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ABSTRACT

We study the computational complexity of finite ver- set of processors obtain (possibly conflicting) obser-
sions of the simplest and fundamental problems of dis- vations on the state of the environment. Each processor
tributed decision making and we show that, apart from has to make a decision, based on his own observation.
a few exceptions, such problems are hard (NP-complete, However, for each state of the environment, only certain
or worse). Some of the problems studied are the well- decisions accomplish the desired goal. The question
known team decision problem, the distributed hypothesis "are there any communications necessary?" may be then
testing problem, as well as the problem of designing reformulated as "can the goal be accomplished, with
a communications protocol that guarantees the attain- certainty, without any communications?" We show that
ment of a prespecified goal with as little communica- this problem is, in general, a hard one.
tions as possible. These results indicate the inherent We then impose some more structure on the problem,
difficulty of distributed decision making, even for by assuming that the observations of different proces-
very simple problems, with trivial centralized counter- sors are related in a particular way. The main issue
parts and suggest that optimality may be an elusive that we address is "how much structure is required so
goal of distributed systems. that the problem is an easy one?" and we try to deter-

mine the boundary between easy and hard problems.
1. Introduction and Motivation In Section 3 we formulate a few problems which are

related to the basic problem of Section 2 and discuss
In this paper we formulate and study certain simple their complexity.

decentralized problems. Our goal is to formulate pro- In Section 4 we study a particular (more structured)
blems which reflect the inherent difficulties of decen- decentralized problem - the problem of decentralized
tralization; that is, any difficulty in this class of hypothesis testing - on which there has been some in-
problems is distinct from the difficulty of correspond- terest recently, and characterize its difficulty.
ing centralized problems. This is accomplished by Suppose that it has been found that communications
formulating decentralized problems whose centralized are necessary. The next question of interest is "what
counterparts are either trivial or vacious. is the least amount of communications needed?" This

One of our goals is to determine a boundary between problem (Section 5) is essentially the problem of desig-
"easy" and "hard" decentralized problems. Our results ning an optimal communications protocol; it is again a
will indicate that the set of "easy" problems is hard one and we discuss some related issues.
relatively small. In Section 6 we present our conclusions and discuss

All problems to be studied are imbedded in a dis- the conceptual significance of our results. These con-
crete framework; the criteria we use for deciding clusions may be summarized by saying that:
whether a problem is difficult or not come from com- a) Even the simplest (exact) problems of decentralized
plexity theory (Garey and Johnson, 1979; Papadimitriou decision making are hard.
and Steiglitz, 1982]: following the tradition of com- b) Allowing some redundancy in communications, may
plexity theory, problems that may be solved by a poly- greatly facilitate the (off-line) problem of desig-
nomial algorithm are considered easy; NP-complete, or ning a decentralized system.
worse, problems are considered hard.* However, an c) Practical communications protocols should not be ex-
NP-completeness result does not close a subject, butis. pected to be optimal, as far as minimization of the
rather as a result which can guide research: further amount of communications is concerned.
research should focus on special cases of the problem
or on approximate versions of the original problem. Some of the results of this paper appear in

The main issue of interest in decentralized systems [Papadimitriou and Tsitsiklis, 1983] and (almost) all
may be loosely phrased as "who should communicate to proofs may be found in [Tsitsiklis, 1983].
whom, what, how often etc." From a purely logical
point of view, the first question that has to be raised 2. A Problem of Silent Coordination
is "aare there any communication necessary?, Anyis "are there any communication necessary?" Any In this section we formulate and study the problem
further questions deserve to be studied only if we
come to the conclusion that communications are indeed whether a set of processors with different information
necessary. may accomplish a given goal -with certainty- without

The subject of Section 2 is to characterize the in- any communications.
herent difficulty of the problem of deciding whether Let (1,...,M be a set of processors. Each processor,
any communications are necessary, for a given situa- say processor i, obtains an observation y which comes
tion. We adopt the following approach: a decentral- from a finite set Yi of possible observations. Then,
ized system exists in order to accomplish a certain processor i makes a decision u. which belongs to a
goal which is externally specified and well-known. A finite set U of possible decisions, according to a

rule. 1
* Research supported by ONR under contract ONR/N00014-77-C-0532 (NR-041-519).
* One way of viewing NP-complete problems, is to say that they are effectively equivalent to the Traveling

Salesman problem, which is well-known to be algorithmically hard.



(y i(Y) (f2.1) following:
Theorem 2.1:

where bi is some function from Y. into U.. The
1. .info .on avai- a) The problem DS with two processors (Y=2) and res-

M-tuple (Y ,- yM 
)
is the total information avail tricted to instances for which the cardinality of the

able; so it may be viewed as the "state of the envi- 
ronment." For each state of the environment, we assume decision sets is 2 (IUi)=2 i1,2) may be solved in
that only certain M-tuples (u 1,...,uM ) of decision ac- polynomial time.
complish a given, externally specifiec, goal. More b) The problem DS with two processors (M=2) is NP-
precisely, for each (y -... ,YM)e Ylx.. .xY, we are given complete, even if we restrict to instances for which

a set S(Y 1 ...-IY) C U1x ... xU of satisficing decisions. 1U 2,' 1U2=3
c) The problem DS with three (or more) processors

(So, S may be viewed as a function from
(SS a b ieeU aXs afuxnctionfrmU (M>3) is NP-complete, even if we restrict to instances

y xY x ... x Y into 2 1 for which IUi 1=2,viYl2 m Theorem 2.1 states that the problem DS is, in gen-
The problem to be studied, which we call "distri- eral, a hard combinatorial roblem, exce

buted satisficing problem" (after the term introduced eral, a hard combinatorial problem, except for the
by H. Simon [19801) may be described formally as special case in which there are only two processors
follows: and each one has to make a binary decision. It should

be noted that the difficulty is not caused by an at-
Distributed Satisficing (DS): Given finite sets Y1 ,..'. tempt to optimize with respect to a cost function,

Y., U ...~.,U and a function S: x ... Y. because no cost function has been introduced. In game
M 1i1 ... X theoretic language, we are faced with a "came of kind,"
U x...x uM rather than a "game of degree."

2 I , are there functions a: Y. { U., i-l, We will now consider some special cases (which re-
,...,M such that flect the structure of typical practical problems) and

examine their computational complexity, trying to deter-

a (aY . a (.~ y )) es ( Y...,Iy.), ).et(y 1 ,...,y 1 ) e mine the dividing line between easy and hard problems.(a c1 ' ' ,, M F,(M,, Y YM,,..., yn Y1 'YMe PFrom now on we restrict our attention to the case in

*YI x .x YM (2.2) which there are only two processors. Clearly, if a
problem with two processors is hard, the corresponding
problem with three or more processors cannot be easier.

Remarks: we have formulated above the problem DS so that all
pairs (yly )e Y XY are likely to occur. So, the

1. We are assuming that the function S is "easily 2 1 2
computable;" for example, it may be given in the form information of different processors is completely un-~~~~of a t ~ai~le,~ ~related; their coupling is caused only by the structureof a table.
2. The centralized counterpart of DS would be to of the satisficing sets S(y 1,Y2 ). In most practical
allow the decision u. of each agent depend on the situations, however, information is not completely uns-

entire set (Y1l ' Y ) of observations; so, .i would tructured: when processor 1 observes Y1 , he is often

be a function from Y1 x...x Y into U.. (This cor- able to make certain inferences about the value of the
reponds to a situation in which all processors share observation Y2 of the other processor and exclude cer-responds to a situation in which all processors share 2

the same information.). Clearly, then, there exist

satisfactory (satisficing) functions 6i:Ylx...xY M1Ui, Definition: An Information Structure I is a subset
if and only if S(yl2....YM

) 'Y(Y1' YM e X of YlXY We say that an information structure I has

Since S is an "easily computable" set as a function degree (D1 ,D2) (D1,D2 are positive integers) if
of its arguments, we can see that the centralized
counterpart of DS is a trivial problem. So, any dif- (i) For each y16Y 1 there exist at most D1 distinct
ficulty inherent in DS is only caused by the fact that elements of Y2 such that (yl,Y2)e I.
information is decentralized. 2
3. A "solution" for the problem DS cannot be a closed- (ii) For each y2EY 2 there exist at most D2 distinct
form formula which gives an answer 0(no) or l(yes). elements of Y1 such that (ylY2)e I.
Rather, it has to be an algorithm, a sequence of ins- 1 
tructions, which starts with the data of the problem (iii) D1,D2 are the smallest integers satisfying (i),
(Y ,...,Y , UY,...,UMS) and eventually provides the (ii). An information structure I is called classical

correct answer. Accordingly, the difficulty of the if D 2=D2=i; nested if Dl=1 or D2=1.
problem DS may be characterized by determining the We now interpret this definition: The information
place held by DS in the complexity hierarchy. For structure I is the set of pairs (yl,Y2 ) of observations
definitions related to computational complexity and
the methods typically used, the reader is referred to that may occur together. If I has degree (D1 D22
[Garey and Johnson, 1979; Papadimitriou and Steiglitz, processor 1 may use his own observation to decide which
1982]. elements of Y2 may have been observed by processor 2.
4. If, for some i, the set U. is a singleton, proces-

1'~~~ ' X In particular, he may exclude all elements except for
sor i has no choice, regarding his decision and, con- D1 of them. The situation faced by processor 2 is
sequently, the problem is equivalent to a problem in symmetrical.
which processor i is absent. Hence, without loss of If DP=1 and processor 1 observes yl1 there is only
generality, we only need to study instances of DS in one possible value for y 
which I|U 1> 2, Y one possible value for Y2. So, processor 1 knows the
which Uil 2I' Yi. observation of processor 2. (The converse is true
5. We believe that the problem DS captures the es- when D2=1). This is called a nested information struc-
sence of coordinated decision making with decentral- ture because the information of one processor contai
ized information and without communications (silent the information of the other.
coordination). When D =D 21, each processor knows the observation

Some initial results on DS are given by the of the oter; so, their information is essentially



shared. 3. Related Problems

Since pairs (y ,y ) not in I cannot occur, there isno
meaning in requiring the processors to make compatible In this Section we define and discuss briefly a few

decisions if (y1 ,Y2) were to be observed. This leads more combinatorial problems relevant to decentralized

to the following version of the problem DS: decision making. All of them will be seen to be harder
to the following version of the problem DS:

than.problem DS of the last section (i.e. they contain

DSI: Given finite sets Y1I Y I ,2U ,I IC Y xY and a DS as a special case) and are, therefore NP-hard (that
2 1 2 1 2 is, NP-complete, or worse).

function : i-U 1 xU2 :Y The best known staic decentralized problem is the
f na r tIteam decision problem [Marschak and Badner, 1972]

i=1,2, such that which admits an elegant solution under linear quadratic
assumptions. Its discrete version is the following:

(1 (yl) ,1 2 (y2 ) ) eS (YlYy2), V(ylY 2 )eI? . (2.3) TDP {Team Decision Problem): Given finite sets Y1, 2

Note that any instance of DSI is equivalent to an ins- U1 a probability mass function p: YxY , and a
tance which S~~~v~vh' tl~~xU 2 ,vy, 0I1,U 2 , a probability mass function p: YlXY 2 *Q, and a

rance of DS in which S(YlY2)= UlXU2, %f(ylY2)e I.tance~of DS in which I 2 U2cost function c: YlxY xU xL _--N, find decision rules

That is, no compatibility restrictions are placed on 1

the decisions of the two processors, for those (y1 Y 2) i 2 which minimize the expected cost
that cannot occur.

We now proceed to the main result of this Section: J a ) 1'Y2 (, (Y P(1Y 2

Theorem 3.2.2: Y1lY1 2Y 22

a) The problem DSI restricted to instances satisfying Let S(y 1 ,Y2 ){(ul'U2 )eU 1XU 2: c(Y1,Y 2,U1,U 2 )=O0 . If

any of the following: we solve TDP, we have effectively answered the question

Ci) One or more of 1u 11,U21, D01 D2 is equal to 1. whether there exist al',2 such that J(%,62 )0-. This

(ii) lull=IU21=2, is equivalent to the question whether there exist sat-
isficing decision rules (with the satisficing sets

(iii) DD D 22, S(y1 y2 ) defined as above). Therefore, TDP is harder

Uiv) DoIU21=2, (or Dl1 Ull=2) than OS:

may be solved in polynomial time. Proposition 3.1: The discrete team decision problem

b) The problem DSI is NP-complete even if we restrict is NP-hard, even if the range of the cost function

to instances for which c is {O,1).

lun~ll= Dl=~~~3, I~2 ~Instead of trying to 'satisfice" for every pair of
1t11=l 0131 1021_D2=2

observations (yl 1 Y2 )e Y1 ixY 2 , it may be more appro-

The result concerning the case D =1 or 0 =1 is not priate to impose a probability mass function on Y XY
3. 2 1X2

surprising. It is well-known that nested information and try to maximize the probability of satisficing.

strUictures may be exploited to solve otherwise dif- This leads to the next problem:

ficult decentralized problems. But except for the case

D=D =2 (which is sort of a boundary) the absence of MPS (Maximize Probability of Satisficing): Given
12 finite sets YVY ,U U aprbiltmssfnio

nestedness makes decentralized problems computationally finit2 sets Y 1,U, a probability mass function

hard. Our result gives a precise meaning to the state- U xL
1U2

ment that non-nested information structures are much p: Y1XY2 -Q and a function S: Y xY22 2 find
more difficult to handle than nested ones.

Theorem 3.2.2 shows that even if D01D2 are held cons- decision rules 6l: Y i-.U i1,2, which maximize the

tant, the problem DSI is, in general, NP-complete. probability of satisficing 2(, 

There is, however, a special case of DSI, with D1,D 2 Pr((6l(Y) 'a2 (Y) ) s (ylY2)) .
constant, for which an efficient algorithm of the We now take a slightly different point of view.

dynamic programming type is possible: Suppose that communications are allowed, so that the

processors may always make satisficing decisions by

Theorem 3.2.3: Let YI={l. i Y,{l...,n} and sup- communicating (assuming that S(yIy2)#c,

pose that li-ji< D, Y(i,j)e I. Then, if D is held V(y 1 1y2 )e Y1XY 2 ). Suppose, however, that communica-

constant, DSI may be solved in polynomial time.constant, may be solved in polynomial time. tions are very expensive, so that we are interested

Remark: in fact, the conclusion of Theorem 3.2.3 re- in a scheme which guarantees satisficing with a mini-
Remark: In fact, the conclusion of Theorem 3.2.3 re- u m n o manitos W l sue h f

mum amount of communications. We will assume that if

mains true if we assume m=n and we replace the condition one of the. processors initiates a communication, all

li-jl< D by the weaker condition li-il (mod n)< D. their information will be exchange at unity cost.
The proof consists of a small modification of the (For a more refined way of counting the amount of com-

preceding one. munications, see Section 3.5.)

The condition li-jl< D, v(i,j)e I is fairly natural
in certain applications. For example, suppose that the MPC (iniize Probability of Communications): Given

observations y and y2 are noisy measurements of an finite sets Y1,Y2 ,U1,U2 a probability mass function

unknown variable x (Yi.x+wi) where the noises w. are U %1lX2
~~~~~bounded: [w,~D/2- P: Y1XY 2 -Q and a function S: Y xY 22 , find

bounded: 1w.wi <
D/2. 12

The condition li-jl (mod n)< D may also arise if the decision rules j: Y. U{C, i,2, which minimize

observations ylY 2 are noisy measurements of some the probability Pr(6 (y )=C or ) 2 (Y2 )-C) of communica-

unknown angle: y.=e + w. ting subject to the constraint
1 1

· · ~ ----~- · --- ·------------------------- ~s~0



If b(yl)#'C and Z4(y)#C] then (a(y 1) , 2(Y 2))6S(Y 1HY 2). central processor (fusion center) which evaluates
u =ul 2 and declares hypothesis Ho to be true if

The proof of the following is trivial: u =0, HI if u =1. (So, we essentially have a voting
o 1 o

ProDosition 3.2: The problems MPS and MPC are NP-hard. scheme). The problem is to select the functions al'

In fact, we also have: a2 so as to minimize the probability of accepting the
Proposition 3.3: The problems TDP (with a zero-one wrong hypothesis. (More general performance criteria

may be also considered).
cost function) and MPS are NP-hard, even if Ul1 =HU2|1=2. Most available results assume that

We could also define dynamic versions of DS or of P(Y1 YIH,)P(yJH.)P(Y H.), i=l,2, (4.1)
the team problem, in a straightforward way [Tenney, 2 1 i 2 1
1983). Since dynamic problems cannot be easier than which states that the observations of the two proces-
static ones, they are automatically NP-hard. stati oes teasors are independent, when conditioned on either hy-

pothesis.* In particular, it has been shown [Tenney4. Decentralized Hypothesis Testing and Sandell, 1981] that the optimal decision rules hi

A basic problem in decentralized signal processing, are given in terms of thresholds for the likelihood
which has attracted a fair amount of attention recently, poP (HoYi )
is the problem of decentralized hypothesis testing rati P(ly.) The optimal thresholds for
[Tenney. and Sandell, 1981; Ekchian, 1982; Ekchian and 1 i
Tenney, 1982'; Kushner and Pacut, 1982; Lauer and the two sensors are coupled through a system of equa-
Sandell, 1983]. A simple version of the problem, in- tions which gives necessary conditions of optimality.
volving only two processors and two hypotheses may be (These equations are precisely the person-by-person
described as follows: optimality conditions). Few analytical results are

Two processors S. and S2 receive observations y eYr available when the conditional independence assumption
Two processors and S receive observais removed [Lauer and Sandell, 1983]. The approach of

Y2 Y2, respectively, where Yi is the set of all pos- this section is aimed at explaining this status of af-
sible observations of processor i. (Figure 1). There fairs, by focusing on discrete (and finite) versions
are two hypotheses H and H on the state of the of the problem.

o 1 We first have:
environment, with prior probabilities p and p1 res-

Theorem 4.1: If Y1,Y2 are finite sets and (4.1) holds,
pectively. For each hypothesis H., we are also given ~~~~1 ~ then optimal choices for aa2 may be found in poly-
the joint probability distribution P(yl,y2 Hi) of the nomial time. 2
observations, conditioned on the event that H. is true. So, under the conditional independeice assumption,

Upon receipt of yi, processor S evaluates Ia message decentralized hypothesis testing is a computationally
i'1n receit ofyjr rc i eeasy problem. Unfortunately, this is not the case vben

ui.GO,l} according to the rule ui=3.i(y), where the independence assumption is relaxed. Our main re-
,l Then, u and u2 are transmtted to a sult (Theorem 4.2) states that (with Yli Y2 finite

~i:Yi-0,1}. Then, u1 and u2 are transmitted to a
sets), decentralized hypothesis testing is a hard com-
binatorial problem (NP-hard). This is true even if we
restrict to the special case where perfect detection
(zero probability of error) is possible for the corres-

Hot H I ponding centralized hypothesis testing problem.
Although this is in some sense a negative result, it is
useful because it indicates the direction in which
future research on this subject should proceed:
Instead of trying to find efficient exact algorithms,
research should focus on approximate algorithms, or

·. ,,Y2 exact algorithms for problems with more structure then
that assumed here. Moreover, our result implies that
any necessary conditions for optimality to be developed
are likely to be deficient in one of two respects:
a) Either there will be a very large number of deci-

SS } ·Cs, sion rules satisfying these conditions.
S |v2 · b) Or, it will be hard to find decision rules satis-

fying these conditions.
In particular, optimal decision rules are not given in
terms of thresholds on likelihood ratios.

Of course, there remains the question whether ef-
Ui=X,(Y1) N w U. = r (Y 2 ) ficient approximate algorithms exist for the general

I rUi= Y1 2 Y2 y2 decentralized hypothesis testing problem, or whether
we must again restrict to special cases of the problem.

We now present formally the problem to be analyzed.

DHT: (Decentralized Hypothesis Testing, Restricted to
u= U n u Instances for which Perfect Centralized Detection is

Uo----U0 1~ U2 ~Possible) .
We are given finite sets Yl'Y 2 ; a rational number

Figure 1: A Scheme for Decentralized Hypothesis number k; a rational probability mass function
Testing. p: Y1XY2 -Q [0,l]; a partition

* Such an assumption is reasonable in problems of detec-
tion of a known signal in independent noise, but is typ-
ically violated in problems of detection of an unknown
s.gnal.



{AoA}A of YlXY2.* Do there exist al:Yi{O,1}, D"=(Yln m- (1),Y2,UlU 2I n[Y nm- (1))xY ],) there is

a2:Y 20,1) such that J(al,~2)< k, where a protocol which guarantees satisficing with not more
than K-1 bits of communications. (Here m-l(i)=

J(l,.a2 )= P(Yl'Y2)al(Yl)a2(Y2
)

+ {y m(y)-i)
(Y1lY 2)eAo The envisaged sequence of events behind this defini-

P (y tion is the following: Each processor observes his
(y1 'Y2)eA1 P (lY2) [1-1 (Yl)2 (Y2)] ? (4.2) measurement yieYi, i-1,2. Then, one of the processors,

say processor 1, transmits a message m(yl), with a

Remarks: 1. If we let k'=O, then DBT is a special case single bit to the other processor. From that point on,
it has become common knowledge that y eY n m-l(y)

of problem DS (Section 2), with jU l%2U21-2, and is 1
21 therefore, the remaining elements of Y1 may be ignored.

polynomially solvable, according to Theorem 3:2.1. In We can now state formally the problem of interest:

general DHT is a special case of MPS and TDP (Section
3.3) with 1U11=1U 2 1=2. Consequently, Theorem 4.2 MBS (Minimum bits to satisfice): Given an instance D

below proves Proposition 3.3. of DSI and Ke N, is there a protocol which gurantees
2) Clearly, the optimization problem (Minimize J(,a ,, satisficing with not more than K bits of communications?

6.'.)2 By definition, MBS with K=0 is identical to the
with respect to 1a, 2

)
cannot be easier than DHT. problem DSI. Moreover, MBS with K arbitrary cannot be

Since DHT will be shown to be NP-complete, it follows easier than MBS with K=O (which is a special case).

that the above optimization problem is NP-hard. Therefore, MBS is, in general NP-hard. Differently

3) In DHT, as defined above, we are only considering said, problems involving communications are at least
instances for which perfect centralized detection is as hard as problem involving no communications.
possible: Think of H as being the hypothesis that We have seen in Section 2 that when JU1 =lU2 =2,

O0

(y y2 )e A , and H as being the hypothesis that DSI may be solved in polynomial time. Therefore, MBS
with K=O, JU 1-2, |U 212 is polynomially solvable.

(y ,y )e A 1. Certainly, if a processor knows both y ,1 2
(Y1 uY2e A1 . Certainly if 1 However, for arbitrary K, this is no longer true:

Y2, the true hypothesis may be found with certainty.

For the decentralized problem, the cost function Theorem 5.1: MBS is NP-complete, even if IUl1=UI2{=
J( l,2

)
is easily seen to be the probability of error. {0,1} and even if we restrict to instances for which,

4) The result to be obtained below remains valid if the for any (yl,y 2)I, either S(yl,Y2)= {(0,0)} or

fusion center uses different rules for combining the S(yy )={(1,1)1.
messages it receives (e.g. uo (yV( u2))), or if we

leave the combining rule unspecified and try to find The above theorem proves a conjecture of A. Yao
an optimal combining rule. [Yao, 1979). The proof was mainly constructed by

C. Papadimitriou and may be found in [Papadimitriou
Theorem 4.2: DHT is NP-complete. and Tsitsiklis, 1982].

We should point out that the special case referred

5. On Designing Communications Protocols to in Theorem 5.1 concerns the problem of distributed
function evaluation: we are given a Boolean function

Suppose that we are given an instance of the dis- f:Y1xY2 2 {0,1} and we require that both agents (proces-

tributed satisficing problem (DS) and that it was sors eventually determine the value of the function

concluded that unless the processors communicate, (given the observation -input (yI'Y2 )), by exchanging

satisficing cannot be guaranteed for all possible ob- a minimum number of bits. In our formalism;
servations. Assuming that communications are allowed S(y ,y )= {(0,0) if f(y 1 y )=O and S(y y 

(but are costly), we have to consider the problem of 2
designing a communications protocol: what should each if f(y, Y2 

)
=.

processor cbmmunicate to the other, and at what order? In Section 2 we had investigated the complexity of

Moreover, since communications are costly, we are DSI by restricting to instances for which the set I

interested in a protocol which minimizes the total had constant degree (D ,D ). This may be done, in
number of binary messages (bits) that have to be com-
municated. (The word "bits" above does not have the principle, for MBS, as well, but no results are avail-

information theoretic meaning.) able, except for the simple case in which Dl=D2=2.

Before proceeding, we must make more precise the In fact, when D1 -D2 -2 each processor may transmit
notion of a communication protocol and of the number his information to the other agent by communicating a
of bits than guarantee satisficing. single binary message and, for this reason, we have:

Given an instance ~=(YIY2,U1,U2,I,$) of the problemGivenaninstace 1 Y2 U1 U2 oftepbl Proposition 5.1: MBS restricted to instances for which

DSI we will say that: DiLD =2 may be solved in polynomial time. Moreover,
There is a protocol which guarantees satisficing an optimal protocol requires transmission of at most

with 0 bits of communications, if D is a YES instance two binary messages, one from each processor.

of the problem DSI. (That is, if there exist satis- When (D ,D ) is larger than (2,2), there is not

ficing decision rules, involving no communications.) 2
we then proceed inductively: much we can say about optimal protocols. However, -it

There is a protocolwhich guarantees satisficing is easy to verify that there exist fairly simple non-
with K bits of communications (Ke N), if for some optimal protocols (which may be calculated in poly-

ie{l,2} (say, i=l) there is a function m:Y 1 -{O,l1, nomial time) which involve relatively small amounts of

such that for each of the instances communication. This is because:

VD=(Y1n m (O) ,Y2,U1 ,U2,I n[(Ylnm (O))xY2] ,S) and Proposition 5.2: Suppose that I has degree (D1,D2) and

that S(Y 1,Y 2)I , V(Y 1 ,Y2)EI. Then information may be

* That is AoU A0=YlXY2 and A oA i¢. centralized (and therefore satisficing is guaranteed)
by means of a protocol requiring communication of at
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which this would not be necessary. Even if these

extra communications -being redundant- do not lead to

better decisions, they may greatly facilitate the de-

cision process and -from a practical point of view -

remove some load from the computing machines employed.

Concerning the problem of distributed hypothesis

testing, we have shown that it becomes hard, once a

simplifying assumption of conditional independence is

removed. This explains why no substantial progress

on this problem had followed the work of Tenney and

Sandell [19821.

From a more general perspective, we are in a posi-

tion to say that the basic (and the simplest) problems

of decentralized decision making are hard, in a precise

mathematical sense. Moreover, their difficulty does

not only arise when one is interested in optimality.

Difficulties persist even if optimality is replaced

by satisficing. As a consequence, further research

should focus on special cases and easily solvable

problem as well as on approximate versions of the

original problems.
In cases where communications are necessary (but

costly) there arises naturally the problem of desig-

ning a protocol of communications. Unfortunately, if

this problem is approached with the intention to mi-

nimize the amount of communications that will guar-

antee the accomplishment of a given goal, we are again

led to intractable combinatorial problems. Therefore,

practical communications protocols can only be desig-

ned on a "good" heuristic or ad-hoc basis, and they

should not be expected to be optimal; approximate

optimality is probably a more meaningful goal. Again,

allowing some redundancy in on-line communications

may lead to substantial savings in off-line computa-

tions.


