
Exploring Constraint Removal Motion Planners

by

Amruth Venkatraman

B.S., Massachusetts Institute of Technology (2015)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2016

Copyright 2016 Amruth Venkatraman. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute publicly
paper and electronic copies of this thesis document in whole or in part in any

medium now known or hereafter created.

Author .
Department of Electrical Engineering and Computer Science

May 20, 2016

Certified by. .
Prof. Tomás Lozano-Pérez, Thesis Supervisor

May 20, 2016

Accepted by .
Dr. Christopher Terman, Chairman, Masters of Engineering Thesis Committee

Exploring Constraint Removal Motion Planners

by

Amruth Venkatraman

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2016, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

We present algorithms for motion planning that can tolerate collisions. Because finding a
path of minimum cover is prohibitively expensive, we investigate algorithms that work well
in practice and find solutions close to the true minimum cover solution. We introduce the
notion of removal importance for obstacles and the family of iterative obstacle removing
RRTs (IOR-RRTs). This family of algorithms operate similarly to the RRT but iteratively
tolerate more collisions in trying to identify a path. One member of the family that performs
well is the search informed IOR-RRT. This search technique first performs bidirectional
collision-free search to find a clear path if possible. In failure, it iteratively selects an obstacle
for removal using its removal importance. We measure the performance of our algorithms
on a multi-link robot operating in both environments with feasible paths and those where
collisions must be allowed.

Thesis Supervisor: Prof. Tomás Lozano-Pérez

2

Contents

1 Introduction 9

1.1 Planners . 9

1.2 A Need for Collision Tolerant Motion Planning 10

1.3 Research Problem Statement . 11

2 Existing Motion Planning Techniques 13

2.1 Traditional Motion Planning Techniques . 13

2.1.1 Multi-query Planners . 13

2.1.2 Single-query Planners . 14

2.2 The MCR Algorithm . 17

2.2.1 Methods of Solving the MCR Problem 17

2.2.2 MCR Planner Details . 18

2.2.3 MCR algorithm benefits and disadvantages 20

3 Collision Supported Path Planning 23

3.1 Obstacle Ignorant Direct Trajectories . 23

3.2 Iterative Obstacle Removing RRTs . 24

3.2.1 IOR-RRT Specifics . 24

3.2.2 Collision History as an Indicator to Removal Importance 26

3.2.3 Constraint Removal Strategy . 26

3.2.4 Impact of a Memory Factor . 27

3.3 Repeated Iterative Obstacle Removal RRTs 28

3.4 Search Informed Iterative Obstacle Removal RRTs 28

3

4 Experimental Results 31

4.1 Worlds with Feasible Paths . 31

4.1.1 Simple Minimal Obstacle World . 32

4.1.2 Cluttered World With Free Path . 32

4.2 Worlds with No Collision Free Paths . 34

4.2.1 Two Block World . 34

4.2.2 Cluttered World with Greedy Minimum Cover Path 35

4.2.3 Cluttered World with Non-Greedy Minimum Cover Path 36

4.3 Discussion on Memory Factor Impact . 37

5 Conclusion 41

A Appendix 43

4

List of Figures

4-1 Common Feasible World . 32

4-2 Cluttered Feasible World . 33

4-3 Two Box Unfeasible World . 34

4-4 Cluttered World With Greedy Path of Minimum Cover 35

4-5 Cluttered World With Non-Greedy Path of Minimum Cover 36

4-6 World with Close Clustered Obstacles . 38

5

6

List of Tables

4.1 Covers Found by Greedy Removal IOR-RRT 37

A.1 Algorithm Performance on Minimal Obstacle World 43

A.2 Algorithm Performance on Many Obstacles Feasible World 44

A.3 Algorithm Performance on Two Block Unfeasible World 44

A.4 Algorithm Performance on Cluttered World (With Greedy MCR Path) 44

A.5 Algorithm Performance on Cluttered World (With Non-Greedy MCR Path) . 45

7

8

Chapter 1

Introduction

Robotic systems are becoming increasingly commercial yet the field of robotics is far from

having completely autonomous robots. There is still room for improvement before they can

independently handle complex tasks. A robotic system excels when using one is easier than

having a human perform the task or monitor the robot’s performance.

Having a robot identify a series of actions to perform to accomplish a goal is challenging.

The robot requires a good representation of the dynamics of the world and of itself. It

also needs a method for translating any decisions the robot decides to make into physical

actions in the world. Other difficulty can lay in the actual search problem of identifying the

sequence of actions to take that would result in the desired outcome. This can be further

complicated with uncertainty in the world as well as error in actual execution of any actions.

1.1 Planners

The component of a robot responsible for determining the actions to take is its planner.

These invisible systems are used to make sense of the task to be performed. Planners use

two types of planning: task planning and motion planning.

A task planning problem is often formulated using the language PDDL as a triple

(𝐴, 𝑠0, 𝑔) [8]. 𝐴 specifies all actions that can be taken along with their corresponding pre-

conditions and postconditions. The task planning problem looks for a series of actions that

can take the initial state 𝑠0 to a final state 𝑠𝑛 that contains all of the propositions in 𝑔.

A motion planning problem is a continuous problem specified by the configuration space

𝐶, a start configuration 𝑠, and a goal configuration 𝑔, for 𝑠, 𝑔 ∈ 𝐶. The planning problem is

9

feasible if there exists a path from 𝑠 to 𝑔 that is not in violation with any of the obstacles.

Planners use these two planning types to find a complete plan. Some planners integrate

discrete task planning with continuous motion planning. Many of these techniques use

motion planners to verify plans found by task planners. Other techniques more closely

intertwine the two planning strategies such that each planning component can influence the

other.

1.2 A Need for Collision Tolerant Motion Planning

Many recent planning methods rely on being able to identify avenues of making motion

planning problems feasible. A method of doing this is to find a path 𝑝 : 𝑠→ 𝑔 that tolerates

collisions. Evaluating collisions along 𝑝 determines a path that would be collision-free if

these obstacles were moved. Thus, non-traditional motion planning that can find paths

tolerant of collisions is highly valuable.

Two such planners that require a method of identifying failure reasons are Srivastava’s

planner with an interface layer and Kaelbling and Lozano-Pérez’s BHPN [2] [8].

Srivastava’s planner is a forward-searching planner that first finds a task plan for the

given planning problem using symbolic references. The interface layer then searches through

all assignments of the symbolic references and collision-free motion plans that satisfy the

chosen assignments. If no such complete instantiation of poses exists that has a error-free

motion plan, the original task plan cannot be resolved into a motion plan. The interface

layer then tries the first pose instantiation and uses a motion planner that allows all non-

permanent collisions to determine the failure reasons. These reasons are stored as state to

be reused in a new task planning problem on the updated state from which the original

planning procedure can resume.

The hierarchical planner designed by Kaelbling and Lozano-Pérez uses pre-image backchain-

ing (also known as goal regression) to solve planning problems. They assume the robot is

able to manipulate the poses of a subset of the objects in the world individually. The re-

gression procedure breaks down a planning problem with obstacles to iteratively considering

the impact of each obstacle’s pose on the pre-image of the goal under the actions of a can-

didate plan. Each pose is found by identifying a pose via a motion planner that allows the

robot to reach a particular configuration. This mechanism of finding a pose is used regularly

10

throughout the planning procedure so it must be quick.

In both of these different planners, there is one fundamental need - a method of finding

motion paths that are tolerant of collisions, but ideally only tolerate collisions when neces-

sary. A bad motion planner could introduce performance penalties if it was overly-aggressive

in tolerating collisions with obstacles. However, being overly defensive to collisions can re-

sult in high performance penalties if the planner tries excessively to find a collision-free path

when one does not exist.

1.3 Research Problem Statement

The particular problem we address in this paper is the constraint removal problem for

holonomic systems. A more specific variant of this problem is the Minimum Constraint

Removal (MCR) problem as formulated by Kris Hauser [1]. The problem operates on an

established graph that has vertices 𝑉 corresponding to different robot configurations. The

edges of the graph 𝐸 correspond to trajectories between these configurations.

Discrete-MCR Problem:

Input: Graph 𝐺 = (𝑉,𝐸), Cover Function 𝐶[𝑣], 𝑠, 𝑔 ∈ 𝑉

Output: 𝑆*
𝑔

The MCR problem also specifies a cover function to identify collisions at a configuration.

Specifically, the cover 𝐶[𝑞] of a configuration 𝑞 is the subset of obstacles {1,2,3,...,m} the

robot collides with if placed at the configuration 𝑞. Let 𝑆𝑞 be the cover (possibly optimal)

of a path from the start configuration 𝑠 to the goal configuration 𝑞. Note that there can be

many 𝑆𝑞 for a particular 𝑞 since there are many paths 𝑠 → 𝑞. A subset of these will have

the lowest cover, which we denote 𝑆*
𝑞 . The answer to the MCR problem is 𝑆*, that is the

minimum number of obstacles that can be in collision with the robot while following some

path 𝑠 → 𝑔. Thus 𝑆* = 𝑆*
𝑔 . In this paper we will use "constraint removal" synonymously

with "obstacle removal" as these obstacles correspond to constraints that the robot must

respect to be collision-free.

This problem falls into the class of NP-hard problems (the proof can be seen in Hauser’s

paper). Because solving the MCR problem optimally is impractical, we need an algorithm

that works well in practice; it should handle the most common case, worlds where collision-

free paths exist, particularly efficiently. That is, it should not introduce unnecessary colli-

11

sions. It must also be able to find paths that contain collisions in the less frequent world

where a collision-free path does not exist, but be selective to approximate the exact MCR

solution.

In the rest of this paper we will focus on a number of algorithms that can be used to

find paths that support constraint violations. These algorithms are not minimum constraint

removal solvers; these algorithms instead find some path tolerant of constraint violations

with cover 𝑆𝑔 that we want to be close to 𝑆*. Each of these algorithms will offer different

tradeoffs in running time and quality of paths as measured by collisions.

12

Chapter 2

Existing Motion Planning Techniques

In this chapter, we look at an overview of recent developments in motion planning. We go

over their advantages and limitations. Since most motion planning algorithms incorporate

randomness, with some probability they will at some point perform worse than other algo-

rithms. Consequently, we are interested in how often they perform well to measure their

robustness.

2.1 Traditional Motion Planning Techniques

We look at two classes of traditional planners: multi-query and single-query. The planning

techniques discussed in this section only look for feasible paths — those without collisions.

2.1.1 Multi-query Planners

Multi-query planners are meant to support multiple queries for paths between start and goal

configurations in the same environment. This means that the parameters of the world are

unchanging, including the obstacles, their location, and the size of the world. The multiple

query nature of the planner means the planner is designed and optimized to build a data

structure that will prove useful regardless of the specified start and goal configurations for

a planning instance. This can mean that prior to even computing any paths, the planner

must spend time on computation to accumulate this useful information.

13

Probabilistic Roadmap

The probabilistic roadmap (PRM) is one such multi-query planner [4]. The PRM works

in two phases - the learning phase and the query phase. The learning phase works by

initializing a graph 𝐺 = (𝑉,𝐸) and growing it with a twofold process.

The first step is the construction step in which we sample points and connect them.

Specifically, we sample a random configuration 𝑐 from free space and add it to 𝐺. Then

using a selection strategy, we choose some nodes from 𝑉 to attempt connection with 𝑐. If

the direct path from 𝑐 to each of these nodes is collision free, add this edge to 𝐸. The

second step is the expansion step which helps achieve good exploration in "difficult" areas.

We do this by sampling points with a distribution proportional to the need to explore each

area, which is approximated by a heuristic. Then given one of these vertices, we choose

an arbitrary direction and extend in that direction. Whenever an obstacle is hit, we pick

another random direction and repeat this with some limit. Finally this final configuration

is connected similarly in the construction step.

By the end of the learning phase, the PRM is ready for querying. As soon as a path is

found from each of the specified start and goal configurations to a vertex in 𝐺, a path can

be constructed for the entire trajectory that is already known to be collision free. This is

helpful as it can reduce the number of expensive collision checks that need to be done for a

particular planning problem.

The PRM is an effective method for multi-queries because it leverages the fact that the

world does not change, so a collision free trajectory at this instant will be collision free at a

future time as well. However, this very strength is a limitation, as it can’t be used efficiently

in a planner that moves obstacles. The time spent pre-computing trajectories will only be

useful that one time and can provide no further benefit.

2.1.2 Single-query Planners

Single-query planners are valuable tools in scenarios where we expect the world to change

over time, either because obstacles are moving or dynamics of the robot are changing (per-

haps the robot is now holding something). Since we do not benefit from pre-computation,

a single-query planner must be efficient at answering a particular planning question. Below

we discuss advances made in this sub-field of single-query planners that are still relevant

14

today.

Rapidly-Exploring Random Trees

The rapidly-exploring random tree (RRT) is a randomized data structure that was designed

with few tunable parameters and heuristics [7]. The holonomic variant of the procedure is

shown in Algorithm 1.

Algorithm 1 RRT
1: function Generate RRT(𝑥𝑖𝑛𝑖𝑡, 𝐾)
2: 𝑇 .init(𝑥𝑖𝑛𝑖𝑡)
3: for k = 1 to 𝐾 do
4: 𝑥𝑟𝑎𝑛𝑑 ← Random Sample
5: 𝑥𝑛𝑒𝑎𝑟 ← Nearest(𝑥𝑟𝑎𝑛𝑑, 𝑇)
6: 𝑥𝑛𝑒𝑤 ← Stopping Configuration(𝑥𝑛𝑒𝑎𝑟, 𝑥𝑟𝑎𝑛𝑑)
7: 𝑇 .add_vertex(𝑥𝑛𝑒𝑤)
8: 𝑇 .add_edge(𝑥𝑛𝑒𝑎𝑟, 𝑥𝑛𝑒𝑤)
9: Return 𝑇

This data structure grows by iteratively sampling from a configuration space. It then

finds the closest data point 𝑥𝑛𝑒𝑎𝑟 currently in our tree data structure 𝑇 . Given these two

configurations, we attempt to find a stopping configuration that is an extension in the

direction from 𝑥𝑛𝑒𝑎𝑟 to 𝑥𝑟𝑎𝑛𝑑. This procedure performs collision checking along the vector

to maintain the invariant that any vertices and edges added to 𝑇 are collision free. If a

collision free stopping configuration 𝑥𝑛𝑒𝑤 is found, we augment 𝑇 wit an edge from 𝑥𝑛𝑒𝑎𝑟

to 𝑥𝑛𝑒𝑤. To use the RRT in a motion planning scenario where we plan from 𝑥1 to 𝑥2, we

simply instantiate the RRT with 𝑥𝑖𝑛𝑖𝑡 = 𝑥1 and check if 𝑥𝑛𝑒𝑤 is sufficiently close to 𝑥2. If

such an 𝑥2 is found, then a path can be reconstructed using 𝑇 .

The RRT has some nice properties. First, the RRT is likely to explore unexplored areas

in the configuration space given a reasonable sampling strategy (e.g. uniform sampling). In

the case of uniform sampling, the probability of an existing configuration being expanded

is proportional to the size of its corresponding Voronoi region. Because the largest Voronoi

regions are on the frontier of searched space, the tree will grow towards unexplored area.

Second, the distribution in the RRT data structure approaches the sampling distribution

as the RRT is grown. The last and arguably most important aspect is that, like the PRM,

the RRT is probabilistically complete, meaning that the probability that a solution is found

15

(if it exists) approaches 1 as the amount of time spent on the RRT plan increases. A very

significant drawback of this algorithm is that this algorithm cannot determine that there

does not exist a solution. It can try indefinitely to find a solution.

Goal Biased RRT

While the aforementioned RRT motion planning algorithm is probabilistically complete, it

does not provide useful bounds on how fast it can find a solution given that one exists.

As the RRT name suggests, it randomly explores the state space, eventually exploring the

entire space in the limit. In a motion planning setting we know exactly where we want a

path to terminate, namely the goal. A simple, yet powerful idea was to modify the sampling

strategy to include a goal bias [7]. That is, with some small probability 𝑝 we "sample" the

goal and with probability 1− 𝑝 we sample from the original strategy. The choice of 𝑝 affects

the prioritization of state space exploration versus greedy search. A lower 𝑝 defers to the

standard RRT, with 𝑝 = 0 being exactly the original RRT. A higher value of 𝑝 will stretch

the current tree towards the goal and more strongly guide the expansion. Goal biasing is

often a good choice since in single-query planning we are interested in some path rather

than a complete understanding of the reachability of the space.

Bidirectional RRT

The bidirectional RRT method was proposed by Kuffner and Lavalle in 2005 as a means to

speed up the RRT algorithm [5]. It is based on a similar principle as the goal biased RRT

in that we can guide the direction of the growth of the RRT. However, instead of growing

a single tree, we can instantiate two RRTs and help them grow towards each other. Doing

so can help the planner find solutions more quickly, as in the case when there are bug traps

in the configuration space [6]. To encourage the rapidly exploring nature of the RRT, the

bi-RRT simply maintains that the difference between tree sizes never gets too large. The

algorithm pseudocode is shown in Algorithm 2.

16

Algorithm 2 Bidirectional RRT
1: function ConstructBiRRT(𝑞𝑠, 𝑞𝑔)
2: 𝑇𝑎.init(𝑞𝑠)
3: 𝑇𝑏.init(𝑞𝑔)
4: for k = 1 to 𝐾 do
5: 𝑞𝑠 ← Random Sample
6: 𝑞𝑛𝑒𝑎𝑟 ← Nearest(𝑇𝑎, 𝑞𝑠)
7: 𝑞𝑛 ← Stopping Configuration(𝑞𝑛𝑒𝑎𝑟, 𝑞𝑠)
8: if 𝑞𝑛𝑒𝑎𝑟 ̸= 𝑞𝑛 then
9: 𝑇𝑎.add_vertex(𝑞𝑛)

10: 𝑇𝑎.add_edge(𝑞𝑛𝑒𝑎𝑟, 𝑞𝑛)
11: 𝑞′𝑛𝑒𝑎𝑟 ← Nearest(𝑇𝑏, 𝑞𝑛)
12: 𝑞′𝑛 ← Stopping Configuration(𝑞′𝑛𝑒𝑎𝑟, 𝑞𝑛)
13: if 𝑞′𝑛𝑒𝑎𝑟 ̸= 𝑞′𝑛 then
14: 𝑇𝑏.add_vertex(𝑞′𝑛)
15: 𝑇𝑏.add_edge(𝑞′𝑛𝑒𝑎𝑟, 𝑞′𝑛)
16: if 𝑞𝑛 = 𝑞′𝑛 then
17: Return SOLUTION
18: if |𝑇𝑎| > |𝑇𝑏| then
19: SWAP(𝑇𝑎, 𝑇𝑏)
20: Return FAILURE

2.2 The MCR Algorithm

In this section we describe the Minimum Constraint Removal (MCR) algorithm as formu-

lated by Hauser (for the formal problem statement see section 1.3). The discussion that

follows draws heavily from Hauser’s description [1]. MCR is the first algorithm we discuss

that tolerates collisions while searching for paths. We go into a more extensive description

and analysis of MCR as we are interested in the shortcomings of this algorithm.

2.2.1 Methods of Solving the MCR Problem

Hauser proposed two types of solutions employing classic search techniques: an exact search

method (best first search) and a close approximation that should generally run faster (greedy

search).

Best First Search

This method is guaranteed to eventually find 𝑆*. In this method, states are tuples of

configuration and covers (𝑣, 𝑆𝑣), where 𝑆𝑣 is the cover of some path from 𝑠→ 𝑣. There are

many such tuples for every node 𝑣 in the graph. We search through the graph beginning

17

with the start node and perform best-first search using the size of the covers as the distance

metric. To expand from 𝑎 to 𝑏, for two such connected vertices, we set 𝑆𝑏 = 𝑆𝑎
⋃︀

𝐶[𝑏].

Because we maintain all possible covers for each vertex, we guarantee that the minimum

constraint removal will be found. For a world with 𝑚 obstacles, since each configuration can

have 2𝑚 different covers, the total state space is 𝑂(|𝐸|2𝑚), making this approach infeasible.

Greedy Search

Greedy search operates much in the way that best first search does except in the enumeration

of states. Rather than keeping all possible 2𝑚 covers per node, we instead only maintain a

cover that has the lowest size. When we expand the graph from 𝑎 to 𝑏, we re-evaluate the

minimum cover 𝑆𝑏 and then update the covers of the neighbors of 𝑏 as necessary. Since each

node is now only expanded once, the runtime is now reduced to 𝑂(|𝐸|𝑚). In fact, if the

configurations for which 𝑂𝑖 is in their covers form a connected subsequence for the found

path for all 𝑂𝑖 ∈ 𝑆𝑔, then 𝑆𝑔 = 𝑆*
𝑔 . This will often be the case — greedy search is often as

good as exact search.

2.2.2 MCR Planner Details

Approximating Connectivity

In the prior discussion, we assumed that we were already provided a graph 𝐺 consisting of

configurations for a robot. In practice, we must construct this ourselves. We want 𝐺 to

accurately approximate the connectivity of the configuration space, where connectivity is a

function of how collision-free the space is. That is, the less cluttered the configuration space

is, the more connected the space is. To formalize this notion of reachability we use (𝐺, 𝑘)

reachability.

Definition: A node 𝑞 is (𝐺, 𝑘) reachable if there is a path from a start node 𝑠 to 𝑞 with

a cover at most 𝑘.

The MCR planner grows 𝐺 in the fashion of a PRM. We repeatedly sample points

randomly in our configuration space and attempt to connect them to nearby points specified

by some distance metric. We also incorporate techniques from rapidly exploring random

graphs (RRGs) which prioritize rapid exploration of (𝐺, 𝑘) reachable space. Specifically,

when sampling a point and looking for points to connect it to, we consider only those that

18

are (𝐺, 𝑘) reachable. This ensures that we are expanding from the exploration limit. This

way we can expand the connectivity of our (𝐺, 𝑘) reachable space. The combination of these

techniques improves the connectivity of 𝐺 and the approximation of the real connectivity.

By examining the psueodocode in Algorithm 3, we see that we increment 𝑘 every 𝑁𝑟𝑎𝑖𝑠𝑒

steps (𝑁𝑟𝑎𝑖𝑠𝑒 can be chosen as needed based on the size of the problem). This ensures that

we get good connectivity for a particular exploration limit before trying to search for less

accessible configurations. Having good connectivity for lower 𝑘 helps improve the accuracy

of the approximation to the real connectivity.

Weighted MCR

The weighted MCR problem can be trivially extended from the original formulation by

defining the minimum constraint removal to be the minimum sum of weights for obstacles

in the cover of a best path from the start to goal configuration. We can further emulate

immovable obstacles by assigning them "infinite" weight such that the MCR planner will

never plan a path through these obstacles if possible.

Throughout this paper, we will use the notation |𝑆| to refer to the cover size in both the

unweighted and weighted constraint removal problem; from the planning problem it is clear

whether this refers to the cardinality of 𝑆 or the sum of the weighted obstacles in 𝑆.

Implementation Specifics

The pseudocode in Algorithm 3 is largely similar to Hauser’s original MCR formulation.

We introduce an explicit exit condition for the MCR algorithm and modify the Extend

Toward to fail if the original extension fails.

The MCR algorithm follows a straightforward loop. In the initialization, we compute an

upper bound on 𝑆*
𝑔 since 𝑆*

𝑔 can be no worse than the straight path from 𝑠 → 𝑔. Next we

set 𝑘 to the union of the covers at 𝑠 and 𝑔 since this is at most the initial 𝑆𝑚𝑖𝑛 value. Then

we initialize our graph and begin the task of growing and measuring connectivity in lines

5-11.

The subroutine Expand Roadmap first generates a random configuration 𝑞𝑑. It then

finds the closest (𝐺, 𝑘) reachable node 𝑞𝑛. Similar to RRT growth, we extend 𝑞𝑛 towards 𝑞𝑑

up to some distance tolerance 𝛿. If this new configuration 𝑞′ isn’t within the 𝑘 exploration

19

limit, we abandon and restart the for loop of MCR. Now that we have a new vertex 𝑞′ to

add to 𝐺, we choose neighbor candidates. As mentioned before, we incorporate the RRG

strategy and connect 𝑞′ to up to 𝑚 of the nearest configurations as long as they are at most

𝛿 away [3]. By construction in Extend Toward, we know that at least one neighbor will

be within 𝛿 (𝑞𝑛).

Finally, given our expanded graph, we can compute the minimum explanations (the

minimum (𝐺, 𝑘) reachabilities) for all nodes. This is exactly the procedure described in

Section 2.2.1. Since speed is primarily what we are concerned with (at the cost of complete

correctness), we use the greedy method.

While we increment 𝑘 every 𝑁𝑟𝑎𝑖𝑠𝑒 steps, we cap it to be one less than 𝑆𝑚𝑖𝑛, as it is

unhelpful to raise our exploration limit higher than what we know is necessary.

While the algorithm seems simple, there are some subtleties that help it succeed. We

have emphasized the importance of respecting the exploration limit 𝑘. When we look for

candidate nodes to connect a sample to, we only consider those that are (𝐺, 𝑘) reachable since

we want to improve our estimation of the connectivity of (𝐺, 𝑘) reachable space. However,

the next procedure Neighbors(𝐺, 𝑞) does not consider 𝑘. This appears to be inconsistent

with the goal of maintaining the 𝑘 frontier, as we would now connect 𝑞′ to nodes that are

not necessarily contained within the limit. However, this is essential to improving (𝐺, 𝑘)

reachability.

2.2.3 MCR algorithm benefits and disadvantages

The MCR algorithm succeeds where traditional planning fails. RRTs and other strategies

can search forever looking for a path from a start configuration to a goal configuration.

Until such a path is found, there is no deliverable progress. Hauser’s MCR technique does

not suffer from this weakness because it is an any-time algorithm, meaning the algorithm

can be terminated at any point and the minimum cover path thus far can be reconstructed.

A downside is that in many cases, the cover of a best path is equal to the weight of the

union of the two covers at the start and goal configurations; this is the solution that MCR

starts with. However, it is not clear that it can terminate instead of continuing to iterate.

This is a problem of looking for paths that tolerate some collisions – the cover of some best

path is not known a priori. We instead must assume that after some period of looking for

better paths, if none is found, there is no better path. For this reason we modify the original

20

formulation of MCR to run for a number of iterations that is an increasing linear function

of the best path cover found thus far.

Another difficulty the MCR algorithm faces is in its frontier expansion strategy. If a best

path from the start to goal configurations has a high weight cover of 𝑤ℎ, then until the MCR

algorithm goes through 𝑁𝑟𝑎𝑖𝑠𝑒 *𝑤ℎ expansion steps (assuming a collision-free start and goal)

this path can never be found. In fact, if we were to enumerate all possible unique covers, any

𝑘 considered between these values are unhelpful to finding paths. It helps to build a more

dense graph, but this dense graph can be limited in its exploration of the configuration space

and, depending on the distribution of obstacle weights, may spend excessive time developing

these frontiers.

21

Algorithm 3 Minimum Constraint Removal
1: function MCR(𝑞𝑠, 𝑞𝑔)
2: 𝑆𝑚𝑖𝑛 ← EdgeCover(𝑞𝑠, 𝑞𝑔)
3: 𝑘 ← |Cover(𝑞𝑠)

⋃︀
Cover(𝑞𝑔)|

4: 𝐺 ≡ (𝑉,𝐸)← (𝑞𝑠 → 𝑞𝑔)
5: while iteration count < 𝑁𝑟𝑎𝑖𝑠𝑒 × (𝑆𝑚𝑖𝑛 + 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒) do
6: Expand Roadmap(𝐺, 𝑘)
7: Compute the minimum explanations 𝑆𝐺(𝑞) for all 𝑞 ∈ 𝑉
8: 𝑆𝑚𝑖𝑛 ← 𝑆𝑔

9: Every 𝑁𝑟𝑎𝑖𝑠𝑒 step, 𝑘 ← 𝑘 + 1
10: if 𝑘 ≥ |𝑆𝑚𝑖𝑛| then
11: 𝑘 ← |𝑆𝑚𝑖𝑛| − 1

12:
13: function Expand Roadmap(𝐺, 𝑘)
14: 𝑞𝑑 ← 𝑆𝑎𝑚𝑝𝑙𝑒()
15: Let 𝑞𝑛 ← Closest(𝐺, 𝑘, 𝑞𝑑)
16: 𝑞 ← Extend Toward(𝑞𝑛, 𝑞𝑑, 𝛿, 𝑘)
17: if 𝑞 is not 𝑁𝑜𝑛𝑒 then
18: Let 𝑞1, 𝑞2, ..., 𝑞𝑛 ← Neighbors(𝐺, 𝑞)
19: for 𝑖 = 1, 2,𝑛 do
20: if 𝑑(𝑞𝑖, 𝑞) < 𝛿 then
21: Add 𝑞𝑖 → 𝑞 to 𝐸

22:
23: function Closest(𝐺, 𝑘, 𝑞)
24: Return argmin

𝑞𝑖∈𝑉
𝑑(𝑞, 𝑞𝑖)

25:
26: function Neighbors(𝐺, 𝑞)
27: 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠← []
28: for 𝑖 = 1, 2, ..., |𝑉 | do
29: 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠← 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠+ [(𝑑(𝑞, 𝑞𝑖), 𝑖)]

30: Sort(𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠)
31: Return first 𝑚 neighbors in 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠

32:
33: function Extend Toward(𝑞𝑖, 𝑞, 𝛿, 𝑘)
34: 𝑞′ ← 𝑞𝑖 +𝑚𝑖𝑛(𝛿

𝑑(𝑞𝑖,𝑞)
, 1)(𝑞 − 𝑞𝑖)

35: Return 𝑞′ if |𝑆𝑞
⋃︀

EdgeCover(𝑞𝑖, 𝑞′)| <= 𝑘 else 𝑁𝑜𝑛𝑒

22

Chapter 3

Collision Supported Path Planning

In this chapter, we discuss algorithms for finding paths that are tolerant of collisions. We

first offer a simple a baseline and then propose new algorithms. These approaches represent

different tradeoffs between path optimality and computational speed. The discussion on

algorithm performance will be addressed in the following chapter.

Note that all of the RRT variants discussed are actually bi-RRT variants but for concise-

ness we will just refer to them as RRT variants. These variants also use goal bias sampling

to encourage growth between the two trees.

3.1 Obstacle Ignorant Direct Trajectories

This technique is the most basic collision tolerant motion planning strategy. We do not even

search the configuration space. Consider a motion planning problem specified by a start

configuration 𝑠, a goal configuration 𝑔, and a set of obstacles 𝑂. The motion plan that this

simple algorithm returns is simply the interpolated direct path Interpolate(𝑠, 𝑔). This

algorithm is deterministic unlike the other algorithms in this chapter.

A clear deficiency of this strategy is that it likely will not find a minimum cover path.

In fact it will likely return a path that is not "close" to the optimal cover path either, as

it does not explore space to find collision-free paths or minimize constraint removals. The

cover of the returned path is the union of the covers at each configuration in the interpolated

path. This direct trajectory implicitly and immediately marks all the obstacles in its cover

for removal by selecting this path.

Note that we assume that all obstacles are movable. In the event there are non-movable

23

obstacles, the direct trajectory strategy will not work if the direct path collides with them.

Instead, another option is to immediately mark all non-permanent obstacles for removal and

then use an RRT. Once a path 𝑝 is found, the cover of the path can be determined by doing

collision checks along the interpolated path.

3.2 Iterative Obstacle Removing RRTs

This section explores the concept of iterative obstacle removing RRTs (IOR-RRTs). The

previous section on direct trajectories were immediate on constraint removal; as soon as a

collision was found, the corresponding obstacle was implicitly removed. As a result many

of these constraint removals were overaggressive and unnecessary. The removals were not

motivated by information that these obstacles were good candidates for removal. We pro-

pose two variants of iterative constraint removal that instead accumulate information about

the state of the world and then proceed to perform constraint removal one-by-one. This

algorithm performs few additional computations on top of the original bidirectional RRT so

its computation time will be similar.

3.2.1 IOR-RRT Specifics

This family of algorithms proceeds similarly to the bidirectional RRT algorithm. The general

algorithm is outlined in Algorithm 4.

The algorithm attempts to grow a bidirectional RRT as the original bidirectional RRT

algorithm does. A significant difference is that upon colliding with an obstacle on interpola-

tion between two configurations, the algorithm keeps track of this collision. Once a collision

is found and its presence marked, the extend immediately fails and we return to the growth

loop of the RRT.

This type of constraint removal introduces a new parameter 𝑓 that governs how often

we will choose a constraint to ignore. In turn this affects the number of constraint violations

that can be recorded before selecting an obstacle to ignore. If the number of iterations that

the iterative obstacle removal RRT can perform is bounded by 𝐾, then at most 𝑐 = 𝐾
𝑓

obstacles will be removed. If our motion planning problem is unsolvable while ignoring 𝑐

constraints, then this algorithm can never find a solution. Thus fragility can be a problem

24

Algorithm 4 Iterative Obstacle Removing RRT
1: function IterativeRemoval(𝑞𝑠, 𝑞𝑔)
2: 𝑐𝑜𝑢𝑛𝑡𝑠← {}
3: 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑← set()
4: 𝑇𝑎.init(𝑞𝑠)
5: 𝑇𝑏.init(𝑞𝑔)
6: for 𝑘 = 1 to 𝐾 do
7: if 𝑘 % 𝑓 = 0 then
8: Remove Constraint(𝑐𝑜𝑢𝑛𝑡𝑠, 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑,𝑚𝑒𝑚𝑜𝑟𝑦)
9: 𝑞𝑠 ← Random Sample

10: 𝑞𝑛𝑒𝑎𝑟 ← Nearest(𝑇𝑎, 𝑞𝑠)
11: 𝑠𝑢𝑐𝑐𝑒𝑠𝑠, 𝑞𝑛 ← Attempt Extend(𝑞𝑛𝑒𝑎𝑟, 𝑞𝑠, 𝑐𝑜𝑢𝑛𝑡𝑠, 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑)
12: if 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 AND 𝑞𝑛𝑒𝑎𝑟 ̸= 𝑞𝑛 then
13: 𝑇𝑎.add_vertex(𝑞𝑛)
14: 𝑇𝑎.add_edge(𝑞𝑛𝑒𝑎𝑟, 𝑞𝑛)
15: 𝑞′𝑛𝑒𝑎𝑟 ← Nearest(𝑇𝑏, 𝑞𝑛)
16: 𝑠𝑢𝑐𝑐𝑒𝑠𝑠′, 𝑞′𝑛 ← Attempt Extend(𝑞′𝑛𝑒𝑎𝑟, 𝑞𝑛, 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑)
17: if success’ AND 𝑞′𝑛𝑒𝑎𝑟 ̸= 𝑞′𝑛 then
18: 𝑇𝑏.add_vertex(𝑞′𝑛)
19: 𝑇𝑏.add_edge(𝑞′𝑛𝑒𝑎𝑟, 𝑞′𝑛)
20: if 𝑞𝑛 = 𝑞′𝑛 then
21: Return SOLUTION
22: if |𝑇𝑎| > |𝑇𝑏| then
23: SWAP(𝑇𝑎, 𝑇𝑏)
24: Return FAILURE
25: function Attempt Extend(𝑞1, 𝑞2, 𝑐𝑜𝑢𝑛𝑡𝑠, 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑)
26: for 𝑞 ∈ Interpolate(𝑞1, 𝑞2) do
27: 𝑣𝑖𝑜𝑙𝑠← Collisions(𝑞)
28: if 𝑣𝑖𝑜𝑙𝑠 ̸⊆ 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑 then
29: for 𝑣𝑖𝑜𝑙 ∈ 𝑣𝑖𝑜𝑙𝑠 do
30: if 𝑣𝑖𝑜𝑙 ̸∈ 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑 then
31: 𝑐𝑜𝑢𝑛𝑡𝑠[𝑣𝑖𝑜𝑙]← 𝑐𝑜𝑢𝑛𝑡𝑠[𝑣𝑖𝑜𝑙] + 1

32: Return FAILURE, NONE
33: Return SUCCESS,𝑞2
34: function Remove Constraint(𝑐𝑜𝑢𝑛𝑡𝑠, 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑,𝑚𝑒𝑚𝑜𝑟𝑦)
35: 𝑐← Removal Strategy(𝑐𝑜𝑢𝑛𝑡𝑠, 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑)
36: 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑.add(𝑐)
37: for 𝑣𝑖𝑜𝑙 ∈ 𝑐𝑜𝑢𝑛𝑡𝑠 do
38: 𝑐𝑜𝑢𝑛𝑡𝑠[𝑣𝑖𝑜𝑙]← 𝑐𝑜𝑢𝑛𝑡𝑠[𝑣𝑖𝑜𝑙]×𝑚𝑒𝑚𝑜𝑟𝑦

25

in worlds where setting an upper bound on the number of obstacles that need to be removed

is difficult. We can naively set 𝐾 such that we can remove every obstacle in the world but

this is often a poor choice.

3.2.2 Collision History as an Indicator to Removal Importance

The family of iterative obstacle removal RRTs are designed to find a path quickly while

mitigating the number of obstacle removals needed. Because we wish to be judicious in

obstacle removals, we need a measure on how important an obstacle is in being able to find

a path. We call this measure removal importance. We use collision history as an indicator

for this measure. Intuitively, the more frequently an obstacle is run into, the more likely a

path will be found by removing this obstacle.

Note that while removing obstacles that are frequently involved in collisions helps find

a path, it is not the case that an obstacle must always be removed to find a path. In worlds

that have a collision-free motion plan 𝑝 but have little free space tolerance for movement in

the surrounding volume, it can be difficult for a bidirectional RRT to find this path. Given

enough time, the bidirectional RRT can find 𝑝, while an iterative obstacle removal RRT will

simply select an obstacle to remove allowing for more tolerance in the region surrounding 𝑝.

3.2.3 Constraint Removal Strategy

Every 𝑓 iterations we select a new constraint that can be violated. The space defined by

the set of constraints that are ignored is analogous to the 𝑘 frontier from Hauser’s MCR

but defined on particular constraints rather than any combination of constraints that have

a total weight of 𝑘. Below we propose two strategies for choosing this constraint: greedy

removal and probabilistic removal.

Greedy Removal

This method of removal chooses the constraint to remove that is empirically determined to

have the highest removal importance. Specifically, let the mapping of obstacles to collision

counts be noted as pairs (𝑜, 𝑐𝑜). Each of these obstacles has a weight 𝑤𝑜. We then select the

constraint using the formula:

26

argmax
𝑜∈𝑂

𝑐𝑜
𝑤𝑜

This selects the constraint that has the highest removal importance score — the collision

counts scaled by the inverse of the weight of the obstacle. Thus a heavy obstacle requires

more collisions to be selected while a lighter obstacle needs less. This method encodes the

difficulty associated with moving high weight obstacles.

Probabilistic Removal

The probabilistic removal method introduces an additional layer of randomness in the itera-

tive obstacle removing family of RRTs. Unlike the greedy removal strategy, the probabilistic

removal strategy selects the constraint to remove using the distribution generated over the

removal importance scores. Specifically,

𝑜𝑟𝑒𝑚𝑜𝑣𝑒 ∼
1∑︀𝑚

𝑖=1
𝑐𝑖
𝑤𝑖

[
𝑐1
𝑤1

,
𝑐2
𝑤2

, . . . ,
𝑐𝑚
𝑤𝑚

]

This method allows the motion planner to select obstacles outside those that are thought

to be the most important. Instead we can sample from the importance in the pursuit of being

more robust to adversarial worlds where the obstacles that appear promising for removal

may actually be either useless or result in higher total path covers than is necessary.

3.2.4 Impact of a Memory Factor

We introduce the notion of a memory factor in the obstacle removal step for the IOR-RRT.

The memory factor can be thought of as a bias factor that affects the exploration-exploitation

tradeoff. The memory factor discounts the current collision counts by some memory factor

∈ [0, 1]. The memory factor can be interpreted as a measure of the quality of information

that previous collision counts provide.

A memory factor of 0 corresponds to no memory; after selecting a constraint for re-

moval, all previous collision counts are lost. Instead, a memory factor of 1 corresponds to

remembering all collisions through the lifetime of the iterative obstacle removing RRT. To

see the impact of memory, consider the case of an IOR-RRT using low memory. Suppose it

has removed an obstacle 𝑜. At the next removal iteration, the IOR-RRT is encouraged to

27

select a new obstacle from the space that was newly opened up by removing 𝑜 because the

number of outstanding collisions since the last removal have been scaled down.

3.3 Repeated Iterative Obstacle Removal RRTs

The repeated IOR-RRT is a straightforward extension to the normal IOR-RRT. It attempts

to solve the planning problem many times. Given the result of each trial, the best outcome

(the path with minimum cover) is returned. The implication of this strategy is that it is more

likely to succeed and find a better path cover than the original IOR-RRT. The downside

of this strategy is computation time. If the IOR-RRT is repeated 𝑛 times and on average

it takes 𝑡 time for an iteration to complete, then this technique requires 𝑛𝑡 time to finish

solving the problem.

While this variant can support any removal strategy that an IOR-RRT can use, in this

research we choose to use the probabilistic removal strategy for the simple reason that the

performance of the greedy removal strategy will be largely the same between iterations. In

order to see the most impact of this variant, we would like a strategy that is likely to explore

different regions of space.

3.4 Search Informed Iterative Obstacle Removal RRTs

The previous algorithms described in this chapter are primarily techniques for finding paths

in situations where feasible paths do not exist. It is, however, more common that there does

exist a feasible path. Thus in the pursuit of an algorithm that can find solutions close to

𝑆*, we propose modifications to the above IOR-RRT algorithms that use existing search

techniques to guide them to finding good paths.

The algorithm is defensive against removing obstacles unnecessarily. Since the majority

of worlds have feasible (but possibly difficult paths) we use a traditional bidirectional RRT

multiple times. The repeated check for a feasible path increases the confidence with which

we can claim a feasible path does not exist. If no path is found the algorithm resorts to a

normal IOR-RRT. The normal IOR-RRT is grown from the last 2 trees that the bidirectional

RRTs created. If the bidirectional RRT is run 𝑛 times where each one takes 𝑡 time, we expect

the algorithm to require 𝑛(𝑡+ 1) time.

We expect that this two-step procedure should find on average a cover no worse than

28

the normal IOR-RRT because in the worst case the search informed IOR-RRT is using the

same strategy after the traditional search fails. It is more interesting to consider if and when

this compound strategy can do better.

First consider the basic case of an existing feasible path. Due to the traditional collision-

free search done first, a collision-free motion plan will likely be found, outperforming the

normal IOR-RRT which can be overaggressive in obstacle removal.

Now consider the case where no feasible path exists. We can view regions of configuration

space as connected components. Because we know that there does not exist a feasible path,

there are at least two connected components divided by at least one obstacle. In reality,

there could be many such connected components that require many obstacle removals to

connect these connected components.

For simplicity, we first look at the impact of a single obstacle frontier dividing the

configuration space into two connected components. The first phase of this algorithm will

grow both trees towards the frontier and will eventually fail as no connection is possible.

The second phase will take over and determine that the obstacle must be removed. However,

the only way that the search informed variant can outperform the basic IOR-RRT in this

situation is if the normal IOR-RRT was unable to discover this frontier independently before

the first removal iteration. Yet because the normal IOR-RRT is fundamentally greedy in

its search strategy by growing each tree towards the other, the IOR-RRT will likely be able

to find the obstacle frontier before the first obstacle removal iteration. Thus the search

informed IOR-RRT should perform roughly the same as a normal IOR-RRT.

Consider now the more complicated but uncommon situation where there exist multiple

connected components as a result of multiple obstacle frontiers. The first phase bidirectional

search can only search among the first and last connected component regions. Equivalently,

the search can not see into any of the inner connected component regions; these regions

can only be seen by removing the dividing obstacle frontier, which the bidirectional search

is unable to do. Thus, in the event of a highly obstacle dense world with many obstacle

frontiers, the search informed IOR-RRT will reduce to the normal IOR-RRT in exploring

all of the middle connected components.

In summary, we can only expect a search informed IOR-RRT to be helpful in worlds

where collision-free motion plans exist. In other cases this strategy will perform similarly to

a normal IOR-RRT.

29

30

Chapter 4

Experimental Results

In this chapter we review the performance of the algorithms from Chapter 3 on different

worlds against the existing single-query algorithms from Chapter 2. These worlds showcase

various scenarios that a motion planner may face. The results for the IOR-RRT variants’

we show in Sections 4.1-4.2 use a memory factor of 0. Both the repeated IOR-RRT and

search informed IOR-RRT use the greedy removal strategy. Additionally, because RRTs are

at risk for getting stuck in an area, all the RRT variants discussed are implemented using

a number of instance attempts with a limit on the number of search iterations per instance

[9].

The results shown in this chapter are averages over 500 trials.

Note: For a table of the numerical results for each world, including the standard deviation

of our experimental results, consult the appendix (e.g. Table A.1). In this section we show

pictorial representations of the numerical data. Specifically, let 𝑟 be the average success

rate for an algorithm, 𝑡𝑠 be the average time for a successful search, 𝑡𝑓 be the average time

to failure, and 𝑆 be the average cover on success. Additionally, let 𝑆𝑚𝑎𝑥 be the largest

cover possible in a world. We plot the time 𝑡 = 𝑟 * 𝑡𝑠 + (1 − 𝑟) * 𝑡𝑓 against the cover

𝑐 = 𝑟 * |𝑆|+ (1− 𝑟) * |𝑆𝑚𝑎𝑥|.

4.1 Worlds with Feasible Paths

The following section is dedicated to worlds that are most common. These are worlds for

which there exists a path from a start configuration to a goal configuration without any

collisions. We will look at two such examples: one that is mostly free space and one that

31

has many obstacles.

4.1.1 Simple Minimal Obstacle World

The first world of this type can be seen in Figure 4-1a and the performance of the algorithm

can be seen in Figure 4-1b.

(a) Layout (b) Algorithm Performance

Figure 4-1: Common Feasible World

The immediate observation is that despite being largely free space, the normal RRT

regularly fails to find paths (evidenced by the associated high cover). Unsurprisingly the

algorithms designed to find collision free paths when they exist (bidirectional RRT, search

informed IOR-RRT) do find a collision free path on this planning problem. The repeated

IOR-RRT has the same performance as measured by cover size even though it is not designed

to find collision-free paths; its success is the consequence of running an IOR-RRT many times

resulting in more opportunities to find a good path. As expected, the direct trajectory

performs poorly in the cover measure but excels in the time measure. The MCR algorithm

however fails to find the true 0 cover MCR solution but also takes the most time of any

algorithm.

4.1.2 Cluttered World With Free Path

In Figure 4-2 we see a possible situation wherein a feasible path exists but is difficult to

obtain. Figure 4-2b shows algorithm performance for this cluttered world.

32

(a) Layout (b) Algorithm Performance

Figure 4-2: Cluttered Feasible World

By introducing a number of narrow hallways between obstacles, the motion planning

problem has been made significantly more difficult for traditional motion planning tech-

niques. Bidirectional RRT and RRT success fell to around 61% and 2%, respectively. Visu-

ally, this is demonstrated by the penalty incurred in the plotting mechanism, as they suffer

from the max cover of the world driving their covers away from 0. Again, despite the true

MCR solution being 0, the bounded time MCR still finds a path with a cover of 2 while

taking 21 seconds to solve a single instance of the problem. The two IOR-RRT implemen-

tations find paths quickly in 3 seconds. However, the cover of these two algorithms are high

relative to 𝑆* = 0. The greedy removal strategy outperforms the probabilistic removal strat-

egy because of the induced randomness the sampling strategy adds. Since we use collision

counts as measure of the value of a removal, a sampling strategy across this distribution can

result in selecting obstacles for removal that are "wrong" (not optimal leading to overall

higher cover scores). The repeated probabilistic removal IOR-RRT gets close to the true

MCR solution for the reason described in the previous world experiment in addition to the

repeated iterations giving the algorithm the opportunity to select the "right" obstacle to

remove.

We gain insight on the performance of the search informed IOR-RRT by looking at its

behavior on this world. We verify that it succeeds in finding a low average cover due to

repeating the birrt search many times in its first phase. This helps it frequently find a

collision-free path. However, when it fails, because there exists a collision-free path, it is

33

able to explore the space mitigating the number of obstacles it needs to remove to succeed,

unlike the normal IOR-RRTs.

4.2 Worlds with No Collision Free Paths

This section is used to analyze worlds where no feasible path exists. While these types of

worlds are in the minority of planning problems a planner will face, it should be robust to

these more rare circumstances.

4.2.1 Two Block World

We start our analysis on unfeasible worlds with a simple analog to the minimal obstacle

feasible world example from Figure 4-1. The variant can be seen in Figure 4-3a.

(a) Layout (b) Algorithm Performance

Figure 4-3: Two Box Unfeasible World

Because the RRT and Bidirectional RRT search strategies only work in feasible worlds,

it is natural that these two algorithms fail in this world. We will omit them from further

discussion in the remaining worlds. The optimal path cover in this example is a cover

of weight one. We note that in this unfeasible world with only two obstacles, the MCR

algorithm takes around 11 seconds before returning a path with a good cover. This has to

do with the fundamental MCR algorithm issue of not knowing when to return the found

path (since it looks for iteratively better paths than a single, first path).

34

The RRT variant algorithms we propose perform similarly to each other as measured by

cover. The direct trajectory, however, finds a path that collides with the top and bottom

blocks (can be seen visually). Search informed IOR-RRTs outperform any of the basic

IOR-RRT options but is outperformed by the repeated IOR-RRT.

4.2.2 Cluttered World with Greedy Minimum Cover Path

Here we examine the performance of the algorithms on worlds where the best cover paths

exist along the direct path from the start to the goal. We would like to understand how the

performance of our algorithms changes with the not only the number of obstacles but the

location of the best paths.

(a) Layout (b) Algorithm Performance

Figure 4-4: Cluttered World With Greedy Path of Minimum Cover

From Figure 4-4b we see that the MCR algorithm suffers heavily from a long running

time. This high running time is partially a result of the MCR algorithm being one directional.

Even if the 𝑘 frontier is high enough to find 𝑆*, it may not succeed at finding the right

connections to build the path resulting in a high cover. Since we use a version of MCR

where the exit condition is based on the iteration number relative to the best cover found,

the number of iterations we run stays high causing a higher computation time. Additionally

because the obstacle weights are widely distributed the algorithm spends a lot of time

searching frontiers that cannot yield better path covers. The MCR algorithm’s performance

is tied to the size of the cover rather than the number of obstacles in the world, which is

35

a problem in worlds with relatively few obstacles but with different weights. Unfortunately

this is a common scenario.

The greedy IOR-RRT finds paths with good covers as would be expected from the best

path being a greedy path. Since bidirectional search encourages both trees to grow towards

each other, it would induce collisions with obstacles in the direct path from the start to the

goal. Then the greedy removal strategy would select these obstacles for removal and a good

path cover would be found. It is also clear then that the probabilistic removal strategy would

lead to on average higher cover paths because it may deviate from the clear greedy path.

The search informed IOR-RRT performs the same as the greedy removal IOR-RRT when

measured by cover. Since the space is filled by obstacles, without removing any obstacles

there is little space that the search strategy can fill in. Additionally the search informed RRT

faces a big penalty in time performance because there does not exist a collision free path;

the repeated attempts at looking for collision free paths results in no additional information

at the expense of time.

4.2.3 Cluttered World with Non-Greedy Minimum Cover Path

In this last test we use a world that has the same layout as the previous world but with

shifted obstacle weights such that the minimum cover path is no longer greedy but follows

the top and left edges.

(a) Layout (b) Algorithm Performance

Figure 4-5: Cluttered World With Non-Greedy Path of Minimum Cover

36

We see that the probabilistic removal IOR-RRT slightly outperforms by the greedy re-

moval IOR-RRT. Since the ideal path is no longer along the greedy path from start to goal,

the probabilistic removal strategy can succeed at opening up the middle space that the

greedy removal strategy will not. Additionally, for the reasons mentioned in 4.2.2, the first

phase of the search informed IOR-RRT does not yield any benefit. The repeated IOR-RRT

excels in this world due to the repeated chance to find good paths by opening the right

space. Similar to the last world, MCR takes significantly longer than the other algorithms

with the repeated IOR-RRT next. While the repeated IOR-RRT finds a cover of almost

half the size as the search informed IOR-RRT, it takes 84% longer than the search informed

IOR-RRT, which itself takes notable time.

4.3 Discussion on Memory Factor Impact

This section is dedicated to the impact of the memory factor on the IOR-RRT. Specifically

we test the impact using the greedy removal IOR-RRT as the greedy removal strategy

generally outperformed the probabilistic removal strategy evidenced by sections 4.1-4.2. We

use all memory factors in [0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0].

Memory Factor Two Block World Cluttered Greedy Path Cluttered Non-Greedy Path

0.0 1.80 16.21 25.10
0.1 1.74 16.09 25.16
0.3 1.54 16.34 25.50
0.5 1.78 16.92 25.51
0.7 1.76 17.50 25.31
0.9 2.00 19.51 25.35
1.0 1.96 21.08 25.07

Table 4.1: Covers Found by Greedy Removal IOR-RRT

For all memory factors on all the worlds in Table 4.1, the greedy removal IOR-RRT had

100% success rate. Moreover by inspection we see that there is no clear winner in which

memory factor leads to the lowest found cover. Specifically the memory factor has negligible

impact on the cover of the paths found.

However, under certain conditions the memory factor can have an impact on the IOR-

RRT’s ability to find paths. Consider the example world in Figure 4-6a and the results of

37

using the greedy removal IOR-RRT in Table 4-6b.

(a) Layout

Memory Factor 𝑟 𝑡𝑠 𝐿 |𝑆|

0.0 73.6 1.16 2223.69 2.35
0.1 69.6 0.98 2201.90 2.39
0.3 61.4 0.94 2188.36 2.27
0.5 51.2 0.80 2153.86 2.21
0.7 43.4 0.69 2176.99 2.18
0.9 28.4 0.56 2216.65 2.17
1.0 24.4 0.40 2190.09 2.18

(b) Memory Factor Impact. We use 𝑟, 𝑡𝑠, and |𝑆| as
specified before. 𝐿 is the length of the found path.

Figure 4-6: World with Close Clustered Obstacles

We see that low memory factors are correlated with success in finding paths in some

situations. Low memory factors lead to higher rates of path discovery because it biases

the planner to removing obstacles that are now exposed to collisions in the opened space.

With a low removal frequency, collisions are accumulated for a longer period of time. Then,

after removing an obstacle and scaling the collision counts by a high memory factor, there

may still be substantial collision counts for the remaining obstacles that were previously in

collision. Consequently the next removal cycle may select one of those original obstacles for

removal. Holding the number of removals constant, this can be a wasted obstacle removal.

In the case of Figure 4-6, collisions are many times evenly split among the top and middle

left obstacles. This results in, with a high memory factor, both obstacles being removed

rather than just one of them. Since there aren’t enough removal cycles to remove sufficient

obstacles after removing both of these obstacles, no path is found, leading to the lower

success rate. This then motivates using 0 memory factor and restarting our counting of

collisions after every removal. Fundamentally, this is the correct choice as we are interested

in quickly finding a path from a start configuration to a goal configuration using collision

counts as a measure of importance. After picking an obstacle we have claimed that this

obstacle is the correct choice and the others are "wrong". This suggests that we should

favor exploring new space instead of reducing risk by keeping old memory. This is especially

true when the speed and success of finding a path is more valuable than a more correct path

38

or possibly no path.

39

40

Chapter 5

Conclusion

In this research paper we examined existing techniques for motion planning like the RRT, the

bidirectional RRT, and MCR. We propose the IOR-RRT, the repeated IOR-RRT, and the

search informed IOR-RRT. We are interested in algorithms that are robust to the presence

of feasible paths in planning problems.

Traditional motion planning techniques do not satisfy this requirement since they are

not suited to unfeasible planning problems. Additionally, we have shown that MCR often

underperforms in bounded iterations by taking a long time to find subpar paths as measured

by covers. Amongst the algorithms in Chapter 3, we see that the direct trajectory is the worst

in all scenarios. Between the IOR-RRT and search informed IOR-RRT, the search informed

RRT is more likely to find collision free paths when they exist, suggesting that the correct

choice is to use the latter because the cost of finding paths with collisions when collision

free paths exist is high in the planning process. The greedy removal strategy empirically

outperforms the probabilistic removal strategy in cover score. The greedy removal strategy

can also yield a higher success rate when the number of constraint removals allowed (specified

by the removal frequency) is close to the number of constraint removals done with greedy

removal, which is lower bounded by the true number of constraint removals needed.

The choice between the search informed IOR-RRT with greedy removal and the repeated

IOR-RRT with probabilistic removal centers around computation time. We saw that in

complicated unfeasible worlds with many obstacles, the repeated IOR-RRT could find paths

with better covers at the cost of taking almost 85% longer to return a path. However, the

repeated IOR-RRT only finds significantly better covers when the MCR solution is along a

41

non-greedy path from the start configuration to the goal configuration. In feasible worlds,

which are the most common, the search informed IOR-RRT is much faster at finding a good

path. Between the two options, the search informed IOR-RRT provides the best tradeoff of

computation time and good path covers.

The search informed iterative obstacle removing RRT with greedy removal is the best

choice for use in a planner. While it does not always find a path with the lowest cover, it

instead offers an algorithm that can find collision free paths when possible and otherwise

quickly find reasonably good paths. This strategy can be used in planners that must be able

to identify mechanisms for making actions feasible.

42

Appendix A

Appendix

In the following tables, 𝑡𝑓 denotes the failure time and 𝑡𝑠 is its counterpart success time.

We let 𝐿 refer to the length of a path. As before |𝑆| refers to the size of a cover.

Algorithm 𝑟 𝑡𝑓 (s) 𝑡𝑠 (s) 𝐿 |𝑆| 𝜎𝑡𝑓 𝜎𝑡𝑠 𝜎|𝑆|

MCR 100.0 — 26.98 5491.39 2.62 — 17.72 3.90
RRT 19.6 2.90 1.74 5485.26 0.00 0.21 0.73 0.00
Bidirectional RRT 100.0 — 0.79 5495.62 0.00 — 0.68 0.00
Greedy IOR-RRT 100.0 — 0.67 5034.17 1.97 — 0.22 3.47
Probabilistic IOR-RRT 100.0 — 0.66 4970.09 2.30 — 0.20 3.78
Direct Trajectory 100.0 — 0.03 3044.89 10.00 — 0.00 0.00
Repeated IOR-RRT 100.0 — 6.67 4787.62 0.01 — 0.74 0.08
Search Informed IOR-RRT 100.0 — 1.13 5545.40 0.00 — 0.90 0.00

Table A.1: Algorithm Performance on Minimal Obstacle World

43

Algorithm 𝑟 𝑡𝑓 (s) 𝑡𝑠 (s) 𝐿 |𝑆| 𝜎𝑡𝑓 𝜎𝑡𝑠 𝜎|𝑆|

MCR 100.0 — 20.79 8187.41 2.16 — 7.49 0.93
RRT 1.4 2.45 2.22 7764.50 0.00 0.35 0.70 0.00
Bidirectional RRT 60.6 8.35 4.07 8788.88 0.00 0.86 2.36 0.00
Greedy IOR-RRT 100.0 — 3.05 8832.71 5.77 — 0.82 7.02
Probabilistic IOR-RRT 100.0 — 2.51 8676.55 10.87 — 0.79 8.81
Direct Trajectory 100.0 — 0.05 5154.62 21.00 — 0.01 0.00
Repeated IOR-RRT 100.0 — 22.82 8556.84 1.29 — 2.94 0.90
Search Informed IOR-RRT 100.0 — 9.14 9028.56 1.70 — 4.63 3.64

Table A.2: Algorithm Performance on Many Obstacles Feasible World

Algorithm 𝑟 𝑡𝑓 (s) 𝑡𝑠 (s) 𝐿 |𝑆| 𝜎𝑡𝑓 𝜎𝑡𝑠 𝜎|𝑆|

MCR 100.0 0.00 10.82 6190.77 1.06 — 7.60 0.77
RRT 0.0 0.74 — — — 0.09 — —
Bidirectional RRT 0.0 3.82 — — — 0.44 — —
Greedy IOR-RRT 100.0 — 1.46 5168.13 1.96 — 0.30 2.94
Probabilistic IOR-RRT 100.0 — 1.44 5165.11 2.54 — 0.31 3.48
Direct Trajectory 100.0 — 0.04 3044.89 11.00 — 0.00 0.00
Repeated IOR-RRT 100.0 — 12.57 5120.58 1.00 — 1.35 0.00
Search Informed IOR-RRT 100.0 — 15.91 5403.04 1.60 — 1.35 2.37

Table A.3: Algorithm Performance on Two Block Unfeasible World

Algorithm 𝑟 𝑡𝑓 (s) 𝑡𝑠 (s) 𝐿 |𝑆| 𝜎𝑡𝑓 𝜎𝑡𝑠 𝜎|𝑆|

MCR 100.0 0.00 116.29 4753.26 19.85 — 71.50 7.64
RRT 0.0 0.74 — — — 0.02 — —
Bidirectional RRT 0.0 3.70 — — — 0.05 — —
Greedy IOR-RRT 100.0 — 3.38 4605.07 16.14 — 0.92 1.18
Probabilistic IOR-RRT 100.0 — 4.59 4884.78 19.88 — 2.21 5.64
Direct Trajectory 100.0 — 0.08 3597.09 36.00 — 0.00 0.00
Repeated IOR-RRT 100.0 — 44.46 4605.78 15.98 — 6.85 0.13
Search Informed IOR-RRT 100.0 — 24.30 4688.62 16.61 — 0.75 3.11

Table A.4: Algorithm Performance on Cluttered World (With Greedy MCR Path)

44

Algorithm 𝑟 𝑡𝑓 (s) 𝑡𝑠 (s) 𝐿 |𝑆| 𝜎𝑡𝑓 𝜎𝑡𝑠 𝜎|𝑆|

MCR 100.0 0.00 153.48 6838.41 23.05 — 56.93 6.76
RRT 0.0 0.76 — — — 0.03 — —
Bidirectional RRT 0.0 3.79 — — — 0.08 — —
Greedy IOR-RRT 100.0 — 3.59 5352.60 24.99 — 1.18 4.82
Probabilistic IOR-RRT 100.0 — 4.69 5428.90 23.71 — 2.32 6.44
Direct Trajectory 100.0 — 0.08 3597.09 39.00 — 0.00 0.00
Repeated IOR-RRT 100.0 — 45.84 5865.23 14.62 — 6.68 1.77
Search Informed IOR-RRT 100.0 — 24.94 5359.50 26.50 — 0.81 6.00

Table A.5: Algorithm Performance on Cluttered World (With Non-Greedy MCR Path)

45

46

Bibliography

[1] K. Hauser. The minimum constraint removal problem with three robotics applications.
The International Journal of Robotics Research, 2013.

[2] L.P. Kaelbling and T. Lozano-Pérez. Implicit Belief-Space Pre-images for Hierarchical
Planning and Execution.

[3] S. Karaman and E. Frazzoli. Incremental Sampling-based Algorithms for Optimal Motion
Planning, 2006.

[4] L. Kavraki, P. Svestka, J. Latombe, and M. Overmars. Probabilistic Roadmaps for Path
Planning in High-Dimensional Configuration Spaces. In IEEE International Conference
on Robotics and Automation, pages 566–580, 1996.

[5] J.J. Kuffner and S.M. Lavalle. RRT-Connect: An efficient approach to single-query
path planning. In IEEE International Conference on Robotics and Automation, pages
995–1001, 2000.

[6] S.M. Lavalle. Planning Algorithms. Cambridge University Press, 2006.

[7] S.M. LaValle and J.J. Kuffner. Rapidly-Exploring Random Trees: Progress and
Prospects, 2000.

[8] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel. Combined Task
and Motion Planning Through an Extensible Planner-Independent Interface Layer.

[9] N.A. Wedge and M.S. Branicky. On Heavy-tailed Runtimes and Restarts in Rapidly-
exploring Random Trees, 2008.

47

