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Abstract

Chapter 1. The model considered in this paper is y;; = m(z;;) + 8; + 7;¢, where
d; is the individual effect, 7;; the random disturbance, and m an unknown function
to be estimated. The model is a natural nonparametric extension of the standard
linear panel data model, maintaining an additive fixed effect. This paper presents
two nonparametric estimators of the function, m. The two estimators correspond to
the standard first difference and “within” linear panel estimators.

Chapter 2. Nonparametric panel estimation techniques from Chapter 1 are used
with COMPUSTAT data on firms to investigate nonlinearities in the investment-q
relationship as well as more recent theories of investment. We find that the non-
parametric relationship of investment to tax-adjusted ¢ suggests significant convex
adjustment costs for large ¢ and a small role for fixed costs. In addition, the rela-
tionship of investment to cash flow does not flatten out at very high levels of cash as
implied by liquidity constraint models. Instead, the relationship remains stable, as in
the free cash flow model or in models where cash flow signals investment opportuni-
ties.

Chapter 3. When econometric models are estimated by maximum likelihood,
the conditional information matrix variance estimator is usually avoided in choosing
a method for estimating the variance of the parameter estimate. However, the con-
ditional information matrix estimator attains the semiparametric efficiency bound
for the variance estimation problem. Unfortunately, for even moderately complex
models, the integral involved in computation of the conditional irformation matrix
estimator is prohibitively difficult to solve. Simulation is suggested to approximate
the integral, and two simulation variance estimators are proposed. Monte Carlo re-
sults from a probit model reveal the attractiveness of these estimators in providing
accurate confidence interval coverage rates compared to the standard maximum like-



lihood variance estimators. Monte Carlo results from a sample selection model show
the possible gains in confidence interval accuracy in more complicated models where
the choice of variance estimators is restricted.
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Chapter 1

Nonparametric Estimation of a

Flexible Panel Data Model

1.1 Introduction

Panel data methods and nonparametric regression estimation have been two of the
most significant developments in applied econometrics. Panel data is particularly
valuable in empirical work since multiple observations on each cross-sectional unit
across time provide the possibility of eliminating individual heterogeneity that can
cause bias and inconsistency using cross-sectional data alone. As a result, the preva-
lence of rich panel data sets in the empirical literature has steadily increased. Non-
parametric methods have also become increasingly popular in the applied economet-
rics literature. In particular, nonparametric regression allows researchers to avoid the
restrictions of parametric modelling assumptions. In this paper, we hope to combine
the most favorable aspects of panel data methods and nonparametric estimation in
developing more general nonparametric regression estimators for the following panel
data model: y;; = m(x;)+8;+1;, where m(-) is the unknown function to be estimated
nonparametrically.

We will be considering fixed effects estimators that allow for correlation between
z and . The assumption of an additive individual effect is critical to our estimation

strategy. The additivity means that, as in the linear model, differencing transforma-
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tions eliminate the fixed effect. First differencing and differencing from means are
two of the primary transformations used in the linear panel model. We find that the
first difference and difference from means (also known as “within”) linear estimators
have analogous nonparametric estimators for the nonparametric generalization of the
standard linear model, given above.

To illustrate some of the issues involved in estimation of the nonparametric panel
model given above, we compare first differences in the linear panel model to first
differences in the nonparametric model. In the linear model we have y;; — yi;—
= Tyf — Tig—18 + Mt — Mig—1 = (Tie — Tig—1)B + Mie — Nie—1, while first differencing
the nonparametric equation gives Yy — Yie—1 = m(Tit) — M(Tie—1) + Mie — Mie—1 #
m(zi — Tig—1) + Mie — Nig—1. In the linear model, the first equality suggests regressing
Yit — Yie—1 On T and z;,_;, leading to two estimates of 3 corresponding to the
coefficients for z;; and z;,—,. If we define a function l(z1,2) = m(z) — m(z2),
then the first equality from the nonparametric model can be rewritten as y;; — yi 1
= I(zit, Tig—1) +7it— T e—1, SO that nonparametric regression of y;; —y; -1 on (Zie, Tie-1)
would lead to a consistent estimate of [. But, our objective is to estimate m. From
the linear model, we see that the linearity allows us to easily impose the restriction
that the coefficients on z;; and z;,_, are the same, leading to an estimate of 3 from
regressing yi — Yie—1 ON Tig — Tip—1. In the nonparametric model, the same approach
does not in general hold as the inequality above shows. Thus, in the nonparametric
case generally, it is somewhat more involved to impose the restrictions necessary to
move from estimation of [(-,-) to estimation of m(-). Similar comparisons with the
difference from means transformation lead to the same conclusion. Our objective here
is to present methods that work with any nonparametric estimation technique (e.g.
kernel, Fourier series, splines, etc.).

Series estimation provides a natural method of overcoming the above inequality
by imposing the additive structure in estimation as in the linear case. With series
estimation, m(-) is approximated with a linear (in the coefficients) expansion, and
thus the estimate of [ translates easily to an estimate of m as in the linear panel

model case. Hence, in the estimation sections, the series results will be presented



as a starting point for nonparametric estimation. These results will be followed by
more general methods of nonparametric estimation applicable to any nonparametric
smoother, including kernel regression.

One method that could overcome the above inequality but will not be explored
here is Alternating Conditional Expectations (ACE) estimation. ACE is a method
developed in Breiman and Friedman (1985) to impose additivity in nonparametric
regression. It does have the advantage of being generally applicable to any nonpara-
metric regression method, but the drawback of ACE is that it is an iterative technique
whose distributional properties have not been fully developed in the simple i.i.d. case.
Hence we search for other nonparametric estimation schemes. The nonparametric es-
timators introduced below will be computationally simpler, and we will be able to
present some distributional results for these estimators that are useful for inference.

In Section 1.2, the assumptions for the nonparametric panel model are presented
and discussed. Our nonparametric estimators, which are analogous to linear first dif-
ference and within estimators, are presented in Sections 1.3 and 1.4. Distributional
results, asymptotic normality in particular, are also given in each section. In sec-
tion 1.5, extensions of the basic model are considered along with the corresponding
generalizations of the estimators to handle these cases.

Chapter 2 presents an empirical application of the methods discussed here. A
panel of firm investment data is used to estimate the investment-q relationship. The
standard adjustment costs theory of investment provides the starting point. Rather
than imposing commonly-assumed quadratic parametric assumptions on the adjust-
ment cost function, we can estimate a more flexible specification with our nonpara-
metric approach. This flexible approach allows us to assess the role of nonlinearities in
the investment-q relationship while still accounting for potential heterogeneity bias.
Additionally, this example provides an opportunity to compare the various estimators

suggested in the present chapter.
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1.2 Model

The linear regression model y; = z{8 + ¢; is usually the first one presented in an
introductory econometrics class. This basic model has been expanded to y;; = z},8 +
d; + mi, for panel data and y; = m(z;) + €; for nonparametric regression purposes.
Both of these extensions have been widely examined and used in the literature. In
this paper we study a specification that combines these two extensions into a model

naturally made for considering nonparametric panel methods:

Yie = m(Tie) + 0 + Mie (L.1)

Enulza, ..., zir) =0 (1.2)

where y;, is the dependent variable and z;, an rx1 vector of regressors observed across
individuals (¢ = 1,..., N) and time (¢t = 1,...,T). The individual effects are denoted
here by &; and the random disturbance by 7;;. The object of interest is the unknown
function m(-) to be estimated.

As currently posed, the model above is not identified. By subtracting a constant
from the “true” function m(-) and adding the same constant to each individual effect,
the specification in (1.1) and (1.2) still holds. In other words, letting m(z) = m(z)+c
and §; = §; — c, we still have y;; = m(z) + 9; + 7 and E[nig|ziy, ..., zir) = 0. Thus
we need an additional condition to pin down the level of the function m(-). The

following is a natural choice of such a condition,

E(5) =0. (1.3)

This condition is used to establish only the level of m without affecting its shape. It is
natural to require since intuitively it assumes that m(-) is defined as the function that
goes through the middle of the data in an average sense. Thus, the individual effects
represent a mean zero type disturbance from the true regression function. Clearly,
the identifying condition (1.3) is different from the condition that E[d;|z;] = 0, which

assumes away any potential correlation between the fixed effects and the regressors.
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Thus, under E[d;|z;] = 0, heterogeneity bias is no longer an issue and any nonpara-
metric regression estimator of m would be consistent. The condition (1.3) places no
such restrictions on the correlation between the fixed effects and the regressors.

Equation (1.2) is the conditional mean zero assumption for the random distur-
bance. It imposes the restriction that any noncontemporaneous effects on the depen-
dent variable must be derived completely through the individual effect. Obviously,
the more restrictive assumption of strict exogeneity, E[ni|zi,...,Zir, 6] = 0, will
also be sufficient, but not necessary, for the results below.

The model (1.1) departs from the standard linear panel model by replacing the
parametric linear-in-the-regressors component with an unknown function of the re-
gressors, m(-). One could consider even more general models such as y;, = m(z;, ;) +
7it, but without restricting /m(-, -) in some way the é;’s and 7 are not separately iden-
tified. In (1.1) we make the assumption that the individual effects, 4;, enter additively.
This assumption allows us to identify the model (using (1.3)) without making explicit
assumptions about the function of the regressors z;.! Under this additive assump-
tion, individual heterogeneity can be simply thought of as a shift in the regression
function. This particular additive identifying assumption was made for two reasons.
First, an additive individual effect is the most commonly found assumption in para-
metric panel models. In particular, it follows naturally from the linear panel model.
Second, it is a reasonable assumption to make in many applications, including the
investment application given in Chapter 2. Also, in models where the individual effect
does not enter additively, often some transformation of the dependent variable will
lead to an additive fixed effect.

If one estimates using the standard linear panel model when, in fact, the data
is generated by the model in (1.1) with some nenlinear m(-), then in general, the
resulting estimates are biased and inconsistent in the sense that =’ /- m(z). Com-
monly one might estimate the coefficients of the linear model using first differences or

within estimation. Given that the true model is not linear, these two estimators will

1We will refer to m(-) as the regression function, although strictly speaking m(-,-) may be better
named as such.
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have different probability limits.2 Thus, nontrivial differences in these two estimators
could indicate the need for a more general model than the linear one that is used.
Griliches and Hausman (1986) point out that differences in first difference and within
estimators could indicate an errors-in-variables problem within the linear framework.
If the linear first difference and within estimators are significantly different, one may
still be able to discern the underlying cause of misspecification by considering the
pattern of first and longer difference estimators. In the no serial correlation model
from Griliches and Hausman, the first and longer differences estimators have a dis-
tinct pattern of declining bias. Such a distinctive pattern would not necessarily be
present in our case of misspecifying a nonlinear model with a linear one.? Also, they
suggest a specific test for serial correlation in the measurement errors. More gener-
ally, a large difference between within and first difference estimators is an indication
of some misspecification.

Chamberlain (1982) suggests a multivariate regression test of heterogeneity bias
for the linear panel model, y; = z,6 + d; + €. Let vi = (yi1,...,vir) and z; =
(z}y,-..,zir). Then if E* is the multivariate linear predictor, we estimate II from
E*(yilz:) = IIz;. To test for heterogeneity bias, Chamberlain tests if the off-diagonal
elements of II are all zero. Moreover, if heterogeneity bias is found, the linear model
E(yit|zi,di) = z!,B + d; still implies that IT will have equality of the off-diagonal
elements within each column and equality of the diagonal elements. Thus a test
of these restrictions on II is a test of the assumptions of the linear model. But
if (1.1) is the true model then E*(y;|z;) = E*(m(zi) + 8 + mie|z:) = E*(m(zi)|z:)
+E*(6i|z;) +E*(ielzi) = v,z + 0z + 0 = (7, + 0)'z;, for some v, and 6. Here since
E*(m(zy)|z;) = vz; and v, is likely to vary by time period t (as indicated by its
subscript), even for strictly stationary {z;}, we would no longer find eqnality of the
off-diagonal elements within a column of II. Thus, rejection of equality in the above

test of the linear specification with individual effects could indicate the need for use

20One may come up with special cases of nonlinear m(-)’s where these two estimators do in fact
have the same plims, but for actual applications such a result would be very surprising.

3This lack of declining bias also results in the Griliches and Hausman (1986) serial correlation
case.
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of a more general nonlinear model such as (1.1).

Generally speaking, tests for various kinds of misspecification are commonly car-
ried out under the maintained hypothesis of linearity. Dropping the maintained as-
sumption of linearity in favor of a more flexible model often provides another un-
derlying misspecification to account for test rejections. In the next two sections, we

consider nonparametric estimation of our nonlinear panel specification.

1.3 First Differencing Type Estimation

With the additive individual effect specified in (1.1), first differencing is a natural
way of transforming the model back to a standard nonparametric model without het-
erogeneity bias. We have dy;; = [(z;, Zis—1) + dnie, and any nonparametric regression
method allows us to estimate (-, -) consistently. The challenge is in trying to recover
an estimate of m(-) from this first differenced equation.

Before introducing our more general first difference nonparametric estimator, we
give an asymptotic distribution result for first differencing series estimators. In the se-
ries estimation setting, we can impose restrictions during estimation of [ that allow us
to straightforwardly recover an estimate of m. To carry out series estimation, we need
a sequence of approximating functions {grx(-)}. Let ¢¥(z) = (qik(x),--.,qxk(z))’
be the K x 1 vector of approximating functions. The aim of series estimation is
to approximate the function m by some linear combination of the functions {gcx},
and the choice of sequence must be such that the linear combination approximation
to m improves (in a sense to be defined below) as K gets larger. ssing y; on
q%(z;) leads to an inconsistent estimate of m due to the correlation between z;, and
d;. But in first differences we obtain a coefficient estimate B from least squares re-
gression of dy;; on pX (zy, ;,-1), where p*(z;,z2) = ¢¥(z1) — ¢¥(z2). Then % ()8
consistently estimates m(-) to within an additive constant. In Theorem 1, we prove
asymptotic normality of this estimator using Lemma 2, a distributional result for
multivariate series regression given in the Appendix. Lemma 2 is stated with quite

general assumptions (Assumptions A-1’, A-2’, A-3’, A-4’) applicable to any series
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approximating functions. To provide simple and verifiable primitive conditions in
Theorem 1, we will narrow our focus to power series and regression splines, as in both
Andrews (1991) and Newey (1994a). Distributional results for other approximating
functions follow similarly from Lemma 2, the Appendix result.

Next we give the assumptions for Theorem 1.* Let y; = (vi,...,uir), i =
(zi1,--.,zir), and dy; = (dyiz,...,dyir)’. The first assumption contains a fourth

moment condition on the residuals and the assumption that the data is i.i.d.

Assumption S-1 (y1,0;,11),...,(yn,0n, zn) .i.d., E[|| yie — & — m(zie) ||* |zi] is

bounded, and the smallest eigenvalue of Var(y;|z;) is bounded away from zero.

In Assumption S-2, we introduce a trimming function to bound the density of the
regressors away from zero on a bounded support. Throughout this paper we will use
) to denote a fixed trimming function. This assnmption along with our use of power
series or splines ensures that, for some nonsingular transformation (denoted by B ) of
the approximating functions, the second moment matrix of approximating functions
is uniformly bounded away from singularity. Thus, the least squares estimator is
well-defined. Also, this assumption bounds the growth rate of the supremum norm
of the vector of approximating functions, see Assumption A-2 in the Appendix. Let
fu(z1,z2) denote fg, s, ,(z1,72), the density of (zi,Ti,1) evaluated at (z,x2).
Also, given the nonsingular transformation By above, define (4(K) = max,<qsup, ||

Mz)Brdp* () |-

Assumption S-2 \(z;, ;1) is bounded and zero ezcept on a compact set X', where

fu(zie, Tig—1) is bounded away from zero fort =2,...,T.

Smooth functions are well approximated by both polynomials and polynomial
splines. Thus, Assumption S-3 requires sufficient smoothness of m(:), the function

we are approximating, see Assumption A-3 in the Appendix.

4For further discussion of these assumptions see Newey (1994a). Andrews (1991) has a similar
set of assumptions with a detailed discussion.



Assumption S-3 There is a nonnegative integer s such that m(z) is continuously

differentiable to order s on R".

To be explicit about the simple first difference series estimator of m, let

mr(z) = g% (z)'B, where

T
B = [ 2 )\(ziz,l'i,z—l)PK(l‘it,xi.c-l)PK(-’Bn,xi,z-l)']-l
i=1t=2
N T

3 Maie, Tie—1)p" (zie, i g1 ) dyie).
i=11=2

Notice that £ is the least squares estimate from the projection of dy;; on p* (z;, Tis-1),
the first differenced approximating function, with the addition of a trimming func-
tion, \. Since series estimation of series term coefficients, 3, involves first differenced
approximating functions, we can assume ¢g¥ does not include a constant term. The As-
sumption S-3 and our use of polynomials or splines implies that there exists vk, Bk, a
such that |m—vyx —g¥ 'Bx| = O(K~*), as given by Assumption A-3’ in the Appendix.
Our estimator, Mg, estimates m up to an additive constant, and ~yg is that additive
constant.

Andrews and Newey show that variance estimation for linear functionals of series
estimators is essentially the same as it is in least squares estimation for fixed K. Define
the K x (T — 1) matrix p¥_,(z:) = (0¥ (zi2, za1), - .., P*(zir, Zi:r—1)), APE_((zi) =
(Azi2, T01)P (Ti2, Ta1), - - - Mairs Zir—1)P¥ (Tir, Ziir-1)) and Tp = E[ApE_, (2:)Q(z;)
ApX_,(z;)'], where Q(z;) = Var(dy;|z;). Then,

VE = ¢(2) [EO_ ()p¥ 1 (=:))] Br [EOBE (@008 (2))] " ¢ ().

To estimate the variance, we define $p = ¥ YN DK (z)déidE A\pX_ | (x;)', where
déu = dyu - (ﬁlp(.'t,'g) - 'l’hp(ﬂ:g,t_l)) and dé" = (dé,'g, . ,dé,'T)'. Then,

N T -1
VE = ¢¥(z) [ZZ /\(xit,ﬂii,z—l)PK(xiu-’Bi.t—l)PK(Iiuxi,c—l)'/N] Lr
i=1 t=2

16



-1

N T
. [Z 3" AM=ie, Tig-1)P* (it Tig1)P* (Tit, Tie—1)'IN|  ¢¥(2).

i=1t=2

Asymptotic normality of rnr is shown in the following theorem.> The parameter «
is determined by the choice of power series or splines via Assumption A-3 in the

Appendix. The existence of this parameter is assured by Assuraption S-3.

Theorem 1 If Assumptions (S-1) - (S-3) are satisfied and the approzimaiing func-
tions {qvx} are either power series or regression splines, ynK™® — 0, (o(K)*K/n

— 0, then

VN(VE) 2 [(1p(z) — m(z)) + 7)) = N(0,1)
and

VN(VE) 2 [(p(z) — m(z)) + 7)) — N(0, ).

This result for simple first difference series estimation is dependent on the fact that
a restriction can be imposed during series estimation that leaves us with a natural
estimate of m. The next problem is to find a general method that moves from
estimation of [ to estimation of m without depending on the particular nonparametric

smoother used.

The solution comes from the partial means idea presented in Newey (1994b).
Newey is interested in the estimation of additive models using kernel methods, al-
though the partial means idea can be used for other purposes as well. To emphasize
the general applicability of partial means estimators to any nonparametric estimator,
we will use a generic nonparametric smoother notation. Given dependent variable
data y and data on regressors X, let S*(y|X) be the nonparametric estimate of the
regression function evaluated at z using data y and X. If we are interested in our
nonparametric smoother evaluated at a data point z = z;, then we can simplify

our notation to 5%*(y|X). The general idea of the partial means estimator is as fol-

5All proofs are contained in the Appendix.
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lows. Our first differenced model from above is dy; = l(zi,Zie-1) + dnie. So if
z; is r-dimensional, then we treat the difference m(z;) — m(z;,~1) as a function
[(zyy, Ti¢—1) on a 2r-dimensional domain. As suggested above, with the equation in
this form, we can use any nonparametric regression estimator to obtain an estimate
l(z,,z) = SE*2)(dy|X, X_,). Then, we partial out with respect to one of the ar-
guments of [ to obtain an estimate /m(-) of m(-) to within an additive constant. The
partialling out is achieved by averaging over the data with respect to one of the ar-
guments of ; specifically, we let m(z) = 55 i, I(z,z;). Now we have our partial
means estimator m(z), which will consistently estimate m(z) — E[m(z;)].

If we had stopped after obtaining our estimate [, we could still obtain an estimate
of the function m(-) to within an additive constant without the additional step of
partialling out. For any fixed z, I(z,Z) -2+ m(z) — m(Z) which estimates m(z) to
within an additive constant just as partial means. The advantage of the partial means
approach is that the second argument of ! is “integrated out” through averaging,
resulting in a significantly improved convergence rate (by an amount dependent on
the dimension of the second argument) and hence significantly decreased standard
errors. One might think of the averaging in partial means as an amelinrating influence
on the curse of dimensionality.

While we cannot directly impose additivity in the partial means framework, we
can take advantage of some of the special structure of our particular problem during
estimation. Because the function [(, -) is just the difference of the same function m(:)

evaluated at the two arguments of [, [ has the following two properties:
o l(z1,72) = ~l(22,71) (=m(z1) — m(z2))
o l(z,z) =0 (=m(z) - m(z))

Let I(z),1,) = H(zy, z0) - %i(zg,l'[). Then our estimate [ satisfies the first property,
in particular l-(zl, Z9) = — (z2, 1), and under simple conditions for series and kernel
partial means the second property will also hold for L.

We have not yet specified a particular choice of nonparametric smoother in the

definition of I. Next we discuss kernel partial means, where S is defined as a kernel
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weighted average of the dependent variable and the kernel weights depend on both
the regressor data and the point of evaluation. Following an asymptotic normality

result for the kernel regression case, we present the series result for partial means.

In our presentation of kernel regression partial means, we will use the Nadaraya-

Watson kernel smoother,

N T I, — I;
-—N(r}_l) Yic1 2= Ko ( T = :ci,:il ) dy;e

N T Iy — I
qu‘_—[_)-zi=l z:t=2 KU( 2.‘2L .'L',',:t_l )

[(1'1,1’2) =

Here if K denotes a kernei, then we define K,(u) = Z=K(%). As before, let fy (), z2)
denote fr,, z,_,(Z1,Z2), the density of the random variables (z;,z;;-1) evaluated
at (z,z,), which is independent of i since observations are assumed identically dis-
tributed across individuals, and let f,(z;, z2) = ﬁ YT, fu(z1, o). Nadaraya (1965)
and Watson(1964) first suggested this flexible method of estimating regression func-
tions. The denominator consistently estimates the density f(z;,z2), so we define
fa(zy,22) = £ TN, Ko(z)—Tir, T2—Tiy—1) and il(xlaz2) =750, fo(z1,z2). The
numerator consistently estimates T_l——l Y r , Eldyulzi = z1,Tie-1 = z2|fu(z1,12) =
I(zy,z2) f(x1,22). Thus the ratio i(zl, T5) provides a consistent estimate of E[dy;|z,
T9] = l(z1,T2) (= m(z;) — m(z2)). The possibility that the random denominator,
which is a density estimator, is very small can cause technical difficulties. We follow
the many applications (e.g. Manski (1984), Robinson (1988)) that have dealt with
this problem previously and allow for a fixed trimming condition that bounds the
denominator away from zero.

The second step in estimation is to partial out with respect to one of the arguments
of I. As noted above, bounding the denominator away from zero via a trimming
condition is necessary to apply the asymptotic theory to follow. To allow for this

possibility, we introduce the weight function A(-) which may be associated with fixed
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trimming. We suppose that E[A(z;;)] = 1. The kernel partial means estimators are

) 1 N T
mp(z) WZE/\ Zjs) l(z Zjs)

j:l s=1

A 1 N T
eale) = = 22 2 Aleselley ).

Note here that /p; denotes the estimator that partials out the second argument
by averaging across the data from all T time periods using the kernel regression
estimator . The second estimator mpy is the corresponding estimator partialling
out with repect to the first argument. Let m(z) = m(z) — % £1_, E[Mxis)m(zi,)]
(= XL, E[\(z,)!(z,x,)]), then both of these partial means estimators estimate
m(z).

As noted above, it is simple to define an estimator that satisfies two properties
of the function [, [(z,,z5) = —l(z2,7,) and I(z, ) = 0. Let I(z;,z,) = (x,,zg)
-2-1(:02,:51). Then our estimate [ satisfies the first property, and if K is a kernel such
that K(uy, uz) = K(ug, u;) then I(z,z) = 0.5 Now define the partial means estimator

that imposes these conditions.

T 1 M T -
mp(z) = Zl Zl /\(:l:],)l(:l: Tjs) (= ~“NT ; ; Mzjs)l(zjs, .’L‘))
= %ﬁlp,l(x) + %ﬁlp,g(z).

Thus, p(z) is simply the average of the estimators 1p;(z) and mpa(z). In The-
orem 2 below, we show asymptotic normality of these kernel partial means estimators.
First the assumptions for Theorem 2 are discussed.

Our first assumption concerns the kind of kernel to be used. High-order (bias-
reducing) kernels, introduced by Bartlett (1963), are used here to achieve the given
convergence rate. The main idea is that we reduce the order of the bias for each
moment assumed to be zero. Though the choice of kernel does not enter into the

asymptotic variance to be given below, still the higher the order of the kernel the

8This condition holds when we use a product kernel, i.e. K(u;,uz) = K(u;) - K(uz2).
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higher is its own variance, and practical experience suggests some carry over to our
estimator. So we recommend a conservative choice of bias-reduction in the selection
of a kernel. Many authors (e.g. Prakasa Rao (1983)) have presented straightforward

simple methods of constructing kernels that satisfy the following assumption.

Assumption P-1 There are positive integers A and ¢ such that K(u,,uy) is differ-
entiable of order A, the derivatives of order A are Lipschitz, K(u,,up) is zero outside

a bounded set, [ K(u)du =1, and for all n < ¢, [ K(u)[®[,uldu = 0.

The higher-order kernel assumption is effective in bias-reduction when used to-
gether with the next assumption. It imposes smoothness on the regression function

and the joint density of the regressors from consecutive time periods.

Assumption P-2 There is a nonnegative integer d and an eztension of I(z,,x3)
ful(z1,z2) fort =2,...,T to all of R*" that is continuously differentiable to order d

on R .

Next we present the notation for the asymptotic covariance of the estimators.

Vi = K; [ Mz(@)*Fi(25(a) " fola)? Var(dyulz;(a)) fu (z;(a) da

where K) = [f [f K (w1, uz)dus]’ duy | and K, = s [f K (w1, uz)du,]* dup|. Now we
are ready to present our asymptotic normality result for our first difference type

estimators.

Theorem 2 Suppose that (i) E[|dyi|*] < 0o, E[|dyic|*|z1, z2} fur (z1, 22), and fii(z1, x2)
are bounded for t = 2,...,T; (ii) Assumptions (P-1) and (P-2) are satisfied for
d > ¢; (i) Mz,z,) = Mzs,z) = A(z,) ts bounded and zero ezcept on a com-
pact set where fy(z,z,) is bounded away from zero for j = 1,2, s =1,...,T, and
t=2,...,T; (iv) Mz,) and f.,(z,) are continuous a.e. and f,,(z,) is bounded for all
s=1,...,T; E(dy%|z,, ) are continuous and for somee > 0 and forallt =1,...,T,

I supuice Eldyilz = (21 + 0, 22)] fu(z) + 0, 22)dz2 < 00; (v) %ﬁ-‘- — o0 and
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Nok1+% 5 0. Then,

. T
VEo™ (s (2) = m(o)) -4 NO. (=33 2 Vi)

t=2

VNo'? (ip(z) — m(z)) ~ N(0, (4(T1-1_)5 SV + Vi)

t=2

If, in addition, No®~*1 —; oo, then c*1 V) 25 V., where V5 = SN iy j9u,i/N,
where Yi; = MZirj)i(Fir;) — mpj () + g — DIy Guej/N, 6uj = (NT)' X, 1,
MF1s,5) F1(F1s,) 7Y [dyie — i(ilsg)]Ka(fts,j — (Tie, Ti—1)) and Zisy = (T, Zis), Tis2 =

(zis, ).

The regularity conditions of Theorem 2 are fairly standard and should be satisfied
for a wide variety of applications. Condition (iii) gives A the fixed trimming interpre-
tation and helps to avoid the denominator problem. Conditions (i) and (iv) are useful
dominance conditions. Condition (v) specifies the rate conditions on the bandwidth
and incorporates undersmoothing.

The variance estimator given is the one suggested by Newey (1994b). It is a delta
method type variance estimator obtained by considering our estimator as a functional
of the kernel estimator. Actually the terms A(Z:;){(Z;) — 1ipj(x) and TN, 4, ;/N
are both asymptotically negligible so that o** ¥ Gtip j0ue j/N will also be consistent
tor Vj;. We see that there are no terms corresponding to the asymptotic covariance
of & j and Gysx (for any s # t or j # k). In the proof of Lemma 3, it is shown
that such covariance terms are asymptotically negligible. Thus, the only terms that
appear in the asymptotic variance correspond to the variance of &;, ;, which indicates
a significant correlation only between terms where the data from the same time period
(t) is used in the kernel estimation and the same argument (j) is being partialled out.
Estimates of the asymptotically negligible cross-terms are left out of the variance
estimator, but from the proof of Lemma 3 it is clear how to include the estimates
of the asymptotically negligible covariance terms, if desired. Such an inclusion could
serve to improve the small sample performance in specific applications.

We do not give the asymptotic distribution corresponding to evaluation of the
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estimator at a finite set of distinct points, but it is straightforward to show that it
is multivariate normal with diagonal asymptotic variance matrix. The intuition for
the asymptotic covariances being zero is that as the bandwidth approaches zero, the
neighborhood of positive kernel weight around each point shrinks so that the overlap
is negligible.

Choice of bandwidth is always an important consideration in kernel methods.
Theorem 2 gives the rate conditions that govern that choice asymptotically, but,
as often happens, provides little practical guidance for a particular data set. It is
important to notice that some “undersmoothing” is employed to establish asymp-
totic normality. As a practical matter, undersmoothing indicates that the selected
bandwidth o should be chosen to be less than the bandwidth which minimizes the
mean square error (as might be suggested by a cross-validation criterion). To avoid
a further level of complexity, the theorem given here does not address the issue of
data-driven choices for o. Still, cross-validation might provide a starting point from
which the bandwidth can be decreased. For multidimensional z, one may want to
scale the various dimensions by, for example, the inverse of the standard deviations of
each dimension. Again, we avoid that additional complication in the above theorem,
but it is straightforward to modify the theorem to take into account rescaling for

multidimensional = (see Robinson (1983)).

For completeness and as a basis for comparison with the simple first difference
series estimators, we turn now to series partial means estimation. Again r is the
dimension of z;;. In the first step of partial means estimation, dy;, is regressed on the
2r-dimensional approximating functions, g% (Zit, zig—1). Because we are interested in
the function m, which is defined on an r-dimensional domain, we must have a di-
mension reduction in the second step to obtain an estimate of m. The dimension
reduction is accomplished through averaging out with respect to one of the argu-
ments. This method contrasts with the simple first difference series case, where the
approximating functions used were the differences of approximating functions on an

r-dimensional space. In that case, the dimension reduction is built into the first step
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of series regression by our choice of approximating functions. That choice imposes
the restriction that the function to be estimated (!) on the 2r-dimensional domain
is defined as the difference of the same function (m) on two different r-dimensional
domains.

In the first step, regressing dy;; on ¢ (zi, ;1) yields the 2r-dimensional vec-
tor of estimated series-term coefficients, 8 = [CN, ST, A\i(Zit, Tig-1)g" (Tit, Tig—1)
'qK(zit,xi,t—l),]_l [Zili; Y12 ATt T, 1) (Tit, Tip—1)dyi]. Again, A is a trimming
function to bound the density away from zero. In the second step, we partial out by

averaging, leading to the series partial means estimators

T

muma(z) = Z S Mz, zi)a® (z, ) B

1=l t=1
and
1 N T

mu2(z) = “NT Zz;/\(xm a* (zie, z)'B.
i=1t=

Imposing the restrictions as before, iy (z) = 31 (z) + 37hu2(z).
Again variance estimation is just as in least squares estimation for fixed K. Let
¥ (z) = L TN, ST, Mz, 5i)d¥ (z, za), @ (z) = — 75 ZiL1 Tier Az, 2)g* (i, 7),
and g% (z) = 1gf(z)+ 1@ (z). Define the K x (T'—1) matrix ¢5*_,(z:;) = (¢ (zi2, za1),
.y ¢z, TiT-1))s ’\qT—l(xi) = (A(Zi2, za1)g% (zi2, zar), -- ., AMzir, TiT-1) q*(zir,
zir_1)) and Ty = E[AgK_,(z:) Uz:) AX_,(z:)'], where Q(z:) = Var(dyi|z;), as
before. Then, for j =0,1,2,7

Vs = @) [EOd @) @) Sn [EQd (z)d 1 (@:))]” 8

To estimate the variance, define Sy = & TN, AgK_, (z:)déidéiAgK_, (z;)', where dé;; =
dy,-t - (mM(zu) - mM(.'L',"g_l)) and d&'i = (dEgg, . ,dé,"p)'. Then, for j = 0, 1, 2,

N T -1
Vi =gy i(z) [z 3" A=t Tie-1)a"™ (its Tie1)a* (zas xi,t-l)'] XM

i=] t=2

7A subscript M, 0’ is used interchangeably with the subscript *M".
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N T -1
[Z Z /\(-’liit, xi,t—l)qx(xit) -’L‘i,z-l)qK(ziu Ii,t—l), (71;’5,,- (1‘)-
i=1 t=2

The next theorem shows asymptotic normality of these series partial means estima-
tors.

Interestingly, because we have focused on polynomial and spline series approxi-
mations, the conditions of Theorem 1 did not even include assumptions on the how
well the series terms approximate m (or !). Polynomials and splines have known
approximating properties, so no further assumptions are needed on the approximat-
ing functions. Instead, the conditions are on the specification of the first differenced
model. Partial means estimation is performed on the same first differenced model,
and these conditions from Theorem 1 are also sufficient to give the partial means re-
sult. Again, the parameter & is determined by the choice of approximating functions

via Assumption A-3.

Theorem 3 If Assumptions (S-1) - (S-3) are satisfied and the approzimating func-
tions {qvx} are either power series or regression splines, /nK~% — 0, (o(K)*K/n

— 0, then for j =10,1,2,

VN(VE) ™ liui(z) - (m(z) — E[A\;(z)m(z)])] == N(0, )
and

VNV ) Pl s(z) ~ (m(z) — E[)(z)m(z)))] - N(O,1).

This result is a direct application of Lemma 1 from the Appendix. We use 2r-
dimensional polynomial or spline approximating functions with a functional defined
as the expectation of [ with respect to one of the arguments. In Chapter 2, we
compare a partial means estimator and a simple first difference series estimator for

our investment application and find quite similar performance.
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1.4 Difference From Means Type Estimation

The estimation procedure described in this section is the nonparametric analog of
the within estimator for a linear panel data model. The analogy will become clear in
Section 1.4.1 as the estimator is applied in the linear model setting. This procedure
has two steps. First, the individual effects are treated as fixed effects and estimated.
Second, the estimated fixed effects are in turn used in estimation of the unknown
function m(-) from (1.1).

Suppose we could observe the fixed effects, then we could define a new variable
Y5h = Yir —0;. If we treat y* as the dependent variable of interest, then we could obtain
an estimate of m using standard nonparametric regression techniques on (y*, X). In
other words, we could consider the slightly modified model y}, = m(z;) + 7;, which
is in standard form for nonparametric regression estimation of the function m. This
basic idea motivates the second step in our estimation procedure. Specifically, if es-
timates of the fixed effects, d;, are obtained in the first sten, then we can use those
estimates to form ¢}, = y;; — b;. Our estimate for m(-) will be the nonparametric
regression estimate using the data (§*, X). We underline the generality of this pro-
cedure by presenting it with the same generic nonparametric smoother notation used
to describe general partial means estimation. Ideally we would like to estimate m by
m(z) = S*(y*|X), but we do not have the true fixed effects values so our estimate is
m(z) = S*(§*|X), using the fixed effects estimates from the first step. For fixed T,
we cannot consistently estimate d;, but the idea is that m will be consistent 25 the
nonparametric smoother “averages” across the errors b; — 6;.

The first step produces the fixed effect estimates used, as just described, in the
second step. The estimated fixed effects will be those that minimize the sum of
squared distanices between §* and its regression estimate at each data point. We will
use the same smoother notation introduced above (note that a superscript it denotes

z;), although a different nonparametric regression estimator could conceivably be
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used in the first and second steps. The fixed effects are estimated as follows,

{b1,...,0n} € 6ar'g'r'n’igN X e — &) - S*(y (O)IX)P

1y (14)
S.t. Z,h;l é; =0.

Here we use the notation y*(8) to emphasize that y* is a function of the fixed effects
being optimized over. The constraint 3_; §; = 0 is the estimation embodiment of the
identifying condition given in (1.3). It is interesting to note that this objective func-
tion produces the nonparametric regression estimates for the partially linear model
as given in Robinson (1988). If §; is replaced by the linear term to be partialled out
and S* is a kernel regression smoother, then the solution to the optimization problem
in (1.4) is exactly Robinson’s estimator. So, as we will find in section 1.5, including
an additive linear-in-the-regressor term to the model (1.1) will result in a natural
extension of the estimation procedure given in (1.4).

The discussion of the conceptual framework for estimation has purposely been
presented as only a general outline. In the next two subsections we will examine this
estimation procedure in more specific settings. First, this approach to estimation will
be applied in the familiar linear model. Then, the remainder of the section will focus

on nonparametric series and kernel regression smoothers.

1.4.1 Estimation in the Linear Model

In the linear model, m(z;) = z;0 and the object is to estimate 3. Here, the smoother
is simply the projection on X, so S*(y|X) = z.(X'X)"'X'y. Suppouse 3 includes a
constant term, then identification requires that the estimation of the fixed effects in

equation (1.4) be performed under the restriction that the sum of fixed effects is zero.

8]t is also essentially the objective function used in Ichimura(1993). But Ichimura obtains eéti—
mates of a single index model by minimizing over parameters that are a part of the kernel component.
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Hence the minimization problem is:

{81,....0n} € §2EME S T (e — &) — (X' X) ' X'(y — S @ er))?

1y
st. YN, 6, =0
(1.3)

where er is a T x 1 vector of ones and 4 is the N x 1 vector of fixed effects so that
the Kronecker product é ® er is an NT x 1 vector that corresponds to the NT x 1
vector y of dependent variable observations. Substituting 8, = —d, — ... — dy, we

then have . unconstrained optimization provtem. In vector form,
S (y— D'6_1 ~ Px(y — D*6.))'(y = D'6_, — Px(y — D'6.,))

where Py = X(X'X)"'X’ is the projection on X, d_, = (82,...,0x), and D! is
the NT x N — 1 matrix such that D'4_, is the NT x 1 vector version of the fixed
effects with —d, — ... — d in place of 4,, the fixed effect for the first individual. The
minimization above is familiar from Generalized Least Squares and the closed form
solution is well-known, é_; = [DY(I — Px)D'"'DY(I — Px)y.

In the second step of the estimation procedure we obtain an estimate of z(
at any given z, or more simply an estimate of 8, 8 = (X'X)~'X'(y — D'_,) =
(X'X)'X'(I - DV[DY'(I - Px)D'|"'D*(I — Px))y. Since a constant term is included
in the regression, let 8 = (o, '), where a is the constant term, and X = [ex7 X]. It
is a well-known result that 4 = [X'(Inr — (3 Iy ® erel)) X] ' X'(I - (LIn ® erel))y,
which is exactly the within estimator so familiar in the linear case. So we have
shown that using our method with an OLS smoother on the linear model leads to
the standard within estimator. This example then provides vhe intuition for why the
nonparametric estimator introduced above is the analog of the difference from means

estimator.
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1.4.2 Estimation in the General Model

Within the flexible nonlinear framework, we consider kernel and series choices for the
nonparametric smoother. An asymptotic normality theorem is given for the series
regression case. Conceivably, one could choose different nonparametric smoothers
for the first and second steps, though we do not explore that possibility here. More
likely, one could easily generalize the following to include different bandwidth choices
or different numbers of series terms for the first and second steps.

We begin by rewriting the minimization (1.4) used to obtain fixed effects estimates
with a kernel regression smoother,

. . . N T N T
{0,...,0n € 2B DD Mallye — 6) = 2P wi(wie — G (L6)

1,

i=1t=1 j=1s=1
N
s.t. z 6;=0
i=1
) K (s
where wit = I Ko(zie—z;) and \;; = A(zie)-

N T
I3 N_IT" Zk:l Zr:l Kd(:“ _zk')
The minimization in (1.6) has a familiar closed form solution. First, we vectorize

and substitute in §; = —d2 — ... — dy to produce an unconstrained optimization. Let
d6_; and D' be defined as before, and W = [wi] such that Wz = kernel regression
estimate of z. Let A = diag();), the matrix with elements \; on the diagonal and

zeros on the off-diagonal.

MID [(y — DY_y) — W(y — D'6_)[A[(y — D'6_,) = W(y ~ D'6_)]
= T (AT - W)(y — D'6.)[AR(I - W)(y - D'6_y))

This minimization is in exactly the same form as the one seen in generalized least
squares, where (I — W) A(I — W) plays the role served by the inverse of the residual

variance-covariance matrix in GLS. So the solution has a familiar form.

~

by = [DY(I-W)YAI-W)D'DY(I - W)YA(J - W)y
= [Z /\it(Dilt - D}t)(Dil: - 133.)’]"[2 ’\“(Dl!t - bilt)(yit - ?}it)]

it it
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Here, D), = ((3, t)th row of D)’ and D}, = ((i, t)th row of WD'Y. With &_; ex-
pressed in this latter form, the similarity to Robinson’s (1988) estimator is unmis-
takeable. If we replace D'd_, by X 73, then the solution is 8= [0 Aie(zie — Zie) (zie —
Tie)'] i e Mie(xit — Eie) (yie — Fie)], which is exactly Robinson’s estimator for the par-
tially linear model.

Now that we have our fixed effects estimates (5_1 asabove and §; = —4,—. . .—SN),

the kernel regression estimate of the function m(-) follows simply,

-~ T -
m(z) = zifil e=1 Wi (¥ie — i)
N‘_TK'I(z_:l‘)

Wl—'f z‘kv:l ET:{ K}.(I—I&,)

where vy, = are kernel weights.

Just as first differencing eliminates the fixed effects, this procedure can also be
thought of as a transformation to eliminate the fixed effects. By vectorizing once
again, we can observe how this elimination works. Let Pp = D'[DY(I — W)'A(I -
W)D''DY(I - WYA(I — W), Qp = I — Pp, and w* is the NT x 1 vector with

elements vj;.

m(z) = w(y— D'_y)
= w¥{I — D'[D"'(I - W)A(I - W)D'|"'D"(I - WYA(I - W)}y
= w”Qpy
= w”Qp(m(X)+ D'%6_y + A, +17)
= w”Qp(m(X) + A1 +1),

where A, is an NT x 1 vector with the first T entries equal to 6, +do+...+dy and the
remaining entries equal to zero. The last equality is the key one that actually shows
the elimination of the fixed effects term, D'4_,; it occurs because D! € nullspace(Qp).
But this orthogonality is exactly what eliminates the fixed effects, just as differencing

does in linear panel estimation.®

9Strictly speaking, the fixed effects are not completely eliminated since the A; term contains the
8’s. This fact does not cause a problem as they enter only as a sum which we know converges to
zero (by the identification condition) and all but the first T rows of A, are identically zero.
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An interesting efficiency consideration comes from applying our difference from
means estimator to the model y;, = 8 + §; + n;;. From the minimization in (1.6),
we have 3: = (% Vi) — (ﬁ ¥i Xt yir). which leads to ﬁ = NLTZ.' >t Vie. But ﬁ
is exactly the same estimator that would come from using linear within estimation
on this model. So in this example there is no efficiency lost by our nonparametric
difference from means estimator relative to the usual linear difference from means
estimator. More generally, let B = {0;,...,b,}, where b; € R* and p < oo, be
a discrete set. If for all 7 and t, z;; € B, then estimation of m(-) reduces to a
parametric problem. As above, for a small enough choice of bandwidth, ri(a;) from
the nonparametric difference from ineans estimator is exactly equal to the estin.ate
from the linear difference from means method. Hence as desired, no efficiency is lost

in this dummy variables framework.

Now we turn to difference from means series estimation. First, we show asymp-
totic normality of the estimator that uses the within transformation of the series
terms. Second, we show that, under certain conditions on the trimming function,
the use of a series smoother in our general difference from means procedure results
in an estimator that is only an additive constant away from the simple within series
estimator. This latter outcome provides further elucidation of the analogy between
the general nonparametric estimation procedure outlined in this section and within
estimation.

To describe simple within series estimation, let d denote the difference from means
transformation (e.g. dyi = yir — %Z;r:, vis). Let ¢¥(z) = (qk(z),...,qxk(z))
be a K x 1 vector of approximating functions for m. Define for each j, pjx(zi) =
9ik (Zit) — + Tie1 Gk (Zis), then p¥(zi) = (Pik(zit), - .., Prk(zir))'. Our within series
estimator will be i (z) = ¢®(z)'B, where 3 is obtained from least squares regression

of int on ﬁ"’(x,-,),

- N T _ Iy T .
f= [ZZ/\(zi)ﬁK(wn)ﬁK(xn)'] S 5 M) (i)

i=1 t=2 i=1t=2
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Again :\(-) is a fixed trimming function.

Variance estimation is as in least squares with fixed K. Let dy, = (Jy,-,, e ,(iyi'p)' .
Now define 5 (z;) = (5*(zu), ..., 5% (zir)) and Tw = E[A(z:)p (c:) )i (),
where Q(z;) = Var(dy;|z;). Then,

W = ¢"(@) [EQ@)PF () () )™ Zw
 [BO@a)pf (i) (=)' ] '

Refore giving the variance estimator, define Sy = & T, M) (z:)dédepl (x:)',
where €, = y; — mw(z;) and dé; = (Jé,-,, cees Jé.'r)'. Then,

N T

Vi = qK(w)'[ 3 Mai)p¥ (zu)p (l'u)] Sw

i=1t=1

[EN:ET: (z:)p" ()" (xu)l ¢% ().

=1 (=1

Again, Assumptions S-1 and S-3 can be used to prove asymptotic normality of our
within series estimator. Assumption S-2 is modified only slightly to apply to the

trimming function used here. Let f(z;) denote the density of z;.

Assumption S-2° A(z;) is bounded and zero ezcept on a compact set X where f(z;)

is bounded away from zero fort =2,...,T.

If Assumption S-3 is satisfied, then, when restricting attention to power series and

regression splines, Assumption A-3’ in the Appendix holds. Thus there exist &, d,
(Bk), (k) such that |m — 7k — ¢%'Bk|; = O(K~9).

Theorem 4 If Assumptions S-1, S-2’, and S-3 are satisfied, the approzimating func-
tions {qkx } are either power series or regression splines, VNK-& — 0, fo(K ):K/N

— 0, then

VN (Vi) *(raw — m(x)) + 7] = N(0, 1)
and
VN(V) " |(w — m(z)) + 4k] = N(0, I).
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Now consider plugging a series smoother into our general estimator. Let §%(z) =
(1,4%(z)')’ be the approximating functions with a constant term added to the ap-

proximating functions used above. The first step is

N T
{by,...,08} € 6largmm ZZAu[(yu ‘7“(%:“;2 K (zjs)

1=1t=

VK(IJJ) } I{EZ’\NQK(%) Yjs — }]2

j=1s=1

N
s.t. E 5,' = 0.
i=1

Then letting Q = (@ (zn),...,§%(znT))', We can vectorize and solve for 6_;. In
the second step, we obtain our estimator of m, mw(z) = §%(z)'y, where ¥ =
(QAQ)T'Q'A(y — DY)

From least squares, we know that % can be expressed in another way. Let U
= I — AY2D'(DVAD')~'DVAY2; then ¥ = (Q'AV2UAV2Q)'Q'AV2UAY?y. Let
¥ = ( g ) with j the scalar constant term and Q = (enr,Q). Hence, mw(z) =
p+ g% (z) (. Then as in the linear model, we can give an expression for 3 from the
partitioned matrix inverse formula, # = (Q'H'HQ)™'Q'H'Hy, where H = GA'/?
and G = (U — UANeyr(eNpAYV2UA 2en) ™! eypAY2U). Fortunately, G can be
expressed quite simply as the identity minus a block diagonal matrix with N blocks
of size T x T. If pu; = (VAi1, ..., VAir), then the ith block is (e Mie) M (pitl). Thus
we can express (3 as the coefficient estimate from a regression of Hy on HQ. From
our expression for G, we can see that, as a transformation, H is very similar to a
standard difference from means. Specifically, an element of the H-transformed y
variable is [Hyli = va(yie — (XTo; Mis)~ 13T | Aisyis)- Given this expression for the

H-transformed variables, we have proven the following assertion:

Claim 1 If the trimming function \(z;) is chosen to be the trimming function from
the within series estimation above (A(zi) = A(zi)) and A(zit) = 0 or 1 for all i and

t, then mw(z) = p+ mw(x).
From Claim 1, we learn that, under reasonable conditions on the trimming func-
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tion, the general difference from means procedure using a series smoother is the same
(up to an additive constant) as the within series estimation. Also, from the general
expression for the H transformation, we gain further intuition on how the general

estimation procedure given in this section is just an extension of within estimation.

1.5 Extensions

In many applications, generalizations of the model (1.1) may be of primary interest,
Following we will describe without proof the modifications of our estimators necessary

to handle some of the extensions most likely to be encountered.

1.5.1 Time-varying Unknown Function

We consider the generalization of (1.1) to a model with a time-varying unknown
function.

Yie = me(Tie) + 6 + e (1.7)

Modification of the partial means first difference estimator is straightforward. De-
fine I,(z1,15) = S@*2)(dy,|X,, Xi—1). To estimate my(-) in the second step, we
must partial out the second argument of I, from the y;, — Yie—1 equation (my,) or
partial out the first argument of the ;.41 — ¥ic equation (mg.4). So we define
the time-varying partial means estimators to be My, = 55 i) Xoey b(z, Zj,) and
My = -—7vl7 2'!_.1 ZZ':l l-,,(xj,,:c). Note that the conditions imposed in defining i, the
restricted estimator, no longer hold. Specifically, now l,(z,, z2) = my(z,) —my-1(72) #
~l(z2, ;) and it follows that [,(z,z) # 0. As a result, we must use m;, and My 4
rather than the restricted estimator .5, + .5my. For kernel smoothers, asymp-
totic normality follows as in section 1.3 from the kernel partial means theory in the
Appendix.!® Similarly, the distributional results for series smoothers also generalize

to this case.

10 emma 3 is the crucial one for proving asymptotic normality. Its proof is sufficiently general to
handle the case of averaging across time-varying estimators.
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The difference from the means estimator is quite simple to modify for the model
(1.7). Note that in the second step when estimating m,(z), using the estimated
fixed effects from the first stage, we only want to use time period ¢ observations,
so m(z) = S*(9;|X.). Similarly, when estimating the fixed effects in the first step,
Sit(y*(6)|X) is replaced by S*(y;(8)|X.).

Thus, for a kernel smoother,

me(z) = SN, wi (v — &)
‘%Ka(z—zit)

* an:l Ko(z—zk)’

(1.8)

where wj;, =

In the first step, we now zero out all but own time period weights so that

1 Ko (zie -:j!)

) ifs=t
w;i — 3'; E,‘=, Ko(Zis—Tie)

if s#t.

One particular form of a time-varying function is m,(-) = m(-) + «,. With additive
time effects, interest again centers on estimation of m. Similar to the discussion
concerning condition (1.3), we again face an identification problem without restricting
the time effect in some way. From the following condition, we can interpret the time

effects as mean zero deviations from the true regression function

T
Y o =0. (1.9)
t=1

The first difference partial means estimators are consistent up to an addivitive con-
stant, so the time effects merely become part of that constant. The estimators given
above are still valid. Specifically, /;¢(x) estimates m(z) + a; — a,—;.

For the difference from means type estimator, we could use the time-varying es-
timators above, e.g. M(z) = 5 i, my(z), with rh(z) from (1.8). This estimator
averages across the time effects which should eliminate them by (1.9). Alternatively,
the time effects could be estimated jointly with the individual effects in the first stage.

Define y};7 = yir — 6; — o, which we sometimes write as an explicit function of § and
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a to emphasize the dependence.

T N
Z[(yu -6 — ) — Z S"(y“(é, 0‘)|X)]2

1t=1 =1

- argmin
{67(!}€ 61,...,6”)017""0T :

N
1=

N T
st.3.6;=0 and ) 0, =0
i=1 t=1

where the T-vector of estimated time effects is & = (&, . . ., ér) and m(z) = S*(§**| X).

This method is described in more detail in section 1.5.3.

1.5.2 Lagged Regressors

Now we add lagged regressors to (1.1),
Yie = M(Tit, Tig—1) + 6i + M-

The only change required in the partial means estimators is the use of second
differences. Then partial out with respect to one of the arguments of m(-,-). Clearly,
if more lags were added, then higher differences could be used. The second (or higher)
differences estimator theory is the same as the first difference, only requiring T > 3
instead of T > 2.

The difference from means estimator remains the same treating (z;;, T;¢-1) as the
argument to m(-). So if z;; is r-dimensional, then we would use a nonparametric

smoother on 2r-dimensional regressor space.

1.5.3 Partially Linear Model

Finally we add a linear component to (1.1),

Yir = m(Zie) + 2,8 + 6 + Mir.
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Taking first differences,
dyie = U(Tip, Tig-1) + d2j, 8 + dye.

Then Robinson’s (1988) estimator gives a v/N-consistent estimator of 3, 3. Next, set
Vit = Vit — z{,[‘l and proceed as in section 1.3 with ;, as the dependent variable. Since
8 is v/N-consistent, there is no effect on the standard error estimates for any of the
partial means estimators given there.

As mentioned in section 1.4, the objective function that yields our first step fixed
effects estimates in the difference from means procedure is the same objective function
that gives Robinson’s estimator. Thus it is simple to alter the difference from means
estimator to include the linear component. We estimate the fixed effects and the

parameters of the linear component jointly in the first step. For example with the

kernel regression smoother,

. N T
{8,01,.. 5N} € argmma ZZ[ (Yie — uﬂ 6;) — Z Z yJa thﬂ - 51’)]2

i=1t=1 j=1s=1

N
s.t. Z 6,' = 0.
i=1

The second step estimation of m then becomes

N

m(z) = Zzwu(yu ::B - 3:)

=] t=1

1.6 Conclusion

We have found that the within and first difference transformations that eliminate
the individual effect in a linear panel model have analogs in the nonparametric panel
extension of the linear model that also eliminate the individual effect. These two

transformations then lead to two correspondmg series estimators, and we are able to

present more general nonparametric estimators that are applicable to any nonpara-

metric smoother, not just series. In the first difference case, we use the partial means
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idea to provide a general first difference estimation scheme that works with any non-
parametric regression estimator. In the difference from means approach, we obtain
our estimator by employing an objective function analogous to the one that pro-
duces Robinson’s (1988) estimator in the partially linear model. We showed that the
general difference from means procedure reduces to within estimation when applied
to the linear model and reduces to simple series estimation on within-transformed
approximating functions in the general nonparametric model.

An empirical example in Chapter 2 will show the potential usefulness of these esti-
mators. In cases where the linear panel model is rejected, the more flexible model (1.1)
might be useful in analysis and might also avoid arbitrary parametric assumptions
often unsupported by theory. In our investment example, an examination of the
linear panel estimates and multivariate regression results will lead us to reject the
linear model. The application in Chapter 2 also presents the opportunity to compare
different estimation techniques. For instance, we can confirm the similarity of series
estimation by partial means and by simple series first differencing.

As larger panels of data become increasingly available to economists, the desire
for nonparametric panel methods will likely increase. The model analyzed in this
paper is a natural starting point for nonparametric panel empirical work. We have
found that, as in the linear panel model, there is more than one consistent estimator
of the regression function. These estimators are straightforward to use and allow the
researcher to estimate nonlinear relationships in the panel data framework without
parametric assumptions on the shape of that relationship. Thus, these estimators will

be useful in a wide variety of applications, in addition to our investment example.
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Appendix

Series
Andrews (1991) and Newey (1994a) give general results proving asymptotic normal-
ity of linear functionals of series estimators. We will present a multivariate version
of Newey's result for scalar functionals of series estimators. We begin with some
multivariate regression notation. Let Y be the dependent variable and X an R-
dimensional vector of regressors.!! We observe J values of (Y, X) for each individual,
and the data, (Y11, X11),---,(Yns, XnJ), generated by the model Go(X) = E[Y|X].
We assume that E[Y;;| Xy, ..., Xu] = E[Y;;]Xi] = Go(X;) and that J is fixed and
finite. We suppose that interest centers on estimation of a scalar linear functional,
6o = a(G).

To carry out series estimation, we need a sequence of approximating functions
{axk(-)}. Let ¢¥(X) = (qk(X),-..,qx k(X)) be the K x 1 vector of approximating
functions. Series estimation of Gy is accomplished by a simple least squares projection

on the approximating functions,

G(-) = ¢*(-) Bk,
N J N J
where Bx = [Y_ Y 0" (Xi)a" (X5) 17 D2 D a™ (X)) Yig)-

i=1j=1 i=1 j=1

Our estimate of 6 is @ = a(G). If we define A = (a(qix), - - -, a(gxk)), then 0 = Afk.
Variance estimation follows similarly as in multivariate least squares with K fixed.
Define Y; = (Ya,...,Yw) and X; = (Xa,..., X)) Let ¢f(Xi) = (¢"(Xa),...,

q¥ (Xis)). The variance of the functional estimator and the variance estimate are

Ve = A[B(@(X)af (X)) B (Xo)Var(¥i|X)a¥ (X))
(B o (xy) " A

11'We use capital letters here to distuingish this notation from the panel notation used throughout
the remainder of the paper.
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-1cn
Ve = A[S e YIN] |3 df aaelas 6N

i=1

N -1
-[gqf(xi)qf(x.-)'ﬂv] A,

where & = Y; — G(X;) and G(X;) = (G(Xa),...,G(Xis))'.
Given this multivariate series notation, we now give the assumptions for the

asymptotic distribution theorem.

Assumption A-1 (Y3, X)),...,(Yn, Xn) areiid., E[|| Y;—Go(X;) ||* |1X] is bound-
ed, and the smallest eigenvalue of Var(Y;|X;) is bounded away from zero.

Assumption A-2 For every K there is a nonsingular constant matriz Bx such that
for Q¥ (X;) = Bkq®(X;); i) the smallest eigenvalue of E[Q* (X;)Q¥ (X;)'] is bounded
away from zero uniformly in K i) there is a sequence of constants (o( K) satisfying

SUPxex I QS((X) I< Cao(K)-

Assumption A-3 There is d,a, (Bk) such that |a(G)| < |Gla, |Go — ¢%'Bkla =
O(K™°).

Assumption A-4 a(G) is a scalar functional and there exists (Bx) such that for
Gk(X) = 7%(X) Bk, E[Gk(X)?] — 0 and |a(Gk)| is bounded away from zero.

Lemma 1 If Assumptions A-1 - A-4 are satisfied, (o(K)2K/n — 0, and VNK™°

— 0, then
VNV2(6 - 6,) -4 N(0,I), VNVY*(6 - 6,) - N(0, I).

PROOF of Lemma 1: This lemma is a simple extension of Newey
(1994a) Theorem 1. With only slight modifications to include the mul-
tivariate notation, Newey’s proof shows that the above assumptions are
sufficient for the conclusion of the lemma. The eigenvalue part of As-
sumption A-1 is used to show Vi = E(Ag¥ (X;)Var(Y;|X;)g¥ (X;)'A') >
CE(Aq¥(X:)g¥(X;)A') = CAA' = C || A ||?, since we have chosen g% (z)
to be transformed by a nonsingular matrix so that E (g% (X;)g¥ (X;)") = I.
Also, proving the second assertion for convergence with an estimated
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variance requires some generalization. The step that requires significant
modification is the one showing that, for a vector v with || v ||< C,

@ = |[% Tiaf(X:)(E:d — eiel)gf (Xi)]v] £ 0. Note that £} — ¢}
= &:(G(X:) — Go(X5))' +(G(X:) — Go(Xi))e; +(G(X:) — Go(Xi))(G(X:) -
Go(X:))'- Let the absolute value of a vector denote the vector of absolute
values of its elements. Define S = & ¥, (X:)(leile]) + esles|)af (Xi),
S = Elgf (X:)(leile) + esleil)a¥ (X:)'] = Elaf (X:)E[(le:les + eslesl)1 X
g% (X;)'] and note the symmetry of the conditional expectation in the
middle and the fact that it is bounded. Hence [v'Sv| < C || v ||?, and
by an argument similar to the one showing that | @ — I |2 0, where
Q = L ¥ g (X:)a¥(Xi)'. 1t follows that || S — S |2+ 0. We already
have maxicy || G(X:) = Go(Xy) [|= 05(1), 50 i < 0, (D)l (S+Q — S~ I)o]
+0p(1)[v'Sv| +0,(1) [ v I? S 0p(1) N w I (1 S = S+ | @ = T[]} +0,(1)
23 0. The remainder of Newey’s proof holds as is. 0O

Now we modify the multivariate result to handle our first difference and difference
from means series estimators. Let D represent either the first differencing operator
(DYi; =Yy — Yo, Df(Xy5) = f(Xi5) — f(Xij-1), and DY;; = Df(Xy) = 0, for
any function f of X) or the difference from means operator (DY;; =Y;; — 1 T, Yy,
Df(Xy;) = f(Xi;) — 5 Tk, f(Xis)). The framework for Lemma 2 is more restrictive
than Lemma 1’s framework in the sense that interest here lies only in the linear
functional equal to the function evaluated at a point. On the other hand, we have
generalized the framework, since the series estimation in the first step estimates the
function DG but the functional of interest is G(z). The subtle point here is that, in
general, there does not exist a functional a such that G(X) = a(DG). Thus, Lemma
1 can not be applied.

Since a constant term will be eliminated by the differencing transform, sup-
pose ¢X(X) does not contain a constant term and let §%(X) = (1,¢%(X)’)". Now
6y = Go(X), which will be estimated to within an additive constant, and 6 =
9% (X) Bk, Bk = [Ti; Dg¥(Xy;) Dg¥(Xy;) " i ; Dg¥(Xy;)DY;j. Let Dgff(Xi) =
(Dg*(Xa),-..,Dg¥(X;;)) and DY; = (DYa,...,DY;;)'. Variance estimation is as

expected,
Qk = ¢*(X)'E[Dqj (X:)Dgj (X;)'| E[Dq} (X;)Var(DY;| X;) D (X:)']
‘E[D‘If (Xi)D‘I5( (Xi)']qK(X )
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and

N N
G = ¢ () 3 Dalf(X)Daf (X2l 7 3= Dal¥ (X) DEDEDaf (X))
N
I% Y- Dqj(X:)Dgj (X:)'la" (X)
=1

where Dé;j = DY;; — D(~}'(X,~,-) and Dé; = (Déy, ..., DE;). Assumptions A-1 - A-4
need only be modified to fit our slightly changed setting.

Assumption A-1’ (Y}, X)),...,(Yn, XN) are i.i.d., E[|| DY; — DGo(X;) ||* |Xi] is
bounded, and the smallest eigenvalue of Var(DY;|X;) is bounded away from zero.

Assumption A-2’ For every K there is a nonsingular constant matriz By such that
for DQX(X;) = BxkDq¥(X;); i) the smallest eigenvalue of E[DQ¥ (X;)DQX (X,)'] is
bounded away from zero uniformly in K; ii) there is a sequence of constants (o(K)

satisfying supxcx || DQY (X) I< Go(K).
Assumption A-3' Thereisd, o, (7k), (Bk) such that |Go—vx —q% Bk|a = O(K~°).

Assumption A-4’ There ezists (Bx) such that for DG (X) = Dg¥(X) Bk,
E[DGk(X)? — 0 and |DGk(X)| is bounded away from zero.

Lemma 2 If Assumptions A-1°, A-2', A-3’, and A-4’ are satisfied, (o(K)?*K/n —
0, and VNK—2 — 0, then

VNQR (0 - 09 + k) 25 N(0,I), VNV*(6 - 6 + k) -2 N(0,1).

PROOF of Lemma 2: Under the Assumptions A-1’,A-2’, A-3’, and A-4’
the proof here follows t»e proof for Newey (1994a) Theorem 1 with only
slight modifications. Alo.'g with the generalizations to the multivariate
setting given in the proof of Lemma 1, the other part of the proof that
requires significant modification is the decomposition of v NVj ~}/2 (9—00)
into terms that converge to zero in probability and a term that converges
in distribution to N(0,1). In the present setting, that decomposition
can also be accomplished. Let DQ = (Dg¥(X,),..., Dg¥(Xy)), DY =
(DYY,...,DYy), and DG and De similarly defined. Using the sequences
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vk and Bk in Assumption A-3’, define Gk (X) = vk + g% (X)'Bk. Then,
DGK(X) = DqK(X)’ﬂK.

VNQ (6 - 6o + k)
= VN (q"(X)B - 60 + k)
= 0x'2¢¥(X)(DQ'DQ/N)™'DQ'(DG + De — DGg)/VN
+VNQE? g% (XY Bk + VNQE(vk — 60)
= Q/%¢"(XYDQ'De/VN + Qi *¢"(X)(DQDQ/N)™ - I)
-DQ'De/VN + VNQ'*¢* (XY (DQ'DQ/N)™'DQ' (DG — DQpk)
+VNQE2(Gk(X) = Go(X))

Note that the first term is asymptotically normal and the other terms
converge to zero. =]

PROOF of Theorem 1: We show that the Assumptions of Lemma 2 hold
and then the conclusion follows. Assumption S-1 and Holder’s Inequality
show that the fourth moment condition of Assumption A-1’ is satisfied.
The smallest eigenvalue condition of A-1’ is satisfied by the analogous
condition in S-1 and by noting that there exists a matrix A such that
Var(DY;|X;) = AVar(Y;|X;)A’. The smallest eigenvalue condition of A-2’
follows similarly from S-2. Part ii) of A-2’ is satisfied since DQ* (X) is
a fixed linear transformation of Q% (X). Assumption A-3’ follows from
the smoothness assumption S-3 and the known approximating properties
of splines and polynomials. Using polynomial or spline series and the
method of proof given in Newey (1994a) for the functional defined as the
difference of the function at two distinct points, it is straightforward to
show the existence of a sequence (f;x) satisfying Assumption A-4’. 0O

PROOF of Theorem 3: Here we use Lemma 1, so we must show that
_ Assumptions A-1 - A-4 hold. The conditional variance assumption in A-1
follows directly from the second part of Assumption S-1. The smallest
eigenvalue of E[\,(z)P¥ (z) P¥(z)'] assumption follow as above. Assump-
tion S-2 implies Assumption A-2 ii). Assumption S-3 implies the second
part of Assumption A-3. The first part of Assumption A-3 follows with
d = 0 from the choice of functional a. Using polynomial or spline series
and the method of proof given in Newey (1994a) for the functional defined
as the difference of the function at two distinct points, it is straightforward
to show the existence of a sequence (k) satisfying Assumption A-4. O

PROOF of Theorem 4: see proof of Theorem 1. m]

Kernel Partial Means
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To prove Theorem 2, the following three lemmas are useful. Suppose g is a vector of
variables, and («x,, z;—1) is a 2k;-dimensional vector of variables with density denoted
fu(--). Define fy = 2= 57, fu. Let ho(zy,z2) = Elglz1, 2] fi(z1,72) and p is a
functional to be defined below. To estimate hg, define h(z,,z,) = N(T ) YIRS IR
Ko ((z1, 72) — (ies Tie-1))gie-

Assumption B-1 For all t and for some p > 4, E[|| ¢ ||’) < oo, E|}| ¢ |IP |z]f(z)
s bounded.

Assumption B-2 Suppose that k = 2k,; there are matrices of functions w,(a) and
wo(a) with domains ®*, k, > 0, and a fized vector T € R*', such that (i) p(h)
= 52, (), where (k) = fw;(@)0'h(z5(a))/0s' da, 71(a) = (2, and z2(a) =
(a,'); () For j = 1,2, wj(a) is bounded and continuous almost everywhere and
zero outside a compact set T; (i11) For all s,t, L, (z) = E|g.q;|z] is continuous a.e.,
and for € > 0, v(z) = E[|| ¢ ||* |z], and a conver bounded set T containing T,
J7 supy<c[ve(Z+n, @) fu(Z+n, a)lda < oo and [f supy<.[ve(a, Z+1) fu(a, T+n))da <
oo hold fort =2,...,T.

Let K,(u) = [ 3K (u,v)/du'dv and Ky(u) = [ 3K (v, u)/0u'dv.

Vit = /wg(a) [Eu(l}(a) {/’C (u)IC (u)’du}] WJ(“) fu(zj(a))da (1.10)

The following lemma is the key to showing the asymptotic normality of Theorem 2.
The conclusion is the same as in Lemma 5.3 of Newey (1994b), but the hypotheses
(Assumption B-2 in particular) allows for the more general integral representation

necessary for the first difference estimator given in this paper.

Lemma 3 If Assumptions P-1, P-2, B-1, and B-2 are satisfied withd > l+(, and for
a= 841, /nok/? — oo and /ot — 0, then /no®(u(h) - pu(ho)] 4, N(u,V),
where V = T{_,(Vie + Var).-

PROOF: Epu(h) = u(Eh) by Newey (1994b) Lemma B.4 since u(h) is lin-
ear. wj(a) is bounded and zero outside 7" and by z,(a) and z2(a) bounded
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on T, \/J_V:a°[E[u(fz)] - u(ho’]_ VNo®[u(Eh) — u(ho)] < VNo°(Cy +
C2) || Ehy — ho |t = O(VNo®t¢) — 0 (by Newey(1994b) Lemma
B.2). Therefore it suffices to show VN No®[u(h) — En(h)] 45 N(0,V). Let
K'(u) denote &'KC(u)/0u' and pi(z1,z2) = 0% fwj(a){I ® K'((zj(a) -

(z1,12))/0)]da, where I is the identity matrix with the same dimension
as q. Then letting 3_;, 3°;, and }_; denote 2: —2 2 —;,and ZJ —1, we have

"‘(h‘) Z] ”J(h) Z: z] le;(zth JJ:,:—I)Q::/N(T - 1) Thl.lS to ShOW
VNo?[u(h) — Ep(h)] -43 N(0,V), it suffices, by the Liapunov central
hmlt theorem, that o%var(z 3; &, pf (Tir, Zie—1)gi) — V and o E[||
i 55 T4 P (e, Tie1 )it IY]/n — 0. Since 0® || Bl ;. ph (i,
i -1)gi) —p(ho) || = 0° || Ep(h)—p(ho) || — 0, 0% || E[T!_‘f Y; T (Tt
Ti1-1)gi] ||—> 0. Therefore to show o®*var(75 ¥; 5 o3 (Zit, Tie-1)Git)
— V, it suffices to show 0™ E[(7 ¥ X o5 (T, Tie-1)qie) (755 X5 Lo
P3(zit, Tie-1)qir)] —> V. It is straightforward to show that o2 E[p} (i,
Tip- 1)@ P2 (Tit, Tig—1)'] — Vje. So it will remain only to show that

2°E[p§(z,¢, z; t—l)QuQ; ¢_pP.’,(I: t—py Ti t—p—l)] — 0 for p > 1 and 02QE[
PL(Zies Tip— 1)q|tQ:¢-pP2($: t—p:xx t-p-1)] — 0 for p > 0. K(u) has a
bounded support, K(u;,up) is zero for all u, outside a bounded set V),
and is zero for all u, outside a bounded set V,. Let T be a compact,
convex set containing 7 in its interior. For small enough o, if ¢ T, then
z+ovgT forallve V, orv eV,

Show GQQE[pZ(zihTi,trl)qqul'gpz(zit:zi,t—l)'] — Vi ph(z1,32) = 070!
Jwi(z2 + ov)[I ® K (22, v)]|dv, where v = 2522,

oM tUE [P‘l, ($i¢, Ii,z~1)‘1iz‘1£gp.1,($it, Ii.z-l)’]

02"‘+2'//p},(:i' — ouy, ) Zu(E — ouy, 22)ph (T — ouy, z2)'

fu(i‘ - O"U.I,Ig)dxzdul
I —x

where u; = =
/] [ [ertzs + vl @ Kian, v)]dv] Su(Z - our, 72)

[[entar +onlil @ K/, v)]dv]' fu (% — ouy, z2)dzadus
— [ [ / w(z2)[I ® K (s, v)]dv] S u(Z, 72)

2
[l e (' o] fu(3,22)daadu
as 0 — 0 by DCT

Thus, 02 E|[p} (Tit, Ti 1-1)Gitqlept (Tie, Tig-1)'] — Vie as ¢ —> 0. Note
that the analogous result for j = 2 follows by symmetry.

To show the remaining terms converge to zero we use an appropriately cho-
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sen substitution for the p, terms (as above) and prove they converge to a fi-
nite constant at a slower rate. To show a2® E[p} (i, Ti 1)} 1 P} (Zig—1,
Ti4-2)'] — 0. We substitute p}(z1,z2) = 07~ fw,(Z+0v)[IQK! (22,
v+ £=22)|dv, where v = 2% and p}(z3,23) = 07F ! fwi(z3 + ov)[T ®
K!'(222, v)]dv, where v = #=52.

02 E[p} (Xit, Xie-1)Giedi 1106 (Xit-1, Xig—2)']
— [[[[[=@iermv+ u2)|dv] Su-1 (8, 7,29)

1
[ /;) wl(z3)[I®IC'(u2,v)]dv] frioziso1,zin(E) Z, T3)dT3dugdu,
2

aso —0

But note that the rate of convergence to the finite constant is 0?. Thus,
o*1+2 E[p (Xit, Xie-1)git 41195 (Xig-1, Xie—2)'] —> 0 as 0 — 0. The
analogous result for j = 2 follows similarly. The remaining terms also
converge to a constant at the rate o%. To show o2® E[p](Zi, Ti 1)t
@1 pPh (Tit—ps Tig-p—1)'] — 0, for p > 2. We make the substitution
ph(zy,22) = o787 fwi(zy + ov)[] ® K'(22, v)]du, where v = 2322,
and p!(z3,24) = 057! fwi(z4 + ov)[] @ K! (3553, v)]dv, where v = 254,
To show 022 E[pL (i, Ti t—1)qie@ie P2 (Tit Tig-1)'] — 0. We let p}(zy,z2) =
o~k1~t [ ) (Z+0v)[IQK! (B2, v+2=22)|dy, where v = 2%, and g} (71, 72) =
o~k [ wo(Z+0v)[ @K (v+E2, £=22) dy, where again v = 22, To show
02 E[p) (Tit, Tie—1)Gitd} 1195 (Tig-1, Tig—2)] —> 0. We let Ps(T1,T2) =
o~F171 [ wy (22 + ov)[I ® K'(E=2, v)]dv, where v = 2222, and p} (22, 73) =
o~F171 [ wy(z2 + ov)[I ® K (v, £22)]dv, where v = 222, To show o> E|
1 _ , _ , , 1 _
Pa(-""itazz,t—l)‘l:t‘lf,z-ppg(xx.t—mx:,t—p—l)] — 0 for p > 2. py(z1,22) =
o~*=1 [ wi(zy + ov)[I ® K'(3=2, v)]dv, where v = 222, and pZ(z3,14)

= ok~ [wy(z3 + ov) [I ® K'(v, £24)|dv, where v = 255,

Finally, we must show that 0% E[|| 75 ¥; ¥ p3 (Zit, Tie—1)gie II'}/N —
0, note that by the triangle inequality, o® E[|| ; =, 0} (i, Tie—1)gie ||*
I/n <% E[(Z;Z, || P(Zie, Tig—1)gie [|)*]/n and by Holder’s Inequality
applied to each of the terms in this sum it suffices to show that o**E[]|
P2 (Tit, Tig-1)gie ||*]/n — O for all j and t. For j = 1 and for all ¢,
o E(|| pt(Xit, Xig—1)gie I')/N < o*E[|| p)(Xit, Xi—t) Il @ I'}/N
< o“E[|| pt(Xier Xig-1) I ve(Xits Xig-1))/N = Co® 4 [ || pi(z ~
ou,a) ||* v(Z — ou,a)fu(Z — ou,a)dadu/n < C/(noy,) — 0. The
analogous result for j = 2 holds similarly. The conclusion of the lemma
now holds by the Liapunov central limit theorem. O

Lemma 4 Suppose that Assumptions P-1, P-2, and B-1 are satisfied, X is compact,
there is a vecto~ of functions D(z, h) and nonnegative constants o, Ay < A (1= 1,2),

€ > 0 such that d > max{A + 1,A; + (,A + (}, and (i) D(z,h) is linear in h on
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{h:]| h |la< 0o}; (ii) for all h with || h—ho ||a< €, || p(2, h) — p(z, ho) — D(2, h—ho) ||
< b(2) || b= ho llall h = ho llaq; (3) || D(z,k) < b(2) || k ||a, and E[b(2)*] < oo;
(iv) for &y = [InN/(No**%)]'2 + o%, o —> 0, VNo°E[b(2)|on'oy* — 0, and
VNok+31-e s oo, Then for u(h) = [ D(z, h)dF(z),

N -~ -~
VNo® ;[u(zn h) — p(zi, ho))/N = VNa®[u(h} — p(ho)] + 0p(1).

Assumption B-3 (i) || (2, B, k) ~15(z: Bos ho) Il < B5(2)lll B=Bo Il +(1l h=ho lla)]
and E[b;(2)?] < oo; (it) For e > 0 and || B — fo ||< € and || h — ho |la< oo,
there is Dj(z, h; B, h) that is linear on || h ||a< oo satisfying |u;(z, B, h) —p;(z, B, h)
~Dj(z,h — R;B,R)| = ofli h—h |la) as | h =k [la— 0 for fized B and h;
(iii) | Dj(z h; B,h) —Dj(z,h; oho) 1| < bi(2) | k lla, (I B=Bo Il + || b~
ho lla;) and || Dj(z, s Bo,ho) || < bi(2) Il b llay and E[B(2)"] < oo; (iv) B = fo
+0,(8sn) — 0, g*1/2F=B1ggy —3 0, k1 /2+( > k+A,, No®+2814282-k1 [In N —

00, NoZ+283-k1 _, o0,
The following lemma is a generalization of Newey (1994b) Lemma 5.5.

Lemma 5 Suppose that Assumption B-3 is satisfied. If for all jt, pj(h) = [ Dj(z, h;
Bo, ho) dF(z) satisfies the conditions of Lemma 4, then for all j,t, a“Vﬂ AN Vit, for
‘,J'g n (1.10).

PROOF: Let Diy, j = Dj(2it, §is Ko (-—i1s); B, h) and Dins,j = Dj(zie, q1a Ko (
- — 21,); Bo, ho), Girj = Looer X1 Diyini/NT, and &iej = 5 i, Tiy E|
Disit j| 2} (note that & j = ¥, 1, Dy, j/NT). Then using the method
of proof for Newey (1994b) Lemma 5.5, it is shown that, for t =2,...,T
and j = 1,2, o5 SN || Gury — Garj P /N 22 0 and o5 TN, || Gurj —
&y I /N -2 0. Note that a;; = p}(Xi, Xie-1)gi as defined in the
proof of Lemma 3. In that proof it was also shown that o*1/2E[a;,, ;] — 0,
ok Elay, j6l ) — Vji, and 0 E[|| Girj ||'] — 0. Hence by the Markov
inequality, 0% ¥ | (Girj— LM, 1/ N) (@i — Liy auj/N)' /N -5 Vi,
the conclusion then follows by the triangle inequality. 0

PROOF of Theorem 2: Let 1p,(z) = ympi(z) + (1 — 7)mp2(z) and
note that ﬁlp'-y:; = mp,, filp'.,:o = mp2 and ﬁlp'-,=1/2 = mp; yl(z, h) =
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Az2) 22222 11 (2, B) = —A(zy) 2222 Dy (2, b; ) = A(z2) b (z, 22) " [ha

hy(z, .'tz)’ hy(z1,1)’

z, 32) ~ $222) hy(z, @)); Da(z,hih) = —da(zi)hu(zr, 2) ™ [ha(z, )

—pn, (o, 2)); w2 k) = ym(zh) + (1 - Daalzh); plzB,h) =
u(z,h) — B; D(z,h;h) = yDi(z, ks k) + (1 = 7)Dy(2, b; iz)] D(z,h) =
D(z,h;ho). For || h—h ||< € |uj(z,h) — iz, k) — Dj(z,h - h; b))

= |(2E) — 1)Dj(z,h ~ Bsh)| < C | h—h ||? and |Dj(z,h;h)| <

Cll bl Hence, u(z8,h) - u(zB,h) — Dizh — kih) < £5((2 -
i+ G = 1)@ = 7)lwilz k) — pi(z,h) — Di(z,h — hih)| < 5;C; |
h—h|?<C| h—h|?and |D(z,hh)| < T;((2 - 5)v+ (G - 1)1 -
)| Dj(z, h; b)| 5 C I h]|. Checking the rate conditions, A = 0, and
note that \/Na 1/2 — cosince & < k- 8. o} = (B5)/2+0¢ — 0

=
since (’;;}'v) A(,ﬁ,z;):' ][No*] and each of these two terms approaches in-

finity. vV No*1/2(0%)? InN___ o 9./In No¢+Hki-K)/2 4 \/No2%+h/2 S
N = JReiinys +2V

Lemma 4 holds with u(h) = &; [((2—5)v+(i— 1)(1—'7))/\( 7g(a))fn(%(a))
[ha(z5(a)) — U(z;(a))hs (z;(a))] fola)da, where fo(*) = £ L, fz, (). Now
to check the assumptions of Lemma 3, we only need to consider the rate
conditions and Assumption B-2. Let wj(a) = ((2 - j5)v+ (4 — 1)(1 —
N A(zj(a)) fi(zj(a)) ! fola)[~(z;(a)), 1] which is bounded and continu-
ous a.e. and zero outside a compact set. The rate conditions hold by
hypothesis and by No*'/2 —s oo.

Finally, note that for p;(2, h, 8) = p;(z, h) and Dj(z, h; 3, 71) = Dj(z, h; 71)
as given above, conditions (i)-(iii) of Assumption B-3 are satisfied, with
A = A, = A, = A; = 0. Then with dgy = 0 the rate conditions in (iv)
hold and the consistent variance estimator conclusion follows by Lemma 5.
O
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Chapter 2

A Nonparametric Empirical
Analysis of the q Theory of

Investment

2.1 Introduction

This chapter provides an application of the nonparametric panel estimation methods
given in Chapter 1. We use these nonparametric methods to analyze nonlinearities
in the investment - g relationship. The assumption of quadratic adjustment costs
has received little attention in the empirical investment literature. We find that that
assumption is too restrictive and that its acceptance explains some but not all of ¢'s
poor empirical performance. Additionally, cash flow is still found to be a significant
regressor, and we are able to gain insight into the reason for its significance.
Brainard and Tobin (1968) and Tobin (1969) introduced the notion of average
g, the ratio of a firm’s market value to the replacement cost of its capital, as a
determinant of the firm’s optimal investment rate. Mussa (1977) and Abel (1983)
then showed how the addition of adjustment costs to Jorgenson’s (1963) neoclassical
theory of investment leads to optimal investment that is a function only of marginal

g, the marginal value of a firm’s capital. Hayashi (1982) provided the theoretical
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foundation for the use of observable average g in the empirical literature by providing
the conditions under which marginal q equals average q. Hayashi’s conditions include
the firm being a price-taker in its output market, its adjustment cost function being
linearly homogenous in investment and capital, and its production function being
linearly homogenous in capital and labor.

The empirical literature that followed began with regressions using aggregate in-
vestment data. Summers (1981) and Abel and Blanchard (1986) conclude that the
estimated g coefficient was too low to explain the movements in investment and im-
plied implausibly high costs of adjustment. The next wave of research used firm-level
micro data, especially panel data, to test the g-theory. Papers like Schaller (1990)
and Blundell, Bond, Devereux, and Schiantarelli (1992) (which also accounts for the
potential endogeneity of g) find results somewhat more favorable to the g-theory than
the aggregate data research, but still not completely satisfactory.

Fezzari, Hubbard, and Petersen (1988) focused attention on other variables that
appear significant in investment-g regressions. In particular, they used a liquidity
constraint story to explain the significance of cash flow, see also Hayashi and Inoue
(1991). Other research, like Gilchrist and Himmelberg (1995), has considered the
myriad of alternative explanations for cash flow's importance.

In section 2.2, we begin with a simple ¢ model of investment to motivate our em-
pirical approach. Section 2.3 describes the data used in estimation, and in section 2.4

we present the results of that estimation. Section 2.5 concludes.

2.2 A Simple q Model of Investment

We start with a simple example of the theory leading to our specification. Let
G;(I,K,n) be the adjustment cost function for firm ¢ with investment I and cap-
ital stock K. The exogenous shock to adjustment costs, 7, is known to the firm
but unobserved by the econometrician. Let Q be marginal ¢ minus 1 times the
ratio of the price of capital goods to the output price. Then the first-order con-

dition from firm i’s maximization of the expected present value of net profits is
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%gii) .= Qi:- Thus, the marginal adjustment cost function is the key determinant

of investment according to this theory. Conventional parametric methods assume a
functional form for the marginal adjustment cost function, but with our nonpara-
metric approach we can now directly estimate this function without restricting its
shape. Traditionally, a quadratic parametrization for the adjustment cost function,
such as G;(I,K,n) = %[(%) — &; — n]?K, leads to the popular linear specification
(7’3);: = %Qiz + 0; + 1. Here §; is a firm-specific parameter of the adjustment cost
function. Instead we can allow for a much more flexible choice of adjustment cost
function. Hayashi’s conditions include linear homogeneity of G; with respect to I
and K, so Gi(I,K,n) = KGi(£,1,m) = Kgi(%,m). The only restriction we place
on the model is that g;(u,n) = g(u — §; — 1), so that §; captures the differences in
adjustment cost functions across firms and the exogenous shock enters additively as
an argument of g. If G; represents an adjustment cost function without fixed costs
and not including purchasing costs, then G;(0, K) = 0 so adjustment costs are zero
at -}(- = §; + 7. If n is a mean zero exogenous shock, then we can interpret ; as the
average firm specific investment-capital ratio at which adjustment costs are zero. For
example, we might think that each firm has a usual replacement ratio of investment
to capital, which might depend directly on its depreciation rate. Adjustment costs
are zero at this usual replacement ratio and increase for deviations from this ratio.
For instance, higher than usual investment rates might entail paying overtime wages
for installation. So we can interpret ; as the firm’s usual replacement ratio and, in
estimation, allow it to be different for different firms. Finally, solving for %, we have
the nonlinear-in-Q specification

(%) 0 m(Qie) + 6 + it

where m(-) = (¢')7!(-).
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2.3 Data

The results shown here use COMPUSTAT data on 425 manufacturing firms over the
years 1981-86. Only manufacturing firms with data for all six years were included
in the sample. We follow Fezzari, Hubbard, and Petersen (1988) in extracting and
constructing our variables from the COMPUSTAT data set. The investment variable
is defined as reported spending on property, plant, and equipment excluding spend-
ing on acquisitions. Tobin’s g is calculated by the method outlined in Salinger and

Summers (1983).

2.4 Empirical Results

2.4.1 Investment and q

In Table 2.1, we present results from estimation of the linear model (m(Q;) =
a + Q). Coefficient estimates are given along with standard errors corrected for
heteroskedasticity and serial correlation in parentheses. The OLS estimate of the
coefficient on @ ignoring the fixed effects is 0.0215, and the OLS constant term esti-
mate (standard error) not shown in the table is 0.1766 (0.0209). The within and first
difference estimates approximately double the OLS estimate, indicating the presence
of fixed effects. These estimates (0.0403 and 0.0475) are typical of estimates found in
the literature.

From Griliches and Hausman (1986), if errors in variables are present, we expect
the first difference estimate to be biased more toward zero than the within estimate
and the longest difference estimate to be the least biased toward zero. Here we
see the opposite results. While this ordering could be explained within Griliches
and Hausman’s errors-in-variables framework by serial correlation in the errors, one
might also consider the failure of linearity as a possible explanation. Though the
robust standard errors for the within and first difference estimates are quite large,
the difference of these two estimates is more precisely estimated. A chi-square test

of the null hypothesis that the within and first difference estimates are equal has

53



Table 2.1: Linear Panel Estimation Results: Q Coefficient Estimates

OLS Within First Longest
Difference Difference

0.0215 0.0403  0.0475  0.0417
(0.0072) (0.0147) (0.0156)  (0.0175)

a value of 2.68 (degrees of freedom = 1), which has a p-value of 0.10. This result
is not definitive but again points in the direction of the failure of the linear panel
specification.

In Table 2.2, we turn to another test of the linear model, presenting the multi-
variate linear regression on leads and lags of Q as suggested by Chamberlain (1982).
The null hypothesis of no heterogeneity bias is tested by imposing the restrictions
that the off-diagonal elements of the matrix of coefficients are all equal to zero and
the diagonal terms are equal. The chi-square test statistic of these restrictions has
35 degrees of freedom and has a value of 277.17, which gives a strong rejection of
the null hypothesis.! Heterogeneity bias within the linear specification still implies
restrictions on the coefficient estimate matrix in Table 2.2. Specifically, we expect
equality of the off-diagonal terms within each column and equality of the diagonal
elements. The chi-square test statistic of these restrictions has a value of 189.89 with
29 degrees of freedom, which strongly rejects the linear model.2 Again, one possible
conclusion would be the need for a more flexible nonlinear specification, so we turn
our attention to the nonparametric estimators discussed in this paper.

In Figure 2-1 , we present two first difference type series estimators. The solid line
is the simple first difference series estimator (7ir) and the dashed line is the partial

means first difference estimator (ri2p7). In both cases, our estimators use polynomial

'Relaxing the restriction that the diagonal elements are equal to allow for time-varying 3's and
just testing that the off-diagonal elements are zero makes no difference in the results. The test
statistic has a value of 201.23 with 30 degrees of freedom, so we still clearly reject.

2 As before, we can allow for time-varying 3’s by ignoring the restriction of equality of the diagonal
elements, and the results are unchanged. The chi-square statistic has 24 degrees of freedom and a
value of 154.08, leading to rejection of the linear model with time-varying coefficients.
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Table 2.2: Multivariate Linear Regression Results

Dependent | Q19s1 Q1982 Q1983 Q1984 Q985 Q1986
Variable
I1981 0.0853 -0.1174 0.0241 -0.0184 -0.0071 0.0184
(0.0226) (0.0344) (0.0218) (0.0235) (0.0293) (0.0163)
T80 -0.0107 0.0643 -0.0186 -0.0057 -0.0022 -0.0035
(0.0067) (0.0269) (0.0148) (0.0110j (0.0146) (0.0070)
I 983 -0.0006 0.0105 0.0185 -0.0113 -0.0105 -0.0000
(0.0031) (0.0102) (6.0134) (0.0097) (0.0125) (0.0067)
I 984 0.0017 -0.0038 0.0041 0.0050 0.0051  -0.0049
(0.0030) ((0.0067) (0.0065) (0.0085) (0.0082) (0.0044)
I085 -0.0026 0.0061 -0.0029 -0.0015 0.0355 -0.0160
(0.0013) (0.0057) (0.0095) (0.0085) (0.0229) (0.0125)
T1986 -0.0037 -0.0011 0.0137 -0.0091 0.0013 0.0105
(0.0012) (0.0034) (0.0062) (0.0058) (0.0119) (0.0077)

x2(35) = 277.17 x2(29) = 189.89
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spline approximating functions, a second degree polynomial with six evenly spaced
knots.3The difference in choice of approximating functions for these two estimators
exists because the simple first difference estimator is essentially doing univariate re-
gression, while the partial means estimator first estimates the two-dimensional re-
gression function and then partials out with respect to one of the arguments. The
two-dimensional estimation for the partial means estimator includes interactions of
the leading polynomial terms but not interactions of the piecewise second degree
polynomial terms. The latter interaction terms were never found to have statistically
significant coefficient estimates and their addition usually resulted in near singular-
ity of ¢%(z)q®(z)' (corresponding to too much undersmoothing). It is clear that
these two estimators are very close. It is encouraging that the partial means method,
which nonparametrically regresses on a two-dimensional space and then partials out,
so closely mirrors the simple first difference estimator, which uses a restriction to
reduce the problem to nonparametric regression on a single dimension. This exam-
ple is also reassuring for applications using kernel partial means, for which a similar
comparison is not possible. '

The nonlinearities in this figure are not striking, but are strong enough to result in
the rejection of the linear model above. The flattening of the curve for higher values
of @@ seems to be a persistent feature of nonparametric panel estimation of investment
on Q. Also, the overall slope roughly corresponds to the slope coefficent from first
difference linear estimation in Table 2.1.

Next we consider difference from means type estimation using kernel methods.
Difference from means type estimation is convenient for making comparisons to non-
parametric estimation ignoring fixed effects. The within type estimate (using a band-
width of 1.6) along with a standard kernel regression estimate (ignoring the fixed
effects) are shown in Figure 2-2. A second-order Epanechnikov kernel is used, though

the estimates do not seem very sensitive to kernel choice. Several features of this fig-

3The specification was selected by adding a single knot to the number chosen by a leave-one-out
cross-validation criterion. This cross-validation criterion is known to lead to the mean square error
minimizing choice of number of terms. We add a term to “undersmooth” in accordance with the
theory.
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Figure 2-1: Investment on Q: Series Estimation
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ure are interesting. First, the role of the fixed effects appears to be quite important
even after we have allowed for a flexible nonlinear marginal adjustment cost function.
A comparison of these two kernel regression estimates is analogous to the comparison
of OLS and within estimates. Also in Figure 2-2, we see the role of the nonlinearites
in the marginal adjustment cost function. In particular, at lower values of  where
most of the density is, the function seems steeper than indicated by linear methods.
Again there is some flattening of the curve at high values of @ which accounts for the
lower linear slope estimates.

Linear panel estimates of the coefficient on @, like those given in Table 2.1, are
generally considered too low (to account for the movements in investment that are seen
empirically). Our nonparametric specifications give us some additional insight into
the investment-q relationship. First, we find that even allowing for nonlinearities in
the regression function, individual firm effects are still playing an important role (i.e.
heterogeneity bias is still a prominent feature of our nonparametric specification).

Overall, the curve is fairly linear, but for large values of () there seems to be a
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Figure 2-2: Investment on Q: Difference from Means Estimation
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flattening of the investment-q curve, and correspondingly the curve is steeper for
lower values of ¢ than is found by conventional linear panel methods. Traditionally,
we would associate this result with a finding of more convex adjustment costs than
what is commonly found, but Whited (1994) cautions against pushing that link too
far. Finally, the work of Abel and Eberly (1994) introduces flow fixed costs and kinks
in the adjustment cost function into the theory of firm investment. The result is a
threshold model of investment, which is estimated by Barnett and Sakellaris (1995).
As in Barnett and Sakellaris, our figures present only mild evidence of flat thresholds

and do indicate varying slopes over different regions of Q.

2.4.2 Testing for Measurement Error

To further substantiate the interesting results of the last section, we consider briefly
the potential measurement error in Q. All of the nonparametric graphs of investment
vs. Q) seem to suggest a particular parametric relationship. Specifically, we will assume
(for this subsection) a piecewise linear relationship with one breakpoint. By moving to
this parametric nonlinear functional form, we will be able to easily compare traditional
errors in variables test statistics in the linear and nonlinear cases.

In Table 2.3, we give the piecewise linear results analogous to Table 2.1. The
estimated breakpoint 5.09 will be used throughout.* As expected, the Q coefficient is
lower in all cases for high @ values, corresponding to our nonparametric graphs in the
previous section. With the linear functional form, we tested for equality of the within
and first difference Q coefficient estimates from Table 2.1, as a simple measurement
error test. In that case, the chi-square test statistic was 2.68 which is not definitive
but has a p-i/alue of 0.10.

We now compute the chi-square test statistic for equality of the within and dif-
ference estimates of the @Q coefficient for both high and low @ values. The resulting
chi-square statistic with two degrees of freedom has a value of 1.43, which will not

allow us to reject the null hypothesis of equality. This test is an indication that

4We will not account for the estimation of the breakpoint in the calculation of standard errors
for other parameter estimates.



Table 2.3: Nonlinear Panel Estimation Results: Q Coefficient Estimates

Q OLS Within Difference

Q<500 | 0.0460 00737  0.0537
(0.0061) (0.0109)  (0.0135)

Q>509 | 00203 00382  0.0469
(0.0102) (0.0176) (0.0173)

once the nonlinearities in the investment-Q relationship are accounted for the role of
measurement error is diminished to statistical insignificance.

Following Griliches and Hausman (1986), in Table 2.4 we use instumental variables
to test again for measurement error. We allow for an MA(2) measurement error
process, so that some of the leads and lags of the @Q’s can be used as instruments in
certain individual differenced equations. For each of these equations we estimate a
Q coefficient in the linear model and two @ coefficients corresponding to high and
low Q values for the piecewise linear model. Finally we impose the restriction of
equality across the individual equations and compute the corresponding test staistic.
For the linear model, the chi-square test of restrictions has five degrees of freedom
and a value of 12.66. Thus we can reject the hypothesis of equality, indicating either
measurement error or a specification error. In the nonlinear model, the chi-square
test of restrictions has ten degrees of freedom and a value of 8.88. Thus in this
nonlinear specification, our test does not show evidence of significant measurement
error. Together the tests of this section point toward a specification error in the linear
model, which is accounted for by the piecewise linear functional form. With this new

nonlinear specification the role of measurement error in @ is statistically insignificant.
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Table 2.4: Linear IV Panel Estimation Results (Q Coefficient Estimates)
Allowing MA(2) Measurement Error Process

Difference Q Q<50 Q>5.09
dy, — dy; || 0.0451 0.8390 0.0922
(0.0159) || ( 2.1250) ( 0.1217)
dys —dy, || -0.0178 || -0.7570  -0.0276
(0.0126) || ( 1.6113) ( 0.0384)
dys — dys || 0.0068 || -0.1612  -0.0019
(0.0065) || (0.1895) ( 0.0121)
dys — dys || 0.3068 | 0.3052  -0.1199
(1.2081) || (0.5126) ( 0.1934)
dys —dy, || 0.2099 | -0.7858 0.0648
(0.2256) || ( 1.4407) ( 0.1615)
dys — dys | 0.0205 [ 0.0904  0.0220
(0.0100) || ( 0.1242) ( 0.0108)
Restricted || 0.0052 0.0652 0.0117
(0.0062) || ( 0.0993) ( 0.0070)
x% Test || 12.6614 8.8799
(5 d.f) (10d.f)
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Figure 2-3: Investment on (Q, Cash)
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2.4.3 Cash Flow

Next we explore the role of cash flow as an explanatory variable for investment. In
Figure 2-3, the kernel difference from means method with bandwidths 1.3 for Q and
0.35 for cash is used to regress investment on Q and cash flow. From the three
dimensional picture it is difficult to discern the details of the figure, so in Figure 2-4,
we present the investment - cash cross sections at various @) values. We find that the
investment - cash relationship is fairly linear, except for the extreme Q’s where data
is more scarce. More importantly, the function is upward sloping over the full range
of cash flow values with no signs of flattening out.

Interestingly, the addition of cash flow to our nonparametric regression has very
little effect on the slope of the investment - @ relationship. For instance, since the
investment - cash flow cross sections were quite parallel and linear suggesting an
additive linear-in-cash-flow term, we estimated the partially linear model from sec-

tion 1.5.3. We graph the resulting nonparametric curve estimate in Figure 2-5 along
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Figure 2-4: Investment on Cash Cross-Sections: Kernel Difference from Means
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with the original investment - Q curve that does not partial out cash. Clearly, cash
flow has a minimal effect along the QQ-dimension.

Most importantly, the investment - cash flow relationship suggests that liquidity
constraints may not be the overriding reason for cash flow’s significance in the invest-
ment equation. Specifically, we graph the relationship for quite high values of cash
flow (recalling that the cash flow axis is expressed in terms of the ratio of cash flow to
capital stock), and never find a flattening of the curve even for very high cash values
as would be expected with the liquidity constraint explanation. Instead, the shape of
the investment - cash curve suggests that the free cash flow model where managers
have an incentive to increase firms size and spend all cash on investment projects
regardless of the return is a more likely explanation. Alternatively, one might think

that cash flow is simply acting as a signal of firm investment opportunities.
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Figure 2-5: Investment on Q with Patialled Out Cash

Cash coeffest= 0.05928

2.5 Conclusion

Using a panel of firm investment data and the estimators of Chapter 1, we analyze
nonlinearities in the investment - ¢ relationship. The main conclusion is that we find
a steeper slope than usually found over lower Q valu, we turn to another test of the
linear model, presenting the multivariate linear regression on leads and lags of Q as
suggested by Chamberlain (1982). The null hypothesis of no heterogeneity bias is
tested by imposing the restrictions that the off-diagonal elements of the matrix of
coefficients are all equal to zero and the diagonal terms are equal. The chi-square test
statistic of these restrictions has 35 degrees of freedom and has a value of 277.17, which
gives a strong rejection of the null hypothesis.> Heterogeneity bias within the linear
specification still implies restrictions on the coefficient estimate matrix in Table 2.2.

Specifically, we expect equality of the off-diagonal terms within each column and

5Relaxing the restriction that the diagonal elements are equal to allow for time-varying 3’s and
just testing that the off-diagonal elements are zero makes no difference in the results. The test
statistic has a value of 201.23 with 30 degrees of freedom, so we still clearly reject.
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equality of the diagonal elements. The chi-square test statistic of these restrictions
has a value of 189.89 with 29 degrees of freedom, which strongly rejects the linear
model.® Again, one possible conclusion would be the need for 2 more flexible nonlinear
specification, so we turn our attention to the nonparametric estimators discussed in

this paper.

8 As before, we can allow for time-varying s by ignoring the restriction of equality of the diagonal
elements, and the results are unchanged. The chi-square statistic has 24 degrees of freedom and a
value of 154.08, leading to rejecticn of the linear model with time-varying coefficients.
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Chapter 3

Feasible Simulation Variance

Estimation for Maximum

Likelihood

3.1 Introduction

In general the asymptotic variance of a maximum likelihood estimator is H-!JH™!,
- where H is the Hessian of the log-likelihood and J is the Fisher information matrix.
Under correct specification of the distribution and certain regularity conditions, the
information matrix equality holds, H = —J, and the asymptotic variance collapses
“to its familiar form, J~!. Two common estimators of J are the sample average of
the outer product of the scores and the sample average of the negative derivative of
the score, both using a parameter estimate in place of the unknown true parameter
value.

A third less frequently used estimator is the sample average of the conditional
information matrix (conditioning on the regressors). There is some evidence to sug-
gest that the conditional information matrix [c.i.m.] estimator often outperforms
the above estimators in terms of approximating the asymptotic distribution of test

statistics, see Davidson and MacKinnon (1984). Further evidence in favor of the
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c.i.m. estimator is presented in Section 3.2 of this paper. Specifically, this estimator
achieves the semiparametric efficiency bound and thus is at least as efficient as any
other ML variance estimator. Unfortunately, the integral involved in computation of
the conditional information matrix often makes this approach infeasible with com-
plicated likelihoods. We follow Lerman and Manski (1981), McFadden (1989), and
Pakes and Pollard (1989) in using simulation to overcome the problem of evaluating
a burdensome integral. The conditional density evaluated at the given data points
and the ML parameter estimate can be used to simulate an approximation to the
conditional information matrix for each observation. The sample average of these
approximations then gives a consistent estimate of the asymptotic variance. We an-
alyze the performance of these simulation variance estimators through a comparison
of their asymptotic distributions and through Monte Carlo evidence of their error
coverage rates in confidence intervals for the maximum likelihood estimates.

In Section 3.2, we present the commonly used variance estimators for maximum
likelihood, and conditions for consistency of each estimator are given. Their relative
performances in estimating the asymptotic variance is discussed, and the efficiency
advantage of the c.i.m. estimator is established formally in a semiparametric esti-
mation setting. The simulation estimators are presented in Section 3.3. A theorem
giving consistency conditions for the simulation estimators is stated. In Section 3.4,
the influence functions for the variance estimators are used to derive their asymptotic
variances which are, in turn, analyzed and compared. Section 3.5 contains Monte
Carlo results using these variance estimators in computing confidence intervals for
maximum likelihood estimates. In Section 3.5.1, all of the variance estimators pre-
sented in the paper are implemented in a probit model. In Section 3.5.2, a sample
selection model is used to give further Monte Carlo evidence in favor of simulation
estimation. In this model, not all of the variance estimators are available so the

simulation estimators become additionally useful. Section 3.6 concludes.
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3.2 Standard MLE Variance Estimators

Suppose we are given i.i.d. data (y;,,),..., (Yn, Zn) where y,|zy, ..., yn|z, are drawn
from a probability density function f(y|z,3), which is a member of the family of
p.d.f’s f(y|z,B) indexed by S. Here, as often occurs in econometrics, we have a
set of “regressors” z whose marginal distribution is unspecified,! and so estimation
proceeds by conditional maximum likelihood. In particular, the log likelihood function
is L,(8) =n"' %, In f(yi|z;, ) and the maximum likelihood estimate of 3 is given
by

~

B = argmax L,(B)
BEB

where B is a (possibly restricted) parameter space which contains .

Conditions for consistency and asymptotic normality of B can be found in stan-
dard references such as Amemiya (1985). If H = E[0In f(y|z, 5)/880/'] and
J = E[9n f(ylr, 5o)/0B (81n f(y|z, fo)/B), then V/n(B ~ Bo) — N(0, H™' JH™")
under the conditions of a standard asymptotic normality result for extremum esti-
mators. We can also apply the information matrix equality H = —J to obtain the
simplified expression \/n(8 — fo) -4y N(0,J7Y).

This last result leaves us with many potential estimates of the asymptotic variance.
By continuity of matrix inversion and the Slutsky Theorem, attention can center on
estimation of J itself rather than J~!. The most convenient estimator is the sample

average of the outer product of the scores. Let s(y,z, ) = dIn f(y|z, 3)/0/3, then
. 1 . .
Ji= - > s(yi, zi, B)'s(vir zi, B).
i=1

This estimator is just the sample analog of the Fisher Information Matrix.

Using the information matrix equality, the sample analog of the negative Hessian of
the log likelihood provides a second estimator. Let h(y, z, 8) = 8*In f(y|z, 8)/0800',
then

n

j2 = —% z h(yi,.'lf,', B)

i=1

'The unconditional case can be considered as a special case in this framework.
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In some contexts, the computational difficulty of taking second derivatives renders Jo
less suitable than j,.

Consider next the conditional information matrix

Jwp) = [ m"f;%'“’*ﬂ) (31"fgzlz,ﬁ

)) £ (ylz, B)d. (3.1)

| Using the law of -iterated-expectations, we-have-another-identity, J = E[J(z, 5)],

which leads to a third estimator,
. 1& .
J3 = - > J(zi, B). (3.2)
i=1

Analogous to the conditional information matrix estimator is the conditional Hessian

estimator, where

H(z,8) = Eh(y, . Blz. B = [ h(y,z.8)f Iz, B)dy.

However, under a generalization of the information matrix equality, J(z, 8) = —H(z, ).

Theorem 5 Suppose (Y1,Z1),-- -, (Yn, Zn) are i.i.d. and i) f(y|z, B) is twice contin-
uously differentiable and f(y|z,B) > 0 a.s. dzdy in a neighborhood Nof fBy; i)

Jsupgen || 0f (ylz,8)/98 || dy < oo a.s. dz; i) [supgen || 0°f(ylz, B)/0BOB' ||
dy < 0o a.s. dz. Then H(z,) = —J(z,B) a.s. dz for BEN.

PROOF: see Appendix

Hence J; = n”!'Y; J(zi,B) = -n"'S,H (x,-,,B), i.e. the c.i.m. estimator and the
conditional Hessian estimator are numerically identical estimators. This estimator is

used even less than J; and J, as it requires an evaluation of the integral in equa-

tion (3.1). In complicated models, such a solution may be very difficult to obtain.
In the next section simulation estimators that avoid computation of this potentially
complicated integral are suggested. Before presenting those estimators, we need to

establish the conditions necessary to achieve consistency of Ji, Ja, and J.
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The following lemma taken from Newey and McFadden (1993) is the key to proving
consistency of the usual covariance estimators above. The sufficient conditions are

continuity at the true parameter and a dominance condition.

Lemma 6 If z,..., 2, are i.i.d., a(z, B) is continuous at By with probability one and
there ezists a neighborhood N of By such that Efsupgey || a(z,8) ||} < oo, then for

any ﬁ L) .507 % ?:1 a(z,-, B) 'L) E[a(z7 ﬂO)]'2

Then the following theorem gives the conditions for consistency of the covariance

estimators discussed so far.

Theorem 6 Suppose (i) B -2+ Bo; (%) f(y|z, B) is twice continuously differentiable
in a neighborhood N of fBy; and (iii) J erists and is nonsingular.

a) If (iv) Efsupyepr || 8f(ylz, 8)/0B |I?] < oo, then J7* £ J=1.

b) If (o) S supyen || 95 (ulz, B)/0B Il dy < 00 and fsup,epr || 8°F(ule, B)/9P0B |
dy < 0o a.s. dz and (vi) E[supsepr || 0% f(ylz, B)/0BOB' ||< oo, then Jyt 2y gt
c) If (vir) J(z,B) is continuous at By with probability one and (viii) E[sup[,E YAl
J(z,B) |]] < oo, then J;* L5 J-1.

PROOF: The conclusions in (a) and (c) follow by a straigtforward appli-
cation of Lemma 6. Conditions (ii) and (v) are sufficient to switch the or-

der of differentiation and integration twice in the expression [ y—{j%’[’,’fﬁ"ldy

which in turn is enough to prove the information matrix equality, H = —-J
(see the proof of Theorem 5 for details). The conclusion in (b) then follows
by an application of Lemma 6.

Condition (iii) in Theorem 6 is needed to apply the Slutsky Theorem. Condition
(ii) is stronger than necessary for the result in (a), but is usually a condition for
asymptotic normality anyway (to obtain uniform convergence of the Hessian).

If we are simply interested in obtaining the best possible estimate of J or J~!
given data and the MLE §, then Theorem 6 provides no guide as to which estimator
to use. Theorem 6 is an asymptotic result that does not address the small sample

properties of these estimators.

2 A proof of this lemma is given in Section 4 of Newey and McFadden (1993).
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The summations in J, and J, are approximations to integrals in the Y x X space

taken with respect to the joint density f(y,z|G). The summation in J; is an ap-
proximation to an integral in the X space with respect to the marginal density of z.
Compared to J, and J,, J; reduces the dimension (by dim[Y]) of the space over which
the integral it is approximating is taken. This reduction is accomplished by making
use of the fact that the conditional density f(y|z, ﬁ) is known. J(z, ) is computed by
taking an integral with respect to the given conditional density. Then we need only
approximate the integral of J(z, B) with respect to the marginal density of z which is
unspecified. So the data ¥, ..., y, is not used because we have estimates of the condi-
tional densities from which the y;’s are drawn, specifically f(y|z), ﬂ), ey f(ylzn, B).
The next theorem formalizes the intuition that .f3 has an advantage over jl and jg
because it makes more use of the structure of the problem.

Before stating the assumptions for Theorem 7, we need some additional notation.
All of the notation given here corresponds directly to the notation in Brown and
Newey (1992) [BN]. An s subscript denotes the stacked vector version of a matrix.
We can think of the given variance estimators as method of moments estimators
with J = n™! ?=,m(yi,xi,ﬁ), where for example m(y,z, 8) = h(y,z, ) in Ja. So
we will present the assumptions below for general m and then note that they must
hold for m(y, z, B) = [s(y,z, B)'s(y, z, B)] and m(y,z,B) = h(y,z, (). Let p*(8) =
I Im(y,z, B):f(y, z|fo)dydz and J¢(B) = E[J(z,3)s]. Asin BN, 0 = (,7) is used
to index parametric submodels, where 7 is a finite vector of shape parameters for
the distribution of z. Let u(8) = [ [ m(y, z, 8(8)) f(y|z, B(0))dy f(z,n(6))dz and S =
s(y, z, fo).

Assumptions 1-5 correspond to Assumptions 1-6 in BN, and Assumptions 6-7 are
analogs to Assumptions 2-3 for the efficient influence function case.® Assumption 1
and the finite second moment condition in Assumption 4 ensure that f is consistent
and asymptotically normal with variance J. Assumptions 2 and 3 and the finite

second moment condition in Assumption 5 are smoothness conditions which allow us

3Lemma A in the Appendix could be used to develop sufficient conditions t o replace Assumptions
6 and 7.

73



to obtain the asymptotic expansions of J; and Jo. Assumptions 6 and 7 are similar
smoothness conditions for expanding J;. Finally Assumptions 4 and 5 establish the

regularity (in the sense of Newey (1990)) of the estimators with which we are working.

Assumption 1 B is asymptotically linear with influence function Ys(y, z), E{vs(y, )]
=0.

Assumption 2 M(B8) =E(dm(y,z,3),/0f')) ezists and is continuous in a neighbor-
hood of B,.

Assumption 3 n~'/2 T, [{m(yi, zi, B)s — 1*(8)} — {m(vi, zi, Bo)s — Ju}] is stochas-

tically equicontinuous at 8 = [y.

Assumption 4 For all parametric submodels Ey|| ¥5(y, z) ||*] ezists and is contin-

uous in a neighborhood of 6.

Assumption 5 For all parametric submodels, p(0) is differentiable and E[|| m(y, z,

Bo)s — Js ||?] ezists and is continuous in a neighborhood of 6.

Assumption 6 Q(8) = E[dJ(z, B)s/df'] ezists and is continuous in a neighborhood
of Po-

Assumption 7 n~2Y 2 [{J(zi, B)s — JS(B)} — {J(zi, Bo)s — Js}] is stochastically

equicontinuous at 3 = .

Theorem 7 Under Assumptions 1-7 (and 1-5 with m(y, z, 8) = [s(y, z, B)'s(y, z, B)]
end m(y, z, B) = h(y,z, B)), J3 is asymptotically at least as efficient as Ji and J, as

an estimator of J. Moreover, Js attains the semiparametric efficiency bound.
PROOF: see Appendix

This result is proven by noting that J;, Jo, and J; are semiparametric estimators
of an expectation and then applying results from Brown and Newey (1992). The
nonparametric component in our setup is the marginal distribution of z, and the main

point of the proof is that J(z, fo) = E[(S'S),|z] = —Elh,|z], making J; the efficient
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estimator. In other words, J(z, §) is equal to the projection of s(y,z, 8)'s(y, z, )
and h(y, z, B) on the nonparametric tangent set.

Of course, in most applications, we are ultimately interested in something beyond
accurate estimation of J. If we are using a variance estimate to compute a confidence
interval for 3, then ultimately we want as low coverage error as possible. Obviously
accurate estimation of J is only one component that might help in this regard, but

as we will see in Section 3.5 it appears to be a potentially important component.

3.3 Simulation Estimators

Often the integration required to compute J(z,/3) in equation (3.1) is complicated,
making the use of J; unwieldy. However, closer inspection of equation (3.2) reveals
that we are actually interested in J(z;, /3) fori=1,...,n. Since we already have our
maximum likelihood estimate 3 and we are given f (y|z, 3), we have the exact density

f(y|z, B) used in computation of J(z,3). Thus we can approximate J(z;, f3) for each

i =1,...,n by simulation without analytically solving the integral in equation (3.1).
Let
. . 1 . 5
Im(zi, B) = - > s(#ij» i, B)' (@i, i, B),
j=1

where #;1, ..., ¥im are drawn randomly and independently for each i from the known
distribution f (ylxi,/}).“ Using Theorem 5, we have a second way to approximate
J(zi, B) = —H(z:, B), -

Hp(z:, 8) = %gh(gﬁ,xh/})'

So two feasible simulation variance estimators for MLE (both analogous to J3)

are
. 1. . .
Jy = n Z I (i, B) (3.3)
i=1
. 12 - .
Js = —_ﬁ Z Hm(x,-, /3)' (3-4)
i=1

41f the scores themselves must be simulated, then the following results could be extended possibly
putting to use the techniques suggested in Hajivassiliou and McFadden (1992).
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These simulation estimators are small sample approximations to Js in the sense that
for a fixed sample size n, Jy 25 J; and J5 25 J; as m —» oo. Still consistency of
these estimators does not require that the number of simulations increases to infinity.
The next theorem gives consistency for any fixed positive number of simulations per
observation.

Following Pakes and Pollard (1989), if we can express y as a function of z, 3, and
a random variable from a known distribution, then consistency of J; and Js is given

by the following result.

Theorem 8 Suppose conditions (i) and (iit) of Theorem 6 are satisfied, and sup-
pose there is a random variable v ~ P(-|z), P a known distribution, and a known
function g such that g(z,u,B) ~ f(-|z,B). Let ks(z,u,B) = s(g(z,u,B),z,) and
kn(z,u, B) = h(g(z,u, B),z,B).

a) If ky(z,u, B) is continuous at By with probability one and if there ezists a neigh-
borhood N of Py such that E[supgey || ks(z, u, B) ||?] < oo, then for any fized positive
integer m, J;' 25 J71L.

b) Suppose conditions (ii) and (v) of Theorem 6 are satisfied. If kn(z,u, 3) is contin-
uous at By with probability one and if there exists a neighborhood N of s such that
El[supgey || kn(z,u, B) ||] < oo, then for any fized positive integer m, Jit B gt

PROOF: see Appendix

Verification of the dominance conditions in Theorem 8 usually can be accomplished
by showing equivalence to the analogous dominance conditions needed for consistency
of the outer product of ‘the scores [0.p.s.] and the negative Hessian estimators. An
example of this approacﬁ in a probit model follows.

Example 1: PROBIT

v = XB+e where € ~ N(0,1)

y = 1(y">0)
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Then,

Swnh) = gac i)
g9(z,u,B) = 1(z'f+u) where u ~ N(0, 1)
ks(z,u,B) Ye'B+u) - ¢(z'f) é(z'B)x

®(z'8)®(~='f)
Now we usually prove E[supgey || 5(y,z, 8) ||*] < oo by noting that

é(z'B)z
'B)8(—z'B)

¢(z'B)z
o(z'B)®(—='B)

| s(y,2z,B8) | < ly— (=B | 3z < 2|
and showing Efsupsey || {#(2'B)z}/{®(z'8)®(~2'B)} |I*] < 00

Similarly [1(z'8+u) — ®(z')| < 2 so E[supgey || {#(z')z}/{2(z'B)2(—='B)} ||
] < oo is also sufficient to prove E[supgey || ks(z,u, 8) ||?] < oo. Verification of the

dominance condition for the Hessian simulation estimator follows similarly.

In Theorem 8, we see that both simulation variance estimators are consistent for
any fixed positive m. If, for example, we look at Jy with m = 1, we find a formula
(Jy =n"? ~1 8@, zi, B))’s(g},—l,x,-, B)) almost identical to the definition of J,. The
only difference is that Jy uses values §;; drawn from the conditional densities f (y|z:, B)
whereas J; uses the given data y; drawn from the true conditional density f(y|z;, f)-
On the other hand, for large m, jm(z,-, [3) converges in probability to J(z;, ﬁ) by the
Weak Law of Large Numbers. Hence, for large values of m, we expect Jy (and j5) to

closely follow Js. These comparisons are formalized in the next section by looking at

the asymptotic distribution of these estimators.

3.4 Asymptotic Behavior Comparisons

Before presenting a Monte Carlo comparison of the performance of the variance esti-

mators discussed in this paper, we present a comparison of their influence functions

SE[|l = ||*] < oo is sufficient to prove this step, see Newey and McFadden (1993)
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and their asymptotic variances. The influence function for Js is derived in the proof
of Theorem 7. The derivation for the other estimators is similar, involving a standard
asymptotic expansion and a stochastic equicontinuity assumption. The assumptions
of Theorem 7 are sufficient for the validity of the influence functions for Ji, Jo, and J3
given below. The only additional assumptions needed for the simulation estimators

are stochastic equicontinuity conditions.
Assumption 8 n~!/2 ;‘zl[{j,(z,-, B)s—J(B)} - {j,(a:,-, Bo)s — Js}] is stochastically
equicontinuous at 8 = 3.

Assumption 9 n~Y2 5" [{H,(z;, 8)s— H(B)} = {H,(z:, Bo)s— H,}) is stochastically
equicontinuous at 8 = 3y, where H*(8) = E[H(z, 8);] = —J°(B).

The influence functions for the variance estimators follow. Let Dy = E(9[s(y, z, /o)’

s(y,z, Bo)]s/08') and D, = E(Ch(y, z, Bo)s/98').

6s(y,z) = [S'Sls—Ji+DyJ7'S

65y, z) = —lhs— H,+ D2J7'S]

os(y,z) = J(r,Bo) — Js +{D1 + E([S'S),5")}J~'S
= —[H(z,B)-- Hs + {D2 + E(h,S")}J7'S]

65(.2) = [J(z,B) — J)s + {Dy + E([S'S),S")}J7'S

6155y, 7) = —[H:(z,B0) — H)s — {D2 + E(h,S")}J 'S

The derivations for these influence functions are given in the Appendix.

In light of the effiency result of Theorem 7, the influence functions can be used to
determine the conditions under which the variance estimators are efficient. Setting
b5, = b5, |61, = ¢J,] and noting that E(m|z) = J(z, Bo) [H(z,Ho)], we find that
Jy [J] is efficient when m, — E(m,|z) = E(m,S’)J~'S for m = §'S [m = h]. The
condition that m, — E(m;|z) be a linear combination of the scores seems both difficult

to interpret and unlikely to happen in practice.5 Of course, efficiency of Jy [j5]

6When this condition is satisfied it often seems to be when m, = E(m,|z). For example, if given
i.i.d. data from a normal distribution and estimating unknown mean and variance parameters, then
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occurs only if its simulation term is exactly equal to the integral it is simulating, ie
J.(z, B) = J(z, B) [H,(z, B) = H(z, 3)] which again is unlikely unless the conditional
density or the moment used in estimation is degenerate.

The asymptotic variances of the variance estimators can also be obtained from

the influence functions.

Var(l7),) = {E(S'SLIS'S)) — JuJi} + Dy + E([S'S),8)) [y + E([S'S), 5]
~B([5'S],8) I E(IS'S),S'Y
Var([Jo],) = {E(hsh,’) — J,Jo} + [D2 + E(h,S'))J ' [D; + E(h,S")
—E(h,S")J 'E(h,S")
Var([Bals) = {E[E((S'SL:|z)E([S'S),|=)] - J,J;}
+[D + E([S'S]sS")]J ' [D: + E([S'S):S"))
= {E[E(hs|z)E(hs|z)] — J;J.} + [Dy + E(h,S")|J ' {D2 + E(h,S")]
Var(lill) = HE(S'SLIS'SL) — o1} + “{EIE(S'SLIn) (IS S)Ie)] - J,J:)
+[(Dy + E([S'S]sS"))J D) + E([S'S],S")]
Var(lJl) = (B(hh) = JJ2) + “(E[E(hulz) E(huJz)] - I,
+[Ds + E(hsS')|J"'[Dy + E(hS"))

The first thing to notice is that as the number of simulations, r, approaches infinity,
the variances of J; and J; approach the effiency bound given by the variance of Js.
Hence given enough simulation draws J; and J; are more efficient estimators of J
than J, and J, (the exact number of simulations required depending on the particular
problem). On the other hand if only one simulation draw is used the ranking goes in
the opposite direction, so that J; [J5] is more efficient than J,(1) [J5(1)]. This result
is seen easily by noting that Var([Jy],) = (1/r)Var([J)],) + ((r — 1)/r)Var([Js],)
+ (1/r)E([S'S),S")J'E([S'S],S"). Hence when r = 1, Var([Jy],) [Var([Js],)] and
Var([J1],) [Var([J2],)] differ by the nonnegative definite matrix E(m,S')J " E(m,S'),

Jy = Js = Js.
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where m = (§'S), [m = h,). Intuitively, J; and J, are using a single draw from the
true conditional distribution of y given z, while Jy(1) and J5(1) are using a single
draw from the estimated conditional distribution f(y|z,3). We would expect the
estimators using the truth to do better. Finally, we see that J; gains efficiency over
Ji and J, since E(mm') — E[E(m|z)E(m|z)'] is nonnegative definite.” Still, J; and
J» gain relative to J; through the nonpositive definite term —E(m,S")J"'E(m,S').
Theorem 7 tells us that asymptotically the former gains outweigh the latter, since Js
is efficient.

In the next section, Monte Carlo results reveal how these theoretical comparisons

translate into confidence interval performance in specific example models.

3.5 Monte Carlo Results

3.5.1 Probit Model

In this section, results from application of the above variance estimators in the for-
mation of confidence intervals for probit model parameters are presented. Because
the model is simple, all of the estimators can be used and compared.

The first model estimated, model (P-A), is a very simple probit with a constant

term and one regressor.

v = fo+zh +e where € ~ N(0, 1)
y = 1y >0)
The generated independent variables z,,...,z, are drawn from a standard normal

(as the €’s are). Here and in the model that follows the z’s and the €’s will be i.i.d.
and independent of each other. Also, fy = 1 and 3, = 0.5 will be the true parameter
values used throughout.® A Newton-Raphson method is used to obtain the maximum

likelihood estimates. Starting values for the parameters are zero.

8 Additional Monte Carlo runs have shown that the general conclusions noted here are robust to
the exact parametrization or confidence interval size.
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Model (P-B) is a probit with heteroskedasticity of known form.

Yy = Bo+zh +e where € ~ N(0, exp (2vz))
1(y* > 0)

<
I

The variables z,, ..., z, are drawn independently of the z’s from a standard normal.
The model is generated with v = 0.1 as the true parameter value. Starting values
are obtained for 3, and 3, by estimating the homoskedastic model (P-A), and the
starting value for 7 is zero.

Model (P-A) is estimated for n = 50 and n = 150. Model (P-B) is estimated only
for n = 150 because a sample size of 50 is not sufficient for estimation. Parameters are
estimated using maximum likelihood. Then all of the variance estimators discussed so
far are computed and used to form confidence intervals using the asymptotic normality
approximation. For example the 95% confidence interval for S is o + 1.96\/V:<1r(/§o).
In Tables 3.1 and 3.2, coverage rates are shown for the 90% and 95% confidence
intervals of the parameters in models (P-A) and (P-B) using 10,000 Monte Carlo
replications.

The results for confidence intervals using jl—l, jg—l, jg-ljl jg—l, and j,-;—l are in
the fourth through seventh columns of Tables 3.1 and 3.2. Performance of these esti-
mators will be discussed in terms of the error coverage rates, defined as the empirical
coverage rate minus the nominal coverage rate. J”;—l, the o.p.s. estimator, performs
relatively poorly in all the models. Gourieroux, Monfort, and Trognon (1984) discuss
the robustness of the H~'JH ™! estimator, but for models (P-A) and (P-B) we find
it performs rather poorly in terms of size. It seems to be particularly poor in pro-
viding good confidence intervals for slope parameters. jg—l, the Hessian estimator,
and j3_1, the c.i.m. estimator, generally have the lowest error coverage rates. In
the simplest model (P-A), J; = performs better than J,  uniformly, although the
margin of improvement is often small. In model (P-B), the results are mixed. The
Hessian estimator performs best in Table 3.1 iwth 90% confidence intervals, but ja_l

=1 . . .
outperforms J, for the constant term and the heteroskedasticity parameter in Ta-
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ble 3.2. Also fl—l improves its relative performance for the slope parameter, while
maintaining relatively large error coverage rates for the other parameters.

Tables 3.1 and 3.2 also show that using jl_l leads to too large confidence inter-
vals. The Hessian estimator seems to have the same tendency but not as extreme.
Conversely, using jg_ljl j{l results in too small confidence intervals. j3—1 has both
positive and negative error coverage rates so that no similar general conclusion can
be drawn.

The last four columns of Tables 3.1 and 3.2 contain the results using the sim-
ulation estimators j4_1 and js—l. The numbers in the parentheses of the column
headings are the values of m used in the simulation estimators. The coverage rates
for Jy(1)~! and J5(1)~! mimic closely the coverage rates for jl-l and jg_l, respec-
tively, suggesting that the term E(m,S’)J~!E(m,S')’, which represents the difference
of these estimators as discussed in the last section, is close to zero. Both j4(300)‘l
and J5(300)~! use enough simulations to act much like gy although J5(300)~! seems
to do a better job. As m increases the coverage rates for j4_1 seem to change fairly
monotonically from the neighborhood of the jl_l coverage rates to the neighborhood
of the jg—l coverage rates. Such a change suggests optimizing the empirical coverage
rate (to match the nominal coverage rate) with respect to m, although an attempt is
not made here.

Since the true marginal distribution from which the z’s are generated is known,
the true asymptotic variance J~! is obtained for model (P-A) using a numerical
integration routine. The average matrix distance from the variance estimators to the
true asymptotic variance is then reported in Table 3.3. Matrix distance is defined by
the usual ®*-metric, (X, (a; — b;)?)'/2. For the nonsimulation estimators, the results
generally correspond to our conclusions from Tables 3.1 and 3.2. The exception is
that jz—lJ] j2_1 has the smallest average distance to J~! for n = 50, while not having
the smallest corresponding error coverage rates. For n = 150, the distance ranking
matches the error coverage rate ranking for the standard variance estimators.

Table 3.3 provides a different perspective for the simulation estimators. As mea-

. . . -1 s -1 o
sured by distance to the true asymptotic variance, J; and J; are very similar
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to jl_l and jz—l. However, for large m = 300, the distance seems to move to
about halfway toward the j3—l average distance. Perhaps surprisingly, for n = 50,
the J4(300)~! average distance to J~! is twice the j3—l average distance and yet
J4(300)~"! still performs remarkably similar to j3—1 in terms of coverage rates.

The probit Monte Carlo results seem to substantiate the two main points of the
paper. First, the efficiency of the conditional information matrix estimator makes it
the most attractive of the standard variance estimators. That efficiency advantage is
exemplified by the relatively low error coverage rates of j3—1. Second, the simulation
estimators are acting as desired. In particular, for large m, they would seem to
provide a suitable replacement for the c.i.m. estimator when such an estimator is not

available, as in the next section.

3.5.2 Sample Selection Model

As previously noted, the choice of variance estimator is often determined by which
is easiest or most feasible. Sample selection models are complicated enough that
feasibility becomes an important concern. Most studies use Heckman’s (1976, 1979)
two-step estimation procedure. However, maximum likelihood estimation can provide
significant efficiency gains as seen in Nelson (1984).

The exact model considered here is

n = 1(fo+ Pizi + foza +€1)
Y2 = Yoo+ oz +e (3.5)
/ 2
£ 0 o o
where 2 ~ N , p
&1 0 po 1

This model is complicated enough that obtaining an analytical solution to the integral
. . . . = -1, . eys . .

in equation (3.1) leaves the c.i.m. estimator, J; , infeasible. Additionally, estimation
of the correlation parameter p is difficult. Using Heckman’s approach, estimates of p

often end up outside the interval [—1, 1], causing the restriction —1 < p <1 to bind.
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Correspondingly, maximum likelihood estimation inevitabiy entails a grid search to
obtain correlation parameter estimates. The result of this difficulty is that the Hessian
estimator j{‘ becomes difficult to use since it is not always positive definite. For a
given set of data, it may be possible to come up with an acceptable value of .jg—l,
but for a Monte Carlo study where estimation occurs for hundreds of data sets, jg_l
cannot be used. Thus of the estimators discussed in section 3.2, only the o.p.s.
estimator, jl—l, is available. For the reasons above, J",;-l, which corresponds to the
Hessian estimator, is also unavailable, but the simulation estimator .L_l is always
feasible (and easy to compute).

Estimation proceeds as suggested by Nawata (1993). Heckman's procedure is used
to obtain initial estimates. Then for each value of p in the grid (-.97, —-.96, .. ., .96, .97),
a Newton-Raphson type method is employed to obtain estimates for all the param-
eters but p. The maximum of the likelihoods for this grid gives an approximation
p to p. The process is repeated with a finer grid (.001 between values) in a neigh-
borhood of p, and we use this result as our estimate, p. Tables 3.4 and 3.3 present
the results for estimation of the sample selection model (3.5) with varicus parameter
values. Confidence intervals are formed using the variance estimators jl-l and J4_l,
and coverage rates are obtained by using 1000 Monte Carlos.

Parametrization (S-A) is defined by the following: 8y = 1,3, = .5, = .5,a¢ =
0,a; = .53,02 = 1,p = .3. In parametrization (S-B), we change the slope parame-
ters of the selection equation and increase the correlation between error terms in the
two equations. The true parameter values used are 3y = 1,3, = .75, 3% = .25,a¢9 =
0,a; = .53,02 = 1,p = .7. Tables 3.4 and 3.5 show the 90% and 95% confidence
interval coverage rates for the constant term and slope parameters of both equa-
tions. J;(1)~! follows jl-l quite closely. For the constant term confidence intervals,
J1(100)~! makes inconsequential improvement upon the performance of jl—l. How-
ever, the error coverage rates for the slope parameters using the large m simulation
estimator are much smaller than the error coverage rates for the o.p.s. estimator. The
gains from using a simulation estimator in this complicated model are clear and quite

significant.
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3.6 Conclusion

The usual consistency results for maximum likelihood variance estimators provide
no guidance in choosing an estimator, so we first note that the conditional infor-
mation matrix variance estimator achieves the semiparametric efficiency bound for
the variance estimation problem. Monte Carlo results from a probit model are used
to exemplify the efficiency advantage. In terms of confidence interval error coverage
rates, the c.i.m. estimator performs considerably better than the outer product of the
scores estimator or the H~!JH ™! estimator. It also seems to hold a slight advantage
over the Hessian estimator.

In more complicated models, the c.i.m. estimator is not available since it requires
evaluation of a burdensome integral. We suggest two simulation variance estimators
that avoid direct computation of that integral but provide a close approximation to
it. Conditions for consistency of these estimators are easy to check, and they turn
out to be quite simple to use, especially if one is already using the o.p.s estimator or
the Hessian estimator.

A sample selection model provides an example of a “complicated” model. In this
model, the c.i.m. estimator is not available, and the Hessian estimator may not even
always be practical. Hence confidence interval coverage rates are obtained using only
the o.p.s. estimator and the corresponding sirnulation estimator. The Monte Carlo

results strongly favor the simulation estimator.




Appendix

PROOF of Theorem 5: For # € N and for all x as.,

LD, 9T0Mu /05y
apop Y = o
62
= a7 | [wln By
02
= 0

The first equality following by iii) and df/0/3 having a continuous deriva-
tive by i). The second equality follows similarly by ii) and f having a
continuous derivative. Since f(y|z, 3) is a member of a family of p.d.f.’s
for given 3 and a.s.dz, the third equality follows.

Now note that

? 1
H(z,B) + J(z,8) = /[0 ‘ﬂagglllj’z,ﬂ) +01nfé§;j|x,[)’)

(ZRLEDN ] e,

- /[{ ~1__9f(ylz, ) ((?f(ylz,ﬂ))'
TGle, B2 0P op
1 azf(yI.r,[J')} N 1 9f(y|z,p)

Y wlep) 0pop | fwiz B op
(2922 ] st
_ /02f('ylw,ﬂ)

apop Y

= 0

so H(z,f) = —J(z,f3).

PROOF of Theorem 7: Under Assumptions 1-3, the efficient influence
function ¥%(y, ) can be obtained from the projection of m(y,z, ) on
the tangent set for the problem. In Theorem 3 of BN, the efficiency
bound obtained from the efficient influence function is then given. We
will proceed by showing that J; has the efficient influence function and

9see Newey and McFadden (1993) Lemma 3.6 for a basic result on switching the order of differ-
entiation and integration.
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thus attains the bound. Then the check that asymptotic covariance of
J3 and J, is equal to the asymptotic variance of J3 will complete the
argument.

Note that Assumption 1 entails no additional restrictions when we are
using the MLE 3. We will prove the theorem using m(y, z, 3) = [s(y,x, B)
s(y,z,A)]. Let M = M(f%) and note that Q(%) = E[OL;,,J(J:, M), =
I I 3 (m(y, z, 5o)s) f (y, z|Bo)dydz + [ [ m(y, z, Fo)s g f (ylz, Bo)dy f (x)dx
= M + E[m,S']. First we find the efficient influence function from BN
Theorem 3. The nonparametric tangent set for this conditional maximum
likelihood setup is J* = {u(z) : E[|| u(z) ||*] < oo, E[u(z)] = 0}, so
Proj(m(y, z, %)|T*) = E[m|z] — J = J(z, ) — J by standard projection
results. So Theorem 3 in BN provides the efficient infiuence function

= (J(z, B)s — Js) + (E[m,S'| + M)J!S.

Now we derive the influence function for .J; which follows a standard
asymptotic expansion argument. Consider the asymptotic expansion for

JC(B). By Assumption A.7, J¢(8) = J, + Q(ﬂo)(B — fo) + o,(|l 8- .
Then,

VA z: J(zi B - J2)
= VA ; J (@i, Bo)s — ) + VA(IB) — J5)
a2 g[{](xg, B)s = J5(B)} — {J(z:, o)s — Ju}]
= \/ﬁ(%gJ(:v,-,ﬁo)s Jy) + Q(ﬁo)\/—z-’ 'S

402 S (I By = S = (o o)y = )
+Q(ﬂ0)0p(1) + 0p(1)
= \/_—Z[ J(zi, Bo)s — Js) + (E[msS') + M)J 7' Si) + 0,(1).

z-l

The second equality follows from substituting in the influence function
for 8. The last equality follows from Assumption 7. This straightforward
derivation completes the proof that the influence function for Jj is exactly
the efficient influence function given in Theorem 3 of BN. Hence j3 attains
the semiparametric efficiency bound. While this conclusion also gives the
relative efficiency result, we present the standard covariance approach for
completeness.

Under Assumptions 1-3 and 5, Theorem 1 of BN gives the influence
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function for J,, which can be derived from the asymptotic expansion
similar to the above derivation for J;. The result is that 5y, x) =
m(y, z,50)s — Js + MYs(y, ) = m(y, z, Fo)s — Js + MJ™'S. Now we can
compute the asymptotic covariance of J, and J.

Note that E[(m; — J,)(E(m,|z) — J,)') = E[E[{(m, — J)(E(m,|z) ~
Jy)'|z]] = E[(E(ms|x) = J5)(E(m4|z) — J,)'}. Since S is orthogonal to the
elements of J°, E(MJ'S(E(m,|z) — J,)'] = 0. Finally, E[(E[m,S'] +
M)J-'SS' JM) = (E[m,S'}+ M)J~'M’ and E[(E[m,S")+M)J "' S(m,
—J,)] = (E[m,S'} + M)J'E[m,S"). Hence E[,,(y,z)¥;(y,z)'] = E|
vy, £)v(y, z)'] = V. So the asymptotic efficiency of Js relative to J,
is established.

Finally we note that we could have let m(y,z,3) = h(y,z, ), and the
same proof holds.

PROOF of Theorem 8: Fix m. Define K3,(z,uy,...,um,8) =m™ ' £,
ks(z,uj, B)ks(z,uj, 8)'. Since k,(z,u,3) is continuous at 3, with proba-
bility one, K3 (z,uy,...,um,3) is continuous at 3, with probability one.

Also,

1 m
Elsup || K2 (z,uy,..., U, < Ejsup — ky(z,u;, ) ||
[ﬂe.r\)’ | Kn(z,wi B) Il laei’-m,z::,” s(z,u5,8) ]

m

1 .
< E[=Y sup ! E(z,uj,3) |I?
< BL-3osup ! () I

j=19€

= E[SUR “ ks(l.: u1»'6) ”2]
BeN

<

Now let u;,...,u;» be a random sample from P(u|r;) and set 7;; =

gz, Uij, B) Then,

. 1 & . 2ol z
Jy = —Z—n;Z-S'(yijyIi,ﬁ)s(yii’Ihﬁ)'
=1 1=1

S

1 n -
= -—ZK:,,(.’L’,‘,U,'I,---yuimyﬂ)
n i=1

25 E[K:(z,uy,...,um,B)] by Lemma 6
= E[E[K:n(l',ul,---,um,ﬂﬁ)l'z”
= E[E[ks(z,u1, Bo)ks(z, uy, Bo)'|z]]

= E(f k(z,u Bo)ks(z, u, o) Plulz)du]
= Bl sy, 7. Bu)s(y, 7, A) S (yla, So)dy]

= E[J(z,5)]
= J
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And so by the Slutsky Theorem, J;' 23 J-!

Similarly, it can be shown that J; = —H. Conditions (ii) and (v) of
Theorem 6 are sufficient to give the information matrix equality, which in
turn gives the desired result, J;! -£5 J-!,

Derivation of Influence Functions:

When m(y,z,8) = [s(y,z,8)'s(y,z,0)]s, let us(8) = p(B), and when
m(y,z, 8) = h(y, z, B)s, let pu(B) = pu(B).

{S(y, z, 6)13(1/’1" B)]s - '{s ) )
= [S'S]B - JS + [I{J(ﬂ) - ’]]b + [s(ylxi ﬂ)’s(y,x, IB)].:
—(5'S)s = {ps(B) = J]s

= [$'Sl, - Js + { / [a[s's] ] fylz, Bo) f(x)dydz} (B = Bo) + 0p(1)
= [§'S), = Js + DiJ7'S +0,(1)

And similarly for ¢,,.

The first equality after ¢,, is shown in the proof of Theorem 7. To obtain
the second equality remember that we noted above that a generalization of
the information matrix equality gives J(z, fo) = —H(z, /%), so integration
with respect to = gives J°(8) = —H¢(3). If we differentiate both sides
of this last equality with respect to 3 and evaluate at f3,, then we get
D, + E([S'S]sS’) = —[D, + E(h,S')], as desired.

Ue(@ B) = Jls = [e(@, o) = Jla+ J(B) = Js
+{[Jr(z, B) — Jr(z, Bo)]s — [J(B3) — Ji)

= Vi) = o+ (2PN )iy 3 - )

+{[Jr(1:aﬂ s Jc(ﬁ)] - {Jr(.’B, ﬂO)a - Js]}
= [J(z,B) = Js + {D1 + E([S'S],5")}J 'S + 0,(1)

And similarly for ¢,;,. a

Derivation of the Asymptotic Variances of the Variance Estima-
tors: Var(J;) and Var(J,) come straight from their influence functions.
Var(J3) follows by noting that the score S is orthogonal to all elements of
the nonparametric tangent set J* and J(z, o), — Js = E([S'S)s|z) ~ Js €
T

For Var(J;) and Var(J;) (with m = [S'S] and m = h), we make the
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following observations,

E[m(gja I, ﬂO)sm(yi I, 30):]

= [ [ [ ms = 60)im(y, 2, 50, s, e, o) (x)disdyds

= [ [[ sz 6001 Gk, o] [ [ 0,2, 800 S ks, o)y S (@)
= B[E(m.|z)E(m,|z)] (3.6)

Thus, for example, with m = [S'S],

E[:jr(x, ﬂo)jr(zv ﬁo)ll
= E(C Y m(655 800G X mln o))
j=1 k=1

1 r
= -T—QZE[m(g]aza BO)sm(gj’Ir ﬁO);]
i=1

1 ~ -
3 Z E[m(g;, , Bo)sm (i, z, Bo);]
J#k
1 -1
- ;E[m,m;] + !

= ;E([S’S],[S'S]a') +

— E[E(m, |z) E(m, |z

r—1
T

E[E([S'S]s|z) E([S"S]s|2)']
Also, E[m(y;,z, Bo)ss(y, z, Bo)'] = E[E(m,|z)E(S|z)'] follows as in (3.6),

but the orthogonality of S and E(m,|z) along with the law of iterated
expectations gives 0 = E[E(m,|z)S'] = E[E(m,|z)E(S|z)]. 0
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Table 3.4: Coverage Rates for 90% Confidence Intervals of Sample Selection Model
Parameters®

Parametrization | n | Parameter | J; Ja(1)71 | J5(100)!
S-A 30 Bo 946 | .940 918
By .952 942 .890

B2 .940 .942 .872

ap .996 997 .994

o 931 931 .899

S-B 30 Bo .950 941 901
By 958 .943 .895

Ba .953 .949 .884

g .994 .993 .993

oy .953 944 922

>There were zero failures in 1000 Monte Carlos for sample
selection model parametrization (S-A) and one failure in 1000
runs for (S-B).



Table 3.5: Coverage Rates for 95% Confidence Intervals of Sample Selection Model
Parameters

Parametrization | n | Parameter | J, - Js(1)7! | J4(100)7?
S-A 50 Bo 977 974 973
B 975 .969 .953
o .979 .968 .942
Qo .997 .997 .996
ag .968 .966 944
S-B 30 Bo 981 .964 .960
M 982 973 .948
2 .982 .970 .954
Qap .994 .994 .994
a 981 974 967
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