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Abstract

Smartphones can provide a great deal of information about their users using numerous
built-in sensors, such as location, local weather conditions, or current method of
travel. This information has the potential to be relevant to other users, allowing them
to be alerted about pertinent events in real-time, such as knowing where their family
members are. This thesis proposes a design for a publish-subscribe system aimed to
support sharing sensor data between mobile clients, where users can specify complex
subscriptions over sensor data generated by other phones and receive alerts when a
relevant event occurs. We present a number of client-side optimizations for collecting
sensor data on the mobile device and communicating that data with the publish
subscribe server efficiently, in order to reduce battery usage and data transmission.
We then perform an evaluation of these optimizations, discuss design tradeoffs, and
show which scenarios the optimizations perform best in.
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Chapter 1

Introduction

The evolution of mobile phones has come a long way from simply being portable
devices to make phone calls. Today’s smartphones are multifunctional and provide
a multitude of different applications, from allowing users to check their email, use
their phone as a camera, or find driving directions. Smartphones are packed with
numerous sensors to provide this intricate functionality. Your mobile device likely
includes multiple wireless radios to connect to bluetooth devices or the Internet via
Wi-Fi or a paid data plan, built-in GPS that allows you to use location-based apps,
and a camera to take photos. Besides allowing for a rich set of applications for just the
user of the phone, this multitude of sensors can capture a great deal of information
that would allow others to learn about the user of the phone, from simple, direct
sensor readings, such as what location the user is at, to more complex inferences,
such as whether or not the user of the phone is travelling and what traffic conditions
look like near the user.

Sharing information captured through the sensors of a mobile phone is not a novel
idea. For example, the application Foursquare allows users to select their location
from a list of nearby venues and send that information to their friends. However,
each of these applications must build a custom backend to support the data sharing,
because there currently is no generic framework that supports this.

Given the growing market for mobile applications, it would be convenient for

developers to be able to utilize a framework that provides a service to share sensor-
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related data produced by smartphones. In this thesis, I describe the motivations for
creating such a system and a proposal for its design, which is geared towards mobile

phone clients and is specifically optimized for the efficient transfer of sensor data.

1.1 Motivations for Real-time Notifications of Sensor

Data

Notifications have the potential to send the right information to a user, at right
place and the right time. The system proposed in this paper aims to make it easier
for developers to create applications where users only receive notifications that are
relevant to them and to connect users by sharing sensor data. This shared information
would allow mobile phone users to learn more about the world around them. This
framework would make it easier to share crowdsourced data produced by phones, or
receive important alerts from remote sensors.

Supporting relevant notifications is accomplished by incorporating the publish-
subscribe pattern into the framework, which would allow users who are listening to
sensor data to specify exactly what information they want to hear and be alerted of
that information in real-time. In the following text, we will refer to the different users
in the system by their role in the publish-subscribe pattern. Thus, users who produce
data will be referred to as publishers and those who consume data will be referred to

as subscribers.

1.2 Applications for Sharing Sensor Data

We detail several use cases, showing applications that could build off of our proposed
framework. Each of these examples demonstrate scenarios where users can derive
useful information from sensor data and would benefit from receiving alerts in real-
time. These scenarios are divided into three categories: location based subscriptions,

non-location based subscriptions, and scenarios with non-mobile phone publishers.
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1.2.1 Location based Subscription Scenarios

In these examples, subscribers are interested in listening to relevant information about
their surroundings. Subscriptions in this scenario are localized; the sensor data that
users would like to receive comes from publishers who are also in the same region.
Publishers themselves can also be mobile and thus move out of the subscriber’s region

of interest, or they can be stationary and will stay in static locations.

Crowdsourced Traffic Alerts and Navigation

Applications like Google Maps provide users with traffic data and optimized driv-
ing directions by analyzing data from real mobile phone users’ location data to create
an optimal route and calculate an approximate time estimation. Using the framework

described in this paper, it would be more trivial to develop a similar application.

Each user of the application who is currently driving would publish their sensor
readings, such as current speed, location, and acceleration, in order to contribute to
the traffic monitoring. We can derive whether a user is driving using the Android De-
tectedActivity class, described in further in section 2.3.1. Users who are performing
route finding or are just checking traffic conditions can subscribe to the region be-
tween their current location and destination, or the area that they plan to be driving
in. The data that subscribers receive would allow the application to display average
speeds along roads and determine from the acceleration data if there are conditions

such as stop and go traffic.

Noise Monitoring

If you're looking for a quiet place, you might want to know the noise levels in
nearby locations. Using the phone’s microphone, it is possible to measure the ap-
proximate ambient noise level around a phone’s user. Users of the application would
publish the ambient noise levels, and others who are looking for a quiet place would
put in a subscription for their surrounding region and receive readings on the noise

levels nearby.
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1.2.2 Non-location based Subscriptions

In these scenarios, the data that subscribers are interested in is not just limited to
regional data. Users would want to subscribe to certain publishers’ information re-
gardless of location. For example, if you were subscribed to security sensors in your
home, you would want to receive alerts about suspicious activities regardless of where

you are.

Family or Friend Locator

In this type of application, a user may want to know the location of certain people,
such as their family members or friends. The user would specify the people that he
or she would want to subscribe to, and those users would periodically publish their

location.

This situation also has the potential for users to ask more complex queries, such
as, are their family members in a certain location (e.g. at home or in school), are
they currently travelling and what is their current method of travel, or have they
been involved in an accident. Some of these queries can be answered by a straight
reading of sensor data, but others, such as inferring an associated location or whether
an accident has occurred, would require inferences from the sensor data and are not

supported by the current design of this system.

Electronic tagging

Using bluetooth tracking devices, users can tag their valuables and use crowd-
sourcing to find lost items. An example of such a product is the Tile tracker [1].
These tracking devices emit unique Bluetooth low energy signals that mobile phones
can detect. Using the framework designed in this paper, we can support a similar

app that uses crowdsourcing to find lost items tagged with these trackers.

When a user loses an item, the user can put in a subscription specifying he or she
they are searching for the lost tagged item. All users of the lost and found service are

potential publishers. Their devices would send publications when they sense tagged
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items, showing the location that they sensed the item and which item it was. Through
our publish-subscribe service, subscribers would receive alerts when another user has
sensed their lost item.

This scenario is not location based, because users’ subscriptions are querying for

specific objects, not for publications in the local area.

1.2.3 1.2.3 Non-mobile phone publishers

These are scenarios in which the publishing devices are not necessarily other mobile
phones. The system designed in this paper can be extended to support generic sensors
that have Wi-Fi access and other computational abilities, in addition to supporting
smartphones. If the framework were extended to allow for a broader selection of
sensor devices, it would allow for a much richer application set. In the vision for an
Internet of Things, where sensors, software, and network connectivity are embedded
in common, physical objects, having a generic framework to communicate sensor data
would make it much easier for developers to move quickly when designing new appli-

cations.

Open Power Outlet Finder In this hypothetical scenario, we envision public power
outlets which have sensors registering whether the outlet is in use or not. If some elec-
tronics are plugged into the outlet and are drawing power, the sensor would register
that the outlet is in use. Users looking for power outlets would subscribe to outlets
in the nearby vicinity, and the outlets would send publications when they are not in
use. A user at the airport who is looking to charge their device could then place a

subscription and wait to be alerted when a charging station is free.

Public Transportation
When looking to ride a bus or some other form of public transportation that
doesn’t operate on a reliable schedule, users may want notifications of when busses

on their routes of interest arrive at nearby pickup locations. Such applications already
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exist, but these scenarios could also make use of our generic sensor framework. The
busses would periodically publish their locations, and users would subscribe for the
bus routes that they are waiting for in order to receive alerts when those busses arrive

at the closest stop.

1.3 Contributions and Paper Outline

The contributions of this thesis involve proposing a system design for a publish-
subscribe framework with optimizations for mobile devices, motivating the system’s
benefits and viability, and performing an initial benchmarking to validate perfor-

mance.

1.3.1 Framework Design and Communication Protocol

We describe how the publish-subscribe pattern will be used in order to allow mobile
devices to share sensor data with other users. This includes developing a language
for the mobile devices to publish data to the server and for the server to send that

data back to subscribing phones.

1.3.2 Client-side Optimization techniques

Much work has already been done on optimizing the publication and subscription
matching process of publish-subscribe systems, but given the specific use case of our
proposed system, we present client-side optimizations that occur before the pub-sub
matching process begins. The main concerns involve preventing data which does not
match any subscriptions from reaching the central publisher-subscribe server, in order
to reduce data usage and reduce the workload on the server, and optimizing sensor
sampling on the phone, in order to prevent battery drain for the client. We suggest
three different optimization techniques: publication filtering, smart sensor sampling,

and query indexes.
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1.3.3 Validating performance

We provide an analysis of our optimization techniques using an example use case
with pre-sampled location data and to show the viability of these strategies. We also
present hypothetical scenarios to analyze when the techniques are expected to behave
optimally or non-optimally.

Chapter 2 will provide more background on the publish-subscribe pattern, dis-
cuss existing mobile backend systems, and give an overview of mobile technology,
including a summary of commonly available sensors and the limitations of mobile
phones. Chapter 3 outlines the architecture of the proposed publish-subscribe sys-
tem, including a description of the publication and subscription language and details
on the client-side optimization techniques. Chapter 4 provides an evaluation of the
performance of these techniques using pre-sampled datasets. Chapter 5 concludes

this paper and presents further work.
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Chapter 2

Background

2.1 Overview of the Publish-Subscribe Pattern

The publish-subscribe pattern is a messaging pattern in which users do not need to
explicitly specify the receivers of their messages. There are two user roles; publishers
send the messages, and subscribers specify what types of messages they are interested
in receiving. It is a push-based system, so subscribers do not have to actively poll to
check for new messages. Instead, the server pushes data to the client.

Publish-subscribe systems can be either topic-based or content based. In a topic-
based system, publishers label their messages with relevant topics, and all subscribers
who have subscribed to those topics receive the messages. In a content-based system,
subscribers specify the attributes of the messages that they wish to receive, for exam-
ple, messages containing certain text. A content-based system offers more flexibility,
as subscribers can specify more complex constraints for the messages that they want
to receive. The system described in this paper is a content-based system.

Because the publish-subscribe pattern decouples publishers and subscribers, the
server must perform the matching messages and subscriptions. Optimized methods for
performing efficient matching of messages and content-based subscriptions have been
thoroughly researched. These approaches generally involve grouping subscriptions by
similarities. Existing algorithms include pre-processing subscriptions into matching

trees, which are then used to efficiently match messages [2|, clustering subscriptions
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by similar predicates and matching messages to predicates represented by each cluster
in order to determine which subscriptions capture the event [3], or by using forwarding

tables [4].

2.2 Existing Mobile Backend Systems

Although publish-subscribe is an established pattern, its usage in the mobile space is
not largely available through a standard framework. The available mobile frameworks
provide portions of the functionality that one would expect from a pub-sub system.
Android developers have access to systems that can deliver push notifications or
some backend frameworks that allow for custom messages for targeted user groups.

We briefly discuss a number of these systems and their available features.

2.2.1 Mobile Push Notification Systems

Android developers can leverage a free service, Google Cloud Messaging (GCM), that
enables them to send messages from servers to client applications [5]. Developers
must implement both the server application and mobile app, but they can use the
GCM to send data downstream from their server to the client app or vice versa. The
GCM also supports the delivery of push notifications to mobile phones and in order
to notify users of events even when they are not actively using the client app. Lastly,
the GCM also supports topic based messaging. Mobile clients can register for a topic,
and the server can send messages to that topic in order to target the clients who have
opted in.

This functionality of the GCM gives developers a basic framework for communi-
cating between mobiles and a server and allows for push notifications, which would
let us alert subscribers of new messages. However, the available functionality does
not provide the server-side publish-subscribe support, and the developer still has the

overhead of setting up the server application.
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2.2.2 Mobile Backend Frameworks

Several widely used frameworks provide mobile developers with easy to integrate back-
end systems that include cloud storage solutions, user management, and other fea-

tures. These services are sometimes known as "mobile backend as a service" (MBaaS).

Although these services provide helpful features to ease mobile application de-
velopment, they generally do not offer much support for sending subscription based
notifications. Of the many popular MBaaS services that are available, few even offer
support for sending personalized notifications. Some examples of tools in this space

include:

Firebase

Firebase provides a cloud storage solution that syncs any data changes across
all devices, with offline support [6]. When a device is offline, data is written to a
local store and is synced with Firebase servers when the device connects to a net-
work. Using this real-time syncing, Firebase could be used as a simple channel-based
publish-subscribe system, where publishers send messages by adding data to the Fire-
base database, and subscribers have access to that data, which would be automat-
ically synced. However, this setup does not offer the flexibility as a content-based
publish-subscribe system, which would limit the complexity of subscriber queries and

therefore limit the kinds of questions that subscribers can ask.

Parse

The Parse platform is another widely used product for data storage that also
allows apps to send push notifications to certain target audiences based on conditions
such as age, location, or language, which are determined by a user’s Facebook data
[7]. Again, this does not provide ideal support for building applications that share
sensor data and allows users to derive interesting information from that data. Users of
Parse applications do not actively subscribe to notifications. Instead, the developers

choose their targeted groups.
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Kinvey

Kinvey is mobile backend that also allows application developers to write custom
business logic to set up triggers that send push notifications to targeted user groups.
This allows for scenarios such as sending user notifications when events happen near
a user by setting up a location based trigger [8]. This would provide the closest
behavior to our proposed publish-subscribe framework, but it would not provide the
same convenience as our system. Developers would need to write custom triggers for

each type of publication that they would want to support.

2.3 Smartphone Specifications

The reference device used in this paper for power usage analysis is the Nexus 4 phone,
a popular Android device. We discuss the specifications of the phone’s available

sensors and their power consumption when active.

2.3.1 Mobile Device Sensors

We describe the variety of sensors available on the Nexus 4 in more detail, explain their
common usage, and discuss how these sensors provide interesting information that
could be relevant to other users. Not all of these "sensors" correspond to a discrete
physical piece of hardware on the phone. Some of these listed items provide informa-
tion derived from a physical hardware sensor, such as linear acceleration, which is a
derived metric from the actual accelerometer and an orientation sensor. However, all

of the listed items are readily accessible through the Android API through a single call.

Accelerometer: Returns the acceleration force on three axes relative to the phone
in m/s®>. The axis orientations are shown in Figure 2-1. This measurement the
contribution of gravity on the measurements. This sensor is commonly used to detect
screen rotation or enhance games. It can be also be used to detect when a user is in
motion, or perform more complex inferences, such as detecting the number of steps

taken by a user.
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Figure 2-1: Coordinate system used by the Android SensorEvent APT [12].

Barometer: The barometer measures atmospheric pressure. This can be used to
estimate altitude without using the phone’s GPS or to detect weather changes.
Bluetooth: The Bluetooth radio communicates with bluetooth devices, such as a
wireless headset. This can be used to detect the aforementioned Tile app in sec-
tion 1.2.2 or other Bluetooth low energy devices, such as the Estimote iBeacon [9].
These beacon devices can placed in strategic locations to perform more accurate in-
door location tracking, or they can just be used to add mobile awareness to physical
locations.

Camera: The camera can be used to take pictures, videos, or scan QR codes and
other types of barcode images. The photos taken by the camera can provide infor-
mation of interest to other users and can be sent to subscribers in their raw form.
Another interesting use case would be to detect what locations QR codes have been
scanned at and with what frequency. With some data processing, we might be able
to use images to determine time of day, whether a user is indoors or outdoors, or
detect landmarks.

Detected Activity: The DetectedActivity class infers what type of motion the
phone’s user is experiencing, such as: in a vehicle, walking, biking, or not moving
[10]. The detected activity also comes with a confidence value.

Light: The light sensor measures illuminance in lux and is generally used to deter-

mine the brightness of a user’s surroundings in order to control screen brightness.
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With conference rooms, library rooms, or other public places that contain tablets for
reserving the space, this could be used to remotely infer whether a room is actually
in use or not.

Linear Acceleration: This sensor provides acceleration on three axes without the
influence of gravity. The removal of gravity makes it easier to isolate the relevant part
of a user’s acceleration, for example, if you would like to determine a user’s driving
patterns with regards to starting and stopping.

Location/GPS: The Android LocationManager provides the geographic location of
a user with latitude and longitude and can estimate the speed of the user. It utilizes
the phone’s built-in GPS and the Android Network Location Provider, which uses
cell tower and Wi-Fi signals to determine location. This location tracking does not
have enough detail to perform accurate indoor positioning.

Microphone: The microphone is commonly used for phone calls and recording sound
in videos. It could also be used for volume detection, or with the addition of speech
processing, it could be used to detect languages, recognize certain words, or interpret
emotion.

Proximity: The proximity sensor determines how close the screen of the device is
to an object and is commonly used to detect if a face is near the screen (e.g. if the
user in a phone call). An interesting use case could be to infer whether a user is on

their phone while driving.

The following table displays the power profile values of each sensor in its active
state given in terms of current. We also provide the minimum delay allowed between
two sampling events in milliseconds, for sensors that support continuous or on change
reporting. Values are reported from the Nexus device as provided by the Sensor API,

except where starred values which were provided by the Android open source project

I11].
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Name Power (mA) | Min Delay (ms)
Accelerometer 0.5 50
Barometer 0.003 333.33
Bluetooth 14* 0
Camera 600* 0
Cellular Radio 300 0
GPS 50 1000
Light 0.175 500
Linear Acceleration | 4.1 50
Microphone 14.2% 0
Proximity 12.675 500

Table 2.1: Power profile value and minimum delay between samples for Nexus 4
SEnsors.

2.3.2 Mobile Device Limitations

One of the most significant limitations of smartphones is their limited battery power.
The Nexus 4 device has a 2100 mAh capacity battery, which provides an average
of 15 hours of talk time. By using mobile phones as a the main publisher in our
proposed system, our frequent usage of sensors and Wi-Fi to transmit data will put a
considerable load on the battery. In our proposed framework, we will need to optimize

our sensor and Wi-Fi usage for battery life, which is discussed further in Chapter 3.

From the power values of the sensors listed above, we can calculate battery expen-
diture given our usage of each sensor. To estimate battery drain for a given sensor,
the provided current should be multiplied by the time that the sensor was active for.
This results in a mAh value, which is then comparable to the given mAh battery
capacity. This computation is simplified, as there is also the cost of sensor usage

waking up the parent application, causing extra battery drain through CPU cycles.

The other significant limitation of most mobile phones is Internet access. Users
who do not have an unlimited data plan have limited 3G or 4G access. When the
user has expended their access, they can connect to the internet via Wi-Fi; however,
this depends on the availability of public Wi-Fi access points. In our evaluation of
the framework, we make the assumptions that users have perfect wireless coverage

through their data plan and have limited data usage available. Thus we must also
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optimize the amount of information transmitted.
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Chapter 3

System Architecture

The system proposed in this paper provides a content-based publish-subscribe plat-

form geared towards allowing subscribers to receive to relevant data from physical

sensor readings. The system architecture is outlined in Figure 3-1.

Publishing Device
(Android mobile device)

send sampled sensor

readings

b

Cache of subscriber
queries on phone

forward relevant

readings and send
queries

filter sensor
matches

Pub/Sub Matching
Server

Subscriber

store or delete
pubs/subs

"

MongoDB
Store

request stored publications/

subscriptions

Figure 3-1: Overview of System Architecture.
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3.1 Matching server

The publish-subscribe matching server provides endpoints to accept publications from
mobile device publishers and subscription requests, or queries, from subscribers. In
order to have a push-based system where subscribers passively receive notifications
and publishers receive updates, the server will maintain socket connections with both
active publishing devices and subscribers.

The matching server uses a content-based approach, thus subscriptions specify
what publications they want to receive by defining queries over the publication at-
tributes of interest. For example, a user might be interested in receiving updates
when a friend is in the nearby area and subscribe to this event with a query that
specifies a geographic region and a particular publisher.

Both queries and publications are stored server-side using MongoDB, a JSON
document store. The server performs matches with each incoming publication and
all stored queries and forwards relevant publications back to subscribers through
the socket connections. The efficiency of the server-side matching of queries and

subscriptions is not considered in the scope of this paper.

3.1.1 User Roles: Publishers and Subscribers

In this system, Android mobile phones are the main publishing devices, though any
smart device with sensors could also interact with this system. Each device is assigned
a unique integer ID, which is used to identify its subscriptions or publications.

Publishers periodically sample for sensor readings, such as location data or ac-
celerometer data in the case of Android phones, and send these readings to the
matching server as publications. The content of the publication is determined by
the subscriptions for that device. For example, if subscribers request acceleration
data, the publication should contain the accelerometer readings.

Subscribers can be any device with Wi-Fi capabilities but are most commonly
expected to be other mobile phones or computers. Subscribers submit or remove

queries to specify what publication data they would like to receive.
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3.1.2 Publication/Query Language

Queries and publications are specified in Javascript Object Notation (JSON). This
notation allows us to structure detailed documents and is easy to work with given
the other technologies chosen for implementation, including socket.io, Node.js, and

MongoDB.

Queries are structured using the same notation as specified by the MongoDB query
language. Simple equality query predicates are represented with key-value pairs and
more complex statements can be made using comparison or logical operators, such as

$1t or $and respectively.

A publication consists of a single JSON document with key-value pairs repre-
senting each attribute, including a timestamp and mobile id to uniquely identify the
publishing device. Each sensor reading or other data point is represented as a key-
value pair. The fields of a subscription also signify what attributes the subscriber
wants returned. For example, if the subscriber is listening for acceleration data as
part of the publication but does not have a specific range of data that it is looking for,
the query should include the key-value pair: "acceleration: {}". In Tables 3.1 and 3.2,
we show the format for required fields of publications and subscriptions respectively

and include examples of what fields might look like for common sensors.

Neither type of document is limited to the fields in Tables 3.1 and 3.2; developers
can define custom fields by adding arbitrary fields to either document. This extensi-
bility allows the system to support other sensors not considered below or support the
usage of arbitrary non-sensor data streams. For example, an application may want to
process sensor data before publishing it, such as averaging readings over a window of
time. The application can define an arbitrary field name and publish the processed
data under that name. As long as subscriptions also have the same custom field name,

the publish-subscribe server will perform matching based on these attributes.

We also provide an example of a publication and query document in Table 3.3.
The example publication contains a sample location and accelerometer reading from

a publisher with the ID "135". The example query subscribes to documents from the
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user with ID "135" when the location is within the lat-long range (40,-70) to (45,
-69). Timestamps are given in epoch format, and in the above scenario, the query
was received before the example publication. In this case, the example publication
would be captured by the given query, and the matching server would forward the

document to the subscriber with ID "124".
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Standard Field Name | Description Example
publisherId* Integer ID of the pub- | 135
lishing device
timestamp™ Epoch timestamp de- | 1449001073
noting when publica-
tion was sent
acceleration Acceleration over x, y, | {
7 axises in m/s? "x": ",
yrsoomon,
nz":  "10"
}
bluetooth Identifier of Estimote | {
bluetooth device de- "UUID": "B940
tected -FBF8-466E...",
"major": "1V,
"minor": "10"
}
camera Base64 encoding of | data:image/jpeg;
image data base64,/9j/4AAQSk. . .
light [llumination in lux 50.0
linearAcceleration Acceleration over x, y, | {
7 axises in m/s* with- nx". B",
out the contribution of "y "O",
gravity "z Q"
}
location Latitude and longi- | {
tude given in degrees "lat": "42.631",
and speed in m/s "long": "-70.84",
"speed": "13.41"
}
microphone Base64 encoding of | data:audio/mp3;
sound data base64,/9j/4AAQSk. . .
pressure Pressure reading in | 964.5
hPa
proximity Distance of object | 0
from the screen of the
device in cm

Table 3.1: Standard fields for publication documents where starred items denote
required attributes.
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Standard Field Name | Description Example
subscriberId* Integer ID of the sub- | 124
scribing device
publisherld Integer ID of the pub- | 135
lishing device that this
subscription is listen-
ing to, if it is targeted
for a specific publisher
timestamp™ Epoch timestamp de- | 1449001000
noting when subscrip-
tion was placed
acceleration Query in mongo nota- | {
tion over acceleration "x's o
fields, or if no range "$gt": "-B",
is desired "$1t": 5"
},
"y':o MO,
Nz, Q"
}
bluetooth List of bluetooth de- | [{
vices to subscribe to "UUID": "B9407F30
-F5F8-466E...",
"major": "1",
"minor": "10"
}, ...

Table 3.2: Standard fields for
tributes.

subscriptions where starred items denote required at-
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Publication Example

{
"publisherId": "135",
"timestamp": "1449001073",
"location": {
"lat": "42.631",
"long": "-70.847"
},
"acceleration": {
”X": l|5ll,
"y":  "O",
"z". "10"
}
}

Query Example
{
"subscriberId": "124",
"timestamp": "1449001000",
"publisherId": "123",
"location": A{
"lat": Ao
" $gt" : 114011 ,
l|$1t|l . l|45l|
}
"long": A
"$gt": "-T70",
"$lt" . "—69"
}
}
}

Table 3.3: Examples of the publication and subscription data format.
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3.2 Client-side Optimization Techniques

In this section, we describe several optimizations that can be applied to the system
described above. Because optimizations for content-based publish-subscribe systems
have been thoroughly researched, we focus on techniques that can be employed on

the mobile device, namely reducing unnecessary data collection and transmission.

3.2.1 Forwarding Query Unions to Publishers

Query forwarding involves combining all queries pertaining to a given publisher into
a compact and searchable format on the publish-subscribe server and forwarding this
data to the publishing device. The forwarded compilation of queries will be referred
to as query unions. It is necessary for the mobile publisher to have access to the query
union in order to use the two optimization techniques described in the following two
sections, publication filtering and smart sensor sampling. In section 3.3, we propose
different formats for the query union and an efficient way to maintain unions for each
publisher using query indexes.

All queries in a union must apply to a single publisher. Because queries do not
have to specify a unique publisher to subscribe to, it is possible for the same query
to end up in multiple unions. If the query subscribes to all publishers, it would need
to be included in the query union of each publisher in the application.

When subscribers join or leave, the query unions forwarded to publishers may
become outdated, raising the question of how often updated query unions should
be forwarded to publishing devices. Sending updates too frequently could add an
additional overhead especially if the query union has not actually changed, but failing
to send updates quickly enough could result in the publishing device failing to send
pertinent data.

When a subscriber removes its subscription, it is less important to send updated
query unions immediately, as the cost of the update is probably higher than the
expected gain of preventing data from being sent, given that it is likely there is

another user already listening for similar data points. On the other hand, if a new
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subscriber joins with a query that changes the query union, it would be ideal to

forward the new unions to publishers immediately in order to keep accuracy high.

3.2.2 Publication Filtering

In order to prevent unnecessary matching of publications and queries on the publish-
subscribe server, the publishers should avoid sending documents with data that no
subscribers are interested in. This saves the publisher from needing to make a wireless
connection to send data and reduces the matching load on the publish-subscribe

server.

Given that publishers maintain query unions as described above, they can perform
pre-filtering on each sampled data point by checking if it is captured by the query
union in order to find out whether the data is relevant to any subscribers. It will only

send captured data to the server.

3.2.3 Smart Sensor Sampling

A second client-side optimization technique is for the publishing device to take sensor
samples efficiently. The forwarded query allows publishers to see what sampled data
is relevant to subscribers so that devices can sample less frequently when the sensor
readings are not in the region of interest. The device can also slow down sampling

frequency if the sensor measurements are not changing.

In order to adjust the phone’s sampling rate, we will use a linear backoff strategy.
If the results of the samples are not captured by the stored query union, sensors
will increase the interval between samples given the backoff strategy shown in Table
3.4. If the reading is captured by the query, the sensor should decrease the interval
between samples using the given advance function. For this strategy to work, we
must also specify a minimum and maximum interval between samples in order to
apply bounds, such that the backoff strategy does not cause extreme delays between

samples or increase the rate to an unreasonably high frequency.
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Backoff function | 2’ =2z

Advance function | 2’ = /2

Table 3.4: Backoff and advance functions for exponential duty cycling, where x’ is
the length of the new interval between samples and x is the length of the previous

interval.

For each type of sensor, there is a minimum interval dependent on hardware
limitations. The maximum interval that can apply to all sensors may vary between
different applications depending on how critical accuracy is. In a medical situation,
where doctors might be subscribed to their patients’ vitals, the minimum sampling
rate may be much higher than a scenario where mobile users are subscribed to their
friends’ locations.

In Table 3.5, we give sample values for minimum and maximum intervals between
samples. The maximum value depends on how long the application is willing to wait
before receiving an update. We give examples of how these values were derived for
some of these cases. For some sensors, a maximum interval can be derived by taking
the average rate of change of the physical phenomena, determining the delta of the
value that we are willing to accept before being updated, and calculate the interval
by taking the delta divided by the rate of change.

For example, if the average rate of movement of a phone is 10mph, and we wish
to be alerted by the time a user has moved one mile, the maximum interval between
samples should be 10 minutes. Similarly, for acceleration, if the average acceleration
is from 0 to 100 km/h in 60 seconds and we wish to be alerted by the time there has
been a change of 10 km/h, the maximum interval would be 6 seconds. Lastly, for the
barometer, pressure can change at a rate of 10 hPA/3 hours. In order to guarantee
notification once there has been a change of 1 hPA, the max interval should be 20
minutes.

For other sensors, considering average rates of change may not be as applicable.
For example, illuminance can change at a certain physical rate, but we may not

necessarily want to be checking for light changes often, as this depends more on user
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behavior, which can be unpredictable. The rate of light changes can be different for
a user who spends most of the day indoors versus one who constantly moves from
indoors to outdoors. In this case, the maximum interval purely depends on how long
the subscriber is willing to wait before receiving an alert. In this case, rate of change

doesn’t mean too much.

Name Min Sampling Interval | Max Sampling Interval
Acceleration 50ms 5 seconds

Barometer 333.ms 20 min

Bluetooth 10,000 N/A

GPS 1000 10min

Light 500 10 mins

Linear Acceleration | 50 5 seconds

Proximity 500 10 min

Table 3.5: Example values for minimum and maximum intervals between samples for

each sensor type.

In general, the backoff strategy may only work well with sensors whose readings
cannot change quickly, such as location or temperature. In the case of acceleration,
readings may change too quickly for this strategy to be viable.

In Figure 3-2, we show a graphical example of how smart sensor sampling will
behave. In this scenario, the phone’s user is travelling along a path denoted by the
arrow. The forwarded query is denoted by the shaded rectangle, and each black circle
shows where a sample is taken. Segment A is longer than the previous segment be-
cause the previously sampled point was not captured by the query, thus the sampling
mechanism waits for a longer period before sampling again. The pause between sam-
ples continues to increase until segment B, where the previously sampled point was
captured by the query. Segment C demonstrates the minimum interval between sam-
ples. Each following interval is the same length until segment D, when the samples

are again out of range of the query, and the technique backs off again.
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Figure 3-2: Demonstration of smart sensor sampling along a path where each point
represents a sample, and the shaded rectangle represents a region contained by a

query.
3.3 Maintaining a Query Index

In order to forward query unions to publishing devices, the matching server must
aggregate all pertinent subscriptions that apply to each publisher. To efficiently
maintain and update this combined query, the server must have a data structure
to make it easy to add or remove subscriptions from the query union. Similar to a
database index, this index would ideally allow us to find pertinent queries in a more
efficient manner than iterating over every stored query.

The index should allow the addition or removal of queries and support the com-
pilation for a query union for forwarding. This structure should also maintain which
queries apply to each publisher. The general API for the query index would be as

follows:

Insert query

Delete query

Compile a query union

Each type of query union should be able to return whether it captures a given

data point
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Several data structures are proposed as representations for a query index. The
data structures that are explored in this thesis are hash tables, R* trees, and bloom
filters. Below, we describe how each of these structures will be used as a query index,
how queries are inserted and deleted, and what the corresponding query union format

1S.

Hash Tables

Structure: Each application owns a hash table which organizes all of the queries
for applying to each publisher. As shown in Figure 5, each key in the table repre-
sents a publisher in the application, and the corresponding value is a reference to
another table containing a summary of queries for that publisher. The keys in the
query summary table represent each subscriber and the values are the corresponding

subscription.

Publisher ID

|- Subscriber ID | Query

123 —
321 {"subscriberId":
124 "321", ...}
125
-—__‘____‘

Subscriber ID | Query

322 {"subscriberId":
n3z22", ...}

Figure 3-3: Structure of the hash table based query index.

Inserting and Deleting Queries: When a new subscription is added, the server
must to find each applicable publisher and add the new query to that publisher’s query
summary table. Deletion would require iterating over each publisher and checking if

the query exists for that publisher and removing it if it does exist.

Compiling a Query Union: In order to compile a query union for a subscriber,

the system would need to iterate over the subscriber’s list of queries to generate a
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summary of the unique ranges for each attribute in the queries as shown by the pseu-
docode in Figure 3-4. This document can be transmitted to the publishing device as

a JSON document.

QUERY-UNION (S)

union = {}

for query in query index [S]:
for attribute in query:
if query.attribute.range not in union|attributel:
union|attribute| += query.attribute.range

Figure 3-4: Pseudocode demonstrating how a query union is generated for a hash
table based query index, where S is the subscriber 1D.

Performance Notes: Using hash tables could work well on a small scale where there
are few unique intervals represented amongst the queries. However, if each publisher
has a large base of subscribers, it would be inefficient to iterate over each subscription
in order to recompile the union. Also, if a query applies to multiple subscribers, this

mechanism would need to add the query to the index multiple times.

R-trees

Structure: In a given application, for each query union that is compiled, there should
be a corresponding R-tree that stores all of the queries in that union. R-trees are
balanced search trees that allow indexing of multidimensional data, allowing us to
store queries, which are essentially ranges or points specified on each attribute. An
example of the structure of an R-tree based query index is given in Figure 3-5. In the
spatial representation, each field in the query is represented by a different dimension.
For the example below, the queries cover two attributes, latitude and longitude, so

the space represented by the tree is two dimensional.
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Figure 3-5: Example of a query index backed by an R-tree.

Inserting and Deleting Queries: The insertion of a query into the index would be
equivalent to inserting the necessary points, segments, rectangles, etc. into the R-tree
that are needed to represent each predicate of the query. Deletion would involve re-
moving each of the objects representing that query; given that the server maintains a
table relating subscribers to their respective queries, in order to remove a query from
the index, we would look up the original query, perform the same process of breaking
it down into its predicates to find its location in the R-tree, and then remove the final

node from the tree.

Compiling a Query Union: We can can transmit this index to the mobile device,
by serializing the data structure and sending this byte sequence to the publishing de-
vices. The publishers will deserialize the R-tree into an object and be able to search
the structure in order to find out whether the data points that it senses are captured

by the query union or not.

Performance Notes: The overhead of using R-trees might not be cost-effective if
the number of subscribers per publisher is small. It also has the same space-efficiency

issue as using hash tables of potentially needing to store the same query in multiple
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R-trees.

Layered Bloom Filters

The last proposal for an index structure is a layered bloom filter. Bloom filters
store information in bit arrays, by applying several different hash functions an element
in order to map it to several indices in the array, and can have multiple layers in order
to store more than one copy of an element. They can be made to be space-efficient by
simply making the bit array shorter, meaning that the hash functions must output
to a smaller range. The tradeoff for this space-efficiency is the higher probability of
having false positive matches, or for the bloom filter to believe that it contains an

object that were never added.

Structure: In order to check whether an element exists in a bloom filter, the exact
element is hashed by the set of hash functions, and if the bits at the resulting indices
are non-zero, the element exists. The server would maintain one bloom filter for each
attribute in the query union pertaining to each publisher in an application. In Figure
3-6, we give an example of subscriptions stored in a bloom filter based query index.
This filter only has one hash function, which takes the product of the subscription’s
latitude and longitude and mods this by ten.

Inserting and Deleting Queries: Because it is impossible to store a range in a
bloom filter and check whether a discrete value falls in that range, we will only store
elements representing short ranges of values. Thus, to store the predicate of a query
that asks for a range of values, we would insert several elements, each of which is an

interval in that query range.
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H(z) = (lat * long) mod 10

Subscription 1 Subscription 2
{ {

"subscriberId": "321", "subscriberId": "322",
"timestamp": "1449001000", "timestamp": "1449001060",
"publisherId": "123", "publisherId": "123",
"location": { "location": {

"lat™: "42.36284" "lat": "42.,59431"

"long": "-71.09016" "long"™: "-71.06464"

} }

H(z) = (42.4% —=71.1) mod 10 =0 H(z) = (42.6 x —71.1) mod =4

1 0 0 0 1 0 1 0 0 0

T !

Subscription 1 Subscription 2

Figure 3-6: Example of a bloom filter based query index.

Compiling a Query Union: To forward the query union to the publisher, we will
transmit the bloom filter to the publishing device. We also must forward metadata
that represents the interval syntax used in the filter. For example, in Figure 8, the
metadata would state that the interval count begins at 0 degrees and is spaced at
0.1 degrees. For the publisher to check whether its sampled sensor measurement is
captured by the query union, it must convert the discrete point into a standard short

range, and check the bloom filter for the existence of this range.
Performance Notes: Bloom filters allow for compact storage of information, how-

ever, its usage as described causes us to lose some resolution by essentially rounding

all discrete values to short intervals.
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Chapter 4

Evaluation

In this section, we perform an analysis of the three optimization techniques discussed

previously. The goal of our analysis is to show that:

1. Query filtering effectively reduces the number of data transmissions that a mo-

bile publisher must perform.

2. Smart sensor sampling reduces the number of irrelevant samples taken, which

improves battery life.

3. The overhead of maintaining a query index is worth the combined benefits of

query filtering and smart sensor sampling.

We use a pre-sampled data set to evaluate these optimizations in order to have
a large enough pool of data to analyze. This data emulates sensor data that was
sampled by mobile publishing devices, and using the sensor power ratings from Table
2.1, we can estimate battery usage given a sampling pattern. We implemented the
advance and backoff strategy for the smart sensor sampling strategy and the query
index structures in order to evaluate these strategies. Both implementations use Java,
which is the development language for the Android platform. Specific details for the
implementation of the query indexes is described further in section 4.3.2.

The pre-sampled data set is comprised of taxi location data for 1620 Boston taxis,
with 254,913,020 data points in total. The samples span the time period from January
1, 2001 to November 16, 2012. Each row of the dataset includes the MAC address of
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the taxi who delivered the data, the timestamp of when the data was sent, latitude
and longitude of the taxi at that time, and the number of wifi data points sensed
by the taxi at that location. Each taxi samples and transmits its location once per
second, though some ranges of data are missing.

For this evaluation, we propose an application where users can subscribe to taxi
stands at various locations and be alerted when a taxi approaches the stand. We
identify several regions which are common pickup and dropoff locations in Boston as
described in an article from BostonInno [13] and include a couple of other regions
outside Boston which had a high number of taxis, including the Logan airport and
the Kendall/Broadway area in Cambridge. These locations are shown in Figure 4-1

and their corresponding names are given in Table 4.1.

=

JEFFRIES POINT:
o

C, o
_iS“ Mbridge St
& EAST BOSTON on
& EAST,
SRR G, CAMBRIDGE
‘90’»3 L
W =
_ 2 Jeffries Point
Main st Neighborhood.:
o . B Yew englandlaquanumy |
Massachusetts / _ \ : 9 d //
Institute of - N 7) /,
Technology

/-—'-‘\ﬁ',o‘
1o
=g\ BACK BAY.

Park &

INWAY/
NMORE (28)

Figure 4-1: Map of Boston taxi hotspots.

4.1 Publication Filtering

To analyze the benefits of query filtering, we query the pre-sampled data set to find
out how many data points are captured in the taxi hotspot regions denoted in Figure
4-1. Table 4.1 below lists the results in terms of the number of raw data points that
were captured for each location and the percentage with regards to the total number

of original data points sampled.
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Location Total Data Points | Percentage
1. Logan Airport 35752655 14.025%

2. Kendall Square 7129377 2.800%

3. Hynes Convention Center 195726 0.077%

4. Theater District 543146 2.131%

5. South Station 785937 0.308%

6. Faneuil Hall 304517 0.119%

7. Post Office Square 126200 0.050%

8. Back Bay T 420261 0.165%
Total data points for all locations | 45341990 17.787%

Table 4.1: Number and percentage of data points remaining when filtered per taxi

hotspot region.

The bar chart below shows the percentages of data remaining after using publi-
cation filtering for the top forty taxis with the most aggregate sampled data. It is

clear from this, that the average amount of pertinent data per taxi is similar to the

average over all taxi data given in the table above.
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Figure 4-2: Percentage of data points filtered for top forty taxis with most data.

Query filtering clearly gives a performance boost by preventing unnecessary pub-
lications if the data sampled is not pertinent to any queries. Depending on the query
itself, the overall amount of data transmitted will be dependent on the specificity of
the query. For example, if a subscription covers a larger area, more data is likely to
be transmitted because it is more likely that the taxi will be in a region specified in
the query. Thus, the benefits of query filtering vary based on the subscriptions in a

given scenario.

Below, we perform a similar analysis on a single taxi in order to show the effects of
query filtering over time. Rather than using MAC addresses to refer to the vehicles,
we have assigned integer IDs to each taxi. This single car analysis is performed on
"Taxi 52", which had the some of the most continuous data of the top ten vehicles
with the most data sampled, meaning that there were few large gaps between samples.
For the data points sampled by "Taxi 52", we run the query that checks when the
taxi passed through a taxi hotspot and graph the total number of data points that are
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captured by the query or not captured over time. Figure 4-3 below shows these results
in the form of a stacked area graph, where the light blue area shows the amount of
sampled data that was not captured while the dark blue region shows the amount of
data that is relevant to the query. The y axis denotes number of data points, and the
x axis denotes time from the period of January 2008 to October 2008. As described
earlier, the original data set did not accurately sample once per second, thus the

overall graph has peaks rather than a uniform line.
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Figure 4-3: Query filtering results over taxi 52 from 1/2008 to 8/2008.

Because this graph covers a large span of time, the data is highly compressed and
does not give us the best idea of how query filtering behaves over time. We focus in
on a shorter span of time region to see how the optimization behaves from minute
to minute. In the following figure, we show a similar stacked graph of whether the
data points sampled would have been transmitted or not. This closeup view, shows
that of the data sampled, there is a period of time where the taxi senses relevant
data rather than a constant amount of data over time that remains relevant. Overall,

query filtering successfully reduces unnecessary transmission of data.
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Figure 4-4: Taxi transmission data for 1/7/2008 from 2AM to 8:30AM.

4.2 Smart Sensor Sampling

In this section, we perform an analysis on whether our smart sampling optimization
successfully reduces the number of samples taken by the publisher and improves

battery life by using less active sensor time.

Using the exponential backoff and advance scheme, we emulate duty cycling of
the GPS for taxi 52 given the same taxi hotspot query. The minimum and maximum
time intervals between sensing are one second and 10 minutes. The stacked area chart
shows the results where the red shades show the data points that would have been
sampled by smart sensor sampling and the blue shades show data points that would
not have been taken. Lighter shades represent points that were not captured by the
query and darker shades show points that would have been captured. The number of
points taken by smart sensor sampling that were not captured by the query are very

low, thus it is difficult to distinguish this color in the graph.
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Figure 4-5: Breakdown of smart sensor sampled data points for Taxi 52.

In Figure 4-6, we show a minute to minute chart with the results of smart sampling.
We observe that smart sampling results in a sample taken approximately every 10
minutes until the window of time where the taxi enters a hotspot region. Within
10 minutes, the smart sampling behavior recognizes that the data captured is now
relevant to the query, and it quickly backs off its sampling frequency when the data
becomes irrelevant. Lastly, there were two short peaks where the taxi was within the
hotspot region but this was missed by smart sampling, because the sampling strategy

was not fast enough to react and capture these small, isolated regions.
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Figure 4-6: Taxi 52 transmission data for smart sampling on 1/7/2008 from 2AM to
8:30AM.

The chart in Figure 4-7 shows the percentage of data that was smart sensor

sampled or not, and whether the data was captured by the query or not.

o4



Smart Sampled, Captured by query
(14.50%)

Smart Sampled, not
/ captured by query (0.6507%)

Not smart Sampled,
Captured by query
(3.228%)

Not mart Sampled, not
captured by query (81 .62"7)\

Figure 4-7: Smart sampling percentage of data filtered for Taxi 52.

In total, 17,250 data points were in the original data set over our given span of
time. 2614 of those points were smart sampled, where 26 of those samples were not
captured by the query. 557 are captured by the query but missed by smart sampling.
This gives an 82.29% accuracy rate for smart sampling captures of relevant data and

a 0.99% rate of capturing unnecessary data.

In order to perform a battery analysis, we use the number of samples taken to
estimate how long the phone sensor would have been active for. Given that 2614
samples were taken by smart sampling, this would equate to 2614 seconds that the
GPS would be active for, or 0.726 hours. The Android Nexus 4 GPS has a 50mA
power rating, totalling to 36.31 mAh consumed as opposed to 239.58 mAh with the
original sampling scheme. The battery capacity is 2100 mAh, so the smart sampling
scheme would consume 1.73% rather than 11.41% of the battery’s life.
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4.3 Query Indexes

In order to perform query filtering and smart sensor sampling, the publishing device
must store a local query union of what all of its subscribers are listening for, and
the query index aids in making it efficient to compile this query union. In this
section, our analysis aims to find whether the cost of using query indexes exceeds the
benefits of query filtering and smart sensor sampling. We also provide some analysis
on how efficient it is for the phone to use the query index to check if a data point is
captured by a query or for the server to add or remove queries from the index. Lastly,
we propose several generic scenarios that describe range distribution of queries and

discuss whether each index type is expected to perform well.

4.3.1 Size of Query Index During Transmission

Continuing with our taxi hotspot scenario, we estimate the size of each type of query
index (hash tables, R-trees, and layered bloom filters) that would need to be trans-
mitted to the publishing devices. In order to perform this estimation, we gauge how
many taxi riders there are in Boston. From this article by the Boston Globe [14], we
estimate that there are approximately 13.6 million riders per year. This comes down
to 37,260 riders per day, and if we assume that most riders take cabs outside of the
early morning hours of 12AM to 6AM, this comes out to 2192 riders per hour.

We consider the amount of time that a single rider would wait for a taxi, which
would be the amount of time that they would place their subscription for. The rider
would put in a subscription until their request for a taxi is fulfilled, in which case they
would remove the subscription. We estimate this amount of time to be 15 minutes.
The average size of a query index at any given time would be the number of riders
per quarter hour, which is approximately 500 queries large. For each of the proposed
query index types, we estimate the size of the transmitted data for each option. We
also will assume that indexes are retransmitted every minute, which is a reasonable

amount of time for a rider to wait for a response from the app.
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Hash Tables: When using hash tables as a query index, we transmit updated query
unions to the publishers by compiling the unique intervals of the stored queries. The
publishers must iterate over this list of intervals to check if the data point is captured
by the query union. Given the hypothetical scenario presented above, where all users
are only interested in the eight hotspot locations, the compiled query transmitted
would be 791 bytes (0.000791MB) in the format we specify, for the 8 regions we de-

fine in our query.

R-trees: We used a serializable Java implementation of 2D R-trees [15], to test how
large the serialized R-tree would be in this scenario. We added 500 rectangles, each
of which denotes one of the taxi hotspot regions. They were added in the same ratio
as the frequency at which taxis drive through those regions as seen in Table 4.1. The

resulting serialized tree came out to 28.44 kilobytes of data.

Bloom filters: We used an open source Java implementation of bloom filters [16] in
order to test the approximate size of the filter in this scenario. Using the amortized
equations for performance below, we derive parameters with which to initialize the
bloom filter [17]. The equations allow us to calculate the size m of the bit array needed

to store n elements with an error rate of p, and the number k of hash functions needed.

nxlog(p)
1.0
log( 9l0g(2.0) )

T =

Figure 4-8: Calculation for estimating the necessary size of a bloom filter.

— m
k= |log(2.0) ™|
Figure 4-9: Calculation to estimate how many hash functions are needed.
To store 500 entries with a 1% error rate, we need k=7 hash functions. To test

if these parameters yield a bloom filter with appropriate error rates, we empirically

tested this setup using the the bloom filter implementation. We inserted 500 regions
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into the bloom filter where the distribution of the regions followed the four different
distribution scenarios described in Figure 4-10. We then checked for false positives
where the bloom filter would return true for a region not actually contained in the
filter. Though the results shown below in Table 4.2 are not perfectly representative
of exact error rates, it is clear that the overall false positive rate is low. The size of

the bloom filter was 52500 bits, where each entry was represented by 21 bits.

Total Tests | # of False Positives | Rate of False Positives
Scenario 1 | 7500 0 0%
Scenario 2 | 8108 1 0.0123%
Scenario 3 | 8143 2 0.0245%
Scenario 4 | 7532 1 0.0133%

Table 4.2: Power profile value and minimum delay between samples for Nexus 4

SEensors.

Comparison to No Optimizations: We compare the benefits given query indexes
to not perform any optimization techniques and sent one publication per second. Each
publication for this scenario would be about 99 bytes. If every taxi were to transmit
a publication once per second from 7AM to 12PM, this would result in 183.6MB of
data sent per month.

Clearly, no usage of query indexes will outperform the no optimizations case,
unless query unions are re-transmitted to the publishers at a slower pace than once
per second. For each type of query index, the maximum rate at which we can resend

the union in order to perform at the same level in terms of data sent is:

e Every 8 seconds for a hash table based index
e Every 5 minutes for an R-tree based index
e Every 90 seconds for a bloom filter based index

In the case of the taxi stand application, both the hash table and bloom filter

indexes would likely update query unions quickly enough to maintain a usable ap-
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plication for users. A five minute delay in feedback would make the application
impractical.

Because these results are very specific to the presented scenario, sections 4.3.2 and
4.4 discuss how the optimizations might behave in other cases. For example, if the
publication size were much larger because each one contained an image or sound file,
any type of query index would be more beneficial than sending publications once per

second.

4.3.2 Efficiency Analysis of Query Union Search

In the diagram below, each gray box represents the range of data that a publisher
might produce, and the black boxes represent individual ranges covered by subscriber
queries. We discuss how the different distributions covered by the queries affects the

performance of each of our proposed optimizations.

[

1. Multiple of the same query 2. Single cluster

3. Several distinct clusters 4. Uniform distribution

Figure 4-10: Different types of data distribution.

For the query union of each index type and distribution scenario above, we mea-
sured the CPU time to search the index 10 million times in order to find an average
CPU usages for searching the query union. For each search, we check whether a given

point is captured by the query union.

59



For each scenario, we inserted 500 rectangles into each index. The region repre-
sented in these tests spanned from (0,0) to (100,100); all rectangles were contained

within this region. The following are specific details on the setup for each scenario.

Scenario 1: Each query union represented 500 rectangles which spanned from (25,25)
to (75,75)

Scenario 2: Each union contained 500 rectangles centered around the point (50,50).
Each rectangle was of size 50x50 and was randomly perturbed by at most 5 units in
the x and y directions.

Scenario 3: This scenario was represented by four clusters of 125 rectangles sized
10x10, where each cluster was centered around the points (15,15), (15,65), (65,15),
and (65,65) respectively. Each rectangle in the cluster was randomly placed within
2.5 units in the x and y directions of the center of these clusters.

Scenario 4: This scenario was represented by 500 randomly placed rectangles of size

10x10.

Here we describe the implementation details for each type of query union:

e For the Hash table query index, the query union is represented by a JSON
document containing all the unique ranges from queries. To benchmark this
union, I generated JSON documents representing each of the scenarios above,
where the documents use the query language described in chapter 2. I wrote a
Java parser that processes the JSON object into an in-memory object, which can
return whether a point is captured by the union or not. The implementation of
this parser iterates through the ranges and uses comparators against each range

individually, as described by the pseudocode in Figure 3-4.

e To benchmark the R-tree union, I used the same open source Java implemen-
tation as for the query index size benchmark above [15]. Because the R-tree
union is an R-tree itself, I inserted the rectangles and benchmarked the time to

search for a point using this implementation.
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e For the bloom filter query union, I also used the same implementation as above

[16]. As explained previously, we represent ranges in the bloom filter by inserting

multiple small intervals. In this case, I represented the 100x100 region using 1

million intervals, where the region is effectively divided into a grid of 1000x1000.

To insert a rectangle of size 50x50, we would insert 2500 of these small intervals.

For bloom filters, the query union is also the filter itself, so I benchmarked the

time it took to find whether an interval exists in the bloom filter.

Table 4.3 below shows average performance per scenario of searching a query union

once, in nanoseconds:

Type Scenario 1 (ns) | Scenario 2(ns) | Scenario 3(ns) | Scenario 4(ns)
Hash table | 217 59,880 55,240 67,100

R-tree 9,773 10,695 2,650 5,276

Bloom filter | 2,599 2,543 2,757 2,546

Table 4.3: CPU performance of searching query unions.

To transform this measurement in terms of battery life, we use the power rating of

200mA for a 1.5gHz CPU speed (the emulation was run on a machine with a 1.7gHz
CPU, and in each case, CPU usage ranged from 93% to 104%). The following table

shows the percent battery drained if the query union were searched once per second

for 18 continuous hours.

Type Scenario 1 (ns) | Scenario 2(ns) | Scenario 3(ns) | Scenario 4(ns)
Hash table | .0078% 2.156% 1.989% 2.416%

R-tree 0.3518% 0.3850% 0.0954% 0.1899%

Bloom filter | 0.09356% 0.09155% 0.09925% 0.09166%

Table 4.4: Battery performance of searching query unions.

We also provide a brief qualitative description of the performance of publication

filtering, smart sensor sampling, and query indexes in each of the distribution scenar-
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ios presented in Figure 4-10.

Scenario 1: In the case where all subscribers have the same query, it is not
optimal to use query indexes, because they are intended to make it easier to up-
date a query union given that individual queries have different spreads and might
be added or removed. Regardless, publication filtering and smart sampling would
have a positive effect because the query space is small and there is potential to fil-

ter a significant amount of unnecessary data from transmission or even being sampled.

Scenario 2: In this scenario, queries are clustered around one area, though they
have slightly different spreads. All three optimizations are likely to have a positive
effect. Again, publication filtering and smart sampling are beneficial for the same
reasons as in the first scenario. Query indexes will add more benefit compared to
the first scenario, as now there is a possibility that the query union can change when

subscriptions are added or removed.

Scenario 3: In this scenario, the distance between the clusters of queries is op-
timal for smart sensor sampling to prevent unnecessary sensor usage. Publication
filtering is still useful as there is a large portion of the input space that is not cap-
tured by the queries and can be filtered. The higher variation in query ranges makes

it even more useful to keep query indexes than in the second scenario.

Scenario 4: Because the queries in this scenario cover a large range of the pos-
sible publisher outputs, publication filtering and smart sensor sampling provide less
benefits. If subscribers wish to listen to all of the data that a publisher can output, no
data transmissions can be filtered and publication filtering will have no effect. Also,
because the queries have high coverage and are close in proximity, there isn’t much
opportunity for smart sensor sampling to prevent unnecessary sampling. However,
the variation in queries makes it useful to keep query indexes as explained previously,

and the even spread of queries is good for forming balanced R-trees in particular.
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4.4 Analysis based on Application Scenarios

We revisit the example applications proposed in Chapter 1 to discuss how each of the

optimizations behaves in each case.

. Public
Power outlet finder Electronic Transportation

Tagging Tracker

Noise Monitoring Family or Friend Crowdsourced

Locator Traffic Alerts

Publication Smart Sensor
Filtering Sampling

Figure 4-11: Best optimizations for each application scenario.

In the diagram above, we split each scenario into categories of which optimiza-
tions would provide positive effects. Query indexes are not considered, because both

publication filtering and smart sensor sampling are dependent on the indexes.

Public Transportation Tracker: Smart sensor sampling is likely to perform
well. It works well with location based sampling, as the rate of travel is slow enough to
not miss too much pertinent information. Publication filtering is unlikely to provide
as much of an effect, as bus stops are close in proximity and there are an abundance
or riders, so most of the data produced by the publisher would likely be pertinent to

some subscriber.

Crowdsourced Traffic Alerts: Because this scenario involves location track-

ing, smart sensor sampling will be helpful for the same reasons as above. Most of
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the collected road data will contribute positively to understanding traffic conditions,
so publication filtering may be less useful. The situation in which filtering may be
helpful is when a user is driving through an infrequently travelled area and no other

user is subscribed to traffic in that region.

Family /Friend Locator: Again, because location is the attribute being queried,
smart sampling is beneficial to avoid sampling while the user is far from the target
location. As there are not expected to be many subscribers per user, the query space

covered for each user is low. Thus publication filtering will likely be effective.

Electronic Tagging: Publication filtering will prevent publishers from transmit-
ting documents if the device senses tags that no user is searching for. Smart sensor
sampling will allow the phone to sample more frequently when nearing a tag in order

to pinpoint the item’s location.

Power Outlet Finder /Noise Monitoring: In both of these cases, the sensors
being sampled do not produce results with continuous values, so backoff or advancing
sampling based on resulting values is not as meaningful. However, for either case,

publication filtering will effectively prevent unnecessary transmissions.
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Chapter 5

Conclusion and Future Work

In this thesis, we presented a design for a publish-subscribe framework that facilitates
the development of mobile applications that share sensor data in a meaningful way,
such as an application that shares crowdsourced traffic information or one that tracks
valuables. We presented several optimizations that optimize client-side behavior in
order to improve the battery lifetime of the client device. These optimizations include
publication filtering, smart sensor sampling, and query indexes.

Our evaluation confirms that publication filtering and smart sensor sampling re-
duce data transmission to prevent unnecessary information from being transmitted
while still remaining generally accurate. A downside of the smart sensor sampling
technique is that it can be slow to respond to quickly changing values, though this
can be adjusted for by modifying the length of the maximum and minimum intervals
between samples.

Both publication filtering and smart sensor sampling depend on the availability of
query unions. Searching the query union to check whether a data point is captured
or not has a low impact on the smartphone’s battery regardless of the type of the
query index stored. However, retransmitting the union to a publisher may lead to
increased data transmission if the number of subscribers per publisher is high and
the set of subscribers is constantly changing. The use of query indexes alleviates the
cost of recompiling query unions.

Further work includes designing redundancy techniques for mitigating client-side
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failures, such as network connectivity problems. For a robust system, if a device
goes offline, the accuracy of the application should not be highly impacted. When a
publisher is disconnected from the network, it cannot receive updated query indexes,
and thus may fail to send relevant data. Subscribers would fail to receive relevant
publications. In order to address this, there should be an acknowledgement that
documents have been received by the recipient and a cache to retain documents that
haven’t been sent successfully.

Lastly, security should be addressed in order to make the system proposed in this
thesis usable in practice. The applications built using this system will inherently
handle sensitive information, such as location or image data, and users should feel
confident that their privacy is protected. One main concern is to ensure that a user’s
information is not accessible by anyone else, unless the user has explicitly given an
individual access or made their data public. Secondly, the framework should make
sure that data channels are secure in order to prevent third parties from injecting

malformed or malicious data.
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