.e., the end result is a

set of voxels that belong to the interior of a neuron, all of which are surrounded by voxels

that are part of a membrane.

Figure 4-3: A neuron whose area was discovered using the Floodfill method

4.4.2 Rectangle Search

In most cases Floodfill performs well, in addition to being quite efficient. However, in some

cases, it fails miserably. In reality, all neurons are enveloped by a membrane. However, due

to noise present in the underlying image, as well as errors made by the FCNN, the proba-
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bility maps occasionally label some voxels incorrectly, creating "holes" in the membranes.

As a result, Floodfill will sometimes combine the area of multiple neurons! Figure 4-4

demonstrates such an occurrence.

Figure 4-4: Floodfill erroneously combines the area of multiple neurons, due to a hole in the right
side of the central neuron’s membrane

In contrast to Floodfill, the Rectangle Search method is capable of handling such situations

almost without failure. Essentially, Rectangle Search uses the starting voxel as a point from

which it expands a large number of lines, each at a different angle. The lines are expanded

until they encounter a cell membrane.

After all lines have been expanded, the maximum and minimum X and Y coordinates of

each line are analyzed. The median value for each of the four values is used to determine

the dimensions of a rectangle within which a localized floodfill is applied.

Confining the floodfill to the rectangle (whose dimensions are determined by the expanded

lines) makes it extremely unlikely that the floodfill will include voxels not belonging to the
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actual neuron.

The justification for this claim is as follows: In order for one of the sides of the rectangle

to protrude past the interior of the neuron, a majority of the expanded lines - each of which

were expanded in a different direction - would have to have encountered a hole in the

membrane of the neuron. Given the overall accuracy of the images and the FCNN, this is

highly unlikely.

Despite its extremely low error rate, rectangle search is still only used when the original,

standalone Floodfill fails. The reason for this is twofold:

Firstly, Rectangle Search is almost twice as slow as Floodfill. Secondly, while it is unlikely

that the area discovered by Rectangle Search will contain voxels not belonging to the target

neuron, it will almost definitely not include all the voxels that do belong to the neuron, due

to the rectangular constraint on the area, as shown in Figure 4-5.

Figure 4-5: Rectangle Search. Note the hole in the right side of the membrane
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4.4.3 Exhaustive Floodfill / Rectangle Search

The starting voxel for both Floodfill and Rectangle Search is based on the center of neu-

ron_local. If the two methods fail to find a valid continuation using this starting voxel, it

will exhaustively attempt to launch both methods using all voxels within a certain radius

of the center of neuron_local as starting points. Although there may be many dozens of

voxels within the radius, the algorithm will only attempt to launch the methods for voxels

that have not yet been discovered by Floodfill or Rectangle Search. So in practice, only 2-3

new searches are launched.

4.4.4 Probabilistic Elimination

There are two likely causes for why the exhaustive application of Floodfill and Rectangle

Search could fail:

1. The area of the image in which the neuron is found is particularly noisy.

2. The neuron is extremely small and the XY overlap between layers is relatively minor.

In such cases, the method that has proven to be most effective is Probabilistic Elimination:

The Probabilistic Elimination method traces out the area of all neurons within a large ra-

dius surrounding the center of neuron_local, in the succeeding layer. For each neuron, the

method calculates the probability that it is a continuation of neuron_local.

This calculation relies on the same considerations as those used by previous methods, i.e.,

XY overlap, similarity in shape, distance, etc. On the basis of these calculations, the method

declares a neuron as neuron_cont if the calculated probability exceeds a certain threshold

and the probabilities of all other neurons are significantly less than a second, lower thresh-

old.

In other words, Probabilistic Elimination attempts to find one neuron that is a far better

candidate for being the continuation to neuron_local than any other neuron, despite the

fact that the actual XY overlap is not significant (due to noise in the image or the small size

of the neuron).
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4.5 Data representation

As mentioned previously, the sizes of the datasets used by the algorithm are enormous. It

is not feasible to store an entire dataset in RAM, nor is it practical to store it as a single

matrix on disk.

Instead, the images of the dataset are stored in dozens or even hundreds of folders, based

on a methodology that corresponds to the layout of the images in three dimensional space.

The algorithm uses an intermediary class to abstract this fact - the methods and subrou-

tines used by ONR reference all voxels using an absolute coordinate system, and the in-

termediary class does the necessary conversion in order to fetch the appropriate data from

RAM/disk.

4.6 General implementation details

As stated above, the algorithm itself has been implemented in Python, while making exten-

sive use of a FCNN that is implemented in C. The algorithm imports numerous third party

modules, including NumPy and SciPy. Asides from third party modules, the code consists

of three primary components:

1. A central script, that manages the tracing of the neuron from layer to layer and de-

cides when to terminate the search

2. An intermediary class that abstracts the access to the data

3. The various find_area subroutines

All three components are implemented in Python.
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4.7 Optimizations

In the interest of clarity, I have glossed over various optimizations made to the algorithm,

including two that are now worth mentioning:

∙ Skipping layers: Rather than trace the neuron layer by layer, the algorithm presents

the option of skipping adjacent layers, thus speeding up the runtime. This effectively

halves both the runtime and the amount of data outputted by the algorithm.

As the layers that are skipped are preceded and followed by layers in which the

neuron is traced, the user can still, fairly trivially, deduce the outline of the neuron

as a whole. However, if an extremely precise reconstruction is required, this option

may not be suitable.

∙ Sub-sampling: Similar to the option presented above, sub-sampling allows the user

to prioritize speed over the comprehensiveness of the output. When sub-sampling is

enabled, only a representative subset of the area of the neuron within each layer is

outputted. This subset is sufficient to allow researchers to deduce the shape/location

of the neuron, as well as which other neurons it is adjacent to.
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Chapter 5

Performance and Analysis

5.1 Speed

As its name suggests, the Online Neuron Reconstruction algorithm must execute very

quickly in order to provide users with real time results. This consideration is in fact one of

the primary concerns of the entire MIT Computational Connectomics Group, guiding the

design of all systems developed within the group, including those that do not provide real

time results.

Fortunately, the FCNN developed by the group is extremely efficient, utilizing massive par-

allelization and extensive optimizations that allow it to meet the speed constraints of the

group’s various systems. The FCNN is the most complex and advanced tool used by ONR,

and as such, the work that has gone into guaranteeing its high performance has been essen-

tial.

Asides from the FCNN, the components of the algorithm are fairly straightforward. The

performance-critical portions of the algorithm have been carefully written in order to max-

imize the speed of their execution.

Performance related metrics:

∙ It takes roughly 60 seconds to trace a medium sized neuron (consisting of ∼4,000
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voxels, translating into an area of roughly 0.144 mm3) through 1,000 layers (29 µm).

∙ Average number of Python bytecode operations per layer (for a medium sized neu-

ron): ∼800,000.

∙ Percentage of time spent loading data: ∼ 12%. This includes the overhead required

for an associated cache that aids with data access.

In order to fully understand the benefit of ONR it is helpful to contrast it with the tradi-

tional reconstruction of the entire dataset. Currently, the pipeline developed by the MIT

Computational Connectomics Group can provide an automatic reconstruction/annotation

of a ∼90GB dataset in 10 hours. While this is incredibly fast, considering the size of the

data and the complexity of the task, a user interested in analyzing a (much) smaller subset

of neurons could use ONR to acquire the same information for the few neurons of interest

in a fraction of the time.

5.2 Accuracy

Before discussing the accuracy of the algorithm, it is important to state that accuracy is

inversely related with the depth of the tracing. In other words, the greater the number of

layers that are traced by the algorithm for a given neuron, the greater the chance of an

error occuring. The algorithm has an internal "tradeoff" parameter that can be configured

to determine which of the two to prioritize - the depth of the tracing or the accuracy, i.e.,

whether the algorithm should attempt to trace the neuron to the greatest extent possible,

with an increased risk of making mistakes; or whether the algorithm should act conser-

vatively, minimizing the risk of error at the price of potentially terminating the tracing

relatively early.

In order to measure its accuracy, the algorithm was evaluated using the groundtruth of 500

neurons located in the S1 region of a mouse brain. For every layer in which the neuron
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was traced by the algorithm, the reported center was compared with the groundtruth to as-

certain that it indeed corresponded to the neuron in question. By repeating this evaluation

over every traced layer for each of the 500 neurons, the following metrics were reached:

∙ A medium setting of the tradeoff parameter gives an accuracy of 98%, with a recon-

struction depth of approximately 30.5%. That is, on average, the algorithm correctly

identified the centers of each of the 500 neurons within ∼ 30% of the layers traversed

by each neuron. A small number of additional reported centers were incorrect, be-

longing to other neurons.

∙ Setting the tradeoff parameter to prioritize accuracy over depth yields an accuracy

of more than 99%, though the reconstruction depth decreases considerably, to only

slightly over 20%.

5.3 Causes for errors

As alluded to previously in the paper, errors are caused primarily by three culprits: Noise

present in images, mistakes in the probability maps generated by the FCNN, and (primar-

ily) neurons with relatively small XY areas.

In fact, once the area of a neuron exceeds a certain size, no errors have yet been encoun-

tered. Similary, practically all of the early terminations of the algorithm occur when the

neuron is relatively small.

Accordingly, the primary area for improvement in ONR is the tracing of small neurons.
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Figure 5-1: Fraction of the neuron that was traced successfully versus the average XY area. A
value of 4,000 (voxels) corresponds to a medium sized neuron
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Chapter 6

Future Work

6.1 Future applications

ONR’s primary use case is to serve as a tool for researchers, providing real time results to

queries regarding single neurons. Additionally, it can be used to improve dense segmenta-

tions, as outlined earlier in the paper.

One possibility that needs to be explored is using the algorithm to generate seeds for dense

segmentations: Currently, dense segmentations initiate a large number of random seeds

from which the watershed process (that is part of the segmentation) is begun. Theoreti-

cally, the algorithm could be used to improve this selection process, e.g., by verifying that

two seeds do not belong to the same neuron.

An additional application that is worth exploring includes applying the algorithm to un-

aligned datasets. The datasets presently provided to the MIT Computational Connectomics

Group by the Lichtman Lab have already been vertically aligned. However, it is possible

that with some minor adjustments, ONR will be able to run on unaligned datasets as well

- which will shorten the overall time researchers have to wait to run queries on datasets,

as the image alignment process could be skipped (note that alignment also increases the

size of the dataset considerably, so this optimization would save a considerable amount of

storage space as well).
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6.2 Improving Speed

Currently, the algorithm is implemented in Python (with the exception of the FCNN). Port-

ing the code to C/C++ would undoubtedly speed up the algorthim’s runtime.

Another major area for improvement is the way in which the algorithm calls the FCNN. At

present, ONR calls FCNN on large blocks (of a predetermined, fixed size) of the underlying

image. Most of the information in the resulting probability maps is irrelevant and not used

by the algorithm. Making the calls more granular would allow the FCNN to yield results

much faster, thus shortening the overall runtime of the algorithm.

6.3 Improving Accuracy

One way to improve the accuracy of ONR’s results is by executing the algorithm twice, in

parallel, using two different types of probability maps: For each layer, one probability map

would be generated by the FCNN, while a second map would come from a Random Forest

classifier. Overall, the generated probability maps would be extremely similar. However,

in some noisy or questionable areas of the images the two maps would likely differ, poten-

tially altering the decision making process of the algorithm. After the two executions of

the algorithm would finish running, their results would be compared, and only the layers

for which the results were the same would be outputted.

This approach has been tested in practice, and has been shown to improve the accuracy of

the reported centers. As the two executions could be run in parallel, the overall runtime

would barely increase, except for a short post-processing step after the conclusion of the

two executions.

6.4 Increasing the average reconstruction depth

The most significant challenge to ONR is the reconstruction of small neurons. Large neu-

rons are handled very well, and in the vast majority of cases, ONR successfully traces them
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in their entirety. However, small neurons remain a challenge, often causing ONR to termi-

nate prematurely, rather than being traced throughout the dataset.

Clever modifications and additional techniques will be required in order to successfully

handle small neurons and increase the depth of their reconstruction.

6.5 Adding a GUI to ONR

In the near future, a GUI will be added to ONR to simplify its use. The envisioned user

experience is that the user will open a GUI that presents the original, raw imagery. The

user will first set certain optional parameters, such as specifying the vertical direction of

exploration, the maximum desired reconstruction depth, etc. After setting these optional

parameters, the user will click on any voxel in the image. The coordinates of the voxel will

be passed to ONR, which will then perform a reconstruction of the neuron that the voxel

belongs to, using the parameters configured by the user.

While the search is being performed, the screen will present the progress of the algorithm,

outputting the results of the reconstruction in real time. How exactly the results will be

presented could also be determined by the user: The centers of the neuron within each

layer could be overlayed on the raw imagery, or alternatively, the area could be displayed.

The algorithm provides both outputs.
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Chapter 7

Conclusion

The Online Neuron Reconstruction algorithm traces neurons throughout image datasets in

real time. The algorithm relies on a Fully Convolutional Neural Net and a number of sim-

pler methods and subroutines. While there remains work to be done in order to bring the

algorithm to its full potential, ONR is already quite capable of providing researchers with

real time results to queries, as well as aiding in improving the results of dense segmenta-

tions.
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