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Wheel Design Optimization for Locomotion in Granular Beds

using Resistive Force Theory

by

James Slonaker

Submitted to the Department of Mechanical Engineering
on August 5, 2016, in partial fulfillment of the

requirements for the degree of
Master of Science in Mechanical Engineering

Abstract

Inspired by hypotheses of Resistive Force Theory, a general dimensionless form
for granular locomotion has been discovered, which instructs how to scale size, mass,
and driving parameters to relate dynamic behaviors of different locomotors in the
same granular media. These scalings are experimentally confirmed with wheel pairs
of various shapes and sizes under many driving conditions in a common sand bed.
How the relations may be derived alternatively by assuming Coulombic yielding and
how the relations can be augmented to predict wheel performance in different ambient
gravities is also explained.

Next, a rotating-flap wheel that consists of a central hub connected to five flaps
that can actuate to a certain angle open was designed, built, and tested. Experiments
were completed on the wheel by performing a series of tests varying the angle of the
flaps and the drawbar force the wheel tows. The results indicate a trend toward
higher velocities and powers at larger flap angles. Conversely, with larger drawbar
forces the trend indicates lower velocities and higher powers. A MATLAB simulation
was also created to model granular locomotion with different wheel shapes, including
the rotating-flap wheel. Finally, future work extending the analysis of the rotating-
flap wheel to encompass a "smart" wheel that is able to actuate given certain external
conditions is discussed.

Thesis Supervisor: Kenneth Kamrin
Title: Associate Professor of Mechanical Engineering
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Chapter 1

Introduction

This thesis builds upon work previously done by the author, in partial fulfillment

of the requirements for the degree of Bachelor of Science in Mechanical Engineering

at the Massachusetts Institute of Technology, which was published under the same

title [1]. Parts of that writing will be reproduced and edited here to ensure accuracy

and completeness. Additionally, some of the writing below appears in a publication

by Slonaker, Motley, Senatore, Iagnemma, and Kamrin that has been submitted for

review [2].

1.1 Background

Due to the complexity of the constitutive behavior of granular media [31 dynamic

interactions between grains and solid bodies are challenging to model without resort-

ing to grain-by-grain discrete particle methods. A recent approach to simplify these

interactions is Resistive Force Theory (RFT) [4]. RFT is an empirical model utilizing

a set of hypotheses about local drag forces to approximate resistance on general solid

surfaces moving in granular soils near the surface. RFT was initially developed for

viscous drag problems [5], however it has shown surprising effectiveness in granular

media, where it has been used to simulate the dynamics of legged reptiles and robots

141, swimming sandfish [6], and the distribution of lift forces on curved submerged

bodies in granular beds [7].

13



This thesis seeks to exai ld the applieatioll of RF T t, ilnderstand and81( predict

lie behavior of whii d loconot4 rs il granular nimtdia. Sec taio 1.1 explains the

background and formulation of Resistive Force Theoi. Setion 1.2 expands tlj)On

this founidation by describing the simulation creattd i N A\TLAI3 to apply RFT to

wheeled locomotioii. Section 1.3 briefly explajits (lie eXlerimientl eu(jiipiiient used.

Chapt'r 2 focises on t he derived geometrically geieral scaling relations ior grainilar

locomnotion. Chapter 3 explores the design and testing of the r)tating-ftap wheel.

1.1.1 Resistive Force Theory (RFT)

Granuilar RFT is concerned solely with computing the resistance on a body moving

through a gravitationally loaded bed of grains. It does not attempt to describe the

flow or stress fields in the granular Inmedia. Its Iaslc premise, which is not actually

derived physically, though new efforts are being made to provide its founidations [8[, is

that a simple forimi governs the force distribution that grains apply along the leading

surface of a m oving intruder. In a 3D sand bed, assume a quasi-2D intruder (e.g.

an arbitrary driv n wheel, per Figure 1-1) whose notion is in tll( rz-plane, where

gravity points in -I direction and z r 0 represents the free surface. The resistive

force F"" -- es, on the leading surface of the intruder, S. is modeled udl(er

D

Figure 1-i: General wheel: Driving an arbitrarily shaped wheel of width D and

rotational velocity w, carrying a mass A under gravity y.

14



RWT to obey

where dA, is the area of a surface ttleent, 13 s the surface element's angle of tilt,

and 'y is the angle of the velocity of the surface element. Both 3 and ' are neasired

from the horizontal as shown in Figure 1-2. The Ieaviside function, H(z), removes

Figure 1-2: The surface eent s angle of tilt #and angle of velocity are measured

from the horizontal.

resistive force on parts of the intruder outside thc. bed, and the depcendencP on z

models added resistance with depth due to gravity. The key constitutive ingredient

in the model is the selection of the two force per volume functions (t,, and a-, which

is done emipirically using cxperimnital force data, on small Intruding flat plates under

various #3 and , conditions. The miodel's effectiveness is somewhat surprising in light

of the assumptions made, most notably the assumption that local stress on a surface

eleme -nt is independent of the motion and shape of the other parts of the surface.

By comparing the exp(.r-imental data ftor mianiy granular miaterials it was observed

[4]1 that the a, functions h.A-ve a fairly commnon shiape. Thus, discrete Fourier trans-

formis of these were performned to obtain fixed dimensionless af"' anid af-" functions

[4>:

OIX"(;/, m)=uCncos2jT( + )+ Daix( + ) 12
m = -- / T=-

15



a (, -Y)= S [Arnncos2wr( + ) + Bmnsin2r( + + )] (1.3)
iF 27r 7 7

m=-1 n=O

which have generic coefficients as shown in Table 1.1 [4]. The a.,2 functions of a

Table 1.1: Generic RFT coefficients.

Generic RFT coefficients. Value
Ao,o 0.206
A 1,0  0.169
B1,1  0.212
Bo,1  0.358

B-1,1 0.055
C1,1 -0.124
CO,1 0.253

C_1,1 0.007
D1,o 0.088

particular material can then be approximated as

x~z(#, 7) ~ ( ,7_) (1.4)

where is a force/volume quantity denoted the "grain-structure coefficient," which

depends on the surface physics of the solid, the mechanical properties of the particular

granular media at hand, and the value of gravity. In this way, is the only material

parameter needed to execute an RFT calculation in locomotion. A plot of ax,z with

= 1 is shown in Figure 1-3.

16
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Figure 1-3: Force per volume plots (ax,z), with~= 1. 

By contrast , common engineering terradynamics models like that of Wong and 

Reece (based on Bekker's work) [9) or the NATO Reference Mobility Model [10) 

require a much larger number of fit parameters, though they model more than resistive 

forces. Unlike Bekker's model [11), no knowledge of the material deformation is 

required for RFT. Similarly, RFT does not require any input of grain size, which 

differs from other approaches that model nonlocal finite grain size effects [12). 

1.1.2 Applying RFT 

To calculate the "grain-structure coefficient," Chen Li et al. observed that it can 

be inferred from a single vertical force measurement [4). Therefore, to find ~ for 

a particular material , and thereby the a x,z functions , one only has to measure the 

stress when the plate is oriented horizontally (/3 = 0) and moved vertically down 

(r = n /2) [4]. Once the grain-structure coefficient, and thereby the entire resistive 

force profile , is determined, it can be used to predict the forces experienced by objects 

interacting with that particular granular material. The resistive forces acting on an 

intruding body can be approximated by applying the linear superposition principle. 

To estimate the resistive force on the actuating leg shown in Figure 1-4, one can 

discretize the object into small linear segments that have specific angles of attack, 

17 



angles of intrusion, depths, and areas and use the c,2 plots to calculate the force

on each segment [4]. The total resistive force on the object is then the sum of the

individual forces on each smaller linear segment.

Side view

Figure 1-4: "C" shaped leg with linear segments marked darker. Note the image
shown here was reprinted from Chen Li et al.'s work [4].

1.2 MATLAB Simulation

To apply RFT to wheeled vehicular locomotion, a MATLAB simulation was cre-

ated. The entire code for all three wheel shapes is available in Appendix A.

1.2.1 Inputs and Wheel Shapes

The first step in the simulation is to define the inputs and constants necessary. In

this simulation the wheel is assumed to be rotating alone, i.e. with no attached vehi-

cle, at a fixed rotation rate and with a fixed mass. Therefore, the inputs include the

wheel's rotation speed, mass, initial position, initial velocity, and the gravitational

acceleration. Geometric wheel inputs include a characteristic length, the width of

the wheel into the plane, the wheel shape, and the number of discretized segments.

Additionally if a drawback force, pulley force, or constant spring force is attached

to the wheel it is specified. Finally, the grain-structure coefficient for the particular

granular material is required.

Multiple wheel shapes were used for the simulation including lug-wheels, superball

wheels, and rotating-flap wheels. The lug-wheels have four arms and an elbow half

way down their arms bent to a certain angle 0, as shown in Figure 1-5. The character-

18



0

Figure 1-5: General lug-wheel design.

istic length for the lug-wheels is defined as half the total arm length, or the distance

from the axle to the bend. Superball wheels are defined by the shape parameter y,

as shown in Equation 1.5.
X2+ = (1.5)
R R

When -V 1, the equation becomes that of a circle with radius R. As x decreases to

0.5, the shape becomes a square. As it decreases more, the sides of the square become

concave. Conversely, when N - oc the shape approaches that of a square again. The

actual wheels consist of the superball shapes with a fixed width into the plane. A

plot with the shapes corresponding to different x values is shown in Figure 1-6. The

characteristic input length for the superball wheels are their effective radius R. The

rotating-flap wheels will be further defined in chapter 3.
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Superballs

0.X=0.2
0 .8 - - - -... - -.. -. - .

-x= 0.53
0.6-- x 0. 7
0.4 X=1

- x=1.5
0.2- - - - - - -*x= 10 0 0

0-

-0.2

-0.4 - - - -

-0.6 - - - - - -- ---

-0.8 -

-1 -0.5 0 0.51

Figure 1-6: "Superball" shapes for different x values.

1.2.2 Integration of Equations of Motion

With the required inputs, the first step in the simulation is to initialize the wheel

design. Based on the geometric parameters, the starting Cartesian coordinates of

the midpoints of each discretized segment are found. Next, the initial 0 angle values

are calculated for each segment. To simulate the actual rotation and locornotion

of the wheel, the equations of motion are integrated either using the ode45 solver

in MATLAB or by directly implementing a Forward Euler method. The integrated

function is built of the form of Equation 1.6, where the initial conditions, along with

the initialization parameters (IP), are input and the output is of the form of the

derivative of the initial conditions.

axv~

a- V.

f ( IP) (1.6)

Power Energy

20



Within the actual function, the inputs are used to create a 7 or 9 column index

matrix depending on the shape of the wheel (See Appendix A). The first column

consists purely of the number assigned to each individual segment. The second and

third column correspond to the new x and z coordinates of the rotated tire after

some time-step (t). These coordinates are found using the rotation matrix, where

the angle the tire is rotated is equal to the fixed rotation rate (w) multiplied by the

time-step. This is shown in Equation 1.7, where the i subscript denotes it is after

the time-step, while the o subscript denotes it is before the time-step. The values

without any subscript reflect the position of the axle, or wheel center, rather than

the segment midpoint.

Xi X cos(wt)+sin(wt) ] 0 (1.7)

Zi z -sin(wt) + cos(wt) zo

Columns 4 and 5 correspond to the velocities in the x and* z direction of the

segments after the time-step. These are solved for by calculating and adding the

tangential velocity that the fixed rotation of the wheel provides, as shown in Equations

1.8 and 1.9.

VXi = W(zi - Z) + VX (1.8)

Vzi = -W(Xi - x) + v, (1.9)

Column 6 corresponds to the new 3 values, which are calculated by adding the

rotation of the tire (wt) to the original value. Some manipulation is required to keep

the ,3 values in the range of -7r/2 < # 7r/2. Assuming small w and t, 3 is calculated

as shown in Equation 1.10.

= { + wt if A 0 + wt < r/2. (1.10)

#, + wt - 7r if Oo + wt > 7r/2.

If w is increased to larger values or the time-steps used are much larger, care will

need to be taken to rewrite the 3 calculation to ensure it always stays in the range

21



of -7r/2 < < 3/2.

Column 7 corresponds to the new -y values which are calculated by taking the

arctangent of the velocity in the z direction over the velocity in the x direction.

Similar to the , calculation, the code is set up to ensure that the y stays in the range

-- r/2 < -y 37r/2 as shown in Equation 1.11.

arctan(L4) if VX,4 < 0.

arctan(!4) + 7r if vXi > 0.

Columns 8 and 9 are only used for wheel shapes where the resistive force can only

act on one side of the linear segment. For instance the superball wheels will never

feel a force on the internal edge of the linear segment because it is a solid object.

Therefore, for these shapes, in the initialization, the outward normal vector of each

discretized segment is found. Within the integrated function, the dot product of the

outward normal vector and the velocity vector was taken at each time-step. If that

dot product was negative, meaning the outward normal vector was in the direction

opposite that of motion, then any resistive force on that segment was assumed to

be zero. Essentially, this assumed that any surface that was moving away from the

sand, rather than pushing into it, does not generate any resistive forces. Columns 8

and 9, therefore, correspond to the updated outward normal vectors in the x and z

directions, nx and n,. The vectors are updated using the rotation matrix:

nx,i cos(wt) + sin(wt) nO (1.12)

nz,i - sin(wt) + cos(wt) ]nzO _

Using this index of values, the function then calculates the stress per unit depth

acting on each segment by plugging in the angles of attack and intrusion into the

scalable RFT formula from Equations 1.2 and 1.3. Next, this stress per unit depth

in the x and z direction is converted to the forces in each direction using the segment

length (L) and the tire width (D), as shown in Equations 1.13 and 1.14.

fX= -aLDI (1.13)
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S= -azLDz; (1.14)

The code also ensures that the force is set to zero if the z-position of the segment is

above the surface of the granular material as there is no resistive force in that case.

Using the position vector of the midpoint of each segment and crossing it with the

forces obtained, gives the torque that acts on each segment. The total torque and

forces in both directions acting on the entire wheel can then be found by summing the

individual elements acting on each segment. Assuming no drawbar or pulley force,

the outputs can then be solved for as shown in Equation 1.15, where M is the tire

mass and T is the total torque.

ax Fx,tot
M

Fz,t0, -Mg
M

S = VX (1.15)

vz vz

Power WT

1.2.3 Average Velocity and Power

Once the function is integrated over the simulation duration, an array of velocities

(vX, vz), positions (x, z), and energies dissipated (E) at each time-step (t) is output.

With these outputs, the average velocity in the x-direction (vx,avg) and the average

power expended (Pav,) can be calculated. As the wheel translates, it eventually

reaches a steady state, where it cycles with a constant period and amplitude. Using

this property, the time-steps where the velocity in the z direction (vz) change from

negative to positive are found. These represent instances where a new period of

oscillation is beginning. These time-steps are not right at the point when vz = 0,

though, so the values at that point need to be linearly interpolated, as shown in

Figure 1-7.

23



( t V ',)

Figure 1-7: Linear interpolation of point where v-, 0.

To do so, first the local slope (m. ) between the points (ti, v2 ) and (ti+1 , V2,i+ )

is calculated. This is done as shown in Equation 1.16.

. 1 Zi+I - (1.16)
ti+1 - ti

This process is repeated to find the local slope between the same two points for

the (t, x) plot, me, and (t, E) plot, mE, as well. Using these slopes, the time, to, at

the point where v2 = 0 is found as shown in Equation 1.17.

to = Vzi + ti (1.17)

Next, the x-position, x,, and the energy dissipated, E, at that instance can be

interpolated as shown in Equations 1.18 and 1.19.

X, = MX(to - ti) + Xi (1.18)

Eo = mE(to - ti) + Ei (1.19)

Using these interpolated values at each instance where v, = 0, vx,atg and Pag

can be calculated. The averages are calculated over arbitrarily chosen steady state

period numbers, shown here s a and v, that are high enough to ensure the wheel has

reached steady state, as shown in Equations 1.20 and 1.21.

e = z~c -zo "(1.20)
t - t'01 '0o,1
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Pau o " (1.21)

1.3 Experimental Setup

To run physical experiments. a sand bed in the MIT Robotic Mobility Group Lab

[131 was used. The test apJparatus, as shown in Figure 1-8. consists of a Lexan bin

filled with Quikrete mediim sand surrounded by an aluminum frame. Attached to

the aluminum frame are two low friction rods. which are attached to the carriage

and allow for horizontal motion. The carriage is also attached through low-friction

vertical rods to the main platforn to allow for vertical wheel motion. This allows the

wheel to translate freely. The main platform is connected to a motor driven wheel.

The wheels used were printed in PLA plastic using a MakerBot 3D printer. Position.

torque, velocity. and rotational velocity sensors are attached to the frame to record

the relevant data.

Pulley Mass (lp) Pulley

Spring

Wheel

Added Mass

Figure 1-8: Experimental apparatus used in the MIT Robotic Mobility Group Lab

1131.
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Chapter 2

Geometrically General Scaling

Relations for Granular Locomotion

In light of RFT's effectiveness in multiple geometries and its dependence on very

few model parameters, a natural question to ask is whether granular RFT, when

combined with Newton's laws, produces a set of intruder dynamics possessing scaling

behaviors. If these could be identified and validated experimentally, they would

provide a physical basis to directly relate different granular locomotion problems in the

same soil without performing any simulation, RFT or otherwise. In application, they

could be exploited as scaling laws to predict the performance of a "large" locomotor in

a sand bed - such as a truck wheel or a tank's caterpillar tracks - by appropriately

down-scaled analysis of a smaller locomotor in the same bed. Such a capability could

be leveraged in granular design much like scaling techniques in aerodynamics and

hydrodynamics.

In this chapter, arbitrarily shaped wheels were studied and a family of geometrically-

general scaling laws governing their driving behaviors was derived and experimentally

validated. The relations are obtained through analysis of the RFT terradynamical

system. As a secondary justification, the same invariances are shown to arise mod-

eling the grains as a frictional continuum. The analysis could be applied to other

locomotors with more moving parts, but here the concept is initially tested on solid

wheels, which have few internal degrees of freedom, simplifying the analysis.
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2.1 Dimensional Analysis

First, dimensional analysis was performed on a generic wheel, such as that shown

in Figure 1-1, moving through a granular material that obeys the RFT model. The

generic wheel has a dimensionless shape, which we denote by a point-set f, a constant

width D into the plane, a characteristic length L that scales the shape f to give

the actual wheel cross-section, and a mass M assumed concentrated on the axle.

The wheel is given a fixed rotational velocity w, is acted upon by some gravity g,

and interacts with the sand bed through some grain-structure coefficient . The

outputs we are interested in are the power expended as the wheel drives in granular

media, P, and the wheel's x-translational velocity V, although other outputs could

be considered.

Before applying dimensional analysis, note that by using ax,. = .ge" from Equa-

tion 1.4, the problem's dependence on and D is seen only through the product

D. With this and a standard nondimensionalization, the wheel's steady driving

limit-cycle is predicted to obey the form:

Pv 1 g~ L g g (2.1)
_ Mgsl~g~'v/Ig' ' Lw2 ' Mg

where, for clarity, * is a four-input, two-output function as shown. If the gravity,

wheel surface texture, and granular media are fixed, g and can be absorbed into the

function, giving the reduced form:

,(C t~f 1 DL2

VT ~- Vf ~ (2.2)

The above forms give the following family of scaling relations: Consider two experi-

ments with the same f, g, and , but one has inputs (L, M, D, w) and the other has

inputs

(L', M', D', w') = (rL, sM, sr-2D, r/1 1 2w) (2.3)

for any positive scalars r and s. Then the corresponding driving cycles should obey:
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(P') =sr1/ 2 (P)

(V') = rl/2(V) (2.5)

where (-) denotes a time-average.

2.2 Connection to Coulomb Plasticity

Although RFT is empirical, interestingly, Equation 2.2 can also be deduced me-

chanically by considering wheel motion in a 3D bed of ideal Coulomb material [141.

Here, the grains are treated as a rate-independent frictionally yielding continuum.

Such a model could be used to predict the entire sand motion field, but instead con-

sider dimensional analysis implications that can be identified without solving for flow.

In this model, the wheel inputs remain the same, there is no grain structure coefficient

, and there are three granular material parameters: the density of the material p,

the material's coefficient of internal friction pi, and the coefficient of sliding friction of

the wheel-material interface . Wheels driving through this hypothetical continuum

must obey the following dimensionless form:

P V ___ ( 7 g D pL3

L" Lw2 ' LM 7j tW ' (2.6)

If the gravity, wheel roughness, and granular media are fixed, the values of g, p, p,

and p, can be absorbed into the function giving the reduced form:

P V -CU I1J 1 7D IL 3 27
M JIE' V/T "" T Lt LW2' L' M

This can be further reduced, if it is assumed that granular motion under the wheel

is approximately invariant in the out-of-plane dimension. In this case, if the mass M

and width D of the wheel are scaled by some Co, this would be identical to running Co

copies of the wheel side by side. The resulting power would be COP and the velocity
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would remain unchanged. From Equation 2.7, this means +cou is unchanged under

such a transformation, which constrains *Cou to depend on M and D only through

the ratio D/M, requiring 1Cou1 to depend on its last two inputs only through their

product:

V ~ J71 1 DL2  (2.8)
= Ycoi -t f )28lMp ' .( L ' 'Lw' M

This form is identical to Equation 2.2. Therefore, the scalings implied by RFT can

be derived from Coulomb Plasticity if the flow under the wheel is assumed invariant

in the out-of-plane dimension, per a wheel with large enough D relative to sinkage.

2.3 Experimental Validation

To test this derived scaling relation, the experimental setup in the MIT Robotic

Mobility Lab was used. Additionally, a pulley and constant force spring, as shown

in Figure 1-8, were added to allow the effective gravity on the wheel to be varied.

This was used to check Equation 2.1 under different selections of g, while keeping

held fixed. Lowering the gravity also prevents overload of the wheel motor as mass

increases. An SDP/SI Neg'ator constant-force "spring" (F, = 66.7N) was attached

between the carriage and the main platform. A pulley was attached to the carriage

platform and a belt around the pulley was attached to the main platform and a mass,

1Mp.

The spring and pulley were used in tandem to vary the effective gravity on the

wheel in a way that ensures the wheel's gravitational masses always agree. This does

not change the gravity experienced by the grains; hence the 6 value remains fixed. In

view of Figure 1-8, the gravity change can be seen by applying Newton's second law

to the main carriage coupled to the hanging weight:

S F, = FR,z + F, + Mpge - Mr ge = (MT Mi)2 (2.9)

The result is that the wheel's translational motion always matches that of a free wheel
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whose mass is

A = AT + M (2.10)

and gravity is
AIT9, - MApge - F, (2.11)

AIT + MP

where g, is earth gravity and AfT is the total mass of the wheel, motor, main platform,

and added mass.

Using these forms, Equation 2.1 was tested systematically with a set of 288 experi-

ments involving pairs of cylindrical wheels and four-arm lug wheels (defined in Figure

2-1) of varying size dimensions, mass loadings, and rotation speeds. Both cylindrical

wheels are covered in sandpaper to increase interface friction. The lug wheels have

four arms and an elbow half way down their lengths bent 1500; work by Chen Li et al.

suggests an elbow bend improves wheel effiencency [4. The interior circle on the lug

wheels is for mounting and never carne into contact with the sand in any tests. These

two wheel shapes were chosen to demonstrate the scaling over two distinct driving

motions.

Figure 2-1: The two wheel shapes f used in our study: cylinders (left) and lugs

(right). arid their corresponding definitions of L.

The different test inputs are shown in Table 2.1. In each test, a pair of wheels

of the same geometrical family but different size dimensions were driven through the

sand; one wheel is 'big' arid one is -small' as denoted with subscripts 1) and s in the

table. Three pairs of wheels were used in total and are shown in Figure 2-2. In each

test, the two masses (Al,, and AMs) and rotation speeds (Wb and w,) were chosen to
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Table 2.1: Experimental tests performed and inputs used. Each row represents a
different wheel pair for which 12 combinations of driving parameters were applied;
mass and rotational velocity pairs represented as cartesian products.

32

Common Parameters Driving Parameters

[cm], [cm], [m/s2], [1 [kg] x [deg/s]

Mb' Mb Mb

Key [g],({shape}) ( M M )
Key Ls.IDs] U,' [g] ([b* [b M~

35.9 42.2 1 457
Pair 12.50 15 , (14.9 17.6 19.0])

A 8 .0 8  15] 71]'\LYJ/ 14.0 [17.0 [20.0 23.0
17.4] 21.2 24.9 28.6

30.2 3 4.9 .39.71 )x
Pair 11.25 14 , {13.4 15.5 17.6])

B 7.50 J[14 1'Lj' 14.0 [17.0 [20. 23.0
17.1 20.8 24.5 28.2])

29.3 34.0 38.61)
Pair 11.251 14 , (13.4 15.5 17.6])
C 9.00 10] [1.31],(ILugl) 14. 17.0] [20.0 [23.0]

(15.6. [19.01 22.41 25.7]



0

(a) Pair A: cylindrical wheels. (b) Pair B: lug wheels.

(c) Pair C: lug wheels.

Figure 2-2: The three different wheel pairs tested.

ensure the big and small systems have the same dimensionless inputs to AF. Hence,

each pair of tests corresponds to two experiments that relate through a choice of the

r and s scaling parameters described previously. The time-averaged non-dimensional

power and velocity:

(P= ) (2.12)
Mg VLgq

KPi< ) (2.13)

were measured when the wheel motion reached cyclic behavior. The power was cal-

culated by multiplying the constant rotation speed by the average torque measured

over one cycle. The velocity was measured directly and averaged over one cycle. The

wheels were started in the same position. such that the torque and velocity ieasure-

ments could be averaged over corresponding cycles. In each case, the proposed scaling

relation is satisfied if (Pb) = ( P) and (V',)

The first tests performed were with cylindrical wheels (Pair A). The non-dimensional

powers and velocities arising from each of the 12 pairs of driving parameters are plot-
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ted in Figure 2-3(a). Four repetitions of the same test are performed each time to

obtain useful error-bars. In general the expected trend is strongly observed at low

rotational velocity, with some deviation at the highest rotational rate. The next series

of tests utilized two four-arm lug wheels (Pair B). Again, the expected scaling relation

is observed rather clearly (Figure 2-3(b)). The final series of experiments performed

(Pair C) also used four-arm lug wheels, however the widths and lengths of the two

wheels were not equal and not proportional. Hence, each test in this series involves

two wheels with different lengths, widths, masses, and rotations - all differing by

different factors - making this series the most stringent, and arguably most inter-

esting, test of the proposed scaling relation. The agreement is quite strong (Figure

2-3(c)). The best-fit slopes of all six datasets in Figure 2-3 are all within 3% of the

predicted value of 1.
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From Equation 2.1, in addition to the time-average behaviors, the actual time-

dependence of these quantities should relate when time is accordingly scaled. Figure

2-4 shows the non-dimensional power plotted against dimensionless time:

it= t (2.14)

over the course of a single cycle from two pairs of four-arm lug experiments in Pair

C. The predicted scaling agreement between trajectories is observed. The result is

non-trivial; the dimensional powers differ by a factor of 2.45 for each pair.

0.3-

0.25 ~,'

0.2 
_PS,2

0.15- P,2

0.1
f

0.05 -

0

-0.05
0 5 10 15 20 25

i

Figure 2-4: Non-dimensional power trajectories for two pairs of lug-wheel experiments
over a single cycle (90' of rotation). One pair is shown in solid lines, while the other
is shown in dotted lines.

2.4 Potential Extraplanetary Applications

It would be advantageous for future applications to extend the scalings arising from

Equation 2.1 so that two experiments in the same sand but with different ambient

gravities can be related to each other; e.g. to use an earthbound experiment to predict

an extraplanetary experiment. To do this correctly, one requires a theory to explain

how varies with gravity. Assuming an ideal Coulomb material, dimensional analysis
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implies that for a given sand, takes the form

= pg ( p, P"') . (2.15)

Therefore, to the extent that R.FT is described by Coulomb Plasticity theory, Equa-

tion 2.15 is a good approximation for the grain structure coefficient ( from RFT.

By substituting Equation 2.15 into Equation 2.1, we obtain:

P V v- g p (pt, Pw) DL 2

' = f ( , 2' (2.16)Mg y/~L' VIg ' w' M

With this new form, we obtain the following expanded scaling law to relate wheels

in the same sand but under two different gravities: Consider two experiments with

common f, p, yI, and p,, where one is described by the inputs (g, L, Al, D, w) and

the other by the inputs:

(g', L', M', D', w') = (qg, rL, sM, sr-2D, q1/ 2 r-1/2w) (2.17)

for any positive scalars q, r, and s. Then the steady driving cycles of the corresponding

outputs should obey:

(P') = q3/ 2r1/ 2 s(P) (2.18)

(V') = q1/2r1/2(M (2.19)

When wheel pairs are properly scaled, this relation could be used to predict behaviors

in different gravities [151.

2.5 Towing a Drawbar Force

One useful consideration in wheel design is the ability of a wheel to pull a load

acting in the opposite direction of motion. This can be described as a constant

drawbar force Fd, which acts in the negative horizontal direction. With this new

consideration, we can extend the relationship found in Equation 2.16 to include Fd
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by adding an additional non-dimensional group:

P V 9 9 P(,wD2 Fd
[tig7 v =' (tP f D ' (2.20)

M g/I' V /ZL= ' 'L LW2'7 M ' Mg)

Using this new form, we can expand the scaling law to include the drawbar force.

Again, both experiments would have common f, p, p, and 11w, but one is described

by the inputs (g, L, M, D, w, Fd) and the other by the inputs:

(g', L', M', D', w', Fj) = (qg, rL, sM, sr-2D, q1/2r-1/2W, sqFd) (2.21)

for any positive scalars q, r, and s. The steady driving cycles of the corresponding

outputs should then again obey:

(P') =q'/2 r1/ 2 s(P) (2.22)

(V') - q/ 2r1/2(V) (2.23)

2.6 Inertial and Gravitational Masses

In the discussed experimental work from Section 2.3, a pulley and constant force

spring were used to ensure the gravitational and vertical inertial masses were scaled

properly. This should be sufficient for scaling purposes in all cases in which the

material used obeys Coulomb-Plasticity and the mass of the wheel and pulley are

assumed to be much larger than the mass of the top horizontal carriage. However, if

that assumption is not valid, then the horizontal inertial mass of the wheel would also

have to be scaled properly to truly replicate the scaling of a free wheel. Therefore, it

is useful for future applications to understand the proper scaling mechanism.

Recalling Figure 1-8, and assuming a drawbar mass is attached, when the wheel

translates in the vertical direction the main platform and pulley mass (Mp) translate

as well. However, when the wheel translates in the horizontal direction, not only does

the main platform move, but also the drawbar mass (MDB) and the top carriage,
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which the the low friction vertical rods attach to. Therefore, to determine what the

acceleration in the x and z direction should be, we can use free body diagrams to

calculate the total forces on four sections: the pulley mass, the drawbar mass, the

wheel and main platform, and the top carriage and vertical bars. The mass of the

top carriage and vertical bars is denoted M and the total mass of the wheel, motor,

main platform, and added mass is denoted MT.

Using the sum of the forces in the x and z directions for all four free body diagrams,

we can solve for the total acceleration of the wheel in both directions:

a e - MDB9 (2.24)
AMT + MDB + Me

F - MTg + Mg + F (2.25)
Mlr + Mp

where F, is again the constant force of the spring, g is the gravity, and Fx"' and Fz"S

are the resistive forces in the x and z directions. As is seen in the denominator of

Equations 2.24 and 2.25 the inertial masses in each direction are actually different.

This is because the top carriage is not allowed to move vertically, since it is attached

to the horizontal rods. Additionally, the drawbar force and pulley force only act in

the horizontal and vertical directions respectively. Therefore, at high speeds when

inertial forces can have large impact, care will need to be taken to scale both the

horizontal and vertical inertial masses to truly replicate the scaling of a free wheel.

2.7 Discussion

We have proposed and experimentally validated a set of invariances in granular

locomotion for the case of rigid, arbitrarily shaped wheels, which was initially obtained

by analyzing RFT system dynamics. The scaling analysis has been reconciled with

Coulomb Plasticity and an extension has been proposed that could relate locomotion

processes in different ambient gravity.

Like RFT itself, our forms neglect rate-sensitivity of the material, which is known

to exist (i.e. the p(I) rheology [16, 17]). For more rapidly spinning wheels this effect

39



could add another degree of complexity to the scaling, however it is possible the same

form will work in a range of larger speeds, since modifications for rate-dependency

change the solution only minimally in certain cases [18]. For example, robots that run

on sand using "c-legs" [4] move many times their body-length per second yet remain

well-described by rate-independent RFT. Moving forward, it will be important to

further test this scaling relation at higher speeds and with a greater variability in

the inputs. Work is currently being done at Dan Goldman's Complex Rheology and

Biomechanics Lab at Georgia Tech to build a test rig to further test the scaling

relation over larger input ranges.

Other considerations not accounted for are the effect of internal texture variables

within the deforming granular system and nonlocal effects due to finite grain size [121.

The former suggests that a more complex scaling relationship may be needed to go

beyond monotonic driving, e.g. oscillatory wheel motion, but the latter is likely to

matter only as wheel feature size competes with the grain size [19, 201. Though rigid

wheels were studied here, the scaling could be extended to more complex locomotion,

such as undulating self-propulsion, with more moving parts by adding additional

non-dimensional groups for each new degree of freedom. One very interesting case to

study would be the application of this scaling to tank treads. Testing these extended

scaling laws should be important future work.
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Chapter 3

Rotating-Flap Wheels

In addition to deriving and experimentally testing the proposed scaling law, an-

other research focus was on the optimization of wheel shapes for granular locomotion.

One idea for this work was to develop a "smart" wheel that is able to deform or actu-

ate to an optimal shape depending on the local conditions. Due to RFT's simplicity,

it was believed that the wheels motion could be simulated over many conditions.

Using this simulation data, it could later be programmed into the physical wheel's

control such that when a certain condition arose, such as a drawbar force or required

velocity, it could respond accordingly. This could allow a wheel to travel efficiently

over many different conditions and for many desired outputs.

3.1 Design and Production

Many iterations of the "smart" wheel design were considered [21]. The first idea

was to create a wheel that could change from one superball shape to another. This

however proved difficult to mechanically design as it needed to actuate in the in-plane

dimension while keeping the out of plane thickness constant. Therefore proposed

actuation methods using air or gas pressure were infeasible as their isotropic nature

would result in deformations in all directions. Other actuation methods, including

linear actuators and timing belts, and wheel designs, such as a rotating or extendable

lug wheels, were considered [211. In an effort to keep moving parts to a minimum and
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the production of the wheel feasible most of these designs were rejected.

Ultimately, the rotating-flap wheel design was chosen. The rotating-flap wheel

consisted of a central cylindrical wheel hub, with five flaps attached to the hub as

shown in Figure 3-1. Each flap consisted of one-fifth the total circumference of the

*N

Figure 3-1: Rotating-flap wheel design shown with flaps colored red and actuated

open to 70'.

wheel hub and was attached to the hub at one end. To actuate the flaps open a gear

system was used consisting of a large central gear, with radius Rb, that was connected

to a motor. The large central gear meshed with five smaller gears, with radii R, that

where attached to each flap. In this way, when the motor actuated the central gear

a certain rotational distance 0 b, it caused the flaps to rotate a distance:

Rb

R'S

allowing full control of the flaps location through one motor.

Once the "smart" wheel design was chosen and fully dimensioned, actual produc-

tion of the wheel began. The large central gear and five smaller gears were ordered

directly, though the central gear was too thick, so a lathe was used to reduce its size.

A motor with sufficient torque and position accuracy, as well as a motor controller,

was ordered through Maxon Motors. The hub, all five flaps, and the connection piece

used to attach the motor to the hub were all 3D printed in PLA plastic using the
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same MakerBot as the previous experinents. Five axles for each flap's rotation were

used. Each axle had two holes drilled and tapped on each end to attach to the flaps

via a, screw and one hole drilled in the middle of the axle to attach to the small gear

through a screw. The same "cross" mounting system was used to attach the wheel

to the experimental setup in the MIT Robotic Mobility Lab. The fully assembled

rotating-flap wheel is shown in both open and closed configurations in Figure 3-2 for

reference.

A >4

(a) Closed view of the rotating-flap wheel. (b) Open view of the rotating-flap wheel.

(c) Isometric view of the rotating-flap wheel.

Figure 3-2: Multiple views of the rotating-flap wheel 1211.
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3.2 Experimentation

Once the rotating-flap wheel was assembled, experiments on the wheel could be

conducted. First, to increase traction sand paper was added to every flap, similar

to the cylindrical wheels tested previously. Second, the Maxon Motor came with

its own software for position control, which used the motor's internal Hall sensor.

Unfortunately, for correct data to be collected the control had to be integrated into

the existing LabView environment already in use in the lab. Therefore, the data

collection and control software Read&Display_ MER_RIG.vi currently in use had to

be altered 122]. The new motor controller was connected to the desktop via a USB

source, which was determined to be sufficient for the necessary control. Software that

integrated the motor into LabView was used and is shown in Figure 3-3.

Velocity 500
Acceleratio in

n1000
FLAP MOTOR

Communications In

EPOS2 FLAP ANGLE (relative position [qc], 78 is ful open)
MAXON SERAL V2 Timeou1

USBI ioooI
USBOI I
j500  

IIIi _
PNode

Profile PositionMd

Figure 3-3: LabView code used to integrate the Maxon motor into the LabView
system.

The motor used was actuated to a certain position by measuring in quad counts.

This was the precision of the hall sensor on which the position control was based.

Due to the gear ratio of the rotating-flap wheel, moving the motor 78 qc completely

opened up the flap angles to 90'. While the LabView data collection system was

44

I

"



running, additional code had to be written to keep the motor engaged once it had

reached its desired flap position. This new code is shown in Figure 3-4. This code kept

False v

Velocity 500
Acceleration 1000
Deceleration 1000

|Relative

Timeout|

Figure 3-4: LabView code used to keep the motor engaged in the proper position.

the relative position of the motor set to 0 as long as the data collection system was

running, ensuring it stayed engaged and had proper torque reactions to the resistive

force. All of this new control software was saved as R&D_ MER Flap.vi and used to

perform all experiments. The front plate of the control software was also altered to

allow the user to input the desired flap position. This is shown in Figure 3-5, where

a box labeled "Flap Angle" is shown highlighted. This allows the user to input the

flap angle in quad count units with again 78 qc equal to 900 open. Finally, the motor

controller had to be connected to a DC power source that could supply the necessary

27.2 volts.
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The actual experiments performed consisted of testing the rotating-flap wheel at

various flap angles open and various drawbar forces. The idea was to determine

if whether the wheel was able to achieve higher velocities or more efficient motion

when the flaps were actuated further out. To do so, the flap was tested at flap

configurations of 0, 15, 30, 45, 60, 75, and 90 degrees open. Four different drawbar

forces were tested as well: 0, 14.3, 25.4, and 35 newtons. The wheel was rotated at

a constant 20 degrees/sec for each test. Again the average power and velocity were

recorded over a single cycle. The average power was calculated by multiplying the

constant rotation speed times the average torque measured over a cycle, while the

average velocity was measured directly using the linear encoder. The experimentally

measured power and velocity measurements are shown in Figure 3-6.
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(a) Experimentally measured power vs. flap
angle.

EE

0

50-

40-

30-

20

10

0-j4

-10-

-20
0

Velocity

-+-DB=ON
-- DB=14.3N
-e-DB=2 5.4N
---DB=35N

20 40 60
Angle [deg]

(b) Experimentally measured velocity vs.
flap angle.

Figure 3-6: Experimentally measured power and velocity of rotating-flap wheel. Dif-
ferent drawbar forces are plotted in different colors.

Additionally, the results are shown as contour plots in Figure 3-7. As can be seen

the general trend in the velocity measurements is followed quite nicely: for a given

drawbar force if the flap angle increases the velocity increases and conversely for a

given flap angle if the drawbar force decreases the velocity increases. Note at some
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Figure 3-7: Power and Velocity contour plots for rotating-flap experiments.

instances, such as when the wheel flaps are fully closed (flap angle = 00) and towing

the highest drawbar, the velocity is actually negative as the wheel is pulled backwards.

The general trend in the power is that the larger the flap angle and the drawbar force

the larger the power. This is not, however, perfectly observed. For instance, when

the wheel is pulled backwards with a negative velocity, the power actually decreases.

One cause of potential error in the experiments, however, is that, due to the
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meshing of the central and external gears, tolerance issues in the hub resulting from

the 3D printing, and slack in the motor, there is some play in the actual flap angle.

Therefore, although the flaps might be actuated to a certain angle, when they come

into contact with the sand the real angle is a slightly less value as the flaps collapse

somewhat. An effort has been made to measure this effect using image processing

and it is estimated that the real angle is 4' to 7' less than the intended.

3.3 Simulation

In addition to the physical experiments, a MATLAB simulation was run to model

the exact same test parameters. The simulation is exactly that as described in Section

1.2, except that the shape input is a rotation-flap wheel. The simulation code is shown

in appendix A.5 and A.6. The hub is assumed to never come into contact with the

sand, and thus only the flaps are modeled. This is a good approximation as the flaps

tend to dig sand out of the way such that even if the hub is below the sand level it

is never in contact with any grains. Similarly, resistive force is assumed to only act

on the front side of the flaps as the backside either is never in contact with grains

or is moving in the direction opposite that of its velocity such that it would have no

resistive force. This is modeled using the outward normal vectors described in Section

1.2.

All parameters were input identical to the physical experiments including the

mass, rotation speed, pulley force, constant spring force, drawbar force, and all ge-

ometric considerations. The grain-structure coefficient was set at 2.06 based on

intrusion experiments performed by Carmine Senatore. The simulations were run for

sufficient duration to ensure steady state, before power and velocity averages were

calculated. The results of the simulations are shown in Figure 3-8.
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Figure 3-8: Power and Velocity contour plots for rotating-flap simulations. 

In both cases, the same general trend that was observed in the physical experi­

ments is seen here. For a given drawbar force as the flap angle increases the velocity 

increases and for a given flap angle as the drawbar force decreases the velocity in­

creases. For the power, in general as the flap angle and drawbar force increase the 

power increases. Despite observing the same general trend as the experiments, the 

actual magnitude of the power and velocity values seem to be much larger for the 
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simulation.

There are several possible explanations for this. First, the grain-structure coeffi-

cient used was based off of intrusion measurements using an aluminum plate. There-

fore, it is quite possible that the rotating-flap wheels covered in sandpaper have a

different coefficient of sliding friction of the wheel-material interface p than smooth

aluminum. Second, the simulation does not take into account some of the geomet-

ric irregularities of the actual wheel, such as the protruding small gears that come

into contact with the sand occasionally. Finally, there could also be a bug in the

simulation code that has yet to be found. RFT has been used with great accuracy

to predict physical experiments as shown by Chen Li et al., so it was expected to

produce similar results here [4].

3.4 Further Work

Moving forward, further work is needed to investigate this research. First, effort

should be made to perform intrusion tests with a PLA plate covered in sandpaper to

mimic the actual coefficient of sliding friction of the wheel-material interface of the

rotating-flap wheel. This will be very useful for further simulation to determine if it

is possible to model this wheel type with RFT.

Next, it would be very interesting to actually code the contour plots from Figure

3-7 into the control of the rotating-flap wheel. Thus, one could perform an experi-

ment where they set a desired velocity and changed the drawbar force as the wheel

was moving. Each time the drawbar force was changed, it would be sensed by the

load cell on the experimental setup and could be used to actuate the wheel to the

appropriate flap angle for that drawbar to achieve the desired velocity. Thus, this

would actually achieve the intended goal of the "smart" wheel, to actuate as it is

moving by responding to surrounding conditions. This could lead to overall more

efficient motion for a vehicle utilizing the wheel.
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Appendix A

Simulation Code

A.1 Lug Wheel Animation Code

1 %% Simulation of 4-spoke tire

2 % x is defined as positive to the right

3 % z is defined as positive upwards

4

5 %% Clear Everything

6 commandwindow

7 close all

8 clear all

9 clf

10 clc

11 format long

12

13 %% Inputs

14 theta=150*pi/180; % [radians]

15 TreadWidth = 0.07; % [m], in plane

16 TreadLength=0.085; % [m]

17 TireAxleInitCoord = [0,0]; %[x,z], [ml

18 omega=27*pi/180; % [rad/s]

19 initvelocity = [0,0]; %[vx, vz], [m/s]

20 Fspring=6.80389; -Spring force [kg]
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21 TireMass = (70/9.81); % [kg]

22 duration = 25;% [seci, length of simulation

23 savepics=0; %make 1 to create pics, and 0 for no pics

24 anim=1; %1 there is an animation, and 0 for no animation

25 fps=30; % Animation frames per second

26 dbforce=0;% Drawback Force [N]

27 g = 9.81; % [m/s^2], gravitational acceleration

28 scaleFactor = 2.576*(g/9.81);

29 elbows=i;

3o NumTreads = 4;

31

32 %% Set Constants

33 NumSegs = 45*(elbows+i);

34 NumPieces=NumSegs*NumTreads;

35 SegLength = (TreadLength*(elbows+1))/NumSegs; % [m]

36 OrderMag = 10^6;

37

38 AOO = 0.206*OrderMag;

39 A10 = 0.169*OrderMag;

40 Bl = 0.212*OrderMag;

41 B01 = 0.358*OrderMag;

42 Bmil = 0.055*OrderMag;

43 Cli = -0.124*OrderMag;

44 C01 = 0.253*OrderMag;

45 Cmli = 0.007*OrderMag;

46 D10 = 0.088*OrderMag;

47

48 %% Intitialization

49 ForceXs=[];

5o ForceZs=[];

51 XPos=[I;

52 ZPOS=[]

53 j=1:2:2*(NumSegs/(elbows+i));

54 i=i;

55 startingx=zeros((NumSegs/(elbows+l)),1);

56 startingz=zeros((NumSegs/(elbows+1)),1);
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for i=l:(NumSegs/(elbows+1));

startingx(i)=(j(i)/(2*((NumSegs)/(elbows+1))))*TreadLength;

end

xposadd=TreadLength;

zposadd=0;

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

Segs/(elbows+1))),1)=.

Segs/(elbows+1))),1)=.

initialtread((1+j*NumSegs):(NumSegs+j*NumSegs),1)=...

(cos(j*2*pi/NumTreads).*...

(startingx)+(sin(j*2*pi/NumTreads).*(startingz)));

initialtread((1+j*NumSegs):(NumSegs+j*NumSegs),2)=...

(-sin(j*2*pi/NumTreads).*...

(startingx)+(cos(j*2*pi/NumTreads).*(startingz)));

origx(j+1)=(cos(j*2*pi/NumTreads)*(TreadLength))+TireAxleInitCoord(1);

origz(j+1)=(-sin(j*2*pi/NumTreads)*(TreadLength))+TireAxleInitCoord(2);

initialtread((j*NumSegs+1):((j+1)*NumSegs),3)=((betainit+(j*pi/2)).*...

((betainit+(j*pi/2))<=pi/2))+...
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startingxl= [];

startingzl=[];

for j=l:elbows

startingxl(((j-1)*(NumSegs/(elbows+1)))+1:(j*(Num

((startingx.*cos(j*(pi-theta)))+xposadd);

startingzl(((j-1)*(NumSegs/(elbows+1)))+1:(j*(Num

(startingx.*sin(j*(pi-theta)))+zposadd;

xposadd=xposadd+(TreadLength*cos(j*(pi-theta)));

zposadd=zposadd+(TreadLength*sin(j*(pi-theta)));

end

startingz=[startingz; startingzl];

startingx= [startingx; startingxl];

betainit=zeros(NumSegs,1);

for jr=1:1:NumSegs/2;

betainit (jr)=0;

betainit((NumSegs/2)+jr)=-atan(startingz(end)/ ...

(startingx(end)-TreadLength));

end

initialtread=zeros(NumPieces,3);

j=1;

for j=0:NumTreads-1;



(((betainit+(j*pi/2))-pi).*((betainit+(j*pi/2))>pi/2));

end

95

96

97 xs=(origx-TireAxleInitCoord(1))';

98 zS=(origz-TireAxlelnitCoord(2))';

99

%%Key

% Startingx and startingz are midpts of segment on one tread

% initialtread is midpts of segments

% origx and origz are 4 elbow locations

% xs and zs are origx and origz minus the location of the axle initial

% position

allx=[];

allz=[3;

allvx=[];

allvz=[];

newx=[];

newz=[];

100

101

102

103

104

105

106

107

108

109

110

il

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

in x-dir

in z-dir

position in x

position in z

options = odeset('RelTol',le-4,'AbsTol',le-7);

odefix = @(t, V) FunctionVODEFourBar(t, V, TireMass, TreadWidth, SegLength,

omega, NumPieces, NumTreads, OrderMag, scaleFactor,...

initialtread, g, dbforce, Fspring);

[TOUT,VOUT] = ode45(odefix, [0 duration],Vo,options);

%% Average Power and Velocity measurements
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94

%% Function

Vo = zeros (1, 5);

Vo(l) = init_velocity(l); % initial velocity

Vo(2) = init_velocity(2); % initial velocity

Vo(3) = TireAxleInitCoord(l); % initial axle

Vo(4) = TireAxleInitCoord(2); % initial axle

Vo(5) = 0; % initial dissinated Power



129 pdpos=find((diff(sign(VOUT(:,2))))==2);

130

131 startavg=3;

132 endavg=6;

133

134 mzl=(VOUT(pdpos(endavg)+1,2)-VOUT(pdpos(endavg),2))/...

135 (TOUT(pdpos(endavg)+1)...

136 -TOUT(pdpos(endavg))); %slope of (t, z)

137 tOl=((1/mzl)*-VOUT(pdpos(endavg),2))+TOUT(pdpos(endavg));

138 mvl=(VOUT(pdpos(endavg)+1,3)-VOUT(pdpos(endavg),3))/ ...

139 (TOUT(pdpos(endavg)+1)...

140 -TOUT(pdpos(endavg))); %slope of (t,vx)

141 mpl=(VOUT(pdpos(endavg)+1,5)-VOUT(pdpos(endavg),5))/ ...

142 (TOUT(pdpos(endavg)+1)...

143 -TOUT(pdpos(endavg))); %slope of (t,pow)

144 vxfixl=(mvl*(tOl-TOUT(pdpos(endavg))))+VOUT(pdpos(endavg),3);

145 powfixl=(mpl*(tOl-TOUT(pdpos(endavg))))+VOUT(pdpos(endavg),5);

146

147 mz2=(VOUT(pdpos(startavg)+1,2)-VOUT(pdpos(startavg),2))/...

148 (TOUT(pdpos(startavg)+1)...

149 -TOUT(pdpos(startavg))); %slope of (t,z)

150 t02=((1/mz2)*-VOUT(pdpos(startavg),2))+TOUT(pdpos(startavg));

151 mv2=(VOUT(pdpos(startavg)+1,3)-VOUT(pdpos(startavg),3))/ ...

152 (TOUT(pdpos(startavg)+1)...

153 -TOUT(pdpos(startavg))); %slope of (t,vx)

154 mp2=(VOUT(pdpos(startavg)+1,5)-VOUT(pdpos(startavg),5))/...

155 (TOUT(pdpos(startavg)+1)...

156 -TOUT(pdpos(startavg))); %slope of (t,pow)

157 vxfix2=(mv2*(t02-TOUT(pdpos(startavg))))+VOUT(pdpos(startavg),3);

158 powfix2=(mp2*(t02-TOUT(pdpos(startavg))))+VOUT(pdpos(startavg),5);

159

160 vxavg=(vxfixl-vxfix2)/(tOl-t02) % [r/sI

161 Power=(powfixl-powfix2)/(tOl-t02) % [WI

162

163 %% Anilmlation Initialization

164 u=find(diff(sign(diff (mod((TOUT),1/fps))))==2);
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165 TOUTfps=TOUT(u);

166 VOUT=VOUT (u,:);

167

168 Torque=[];

169 kd=1;

170 for k=1:1:length(TOUTfps)

171

172 index = zeros(NumPieces,7); %Local number, x,z,vx,vz,Beta,gamma

173 index(:,1) = [1:NumPieces];

174 jr=1;

175

176 V(1)=VOUT(k,1);

177 V(2)=VOUT(k,2);

178 V(3)=VOUT(k,3);

179 V(4)=VOUT(k,4);

180 t=TOUTfps(k);

181 timetot(kd)=t;

182

183 for jr=l:NumPieces;

184 index(jr,2)=V(3)+((cos(omega*t)*(initialtread(jr,1)))+...

185 (sin (omega*t) *...

186 (initialtread(jr,2))));

187 %New X position using rotation matrix

188 index(jr,3)=V(4)+((-sin(omega*t)*(initialtread(jr,1)))+...

189 (cos (omega*t) *...

190 (initialtread(jr,2))));

191 %New Z position using rotation matrix

192 index(jr,4)=V(1)+(omega*(index(jr,3)-V(4)));

193 %New velocity in x-dir

194 index(jr,5)=V(2)+(-omega*(index(jr,2)-V(3)));

195 %New velocity in z-dir

196 index(jr,6)=((initialtread(jr,3)+(omega*t))*((initialtread(jr,3)+.

197 (omega*t))<=pi/2))+...

198 (((initialtread(jr,3)+(omega*t)-pi))*((initialtread(jr,3)+...

19 (omega*t))>pi/2)); %beta,

200 index(jr,7)=((atan(index(jr,5)/index(jr,4))*(index(jr,4)<O))+...
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201 ((atan(index(jr,5)/index(jr,4))+pi)*(index(jr,4)>=O))); %gamma

202 end

203

204 AQO = 0.206*OrderMag;

205 A10 = 0.169*OrderMag;

206 B11 = 0.212*OrderMag;

207 B01 = 0.358*OrderMag;

208 Bmll = 0.055*OrderMag;

209 C11 = -0.124*OrderMag;

210 C01 = 0.253*OrderMag;

211 Cm11 = 0.007*OrderMag;

212 D10 = 0.088*OrderMag;

213

214 jr=1;

215 ForceX=zeros(l,NumPieces);

216 ForceZ=zeros(l,NumPieces);

217 torque=zeros(l,NumPieces);

218 for jr=l:NumPieces;

219 B=index(jr,6);

220 G=index(jr,7);

221

222 alphaX = scaleFactor*(Cmll*cos(-2*B+G) + COl*cos(G) +...

223 Cll*cos(2*B+G) + DlO*sin(2*B));

224 alphaZ = scaleFactor*(AlO*cos(2*B) + AQO + Bmll*sin((-2*B)+G) +.

225 B01*sin(G) + Bll*sin((2*B)+G));

226

227 if index(jr,3)<=O;

228 ForceX(jr) = alphaX*SegLength*TreadWidth*-index(jr,3);

229 ForceZ(jr) = alphaZ*SegLength*TreadWidth*-index(jr,3);

230 else

231 ForceX(jr) = 0;

232 ForceZ(jr) = 0;

233 end

234 posvec=[index(jr,2)-V(3);index(jr,3)-V(4);0];

235 forcevec=[ForceX(jr);ForceZ(jr);O];

236 torquecross=cross(posvec, forcevec);
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237 torque(jr)=torquecross(3);

238

239 end

240

241

242 Torquet=sum(torque); %positive is z axis cut of screen/page

243 Torque=[Torque Torquet];

244 ForceXs=[ForceXs ForceX];

245 ForceZs=[ForceZs ForceZ];

246 ForceXTot=sum(ForceX);

247 ForceZTot=sum(ForceZ);

248

249 allx=[allx; index(:,2)]; %x positions of each tread

250 allz=[allz; index(:,3)]; %z positions of each tread

251 allvx=[allvx; index(:,4)]; %vx of each tread

252 allvz=[allvz; index(:,5)]; %vz of each tread

253 newx=[newx (((cos(omega*t).*xs)+(sin(omega*t).*zs))+...

254 V(3))]; %New X position of elbows using rotation matrix

255 newz=[newz (((-sin(omega*t).*xs)+(cos(omega*t).*zs))+...

256 V(4))]; %New Z position of elbows using rotation matrix

257 kd=kd+l;

258 end

259

260 if anim==1;

261 allvx=allvx*10^-(0.5); %scale vectors yourself

262 allvz=allvz*10^-(0.5); %scale vectors yourself

263 ForceXs=ForceXs*10^-2; %scale vectors yourself

264 ForceZs=ForceZs*10^-2; %scale vectors yourself

265

266 % Animation of Tire

267 allx2=allx';

268 allz2=allz';

269 j=1;

270 k=1;

271 kk=sprintf('%.4d', k);

272 while j<=(length(timetot));
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273 plot([newx(2,j)-0.25,newx(2,j)+0.5],[0,01,'y') %plCt sand ievei

274 axis([newx(2,j)-0.25,newx(2,j)+0.5,-0.25,0.5]) %set axis

275 axis equal

276 if NumTreads==4

277 figure(l)

278 hold on

279 set (gca, 'FontSize',18)

280 xlabel('X')

281 ylabel('Z')

282 rectangle('Positioni', [newx(2,j)-0.75,-0.5,1.25,0.5],...

283 'FaceColor',...

284 'y', 'edgecolor', 'y') %sand base

285 legend(num2str(timetot(j)),'FontSize',16)

286 %Time in upper corner

287 plot([newx(l, j),newx(3, j)], [newz(l,j),newz(3, j)],...

288 [newx(2, j),...

289 newx(4,j)],[newz(2,j),newz(4,j)],'k') %plot tire

290 quiver(allx(l+(j-)*NumPieces:NumPieces+(j-l)*...

291 NumPieces),...

292 allz(l+(j-)*NumPieces:NumPieces+(j-)*NumPieces),...

293 allvx(l+(j-l)*NumPieces:NumPieces+(j-l)*NumPieces),...

294 allvz(l+(j-l)*NumPieces:NumPieces+(j-l)*NumPieces),O,'r')

295 %plot velocity vectors

296 quiver(allx2(1+(j-l)*NumPieces:NumPieces+(j-l)*NumPieces),...

297 allz2(1+(j-)*NumPieces:NumPieces+(j-)*NumPieces),...

298 ForceXs(l+(j-l)*...

299 NumPieces:NumPieces+(j-)*NumPieces),ForceZs(+(j-l)*...

300 NumPieces:NumPieces+(j-l)*NumPieces),0,'b') %plot force vectors

301 if savepics==l;

302 hand = figure(1);

303 if k < 10

304 numstr = ['0000',num2str(k)];

305 elseif k < 100

306 numstr = ['000',num2str(k)];

307 elseif k < 1000

308 numstr = ['00',num2str(k)];
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309 elseif k < 10000

310 numstr = ['0',num2str(k)];

311 else

312 numstr = num2str(k);

313 end

314 saveas(hand, ['f' numstr], 'jpg')

315 k=k+1;

316 kk=sprintf('%.4d', k);

317 end

318 hold off

319 end

320 drawnow;

321 j=j+1;

322 end

323 end

A.2 Lug Wheel Function (FunctionVODEFourBar)

1 function [ Vdot ] = FunctionVODEFourBar( t,V,TireMass,...

2 TreadWidth, SegLength, omega, NumPieces, NumTreads, ...

3 OrderMag, scaleFactor, initialtread, g, dbforce, Fspring

4 % Tois is the function is used by ode45 function

5 index = zeros(NumPieces,7);

6 %Local number, x,z,vx,vz,Beta,gamma

7 index(:,1) = [1:NumPieces];

8 jr=1;

9

lo for jr=1:NumPieces;

11 index(jr,2)=V(3)+((cos(omega*t)*(initialtread(jr,1)))+...

12 (sin(omega*t)*(initialtread(jr,2))));

13 %New X position using rotation matrix

14 index(jr,3)=V(4)+((-sin(omega*t)*(initialtread(jr,1)))+...

15 (cos(omega*t)*(initialtread(jr,2))));

16 %New Z position using rotation matrix
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17 index(jr,4)=V(1)+(omega*(index(jr,3)-V(4)));

18 %New velocity in x-dir

19 index(jr,5)=V(2)+(-omega*(index(jr,2)-V(3)));

20 %New velocity in z-r

21 index(jr,6)=((initialtread(jr,3)+(omega*t))*...

22 ((initialtread(jr,3)+(omega*t))<=pi/2))+...

23 (((initialtread(jr,3)+(omega*t)-pi))*...

24 ((initialtread(jr,3)+(omega*t))>pi/2)); %beta,

25 index(jr,7)=((atan(index(jr,5)/index(jr,4))*...

26 (index(jr,4)<O))+((atan(index(jr,5)/index(jr,4))+.

27 pi)*(index(jr,4)>=O))); %gamma

28 end

29

30 AOO = 0.206*OrderMag;

31 A10 = 0.169*OrderMag;

32 Bli = 0.212*OrderMag;

33 B01 = 0.358*OrderMag;

34 Bmll = 0.055*OrderMag;

35 Cl = -0.124*OrderMag;

36 C01 = 0.253*OrderMag;

37 Cmli = 0.007*OrderMag;

38 D10 = 0.088*OrderMag;

39

40 jr=l;

41 ForceX=zeros(l,NumPieces);

42 ForceZ=zeros(l,NumPieces);

43 torque=zeros(l,NumPieces);

44 for jr=l:NumPieces;

45 B=index(jr,6);

46 G=index(jr,7);

47

48 alphaX = scaleFactor*(Cmll*cos(-2*B+G) +...

49 C01*cos(G) + Cll*cos(2*B+G) +...

50 DlO*sin(2*B));

51 alphaZ = scaleFactor*(AlO*cos(2*B) + AOO +...

52 Bmll*sin((-2*B)+G) + B01*sin(G) +...
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53 B11*sin((2*B)+G));

54

55 if index(jr,3)<=O;

56 ForceX(jr) = alphaX*SegLength*...

57 TreadWidth*-index(jr,3);

58 ForceZ(jr) = alphaZ*SegLength*...

59 TreadWidth*-index(jr,3);

60 else

61 ForceX(jr) = 0;

62 ForceZ(jr) = 0;

63 end

CA posvec=[index(jr,2)-V(3);index(jr,3)-V(4);0];

65 forcevec=[ForceX(jr);ForceZ(jr);0];

66 torquecross=cross(posvec, forcevec);

67 torque(jr)=torquecross(3);

68

69 end

70

71 max(ForceX);

72 Torquetotal=sum(torque);

73 ForceXTot=sum(ForceX);

74 ForceZTot=sum(ForceZ);

75 Vdot = zeros(4,1);

76 Vdot(1) = (ForceXTot-dbforce)/TireMass;

77 %Accel in x-direction

78 Vdot(2) = (ForceZTot-(TireMass*g)+...

79 (Fspring*g))/TireMass;

80 %Accel in z-direction +(15*4.448)+ (6.80389*g)

81 Vdot(3) = V(1); %Velocity in x-dir

82 Vdot(4) = V(2); %Velocity in z-dir

83 Vdot(5) = omega*Torquetotal;

84 %Derivitive of Energy dissipated

85

86 end
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A.3 Superball Animation Code

1 %Simulation of supnerball wheel

2 % x is Aefined as positive to the ri ght

3 % z is defi ned as positive upwards

4

5 %% Clear Everything

6 commandwindow

7 clear all

8 close all

9 clf

10 clc

ii format long

12

13 %% Inputs

14 g = 9.81; %[m/s^2l, gravitational acceleration

15 TireAxleInitCoord = [0,0]; %[x,z]

16 TreadWidth = 0.15*10^2; % [m], in plane

17 NumSegs = 4;

18 p=1; % chi wheel shape parameter

19 omega=30*pi/180; % [rad/s], positive in clockwise direction

20 initvelocity = [0,0]; %[vx, vz' %[m/si

21 rad=(1)^(2*p); %radius to 2p

22 TireMass =1000;% kg], mass of wheel

23 duration = 2; %[sec] length of simulation

24 dbforce=0; %Drawback force [Ni

25 OrderMag = 10^6;

26 scaleFactor = 2.576;

27

28 AOO = 0.206*OrderMag;

29 A10 = 0.169*OrderMag;

3o Bli = 0.212*OrderMag;

31 B01 = 0.358*OrderMag;

32 Bmll = 0.055*OrderMag;
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33 Cli = -0.124*OrderMag;

34 C01 = 0..253*OrderMag;

35 Cmli = 0.007*OrderMag;

36 D10 = 0.088*OrderMag;

37

38 %% Initialization

39 theta=linspace(0,pi,NumSegs);

40 theta=sort(theta);

41

42 initialtread=[];

43 midpts=[];

44 grad=[];

45 ms=[];

46 points=[];

47 rho=(rad./((abs(sin(theta)).^(2*p))+(abs(cos(theta))....

48 (2*p)))).^(1/(2*p));

49 xl=rho.*cos(theta);

50 yl=rho.*sin(theta);

51 xsfix=fliplr(xl);

52 xsfix=xsfix(2:end);

53 x=[xl xsfix];

54 ysfix=fliplr(yl);

55 ysfix=ysfix(2:end);

56 y=[yl -ysfix];

57 points(:,1)=x;

58 points(:,2)=y;

59 initialtread=(points(l:end-1,:)+points(2:end,:))/2;

6o for jz=l:(length(initialtread)-1);

61 midpts(jz,l)=(initialtread(jz,l)+initialtread(jz+1,1))/2;

62 midpts(jz,2)=(initialtread(jz,2)+initialtread(jz+1,2))/2;

63 ms(jz)=(initialtread(jz+1,2)-initialtread(jz,2))/...

64 (initialtread(jz+1,1)-initialtread(jz,1));

65 end

66 midpts(end+1,1)=(initialtread(end,1)+initialtread(1,l))/2;

67 midpts(end,2)=(initialtread(end,2)+initialtread(1,2))/2;

68 ms(end+l)=(initialtread(1,2)-initialtread(end,2))/...
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69 (initialtread(l,l)-initialtread(end,l));

70 for jx=l:length(midpts);

71 if (ms (jx) ==Inf)

72 grad(jx,:)=[1,0];

73 elseif (ms(jx)==-Inf)

74 grad(jx,:)=[-1,0];

75 else

76 if midpts(jx,2)>=O

77 a=[1;ms (jx)];

78 aperp=[,-1;1,0]*a;

79 grad(jx,:)=[aperp(l),aperp(2)];

80 else

81 a=[1;ms (jx)];

82 aperp=[0,1;-1,0]*a;

83 grad(jx,:)=[aperp(1),aperp(2)];

84 end

85 end

86 grad(jx,:)=[grad(jx,l)/sqrt((grad(jx,1)^2)+...

87 (grad(jx,2)^2)),grad(jx,2)/sqrt((grad(jx,l)^2)...

88 +(grad(jx,2)^2))];

89 end

90 SegLengths=((points(2:end,)-points(l:end-1,1)).^2+..

91 (points(2:end,2)-points(1:end-1,2)).^2).^0.5;

92 vec2=[-1;0];

93 for jvv=1:1:length(midpts);

94 vecl=[midpts(jvv,l)-initialtread(jvv,1);...

95 midpts(jvv,2)-initialtread(jvv,2)];

96 midpts(jvv,3)=((pi-acos(dot(vecl,vec2)/ ...

97 (sqrt((vecl(1)^2)+(vecl(2)^2))*sqrt((vec2(1)^2)+...

98 (vec2(2)A2)))))*(vecl(l)>=&&vecl(2)<=))+...

99 ((acos(dot(vecl,vec2)/(sqrt((vecl(1)A2)+...

100 (vecl(2)A2))*sqrt((vec2(1)A2)+(vec2(2)^2)))))*..

101 (vecl(l)<O&&vec(2)>=))+((-acos(dot(vec,vec2)/...

102 (sqrt((vecl(1)A2)+(vecl(2)A2))*sqrt((vec2(1)A2)+...

103 (vec2(2)A2)))))*(vecl(l)<&&vecl(2)<O))+...

104 (((acos(dot(vecl,vec2)/(sqrt((vecl(1)A2)+...
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(vecl(2)^2))*sqrt((vec2 (1)^ 2)+(vec2(2)^ 2)))))-pi)*..

(vecl(1)>=0&&vecl(2)>0));

end

xs=initialtread(:,1);

zs=initialtread(:,2);

%% Function

Vo = zeros(1,5);

Vo(1) = initvelocity(1); % initial velocity

Vo(2) = initvelocity(2); % initial velocity

Vo(3) = TireAxleInitCoord(1); % initial axle

Vo(4) = TireAxleInitCoord(2); % initial axle

Vo(5) = 0; % initial dissipated Power

in x-dir

in z-dir

position in x

position in z

odefix = @(t, V) FunctionVODEShapesShadow(t, V,...

TireMass, TreadWidth, omega, OrderMag,...

scaleFactor, midpts, g, SegLengths, grad);

[TOUT,VOUT] = ode45(odefix, [0 duration],Vo);

pdpos=find((diff(sign(VOUT(:,2))))==2);

mzl=(VOUT(pdpos(24)+1,2)-VOUT(pdpos(24),2))/...

(TOUT(pdpos(24)+1)-TOUT(pdpos(24))); %slope of (t,z)

tOl=((1/mzl)*-VOUT(pdpos(24),2))+TOUT(pdpos(24));

mvl=(VOUT(pdpos(24)+1,3)-VOUT(pdpos(24),3))/...

(TOUT(pdpos(24)+1)-TOUT(pdpos(24))); %slope of (t,vx)

mpl=(VOUT(pdpos(24)+1,5)-VOUT(pdpos(24),5))/...

(TOUT(pdpos(24)+1)-TOUT(pdpos(24))); %slope of (t,pow)

vxfixl=(mvl*(tOl-TOUT(pdpos(24))))+VOUT(pdpos(24),3);

powfixl=(mpl*(tOl-TOUT(pdpos(24))))+VOUT(pdpos(24),5);

mz2=(VOUT(pdpos(4)+1,2)-VOUT(pdpos(4),2))/...

(TOUT(pdpos(4)+1)-TOUT(pdpos(4))); %slope of (t,z)

t02=((1/mz2)*-VOUT(pdpos(4),2))+TOUT(pdpos(4));

mv2=(VOUT(pdpos(4)+1,3)-VOUT(pdpos(4),3))/...

(TOUT(pdpos(4)+1)-TOUT(pdpos(4))); %slope of (t,vx)
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mp2=(VOUT(pdpos(4)+1,5)-VOUT(pdpos(4),5))/...

(TOUT(pdpos(4)+1)-TOUT(pdpos(4))); %slope of (t.,pow)

vxfix2=(mv2* (t02-TOUT(pdpos(4))) )+VOUT(pdpos(4),3);

powfix2=(mp2* (t02-TOUT (pdpos(4) ) )+VOUT (pdpos (4),5);

vxavg=(vxfixl-vxfix2)/(tOl-t02) /

Power= (powfixl-powfix2) /(tOl-t02) % [W]

% Animat ion nt ializat ion

ForceXs=[];

ForceZs=[];

Torque=[];

allx=[];

allz=[];

allvx=[];

allvz=[];

newx=[];

newz=[];

initialtread=midpts;

for k=l:length(TOUT)

V(1) =VOUT (k, 1);

V(2)=VOUT(k,2);

V(3)=VOUT(k,3);

V(4)=VOUT(k,4);

t=TOUT(k);

(dim dims]=size(initialtread);

index = zeros(dim,9);

%Local number, x, z, vx, vz, Beta, gamma

index(:,1) = [1:dim];

jr=1;

for jr=1:dim;

index(jr,2)=V(3)+((cos(omega*t)*...

(initialtread(jr,1)))+(sin(omega*t)*...

(initialtread(jr,2))));

%New X position using rotation matrix
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177 index(jr,3)=V(4)+((-sin(omega*t)*...

178 (initialtread(jr,1)))+(cos(omega*t)*...

179 (initialtread(jr,2))));

180 %New Z position using rotation matrix

181 index(jr,4)=V()+(omega*(index(jr,3)-V(4)));

182 %New velocity in x-dir

183 index(jr,5)=V(2)+(-omega*(index(jr,2)-V(3)));

184 %New velocity in z-dir

185 index(jr,6)=((initialtread(jr,3)+...

186 (omega*t))*((initialtread(jr,3)+...

187 (omega*t))<=pi/2))+(((initialtread(jr,3).

188 +(omega*t)-pi))*((initialtread(jr,3)+...

189 (omega*t))>pi/2)); %beta,

190 index(jr,7)=((atan(index(jr,5)/index(jr,4))*...

191 (index(jr,4)<O))+((atan(index(jr,5)/index(jr,4))+...

192 pi)*(index(jr,4)>=O))); %gamma

193 gradrot=[cos(omega*t), sin(omega*t); ...

194 -sin(omega*t) cos(omega*t)}*[grad(jr,1);grad(jr,2)];

195 index(jr,8)=gradrot(1);

19 index(jr,9)=gradrot(2);

197 end

198

199 AQO = 0.206*OrderMag;

200 A10 = 0.169*OrderMag;

201 B11 = 0.212*OrderMag;

202 B01 = 0.358*OrderMag;

203 Bmll = 0.055*OrderMag;

204 C11 = -0.124*OrderMag;

205 C01 = 0.253*OrderMag;

206 Cmli = 0.007*OrderMag;

207 D10 = 0.088*OrderMag;

208

209 jr=1;

210 ForceX=zeros(1,dim);

211 ForceZ=zeros(1,dim);

212 torque=zeros(1,dim);
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213 for jr=l:dim;

214 velocs=index(jr,4:5);

215 B=index (jr, 6);

216 G=index(jr,7);

217 grads=index(jr,8:9);

218 coeff=l;

219 alphaX = coeff*scaleFactor*(Cmll*cos(-2*B+G) ...

220 + C01*cos(G) + Cll*cos(2*B+G) + D1O*sin(2*B));

221 alphaZ = coeff*scaleFactor*(A1O*cos(2*B)...

222 + AQO + Bmll*sin((-2*B)+G) + B01*sin(G)...

223 + Bll*sin((2*B)+G));

224 if index(jr,3)<=O;

225 ForceX(jr) = (dot([grads(1);grads(2)],...

226 [velocs(1);velocs(2)])>O)*alphaX*SegLengths(jr)*..

227 TreadWidth*-index(jr,3);

228 ForceZ(jr) = (dot([grads(1);grads(2)],...

229 [velocs(1);velocs(2)])>O)*alphaZ*...

230 SegLengths(jr)*TreadWidth*-index(jr,3);

231 else

232 ForceX(jr) = 0;

233 ForceZ(jr) = 0;

234 end

235 posvec=[index(jr,2)-V(3);index(jr,3)-V(4);0];

236 forcevec=[ForceX(jr);ForceZ(jr);0];

237 torquecross=cross(posvec, forcevec);

238 torque(jr)=torquecross(3);

239

240 end

241

242 Torquetotal=sum(torque);

243 Torque=[Torque Torquetotal];

244 ForceXs=[ForceXs ForceX];

245 ForceZs=[ForceZs ForceZ];

246

247 ForceXTot=sum(ForceX);

248 ForceZTot=sum(ForceZ);
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249

250 allx=[allx; index(:,2)];

251 allz=[allz; index(:,3)];

252 allvx=[allvx; index(:,4)];

253 allvz=[allvz; index(:,5)];

254 newxs=(((cos(omega*t).*xs) ...

255 +(sin(omega*t).*zs))+V(3));

256 newxs(end+1)=(((cos(omega*t)*...

257 xs(1))+(sin(omega*t)*zs(1)))+V(3));

258 newx=[newx newxs];

259

260 newzs=(((-sin(omega*t).*xs)+...

261 (cos(omega*t).*zs))+V(4));

262 newzs(end+1)=(((-sin(omega*t)*xs(1))+...

263 (cos(omega*t)*zs(1)))+V(4));

264 newz=[newz newzs];

265 end

266

267 %% Animation

268

269 allvx=allvx*10^-1;

270 allvz=allvz*10^-1;

271 ForceXs=ForceXs*10^-4;

272 ForceZs=ForceZs*10^-4;

273

274 allx2=allx';

275 allz2=allz';

276 j=1;

277 k=1;

278 kk=sprintf('%.4d', k);

279 NumPieces=(NumSegs*2)-2;

280 while j<=(length(TOUT))

281 axis([newx(2, j)-0.5,newx(2, j)+0.5,-0.5,1])

282 axis equal

283

284 figure(1)
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286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

hand = figure(1);

if k < 10

numstr = ['0000',num2str(k)];

elseif k < 100

numstr = ['000',num2str(k)

elseif k < 1000

numstr = ['00',num2str(k)]

elseif k < 10000

numstr = ['O',num2str(k)];

else

numstr = num2str(k);

end

saveas (hand, ['f_'

k=k+1;

kk=sprintf('%.4d',

hold off

];

numstr],'jpg')

drawnow;
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hold on

rectangle('Position', [newx(2,j)-0.5,-0.5,6,0.5],.

'FaceColor y ,'ecgecolor', v

legend(num2str(TOUT(j)))

plot(newx((((j-1)*(NumPieces+1))+1):...

(j*(NumPieces+1))),newz((((j-1)*...

(NumPieces+1))+1):(j*(NumPieces+1))),'k-')

quiver(allx(1+(j-1)*NumPieces:NumPieces+...

(j-1)*NumPieces),allz(l+(j-1)*NumPieces:NumPieces+...

(j-1)*NumPieces),allvx(1+(j-1)*NumPieces:NumPieces+...

(j-1)*NumPieces),allvz(1+(j-1)*NumPieces:NumPieces+.

(j-1)*NumPieces),0, 'r')

quiver(allx2(1+(j-1)*NumPieces:NumPieces+(j-1)*...

NumPieces),allz2(1+(j-1)*NumPieces:NumPieces+...

(j-1)*NumPieces),ForceXs(+(j-1)*NumPieces:...

NumPieces+(j-1)*NumPieces),ForceZs(1+(j-1)*...

NumPieces:NumPieces+(j-1)*NumPieces),0,'b')

;



j=j+4;

end

A.4 Superball Function (FunctionVODEShapesShadow)

function [ Vdot ] = FunctionVODEShapesShadow( t,...

V,TireMass, TreadWidth, omega, OrderMag,...

scaleFactor, initialtread, g, SegLengths, grad, dbforce

% This is the function is used by ode45 function

[dim dims]=size(initialtread);

index = zeros(dim,9);

%Local number, x,z,vx,vz,Beta,gamma

index(:,1) = [1:dim];

jr=1;

for jr=l:dim;

index(jr,2)=V(3)+((cos(omega*t)*...

(initialtread(jr,1)))+(sin(omega*t)*...

(initialtread(jr,2))));

%New X position using rotation matrix

index(jr,3)=V(4)+((-sin(omega*t)*...

(initialtread(jr,1)))+(cos(omega*t)*...

(initialtread(jr,2))));

%New Z position using rotation matrix

index(jr,4)=V(1)+(omega*...

(index(jr,3)-V(4)));

%New velocity in x-dir

index(jr,5)=V(2)+(-omega*...

(index(jr,2)-V(3)));

%New velocity in z-dir

index(jr,6)=((initialtread(jr,3)+...

(omega*t))*((initialtread(jr,3)+(omega*t))<=pi/2))...

+(((initialtread(jr,3)+(omega*t)-pi))* ...
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29 ((initialtread(jr,3)+(omega*t))>pi/2)); %beta,

30 index(jr,7)=((atan(index(jr,5)/index(jr,4))*...

31 (index(jr,4)<O))+((atan(index(jr,5)/index(jr,4))...

32 +pi)*(index(jr,4)>=O))); %gamma

33 gradrot=[cos(omega*t), sin(omega*t);...

34 -sin(omega*t) cos(omega*t)]*[grad(jr,1);grad(jr,2)];

35 index(jr,8)=gradrot(1);

36 index(jr,9)=gradrot(2);

37 end

38 AOO = 0.206*OrderMag;

39 A10 = 0.169*OrderMag;

4o Bli = 0.212*OrderMag;

41 B01 = 0.358*OrderMag;

42 Bmll = 0.055*OrderMag;

43 Cli = -0.124*OrderMag;

4 C01 = 0.253*OrderMag;

45 Cmll = 0.007*OrderMag;

46 D10 = 0.088*OrderMag;

47

48 jr=l;

49 ForceX=zeros(l,dim);

5o ForceZ=zeros(1,dim);

51 torque=zeros(1,dim);

52 for jr=l:dim;

53 velocs=index(jr,4:5);

54 B=index(jr,6);

55 G=index(jr,7);

56 grads=index(jr,8:9);

57 coeff=l;

58 alphaX = coeff*scaleFactor*(Cmll*...

59 cos(-2*B+G) + C01*cos(G) + Cll*...

60 cos(2*B+G) + DlO*sin(2*B));

61 alphaZ = coeff*scaleFactor*(AlO*...

62 cos(2*B) + AOO + Bmll*sin((-2*B)+G) ...

63 + B01*sin(G) + Bll*sin((2*B)+G));

64 if index(jr,3)<=O;
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65 ForceX(jr) = (dot([grads(1);grads(2)],...

66 fvelocs(1);velocs(2)])>0)*alphaX*...

67 SegLengths(jr)*TreadWidth*-index(jr,3);

68 ForceZ(jr) = (dot([grads(1);grads(2)],...

69 [velocs(1);velocs(2)])>0)*alphaZ*...

70 SegLengths(jr)*TreadWidth*-index(jr,3);

71 else

72 ForceX(jr) = 0;

73 ForceZ(jr) = 0;

74 end

75 posvec=[index(jr,2)-V(3);index(jr,3)-V(4);0];

76 forcevec=[ForceX(jr);ForceZ(jr);0];

77 torquecross=cross(posvec, forcevec);

78 torque(jr)=torquecross(3);

79 end

80

81 Torquetotal=sum(torque);

82 ForceXTot=sum(ForceX);

83 ForceZTot=sum(ForceZ);

84 Vdot = zeros(4, 1);

85 Vdot(1) = (ForceXTot-dbforce)/TireMass;

86 %Accel in x-direction

87 Vdot(2) = (ForceZTot-(TireMass*g))/TireMass;

88 %Accel in z-direction

89 Vdot(3) = V(1); %Velocity in x-dir

90 Vdot(4) = V(2); %Velocity in z-dir

91 Vdot(5) = omega*Torquetotal;

92 % Derivitive of Energy dissipated

93

94 end

A.5 Rotating Flap Wheel Animation Code

1 %% Simulation of rotating-flap wheel
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2 % x is defined as pos it ive to the right

3 % z 4S defined as positive upwards

4

5 %% Clear Everything

6 commandwindow

7 clear all

8 close all

9 clf

10 clc

ii format long

12

13 %% npLut5

14 savepics=1;

15 g = 9.81; % [m/s^2], gravitational acceleration

16 TreadWidth = 0.1; % [m], in plane.

17 NumSegs = 300; % Number of discrete linear segments:

18 % must be even and divisible by 5

19 p=1; % chi wheel shape parameter

20 omega=20*pi/180; % [rad/s], positive in clockwise direction

21 effrad=0.08; % effective tire radius [m]

22 TireAxleInitCoord = [0,effrad]; % [x,zi [m]

23 rad=(effrad)^(2*p); % radius to 2p

24 initvelocity = [0,0]; % [vx, vzl, [m/s]

25 TireMass=14.88;% [kg, mass of wheel

26 duration=(0.4*pi/omega)*50; %[sec) length of simulation

27 dbmass=14.3/9.81;% [kg] drawback mass used as force

28 Fspring=66.72; % [N] force of spring

29 Mpulley=1.134+0.3; %[kg]

30 OrderMag=10^6; % units for RFT coeffs

31 scaleFactor = 2.06; % sand material specific scaling factor

32 deltat=(0.4*pi/omega)/5000; % timestep [sec]

33 mplatform=9; % [kg], mass of horizontally sliding platform

34

35 %Flap Specific

36 numflaps=5; % number of flaps

37 rotang=70*pi/180; % flap angle [rad'
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38

39 % RET coefficients

4o AOO = 0.206*OrderMag;

41 A10 = 0.169*OrderMag;

42 B11 = 0.212*OrderMag;

43 B01 = 0.358*OrderMag;

44 Bm1l = 0.055*OrderMag;

45 C11 = -0.124*OrderMag;

46 C01 = 0.253*OrderMag;

47 Cmli = 0.007*OrderMag;

48 DlO = O.088*OrderMag;

49

50 %% Initialization of Flap

Si theta=sort(linspace(O,pi, (NumSegs+2)/2));

52 initialtread=[]; %midpts of segments formed by points

53 grad=[]; % outward unit vectors from points outlines

54 ms=[]; %slopes of points

55 points=[]; % coordinates of segment points

56

57 % Create Circle

58 rho=(rad./((abs(sin(theta)).^(2*p))+(abs(cos(theta)).^

59 (2*p)))).A(1/(2*p)); %radian in polar coordinate

6o xl=rho.*cos(theta); %polar to cartesian x

61 yl=rho.*sin(theta); %polar to cartesian y

62 xsfix=fliplr(xl);

63 xsfix=xsfix(2:end);

64 x=[xl xsfix];

65 ysfix=fliplr(yl);

66 ysfix=ysfix(2:end);

67 y=[yl -ysfix];-

c> points(:1) =x;

69 points(:,2)=y;

70 xs=points(1:end-1,1);

71 zs=points (1:end-1, 2) ;

72 points2=points(1:end-l,:);

73 pointsnew=[];
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74

75 % Rotae Segments

76 fsegs=length(points2)/numflaps;

77 rotmat=[cos(rotang) sin(rotang); -sin(rotang) cos(rotang)];

78 for j=1:1:numflaps;

79 coord=points2((fsegs*(j-1))+l:fsegs*j,:)';

80 if j==numflaps

81 coord(:,end+l)=points2(l,:)';

82 else

83 coord(:,end+l)=points2((fsegs*j)+l,:)';

84 end

85 rotcoord=rotmat*[coord(l,:)-coord(l,1);coord(2,:)-coord(2,1)];

86 newcoord=[rotcoord(1,:)+coord(1,1);rotcoord(2,:)+coord(2,1)];

87 pointsne((feg*(j-1))+j:(fsegs*j)+j,1:2)=newcoord';

88 end

89

90 points2=[];

91 points2=pointsnew;

92

93 % Get midpts

94 initialtread=(points2 (1:end-1, :)+points2 (2:end,:))...

95 /2; %midpts of segments formed by points

96 ms=(points2(2:end,2)-points2(1:end-1,2))./...

97 (points2(2:end,1)-points2(1:end-1,1));

98 ydiff=(points2(2:end,2)-points2(1:end-1,2));

99 xdiff=(points2(2:end,1)-points2(1:end-1,1));

1o SegLengths=((points2(2:end,1)-points2(1:end-1,1)).^ 2...

10i +(points2(2:end,2)-points2(1:end-1,2)).^2).^0.5; % of points lines

102

103 k=(l:1:numflaps-1)*(fsegs+1);

104 initialtread(k,:)=[];

1o5 ms(k,:)=[];

lo6 xdiff(k,:)=[];

107 ydiff(k, :)=[I;

108 SegLengths(k,:)=[];

109
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110 % Get outward normal vectors

iii for jx=l:length(initialtread);

112 if (ms(jx)==Inf)

113 grad(jx, :)=[1,0];

114 elseif (ms(jx)==-Inf)

115 grad(jx,:)=[-1,0];

116 else

117 a=[xdiff(jx);ydiff(jx)];

118 aperp= [ 0 , 1; -1, 0 ] *a;

119 grad (jx, :)=[aperp (1) , aperp (2)1;

120 end

121 grad(jx,:)=[grad(jx,1)/sqrt((grad(jx,l)^2)+(grad(jx,2)^2)),...

122 grad(jx,2)/sqrt((grad(jx,l)^2)+(grad(jx,2) ...

123 ^2))]; % outward facing vectors from shape outlines

124 end

125

126 vec2=[-l;];

127 for jvv=1:1:length(initialtread);

128 vecl=[initialtread(jvv,l)-points(jvv,1);initialtread(jvv,2)-...

129 points (jvv, 2)];

130 initialtread(jvv,3)=((pi-acos(dot(vecl,vec2)/(sqrt((vecl(1)^2)+...

131 (vecl(2)^2))*sqrt((vec2(1)^2)+(vec2(2)^2)))))* ...

132 (vec1(1)>=O&&vec1(2)<=O))...

133 +((acos(dot(vecl,vec2)/(sqrt((vecl(l)^2)+...

134 (vecl(2)^2))*sqrt((vec2 (1)A 2) + (vec2 (2) ^2) ) ) ) ) * ...

135 (vecl(l)<O&&vecl(2)>=O))+( (-acos(dot(vecl,vec2) ...

136 /(sqrt((vecl(l)^2)+(vecl(2) ^2))* ...

137 sqrt((vec2 (1) A2)+(vec2(2)^2))))) ...

138 *(vec1(1)<Q&&vec1(2)<O))+...

139 (((acos(dot(vecl,vec2)/(sqrt((vecl(1)A2)+(vecl(2)^2))...

140 *sqrt((vec2(1)^2)+(vec2(2)^2)))))-pi)*...

141 (vec1(1)>=Q&&vec1(2)>O)); %betas of intitial tread

142 end

143

144 %%

145 % Plot Flap Wheel
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146 figure(2)

147 hold on

148 plot(xs,zs,'k-',points2(:,1),points2(:,2),' ', .

149 initialtread(:,l),initialtread(:,2), ro','LineWidth',6)

15o axis([-0.2, 0.2, -0.2, 0.2]);%equal

151 quiver(initialtread(:,1),initialtread(:,2),grad(:,1),grad(:,2))

152 quiver(initialtread(:,l),initialtread(:,2),ones(length(ms),l),ms)

153

154 % figure(l)

155 % hold on

156 % axis equal

157 % plot (init ialt. -read2 (: , ) ,ini-tialtread2 (:, 2) , ' ro', xs, zs, 'bo' );

158 % si-ze(initia.*read)

159

16o %% Get Initial Index of Axle

161 Vo = zeros(1,5);

162 Vo(l) = initvelocity(l); % initial velocity in x-dir

163 Vo(2) = initvelocity(2); % initial velocity in z-dir

164 Vo(3) = TireAxleInitCoord(l); % initial axle position in x

165 Vo(4) = TireAxleInitCoord(2); % initial axle position in z

166 Vo(5) = 0; % initial dissipated Power

167

168

169 %options = odeset('RelTol', le--3, 'AbsTol', le--6);

170 % Default le-3 and e1-6

171 odefix = @(t, V) DBFlapFunctionVODE(t, V, TireMass,...

172 TreadWidth, omega, OrderMag, scaleFactor, initialtread,...

173 g, SegLengths, grad, dbmass, Fspring,...

174 Mpulley,effrad,mplatform);

175 %[TOUT,VOUT] = ode23(odefix, j0 duration],Vo,options );

176

177 TOUT=0:deltat:duration;

178 VOUT=zeros(length(TOUT),5);

179 VOUT(1,:)=Vo;

io for tstp=2:1:length(TOUT);

181 VOUT(tstp,:)=VOUT(tstp-l,:)+deltat*...
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182 odefix(TOUT(tstp-1),VOUT(tstp-1,:)) ';

183 end

184 %%

185 figure(3)

186 plot (VOUT (:, 3) ,VOUT (:, 4),'.-')

187

188 figure(4)

189 plot(TOUT,VOUT(:,3),'.--')

190

191 figure(5)

192 plot(TOUT,VOUT(:,4),'.-')

193 %%

194

195 pdpos=find((diff(sign(VOUT(:,2)) ))==2);

196 PDPosNum=length (pdpos)

197

198 cyctime= ( (2*pi) /omega) /5;

199 endavg=PDPosNum;

200 cyctimebeg=TOUT (pdpos (endavg) ) -cyctime;

201 startavg=find(abs (TOUT (pdpos) -cyctimebeg)<=0.1);

202 if length(startavg)>1

203 startavg=startavg(ceil( (startavg(end)-startavg(1) ) /2));

204 end

205

206 mzl=(VOUT (pdpos (endavg) +1,2) -VOUT(pdpos (endavg) ,2)) ...

207 / (TOUT (pdpos (endavg)+1)-TOUT (pdpos (endavg))); %slope of (t, z)

208 tOl=( (1/mzl) *-VOUT(pdpos (endavg) ,2) )+TOUT(pdpos(endavg));

209 mvl=(VOUT(pdpos (endavg)+1,3)-VOUT(pdpos(endavg) ,3)) ...

210 / (TOUT(pdpos(endavg)+1)-TOUT(pdpos (endavg))); %slope of (t,vx)

211 mpl=(VOUT(pdpos (endavg) +1,5) -VOUT (pdpos (endavg) , 5)) ...

212 / (TOUT(pdpos (endavg)+1)-TOUT(pdpos (endavg))); %slope of (t,pow)

213 vxfixl=(mvl* (tOl-TOUT(pdpos (endavg) ) ) )+VOUT(pdpos(endavg) ,3);

214 powfixl=(mpl* (t01-TOUT(pdpos (endavg) ) ) )+VOUT(pdpos (endavg) , 5);

215

216 mz2=(VOUT(pdpos(startavg)+1,2)-VOUT(pdpos (startavg) ,2)) ...

217 / (TOUT (pdpos (startavg) +1)-TOUT (pdpos (startavg))); %slope of (t, z)
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218 t02= ( (1/mz2) *-VOUT (pdpos (startavg) , 2) )+TOUT (pdpos (startavg));

219 mv2=(VOUT(pdpos (startavg)+1, 3) -VOUT (pdpos (startavg) ,3)) ...

220 /(TOUT (pdpos (startavg) +1) -TOUT (pdpos (startavg) )); %slope of (t,vx)

221 mp2=(VOUT(pdpos (startavg) +1, 5)-VOUT(pdpos (startavg) ,5)) . . .

222 / (TOUT (pdpos (startavg) +1)-TOUT (pdpos (startavg))); %slope of (t ,pow)

223 vxfix2=(mv2* (t02-TOUT(pdpos (startavg) )) )+VOUT(pdpos (startavg) , 3);

224 powfix2=(mp2* (t02-TOUT(pdpos (startavg)) ) )+VOUT(pdpos (startavg) ,5);

225

226 vxavg=(vxfixl-vxfix2)/ (tOl-t02) %m/s

227 Power= (powfixl-powfix2) / (tOl-t02) %Newton

228 Endpos=VOUT(end,3) %Ending Position

229

230 %% Animation initialization

231

232 ForceXs=[];

233 ForceZs=[];

234 Torque=[];

235 allx= [];

236 allz=[];

237 allvx=[];

238 allvz=[];

239 newx=H[;

24o newz=[];

241

242 fps=5;

243 u=find(diff (sign (diff (mod( (TOUT), 1/fps) )))==2);

244 TOUTfps=TOUT (u);

245 VOUTfps=VOUT (u,:);

246 kd=1;

247

248 for k=1:1:length(TOUTfps)

249 V (1)=VOUTfps (k, 1) ;

250 V(2)=VOUTfps(k,2);

251 V (3)=VOUT fps (k, 3) ;

252 V (4)=VOUTfps (k, 4) ;

253 t=TOUTfps (k) ;
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254 timetot(kd)=t;

255

256 [dim dims]=size(initialtread);

257 index = zeros(dim,9); %Local number, x,z,vx,vz,Beta,oamma

258 index(:,1) = [1:dim];

259 jr=1;

260

261 for jr=1:dim;

262 index(jr,2)=V(3)+((cos(omega*t)*(initialtread(jr,1)))...

263 +(sin (omega*t)*...

264 (initialtread(jr,2)))); %New X position using rotation matrix

265 index(jr,3)=V(4)+((-sin(omega*t)*(initialtread(jr,1)))...

266 +(cos(omega*t)*...

267 (initialtread(jr,2)))); %New Z position using rotation matrix

268 index(jr,4)=V(1)+(omega*...

269 (index(jr,3)-V(4))); %New velocity in x-dir

270 index(jr,5)=V(2)+(-omega*...

271 (index(jr,2)-V(3))); %New velocity in z-dir

272 index(jr,6)=((initialtread(jr,3)+(omega*t))...

273 *((initialtread(jr,3)...

274 +(omega*t))<=pi/2))+(((initialtread(jr,3)+(omega*t)-pi))* ...

275 ((initialtread(jr,3)+(omega*t))>pi/2)); %beta,

276 index(jr,7)=((atan(index(jr,5)/index(jr,4))...

277 *(index(jr,4)<O))+...

278 ((atan(index(jr,5)/index(jr,4))+pi)*...

279 (index(jr,4)>=O))); %gamma

280 gradrot=[cos(omega*t), sin(omega*t); -sin(omega*t) ...

281 cos(omega*t)]*[grad(jr,1);grad(jr,2)];

282 index(jr,8)=gradrot(1);

283 index(jr,9)=gradrot(2);

284 end

285

286 AOO = 0.206*OrderMag;

287 A10 = 0.169*OrderMag;

288 B11 = 0.212*OrderMag;

289 B01 = 0.358*OrderMag;
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290 Bmll = 0.055*OrderMag;

291 Cli = -0.124*OrderMag;

292 COI = 0.253*OrderMag;

293 Cmli = 0.007*OrderMag;

294 D10 = 0.088*OrderMag;

295

296 jr=1;

297 ForceX=zeros (1,dim);

298 ForceZ=zeros (1, dim);

299 torque=zeros (1, dim);

300 for jr=l:dim;

301 velocs=index (jr, 4:5);

302 B=index (jr, 6) ;

303 G=index (jr, 7) ;

304 grads=index (jr, 8: 9);

305 alphaX = scaleFactor*(Cmll*cos(-2*B+G) + C01*cos(G) +...

306 Cll*cos(2*B+G) + DlO*sin(2*B));

307 alphaZ = scaleFactor* (AlO*cos (2*B) + AOO + Bmll*sin ( (-2*B) +G)

308 + B01*sin(G) + Bll*sin((2*B)+G));

309 if index (jr, 3) <=0;

310 ForceX(jr) = (dot([grads(1);grads(2)],...

311 [velocs(1);velocs(2)])>0)* ...

312 alphaX*SegLengths (jr) *TreadWidth*-index(jr, 3);

313 ForceZ(jr) = (dot([grads(1);grads(2)],...

314 [velocs(1);velocs(2)])>0)*...

315 alphaZ*SegLengths(jr) *TreadWidth*-index(jr, 3);

316 else

317 ForceX(jr) = 0;

318 ForceZ(jr) = 0;

319 end

320 posvec=[index(jr,2)-V(3);index(jr,3)-V(4);0];

321 forcevec=[ForceX(jr);ForceZ(jr) ;O];

322 torquecross=cross (posvec, forcevec);

323 torque (jr)=torquecross (3);

324 end

325
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326 Torquetotal=sum(torque);

327 Torque=[Torque Torquetotal];

328 ForceXs=[ForceXs ForceX];

329 ForceZs=[ForceZs ForceZ];

330 ForceXTot=sum(ForceX);

331 ForceZTot=sum(ForceZ);

332

333 allx=[allx; index(:,2)];

334 allz=[allz; index(:,3)];

335 allvx=[allvx; index(:,4)];

336 allvz=[allvz; index(:,5)];

337 newx=[newx (((cos(omega*t) .*xs)+(sin(omega*t) .*zs))+...

338 V(3))]; %New X position of elbows using rotation matrix

339 newz=[newz (((-sin(omega*t) .*xs)+(cos(omega*t) .*zs))+..

340 V(4))]; %New Z position of elbows using rotatoin matrix

341 kd=kd+1;

342 end

343

344 % Animation of 'Wheel

345 anim=l;

346

347 if anim==1;

348 allvX=allvX*10^-0.3;

349 allvz=allvz*10^-0.3;

350 ForceXs=ForceXs*10^-2;

351 ForceZs=ForceZs*1OA-2;

352

353 allx2=allx';

354 allz2=allz';

355 j=1;

356 k=1;

357 kk=sprintf('%.4d', k);

358 NumPieces=NumSegs;

359 while j<= (length (timetot))

360 plot([newx(2,j)-0.2,newx(2,j)+0.2],[O,O],...

361 'y') %key to making plot reset each time
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362 axis([newx(2,j)-0.2,newx(2, j)+0.2,-0.2,0.4])

363 axis equal

364

365 figure (1)

366 hold on

367 set (gca, 'ForitSize',18)

368 xlabel('X')

369 ylabel('Z')

370 rectangle('Position',[newx(2,j)-0.4 ,-1,0. 7 ,1]...

371 ,'FaceColor',' y, 'edcgecolor','y')

372 legend(num2str(timetot(j)))

373

374

375 plot(newx((((j-1)*(NumPieces))+l):(j*(NumPieces))),...

376 newz((((j-l)*(NumPieces))+l):(j*(NumPieces))),'k-')

377 quiver(allx(l+(j-l)*NumPieces:NumPieces+(j-l)*NumPieces)...

378 ,allz(l+(j-l)*NumPieces:NumPieces+(j-1)*NumPieces),...

379 allvx(l+(j-l)*NumPieces:NumPieces+(j-l)*NumPieces),...

380 allvz(l+(j-l)*NumPieces:NumPieces+(j-1)*NumPieces),0,'r')

381 quiver(allx2(1+(j-l)*NumPieces:NumPieces+(j-l)*NumPieces)..

382 ,allz2(1+(j-l)*NumPieces:NumPieces+(j-1)*NumPieces),...

383 ForceXs(l+(j-l)*NumPieces:NumPieces+(j-l)*NumPieces),...

384 ForceZs(1+(j-l)*NumPieces:NumPieces+(j-1)*NumPieces),0,'b')

385

386 if savepics==0;

387 hand = figure(1);

388 % Attach the right suffix to the image

389 if k < 10

390 numstr = ['0000',num2str(k)];

391 elseif k < 100

392 numstr = ['000',num2str(k)];

393 elseif k < 1000

394 numstr = ['00',num2str(k)J;

395 elseif k < 10000

396 numstr = ['0',num2str(k)];

397 else
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398 numstr = num2str(k);

399 end

400 saveas (hand, ['f_' numstr], 'jpg')

401 k=k+1;

402 kk=sprintf('%.4d', k);

403 end

404

405 drawnow;

406 j=j+1;

407 hold off

408

409 end

410 end

411

412 %% Plot torque vs time, and position and velocity vs time

413 % figure (1)

414 % plot(TOUT, Torque, 'x-')

415 %

416 % figure (2)

417 % plot(TOUT,VOUT(:,1),'r ,TOUT,VOUT (:,2),'b',TOUT,VOUT(:,3),...

418 %'g', TOUT,VOUT (:, 4) , 'y', 'LineWidth',2)

419 % iegend('vx', 'vz', 'x' ,'z')

420 % xlabel('Time')

A.6 Rotating Flap Wheel Function (DBFlapFunc-

tionVODE)

1 function [ Vdot ] = FlapFunctionVODE( t,V,TireMass,...

2 TreadWidth, omega, OrderMag, scaleFactor, initialtread,...

3 g, SegLengths, grad, dbmass, Fspring, Mpulley,effrad, mplatform )

4 % This is the function is used by ode45 function

s [dim dims]=size(initialtread);

6 index = zeros (dim, 9); %Local number, x,z,vx,vz,Beta,gama

7 index(:,1) = [1:dim];
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8 jr=1;

9

10 for jr=1:dim;

11 index(jr,2)=V(3)+((cos(omega*t)*(initialtread(jr,1)))...

12 +(sin(omega*t)*(initialtread(jr,2))));

13 %New X position using rotation matrix

14 index(jr,3)=V(4)+((-sin(omega*t)*...

15 (initialtread(jr,1)))+(cos(omega*t)*...

16 (initialtread(jr,2)))); %Ne Z position using rotation matrix

17 index(jr,4)=V(1)+(omega*(index(jr,3)-V(4)));

18 %New velocity in x-dir

19 index(jr,5)=V(2)+(-omega*(index(jr,2)-V(3)));

20 %New velocity in z-dir

21 index(jr,6)=((initialtread(jr,3)+(omega*t))*((initialtread(jr,3)+...

22 (omega*t))<=pi/2))+(((initialtread(jr,3)+(omega*t)-pi))*...

23 ((initialtread(jr,3)+(omega*t))>pi/2)); %beta,

24 index(jr,7)=((atan(index(jr,5)/index(jr,4))*(index(jr,4)<O))...

25 +((atan(index(jr,5)/index(jr,4))+pi)*(index(jr,4)>=0))); %gamma

26 gradrot=[cos(omega*t), sin(omega*t); -sin(omega*t)...

27 cos(omega*t)]*[grad(jr,1);grad(jr,2)];

28 index(jr,8)=gradrot(1);

29 index(jr,9)=gradrot(2);

30 end

31

32 AOO = 0.206*OrderMag;

33 A10 = 0.169*OrderMag;

34 Bli = 0.212*OrderMag;

35 B01 = 0.358*OrderMag;

36 Bmll = 0.055*OrderMag;

37 Cl = -0.124*OrderMag;

38 C01 = 0.253*OrderMag;

39 Cmli = 0.007*OrderMag;

40 D10 = 0.088*OrderMag;

41

42 jr=l;

43 ForceX=zeros (1, dim);
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44 ForceZ=zeros(1,dim);

45 torque=zeros(1,dim);

46 for jr=1:dim;

47 velocs=index(jr,4:5);

48 B=index(jr,6);

49 G=index(jr,7);

50 grads=index(jr,8:9);

51 alphaX = scaleFactor*(Cmll*cos(-2*B+G) +...

52 C01*cos(G) + C11*cos(2*B+G) + D1O*sin(2*B));

53 alphaZ = scaleFactor*(A1O*cos(2*B) + AOO +...

54 Bmll*sin((-2*B)+G) + B01*sin(G) + B11*sin((2*B)+G));

55 if index(jr,3)<=O;

56 ForceX(jr) = (dot([grads(1);grads(2)],...

57 [velocs(1);velocs(2)])>O)*...

58 alphaX*SegLengths(jr)*TreadWidth*-index(jr,3);

59 ForceZ(jr) = (dot([grads(1);grads(2)],...

60 [velocs(1);velocs(2)])>O)*...

61 alphaZ*SegLengths(jr)*TreadWidth*-index(jr,3);

62 else

63 ForceX(jr) = 0;

ForceZ(jr) = 0;

65 end

66 posvec=[index(jr,2)-V(3);index(jr,3)-V(4);0];

67 forcevec=[ForceX(jr);ForceZ(jr);0];

68 torquecross=cross(posvec, forcevec);

69 torque(jr)=torquecross(3);

70 end

71

72 Torquetotal=sum(torque);

73 ForceXTot=sum(ForceX);

74 ForceZTot=sum(ForceZ);

75 Vdot = zeros (5,1);

76

77 Vdot(1) = (ForceXTot-(dbmass*g))/(TireMass+dbmass+...

78 mplatform); %Accel in x-direction

79 Vdot(2) = (ForceZTot-(TireMass*g)+Fspring+(Mpulley*g))...
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/ (TireMass+Mpulley); %Ac cel in z-direction

Vdot(3) = V(1); %Velocity in x--dir

Vdot(4) = V(2); %Velocity in z-dir

Vdot(5) = omega*Torquetotal; % Derivitive of Energy dissipated

80

81

82

83

84

85

86

87

88

89

90

91

% if sqrt ((Vdot (1)"^2)+ (Vdot(2)^2))>(g);

% scalfix=(17)/sqrt((Vdot(1)^2)+(Vdot(2)^2));

% Vdot (1) =Vdot (1) *s calfix;

% Vdot (2)=Vdot (2) *scalfix;

% end

end
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