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Abstract

Channels exhibiting fading and dispersion are often used for communication purposes,
especially on a wireless medium. Understanding how these channels differ from the ideal
Gaussian channel is of great interest. But since the capacity of such channels is difficult
and sometimes impossible to obtain, one can always try to characterize the conditions that
achieve capacity, provide bounds, or analyze a “good” high performance scheme where
high transmission rate and low probability of error are achieved.

Under such a motive, we initially study and summarize a technical report written by John
S. Richters for the Research Laboratory of Electronics in November 1967 [1]. This report
considers the transmission of digital information over continuous-time fading dispersive
channels, subject to a bandwidth constraint on the input signals. A specific signaling
scheme is proposed and the problem is modeled as block coding over successive indepen-
dent uses of a diversity channel. The discrete-time model obtained can be characterized as
an independent identically distributed Rayleigh fading channel. Lower and upper bounds
for the minimum attainable probability of error are derived for this model.

The capacity of the discrete-time IID Rayleigh fading channel is studied next. The capac-
ity achieving distribution is proved to be discrete and having a mass point at zero. Graphs
representing capacity and the corresponding optimal distribution are generated numeri-
cally, the behavior of the channel at low SNR is studied, and finally a comparison with the
ideal additive Gaussian noise channel is drawn.
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Chapter 1

Introduction

1.1 Motivation and Background

Channels exhibiting fading and dispersion are often used for communication purposes,
‘especially on a wireless medium. Perhaps the best known examples of such channels' are
radio links. The user is generally interested in reliably transmitting at the highest possible
rate. But what is this rate? The capacity of such time-varying channels is difficult and
sometimes impossible to obtain, even numerically. As an alternative, one can always try to
characterize the conditions that achieve capacity, provide bounds, or analyze a “good”
high performance scheme where high rate and low probability of error are achieved. These
approaches help obtain a better understanding of the performance limits of such channels,

in order to give systems designers a goal to aim at.

In a technical report written for the Research Laboratory of Electronics in November
1967 [1], John S. Richters tried to answer these questions while considering the transmis-
sion of digital information over continuous-time fading dispersive channels with a l‘arge
number of independent scatterers, so that the fading has a Rayleigh-distributed amplitude
and a uniform phase. He proposed a specific signaling scheme, and modeled the problem
as block coding over successive independent uses of a diversity channel. He derived lower
and upper bounds for the minimum attainable probability of error using the expurgated
bound, the random coding bound, and the sphere packing bound. In addition, he computed
numerically the capacity of the Rayleigh fading channel and compared it to the capacity of
an ideal Gaussian channel. |

Although Richters’ study seems to be important and interesting, it strangely does not
appear to be cited in the literature. This could be explained by the unusual nature of his
results: the optimal distribution on the input signal levels for the different bounds is found

to be discrete, a rather unexpected result on a continuous-time channel. It may also be due
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to the difficulty one finds in relating Richters’ model to real channels. Many of his
assumptions are unrealistic and some appear to be made just in order to obtain a “nice”
framework, even when they are far from reality and sometimes absurd. The most striking
example is his use of interleaving on a slowly time-varying channel, in order to get back
into the framework in which successive symbols face independent and identically distrib-
uted (IID) fading. Normally, one would try to estimate the channel on such a medium and
then use the estimate instead of throwing out the channel state information. The optimality

of few other assumptions made in the report is also in question.

1.2 Outline of the Thesis

The main focus of our work is reliable communication over continuous, IID Rayleigh-fad-
ing, dispersive channels. We use Richters’ report as our main reference, and we view our

study to be complementary to it.

The thesis is divided into two parts. In the first part, we summarize and comment on
Richters’ report. In the second, we study in depth the capacity of a discrete-time Rayleigh
fading channel in which successive symbols face independent fading. We prove first the
impulsive nature of the capacity achieving distribution on the input levels, which was
missing from the report. Next, we try to locate the mass points of the optimal distribution,
and prove specifically that one of them is located at zero. In addition, since the numerical
simulation in the original work done by Richters is somewhat primitive, we regenerate
some of the results and extend them to more interesting cases, where previously simula-
tion was practically unfeasible. This allows us to verify the results obtained in the original
work and ours. Another interesting aspect we investigate is how the optimal input distribu-
tion varies as a function of the power constraint. We have also a particular interest in the

behavior of this channel at low SNR.
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Chapter 2
Richters’ Report

As it was mentioned previously, in his study, Richters has obtained some unusual results:
the optimal distribution on the input signal levels for the different bounds is found to be

discrete, a rather unexpected result on a continuous-time channel.

As a first part of our research, we have tried to understand Richters’ report and summarize
it in a simple fashion. We have expressed few remarks on his work, and tried to investigate
how his study can be improved and extended. Special attention is given to the results
obtained for what can be interpreted as an IID Rayleigh fading channel, and how different

it is compared to the ideal Gaussian channel.

2.1 Introduction

The main concerns in the report were:

1. To use channels exhibiting both fading and dispersion for digital communication
purposes with a bandwidth constrained input signal set.

2. To obtain a greater understanding of the performance limits of such channels.

3. By providing bounds on the performance of such systems, to give systems design-
ers a goal to aim at. '

Consider the transmission of one of M equiprobable signals at a rate R=In(M)/T nats/sec.
Assume the channel is composed of a large number of point scatterers, and characterized
by a scattering function 6(rf). The approach adopted, and exposed in the following sec-
tions, is to consider a set of N basic signals designed so that each is independently affected

by the channel. The problem then reduces to coding over N symbols.

In Section 2.2 the model is derived, in Section 2.3 bounds on the error probability are
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determined, and in Section 2.4 the results obtained are exposed, and related to the commu-

nication problem.

2.2 Channel Model

The problem under consideration is the transmission of information over a linear, continu-

}

affected by a particular scatterer with range r seconds and shift f Hertz results approxi-

Jwyt

ous-time, fading, dispersive channel. Any narrow-band input signal s(z) = Re{u(r)e

Jlwy =2t =w,r] . . .
o2ty Since small differences in r can

" mately in the output o(r) = Re{Au(t-r)e
lead to extreme phase differences in the received component, it is reasonable to consider
the quantity 6 = -w,r as a random variable uniformly distributed over (0,2%). A large num-
ber of independent scatterers with range r and Doppler shift f, each with random phase and
approximately the same reflection coefficient, results in an output

Jlwy = 2mf)r]
€

o(t, r, f) = Re{A(r, /)" Dut-r) 1, @2.1)

where A(r,f) will tend to have a Rayleigh distribution, while 8(rf) will become uniform
(i.e., the fading coefficient is a complex circular Gaussian random variable). The scatter-
ing function of the channel is O'(I;ﬂ=E[A2( r, f)/2]. 1t is assumed that there is no average
energy loss through the channel (or that such loss is accounted by a normalization of the
input signal level). The scattering function 6(5,f) may be approximately characterized by
two quantities: the Doppler spread B, and the multipath spread L. If 6(rf) is unimodal and
well behaved, then the fading of any two waveforms should essentially be independent if
they are separated by more than 1/B seconds or more than 1/L Hertz. If a signal has a dura-
tion of T seconds and a bandwidth of W Hertz, the number of independently faded samples
in the output process has been shown by Kennedy [4] to be:

K_((1+BT)(1+WL) if BL<1 or TW = 1 22
(T +L)(W +B) otherwise. '

Relation (2.2) will be interpreted later as an approximation to the number of diversity

paths available.
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2.2.1 Transmission of One Input Signal

Richters studied first the transmission of an input xs(#), where s(f) is a unit-energy signal
and where x is the amplitude. Assume that the noise is additive white Gaussian, and thus
the output r(f) can be written as the sum of the signal o(?) = rro(r, r, fdrdf (Eq.(2.1))
and a noise term n(r) whose power spectrum is N/2. If r(t) is0 e())(pressed in a Karhunen-
Loeve expansion using the eigenfunctions of the autocorrelation function of o(z), the coef-
ficients r, corresponding to the eigenvalues A, will be complex circular (1.e., having a uni-
form phase) and uncorrelated. Having the coefficients r;’s complex is due to the fact that
the eigenfunctions are complex. If we condition on the input, the assumption of Rayleigh
fading and Gaussian noise ensures that the r,’s are jointly Gaussian, and therefore they

will form a set of independent sufficient statistics.

2.2.2 Transmission of More than One Input Signal

One would like to generalize this procedure to the case where more than one input signal
is sent. We would like to obtain a set of basis functions that yield uncorrelated output com-
ponents for any of the input signals used, while being able at the same time to uniquely
separate the input at the output. If one of two input signals is sent, we can use the fact that
any two symmetric positive-definite matrices can be simultaneously diagonalized to find a
(non-orthogonal) expansion that results in uncorrelated components of r. However, for M
arbitrary signals, such an expansion does not exist. Moreover, and more importantly, if the
input signals excite the same output components, they cannot be separated at the output
because they will result in crosstalk. If, however, one starts with a carefully chosen set of
input signals that has these two properties, then it is possible to consider coding over this

signal set and compute some error probabilities.

The Signal Set

Richters chose for this purpose a signal set of N time and frequency translates of one basic
unit-energy signal, with sufficient guard spaces allowed so that the output signals are inde-
pendent and orthogonal. Let T be the duration of the basic signal and W its bandwidth.

Separating the signals in the set by L seconds will make the output signals approximately
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orthogonal, and an additional 1/B will make them independent. Therefore, let the guard
space in time be T,=L+1/B. The same analysis holds for the guard space in frequency
which is made W =B+1/L. Let us construct the M input signals by simultaneously ampli-
tude-modulating the N basic signals, so each input is characterized by a vector x,,, where

X,n 18 the modulation of the n' basic signal. We require an average power constraint:

X[~
M
M =
3

=

A

~

X

where P is the output signal power.

The Probability Distribution Characterizing the Channel

Let’s find the probability distribution characterizing the channel: p(output/input). For this
purpose, consider first the original problem with the one basic input signal xs(¢). Given the
input x, the kth component of r is a zero-mean circular complex Gaussian random variable,
with variance (xz?\.k+N0)/2, and thus, it is only necessary to record its squared amplitude
Yi=T, ,,32+rk,,~m2 (since there is no information in the phase). Normalized by N,, y; has a
central chi-square distribution pxk( y,/x) with two degrees of freedom, which is exactly an

exponential distribution with “parameter” 1/(1 +x2/N,).

Without loss of generality, we replace x2/N0 with x> and absorb N, into the energy con-
straint:

1 o TP
2
M.- Z menslv.

m=1ln=1 ?
The vector y of components y, is a set of sufficient statistics which, given x, has a density
being a product of exponentials. We will denote its density by py(y/x), where the vector A
is given by A=[A, ..., Agl.

Since the N basic signals were chosen to yield independent and orthogonal outputs, the
previous result can be easily generalized to simultaneous modulation and transmission of
each signal, reducing the problem conceptually to N uses of a memoryless continuous-
amplitude, discrete-time channel. The guard spaces T, and W, between adjacent signals

and the signal durations T, and W determine N as
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N M
— ™W _1_ 2 <«
N'-(T5+Tg)(Ws+Wg) M szm-Na’

n=lm=1

where a=(P/N,W)(T+T)(W+W,). The number of positive A;’s will be approximated by
the previously given K in Eq. (2.2).

Remarks on the Choice of the Signal Set

By allowing each of the basic signals to be different, one can conceivably do better than
with the present scheme. However in the model described above, p; (¥/x) is the same for a
‘given input signal wherever it is placed in the time-frequency space. and thus, a basic sig-
nal is “good” no matter where it is placed, and Richters conjectures that not much will be
gained by allowing the N signals to be different. Note that there is no simple relation
between the vector A and the input signal u(?), and finding one of them given the other is a
very difficult problem, so in the report the analysis was done based on A, T, and W, with
the problem of finding the corresponding u(?) ignored. Moreover, the study will be
restricted later to the equal-eigenvalues case, and the problem of finding a “good” basic
signal will become finding a good T, W, combination: what is the best number of degrees

of freedom for the basic signal to have?

Slowly Time-Varying Channels

One last point that needs to be addressed here is the waste of bandwidth in this scheme
when the guard space is too large. Richters uses interleaving to reduce this guard space
when B or L are small, in which case there are no orthogonality problems (in other words,
the scattering function has a narrow shape, and the channel varies slowly in time and fre-
quency), but large guard space is required to obtain independent output signals. In this

case the number of signals increases to N =TW/(T +L)(W+B), and

N M
l_ul_ ’ 2 Z xzmn < N,u'a.\'c where a,. = NL‘V(Tv + L)(W; + B) .

n=1m=1

In this framework, where no channel identification is attempted, interleaving is clearly

uniformly better than the non-interleaving scheme.



A simple and useful case studied in the following sections is the equal-eigenvalues
case, A,=1/K Vke {1, ..., K}, for which the probability distribution of the vector y involves
only the sum of the components y=y+ ... +yg, which becomes thus a sufficient statistic,

with density

K-1 y
y exp(———2 )
1+x/K

T(K)(1 + 22/ K)

pr(y/x) = . (2.3)

In this case, the channel model becomes scalar-input/scalar-output.

- 2.2.3 Comments

From the equations derived above, we can see that the model may be considered as N inde-
pendent uses of a classical diversity channel with K equal-strength paths. As it was men-
tioned earlier, on a slowly time-varying channel, one ought to estimate the channel and use
the estimate to improve detection. Richters instead uses interleaving in order to get into
the IID framework he has chosen to work in; this unrealistic assumption made his results
far from real systems. Among the rare applications that can be modeled this way is a fast
frequency hopping system with multiple receiving antennas, for which each symbol is
transmitted on a different frequency. In such a system, the fast hopping is used to enhance

security at the cost of diminished communication rate.

Note also that a discrete-time IID Rayleigh fading model explicitly does not arise from
sampling a rapidly time-varying channel at the Nyquist rate of the input process. If the
time variations were fast enough to cause independent fading at each symbol, then the
bandwidth of the output process would be larger than that of the input process, necessiting
oversampling. This can also be seen by rebognizing that the channel will vary consider-
ably within a symbol, so that a symbol-rate sampler cannot possibly extract a sufficient
statistic.

Another point that merits examination is how far is the assumption of equal-eigenval-
ues from real systems. As mentioned before, the correspondence between A and the input
signal is difficult to establish and we only have tried to intuitively understand and relate
the model to real systems. We expect that with a basic signal spread over more than one

coherence bandwidth or one coherence time of the channel, we will get more than one



non-zero eigenvalue, but it is intuitive also to éxpéct the strength of the different paths to
be non equal, with a smooth transition, for example, from one non-zero eigenvalue to two.
On the other hand, as the number of non-zero eigenvalues increases, we expect many of

them to be of relatively equal strength and the model just derived may be applied.

2.3 Bounds to Error Probability

In this section, we will summarize and expose the various results Richters has obtained for
the miscellaneous bounds on the minimum attainable probability of error. In Section 2.3.1
the expurgated upper bound Is analyzed and in Section 2.3.2 the random-coding upper

bound is studied together with the sphere-packing lower bound.

The central problem considered here is finding the optimum input density and the result-
ing error probability bound for block coding over N uses of a continuous-amplitude, dis-
crete-time channel model derived in the preceding section. The major result is that the
optimum density consists of a finite set of impulses, a rather unexpected result for a con-

tinuous channel.

2.3.1 Expurgated Bound

The expurgated bound derived by Gallager for the scalar-input/scalar-output channel, and
" extended by Yudkin to the vector-output channel, is given by

. InM
I A =0 d R = —
Nll)nn N an N N

E.lp, p(x), 1] = -p]n\:‘j[}p(.\')p(xl)er(_zw'r “')HL(x, x,)]/pdxljdx
00

P,<exp-N{E,[p, p(x), r1-plRy + Ay} where

and Hy(x.x)) = J.pl(x/x)l/zpa(-‘.'/xl)mdl' =1 NVETRE
0 k=1 1+ ilk(x +x7)

(1 +rd) 20+ nh'

N
p21 r20 szp(x)dx =a and 2 x,z,m <Na.
’ 0 n=l

The difficulty lies in finding the r, p(x) combination that achieves the tightest bound, that
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is, maximizes E [p, p(x), r]. For this particular channel model it turns out that no local-
minima problems arise. A sufficient condition for r and p(x), given the constraints, is for

them to satisfy the equation

= 2 2 = 2 2
J'p(xl)er(x +XI)HL(X, xl)l/pdxI ZJ.(P(x)p(xl)er(x +x,)HL(x’ x,)l/pdxl}fx (2.4)
0 00

forall x20,0<p<eo with equality when p(x) >0.

The determination of such r and p(x) is a difficult matter, and the adopted solution was to
take some particular values, plug them into the equation and see whether equality holds. In
- order to simplify the analysis and gain insight into the basic factors involved, Richters
restricted his study to the equal-eigenvalues case, with K non-zero eigenvalues. Note that
the optimum exponent for an arbitrary A, E,(p, a, A), can be lower bounded by an equal-
eigenvalue exponent E,, (a subscript “e¢” will be added to the different quantities when the

equal-eigenvalues assumption is made).

Before proceeding with the summary of this study, it is worthwhile stopping at the
above sufficient condition (2.4) derived by Richters in one of the appendices. On the left
hand side of the inequality we have, for a given p(x), a function of x denoted f(x), while on
the right hand side we have the weighted average of f{x) on a selected set where p(x) is
non-zero. The condition states then that f(x) should be greater than “its weighted average
on the support of p(x)” for any x, with equality where p(x) is non-zero. If we draw a graph
of f{x), since it has to be greater or equal to the right hand side for all x’s, we clearly see
that the support of p(x) must be a subset of the set where f(x) achieves its minimum. Intu-
itively it seems hard for a function to have a “flat minimum” so that the support of p(x) can
be continuous, and thus we expect that a solution to this inequality will be most likely a
discrete density.

Condition (2.4) is thus seen to play an important role in determining the characteristics
of the optimal probability density, and a thorough inspection of the correctness of its deri-
vation should be considered. Although we believe that the result is true, we should men-
tion that the derivations appear to be mathematically incorrect: Richters didn’t take into

account that p(x) is in general a distribution. Instead, he just considered it to be a function.
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One last observation that should be mentioned here, is that the report states that it can
be proven that the above condition is also a necessary condition for the optimal r and p(x)
to satisfy.

Going back to the K equal-eigenvalues problem, it can be easily shown that E,,(p.a.K)
is equal to K.E,(p/K, a/K, 1) and thus, as far as the minimization is concerned, K can be
set to 1 and the range of p extended from zero to infinity.

In another appendix Richters shows that, if a solution for the above problem exists, it
is unique. Since the study of the zero-rate exponent (p=oo) is simple compared to the gen-

eral case, it was conducted first.

Zero-Rate Exponent

The optimization problem turns out to be easier in this case, and yet the results indicative
of those that will be obtained for positive rates. Note that studying the zero-rate exponent
is interesting for many other reasons: this exponent is tight and we will discuss later how.
The zero-rate exponent is valid when the number of code words grows less than exponen-
tially with the block length (in a polynomial fashion for example). Therefore, from a prac-

tical point of view, this exponent is useful when short blocks are to be used.

When p is taken to infinity, the optimal r is found to be zero, and the sufficient condition

becomes:
Jp(x,)lnH,(x, x))dx, 2 ij(.{)p(xl)lnHl(.r, .r,)dxl}fx + 0(0(,1:2 -a),
0 0%0

for some ., with equality when p(x) > 0.

It is shown that a density of the form p(x)=p8(x)+p8(x-x,) satisfies the condition for
all a when the parameters are correctly chosen. Therefore, the optimum density consists of
two impulses, one of which is at the origin. Note that this result is sharper than what we
have derived in Chapter 3 for capacity. In Chapter 3, we are not able to determine for sure
whether two impulses are enough for some range of the power constraint; instead, we

show the result numerically.

21



The location x, of the second impulse and the probabilities py, pp=1-p; can be com-

puted and they are shown in Fig. 2.1 and 2.2.
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Figure 2.2: xo2 versus a.

The location x,, of the second impulse seems to have an asymptote as a goes to zero. This
behavior is essentially different from what we will obtain in Chapter 3 for capacity: for
very low a, we also found that two impulses are to the accuracy of the simulations enough,

but x,, goes very slowly to infinity.
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On Fig. 2.3 E,(c, a, 1) is drawn versus the power corstraint a.
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Figure 2.3: E (e, a, 1) versus a.

Positive Rates

The study in Richters’ report was restricted to the case where K=1. It is shown in the
report that condition (2.4) must be satisfied by some , p(x) combination, where 0< r <1/2p
and p(x) consists of a finite number of impulses, located at x,,’s where 0 < x,,2 SIpm3p being
finite and a function of only p and a. Even knowing that a finite set of impulses achieves
the optimum, the problem was still very hard to solve, except in the special case when a is
small. In this case, it is shown that a two-impulse distribution will asymptotically satisfy
the sufficient condition, when a goes to zero. Moreover Richters states that it is also possi-
ble to show that the two-impulse distribution is optimal for small non-zero a. The pro-
posed proof amounts to specifying values of p and a, under the assumption of a two-
impulse density, solving for the optimum probabilities, positions, and r, and then numeri-
cally verifying that the resulting p(x) does satisfy condition (2.4). One would like very
much to obtain an analytical proof of this result as we conjecture that a similar property
holds for the achieving capacity distribution studied in Chapter 3. Unfortunately we were

not able to derive this result.

In general, for any given value of p and a, a numerical solution was computed by first
specifying a grid {x,} and then minimizing over {p,} for a range of values of r, because in

a joint minimization over {x,}, {p,} and r the function to be minimized is not a convex
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function. As the grid {x,} gets small, the solution is expected to get very close to the true

minimizing p(x) and r. The results obtained are reproduced in Fig. 2.4,2.5and 2.6
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Figure 2.4: Optimizing {x,} versus a, K=p=1.
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Figure 2.5: Optimum {p,} versus a, K=p=1.
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Figure 2.6: Optimum r vs. a, K=1.

In Fig. 2.7 E,, was drawn versus a for different values of p one of them being p=1, a curve

of particular interest as it represents the cutoff rate.

Figure 2.7: E_,(p, a, 1) versus a.

From the observation of these plots, Richters conjectures the following properties:

1. The optimum density always contains an impulse at the origin, an observation
explained by Richters by the fact that zero is the input that results in the smallest
variance at the output, and that zero is also “good” for the energy constraint.

2. For any given K and p, the solution starts with two impulses when a is near zero,
and the number of these impulses increases with a, by steps of 1.

3. For a given value of X and p, r decreases with a and appears to have an asymptote.
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4. When a new impulse appears, its probability is at the expense of the one that
appeared before.

In the zero-rate case (p=o°), when a and N were fixed, there was a monotonic improvement
in the exponent when K was increased, while this is no longer the case when p<eo. We
were not able to provide an explanation to this result, as one should expect the opposite to
happen: an improvement in the exponent as more diversity is acquired. A possible inter-
pretation of this phenomena is that, by increasing the amount of diversity for a fixed
amount of input energy, this energy is split among too many diversity paths, and detection

suffers.

2.3.2 Random-Coding and Sphere-Packing Bounds

The random-coding upper bound to error probability as derived by Gallager states that if

each code word is constrained to satisfy

N
Z Xy S Na then, forany 0 <s <

n=1

% and r20

P, < exp- N{ l: - ,p(x) ]—ﬁRN—CN} where J.xzp(x)dx=a and
0

1/(1 -5)
E [1— "’(") = "“JfP(x)Px(y/r ) e '”’d] dy,

where {y — 0 as N — oo, and where s is related to the conventional parameter p by

Because of the integration over y, the minimization is complex for arbitrary A, so Richters’
study was restricted to the equal-eigenvalues systems, where y reduces to a scalar. One
should notice that in the current formulation, it is not possible to remove K from the prob-
lem as it was possible for the expurgated bound. A sufficient condition for r and p(x) to be

optimum under the above constraints is for them to satisfy

r B Vp(y/x) e dx2 r By "V ay for all x, when 0<s< 1, (2.5)
0 0

B(y) = j: p()e™ p(y/x) ~Vdx.
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In his report, Richters proves that this condition must be satisfied by an r, p(x) combina-
tion where 0<r<K(1-s), and p(x) being a finite set of impulses at locations x,’s found as
previously between zero and a function of s, a and K. Equation (2.5) and the impulsive
solution are both valid for O<s<1 and not only in the (0,1/2] range. This extension was

seen necessary for consideration of the lower bound
P,> eXP“N[ma"ogs I{E"e[l—i}' a, K} - Ti—}(RN - AN)}+ SN} .

Eoe[s/(1-5),a,K] is E, evaluated at the minimizing p(x) and r for a given value of a, and for

the K equal-eigenvalues case.

Zero-Rate Bound

The zero-rate bound corresponds to the case where s—1. The zero-rate sphere-packing
bound is probably not useful because, at least for discrete memoryless channels, the
straight-line bound due to Shannon, Gallager, and Berlekamp (1967) is better. The
straight-line lower bound has the same zero-rate exponent as the expurgated upper bound.
Therefore, the zero-rate exponent of the expurgated bound is tight for the DMC, and we
believe that this result is also true for Richters’ channel. Nonetheless Richters’ results
were the following: r was found to be zero and two impulses are optimum, one of them
being located at the origin. Furthermore, in this special case K can be normalized into a as
it was done previously. In Fig. 2.8 and 2.9 the probability density coefficients and the loca-

tion of the non-zero amplitude pulse were drawn versus a/K.
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Positive Rates

The results here were much harder to obtain beyond the fact that an impulsive density is
optimum, except for the special case where s=1/2 (or p=1) where. as expected, the expo-
nent of the expurgated bound is obtained again. One additional result than can be stated

here is that a two-impulse distribution will again asymptotically satisfy the condition as a

goes o zero.



2.3.3 Capacity o s b i e St i

The capacity of the IID Rayleigh fading channel will be studied in detail in Chapter 3. In

this section we will only summarize Richters’ results.

By letting s—0 it is proven that r=0 is optimum, and the problem becomes the maximiza-

tion of the rate. This maximum rate, the capacity of the channel, is

C(a,K) = r rp(x)p(y/.t)ln p(y/x) dy dx .
o PP/ x)ds,

A sufficient condition on p(x) for the maximization of C(a,K), subject to the constraint is

p(y/x) dy

Y(xz—%)+ C(a, K) er(y/x)ln
0 OP(-xl)P()'/Xl)dxl

forall x20, with equality when p(x)>0.

We can clearly see that the above condition is exactly the Kuhn-Tucker condition on
capacity, where the term on the right hand side is the divergence (or Kullback-Leibler dis-
tance) between p(y/x) and p(y), and the first term on the left hand side being just a
Lagrange multiplier reflecting the energy constraint.

Once again, when a—0 Richters finds numerically that two impulses will asymptoti-
cally be optimum, and results in the infinite-bandwidth capacity which is the same as for
the additive white Gaussian noise channel with the same value of P/N,,.

In Fig. 2.10, C(a,K)/a is plotted versus a. It is unfortunate that the report did not pro-
vide a plot of C(a,K) “alone” against a, which might be a more representative plot than the

one provided.
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Finally, Richters concludes that, as long as the equal-eigenvalues assumption i1s made,
numerical results can be obtained, while for the case of arbitrary A, there is no longer a
guarantee that the optimum probability distribution is impulsive. He also noted that the

lower bound presented here will be no longer valid for unequal eigenvalues.

2.4 Results and Interpretation

The results obtained previously are restricted to channels with K equal eigenvalues, and
the discussion, summarized in what follows, referred consequently only to this type of

channel.

2.4.1 Discussion of the Results

Significance of p(x)

The density p(x) may be interpreted as the probability with which the letters for each code
word (the modulation levels x,,,) are to be chosen at random. Since the optimum density
consists of a finite set of impulses, this means that the input letters are chosen from a dis-
crete set of levels. For small values of a,=P/N,W two impulses were shown to be opti-

mum, and this result is independent of the number of diversity paths. As a,, increases, two
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impulses cease to be optimum, and more levels must be used to make best use of the
increase in the amount of power available. On the other hand, if the rate is increased the
number of levels also increases, since more levels are required to transmit the greater
amount of information. One last observation to be mentioned here is that one impulse is

always located at the origin.

Comparison with the Ideal Gaussian Channel

A comparison was done in Richters’ report between the Rayleigh fading channel and the
ideal Gaussian channel studied by Gallager, with an equivalent value of output signal-to-
noise ratio per channel use.

The first major difference between the two channels is that the optimum density here
was found to be impulsive while for the Gaussian channel it is continuous (Gaussian). In
Fig. 2.11 a comparison of the respective exponents for the expurgated bound for p=1 and
p=sc was reproduced. In Fig. 2.12 the equivalent capacities for the fading and non-fading
channels are plotted versus a. It is clear from the plots that performance 1s always better
for the Gaussian channel. On the other hand, although it does not appear clearly from the
figure, the capacity of the infinite-bandwidth fading channel is known to be the same as

that of an equivalent Gaussian channel.
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Figure 2.11: Exponents for Equivalent Gaussian and Fading Channels.
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2.4.2 Application to the Communication Problem

Exponent-Rate Curves

In the previous section, the derived sphere-packing lower bound and the expurgated and
random-coding upper bounds all had the same basic form, differing in subscripts and
ranges of p, so the random coding bound will be considered typical, and application of this
bound assuming ideal interleaving as described in Section 2.2 will be considered below.
Given the basic signals (in this model, just the specification of T; and W), with the

parameters B, L, W and P/N,, one may generate the exponent £,.(R), where

(57 Jpte)]

P,<e .

The exponent E (R) is given by the upper envelope of the set of straight lines with
slope (-p) and intercepts E,[p ao(Ts+L)(WS+B), KYa (T+L)YW+B). K and
(T,+L)(W,+B) depend on T; and W, and thus we are free to choose these quantities to
obtain the largest exponents (subject to the rough constraint ;W > 1). In general the max-
imization should be done numerically, but for some cases this was not necessary. At the
end note that the interleaving gives the largest exponent of all the previously cited

schemes.
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Given R, the optimum value of p depends ofi T, and W, making the optimization diffi-
cult, and thus the procedure adopted, is to perform the maximization on T and W, for sev-
eral p’s, draw the lines and get the resulting exponent numerically. This difficulty does not

arise at the end points.

Zero Rate

The sphere-packing lower bound and the expurgated upper bound do not agree at this
point (where p=c). As mentioned earlier, the zero-rate sphere-packing lower bound is not
significant (for the DMC), since the zero-rate exponent of the expurgated bound is tight.

Therefore, we will only examine Richters’ results for the expurgated bound.

The optimization yields (T+L)(W+B)/K=1 for any T,W,=1 signal.

For the non-interleaving scheme, the optimal signals are found to be

T, = f% W, = f% o=

As a practical matter, o does not have to be too large for the optimum exponent to be

approximately attained.

When BL 2 1, the interleaved and non-interleaved exponents are the same, while for BL<1,
the non-interleaving bandwidth must be increased by a factor of 1/BL before the exponents
are equivalent. This is explained by the fact that when BL > 1 both schemes are limited pri-
marily by the guard space necessary to ensure orthogonality, but when BL<1, the non-
interleaved scheme is penalized by the large guard spaces necessary for independence

between output signals.

Capacity

The results simplify in this case because p=0 at capacity, independently of other parame-

ters. It turns out that the optimum signal here satisfies

T, = J% W, = JZZ for all BL (2.6)

with the resulting capacity
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C, _ Cla,(1+ JBLY’, (1 + JBLY
P/No ao(l +JB_[.)2

Without interleaving, for all BL, the same signals were found optimum and the resulting
capacity is

c _ Cla,(1+JBL+1/JBL)",(1+JBL)’]
P/N, a1+ JBL+ 1/ JBL)"

The capacity was computed previously only for the case when K=1 due to numerical diffi-
~ culties, but since for many channels of interest BL<10'1, the variation of C with K is

believed to be not very large in the vicinity of K=I.

Other Rates

For the expurgated bound, the optimization is once again achieved by the signals of (2.6)
for interleaving. For the case without interleaving, the optimization must be generally

done numerically with the exception when BL is very far from unity.

‘For the random coding bound, the optimization can be done only numerically.

Comments

The general results Richters drew from the above study are:

1. The interleaving scheme is uniformly best, although for BL > 100, interleaved,
non-interleaved schemes are about equivalent.

2. When BL £ 10'2, the non-interleaved scheme requires an increase in bandwidth by
a factor of 1/BL to get the exponent attainable by interleaving.

3. For interleaving, the basic signals of (2.6) appear to be optimum. These signals
with their associated guard space, take less space in the 7-W plane than any others,
which indicates that it is better to use many basic signals, each with a small amount
of diversity than to provide more diversity per signal with a corresponding
decrease in the coding constraint length.

One should keep in mind however that no channel identification so ever was
attempted in this report, and we believe these results will significantly change if

some channel estimation is done.

4. When interleaving is considered, larger values of BL result in larger error probabil-
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ities. Without interleaving, small values of BL are also bad because of the large
guard spaces required for independence.

2.4.3 Numerical Examples

Among the few numerical examples that were provided at the end of the report, one stud-
ied how to generate an exponent-rate curve for the interleaving scheme on a channel with
a value of BL < 102. The basic signals of (2.6) were used, since they are optimum for the
expurgated bound and capacity and thus believed to be “good”. For a given value of P/N,
Athe resulting P, was evaluated. A second example was considered and consisted of com-

puting the bandwidth required to attain g (O<g<1) times the infinite bandwidth exponent.

2.5 Summary and Conclusion

In his report, J. Richters considered the transmission of digital information over a fading
dispersive channel, subject to a bandwidth constraint on the input signals. He proposed a
specific signaling scheme and modeled the problem as block coding over successive inde-
pendent uses of a diversity channel. The main objective of the report was the derivation of
a lower and upper bound on the minimum probability of error attainable by such a scheme,

and then the investigation of some potential applications.

Some trends of channel behavior and performance were concluded in the report:

1. With the presented methods and results, it is possible to make some rough perfor-
mance estimates for coding over reasonable signaling schemes.

2. For this type of signaling, except at zero rate or with an infinite available band-
width, channels with BL > 1 are generally inferior to those with smaller values of
BL.

Obtaining a different result would have been very surprising. But again, this result
while obvious when channel identification is used, is not so clear without it.

3. For BL > 1, there is little difference between interleaved and non interleaved sig-
nals, while in the opposite case, non-interleaved signals require an increase in
bandwidth in order to obtain results comparable to the ones obtained by interleav-
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ing.
Richters proposed future work on this problem along two fronts: analytical and numerical.
Analytically, work may be done to relate the performance of the channels with arbitrary A
to that of the equal-eigenvalues channels for the random coding bound. It has also been
suggested to find the true exponent for the zero rate. Numerically, Richters states that
improvement can be made on the computations required for the random coding bound. As
for the expurgated bound, it may be possible to obtain some results for arbitrary A.

Richters succeeded in his report in providing the insight he wanted to give to the
- reader. However, as we have already noted, the appendices of the report are highly mathe-
matical in nature and contain all the derivations of the theorems used in the paper. The cor-
rectness of some of them is worth checking as it highly influences the nature of the results
obtained. On the other hand, Richters failed to provide the important proof of the impul-
sive nature of the capacity achieving distribution.

We believe that the natural extension to Richters work is to try to find out whether the
optimal distribution is really discrete, and if yes, find a simple proof of this result and
characterize as completely as possible the optimal distribution. It was in this direction that
- we have pursued our research, and the results we have obtained are presented in the fol-

lowing chapter.
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Chapter 3

The Capacity of an IID Rayleigh Fading
Channel

As it was pointed out previously, in his report, Richters stated the Kuhn-Tucker conditions
for the sought-after distribution, and solved numerically the equations within the set of
finite discrete distributions. One wonders whether some “‘continuous” distributions can
also be solutions, and even question the original assumption of the finite discrete character
of the set where the minimization was done. Why is it assumed that the optimal distribu-
tion is discrete? What about the eventual numerical errors? Couldn’t they lead to a wrong
optimal distribution with a discrete character? In this chapter we will answer these ques-
tions by proving that the only possible distribution that satisfies the Kuhn-Tucker condi-
tions is a discrete one, explaining therefore the procedure adopted by Richters, and finding

the optimal distribution that was not provided in the original report.

In the following sections, we will prove the necessity of the discrete character of the
capacity achieving distribution on the input levels. We will attempt next to find the loca-
tions of these mass points and prove that one of them is at zero. Finally, we will develop an

algorithm and compute the optimal distribution numerically.

3.1 The Kuhn-Tucker Condition

Let’s limit our study to the case K=1 (no diversity). Having an average power constraint
a=E[X?], we have proven in Appendix A that the capacity achieving input random vari-

able X satisfies

y(x —a)+C>rp(}/x)ln[p()( ;):\ 'y Vx20,

with equality if x is in the support of X *. As derived in equation (2.3), the conditional prob-
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ability density function of ¥ given X is

1
p(y/x) = 5 exp( b4 2). 3.1
1+x 1+x

The solutions C and X" of this equation are the capacity of the channel and a random vari-
able that achieves it, respectively.
Since x appears in the above equations only via its square, it has been found useful and

considerably easier to make the change of variables s = L s . The Kuhn-Tucker condi-
I +x

tion can then be written as

yG— 1 —a)+ CZJ:: - exp(-s- y)ln[‘%w:ldy Vse (0,1].

By expanding the term inside the integral, the condition becomes
1
y(; -1 —a)+ C-In(s)+1+ J:s ~exp(—=s-y)In[p(y)]dy=20. 3.2)

Equation (3.2) will be referred to as “the Kuhn-Tucker condition”.

3.2 The Discrete Character of X

Proving that X~ must be a discrete random variable is equivalent to proving that

s* = —1_ is discrete. This is true because we have an invertible relationship between x

*

l+X -~
and s=1/( 1+x%) when x is restricted, as in our case, to be non-negative.

In the following section, using the same type of argument that was used previously by
J. G. Smith [6] and later by S. Shamai and I. Bar-David [7], we will prove that having the
support of S " include a positive accumulation point is absurd. Therefore, the only two pos-
sibilities left are: either (1) to have S* discrete with a finite number of mass points, and
consequently X * discrete and finite valued, or (2) to have § * with an accumulation point

only at zero, and consequently X " discrete and infinite valued.

3.2.1 Assuming the Support of X * Infinite

Assume in the following section that the support of X " includes a bounded infinite set of
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distinct points S, Sy < [0, A]. This can be the case for example if X * has a density p*(x)
that is positive on a set of non-zero measure. Since we have a one-to-one operator relating
the random variables X~ and S”, the support of S * includes a set S, the image of Sy. The

set Sg contains an infinite number of distinct points in the bounded interval

[ ! > 1:| < (0,1], which implies that it has an accumulation point in (0,1] as shown in
1+A

Appendix B.
Since the support of S * has an accumulation point in (0,1], we can build a sequence

{s;} of elements of Sg that converges to a point inside (0,1].

Define a function k(z) in the complex variable z:
h(z) = YG— 1 —a)+ C-In(2)+1 +J:z ~exp(-z-y)In[p(3)]ay,

where In(z) is the principal determination of the logarithm [8]. Given this choice, the func-

tion A(z) is analytical over the domain D defined by Re(z)>0, for example.

On the interval (0,1] of the real axis, the Kuhn-Tucker condition (3.2) states that the
function A(z) is zero if z is in the support of S”. Therefore, h(z) is zero on the sequence
{s;}. We have thus an analytical function over a domain D that is zero over a sequence of
distinct points converging inside the domain. The identity theorem [9] states that h(z) is

zero over the whole domain D.

Let’s examine carefully the consequences of this result. The equation

yG— 1 —a)+ C-In(s)+1 +j::~ exp(=s-y)In[p(y)ldy = 0 Vse D, 3.3)

can be rewritten as

J:e"“-"-ln[p(y)]dy- 1~[7G-1-a)+c—1n(s)+1] VseD.

s

The left hand side is clearly the unilateral Laplace transform of the function In[p(y)], while

the right hand side can be written as:

I
_;‘Ya+;.[y(l+a)—C—1]+£-ln(s). (34)

By adding Euler’s constant Cg to the last term and subtracting it, equation (3.4) becomes:
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1 1
| —slz+;-[y(l+a)—C—l—CE]+E-[ln(:)+CE].

This is the Laplace transform of

—7-y+[y(1+a)—C—1—CE]—ln(y).

The uniqueness of the Laplace transform for continuous functions of bounded variations
| over D (see [8]) implies that In[p(y)] = -y-y+[y(1+a)-C-1-Cg]-In(y). Therefore, the
only possible output distribution satisfying (3.3) is of the form:

=Yy
p(y) = K- "—y— (3.5)

y(l+a)-C-1-C,
where K = ¢ k.

We can easily check that (3.5) gives indeed the general form of the solution by plug-
ging it into (3.3). But for any value of K and v, equation (3.5) is not a valid probability dis-

tribution, given that its integral over (0,e<) can never be finite.

3.2.2 Conclusion

We have assumed the support of X * to include a bounded infinite set of distinct points. We
have proven next using a complex analysis result that the Kuhn-Tucker condition is satis-
fied with equality over the entire set of potential inputs. By transforming the problem to an
inverse Laplace transform problem, we have proven that the only possible output density
satisfying the condition with equality is not a valid probability density.

This contradiction leads to the conclusion that the original assumption on X" was
wrong, and that the optimal random variable that satisfies the Kuhn-Tucker condition (3.2)
can only be either discrete with a finite set of mass points, or infinitely discrete but with

only a finite number of points in any bounded interval.

3.3 The Existence of an Impulse at Zero

Based on the previous analysis, we know now that the capacity achieving distribution is
discrete with a countable number of mass points. The next natural task is to find where the

mass points are located. Unfortunately, we were only able to find these locations numeri-
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cally. However, in this section, we will prove by contradiction that the optimal input ran-
dom variable X* has necessarily a mass point at zero.

Because X is countably discrete, it has a density function p*(x) that can be written as
p(x) = Zp 8(x - x,), where the x;’s satisfy 0<xg<x;< ... , and where [ is either a finite set
of the form {0, ... ,L} or the set of natural numbers N. Assume now that X* contains no

mass point at zero, i.e. xo > 0. Let us fix the p;’s and x;, x,, ... and move xo downwards.

By moving x, downwards, we are taking the inputs further apart, and intuitively we
expect the probability of error in retrieving the input to decrease. One could think of
unusual strange channels where for lower x; the uncertainty is spread at the output. But
since our channel is “well behaved”, we expect by decreasing x; to be able to send more
information through the channel. Although this result seems intuitive, it has been found

very difficult to obtain a proof inspired by this reasoning.

Clearly, the capacity is a non decreasing function of the power constraint (as we can
always disregard the additional amount of power available). By fixing the p;’s, i 20 and
x;’s, i 2 1, and moving x, downwards, the power constraint becomes obviously looser.
Proving therefore that the mutual information increases is sufficient for proving that the
original density is not optimal, given that we would have obtained, for a lower power con-

straint, a higher mutual information.

3.3.1 The Mutual Information

For a discrete input X, the mutual information between X and Y is

I(X,Y) = Zp rp()/x)ln _ PO/ dv.
i<t > pip(3/x)
j

If we differentiate I(X,Y) with respect to x; we obtain:

d
= (\'/xo)
J ) p(y/ xg) axy”
—I(X,Y) = —p(y/xy)In| —— |dv + /xy)———d
S Y) = pol [ SO/ )in e + [ p0/ s
J
' 0
pOa op(\/xo)

=3 o povx) oy,
;prp y/x, S e/ dy
i
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which simplifies to

d d p(y/xg)
—I(X,Y) = py| s—p(y/xp)In| ——————|dy. 3.6)
9% of 3P0 pp(y/x,)
J
To simplify (3.6) further, we differentiate (3.1),
2 p(y/x0) = 2x0{ Lo+ ]p(y/xo)
%o (I+x5) (1+ xo)

2x,
= 2 2[)’ (1 +xo)]P(y/xo) »
(1+xp)

and define f(y)=In[p(y/xy)/p(y)], then

2x0P0
(1+ xo)

9 rxy) =

0x, r[y (1 +x0)]P(y/X0)f(y)dy.

Theorem 1:  Let p( y) be a probability density function with mean m. Iff( y) is a monoton-

ically decreasing function then J(y -m)p(y) f(y)dy<0.
Proof: see Appendix C. [

To apply Theorem 1, notice that the mean of p(y/xp) is (1+x02). To show that f{y) is mono-

tone write
(;_ ! J
p(y) z (1+x0) (1*'-\?(1)) (l+.\'|»l)
P(y/xo) “ IPI .
Since O<xp<x|< ... , we have 1/(1+x02)>1/(1+x12)> ... . Hence, all the exponents of the

exponentials are positive so that the ratio p(y)/p(y/xy) —an average of increasing functions—
is an increasing function. Therefore, the argument of the logarithm is decreasing and con-

sequently so is the logarithm.

It follows that the derivative of I(X,Y) with respect to x; is negative for O<xp< x;. This
implies that, with the p;’s i 20 andx;’s i > 1 fixed, /(X,Y) is a decreasing function of x and

by moving x, towards zero we can achieve a higher mutual information.
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3.3.2 Conclusion

We have started by assuming that the optimal distribution has no impulse at zero. We have
shown next that the mutual information is a decreasing function of the location xy (x5 > 0)
of the closest impulse to the origin. Therefore, considering the same previous distribution
with this impulse located at x/2 instead of x, would result in a higher mutual information,

which contradicts the original assumption.

This leads to the conclusion that p*(x) has an impulse located at the origin: a very intuitive
result since a zero level input is “good” for the power constraint and results in the smaller

variance at the output and should be preferred to other levels.

3.4 Assumption

It has been shown in Section 3.2 that the capacity achieving distribution is discrete and can
only have one of two forms: either discrete with a finite number of mass points, or with
infinite number of mass points but such that only a finite number of them is in any
bounded interval. We strongly believe that it is possible to rule out the second possibility,
although we were not able to provide an analytical proof for this result, given the short
time frame available. Intuitively, one can argue that having an infinite number of impulses
that go to infinity is not necessarily better than a finite number. Having input levels going
to infinity is clearly “good” for detection and decreases #(X/Y). But on the other hand, the
power constraint obliges the probabilities of these impulses to go to zero “very fast”. This
uneven distribution on the input levels is “bad” for the input entropy function A(X). There-
fore, one can possibly do better with an alternative input distribution that uses a finite
number of impulses, but with a more uniform distribution on the inputs. Note finally that

cutting out the impulses that go to infinity is also better for the power constraint.

Hence, for all practical purposes, we are going to assume in the rest of this study that

the optimal probability distribution is discrete with a finite set of mass points.
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3.5 Numerical Results

Having characterized as completely as possible the optimal probability distribution, we
can now compute numerically the capacity of an IID Rayleigh fading channel as a func-
tion of the power constraint. This was attempted previously by Richters in his report [1],
but much more powerful numerical techniques and computational tools are available now-
adays and more precise results may be obtained. Moreover, the capacity achieving distri-
bution was not provided in Richters’ work, and how this distribution varies as a function of
 the power constraint is of great interest. Another intriguing aspect we would like to study
based on these simulations is the behavior of the optimal distribution when the power con-
straint is very low.

Our optimization problem is the following: we would like to maximize the mutual
information I(X,Y) over the input probability density, given an average power constraint.
The usual approach to such a maximization is to use a Lagrange multiplier (as shown
in [10]), say p, and to maximize J(p)=I(X,Y)-pE[X2] over all choices of the set of input
probabilities. This approach is dual to the widely known rate-distortion curves drawing
method [2], and similarly, as it is interpreted in the rate-distortion case, the multiplier p
has here also the geometric significance of being the magnitude of the slope of the curve
C(a) at the point generated by that value of p.

Indeed, let’s consider in Fig 3.1 plotting I(X,Y) and E[X?] for any particular input prob-
ability distribution, on a graph with ordinate I and abscissa E[X?]. A line of slope p
through this point will intercept the [ axis at I(X,Y)-pE[XZ]. The distribution that maxi-
mizes J(p) will maximize that I axis intercept, and all points on the C(a) curve will lie on
or below the line of slope p through this intercept. Thus, this line is tangent to the C{a)

curve. Consequently, O<p<I.
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I(X,1-pE[X’]

+'E[X2 ]

Figure 3.1: The Slope p of the Curve C(a)

We have already assumed that the optimal probability density is discrete with a finite
set of mass points, which facilitates our task by looking for the optimal distribution in the
set of discrete ones. The maximization problem can therefore be stated as follows: maxi-
mize J(p)=I(X,Y)-pE[X2] over pg ... py and Xxj... xy, subject to the {lollowing constraints:
the x;’s 2 0 and the p;’s lie in the simplex § defined by p; 2 0 and 2 p;, = 1. The sought-

after graph is then drawn by varying the parameter p. =0

3.5.1 The Algorithm

The set of constraints, as defined earlier, is clearly a convex set (intersection of two convex
sets). However. since the maximization over the locations and probabilities is clearly non-

linear, a projected gradient descent method was used.

The algorithm under its most general form is the following:

1. Choose an arbitrary initial vector v0=(x1, <o s XN» Py - » Py) that lies in the set of
constraints.

2. Let v'*! = P(" - o VJ('™), where P is the orthogonal projection operator onto
the set of constraints, o the step size for iteration n, and VJ the gradient of our
functional J.

3. Repeat step 2 until the norm of VJ(v") is less than a given threshold.

3.5.2 The Gradient -

The gradient of J is given by:
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VJ=(5;0

0 0 d d )
Jyiyee—d, =—J, . .s—J
dxy ' 9pg opy

/x.
where 2.7 = p,[ 2p(y/x)in PO Ny ppaxy,
i 0 0% S pip(3/x)
]
/X
and 5‘9—1 - rp(y/x,-)]n _POTX) g ipa?
Pi o Y pip(y/x))
J

3.5.3 The Step Size

The step size can be made optimal by computing the Hessian of the functional J. These
computations were found very complex and beyond the scope of this study, so a fixed step
size was chosen for all the iterations: o= 0. Vn.

We have the following result [11]: Let M be an upper bound to the norm of the Hessian
over the set of constraints. For O<a.<2/M the projected gradient method converges.

As it was pointed out previously, computing M has been found very difficult and we

have relied on experiments to find the suitable value for the step size .

3.5.4 The Projection

By simple examination of the type of constraints we have in this problem, one can see that
they can be separated independently into two parts: one dealing with the x;’s being posi-
tive, and the other with the fact that the p;'s lie in the simplex S.

Concerning the positions, the orthogonal projection is simply given by the following
rule: if an x; 1s negative, then make it zero. Otherwise, do not change it.

As for the probabilities, the projection rule is much more complex: it can be divided
into two parts. First, project on the hyperplane defined by po+ ... +Py = 1, and next inside

the hyperplane, find a rule to project on the simplex.

Projection on the Hyperplane

A unitary vector that is orthogonal to the hyperplane is (N—:-_l - N1+ 1)A/N + 1. Since the
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distance from the origin to the hyperplane is

, the projection is given by:

1
JN +1

Y 1 1
[Zpij Nel| v N+
i = 1
| JNF1. =0 2 JN +1] =p- pil-1 :
P N+1  /N+1 . ’g(') .
N+1 N+1

Projection on the Simplex

Beihg now on the hyperplane H: py+ ... +py = 1, we need to specify a rule for the projec-
. - ' N
tion on the simplex S (p;20 and z p; = 1) lying in that hyperplane.
i=0
Consider an arbitrary point pO on the hyperplane. Let I be the set of the indices of the

positive components of pO: I={0<i<N, p0i>0} and L its cardinal. Let’s project first on the

boundary B of the simplex contained in the set {p;=0 i¢ I} as shown on Fig 3.2. The equa-

tion of Bis givenby 3 p, = 1.

iel

Figure 3.2: Projection on the Simplex in 3D

Note that the set E = {p,-=P0,-, ie I} (parallel to Oz in Fig. 3.2) intersects with the orthogo-

nal line D passing through the point Proj(po) of boundary B where p0 should be projected.
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1
Let’s call Y this intersection point. We have Y - Proj( p°) = o/ : | for some o. Since Y,-=p0,-
1

for ie I, by direct identification we find that

Proj(p")i = pl-1E— (i D)
Proj(p®)i =0 (iel)

Some components of the projection Proj(po) may be negative, which means that they lie
~on the boundary but outside the simplex. In this case, the above procedure is repeated with
pO replaced by Proj(po). We keep iterating these projections until one gets to the boundary
of the simplex. This happens when all of the components of Proj(po) are non-negative.
After each iteration the cardinal L of the set I of the positive components of the proba-
bility vector does not increase. This can be seen by noticing that the non-positive compo-
nents of the vector are all set to zero, while some of the positive components ;rnght
become non-positive. If the value of L from one step to the next does not decrease, this
means that all the components of Proj(po) are non-negative and clearly the algorithm
stops. On the other hand, if the value of L decreases it will decrease by at least one. Given

that L is lower bounded by one, it is guaranteed that this procedure will converge.

3.5.5 The Number of Impulses

Since we have argued in Section 3.4 that we suspect the optimal input distribution to be
discrete with a finite number of mass points, one would expect to have as few as two
points for low values of SNR, and this number increases as the power constraint becomes

higher.

The numerical simulations have confirmed the sufficiency of two points for low values
of a, and that the number of points increases, as expected, when a increases. We believe it
is possible to prove analytically the sufficiency of two points in the neighborhood of zero,
but we have been contented with the computational result. For a very low average power
constraint, we start with an initial density having three impulses and then we see two

merge into one, or just the probability of one of them getting to zero, proving that the
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actual density has only two mass points. On the other hand, when we increased the power
constraint, we found the optimél density to have more and more impulses.

In order to avoid running the program using additional points that will turn out not use-
ful later, we have derived in the following section a condition which, when satisfied,

implies that an additional impulse is needed.

When an Additional Impulse is Required

The analysis in this section is heavily inspired by a previous work done by K. Rose [12] in
the context of rate-distortion theory. In what follows, we will mention the guidelines of

Rose’s work and develop analogous results for our problem.

A new approach, theoretically equivalent to the traditional approach (the Blahut-Arimoto
algorithm), was developed by Rose in his paper. While the traditional approach is based on
optimizing over the input density (the output density in the rate-distortion case), the new
approach, called “the mapping approach”, is based on searching for the optimal mapping
x: [0,1] —> X, from the unit interval with the Lebesgue measure, denoted by L, to the input
space (an approach that is clearly equivalent to writing the problem in terms of the cumu-

lative distribution function as a measure). Writing the functional J in this form we get

1= | [ ps/xtain| eI lay (1) (o)
o0 p(y/x(w)du(w)
10,11

The necessary condition for optimality obtained by applying the standard procedure in

variational calculus, is given by

a%J(x + %:T])|E -0 = 0 for all admissible perturbation functions 1(?). 3.7

The necessary conditions obtained for the rate-distortion curve in Rose’s paper were found
similar to some statistical mechanics quantities, and an analogy was established with the
well-known phase transition problem, which has helped finding the curve efficiently and
characterizing the way discrete reproduction mass points were added. As explained in
[12], an additional point is required when the optimal mapping stops defining the mini-

mum of the free energy, and becomes a saddle point. This translates in our problem to the
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following: at the critical p, the mapping satisfies the necessary condition (3.7), but there
exists a particular perturbation n(¢) for which 5:—2](x +en)|,_, = 0. Using the fact that the
optimal distribution is discrete, we prove in Appendix D that this condition translates to
the following: an additional impulse is needed when some point of support x satisfies both

(3.7) and

3 p(y/x) 1 o op =
r 2p(y/x)ln[ oL }dy+r( xp(y/x)) [p(y/x)]d) 20 =0, (3.8)
where a—p(y/x) = Zx[— 1 5 ]p(y/x) and
* (1+x) (1+x)
PR ( 81> 2 ]p ( ~16x 2 } 4x°
—p(y/x) = - (y/x)+ + p(y/x)+——y p(y/x)
ax’ 1+ (1+x) L+ 1+ 1+

Therefore, we have adopted in our algorithm the following procedure: start with a high
value for the parameter p (which corresponds to low values of a) with two points after
checking that two are enough for that p. Then decrement p gradually, checking whether

we need an additional mass point or not.

To Split or not to Split

One concern is whether mass points are added in a “splitting” fashion or they just appear

e
/

> —

in certain locations away from the existing ones (see Fig. 3.3).

Figure 3.3: Splitting vs. Non-Splitting

We favor initially the splitting possibility inspired by the results K. Rose has obtained in
his paper [12] for his problem. Based on the very well know similarities found between
our problem and Rose’s problem we conjecture to have a similar type of results, especially

dealing with the splitting character of the input density: by a similar reasoning, the conti-
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nuity of the C(a) curve suggests that the system undergoes continuous transitions, which
are symmetry breaks. This suggests that the mass points are added in a “splitting” way, in
the sense that for some value of the parameter, one of the mass points splits in two separate

points.

In the following sections we will see that the results do not conform to this initial

guess, and we will intuitively analyze why.

3.5.6 Final Algorithm

The structure of the final algorithm is the following

1. Pick an arbitrary initial density with two mass points, and a small enough parame-
ter p.

2. Perform the projected gradient method.
3. Compute the power and capacity and store the optimal distribution.
4. Check condition (3.8). If true, add an additional mass point x|

S. Decrement p.

3.5.7 Results and Analysis

The previously described algorithm was implemented in C programming language, and

the results are shown in what follows.

Capacity of the Channel

In this section we will present the numerical results we have obtained for the capacity of
the IID Rayleigh fading channel and the corresponding optimal distribution.

Figure 3.4 shows the capacity of the IID Rayleigh fading channel C, as a function of
the power constraint a. An interesting comparison to study is between this fading channel
and the non-fading ideal Gaussian channel. Such a comparison is done in a following sub-

section.
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Figure 3.4: Capacity versus Power

Figures 3.5 and 3.6 show the locations and the probabilities of the optimal distribution we
found to achieve capacity. The details of these graphs for low values of SNR will be stud-

ied separately in an upcoming subsection.
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Figure 3.5: Optimal Locations versus Power

Note from this graph that the locations, after initially decreasing for very low values of a,
uniformly increase as the power increases. We conjecture that the additional impulse to

appear next will be between x; and x, since we expect intuitively to have the locations rel-
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atively uniformly spread. Unfortunately we were not able to locate this impuise for rea-
sons that will be discussed in the splitting section. Note that the graph is drawn on a
semilogarithmic scale, so that the slope of the curve of x, is not as sharp as it initially

appears.

Probabilities Vs Power

Probabililies

Power
Figure 3.6: Corresponding Optimal Probabilities

Figure 3.6 shows the probabilities of the impulses of the optimal probability distribution.
Note that, when the third impulse appears, its probability seems to grow on the expense
of p;: a similar result to what Richters has obtained for the optimal density for the expur-
gated bound. There is however a difference between these results and his. In our case, p,
continues to increase after the addition of the new third impulse, while in Richters’ report,
Py decreases sharply after the appearance of the third impulse. Again, it is unfortunate that
we were not able to locate the fourth impulse that will appear for higher values of a, in
order to be able to characterize more completely the behavior of these probabilities. We
suspect that p; will decrease later with a.

One last concern that needs to be discussed is whether the probabilities on this graph
cross or not. Given that the entropy of the input distribution is not changed by permuting
the probabilities of the impulses, one would expect initially to see the probabilities of the
lower impulses higher than the probabilities of the high locations. This is due to the fact

that this configuration is better for the power constraint. But on the other hand, for the
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three impulses example, if the impulse at zero and the highest impulse are used more often
than the middle one, one would expect the probability of error in retrieving the input at the
output to decrease. Hence, there is a trade off between lowering the average power of the
input and using the furthest apart impulses as often as possible, and predicting whether the

curves in Figure 3.6 cross or not seems to be a complex matter.

Splitting

~ As suggested in Fig. 3.5, it appears that additional impulses are added in a non-splitting
~ fashion. When the condition for adding an impulse is satisfied, an additional impulse
appears far from the locations of the already existing impulses. This result, although
agrees with Richters optimal density for the expurgated bound, was unexpected. Given
that our problem is dual to the rate-distortion curve drawing problem, we initially
expected the optimal density to behave similarly to Rose’s optimal density [12] as a func-
tion of a. There is however a potential interpretation to this result. On one hand, making
the inputs as separate as possible improves detection by decreasing the probability of error
in recovering the inputs, and consequently, one would try to take the inputs as further apart
as possible. This corresponds analytically to saying that h(X/Y) decreases if the inputs are
taken further apart. But on the other hand, given that the power is constrained to be less
than a, taking the inputs further apart is done on the expense of the probabilities. This
results in a decrease in the entropy function A(X). Therefore, since I(X.Y) = h(X)-h(X/Y),
the optimal distribution that maximizes 1(X,Y) is seen to be the resuit of this equilibrium
between the desire of taking the inputs as further apart as possible, and having to make the
input density as close to a uniform density as possible. This trade off is believed to be at
the origin of the “non-splitting” behavior of the optimal density.

Condition (3.8) derived previously has been found to be accurate as to predict when an
additional impulse is needed. However, since the impulses are added in a non-splitting
fashion, it has been found difficult to locate the additional impulse. This difficulty made
the graph very hard to complete beyond the range used in the above figures. Condition
(3.8) is satisfied at the end of this range, but we were not able to locate the additional
impulse in the short time frame available. It would be very interesting to see whether this

fourth impulse appears in between x; and x,, or beyond x,. We favor the first hypothesis.
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Low SNR

For low values of a, it has been found that only two mass points were sufficient. This result
has been obtained by starting with more than two points, and then finding that some of
them merge and the probability of some others go to zero, and only two non-zero mass
points were left.

As a decreases, the probability of the non-zero impulse goes to zero as it is shown on
Fig. 3.7. On the same figure we have drawn the location of the non-zero impulse versus a.
As expected we see that, as a gets smaller, x; increases. This suggests that, as less and less
‘power is available, we ought to use higher and higher levels of input, less and less fre-
quently. This level goes eventually to infinity as a goes to zero. However, as we can notice
from the graph, the rate at which x; increases when a decreases is very low.
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Figure 3.7: Probability and Location of the Non-Zero Impulse.

Comparison with the Ideal Gaussian Channel

In this section, a comparison is drawn between the IID Rayleigh fading channel, object of
our studies, and the ideal additive white Gaussian noise channel with an equivalent value
of signal to noise ratio. The major difference is in the form of the optimal distribution: in
our case, it is an impulsive density where for the Gaussian channel, the optimal p(x) is

Gaussian. Before exposing the numerical results we have obtained, we expect the two
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channels to behave identically for very low SNR’s since it is known that the capacity of the
infinite bandwidth fading channel is the same as that of an equivalent Gaussian channel.

Figure 3.8 shows equivalent capacities for the Rayleigh fading channel, and the non-

fading channel. It is clear from these graphs that performance is always better for the

Gaussian channel.
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Figure 3.8: The Fading Channel Compared to the Gaussian Channel.

On Fig 3.9 the ratio of the capacity of the Gaussian channel to the capacity of the fading

channel is drawn versus the power constraint. As we expect this ratio goes to 1 when a—0,

but note the very slow rate of approach to this asymptote.
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Figure 3.9: The Ratio of Capacities.
3.5.8 Conclusion

Although the program we have developed in this study is much faster than the traditional
Blahut-Arimoto (BA) algorithm, it was found to have a poor performance given that it was
very hard to locate the impulses when they appear. Our initial guess of the “splitting” char-
acter of the optimal probability distribution was misleading and suggested that the. new
algorithm will be much more efficient. This wrong initial guess hid this major drawback of

the program.

We believe that a combination of the two algorithms (the BA algorithm and the one
exposed in this thesis) would be a smart solution to our problem. An initial run of the BA
algorithm would approximately locate the potential mass points, and a second run of the
new algorithm would find the optimal distribution in a short time.

Another alternative algorithm is an “adaptive BA algorithm” where the grid is recur-

sively adapted to the probabilities. This method will considerably reduce the size of the

grid in the traditional BA algorithm.
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Chapter 4

Summary and Conclusions

We shall briefly summarize the major points of this research and mention some possibili-

ties for further work on the problem.

4.1 Summary

In the first part of this thesis, we have studied previous work done in the field of transmis-
sion over Rayleigh fading channels. We have focused our study on a report by J.
Richters [1], and tried to understand it and find the motivation for what can be added to the
field. Richters’ report has provided us with the insight to the communication problem over
fading channels subject to bandwidth and power constraints. Ideas were drawn on how to
extend and complete what has already been achieved in this field, and we found the moti-
vation to study first the IID Rayleigh fading channel. A summary and analysis of Richters’
report was conducted in Chapter 2.

In the second part, we have started with Richters’ numerical result that the capacity
achieving distribution on this type of channels is discrete, and tried to prove this result.
Inspired by some previous work done by Smith [6], Shamai and Bar-Davia [7], and
Rose [12], in Chapter 3 we have proven that result and tried to characterize the optimal
distribution. We have developed next an algorithm for computing the capacity and the cor-
responding optimal distribution function of the power constraint, and implemented it. The

results obtained were analyzed in the last section of this chapter.

The major achievements we have made in this research are:

1. Proving that the capacity achieving distribution of an IID Rayleigh fading channel
is discrete.

2. Proving that this optimal density has an impulse at zero.
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3. Developing a numerical algorithm for computing the capacity of this channel,
faster than the classical Blahut-Arimoto algorithm.

4.2 Future Work

There are openings for more work on this problem along many fronts. The most immedi-
ate one is studying the IID Ricean fading channel, and trying to find an analogous result
for this type of channels. The Ricean model is appropriate when some information about

fhe channel is known at the transmitter. We conjecture that, similarly to the Rayleigh case,
| the optimal distribution will be discrete, and a proof following the guidelines derived in
this thesis might be promising.

Another important and challenging extension is to generalize the study to the non-IID
Rayleigh fading case. As explained above, the IID-fading assumption is very limiting and
polemic. On a slowly fading channel, Richters uses interleaving in order to obtain the IID-
fading assumption, while one ought to estimate the channel and use the estimate. We
expect some of the desired results to be very difficult to obtain. Here again, as a next step,

one could try to generalize the study to non-IID Ricean fading channels.

Even if the above generalization is successful, it is likely that the conditions needed to
achieve capacity are difficult to realize or simply not practical. Moreover, the random cod-
ing argument does not provide a practical way of coding that achieves capacity. Therefore,
a third possibility is to study a simple suboptimal coding/decoding technique that appears
to be promising: interleaved variable-rate codes. This scheme performs channel identifica-
tion via information-bearing pilot tones. A pilot tone usually carries a fixed signal known
by the receiver who uses it in order to get the desired estimate. An idea that has not been
carefully considered in the literature is to have the pilot tone carry information. One would
expect that with a power level high enough to determine the information sent even without
prior knowledge of the channel, one could make a correct decision and then estimate the
channel. From this perspective, one should expect to get relatively good results with a low
rate code using non-coherent detection techniques such as On-Off-Keying. Is it feasible?

What is the cost of such a technique? What’s the highest achievable rate? And what’s the
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best way of realizing it? Trying to answer these questions via a thorough analysis of cod-
ing using this technique is an additional problem that can be worked on.

Studying these different problems comes under a general goal of understanding how
the time-variant channel differs from the time-invariant one. One would like to obtain
some qualitative results: under what fading conditions is the capacity close to the capacity
of the Gaussian channef? How does the transition behave? For example, as the coherence
time increases we intuitively expect to go from a Rayleigh fading channel to a Gaussian
channel.

An interesting application of this study is shallow water acoustic communication. In
the underwater environment, communication appears to be on the border of these two
cases. One would like to obtain “good” schemes for reliably and efficiently communicat-

ing in this environment.
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Appendix A

The Kuhn-Tucker Condition

A.1 The Maximization

Let us discuss first the maximization of the mutual information I over the input probability

distribution subject to a power constraint.

The maximization is achieved by a unique probability distribution. The existence and

-uniqueness of the maximum is guaranteed because

1. The set of input distributions satisfying an average power constraint is convex and
compact in the Levy metric topology.

2. The mutual information 7 is strictly concave, continuous, and weakly differentia-
ble.

These results have been proven by Smith [6], and Shamai and Bar-David [71.

A.2 The Generalized Kuhn-Tucker Theorem

The generalized Kuhn-Tucker theorem [10] requires the following conditions to be satis-
fied:

1. The set X over which the maximization is done should be a vector space.
- 2. The functional to optimize should be Gateaux differentiable and real-valued.

3. The constraints seen as a mapping from X to a normed space Z should be Gateaux
differentiable and linear.

4. The space Z should have a positive cone containing an interior point.

In order to apply this theorem note that the mutual information between the input X and

the output Y is given by

I(X,Y)= r -rp(x)p(y/x)ln pLy/x) dy |dx.
o p(u)p(y/ u)du
0

This way of writing the equation is somewhat ambiguous since p(x) is in general a distri-

bution that may not be associated to a function. Let’s denote P this input probability distri-
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bution and P(h(x)) the real value obtained from applying P to h(x) (which is E[A(X)]).

Theréfore,

I(X, Y) = P( J: p(y/x)ln[ﬁ%}dy).

We would like to maximize /(X,Y) over all possible input distributions P subject to the fol-
-~ lowing constraints: P(1{q q4+p7) 2 0 V020 and VB=0, P(1)=1, and P(x*)-a < 0, where the
function 1; of x takes the value one when x is in interval  and zero elsewhere. These con-

straints are the translation of what we can usually write as| p(x)dx = 1, rxz p(x)dx<a.
0 0

" Since all of our functions have their support included in [0,e<), we have omitted multiply-

ing by the function 1y .., for clarity purposes, and it would be used as such throughout.

The set of distributions is a vector space and Condition 1 of the generalized Kuhn-Tucker
theorem is satisfied. Conditions 2 is also satisfied and the Gateaux differential of I with

respect to P is

dI(X, Y, P+AN)/0Ap~o =T](J:p(y/x)ln:f%-(y;;i—); ) (J"’ o(y/ Blngy/gﬂ })

= n(ﬂpu/x)ln 17(”;—(‘)/;‘—)))@ . [J: P(p(y/x))[g——ﬁz 3 j‘;;ﬂd))
= n(J:pu/x)ln u%dy) - (J:n(p(y/u))dy)

= nu‘:p(y/”I"[Pf;'(v;/xi))]dy_ 1)

The constraints we have are clearly Gateaux differentiable, so Condition 3 is also satisfied.

The differentials are

IL(P+AM)(1 (g, 0pp)VMp=0 = ML [ c4p)-

and

A(P+AM()VAAp0 = N(x).

Checking whether Condition 4 is satisfied or not is a very complex matter due to the diffi-
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culties of finding an appropriate topology in the space Z. We assume this condition to be

also satisfied, so we can apply the theorem.

Since P(1),and P(x?) take all their values in the vector space R, the Lagrange multipliers
to be associated with constraints P(1)=1, and P(xz)-a < 0, are also real. These multipliers

will be denoted A, and A, respectively.

On the other hand, since P(l[a,w,ﬁ]) is a function of o and [, the Lagrange multiplier
to be associated with the constraint P(l[a,a+[3]) 2 0 Vo0 and V20, is also a function of
o and B, denoted y(c.,B).

Since distributions are linear, the generalized Kuhn-Tucker theorem states that

rp()/x)ln[p(y/x)]dy+ 1 +x,1+12x2-jjy(a, B)liqasp = 0 Vx, (A1)

and the multipliers should satisfy

|
o

M(P(D) = 1)+ (P -a) - [ [¥(e BYP(Lig aupy) =

Each term of the above expression is negative (all the multipliers are greater or equal to

zero). Therefore, each one of them is null. Let’s look what implications this result has on

(L B).

”y(a, BYP(1q 4 p)d0dp = 0 P(”Y(a, B) 1 s pjdodB) = 0. (A2)

Since y(c,B) is non-negative, ”y(a, B)1(q. «+pdodB 1s @ non-negative function of x.
Assume that we can separate the probability distribution P into two terms:
P = z p8, +Tf, where Tf is the distribution associated to a function £, and 3, the usual
Dirac distribution at x. The use of the symbol X is justified by the fact that we cannot pos-
sibly have more than a countable number of impulses, as it is argued in [13]. Note that the
constraints imply that the p,’s and f(x) should be non-negative.
Having made this assumption, equation (A.2) implies that ”y(oc, B)l 0. a+pdadB = 0

wherever f(x) is positive, or x = x; (assuming p;>0 V).

Equation (A.1) can now be written in the following form:
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—rp(y/x)lnl:M}dy +1+A1 +sz2 20 Vx,
0 p(y) _

with equality for x = x; or such that f{x) is positive.

Now if we let C be such that 1+A;=C -A,a, we obtain
—rp(y/x)ln{M]dy+ C+k2(x2—a)20 Vx. (A3)
0 p(y)

- We still need to prove that C is the capacity of the channel. Let’s take the expectation of
~ equation (A.3) with respect to the optimal probability density, we obtain C=I(X,Y). Thus,

C is indeed the channel capacity.
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Appendix B

The Accumulation Point

Assume that p*(s) is positive over an infinite set of points Ssc[ ! 1] <(0,1]. Let’s
1+

2’
A
consider next the closure S of Sg. § is a closed and bounded set in R, and thus it is a com-

pact set. Using the Bolzano-Weierstrass theorem on the compact S, any infinite sequence

——1]e.1].

of distinct points of Sy S has a point of accumulation in S < [
: 1+A

Therefore, Sg has an accumulation point in the interval (0,1].
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Appendix C

Proof of Theorem 1

Theorem 1:  Let p(y) be a probability density function with mean m. If f{y) is a mono-

tonically decreasing function then I( y-m)p(y)f(y)dy<0.

Corollary 1: For a monotonically increasing function then clearly we have

fr=mp)fay>0.
Proof of Theorem 1:

Let’s write the integral as a sum of two terms

[o-mpoiroiay = [=mpfmdy+ [ -mp)f(ds.

For y<m, since f(y) is decreasing, f(y)>f(m) and therefore (y-m)p(y)f(y) < (y-m)p(y)fim).

Hence,

j(y—m)p(y)f(.v)dy < f(m) j (5 = m)p(y)dy .

On the other hand, for y>m we have f(y)<f(m) and since (y-m) is positive

(y-m)pMAy) > (y-m)p(y)fim). Therefore,

J()‘ -m)p(y)f(y)dy < f(m)J.()' —m)p(y)dy.
Combining these inequalities with the fact that m is the mean of ¥, we conclude

I(y—m)p(y)f(y)dy<f(m)J()'—m)P()‘)d)' =0.
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Appendix D

Condition for an Additional Impulse

A necessary condition for x to be the optimal mapping is clearly

%J (x+€n)|,_, = O for all admissible perturbation functions n(s), (D.1)

and

3 :
—J(x+en)|, _,S : (D.2)
o¢’

A necessary condition for bifurcation is to have exact equality in (D.2) for some perturba-
tion M (the question of higher derivatives is disregarded as only a necessary condition is of

interest).

After straightforward differentiation, we find that (D.1) is equivalent to

Ea%p(y/x)m[”(y( 2O ay-2p(x) = 0,

and the condition for equality in (D.2) is
loffu[ﬂa%zz p(y/x)m[l’(Y(/;)]dy f (a_a.?c” (>/x ))2[ O/ )] 29}1 dp

P v
10.1]

Following similar steps to what has been done in Rose’s paper [12], we are going to prove
that the sum in (D.3) is negative for all 1) if and only if the first term is.

The “if” part is trivial since the second term is obviously nonpositive. To prove the
“only if”” part we use the fact that the input is discrete. For the first term to be nonnegative,

there must be at least one point of support x; of nonzero mass such that

[ o o255 [ (Grtrao | paglo-2020.
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The mass of x is the measure of the subset /o€ [0,1] that is mapped to Xo. Let’s choose n\(?)
such that 11(f)=0, V't &I, to ensure that the first term is nonnegative. The second term is

R

then

-j: [a%p(y/xo)ljn(r)dum]z - —j‘——dy :

p(y/x)dp
[0,1]

We have not yet specified the function (f) at ¢ € Iy, which we can always define so that

jn(r)du(r) =0.

Iy

Hence, whenever the first term is not negative, we can choose a perturbation function such
that the second term vanishes. The conclusion is therefore that we have strict inequality in

(D.2) for all n() if and only if the first term in (D.3) is negative.

Consequently, the condition for an impulse to be added (equality in equation (D.2))

can be restated as follows: there exists some point of support x, for which we have

r—a—po/xo)ln[” POy« J:(a%p(y/xo))z[p(—y‘/;o—)}dy—zp - 0.
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