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Abstract

Over the last few years, quadrotors have become increasingly popular amongst re-
searchers and hobbyist. Although tremendous progress has been made towards mak-
ing drones autonomous, advanced capabilities, such as aggressive maneuvering and
visual perception, are still confined to either laboratory environments with motion
capture systems or drone platforms with large size, weight, and power requirements.

We identify two recent developments that may help address these shortcomings.
On the one hand, new embedded high-performance computers equipped with pow-
erful Graphics Processor Units (GPUs). These computers enable real-time onboard
processing of vision data. On the other hand, recently introduced compressed contin-
uous computation techniques for stochastic optimal control allow designing feedback
control systems for agile maneuvering.

In this thesis, we design, implement and demonstrate a micro unmanned aerial
vehicle capable of executing certain agile maneuvers using only a forward-facing cam-
era and an inertial measurement unit. Specifically, we develop a hardware plat-
form equipped with an Nvidia Jetson embedded super-computer for vision processing.
We develop a low-latency software suite, including onboard visual marker detection,
visual-inertial estimation and control algorithms. The fullstate estimation is set up
with respect to a visual target, such as a window. A nonlinear globally-optimal
controller is designed to execute the desired flight maneuver. The resulting optimiza-
tion problem is solved using tensor-train-decomposition-based compressed continuous
computation techniques. The platform’s capabilities and the potential of these types
of controllers are demonstrated in both simulation studies and in experiments.

Thesis Supervisor: Sertac Karaman
Title: Associate Professor of Aeronautics and Astronautics

Mechanical Engineering Faculty Thesis Reader: John Leonard
Title: Professor of Mechanical and Ocean Engineering
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Chapter 1

Introduction

1.1 Motivation

Over the last few years quadrotors have become increasingly popular in industry, con-

sumer entertainment, research and amongst hobbyists. Many open source projects

offer solutions ranging from simple flight controllers up to the full suite of compo-

nents that are required for versatile deployment of unmanned aerial vehicles (UAV)

including control, guidance and mission planning [40]; engineering magazines fea-

tured tutorial-style introductions to modeling, planning and control of quadrotors

[42]; undergraduate controls classes have been taught using toy drones [36].

For researchers, the quadrotors’ high maneuverability, complex underactuated dy-

namics and affordable price point make them an attractive platform choice to demon-

strate novel approaches to robotic autonomy.

However, limited onboard computing power oftentimes creates severe bottlenecks.

These bottlenecks lead to two types of quadrotors: a) completely autonomous but

slow-moving vehicles with larger size, weight and power requirements as in [49]; b)

fast, agile platforms that require a priorly known environment and offboard support

through motion capture systems (as in [44]) or planning algorithms.

This separation impeded transitioning new solutions from the lab environment to

real-world field deployment. Bridging this gap requires taking solution for estimation
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and scene understanding used in slow, fully autonomous platforms to smaller plat-

forms and speed them up under the constraint of limited onboard computing power.

Control algorithms need to account for nonlinear effects that cannot be neglected dur-

ing more agile maneuvers any longer [52]. Figure 1-1 illustrates this problem setup

conceptually. On the one hand, a heavily researched solution approach falls under

Figure 1-1: Bridging the Gap between Agile and Autonomous Quadrotors: Via
lightweight algorithms, or upgraded hardware.

the notion of ’lightweight algorithms’ where the low computational complexity shall

enable them to be used onboard of small platforms as in [3] or [57]. On the other,

recent developments in the realm of embedded computing promise to bridge the gap

by significantly upgrading the computational hardware.

The main contribution of this thesis is the design and implementation of a small

quadrotor platform equipped with a high-performance embedded computing unit that

enables the use of high-rate, high-resolution computer vision for visual-inertial estima-

tion, and the implementation of optimal control policies designed using compressed-

continuous computation methods based on tensor-train-decomposition.

NVIDIA’s computing platform Jetson TK1 offers desktop-like multicore-computing
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power with an additional integrated GPU unit. The quadrotor platform built in this

thesis is developed from the ground up to accommodate this computing unit without

additional overhead in mechanical design. The quadrotor’s sensor set allows complete

vision-based autonomy. This work also comprises the development of a comprehensive

set of software components including software in the loop simulation, safety handling

and estimation and control algorithms. To maximize the usability of the platform

for further research purposes, a motion capture system is fully integrated into the

system. Testing validates the platform’s usability.

A use case scenario that guides this thesis compares most adequately to disaster relief

scenarios where quadrotors are used to explore environments fast and autonomously,

e.g. partly destroyed buildings. In this setup, quickly navigating through openings

like doors, windows and holes is an important task.

Figure 1-2 gives an abstract visualization of this task: A scene target within a scene

is identified and a target region for the quadrotor to fly to is derived from the location

of this scene target. In this thesis, the scene target is a marker setup that resembles

a window.

Plenty of research has been focused on relatively slow maneuvers such as hover and

landing as e.g. presented in [61]. On the contrary, flying aggressive trajectories has

required the use of fast motion capture systems ([44] or [8]). These systems guarantee

high estimation accuracy. A controller’s robustness margin therefore needs to cover

model inaccuracies only, but less so estimation inaccuracies. Aggressive maneuvers

have therefore mostly been confined to lab spaces. We hypothesize that a potential

solution with promising outlook is to provide a stochastic optimal controller solved to

global optimality for initial conditions in the entire state space. With this controller,

not being able to track an "optimal trajectory" does not imply leaving the trajectory’s

region of attraction. In fact, there is no one precomputed trajectory but an optimal

feedback control policy for every point in state space. However, solving for these

optimal control policies under nonlinear systems generally suffers from the curse of

dimensionality: The complexity scales exponentially with the number of dimensions

17



Figure 1-2: Scene Environment with quadrotor, marked window as scene target and
target region to fly through (purple).

in the worst case [11]. Novel approaches in applying tensor-train-decomposition-based

optimization to dynamic programming of stochastic optimal control problems are able

to offer a solution. An optimal control policy for a 7-dimensional stochastic system

was presented in [24]. This thesis demonstrates, as a proof-of-concept, the use of these

new kind of controllers for quadrotor control under visual-inertial fullstate estimation.

1.2 Related Work

Over the last years research work on quadrotors and research utilizing quadrotor

platforms have been increasing steadily. They are used to demonstrate vision-based

estimation algorithms, trajectory planning, mapping and novel control algorithms.

This section introduces work related to this thesis.

Hardware Multiple related open source projects exist. Some of them started aca-

demically and are now spun off into companies: Gurdan et al. present a small,

energy-efficient quadrotor with high-rate sensor data acquisition well suited for re-
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search [26]. Now, companies like Ascending Technologies offer comparable platforms

[4]. The Pixhawk project [43] designed an open-source low-latency, high-performance

hardware/controller-suite that builds on top of the LCM-communication framework

(LCM is also used in this thesis and discussed in detail in Section 3.2). The Ardupi-

lot- and Dronecode-projects have grown to a large, industry-supported open source

project to foster the deployment of "cheaper, better and more reliable unmanned

aerial vehicles" [41]

Estimation Early work on quadrotors as well as experiments involving highly dy-

namic flight maneuvers relied on external support for both computation and esti-

mation. Expensive motion capture systems provided accurate and fast position esti-

mates ([44] or [8]). With increasing computing power on smaller and smaller devices,

researchers started to shift computational load away from these external, offboard

resources. Achtelik et al. present a lower cost alternative to motion capture sys-

tems using illuminated colored balls mounted on the quadrotor that could be tracked

from external cameras [2]. With the nascence of smaller and lighter cameras, novel

platforms now oftentimes include vision-based estimation and navigation. The di-

verse vision-assisted estimation and control concepts can be divided into groups of

increasing capabilities to solve high-level tasks:

Image-based visual servoing addresses the task to make a quadrotor hover over or

in front of given visual cues and operates on image-level measurements. Chaumette

[13] and Hutchinson [33] give introductions to this topic. Approaches for image-based

trajectory tracking, taking into account the underactuated dynamics of quadrotors

are discussed by several authors [28],[27],[37]. Grabe et al. [25] use onboard computed

optical flow to stabilize a quadrotor’s position.

Position-based visual servoing, in turn, addresses a comparable task but usually

estimates the quadrotor’s full state, as e.g. presented in [61] for vision-based take-

off, hovering and landing. This relates closely to full visual-inertial estimation that

fuses vision-based measurements with accelerometer and gyroscopic data to generate

fullstate estimates. Taking away priorly known visual cues from the environment
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moves this estimation task into the realm of simultaneous localization and mapping

(SLAM), where not only the robot’s pose is estimated, but also the position of fea-

tures in the environment. An introduction and comprehensive survey is given by

[10]. Many researchers exploit different variations of SLAM: some approaches do not

include running a full SLAM to reduce computational load to enable onboard compu-

tation ([52] or [1]) or to enable heuristic real-time obstacle avoidance [3]. This kind

of onboard visual-inertial estimation proved to enable accurate figure flying [34].

3D-reconstruction of the environment and mapping applications like [20], [35] or

[39] build on top of that. Barry et al. exploit the nonholonomic dynamics of UAVs

and present a novel, computationally inexpensive algorithm for stereo matching [7].

These approaches enable steps towards improved scene understanding. More complex

platforms include, e.g., laser scanners for better scene understanding during outdoor-

indoor transition [49].

Planning and Control Much research has been conducted on designing fast and

reliable control and trajectory planning algorithms. Since quadrotors are highly dy-

namic systems, aggressive trajectories can be realized, but the planned trajectories

need to comply with the platform’s dynamic constraints. Shen at el present a trajec-

tory planning algorithm for quadrotors that takes into account the trajectory’s effect

on vision-based estimates [53]. Costante et al. propose a perception-aware path plan-

ning approach to find trajectories that best support the vision-based state estimation

[15]. An approach for real-time trajectory planning through given waypoints in flat

output space under dynamic constraints is discussed in [45]. Quadrotors that are

capable of juggling poles are presented by [8]. To increase the agility, a quadrotor

with variable pitch has been designed by [16]; they are able to fly multiple flips.

A popular control approach, also summarized in the comprehensive tutorial [42],

utilizes a cascaded control scheme where an outer-loop-controller generates a reference

orientation from translational state errors. This reference orientation is then tracked

by an orientation-inner-loop-controller. This approach is also detailed in 6.2 in this

thesis. Nonlinear controllers have been designed to work directly on the nonlinear
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dynamics and achieve convergence for flight states far away from hover conditions

[42] [53].

Very recently, techniques for compressed computation have been applied to stochas-

tic optimal control problems. Horowitz et al. solve an optimal control problem in

high dimensions by exploiting linear HJB equations and give a simulated quadrotor

example [30]. Gorodetsky et al. introduce a general framework to solve stochastic

optimal control problems that does not require linear HJB equations and can han-

dle input constraints [24]. This thesis utilizes this control framework to compute an

optimal feedback controller that complies with the nonlinearity, actuator constraints

and stochasticity of the quadrotor dynamics.

1.3 Contributions

The main contributions of this thesis can be divided into two aspects: (a) hardware

implementation and software architecture design, including estimation and control

solutions, and (b) a proof-of-concept demonstration in simulation and experiment of

using stochastic optimal controllers, computed through tensor-train-decomposition-

based compression techniques.

Specifically,

1. The designed quadrotor platform is equipped with a high-performance embed-

ded computing unit with a GPU that enables the use of fast, high-resolution

computer vision, estimation and control on board.

2. The provided baseline estimation is set up as visual-inertial estimation and runs

fully on board. The developed platform offers sufficient computing reserves to

add scene understanding, feature tracking or obstacle detection using standard

approaches from e.g. the openCV libraries that can exploit the onboard GPU

unit.

3. The modular software design allows to easily switch in and out new estimators,

controllers, feature trackers, etc. Due to the use of the LCM-message-handling-
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framework low data exchange latency is achieved and signals from high-level

tasks down to motor-level commands can be handled by the same infrastruc-

ture.

4. A tensor-train-decomposition-based approach is used to synthesize a globally

optimal controller that complies with the nonlinear, stochastic quadrotor dy-

namics and actuator constraints.

5. Simulation studies and experiments present a proof-of-concept for the usability

of these recent developments in utilizing compressed computation techniques

for controller synthesis.

1.4 Organization

This thesis is organized as follows:

Chapter 2 details the hardware and electronics design of the quadrotor platform.

Design considerations and selection of components are discussed. Chapter 3 describes

the software architecture and introduces the roles of various system components like

estimators, controllers and vision-related software pieces. The setup reveals the ease

of substituting in new or additional software parts. It also presents the communication

architecture between quadrotor, motion capture system and ground station.

The mathematical models for the quadrotor’s dynamics are given in Chapter 4,

including actuator and battery dynamics. A simulator features all these phenomena.

Chapter 5 presents the visual detection of a scene target and two estimation

algorithms to generate fullstate estimates. Both use priorly known visual features

in the environment and onboard accelerometer and gyroscopic measurements. The

estimators’ performance is evaluated with experimental data.

Chapter 6 describes a control structure that cascades the underactuated dynamics

into a position- and an orientation subsystem. Two controllers are discussed for the

position subsystem: first, a commonly used PD controller that acts on linearized
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dynamics. Second, a globally optimal, stochastic optimal controller that takes into

account the nonlinearity of the quadrotor dynamics and actuator constraints. In this

chapter, the controller performance is evaluated in simulation.

An experimental performance evaluation of the overall integrated systems is pre-

sented in Chapter 7. It shows the platform’s hover capabilities and demonstrates that

tensor-decomposition-based nonlinear stochastic optimal controllers can control the

quadrotor to approach a target region.

Finally, Chapter 8 summarizes this thesis, discusses limitations and suggests start-

ing points for future work.
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Chapter 2

Quadrotor Hardware Implementation

This chapter describes the quadrotor’s hardware design and the electronic architec-

ture. The platform was built entirely from the ground up using a variety of off-the-

shelf components from both hobbyist RC-stores and specialized manufacturers like

PointGreyResearch. This approach allowed to build an optimized platform to ac-

commodate the NVIDIA TK1 computing unit and the required sensor setup for full

autonomy without additional mechanical overhead. The following sections cover the

overall architecture, the computing unit, the sensor setup, the actuation system and

the motion capture system which was used to acquire ground truth data.

In addition, for subsystems like the camera with static, geometric parameters, the

identified parameters are discussed in this chapter.

2.1 System Architecture

This section introduces the quadrotor’s overall design and architecture.

The quadrotor carbon-fiber frame Turnigy Talon V2 is an off-the-shelf quadrotor

frame and was chosen for its capability to house the TK1 computing unit in its center.

Additional electronic components were installed on a PCB board above the TK1.

Figure 2-1 shows the current version of the quadrotor platform. In this flight-ready

configuration, with all components mounted including batteries, a safety cage and

motion capture markers, the platform weighs 1.28kg. Its inertia values, determined
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by a bifilar pendulum experiment, and propeller geometry data can be found in Table

2.1.

Figure 2-1: Quadrotor Build

Table 2.1: Quadrotor Hardware Parameters

mass 𝑚 1.28 kg
inertia (𝐽𝑥𝑥, 𝐽𝑦𝑦, 𝐽𝑧𝑧) (6.9𝐸−3, 7.0𝐸−3, 12.4𝐸−3) Ns2

propeller diameter 𝑑𝑝 0.165 m

propeller positions r𝐵prop
[︀
±0.117 ±0.117 −0.012

]︀𝑇
m

A standard Wifi module, Intel 7260, provides the Wifi connection to a ground

station computer for real-time data visualization and user-input capabilities. No

real-time-critical data is streamed between the ground station and the quadrotor.

On the sensor side, the flight scenario that is being considered for this thesis re-

quires an IMU for high-bandwidth orientation estimation and a monocular camera for
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lower-rate localization and position estimation. On the actuation side, four brushless

motors were used to provide thrust with off-the-shelf propellers. For data-collection

and safety purposes, it is possible to switch between autonomous flight mode and

human-controlled flight mode. A separate microcontroller, an Arduino nano, gener-

ates the PWM signals that command the motors. This setup enables the operator

to use a switch on the RC controller to switch between motor commands generated

by either the onboard computing unit or by the entirely self-contained, off-the-shelf

quadrotor flight controller (AfroFlight Naze32 ).

To prevent bandwidth and interference complications in data transfer all components

are connected through individual buses to the central TK1 computing unit. Figure

2-2 details the connections.

Figure 2-2: Electronics Diagram

2.2 Computation Unit

While there are many options to choose from for onboard-computing power, the

NVIDIA TK1 computing unit poses a noticeable step-up in computational capabili-

ties in comparison to often used microcontrollers. The TK1 features an ARM-Cortex

A15 Quadcore CPU with 2.32 Ghz, 2Gb RAM, 16GB memory, an NVIDIA Kepler
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GPU with 192 cores and various interfaces like HDMI, I2C, UART, USB 3.0 or Eth-

ernet. It delivers up to 300 gflops. Its power consumption rarely exceeds 5W, but can

go up to 15W under highly demanding tasks. These specifications allow for complex

computations at high rates. The manufacturer showcases feature tracking at 720p at

40 fps. This thesis exploited this computational power to run high-resolution com-

puter vision for pose estimation and real-time controller optimization at a sufficiently

high rate to allow for agile maneuvering of the quadrotor. The TK1’s low weight of

about 130g allowed to mount it onto the quadrotor, thus running all processes on

board the platform.

The platforms’s power supply is split into two separate circuits as shown in Fig. 2-4:

a 4S Lithium-Polymer-battery provides power to the computing unit as well as the

USB-hub that powers the camera, the Naze32 flight controller and the Arduino; a 3S

Lithium-Polymer-battery powers the motors. This setup minimizes electrical noise

induced by power spikes from varying motor load.

Figure 2-3: NVIDIA’s Jetson TK1 [47]

Figure 2-4: Power Supply Diagram
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2.3 Sensor Setup

This section discusses the details of the sensor setup. An IMU provides measure-

ments for angular rates and acceleration and can therefore provide high-bandwidth

information for position and orientation estimates. The camera is used for lower-rate

updates of pose estimates with respect to an identified scene target.

Future versions of the platform will contain a battery voltage sensor and possibly

measurements of motor speeds. Programmable ESCs like the VESC [58] could offer

a handy solution to this (although the current version is too large).

2.3.1 Inertial Measurement Unit

The current configuration features a BOSCH BNO055 IMU on a Sparkfun break-

outboard. The IMU-chip offers onboard filter capabilities. Using a custom-extended

version of [50] the gyroscope’s and accelerometer’s bandwidth were set to 41Hz. The

angular rates and acceleration are then read through a dedicated thread on the TK1

computing unit via an I2C-connection at 100Hz. It turned out that the propellers

induce significant mechanical vibrations into the frame. With some IMUs this caused

extremely noisy accelerometer readings and sometimes even a shift in accelerome-

ter bias. The use of damping mounts to dampen out mechanical vibrations greatly

improved the sensor data.

2.3.2 Camera

The platform’s camera, a Flea 3 FL3-U3-13Y3M-C from Point Grey Research (Fig-

ure 2-5) offers up to 150 FPS at 1280x1024 pixels. While for pure navigation purposes

a high-resolution high-rate camera, as chosen for this project, might not be necessary,

it does improve the localization accuracy with respect to a visual scene target. Impor-

tantly, it features a global shutter, simplifying the use of raw images for estimation

purposes.

It is connected via USB 3.0 to a powered, dedicated USB-3.0 hub.

The installed fish-eye lens (DSL219D-650-F2.0 [55]) provides a 178 deg field of view.
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Figure 2-5: PointGreyResearch’s Flea 3 Camera [48]

[51] provides a model and toolbox to calibrate omni-directional and fish-eye cameras.

It maps a 2D-image point pfish = [𝑢 𝑣]𝑇 to a 3D-unit-vector mcam emanating from the

camera system’s ’single effective viewpoint’. All real-world points lying on this ray

result in the same pfish.

Assuming perfectly aligned lenses, [51] shows that

mcam =

⎡⎢⎢⎢⎣
𝑋

𝑌

𝑍

⎤⎥⎥⎥⎦
cam

=

⎡⎢⎢⎢⎣
𝑢

𝑣

𝑓(𝑢, 𝑣)

⎤⎥⎥⎥⎦
With a perfectly symmetric lens, 𝑓(𝑢, 𝑣) can further be simplified to 𝑓(𝑢, 𝑣) = 𝑓(𝜌)

with 𝜌 being the pixel-distance of a point pfish from the image center. The function

𝑓(𝜌) is approximated by an n-th order polynomial. The toolbox suggests a default

order of 4. In our experiments this choice of parameters yielded reasonable results.

The calibration run for the lens used on the quadrotor resulted in parameters

𝛼0 = −5.518𝐸2 𝛼1 = 0 𝛼2 = 8.372𝐸−4 𝛼3 = −6.474789𝐸−7 𝛼4 = 1.236𝐸−9

following

𝑓(𝜌) = 𝛼0 + 𝛼1𝜌+ 𝛼2𝜌
2 + 𝛼3𝜌

3 + 𝛼4𝜌
4
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2.4 Actuator Characteristics

The quadrotor’s four propellers are driven by Sunnysky 22107S brushless-DC-motors.

They are commanded by ZTW Spider Opto electronic speed controllers (ESC). These

ESCs are capable of handling up to 30A and are controlled using PWM-signals with

a length between 1ms and 2ms at up to 400Hz update-rate. The power supply is

separate from the supply to the computation and sensing architecture.

Standard 6” quadrotor propellers are installed.

2.4.1 Propellers

Using a custom-made rig pictured in Figure 2-6 the relation from propeller speed/motor

speed to generated thrust was identified. Motor speeds were measured using a Ex-

tech digital laser tachometer. While this identification does not account for in-flight

aerodynamic effects caused by, e.g., relative wind velocities, it does not suffer from

the influence of ground effects because the design features a horizontal propeller axis,

resulting in horizontal air flow.

The ESCs were commanded through the same software framework that was used to

later fly the quadrotor in autonomous mode.

The recorded data follows a quadratic relation, thus complying with the classic

(a) Rig for Static Thrust Estima-
tion

0
1
2
3
4
5
6

0 200 400 600 800 1000 1200 1400 1600 1800

Thr
ust 

(N)

w (rad/s)
(b) Data Points Static Thrust

Figure 2-6: Propeller Parameter Identification
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model for propeller thrust:

𝑇 = 𝛼𝑇𝜔
2

with 𝑇 being the thrust generated and 𝜔 being the motor speed in rad/s. The

identification resulted in

𝛼𝑇 = 2.26𝐸−6

2.4.2 Speedcontrollers and Battery

The software flight controllers output desired motor speeds which need to be converted

into PWM-signals with pulse length 𝜅 microseconds that can be sent to the ESCs.

An identification of the relation between 𝜅 and motor speed is therefore necessary.

This relation is, however, heavily influenced by a decreasing battery charge state since

the terminal voltage drops not only with load (which is covered by the identification

procedure), but also over time with an increasingly depleted battery. The ESCs do

not compensate for this effect.

To mitigate this effect, the identification is conducted with a fully charged battery,

quick enough to not noticeably deplete the battery. ESCs are oftentimes tuned to

reproduce a near linear relation between generated thrust and 𝜅 (in steady-state).

Since 𝑇 ∝ 𝜔2, an approximate relation
√
𝜔 ∝ 𝜅 could be expected. Indeed, the

resulting identification revealed a clear square-root relation for lower motor speeds,

and a rather linear relation for high speeds (Figure 2-7).

This procedure neglects the fact that three additional motors will draw current from

the same battery during flight, especially during high motor speeds - further reducing

the battery’s terminal voltage, which, in turn, additionally reduces the thrust and

renders the identification less accurate. Section 4.2.3 sets up a parametrized model
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Figure 2-7: Data Points PWM 𝜅 to Motor Speed 𝜔: Near-square root-relation

to account for this effect and presents the identified values.

2.4.3 Motors

Neglecting electrical time scales, electric motors generally follow approximate, first-

order delay dynamics. Figure 2-8 shows a short-time-Fourier-transformed (STFT)

audio recording of an ESC-controlled motor being ramped up from below-hover to

take-off motor speed. It reveals that this first-order delay dynamics persist with an

ESC in the loop. 4.2.4 elaborates on the modeling of this effect.

Figure 2-8: Short-Time-Fourier-Analysis of Motor Sound on Stepinput: Plot reveals
first-order delay dynamics.
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2.5 Motion Capture System

A motion capture system provided position estimates for initial flight experiments

and ground truth to evaluate onboard position estimates. This system was newly

set up for these experiments. The OptiTrak -System [46] features 6 infrared Flex

13W cameras, capable of providing full 6D-pose estimates of rigid-bodies at up to

360Hz. Infrared-reflective markers are mounted onto the drone in an asymmetric way

to provide unambiguous identification to the OptiTrak pose-estimation-algorithm.

Fishing nets were used to build a safety cage around the flying area. Figure 2-9 shows

the setup of the motion capture area.

3m

3.5 m

5.5m

7m

6.5m

Figure 2-9: Motion Capture Area
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Chapter 3

Software Implementation

This chapter discusses the software architecture. Since the onboard computing unit

is capable of running of full Linux system (Linux4Tegra L4T), the software design

was inspired by architectures that have previously been designed to run on stan-

dard desktop computers. All code was written in C++ and the PODs-framework

[5] was used as software development guideline. In the remainder, threads - or dedi-

cated processes - are called PODs themselves. These resemble nodes from the known

RobotOpertingSystem ROS.

3.1 Multithread Architecture

Full autonomy requires various computational tasks to be completed simultaneously:

Sensor data is acquired, filtered, combined and augmented through estimators; con-

trollers decide on the desired action to be executed by actuators. These different

processes have been distributed into separate PODs. They exchange data by passing

messages. Again, this design closely resembles a ROS-design. The message passing

system, however, is implemented using LCM. Section 3.2 gives a brief description.

Figure 3-1 illustrates the resulting network of PODs and the required messages being

passed between them. The PODs are run at three different update rates: Visual

feature detection runs at 50Hz, IMU data acquisition, estimation, control and safety

checks (watchdog-POD) at 100Hz and the motorCommander at 200Hz.
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Figure 3-1: Multithread Architecture with Messages and Update rates: cyan (50Hz),
green(100Hz), red(200Hz).

The featureTracker detects the scene target and publishes calibrated 3D rays em-

anating from the camera to the features. The detection algorithm is detailed in

Section 5.1.1.

The poseReconstrutor reconstructs the full 6D-pose, consisting of orientation and po-

sition. It uses a standard openCV-pnp-algorithm and is discussed in more detail in

5.1.2.

The stateEstimators take IMU-raw data, visual features and potentially the visually

reconstructed pose to estimate the full 12-dimensional state of the quadrotor. Details

can be found in Chapter 5.

The controllers convert the current state estimate into desired motor speeds. Chapter

6 elaborates on the design of various controllers.

The watchdog runs safety checks to shut down the quadrotor in case of emergencies

or software faults. Figure 3-3 illustrates the safety checks with a state machine.

The motorCommander selects which controller’s desired motor speeds are being con-

verted into PWM-values that are then sent out to the Arduino nano that generates

the PWM-signals to command the motors via the ESCs.
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3.2 Thread Communication using LCM

The communication between different PODs is handled by the Lightweight Commu-

nications and Marshalling framework (LCM) [32]. The LCM-libraries were developed

by MIT’s DARPA Urban Challenge team to provide a high-bandwidth, low latency

tool for message passing with bindings to various programming languages. Similarly

to ROS, PODs can publish messages to and receive from user-specified channels using

the LCM-libraries. This thesis chose LCM over ROS to avoid computational overhead

and minimize latency in message handling.

3.3 Design of Base Thread

Every POD thread instantiates a worker object from a class that is derived from a

POD-base-class podBase. These worker objects store data needed for the computa-

tions they do. For example, the full-pose position controller thread controllerPDPose

instantiates a controllerPDPose-object derived from the podBase-class. This section

describes how the base class podBase offers functionality to do computations and re-

ceive and publish messages in a multithreaded way.

Figure 3-2 shows its UML diagram.

The member variables:

∙ podName represents the name of the POD. It is used to publish a status message

about its "health" on a channel "statuspodName".

∙ onMsgRecompuation is a flag to enable rerunning the POD’s computation-

method on receiving any new message.

∙ statusPOD stores the POD’s status.

∙ statusWatchdog represents the POD’s local copy of the watchdog’s current sta-

tus. The podBase-class constructor autosubscribes every POD to the message

channel that contains the watchdog-POD’s status; i.e., every POD knows about

the watchdog’s status.
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∙ same for statusDrone.

∙ callInterval : the interval which the POD’s computation loop is called at by a

gLib-loop.

∙ timestampJetsonLastComputation: a timestamp when the most recent compu-

tation loop was completed.

∙ computationInterval : the duration of the most recent computation.

∙ lcm: the lcm-object. This member object offers LCM-functionalities like sub-

scribing or actively listening to an LCM channel.

∙ messageAdmin: A map that stores information about all the messages that the

POD is subscribed to. It maps from the channel name to a messageContainer

object which is derived from a virtual base class messageContainerBase. This

allows to iterate through the map, thus iterating through all messages that the

POD is subscribed to and e.g. executing operations on all messages.

The member methods:

∙ subscribe: subscribes the POD to a channel. The POD will use receiveInterval-

Expected to check whether it is up-to-date on messages from this channel. A

new messageContainer with key "channel" is added to the messageAdmin. This

function also calls the actual LCM-subscribe-function and passes the handler-

method that is called upon receiving a new LCM-message. This handler method

is per default the handleMessage-function.

∙ unsubscribe unsubscribes the POD from an LCM-message-channel by removing

the corresponding item from the messageAdmin-map and by calling the LCM

object’s unsubscribe-function.

∙ initComputationInterval initializes variables related to checking the execution

time of the computation method.
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∙ listen is a simple while loop that calls LCM’s handle function which makes it

listen for new messages coming in over the LCM network. LCM’s handle()

waits until it gets a new message and then calls the function handle handler-

Method which was passed on subscribing an LCM object to a channel. The

listen function is run in a separate, dedicated thread. This requires taking care

of multithreaded variable access.

∙ handleMessage is the default handler method that is being called by the LCM

object on receiving a new message. It blocks the access to the messageAdmin

and stores the new message in the corresponding messageContainer in the mes-

sageAdmin. It also updates the meta information about receive intervals stored

in the messageContainers by calling updateMessageLastReceived. In case on-

MsgRecomputation is enabled (in general or for this specific channel) and the

POD’s computation loop is currently not running, it runs the computation loop.

∙ gtimerFuncComputation is the static method whose handle is fed into a gLib-

timer function. On being called it first copies all messages stored in the mes-

sageAdmin to the POD’s corresponding member variables by calling updateMes-

sageMemberVariables. UpdateMessageMemberVariables uses themessageAdmin

to iterate through all messages that the POD is subscribed to and make them

update their corresponding POD’s member variables. Then, the POD’s specific

doComputation-function is run, executing the actual computations. After be-

ing done it updates the computation interval the computation took. With this

setup, the doComputation-method can simply use the worker object’s mem-

ber variables to access the most recent LCM messages that the POD received.

Mutex-locking the access to the messageAdmin and the member variables only

occurs during the copy and update-process. This setup handles the fact that the

listener-method runs in a different thread simultaneously and has write-access

to the messages stored in the messageContainers.

∙ gtimerFuncStatusPod is the static function fed into a second gLib-loop. It

calls the POD’s specific updateStatus-function after copying the most recent
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messages from the messageAdmin to the local member variables by calling up-

dateMesageMemberVariables. updateStatus checks if messages are up-to-date

by calling checkMessageUptodate and implements POD-specific health checks

before it publishes the POD’s status by calling publishStatus.

On the messageContainerBase-class:

This abstract class provides a base class that holds meta information about a sub-

scribed channel and the most recent message received from that channel.

∙ timestampJetsonReceived stores when a new message was received last from this

channel.

∙ receiveIntervalExpected stores the interval which new messages from this channel

are expected to arrive at

∙ subscription holds the pointer to the lcm-subscription that corresponds to the

message. This objects can be used to e.g. unsubscribe.

∙ messageReceived is typeless pointer to the most recently received message.

∙ updateMessageMemberVariable() is a virtual method that is implemented in a

child class and calls the child’s updateMesageMemberVariable(). This function

copies the message in messageReceived into the corresponding member variable

of the POD object while mutex-locking the access.

A templated class derived from messageContainerBase is then used to instantiate

messageContainers that "know" about the actual type of the message (instead of

merely having typeless void pointers to stored messages) and that contain a mes-

sageMemberVariable pointer that points to the POD’s member variable that receives

a copy of the most recently received corresponding message and can be used to do

computations with.
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3.4 System Status and Safety Handling

Since the overall system has multiple subsystems, each with different initialization

procedures, a system status variable is introduced. This droneStatus is being used to

handle both the initialization status and the emergency status. The emergency sta-

tus aspect of this implementation can be considered the software-sided safety hand-

ing, in addition to the experimental setup (the net cage) and the electronic safety

switch using a separate Arduino to switch between human-RC-controlled mode and

autonomous mode.

Figure 3-3 illustrates the state machine with transition conditions and motorCom-

mander (the POD that communicates with the ESCs through the Arduino) action

taken in each state. The state machine runs in the watchdog-POD.
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Figure 3-2: podBase-Class UML diagram
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Figure 3-3: Quadrotor Status: State Machine
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3.5 Remote Communication

This section addresses the remaining need for remote communication for a quadrotor

that does not require offboard computation or processing.

The quadrotor sends all its flight telemetry data through an LCM tunnel using a

standard Wifi module to a central router.

To acquire ground truth data, a motion capture system was installed. Its software

runs on a separate Windows computer and sends pose estimates (position, orientation

and translational velocities computed with filtered finite differences) as UDP multicast

packages over a Gigabit Ethernet to the central router. Note that the quadrotor can

receive these packages. It timestamps them and converts them into LCM messages.

A groundstation desktop computer was used to receive all flight telemetry data

through an Ethernet LCM tunnel for visualization purposes. Additionally, user-input

for different flight-modes or target position can be streamed to the quadrotor.

To manually fly the drone for data-recording and safety purposes the quadrotor

features the AfroFlight Naze32, an off-the-shelf flight controller. This flight controller

receives a desired quadrotor orientation from an FrSky Taranis Plus RC-flight con-

troller over radio signal.

Based on one channel of the radio signal, the Arduino switches between creating

the PWM-signal from PWM-values received from the TK1 computing unit or received

from the Naze32 Flight Controller. This switch-channel is linked to a button on the

RC control.

Figure 3-4 illustrates this communication architecture.

3.6 Simulation and Visualization Environment

For efficient testing and tuning of control parameters, a simulation environment was

setup in MATLAB/Simulink. [36] was extended to model additional phenomena

(discussed in Chapter 4). [36] is an extended version of Peter Corke’s toolbox [14].

This simulator was then translated into c-code by means of Simulink’s auto-code-
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Figure 3-4: Remote Communication Diagram

generation and interfaced with a POD. This POD feeds the simulation with motor

speed inputs and publishes simulation outputs like the full, simulated quadrotor state,

sensor readings and visual features. The full software framework including estimation

and control PODs can therefore simply be run "simulator in the loop".

LCM provides real-time viewers to display data published over the LCM network.

For analysis purposes, this data can be converted into MATLAB format using a tool

provided by the libbot-library [31]. A libbot-based viewer-POD subscribes to relevant

quadrotor telemetry and visualizes the actual and estimated quadrotor states together

with thrust in 3D in real-time (Figure 3-5). Note that the channels subscribed to to

acquire the visualization data can either be generated from a simultaneous simulation,

or from recorded, real in-flight data.
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Figure 3-5: 3D Viewer for Flight Telemetry: Simulated state (green), and EKF-
estimated state (purple; with offset for better visibility).

Summary

This chapter described the software architecture and introduced the roles of various

system components like estimators, controllers and vision-related software pieces. The

setup revealed the ease of substituting in new or additional software parts. It also

presented the communication architecture between quadrotor, motion capture system

and ground station.

The next chapter presents the mathematical models for the quadrotor’s dynamics

including actuator and battery dynamics.
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Chapter 4

System Dynamics Modeling

This section introduces the mathematical models used to describe the quadrotor’s

dynamics. While these models can be arbitrarily complex to account for various

effects, the following two models were chosen: The simplest model that still fully

describes all six degrees of freedom of a quadrotor. This model will be used to derive

controllers. The model used for simulation takes into account additional phenomena

like battery effects, motor dynamics and simple aerodynamics.

4.1 Quadrotor Model

4.1.1 Coordinate Frames

Figure 4-1 shows the major coordinate systems used in the derivations of the dynamic

equations:

Let r𝐼 be the position of the quadrotor’s center of mass in an inertial global

coordinate frame

r𝐼 =
[︁
𝑥𝐼 𝑦𝐼 𝑧𝐼

]︁𝑇

v𝐼 denotes the quadrotor’s velocity with respect to the global coordinate frame ex-
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𝑥𝐵

𝑧𝐵
𝑦𝐵

𝑥𝐼

𝑦𝐼

𝑧𝐼

r𝐼𝑟
𝑞

𝑝

m𝐼,1

Figure 4-1: Coordinate Frames with Marked Window and Target Region

pressed in the global frame

v𝐼 = ṙ𝐼 =
[︁
�̇�𝐼 �̇�𝐼 �̇�𝐼

]︁𝑇
The origin of a body-frame coordinate system {𝑥𝐵, 𝑦𝐵, 𝑧𝐵} is fixed to the quadrotor’s

center of mass and the axes line up with the principal axes as illustrated.

The quadrotor’s orientation 𝜂 is expressed in euler-angles (yaw, pitch, roll)

𝜂 =
[︁
𝜓 𝜃 𝜑

]︁𝑇
relating to a rotation first about the global Z axis (yaw 𝜓), then a pitch-rotation 𝜃

about the new y-axis, followed by a roll-rotation 𝜑 about the new x-axis.

The matrix W−1 transforms the body-angular rates

Ω = (𝑝, 𝑞, 𝑟)𝑇

about local x-y-z-axes to euler-rates

�̇� =
[︁
�̇� 𝜃 �̇�

]︁𝑇
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Let T𝐵 be the total thrust generated by the rotors expressed in the body frame.

Let 𝜏𝑦𝑎𝑤 be the total torque about the (body-frame) 𝑧𝐵-axis resulting from propeller

drag. Motor speed acceleration is neglected. Let 𝜏𝑝𝑖𝑡𝑐ℎ and 𝜏𝑟𝑜𝑙𝑙 be the resulting torque

about 𝑦𝐵-axis and 𝑥𝐵-axis, respectively. Let J be the quadrotor’s inertia expressed

in the body frame.

4.1.2 Basic Quadrotor Model

This section now introduces the simplest dynamic model to describe the quadrotor’s

dynamics with its full 6-DOF.

Let the state x be composed of global position r𝐼 , orientation 𝜂, global velocities v𝐼

and body-frame angular rates Ω:

x =
[︁
r𝐼 v𝐼 𝜂 Ω

]︁𝑇

Derived from from a standard Newtonian approach with total thrust T𝐵 acting on

the center of mass, and body-frame torques 𝜏𝑖 as the plant inputs, the quadrotor

dynamics result in (as derived in e.g. [21], with neglected gyroscopic effects)

ṙ𝐼 = v𝐼

v̇I = G𝐼 + D𝐼
𝐵(𝜂)

T𝐵

𝑚

�̇� = W−1Ω

JΩ̇ =

⎡⎢⎢⎢⎣
𝜏𝑟𝑜𝑙𝑙

𝜏𝑝𝑖𝑡𝑐ℎ

𝜏𝑦𝑎𝑤

⎤⎥⎥⎥⎦−Ω× JΩ

with D𝐼
𝐵 denoting the rotation matrix from body-frame axes to the inertial frame

axes, either as function of euler-angles 𝜂

D𝐼
𝐵(𝜂) = D𝜓D𝜃D𝜑
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where

D𝜓 =

⎡⎣ cos(𝜓) − sin(𝜓) 0

− sin(𝜓) cos(𝜓) 0

0 0 1

⎤⎦ D𝜃 =

⎡⎣ cos(𝜃) 0 cos(𝜃)

0 1 0

− sin(𝜃) 0 cos(𝜃)

⎤⎦ D𝜑 =

⎡⎣1 0 0

0 cos(𝜑) − sin(𝜑)

0 sin(𝜑) cos(𝜑)

⎤⎦

or as function of a quaternion q that represents the same orientation:

D𝐼
𝐵(q) =

⎡⎢⎢⎢⎣
𝑞20 + 𝑞21 − 𝑞22 − 𝑞23 2(𝑞1𝑞2 − 𝑞3𝑞0) 2(𝑞1𝑞3 + 𝑞2𝑞0)

2(𝑞1𝑞2 + 𝑞3𝑞0) 𝑞20 − 𝑞21 + 𝑞22 − 𝑞23 2(𝑞2𝑞3 − 𝑞1𝑞0)

2(𝑞1𝑞3 − 𝑞2𝑞0) 2(𝑞2𝑞3 + 𝑞1𝑞0) 𝑞20 − 𝑞21 − 𝑞22 + 𝑞23

⎤⎥⎥⎥⎦

The quaternion representation follows

q =

⎡⎣𝑞
e

⎤⎦ =

⎡⎢⎢⎢⎣
𝑞0
...

𝑞3

⎤⎥⎥⎥⎦
where 𝑞 = 𝑞0 represents the scalar and e the complex part of the orientation quater-

nion. Note that ||q|| = 1.

Furthermore,

W−1 =

⎡⎢⎢⎢⎣
0 sin(𝜑)

cos(𝜃)
cos(𝜑)
cos(𝜃)

0 cos(𝜑) − sin(𝜑)

1 sin(𝜑) tan(𝜃) cos(𝜑) tan(𝜃)

⎤⎥⎥⎥⎦
It is to be noticed that this system is underactuated since it has six degrees of freedom

but only 4 actual control inputs (the four motors speeds 𝜔𝑖. The conversion from

motor speeds 𝜔𝑖 to
[︁
T𝐵 𝜏roll 𝜏pitch 𝜏yaw

]︁𝑇
is detailed in 4.2.2). However, due to

coupling effects, any position r𝐼 and yaw-angle 𝜓 can be achieved as steady-state.

Differentially flat models use exactly these four coordinates [r𝐼 𝜓] as output space

[45].

Parameters for the dynamic equations above can be found in Table 2.1.
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4.2 Actuator Models

The model introduced above uses physical torques 𝜏𝑖 and total thrust T𝐵 as plant in-

puts. However, these inputs result from motor speeds which are themselves subject to

additional dynamics (motor-, battery and ESC-dynamics). Additionally, the introduc-

tory quadrotor tutorial [42] points out and summarizes relevant aerodynamic effects

that affect the generation of thrust T𝐵,𝑖 on each propeller. This section describes

these phenomena. The simulation environment introduced in Section 3.6 features all

these effects.

4.2.1 Aerodynamic Effects

Mahoney et al. [42] provide an overview of quadrotor estimation and control topics,

including a brief introduction to the effects of blade flapping and induced drag. These

effects are considered to have significant influence on the dynamics, especially since

they generate forces occurring in the body-frame x-y-plane - which is under-actuated

since the propeller thrust - the only force-control input (without these effects) - is

fully aligned with the body-frame z-axis.

When the quadrotor moves in its x-y-plane, the advancing propeller blade has a

higher absolute tip velocity than the retreating blade. This causes the propeller blades

to bend. Due to the high rotor velocity, gyroscopic effects occur and induce a torque

perpendicular to the apparent wind direction. Consequently, the thrust is not aligned

with the motor axes any longer and points backwards with respect to the velocity

direction of the quadrotor. Induced drag also results from different relative airspeeds

of advancing vs retreating propeller blades: Since the advancing blade moves faster,

it produces more lift, but also more drag than the retreating blade. The net effect is

an additional, the "induced", drag. [42] also demonstrates how both effects can be

modeled in a lumped model. Peter Corke’s toolbox [14] models these effects. (Note

that this toolbox is part of the simulator set up for this thesis (cf. Section 3.6)).
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4.2.2 Motor Speed-Thrust Conversion

This section describes how [14] modeled the conversion from the four motor speeds

to the plant input
[︁
T𝐵 𝜏roll 𝜏pitch 𝜏yaw

]︁𝑇
used in the system model above.

The total thrust T𝐵 results from the sum of four propeller thrusts T𝐵,𝑖, where the

thrust vectors’ directions are determined by above mentioned aerodynamic effects:

T𝐵 =
3∑︁
𝑖=0

T𝐵,𝑖

where

T𝐵,𝑖 = 𝑇 𝑖

⎡⎢⎢⎢⎣
− cos(𝛽aero,𝑖) sin(𝛼aero,𝑖)

sin(𝛽aero,𝑖)

− cos(𝛼aero,𝑖) cos(𝛽aero,𝑖)

⎤⎥⎥⎥⎦
𝐵

with 𝛽aero,𝑖 and 𝛼aero,𝑖 being detailed in Table 4.1; additional parameters can be found

in the Appendix in Table A.1.

Table 4.1: Aerodynamic Effects on Thrust as in [14]

Relative air speed at propeller 𝑖: v𝐵ra,𝑖 Ω × r𝐵prop,𝑖 + D𝐵
𝐼 (𝜂)v𝐼

Planar components: 𝜇𝑖

√︁
𝑣𝐵x,ra,𝑖

2
+ 𝑣𝐵y,ra,𝑖

2

/|𝜔𝑖 𝑑𝑝2 |
Non-dimensionalized normal inflow: 𝑙𝑖 𝑣𝐵z,ra,𝑖

2
/|𝜔𝑖 𝑑𝑝2 |

Sideslip azimuth relative to x-axis: 𝑗𝑖 atan2(𝑣𝐵y,ra,𝑖, 𝑣
𝐵
x,ra,𝑖

Sideslip rotation matrix: Jss,𝑖

[︂
cos(𝑗𝑖) − sin(𝑗𝑖)
sin(𝑗𝑖) cos(𝑗𝑖)

]︂
Longitudinal flapping: 𝛽lf,𝑖 J𝑇ss,𝑖

[︂
((8

3
𝜃b0 + 2𝜃b1) − 2𝑙𝑖/(1/𝜇𝑖 − 𝜇𝑖/2)

0

]︂
𝛼aero,𝑖 𝛽𝑥,lf,𝑖 − 16𝑞/(𝛾aero|𝜔𝑖|)
𝛽aero,𝑖 𝛽𝑦,lf,𝑖 − 16𝑝/(𝛾aero|𝜔𝑖|)
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For the body-frame torques 𝜏 = [𝜏𝜑 𝜏𝜃 𝜏𝜓] it is

𝜏 =
3∑︁
𝑖=0

r𝐵prop,𝑖 ×T𝐵
𝑖 +𝑄𝑖

⎡⎢⎢⎢⎣
0

0

1

⎤⎥⎥⎥⎦
with r𝐵prop,𝑖 being propeller 𝑖’s position with respect to the quadrotor’s center of mass

and 𝑄𝑖 = 𝛼𝑄𝜔𝑖|𝜔𝑖| being the propeller-drag-induced torque.

Most basic models neglect these aerodynamic effects and assume 𝛼 aero = 𝛽aero = 0,

thus assuming the thrust vectors to be fully aligned with the body-frame z-axis. This

results in T𝐵
𝑖 = [0 0 𝑇𝑖]

𝑇 and

T𝐵 =
[︁
0 0 𝑇

]︁𝑇
where 𝑇 =

∑︀
𝑇𝑖. Under these assumptions, the plant input reduces from the six

dimensional
[︁
T𝐵 𝜏𝜑 𝜏𝜃 𝜏𝜓

]︁𝑇
to a four dimensional u =

[︁
𝑇 𝜏𝜑 𝜏𝜃 𝜏𝜓

]︁𝑇
.

With 𝑇𝑖 = 𝛼𝑇𝜔
2
𝑖 from 2.4.1, above equations can be reformulated as

u =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑇

𝜏𝜑

𝜏𝜃

𝜏𝜓

⎤⎥⎥⎥⎥⎥⎥⎦ = Mu
T

⎡⎢⎢⎢⎢⎢⎢⎣
𝜔2
0

𝜔2
1

𝜔2
2

𝜔2
3

⎤⎥⎥⎥⎥⎥⎥⎦ = 𝛼𝑇

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 1 1

𝑟y,0 𝑟y,1 𝑟y,2 𝑟y,3

𝑟x,0 𝑟x,1 𝑟x,2 𝑟x,3
𝛼𝑄
𝛼𝑇

−𝛼𝑄
𝛼𝑇

𝛼𝑄
𝛼𝑇

−𝛼𝑄
𝛼𝑇

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
𝜔2
0

𝜔2
1

𝜔2
2

𝜔2
3

⎤⎥⎥⎥⎥⎥⎥⎦
This gives an invertible relation between squared motor speeds 𝜔𝑖 and the plant input

u = [𝑇 𝜏𝜑 𝜏𝜃 𝜏𝜓]𝑇 . This allows to design controllers on the basic quadrotor model with

input u and, during flight, translate a given desired actuator action u*(𝑡) into desired

motor speeds 𝜔*(𝑡) to command the motors. Parameters for this equation can be

found in Table 2.1 and Section 2.4.1.

53



4.2.3 Speed Controller-Battery Model

The hardware section 2.4.2 on battery and ESC characteristics mentioned the fact

that changing terminal voltage changes the steady-state motor speeds even when

PWM-signals that are being sent to the ESC remain constant. While a dropping

terminal voltage as a result of a depleting battery state was not modeled, a simplified

parametrized battery model was used to account for the effect of the terminal volt-

age dropping with increased current that is drawn from the battery. The following

assumptions are made: the battery follows a Thevenin Equivalent Circuit with con-

stant voltage source and an internal resistance; this results in the terminal voltage

dropping proportionally to current drawn; the current drawn is proportional to the

torque required from the motors to overcome rotational propeller drag; this torque

is proportional to the thrust produced; thrust is proportional to the squared motor

speeds; under ideal battery conditions, the ESC achieves a linear relationship between

PWM value 𝜅𝑖 and the squared motor speeds; squared motor speeds therefore drop

linearly with dropping terminal voltage.

A simple, approximate model derived under these assumptions is

𝜅𝑖 =
𝛼ESC𝜔

*2
𝑖

𝑈0 −
∑︀

motors 𝑗
(𝛼Bat𝜔*

𝑗 )
2

+ 𝜅0

A nonlinear least-squares resulted in estimated parameters:

𝛼ESC = 0.0033 𝑈0 = 11.5

𝛼Bat = 6.5310−4 𝜅0 = 1074

Note that this equation can be inverted when taking into account all four 𝜔*
𝑖 and 𝜅𝑖:

The simulator used to simulate the quadrotor’s dynamics takes the commanded 𝜅𝑖

and outputs the corresponding steady-state 𝜔*
𝑖 .

This model holds for the steady-state relation after transient. The next section ad-
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dresses the noticeable transient in achieving this steady-state.

4.2.4 Motor Model

The hardware description in Section 2.4.3 pointed out that the closed-loop system of

motor and ESC - with the PWM-value 𝜅 being the input signal and actual motor

speed 𝜔 the output signal - roughly follows first-order delay dynamics when feeding

a step-input.

From the STFT plot in Figure 2-8, the time constant is approximated as

𝑡𝑚 = 0.06

for both upwards and downwards steps, resulting in a transfer function from a desired

motor speed 𝜔* (corresponding to some PWM value 𝜅) to an actual motor speed 𝜔:

𝜔(𝑠) =
1

𝑡𝑀𝑠+ 1
𝜔*(𝑠)

Summary

This chapter presented the mathematical models for the quadrotor’s dynamics in-

cluding actuator and battery dynamics.

The following chapter introduces the visual detection of a scene target and two

estimation algorithms to generate fullstate estimates that comply with the dynamical

models presented in this chapter. The estimators’ performance is evaluated with

experimental data.
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Chapter 5

Visual-inertial State Estimation

This chapter discusses vision-based scene target detection and two approaches to

synthesize a fullstate estimate with respect to that scene target. An experimental

evaluation of the estimation performance is presented. Unlike e.g. image-based visual-

servoing, the controller solution in this thesis separate the estimation and control

problem. Therefore, a fullstate estimate is required. Recalling that a possible scenario

for a quadrotor of this design could be to explore buildings in disaster relief scenarios,

entering through openings like doors and windows becomes a crucial task. While a

vision-based window detection is not the focus of this thesis, a detection is still needed

to present a full proof-of-concept. For this purpose, the visual detection problem was

simplified as much as possible.

5.1 Vision-based Localization

In this section, two algorithms are described: first, a simple approach to reliably find

a scene target at high-rates. A marked window forms this scene target. Second, the

known pnp-pose reconstruction algorithm (where pnp stands for perspective-n-Point)

that is commonly used to reconstruct a camera pose from identified image features

with known 3D real-world locations.

57



5.1.1 Scene Target Detection

Since the detection problem is not focus of this thesis, the experimental setup was

designed such that the real-world markers (oftentimes referred to as landmarks) and

their corresponding image features are most easily detectable and unambiguously

identifiable at high rates.

In the chosen experimental setup, a window-like structure was imitated by a dark

rectangle and triangle on a white wall (Figure 5-1). It is positioned at the back

end of the flying area, around 𝑥𝐼 = 3.0𝑚. This structure enabled a reliably unam-

biguous identification of all corners on an image level - independent from any other

estimates - and therefore proved to be a convincing choice as image features. The

global 3D-positions of these corners have been measured using the motion capture

system. AprilTags or colored dots were considered as an alternative. However, the

first approach showed robust results at rates above 50Hz.

The algorithm to find and identify the seven corners of the marker setup is described

in the following paragraphs. First, the gray-scale image is thresholded, resulting in

an image shown in Figure 5-1. This thresholded image is then fed into openCV’s

Figure 5-1: Thresholded Image of View on Marker Setup
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findContours-function. A Ramer-Douglas-Peucker -algorithm (RDP) [29] is applied

to fit polygons to the contours, effectively reducing the number of points of each

contour. The approximation tolerance is chosen such that the marker triangle and

rectangle are robustly approximated as three and four-point polygons for a wide

range of camera poses. The resulting image with fitted polygons is shown in Figure

5-2. The set of all three- and four-point polygons is then searched for a pair with

Figure 5-2: Polygons found by RDP

a ratio 𝜁 =
|pfish,T𝑖 −pfish,R𝑗 |min

|pfish,T𝑖 −pfish,R𝑗 |max
with 𝜁 < 𝜁 < 𝜁 (where pfish,T

𝑖 ,pfish,R
𝑗 denote the pixel

locations in the original image of the triangle and rectangle corners, respectively),

and 𝐴 <
𝐴rectangle

𝐴triangle
< 𝐴, with 𝐴 denoting the area of the polygons. Parameters can be

found in Table A.2.

This approach proved to be robust enough to uniquely and unambiguously identify

the 7 corners of the triangle and rectangle. Figure 5-3 shows an overlay of original

image and identified markers.
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Figure 5-3: Identified markers: Triangle (black), rectangle (purple).

5.1.2 Pose Reconstruction

Given that the features (the detected corners) come with known global 3D coordinates

m𝐼 , it is possible to fully reconstruct the camera’s 3D-pose. This problem is called

Perspective-n-Point. With 7 3D-points available to be used for reconstruction, this

becomes an optimization problem that aims to find the optimal camera pose (consist-

ing of a translation r𝐼,cam and an orientation 𝜂cam) that minimizes the reprojection

error

𝑒 =
7∑︁
𝑖=1

⃦⃦
𝑠ppin,𝑖 −K[Dcam

𝑊 (𝜂cam)|r𝐼,cam]m𝐼,𝑖
⃦⃦

where ppin
𝑖 is the undistorted pinhole-image pixel location of feature 𝑖, 𝑠 a scale factor,

K the matrix of generic intrinsic camera parameters, m𝐼,𝑖 the 3D-world coordinates

of feature 𝑖 expressed in the inertial frame and where K[Dcam
𝑊 (𝜂cam)|r𝐼,cam]m𝐼,𝑖 corre-

sponds to the standard projection model for pinhole camera models that projects a

3D-point onto the image plane.
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openCV provides an implementation for this setup. The optimizer used in the imple-

mentation is a standard Levenberg-Marquardt algorithm [60].

The camera used in this thesis was equipped with a fish-eye lens. Therefore, pinhole

camera models do not hold. As described in 2.3.2, a camera model for fish-eye lenses

allows to reconstruct a 3D-unit ray m̃𝐵,𝑖(emanating from the camera) for a marker

with detected image pixel location p̃fish,𝑖. This 3D-unit ray is then projected onto

a generic image plane using a generic pinhole camera model to compute the undis-

torted, pinhole-camera pixel location p̃pin,𝑖.

This approach provides a full reconstruction of the quadrotor’s pose which is used for

one of the suggested sensor fusion models that is described in the following sections.

5.2 Sensor Fusion

In this thesis’ setup, the purpose of sensor fusion is to estimate the quadrotor’s full

state x, consisting of the position r𝐼 , the velocities v𝐼 , the orientation 𝜂 and the

angular rates Ω. The sensor setup provides measurements of the body rates Ω̃𝐵,gyro

through the gyroscope, specific acceleration ã𝐵,acc through the accelerometer (body-

frame acceleration overlaid by gravity) and unit rays m̃𝐵,𝑖 emanating from the camera

to real-world markers with known 3D-coordinates. The following sections introduce

two approaches to generate fullstate estimates. As Shen et al. note, unobservable

modes can occur during flight maneuvers with zero linear acceleration when utilizing

simple filter approaches [52]. However, the main application case of this thesis are

agile maneuvers approaching target regions, so non-zero acceleration can be expected

most of the time. Additionally, since the flight maneuvers are short (<3sec) highly

accurate drift-free estimation is not necessary.

5.2.1 Hybrid Filter

The hybrid filter approach described in this section combines a complimentary filter

(CF) for estimating orientation and a standard Kalman filter (KF) for estimating the

translational components of the full state. It requires the pnp-pose-reconstruction
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algorithm to run simultaneously with the estimator since this hybrid estimator takes

a fully reconstructed 3D-pose as measurement update.

Inputs into the complimentary filter are measurements from the IMU’s gyroscope

Ω̃𝐵,gyro and accelerometer ã𝐵,acc, and a yaw-estimate 𝜓pnp reconstructed purely from

vision via the pnp-pose-reconstruction algorithm described above. The Kalman-filter

uses accelerometer data ã𝐵,acc as input to the state propagation model and the recon-

structed 3D-pose r̂𝐼,pnp as measurement update. The orientation estimate from the

complimentary filter is used to transform the accelerometer data into global acceler-

ation.

While this approach is not optimal since it does not exploit the full coupling between

orientation, position and observed visual features, it offers the advantage that the

pitch- and roll- estimates are separate from visual inputs. In case of a (possibly un-

noticed) failure of the vision pipeline, a reliable orientation estimate is still available,

so the quadrotor can be stabilized (without preventing drift in position though). Fig-

ure 5-4 shows the signal flow.

Orientation

ã𝐵,acc

𝜂CF

Ω̃𝐵,gyro

r̂𝐼,pnp

𝜓pnp
Kalman-Filter

x̂hyb

Complimentary
Filter

Position

Figure 5-4: Hybrid Fullstate Filter with CF and KF: Signal Flow

The complimentary filter is a simple, but widely used filter to estimate the quadro-

tor’s orientation. In essence, its simplest, linear version simply integrates the angular

rates measured by the gyroscope to obtain an orientation estimate [9]. In steady-state

flight, an estimate for pitch 𝜃 and roll 𝜑 can be inferred from the direction of the ac-

celeration vector measured by the accelerometer. This can be used to cope with drift

in the orientation estimate resulting from the simple integration of angular rates.

The estimate 𝜂
∫︀
from the integration approach results from

𝜂
∫︀

=

∫︁
W−1Ω̃gyro
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The sensor model for the accelerometer measurement ãacc is assumed as

ã𝐵,acc(𝑡) = D𝐵
𝐼 (𝑡)(a𝐼(𝑡) −G𝐼) + b𝐵,acc + 𝛿a𝐵,acc(𝑡)

with a𝐼 being the acceleration of the quadrotor’s center of mass in the inertial frame,

G𝐼 the gravity vector, a bias b𝐵,acc which is assumed to be constant during the short

experiments and zero after calibrating the sensors, and finally, zero-mean Gaussian

noise 𝛿a𝐵,acc(𝑡).

In steady-state flight a𝐼 ≈ 0 and, with the chosen representation of the rotation

matrix D𝐵
𝐼 , it follows

𝐸[− ã𝐵,acc

𝑔
] = 𝐸(D𝐵

𝐼 (𝑡)(:, 3)) =

⎡⎢⎢⎢⎣
− sin(𝜃)

cos(𝜃) sin(𝜑)

cos(𝜃) cos(𝜑)

⎤⎥⎥⎥⎦
with 𝐸[·] being the expectation operator.

This results in estimates 𝜑acc and 𝜃acc.

𝜃acc = sin−1(�̃�𝐵,𝑥,acc/𝑔)

𝜑acc = tan−1(�̃�𝐵,𝑦,acc/�̃�𝐵,𝑧,acc)

In practice, these accelerometer measurements are very noisy and thus have to be

low-pass-filtered. This does not introduce rate-issues, since the high-bandwidth com-

ponents of the angle estimates come from angular rates. Additionally, as pointed out,

these estimates only hold for a𝐼 ≈ 0. In usual flight scenarios, the low-pass filter

takes care of this restriction, too, since, most of the time, quadrotors are flown in

steady-state. However, in more agile flight scenarios, this does not hold. Restricting

the use of 𝜑acc and 𝜃acc to time intervals where |ãacc| ≈ 𝑔 (which holds in steady-state,

as well as some agile maneuvers where the quadrotor loses altitude and accelerates

in X-Y-plane) further excludes measurements acquired during dynamic flight states

that do not meet a𝐼 ≈ 0. [18] presents an augmented complementary filter that in-
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cludes dynamic models for centripetal forces and air speed measurements to better

cope with drift and bias.

Note that an estimate for yaw (𝜓) cannot be inferred from the accelerometer. The

estimate 𝜓pnp from the visual reconstruction is fed into the complimentary filter in-

stead. This approach does not strongly oppose the idea of designing the estimation

architecture in such a way that a stable flight is still possible (with drift) even with a

broken vision-pipeline since a drift in yaw does not heavily affect position dynamics.

The complete, discretized filter is then

𝜂CF𝑘+1 =

⎧⎨⎩ 𝜂CF𝑘 + (I3𝑥3 −wCF)W−1Ω̃𝐵,gyro△𝑡+ wCF[𝜓pnp 𝜃acc 𝜑acc]𝑇 ; if |ã𝐵,acc| ≈ 𝑔

𝜂CF𝑘 + W−1Ω̃𝐵,gyro△𝑡; else

⎫⎬⎭
Note that this setup assumes W−1 to be constant during △𝑡 although W−1 = 𝑓(𝜂).

Also note that it acts as the mentioned low-pass filter on 𝜑acc and 𝜃acc through the

weighting.

The complimentary filter provides its output, the orientation estimate 𝜂CF, to the

linear discrete Kalman-filter so it can derive the estimated, inertial acceleration â𝐼

from the measured acceleration ãacc and, with the help of the pnp-reconstructed

position r̂𝐼,pnp as measurement update, output an estimate x̂KF containing estimates

for the global inertial position r𝐼 and velocity v𝐼 .

Following the standard Kalman-filter model from literature, e.g. [12], the filter’s
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Table 5.1: Hybrid Filter: Noise covariances

QKF = 𝐸[(VKF)𝑇VKF] = diag([1 1 1 50 4 4])
RKF = 𝐸[(WKF)𝑇WKF] = 100 ·I3

discrete state propagation and measurements equation are given by

xKF𝑘+1 =

⎡⎣rIKF𝑘+1

vIKF
𝑘+1

⎤⎦ = FKF
𝑘 xKF𝑘 + GKF

𝑘 uKF
𝑘 + VKF

𝑘

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 △𝑡 0 0

0 1 0 0 △𝑡 0

0 0 1 0 0 △𝑡

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
xKF𝑘 +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0 0

△𝑡 0 0

0 △𝑡 0

0 0 △𝑡

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(D𝐼

𝐵(𝜂𝑘) ã
𝐵,acc
𝑘 + G𝐼) + VKF

𝑘

z̃KF𝑘+1 = rI
KF

𝑘+1 = HKFxKF𝑘+1 + WKF
𝑘+1 =

⎡⎢⎢⎢⎣
1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

⎤⎥⎥⎥⎦xKF𝑘+1 + WKF
𝑘+1

with VKF and WKF being zero-mean Gaussian white-noise with covariance matrices

detailed in Table 5.1:

The full set of Kalman equations is given by

x̂KF𝑘+1|𝑘 = FKF
𝑘 x̂KF𝑘|𝑘 + GKF

𝑘 u𝑘

PKF
𝑘+1|𝑘 = FKF

𝑘 P𝑘|𝑘(F
KF
𝑘 )𝑇 + QKF

x̂KF𝑘+1|𝑘+1 = x̂KF𝑘+1|𝑘 + KKF
𝑘+1[z̃

KF
𝑘+1 −HKFx̂KF𝑘+1|𝑘]

PKF
𝑘+1|𝑘+1 = (I−KKF

𝑘+1H
KF)PKF

𝑘+1|𝑘(I−KKF
𝑘+1H

KF)𝑇 + KKF
𝑘+1R

KF(KKF
𝑘+1)

𝑇
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with

KKF
𝑘+1 = PKF

𝑘+1|𝑘(H
KF)𝑇 [HKFPKF

𝑘+1|𝑘(H
KF)𝑇 + RKF]−1

The hybrid filter’s estimate x̂hyb is then composed of

x̂hyb =
[︁
xKF 𝜂CF

]︁𝑇
=

[︁
r𝐼,KF v𝐼,KF 𝜂CF

]︁𝑇
Note that the angular rates Ω̃𝐵,gyro can be appended to x̂hyb in order to obtain a

full state estimate x̂ corresponding to the modeling in 4.1.2. Onboard-filters on the

IMU-chip take care of filtering the gyroscope’s sensor noise.

5.2.2 Extended Kalman Filter

This section describes a second approach for fullstate estimation. In contrast to the

hybrid-approach, it does not require a fully reconstructed 3D-pose from vision since

the state propagation model models the dynamics between IMU measurements as

filter input and unit rays (to the visual markers) as measurement update. This ap-

proach lowers delays induced by the pose-reconstruction and increases accuracy since

it exploits the coupling between orientation, position and observed visual features.

Bad, unnoticed vision measurements can, however, destabilize the quadrotor signifi-

cantly since vision measurements are used to update pitch- and roll-estimates. Note

that the estimation is run at 100Hz and features as measurement updates arrive at

50Hz.

Due to the underlying nonlinear dynamics, a standard extended Kalman filter [12]

is used. The resulting signal flow is illustrated in Figure 5-5. The state xEKF uses a

quaternion representation q of the quadrotor’s orientation to prevent the estimation

from running into singularities as it can happen with euler-angles. Therefore

xEKF =
[︁
q r𝐼 v𝐼

]︁𝑇
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Extendedã𝐵,acc

Ω̃𝐵,gyro

m̃𝐵
Kalman

Filter

x̂EKF

Figure 5-5: Fullstate EKF: Signal Flow

Note that the angular rates Ω̃𝐵,gyro can be appended to x̂EKF and the quaternion rep-

resentation q̂EKF can be transformed to euler-representation 𝜂EKF in order to obtain

a full state estimate x̂ corresponding to the modeling in 4.1.2. Onboard-filters on the

IMU-chip take care of filtering the gyroscope’s sensor noise.

General EKF equations

This section briefly introduces the general setup of an EKF, as found in e.g. [12].

Assume a discrete-time, nonlinear state-space model for state propagation and mea-

surement dynamics:

x𝑘+1 = f(x𝑘,u𝑘) + 𝛿f𝑘

z𝑘+1 = h(x𝑘+1) + 𝛿h𝑘+1

with xk being the state at time 𝑡𝑘, u𝑘 the input, z𝑘 the measurements and 𝛿f𝑘 and

𝛿h𝑘 Gaussian noise sources with covariances Q𝑘 and R𝑘 for state propagation and

measurement noise, respectively.

The EKF utilizes linearized versions of the state and measurement equations to up-

date the estimation covariances. The functions f and h are approximated as

f(x𝑘,u𝑘) ≈ f(x̂𝑘|𝑘,u𝑘) + F𝑘 · (x𝑘 − x̂𝑘|𝑘)

h(x𝑘+1) ≈ h(x̂𝑘+1) + H𝑘+1 · (x𝑘+1 − x̂𝑘+1|𝑘)
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where x𝑘+1|𝑘 denotes the state estimate at 𝑡𝑘+1 from 𝑘 measurements.

The matrices F and H are derived as

F𝑘 =
𝜕f

𝜕x
|x=x̂𝑘,u=u𝑘

H𝑘+1 =
𝜕h

𝜕x
|x=x̂𝑘+1|𝑘

The EKF algorithm then follows as:

1. State propagation

x̂𝑘+1 = f(x̂𝑘,u𝑘)

2. Covariance propagation

P𝑘+1|𝑘 = F𝑘P𝑘|𝑘F
𝑇
𝑘 + Q𝑘

3. Expected measurement computation

ẑ𝑘+1 = h(x̂𝑘+1|𝑘)

4. Residual covariance update

S𝑘+1|𝑘 = H𝑘+1P𝑘+1|𝑘H
𝑇
𝑘+1 + R𝑘+1

5. Kalman gain update

K𝑘+1 = P𝑘+1|𝑘H
𝑇
𝑘+1S

−1
𝑘+1|𝑘

6. State estimate update

x̂𝑘+1|𝑘+1 = x̂𝑘+1|𝑘 + K𝑘+1(zk+1 − ẑ𝑘+1|𝑘)
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7. Covariance estimate update

P𝑘+1|𝑘+1 = P𝑘+1|𝑘 −P𝑘+1|𝑘H
𝑇
𝑘+1K

𝑇
𝑘+1

Problem-specific EKF setup

With the specific state x = xEKF =
[︁
q r𝐼 v𝐼

]︁𝑇
, the state propagation function

f(x,u) is composed of f(x,u) =
[︁
fq(x,u) f r(x,u) fv(x,u)

]︁𝑇
, so also

F(x,u) =

⎡⎢⎢⎢⎣
Fq(x,u)

Fr(x,u)

Fv(x,u)

⎤⎥⎥⎥⎦

and state propagation noise 𝛿f is composed of 𝛿f =
[︁
𝛿fq 𝛿f r 𝛿fv

]︁𝑇
.

The state propagation noise covariance matrix follows with

Q = diag(
[︁
Qq Qr Qv)

]︁
with ’diag’ creating a 10x10 matrix with the three covariance matrices on its diagonal.

The input vector u comprises measured angular rates Ω̃𝐵,gyro = Ω̃ and accelerometer

data ã𝐵,acc = ã, such that u =
[︁
Ω̃ ã

]︁𝑇
.

The following sections derive the functions and matrices necessary to run the EKF

algorithm. The first section focuses on the orientation dynamics, the next on the

translational (i.e., position and velocity) dynamics.

Orientation dynamics

The orientation-part of the presented full-state EKF closely follows [6] and [59].

[59] presents the discrete state propagation dynamics:

q𝑘+1 = Φ(Ω
𝑘
,△𝑡)q𝑘
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with △𝑡 denoting the sample time and Φ ∈ ℜ4𝑥4 denoting the state transition matrix

and

Ω
𝑘

=
1

2

⎡⎣ 0 −Ω𝑇
𝑘

Ω𝑘 −[Ω𝑘]×

⎤⎦ where [Ω𝑘]× =

⎡⎢⎢⎢⎣
0 −𝑟 𝑞

𝑟 0 −𝑝

−𝑞 𝑝 0

⎤⎥⎥⎥⎦

Φ can be written as

Φ𝑘 = 𝑒Ω𝑘△𝑡 = cos(‖Ω𝑘‖
△𝑡
2

)I4 +
1

‖Ω𝑘‖
sin(‖Ω𝑘‖

△𝑡
2

)Ω𝑘

Linearized state propagation dynamics Let the measurement Ω̃ of the angular

rates (note that this is used as input into the state propagation dynamics not as mea-

surement updates) be subject to zero-mean Gaussian white noise 𝛿Ω with covariance

Qgyro

Ω̂𝑘 = Ω𝑘 + 𝛿Ω

After plugging in this noise model into the above presented state propagation dynam-

ics, a first order Taylor-approximation yields

q𝑘+1 ≈ 𝑒Ω̃𝑘△𝑡q𝑘 + 𝑒Ω̃𝑘△𝑡𝛿Ω
𝑘
△𝑡q𝑘

which can be rewritten as

q𝑘+1 ≈ 𝑒Ω̃𝑘△𝑡q𝑘 + Γ𝑘𝛿Ω𝑘

with

Γ𝑘 =
△𝑡
2
𝑒Ω̃𝑘△𝑡Ξ
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where

Ξ =

⎡⎣ −e𝑇𝑘

[e𝑘𝑥] + 𝑞𝑘I3

⎤⎦
The state propagation noise covariance can therefore be approximated as

Q𝑞
𝑘 = Γ𝑘Q

gyroΓ𝑇𝑘

Note that the state propagation is already linear in state q with 𝑒Ω̃𝑘△𝑡q𝑘. It follows

Fq
𝑘 = diag(

[︁
𝑒Ω̃𝑘△𝑡 04𝑥3 04𝑥3

]︁
)

Translational dynamics

Correcting measured, specific acceleration to global acceleration in the inertial frame

and integrating twice over a time step △𝑡 yields

r𝐼𝑘+1 = r𝐼𝑘 + v𝐼𝑘△𝑡+
△𝑡2

2
(D𝐼

𝐵(q𝑘)a
𝐵
𝑘 + G)

Linearized position propagation dynamics Assuming a noise model of

ã𝐵𝑘 = a𝐵𝑘 + 𝛿a𝐵𝑘

with noise covariance Qa we get

r𝐼𝑘+1 = r𝐼𝑘 + v𝐼𝑘△𝑡+
△𝑡2

2
(D𝐼

𝐵(q𝑘)(ã
𝐵
𝑘 + 𝛿a𝐵𝑘 ) + G)

It follows

Fr
𝑘 =

𝜕f r

𝜕x
|x=x̂k,u=u𝑘 =

[︁
△𝑡2
2

𝑑D𝐼
𝐵(q̂𝑘)

𝑑q
ã𝑘 I3 I3△𝑡

]︁
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with

𝑑D𝐼
𝐵(q̂𝑘)

𝑑q
ã𝑘 =

[︁
𝑑D𝐼

𝐵(q̂𝑘)

𝑑𝑞0
ã𝑘

𝑑D𝐼
𝐵(q̂𝑘)

𝑑𝑞1
ã𝑘

𝑑D𝐼
𝐵(q̂𝑘)

𝑑𝑞2
ã𝑘

𝑑D𝐼
𝐵(q̂𝑘)

𝑑𝑞3
ã𝑘

]︁
where

𝜕D𝐼
𝐵(q)

𝜕𝑞0
|q=q̂k+1|k = 2

⎡⎢⎢⎢⎣
𝑞0 −𝑞3 𝑞2

𝑞3 𝑞0 −𝑞1
−𝑞2 𝑞1 𝑞0

⎤⎥⎥⎥⎦
𝑘+1|𝑘

𝜕D𝐼
𝐵(q)

𝜕𝑞1
|q=q̂k+1|k = 2

⎡⎢⎢⎢⎣
𝑞1 𝑞2 𝑞3

𝑞2 −𝑞1 −𝑞0
𝑞3 𝑞0 −𝑞1

⎤⎥⎥⎥⎦
𝑘+1|𝑘

𝜕D𝐼
𝐵(q)

𝜕𝑞2
|q=q̂k+1|k = 2

⎡⎢⎢⎢⎣
−𝑞2 𝑞1 𝑞0

𝑞1 𝑞2 𝑞3

−𝑞0 𝑞3 −𝑞2

⎤⎥⎥⎥⎦
𝑘+1|𝑘

𝜕D𝐼
𝐵(q)

𝜕𝑞3
|q=q̂k+1|k = 2

⎡⎢⎢⎢⎣
−𝑞3 −𝑞0 𝑞1

𝑞0 −𝑞3 𝑞2

𝑞1 𝑞2 𝑞3

⎤⎥⎥⎥⎦
𝑘+1|𝑘

Regarding noise:

𝛿f r𝑘 =
△𝑡2

2
D𝐼
𝐵(q𝑘)𝛿a

𝐵
𝑘

results in

Qr
𝑘 =

△𝑡4

4
D𝐼
𝐵(q̂𝑘)Q

aD𝐼
𝐵

𝑇
(q̂𝑘)

Linearized velocity propagation dynamics

Similar steps as in the previous section lead to

v𝐼𝑘+1 = v𝐼𝑘 + △𝑡(D𝐼
𝐵(q𝑘)(ã

𝐵
𝑘 + 𝛿a𝐵𝑘 ) + G)

It follows

Fv
𝑘 =

𝜕fv

𝜕x
|x=x̂k,u=u𝑘 =

[︁
△𝑡𝑑D

𝐼
𝐵(q̂𝑘)

𝑑q
ã𝑘 03 I3

]︁
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and

𝛿fv𝑘 = △𝑡D𝐼
𝐵(q𝑘)𝛿a

𝐵
𝑘

State propagation noise covariance then follows as

Qv
𝑘 = △𝑡2D𝐼

𝐵(q̂𝑘)Q
aD𝐼

𝐵

−𝑇
(q̂𝑘)

Measurement Model

The discrete-time measurement model relates the observed/measured unit rays m̃𝐵,𝑖

(emanating from the camera origin towards the world markers) to the current po-

sition and orientation of the quadrotor. It is assumed that the observed unit rays

m̃cam,𝑖 expressed in the camera frame have been transformed into the body-frame

and normalized to m̃𝐵,𝑖
𝑥 = 1. Note that this transformation is independent of state

estimates.

The measurement model follows as

m̃𝐵,𝑖
𝑘+1 =

D𝐵
𝐼 (q𝑘+1)(m

𝐼,𝑖 − r𝐼𝑘+1)

[1 0 0]D𝐵
𝐼 (q𝑘+1)(m𝐼,𝑖 − r𝐼𝑘+1)

+ 𝛿m𝐵,𝑖
𝑘+1

where 𝛿m𝐵,𝑖 denotes zero-mean Gaussian noise as measurement noise with covariance

matrix Rfeat
3𝑥3 . This function can be represented as

m̃𝐵,𝑖
𝑘+1 =

h′

Lh′ |𝑘+1 + 𝛿m𝐵,𝑖
𝑘+1

with L = [1 0 0] and h′|𝑘+1 = D𝐵
𝐼 (q𝑘+1)(m

𝐼,𝑖 − r𝐼𝑘+1).

Computing the linearization using quotient rule results in

H𝑖
𝑘+1 =

𝜕m̃𝐵,𝑖

𝜕x
|𝑘+1 =

𝜕h′

𝜕x
Lh′ − h′L𝜕h′

𝜕x

(Lh′)2
|𝑘+1
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which only requires to compute partial derivatives of h′:

𝜕h′

𝜕x
|𝑘+1 =

[︁
𝑑D𝐵

𝐼 (q̂𝑘)

𝑑q
(m𝐼,𝑖 − r̂𝐼𝑘+1) −D𝐵

𝐼 (q𝑘+1) 03

]︁
Note that the full H𝑘+1-matrix stacks the 7 measurement matrices H𝑖

𝑘+1 corre-

sponding to every marker with its observed unit vector m̃𝐵,𝑖:

H =

⎡⎢⎢⎢⎣
H1

...

H7

⎤⎥⎥⎥⎦
The full measurement m̃𝐵 stacks the measurements of all 7 markers:

m̃𝐵 =

⎡⎢⎢⎢⎣
m̃𝐵,1

...

m̃𝐵,7

⎤⎥⎥⎥⎦
For the full measurement noise covariance matrix R = R21𝑥21 for the stacked mea-

surement m̃ we have R = diag([Rfeat
3𝑥3 · · ·Rfeat

3𝑥3 ]).

Actual gyroscope and accelerometer signals were analyzed for noise variance. Un-

der the assumption of uncorrelated noise, the values detailed in Table 5.2 were chosen.

Table 5.2: EKF: Noise Covariances

Qgyro = diag3([4𝐸
−6, 2𝐸−6, 2𝐸−6])

Qacc = diag3([0.25, 0.25, 0.25])
Rfeat

3𝑥3 = diag3([0.001, 0.001, 0.001])

5.2.3 Performance Results

This section discusses the estimators’ performance. The quadrotor was flown in the

motion capture area to acquire ground truth data. The maneuvers closely resemble
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approaching a target region.

Hybrid filter Figure 5-6 shows estimates generated by the hybrid filter for po-

sitions, velocities and orientation against ground truth data acquired through the

motion capture system. It reveals a mostly smooth and accurate tracking of the

actual states, apart from small but noticeable errors in 𝑧-estimates during aggres-

sive acceleration at about 𝑡 = 25𝑠. The filtering process does not seem to lead to

noticeable phase-delays.

EKF Figure 5-7 plots the EKF’s estimates against ground-truth data acquired

through the motion capture system. Including the small but noticeable errors in

𝑧-estimates during aggressive acceleration at about 𝑡 = 25𝑠, it reveals a similar es-

timation quality compared to the hybrid filter, while posing less computational load

since, unlike with the hybrid filter, no full pose reconstruction is necessary prior to

the kalman filtering.

Both estimators were also tested with the overall integrated system (estimator and

controller in the loop). The EKF proved to perform slightly better in these experi-

ments. Chapter 7 presents these experiments.
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(a) Position (top plot: (𝑥𝐼 ,𝑦𝐼 ,𝑧𝐼) end at (1,0,-1.5) respectively) and velocity
estimates.
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(b) Orientation Estimates: 𝑞0..𝑞3

Figure 5-6: Hybrid Fullstate Filter Performance. Motion capture reference (green) vs
hybrid filter estimate (red). Data reveals smooth and accurate estimates.
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(a) Position (top plot: (𝑥𝐼 ,𝑦𝐼 ,𝑧𝐼) end at (1,0,-1.5) respectively) and velocity
estimates.
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(b) Orientation Estimates: 𝑞0..𝑞3

Figure 5-7: Fullstate EKF Performance: motion capture reference (green) vs EKF
(red). Data reveals smooth and accurate estimates.
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Summary

This chapter presented the visual detection of a scene target and two estimation

algorithms to generate fullstate estimates. Both use priorly known visual features

in the environment and onboard accelerometer and gyroscopic measurements. The

estimators were evaluated with experimental data and proved to provide smooth and

accurate fullstate estimates.

The following chapter presents multiple linear and nonlinear control schemes to

control the quadrotor. The controller performance is evaluated in simulation.
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Chapter 6

Control Systems

This chapter introduces the control algorithms used to guide the quadrotor to achieve

two goals: (a) hover in front of visual cues and (b) fly towards a target region.

First, a control scheme is discussed that cascades the 6DOF-dynamics into a

position- and an orientation subsystem. Then, three control algorithms are presented:

a nonlinear orientation controller and two position controllers. While both of them

operate on a fullstate estimate, they differ considerably: The first position controller

acts on linearized dynamics and follows a classical PD approach. This approach re-

quires separate path planning when more complex flight maneuvers are required. The

second position control approach uses tensor-train-decomposition-based compressed

computation to solve a nonlinear stochastic optimal control problem globally for the

entire state space, taking the system’s stochasticity, nonlinearity and actuator con-

straints into account and computing optimal controller outputs for every point in

state-space.

6.1 Controller Goals

The control algorithms presented in this chapter aim to control the quadrotor to: (a)

hover at a specified 3D-position with given yaw-angle and (b) fly through a specified

target region.
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Hover During the hover flight, the quadrotor aims to stabilize itself at a desired

point in 3D-position space r𝐼* with given yaw-angle 𝜓* and zero velocities (steady

state). We therefore define the 4-dimensional vector x*
4,hover:

x*
4,hover =

⎡⎣r𝐼*
𝜓*

⎤⎦
Target Region With the scenario of approaching and passing on opening in mind,

we define a target region in the 8-dimensional translational- and yaw-angle state space

with center x*
8,target:

x*
8,target =

[︁
r𝐼* 𝜓* v𝐼* 𝑟*

]︁𝑇
and a width of

△x*
8,target =

[︁
△r𝐼 △𝜓 △v𝐼 △𝑟

]︁𝑇
Note that this defines a position- and velocity-subspace # of the full 12-dimensional

state space 𝑋12 where x = [r𝐼 𝜂𝐼 v𝐼 Ω]𝑇 ∈ 𝑋12:

# = {x ∈ 𝑋12 : (|𝑥𝐼* − 𝑥𝐼 | < △𝑥𝐼

2
) ∧ · · · ∧ (|𝑣𝐼*𝑥 − 𝑣𝑥| < △𝑣𝐼𝑥) ∧ · · · }

This effectively sets desired terminal values for both position- and velocity-subspace

and can thus be compared to trajectory planning setups with boundary conditions on

the position- and velocity-space. This region can be used to define a positional-target

region, with small "entering" velocities 𝑣𝐼𝑦 and 𝑣𝐼𝑧 and a positive 𝑣𝐼𝑥, thus perfectly

suiting the scenario setup of approaching and passing a target region in front of a

scene target.

80



6.2 Cascaded Control Scheme for Fullstate Control

This section introduces the popular cascaded control scheme for quadrotors as e.g.

described in [42] and presents modifications to suit the use cases of this thesis.

The cascaded control scheme casacdes the 6DOF-dynamics into translation- and

orientation-dynamics. Starting from the basic model introduced in 4.1.2 the cas-

caded control scheme is presented, underlying assumptions are discussed and an input

reparametrization is introduced.

Recalling the basic dynamic model for a quadrotor model with states

x =
[︁
r𝐼 v𝐼 𝜂 Ω

]︁𝑇
given by

ṙ𝐼 = v𝐼

v̇𝐼 = G + D𝜓D𝜃D𝜑
T𝐵

𝑚

�̇� = W−1Ω

JΩ̇ =

⎡⎢⎢⎢⎣
𝜏𝑟𝑜𝑙𝑙

𝜏𝑝𝑖𝑡𝑐ℎ

𝜏𝑦𝑎𝑤

⎤⎥⎥⎥⎦−Ω× JΩ

it becomes clear that a simple cascaded control scheme can be derived under minor

assumptions. This cascaded scheme can handle the system’s underactuation when

trying to control the 3D-position r𝐼 and yaw-angle 𝜓 of the quadrotor.

T𝐵 is assumed to be aligned with the body-frame z-axis and can be represented as

T𝐵 =
[︁
0 0 𝑇

]︁𝑇
. This neglects aerodynamic effects mentioned in section 4.2.1, but

still gives a good approximation since the major force acting on the quadrotor body

is the thrust produced by the propellers - whose axes are aligned with the body-frame

z-axis.

The resulting model shows hierarchical dynamics where the three body-frame torques
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𝜏𝑖 fully drive the 3DOF-second-order dynamics of 𝜂 and the four
[︁
𝑇 𝜃 𝜑 𝜓

]︁𝑇
, total

body-frame thrust and orientation, drive the 3DOF-second-order dynamics of rI.

Note that the input to the r𝐼-dynamics, D𝜓D𝜃D𝜑

[︁
0 0 𝑇

]︁𝑇
, is a 3D-vector in the

inertial frame. A 3D-vector can be fully parametrized by two angles and its magni-

tude. We reparametrize

D𝜓D𝜃D𝜑

⎡⎢⎢⎢⎣
0

0

𝑇

⎤⎥⎥⎥⎦ = D𝜃′D𝜑′

⎡⎢⎢⎢⎣
0

0

𝑇

⎤⎥⎥⎥⎦
The dynamics can then be written as

ṙI = vI

v̇I = G +
D𝜃′D𝜑′

𝑚

⎡⎢⎢⎢⎣
0

0

𝑇

⎤⎥⎥⎥⎦
�̇� = W−1Ω

JΩ̇ =

⎡⎢⎢⎢⎣
𝜏𝜑

𝜏𝜃

𝜏𝜓

⎤⎥⎥⎥⎦−Ω× JΩ

With this reformulation, a cascaded control scheme can be applied:

The 3DOF-𝜂-dynamics are controlled by a closed-loop feedback controller with

the three 𝜏𝑖. This structure constitutes the inner-orientation-loop that controls the

system to achieve a reference orientation 𝜂* =
[︁
𝜓* 𝜃* 𝜑*

]︁𝑇
.

For controlling the dynamics of rI, it is assumed that the inner-orientation-loop-

controller achieves sufficiently faster closed-loop 𝜂-dynamics than the rI-dynamics. It

can then be assumed that, in the r′-dynamics, 𝜃 = 𝜃* and 𝜑 = 𝜑*.

With this assumption the 3DOF-second-order rI-dynamics can be controlled by the

three
[︁
𝑇 * 𝜃

′* 𝜑
′*
]︁𝑇
. (Note that with given 𝜓, (𝜑*, 𝜃*) can be derived from (𝜑

′*, 𝜃
′*),
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cf. Appendix B.1). This structure constitutes the outer-position-loop.

The resulting scheme is illustrated in Figure 6-1. Note that both controllers each

control a 6-dimensional model.

Positioncontrol[︂
r̂𝐼

v̂𝐼

]︂

[𝜃* 𝜑*]𝑇

𝜓

r𝐼*,v𝐼* -
Controller

Orientationcontrol

𝜓*

-

𝜂

Controller

𝑇 *

𝜂*

⎡⎣𝜏*𝜑𝜏*𝜃
𝜏*𝜓

⎤⎦
⎡⎢⎢⎣
𝑇 *

𝜏*𝜑
𝜏*𝜃
𝜏*𝜓

⎤⎥⎥⎦

x̂

Transf.

⎡⎣𝑇*𝜃′*
𝜑

′*

⎤⎦

Figure 6-1: Cascaded Control Scheme

Oftentimes, the dynamics are oftentimes further simplified by linearizing around

hover-conditions 𝜏𝑖 = 𝜃 = 𝜑 = 𝑝 = 𝑞 = 𝑟 = 𝑣𝐼𝑥 = 𝑣𝐼𝑦 = 𝑣𝐼𝑧 and 𝑇 = −𝑚 · 𝑔. This

removes all higher-order coupling terms, which in turn removes the coupling between

the DOF. Simple PID-control can then be applied to both position- and orientation

control.

In this thesis, linearization is only applied to the r𝐼-dynamics in order to derive

a simple outer-loop-PD-position-controller (6.3). For the inner-orientation-loop, a

basic nonlinear control concept is used.

Final controller output The overall controller output variables are total thrust 𝑇 *

and body-frame torques 𝜏 *𝑖 (cf. Figure 6-1) which eventually need to be converted into

PWM-signals. This is done in two steps: First, the controller output is transformed

into four desired motor speeds using the relation described in 4.2.2. In software, this

still happens in the same controller-POD. The motorCommander -POD then converts

the desired motor speeds into PWM-values which are sent to the Arduino. The

algorithms running in the motorCommander are described in more detail in Section

6.5.
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Inner-orientation-loop This section presents the nonlinear orientation controller.

It follows a basic nonlinear control concept known as computed torque as e.g. pre-

sented in [54]. From the 𝜂-dynamics

�̇� = W−1Ω

JΩ̇ = 𝜏 −Ω× JΩ

it follows

𝜂 =Ẇ−1Ω + W−1Ω̇ =

Ẇ−1Ω + W−1J−1(𝜏 −Ω× JΩ)

Following computed torque approaches with PD control, the controller output 𝜏 re-

sults as

𝜏 = Ω× JΩ + JW
(︁
−Ẇ−1Ω− (KP,𝜂e𝜂 + KD,𝜂e�̇�)

)︁
with KP,𝜂 and KD,𝜂 being diagonal gain matrices and e denoting the control error.

The chosen controller gains can be found in Table A.3.

6.3 PD Position Control

This section and the following now discuss two different position controllers: First, a

simple PD controller that works on linearized translational r𝐼-dynamics. Second, a

nonlinear stochastic optimal controller that addresses the nonlinearity, stochasticity

and actuator constraints of the system. The PD controller is introduced in this

section.

This controller is used as a hover controller and for comparison purposes against the

stochastic optimal controller to guide to quadrotor to the target region center.
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The linearized r𝐼-dynamics follow as

ṙI = vI

v̇I =

⎡⎢⎢⎢⎣
△𝜃′𝑔

−△𝜑′𝑔

△𝑇/𝑚

⎤⎥⎥⎥⎦
A simple PD-control scheme can then be applied:⎡⎢⎢⎢⎣

𝜃
′*

𝜑
′*

𝑇 *

⎤⎥⎥⎥⎦ = −KP,rI erI −KD,rI evI +

⎡⎢⎢⎢⎣
0

0

−𝑚 · 𝑔

⎤⎥⎥⎥⎦
with KP,rI and KD,rI being diagonal gain matrices and e denoting the control error.

The chosen values can be found in Table A.3. They are chosen to primarily allow

accurate hover performance, but also such that the system converges faster without

overshooting in 𝑦𝐼- and 𝑧𝐼-direction than in 𝑥𝐼-direction. For some initial conditions

this setup allows to mimic the maneuver of flying towards the target region center-

position with low 𝑣𝑦, 𝑣𝑧, but a positive 𝑣𝑥-velocity when entering the target region by

simply moving the position reference r𝐼*.

The pitch- and roll-angles were saturated at 0.4 rad. Note that with this setup,

the quadrotor’s orientation is considered an input/actuator to the r𝐼-dynamics. A

saturation of the orientation therefore poses an actuator constraint which falls outside

the realm of linear, unconstrained control.

6.4 Nonlinear Stochastic Optimal Motion Control

The simple PD position controller presented in 6.3 suffers from major simplifications:

It does not address the nonlinear translational-dynamics, it is not optimal by any

meaningful measure and it necessitates separate trajectory planning if more involved

flight tasks are required. These flight tasks might require obstacle-avoiding trajecto-
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ries or a non-zero final velocities or orientation. Shen et al. [52] introduce a trajectory

planning approach that takes into account dynamic constraints. A nonlinear tracking

controller is then used to track the trajectory.

A promising approach to simultaneously tackle the issues of dynamics-constrained

trajectory planning and tracking control is nonlinear stochastic optimal control: The

goal of optimal control is to find a control policy that minimizes the cost incurred by

running a stochastic system from an initial state x0 under a control process u. The

following two sections pose a short introduction to the approach presented in [23].

This paper is recommended for detailed background information.

Let an autonomous - time-independent- system follow the following differential form:

𝑑x(𝑡) = f(x(𝑡),u(𝑡))𝑑𝑡+ 𝜎(x(𝑡))𝑑w(𝑡)

where x ∈ 𝑋, 𝑂 ⊂ 𝑋 an open subset of 𝑋 and w(𝑡) denotes a Brownian motion.

As control policy a Markovian control policy was chosen that only depends on the

current state: u = u(x).

Furthermore, be 𝜏 either 𝜏 = ∞ or the exit time when x(𝑡) leaves 𝑂. With this setup,

a meaningful cost to evaluate a control policy is:

𝐽u(x0) = E
[︂∫︁ 𝜏

0

𝑒−𝛽𝑡𝐿(𝑡,x(𝑡),u(x(𝑡)))𝑑𝑡+ 𝜒𝜏<∞𝑒
−𝛽𝜏𝑔(x(𝜏))

]︂

where 𝜒 represents that characteristic function that is 1 if the process comes to an

end and 0 otherwise.

This setup allows to penalize time, state-deviation and control effort while taking

into account the stochasticity of the process.

The solution to this stochastic optimal control problem is an optimal control policy

u* that minimizes 𝐽u(x0) for all x0. Note the optimal control policy u* represents

a solution that solves the stochastic optimal control problem globally for the entire

state space.
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6.4.1 Tensor-train-decomposition-based Solution

Common techniques to solve this setup involve discretizing the problem. To this end,

the continuous time-domain and state-space are discretized. Due to the stochastic

nature of the system, the problem translates into a discrete Markov process. This

method is known as Markov-chain approximation (MCA). Above motioned problem

setup of finding the optimal control action then translates into a Markovian Decision

Process (MDP).

A popular approach to solve these seeks an optimal value function 𝑉 (x) with

𝑉 (x) = inf
u
𝐽u(x). The optimal control at each state can then be inferred by find-

ing the control action that minimizes the expected value function after applying the

control action. This approach is known as dynamic programming and can be ap-

proximately solved by value iteration or policy iteration. Guarantees do exist that,

with finer discretization, the Markov-chain approximation converges to the original

continuous process and importantly, the value function does so, too. The optimal

control policy inferred from these approximations therefore converges to the optimal

control for the continuous setup.

However, this approach suffers from the well-known curse of dimensionality since the

number of discretization nodes is exponential in dimensionality.

Recent research utilizes compression techniques to execute computations on high-

dimensional functions. Gorodetsky et al. introduce the use of tensor-train decom-

position to exploit low-rank structures occurring in the data that represents the dis-

cretized value function [23].

Tensor-train decomposition resembles the commonly known singular value decom-

position (SVD), but is applied to tensors instead of matrices. It was demonstrated

to be able to solve 7-dimensional nonlinear stochastic optimal control problems with

actuator constraints in simulation [24].

The following section introduces the setup used to generate an optimal controller

that flies a quadrotor towards a target region in an optimal way. The setup addresses
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the stochasticity, nonlinearity and the quadrotor’s actuator constraints.

6.4.2 Problem Formulation

Although tensor-train-decomposition-based solution approaches to optimal control

problems have shown to be able to solve higher dimensions than naive, exact ap-

proaches, the proof of concept in this thesis limits itself to work with a 6-dimensional

model. Section 6.2 on the cascaded control scheme presented an option to work with

two 6-state models instead of the full 12-state quadrotor model: A position-controller

controls the 6-dimensional r′-position-dynamics; while an orientation-controller con-

trols the 6-dimensional 𝜂-orientation-dynamics.

The orientation-controller needs to be able to track reference trajectories (more specif-

ically, orientation trajectories) since the position-controller outputs reference trajecto-

ries and assumes these to be tracked perfectly. The general formulation of a stochastic

optimal control problem that drives the process into some goal region in state-space

cannot be used for tracking problems. For the position-controller, however, it is

nicely applicable if the reference position and velocity is fixed and can therefore be

interpreted as static target region in state space. The approach presented in the fol-

lowing sections replaces the PD position controller from 6.3 with a stochastic optimal

controller.

Dynamic Equations Recalling the equations for the r𝐼-translational dynamics

with x = [r𝐼 v𝐼 ]𝑇 , a stochastic form follows as:

𝑑r𝐼 = v𝐼𝑑𝑡+ 𝜎𝑟𝑑w𝑟(𝑡)

𝑑v𝐼 =

⎛⎜⎜⎜⎝G +
D𝜃′D𝜑′

𝑚
𝑑𝑡

⎡⎢⎢⎢⎣
0

0

𝑇

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ 𝑑𝑡+ 𝜎𝑣𝑑w𝑣(𝑡)
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where

𝜎𝑟 = diag([𝜎𝑥 𝜎𝑦 𝜎𝑧]) 𝜎𝑣 = diag([𝜎𝑣𝑥 𝜎𝑣𝑦 𝜎𝑣𝑧 ])

w𝑟 =
[︁
𝑤𝑥(𝑡) 𝑤𝑦(𝑡) 𝑤𝑧(𝑡)

]︁𝑇
w𝑣 =

[︁
𝑤𝑣𝑥(𝑡) 𝑤𝑣𝑦(𝑡) 𝑤𝑣𝑧(𝑡)

]︁𝑇
Expanding the vector equations results in

𝑑𝑥𝐼 =𝑣𝐼𝑋𝑑𝑡+ 𝑑𝑤𝑥

𝑑𝑦𝐼 =𝑣𝐼𝑌 𝑑𝑡+ 𝑑𝑤𝑦

𝑑𝑧𝐼 =𝑣𝐼𝑍𝑑𝑡+ 𝑑𝑤𝑧

𝑑𝑣𝐼𝑥 =𝑐(𝜑′)𝑠(𝜃′)
𝑇

𝑚
𝑑𝑡+ 𝑑𝑤𝑣𝑥

𝑑𝑣𝐼𝑦 = − 𝑠(𝜑′)
𝑇

𝑚
𝑑𝑡+ 𝑑𝑤𝑣𝑦

𝑑𝑣𝐼𝑧 =

(︂
𝑔 + 𝑐(𝜃′)𝑐(𝜑′)

𝑇

𝑚

)︂
𝑑𝑡+ 𝑑𝑤𝑣𝑧

and reveals the multiple nonlinear couplings of the (bounded) control input u =[︁
𝑇 𝜑′ 𝜃′

]︁𝑇
.

Note that position-variables do not show up in the right-hand side of the equation.

Therefore, the dynamics are independent of the position. This allows to compute a

controller that drives the system towards, e.g., the position-origin r𝐼* = 0. In case

that, during runtime, the system should be controlled not into the origin but into a

non-origin/non-zero position reference r′*, the position coordinate system can simply

be statically shifted (r′ = r𝐼 − r
′*). When computing the optimal control policy u*,

a target region can therefore be set up around the position-origin.

Cost A meaningful setup aims to minimize the time the quadrotor needs to reach

a target region. Time is therefore penalized. To smooth the control action, control

effort is also penalized. Quadratic cost on position-states is added to enable faster

convergence of the value- and policy iterations without introducing a trade-off between

cost incurred by non-zero position and cost incurred by non-zero velocity (non-zero
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velocity is needed to drive position errors to zero). In a pure min-time formulation

the cost slowly propagates from a "zero cost region" into the entire state space. With

quadratic cost on the position-subspace, every node in state-space is already assigned

some cost, which sped up convergence.

The cost function that is to be minimized over u subject to the dynamic- and actuator

constraints found above is therefore set up as follows:

𝐽u(x0) = E
[︂∫︁ 𝜏

0

𝑒−𝛽𝑡𝐿(𝑡,x(𝑡),u(x(𝑡)))𝑑𝑡+ 𝜒𝜏<∞𝑒
−𝛽𝜏𝑔(x(𝜏))

]︂

with

𝐿 =

⎧⎨⎩𝜚𝑡 + r𝑇S𝑟r + u′𝑇S𝑢u′, forx /∈ #

0, else

⎫⎬⎭ 𝑔 = 0

S𝑟 = diag([𝜚𝑥 𝜚𝑦 𝜚𝑧]) S𝑢 = diag([𝜚𝑇 𝜚𝜑 𝜚𝜃])

where # ⊂ 𝑂 ⊂ 𝑋 denotes the target region as introduced in 6.1. Table A.4 lists the

chosen actuator limits, costs and noise parameters.

Reflecting boundary conditions are used for the derivation of the MDP from the

continuous stochastic system since they resulted in smoother approximations of the

value function near the boundaries [23]. With this approach the process is a true

infinite-time horizon problem (thus 𝜒 = 0) since the process never comes to an end

(which would happen when the state leaves 𝑂, i.e. the process leaves the state-space

bounds. This is, however, prevented by reflecting boundary conditions). With the

chosen cost function, the process only stops to accumulate cost when it is within #.

The optimal control policy will therefore aim to bring the system into #. This justi-

fies the way the target region # (as a region to fly towards, as described in Section

6.1 ) is used in the cost function.

Note that there are initial states near the boundaries where no admissible control

policies exist that would reliably drive the process towards the target region (e.g. a

pose right at the position-boundaries with the quadrotor’s velocity vector pointing
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straight towards that very boundary). However, the use of reflecting boundary condi-

tions results in tweaked transition probabilities, s.t. the probabilities to transition to

neighboring states that are outside of the boundaries are added to the probability of

staying at the same state. Consequently, in these regions, it is very likely to stay at

the current state. However, stochasticity introduces a small but non-zero likelihood

to transition away from the boundary and leave these uncontrollable regions where

(without stochasticity) no control policy exists that can drive the system towards the

target region. Due to the very low likelihood the cost of these states is very high

(intuitively because the system stays there for a long time before it, by stochasticity,

transitions towards controllable states). This prevents the controller from considering

to drive the system into the state-space boundaries. Recalling the overarching goal

of flying the quadrotor through a target region that could represent an opening in

a wall, we can exploit this characteristic to simulate the wall around the fictional

opening (see Section 6.4.4 for details).

6.4.3 Controller Synthesis

Computation

This nonlinear stochastic optimal control problem has been solved with code [22] ac-

companying the work by Gorodetsky et al. [23] that implements the above introduced

tensor-train-decomposition-based value- and policy iteration of an approximate MDP

representing the continuous stochastic optimal control setup.

The computation of the value function 𝑉 (x) happens over multiple iterations until

convergence is reached. At each iteration the computation approximates the value

function tensor in low-rank tensor-train format with a specified rank, runs one value-

iteration on this low-rank representation, runs policy-iterations in between and pos-

sibly adjusts the specified rank if an approximation tolerance is not met. Figure 6-2

plots the computation diagnostics. The controller computation was run for 8 iter-

ations on a coarse discretization level of 𝑛 = 20-nodes per dimension first. After

about 50 iterations on a discretization level of 𝑛 = 60, ||𝑉 || converged and oscillated
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around its final value. ||𝑉 || denotes the integral of the value function over the entire

state-space. The diagnostics also show that this tensor-train-decomposition based

computation of the optimal control policy evaluates five orders of magnitude fewer

nodes (of the 𝑛 = 60-discretized state-space) than a naive solution would do - thus

successfully addressing the curse of dimensionality. This computation took about 15

hours on a Jetson TK1. A naive solution evaluating five orders of magnitude more

nodes would take about 15 years. Noticeably, after only 4 iterations at a discretization

level of 𝑛 = 20 the controller could fly the quadrotor successfully towards the target

region for simple initial conditions (in front of the target region, no fast initial velocity

that requires aggressive deceleration). The computation of this non-converged cost

function took about 3 hours on the TK1. Note that this finding also indicates that

an accurate approximation of the value function through the tensor-decomposition-

algorithms more difficult near the bounds than away from the bounds. Gorodetsky

et al. [23] present a more thorough analysis of this.
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Figure 6-2: Controller Synthesis Diagnostics: 5 iterations on 𝑛 = 20 (blue), 3 on
𝑛 = 20 (red), 51 on 𝑛 = 60. Plot on the left illustrates how ||𝑉 || converges. Right
plot shows that the algorithm evaluates five orders of magnitude fewer nodes than a
naive solution operating on all nodes in a linearly discretized state-space would do.
This reduces computational time from about 15 years to 15 hours on a Jetson TK1.
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Deployment

The resulting value function 𝑉 (x) = min
u
𝐽u(x) is stored in tensor-train-decomposition

compressed format. During flight, the optimal control policy

u*(x̂𝑘) =
[︁
𝑇 *(x̂𝑘) 𝜑

′*(x̂𝑘) 𝜃
′*(x̂𝑘)

]︁𝑇
for the current state estimate x̂𝑘 is derived at every time step by finding the control

input that results in the least expected value of the value function. In practical im-

plementation, once the target region is reached, the quadrotor system switches back

to the standard PD position-controller.

Like the PD-position controller, this controller outputs
[︁
𝑇 * 𝜑* 𝜃*

]︁𝑇
and can there-

fore simply be switched in for the outer-loop-PD-position-controller described in 6.3.

6.4.4 Performance Results

Simulation on Simple Dynamics

Since the controller was synthesized using the simple dynamics that do not model

aerodynamic or motor-dynamic related effects, it is advisable to evaluate its perfor-

mance using a simulation based on these simple dynamics first.

The target region # was set to

# = {x ∈ 𝑋 : ( − 0.35 < 𝑥𝐼 < 0.15, −0.25 < 𝑦𝐼 < 0.25, −0.25 < 𝑧𝐼 < 0.25

1 < 𝑣𝑥 < 2, −0.15 < 𝑣𝑦 < 0.15, −0.15 < 𝑣𝑧 < 0.15)}

The state space bounds are chosen as

− 5.0 < 𝑥𝐼 < 0, −2.5 < 𝑦𝐼 < 2.5, −2.0 < 𝑧𝐼 < 2.0

− 5.0 < 𝑣𝑥 < 5.0, −5.0 < 𝑣𝑦 < 5.0, −5.0 < 𝑣𝑧 < 5.0
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with controller limits

−𝑚𝑔 − 3 < 𝑇 < −𝑚𝑔 + 3

−0.4 < 𝜑′, 𝜃′ < 0.4

This setup defines a positional-target region around the origin, with small "entering"

velocities 𝑣𝐼𝑦 and 𝑣
𝐼
𝑧 and a positive 𝑣𝐼𝑥. As discussed in Section 6.4.2 the bounds on 𝑥𝐼

are chosen to align with the target region. A slight offset in 𝑥𝐼-direction is introduced

to ensure that states that lie both in the target region # as well as on the state-space

bounds are not penalized. This setup perfectly suits the scenario of approaching and

passing through a target region in a defined direction (here: x-direction).

Figure 6-3 gives a top- and side view of this setup with the target region in red

and state space bounds in black. Trajectories from simulations starting from various

initial conditions are shown. They illustrate how the controller successfully drives

the quadrotor towards the target region for a wide range of initial conditions. The

resulting 3D trajectories are shown on the right-hand side of Figure 6-4.

On the left, Figure 6-4 picks one trajectory and plots the quadrotor’s velocities

and controller output. It reveals that the controller accelerates the quadrotor and

decelerates it if necessary to drive the system’s fullstate, including positions and

velocities, into the position- and velocity-target region #. The controller chooses

smoothed, near-bang-bang controller action. The smoothed bang-bang control action

with a coasting phase in-between is expected for min-time-problems with control costs

and actuator constraints [38].

It is to be noted that the system is robustly driven into the position-sub space of

the target region, while the velocity-target is not reached from all initial conditions

accurately.
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(b) Side view: X-Z motion

Figure 6-3: Stochastic Optimal Controller on Simple Dynamics: 2D Trajectories.
Controller drives quadrotor into target region (red) in 6-dimensional state space.
State-space bounds in black.
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(a) Velocity (blue: 𝑣𝑥, red: 𝑣𝑦, yellow: 𝑣𝑧) and
control action (blue: 𝜃′*, red: 𝜑′*, yellow: 𝑇 * +
𝑚𝑔) that drives velocities into target regions.
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Figure 6-4: Stochastic Optimal Controller on Simple Dynamics: Velocity, control and
3D trajectories.

Comparison to PD-position controller Figure 6-4 illustrates how the thrust

is increased during pitch- and roll-maneuvers to compensate for the effective loss

of gravity-balancing, vertical thrust. A linearized controller (like the PD position
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controller in Section 6.3) is not aware of this effect. Additionally, Figure 6-5 reveals

how the controller is capable of handling situations where most standard controllers

would need trajectory planning since the only way to reach the target region (in

both position and velocity-space) is a complex maneuver that includes backing up.

The simulation was started at an initial position r𝐼init = [−1 − 2 − 0.3]𝑇 with an

initial velocity of v𝐼init = [2.5 0 0]𝑇 . The controller first decelerates the quadrotor

in 𝑥𝐼-direction, backs it up while positioning it in front of the target region and

eventually accelerates into the target region to enter it with the desired forward

velocity 1m/s < 𝑣𝐼𝑥 < 2m/s.
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(a) Position and velocity trajectories (blue: 𝑥𝐼 , 𝑣𝐼𝑥,
red: 𝑦𝐼 , 𝑣𝐼𝑦 , yellow: 𝑧

𝐼 , 𝑣𝐼𝑧 )
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(b) Top view: X-Y motion

Figure 6-5: Stochastic Optimal Controller under Challenging Initial Condition. Con-
troller drives quadrotor into target region (red) in 6-dimensional state space with
complex maneuver.

Simulation on Full Dynamics in LCM-framework

The same controller was then run in the full LCM-PODs-software-framework, with

the simulator introduced in Section 3.6 in-the-loop instead of the real quadrotor.

To evaluate the controller performance independent of estimation performance, the

controller was run directly on the simulated states.
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Figure 6-6 and 6-7 show a single simulation run where the quadrotor was flown to

various positions (marked with ’o ’) using the PD position-controller. The operator

then disabled the PD position-controller and enabled the stochastic optimal position

controller. After passing the target region, the PD position-controller was reactivated

and the quadrotor was flown to a new starting position. The plots illustrate how

the controller can successfully handle the more complex, more realistic dynamics

simulated with the full simulator and drives the quadrotor into the target region.

Since this simulation was run in the full software framework, the simulation can

be turned into a real-world experiment by turning off the simulator-POD, rerout-

ing motorCommander -commands to the actual motors instead of the simulator and

acquiring IMU and vision data through the IMU acquisition- and vision-PODs, re-

spectively. The next chapter gives experimental results of flying the quadrotor with

this stochastic optimal controller towards a target region.
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Figure 6-6: Stochastic Optimal Controller on Full Dynamics in LCM-framework:
2D Trajectories. Controller activated at ’o’. Controller drives quadrotor into target
region (red) in 6-dimensional state space. State-space bounds (of computed stochastic
optimal controller) in black.
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Figure 6-7: Stochastic Optimal Controller on Full Dynamics in LCM-framework: 3D
Trajectories. Controller activated at ’o’.
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6.5 Motor Control

This section describes the algorithm running in the motorCommander. Its task is to

convert desired motor speeds 𝜔*
𝑖 into PWM-values 𝜅𝑖. These PWM-values are then

sent to the Arduino which generates PWM-signals that are sent to the ESCs to con-

trol the motors.

Using the battery-ESC-model described in 4.2.3 the motorCommander can compen-

sate for otherwise occurring drops in motor speeds caused by dropping terminal volt-

age due to increased current draw on the battery. This model is purely geometric

without dynamics.

Additionally, 4.2.4 showed the first-order delay that occurs in the actual motor speeds.

This effect could be counteracted using lead-lag-compensators. Ideally, these would be

implemented in the motorCommander as well. A saturation-block limits the PWM-

values 𝜅𝑖. The final signal flow in the motorCommander is shown in Figure 6-8.

Lead-
𝜔*
𝑖

ESC-

𝜅𝑖
Lag-

Compensator

Battery-
𝜔

′
𝑖

Model

𝜅′𝑖

Figure 6-8: Motorcommander Signal Flow

Summary

This chapter described a control structure to control the quadrotor. The cascaded

scheme cascades the underactuated dynamics into a position- and an orientation sub-

system. Two controllers were discussed for the position subsystem: first, a commonly

used PD controller that acts on linearized dynamics. Second, a globally optimal,

stochastic optimal controller that takes into account the nonlinearity of the quadro-

tor dynamics and actuator constraints. In this chapter, the controller performance

was evaluated in simulation.
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An experimental performance evaluation of the overall integrated systems is pre-

sented in the next chapter. It shows the platform’s hover capabilities and demon-

strates that tensor-decomposition-based nonlinear stochastic optimal controllers can

control the quadrotor to approach a target region.
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Chapter 7

Experimental Flight Performance

This chapter presents experimental results to evaluate the system’s integrated flight

performance, thus evaluating the joint estimation- and control-performance. With

the idea of exploratory disaster relief scenarios in mind, two useful experimental

procedures to benchmark the usability are (a) hover flight and (b) target region

flight. Both are described with their results in the following sections.

7.1 Experimental Scene Setup

Figure 7-1 visualizes the experimental scene setup: The (visually marked) scene tar-

get (blue) is located in the background. The visual-inertial estimation discussed in

Chapter 5 uses this scene target. The virtual target region where the quadrotor will

aim to fly through is placed in front of the markers. Note that eventually an opening

like a window will replace the scene target and the target region will be placed right

in the center of this window. This setup, however, necessitates a different estimation

approach. A detailed discussion on this can be found in 8.2.2.
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𝑧𝐼

Figure 7-1: Experimental Scene Setup with Scene Target, Target Region and Quadro-
tor. Rays emanating from the quadrotors camera towards the 7 corners of the visual
markers are displayed.

7.2 Hover Flight

During the hover flight test, the quadrotor aims to stabilize itself at a desired point in

3D-position space r𝐼*hover in front of the scene target with given yaw-angle 𝜓*
hover and

zero velocities (steady state). Section 6.1 defined the desired hover vector x*
4,hover.

Recall that the markers m𝐼,𝑖 on the scene target are positioned at m𝐼,𝑖 = [3 * *]𝑇 .

For this experiment, x*
4,hover is chosen to be in front of the marker setup with

x*
4,hover =

⎡⎣r𝐼
𝜓

⎤⎦
hover

=
[︁
0 0 −1 0

]︁𝑇

The controller used for hover is the simple cascaded PD-fullpose-controller setup

described in 6.3 since this controller was specifically linearized and tuned for states

around hover. x*
4,hover was fed as reference into the cascaded PD-fullpose-controller.

Hover performance with both the hybrid filter as well as the EKF in-the-loop are

presented in the next section. The motion capture system provided data for ground

truth comparison only.
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Performance Results Figure 7-2 shows the trajectories resulting from hovering

in front of the markers with the cascaded PD-fullpose-controller, based on estimates

from the hybrid filter and the EKF, respectively. The left plot shows the motion

in the X-Y-plane while the right plots show the quadrotor’s altitude over time; the

shown data was acquired from the motion capture system and can be considered

ground truth. Both trajectories show a constant offset of about .2m, but low position

variability.

While both the hybrid filter as well as the EKF can keep the quadrotor stable around

the hover point, the EKF shows lower variability and keeps the quadrotor within .1m.

For the experiments described in the following section, the EKF was used.
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Figure 7-2: Hover Flight Trajectories with hybrid filter (top) and EKF (bottom),
data from motion capture system.
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7.3 Target Region Flight

The second experimental benchmark consists of a more dynamic flight maneuver

where the quadrotor tries to reach a target region in the 8-dimensional translational-

and yaw-angle state space with center x*
8,target, starting from on initial, full steady-

state x*
12,init.

We chose

x*
12,init =

[︁
r𝐼* 𝜂* v𝐼* Ω*

]︁𝑇
=

[︁
−2.0 1.0 −1.2 01𝑥9

]︁𝑇
x*
8,target =

[︁
r𝐼* 𝜓* v𝐼* 𝑟*

]︁𝑇
=

[︁
0.5 0 −1.35 0 1.5 01𝑥3

]︁𝑇
The target region’s center x*

8,target is chosen in front of the scene target to simulate

the mission of approaching an opening with positive forward velocity, ready to fly

through it. The initial state x*
12,init is chosen at a distance to and off-centered to the

target region center. The target region has width of

△x*
8,target =

[︁
0.5 0.5 0.5 0 1.0 0.3 0.3 0

]︁𝑇
Note that this target region complies with the # chosen in Section 6.4.4 where

a nonlinear stochastic controller was computed and evaluated in simulation. The

regions only differ in a static shift of the target regions’ position center which does

not require to recompute a new controller (cf. 6.4.2).

7.3.1 PD Position Control

Using the cascaded PD controller the quadrotor was flown to x*
12,init and after stable

hover the position-yaw-reference for the outerloop-position-controller was switched to

x*
8,target(1 : 4). Note that this controller controls on positions and yaw-angle only, and

uses velocities/rates as damping.

This experiment was run with the EKF in-the-loop. The motion capture system was

used to acquire ground truth data only.
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Performance Results

Figures 7-3 to 7-5 show the resulting trajectories. The plots on position-trajectories

show that the quadrotor successfully and aggressively flies towards the target region.

However, the quadrotor fails to properly keep altitude. Since this controller is designed

on linearized dynamics, it is not aware that it effectively loses (globally-) vertical

thrust that balances gravity once it tilts (factor cos(𝜑′) cos(𝜃′)). This can easily

be solved by introducing 𝑇 ′ = 𝑇 cos(𝜃′) cos(𝜑′) before linearizing: the linearization

results in the same equations (with 𝑇 ′ instead of 𝑇 ), but the thrust to be applied 𝑇

is 𝑇 = 𝑇 ′/(cos(𝜃′) cos(𝜑′)), effectively taking care of the loss of vertical thrust when

tilting. This solution is not considered here to stick to simple linearized controllers.

Figure 7-4 reveals a maximum absolute velocity above 2𝑚
𝑠
. Figure 7-5 shows the

aggressive orientation of up to 30 degrees and a resulting acceleration of up to 6𝑚/𝑠2.

Note that the controller does have a forward velocity (𝑣𝐼𝑥 > 0) when entering the

(position) target region, but also a considerably non-zero 𝑧𝐼-velocity 𝑣𝐼𝑧 .
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Figure 7-3: Target Region Flight with EKF and PD Control, translational data from
motion capture system. Quadrotor reaches target region (red).
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Figure 7-4: Target Region Flight with EKF and PD Control, translational data from
motion capture system. Quadrotor reaches target region.

t [s]
5 5.5 6 6.5 7 7.5

2
[d

eg
]

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

(a) orientation: red: roll 𝜑, blue: pitch 𝜃

t [s]
5 5.5 6 6.5 7 7.5

_ jv
j[

m
/s

]

-3

-2

-1

0

1

2

3

4

5

6

(b) acceleration of absolute velocity

Figure 7-5: Target Region Flight with EKF and PD Control, orientation and accel-
eration data from motion capture data.

7.3.2 Nonlinear Stochastic Optimal Motion Control

This section discusses to performance of the nonlinear stochastic optimal controller

introduced in Section 6.4. Using the PD position-controller the quadrotor was flown

to x*
12,init and after stable hover, the PD position-controller was switched out for the
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nonlinear stochastic controller with # specified above.

This experiment was run with the EKF in-the-loop. The motion capture system was

used to acquire ground truth data only.

Performance Results

Figures 7-6 to 7-8 show the resulting trajectories. The plots on position-trajectories

show that the quadrotor successfully and aggressively flies towards the target region.

The resulting altitude-trajectory demonstrates how the controller’s knowledge of the

nonlinear dynamics helps to control altitude slightly better than the PD controller.

Figure 7-4 shows maximum velocities above 2𝑚
𝑠
. Figure 7-5 shows the aggressive

orientation of up to 25 degrees and a resulting acceleration of up to 5.5𝑚/𝑠2. Raw

camera footage that reveals the aggressive angles chosen during the flight maneuver

is shown in Figure 7-9.

The velocities when entering the (position-) target region comply with the velocity-

subspace of the target region: small velocity 𝑣𝐼𝑦 , 𝑣
𝐼
𝑧 , positive forward velocity 𝑣𝐼𝑥. This

demonstrates one of the benefits the stochastic optimal controller approach: While

a similar result (reaching a target region in position and velocity-subspace) can be

achieved with carefully tuned PD control or trajectory planning methods, the stochas-

tic optimal controller tries to achieve this "terminal condition" by design.
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Figure 7-6: Target Region Flight with EKF and Stochastic Optimal Control, trans-
lational data from motion capture system. Quadrotor reaches target region.
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Figure 7-7: Target Region Flight with EKF and Stochastic Optimal Control, trans-
lational data from motion capture system.
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Figure 7-8: Target Region Flight with EKF and Stochastic Optimal Control, orien-
tation and acceleration data from motion capture data.

Figure 7-9: Raw Footage of Target Region Approach: Quadrotor flies aggressive
angles; visual markers can be seen on the right.
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The CPU-load on the Jetson TK1 with all PODs running was about 60% with

the visual detection taking up around 22%. This leaves computational reserves for

additional onboard processing.

While this proof-of-concept demonstrates the usability and potential of tensor-decomposition-

based approaches to compute stochastic globally optimal feedback controllers for high-

dimensional real systems drawbacks do exist that require further research. When

aiming for a reliable, deployable solution that works for a wide range of initial con-

ditions on the real system extensive tuning of cost parameters, discretization levels

and optimizer settings is required.

In the specific problem setup of approaching and passing a target region, the

stochastic optimal controller demonstrates its strengths for initial conditions that

require complex maneuvers. These initial conditions especially comprise initial con-

ditions close to the state-space bounds. The tensor-decomposition-based approxima-

tions of the value function seem to be least accurate near these bounds, too. While

one of these complex control maneuvers near the bounds was successfully demon-

strated on the simplified dynamics for some initial conditions (cf. 6.4.4), it could be

reproduced less reliably on the full simulator and unsuccessfully on the real system.

For the problem setup of passing a target region without obstacles in the state-space,

tracking controllers combined with fast trajectory-planning as in [45] are assumed

to promise at least comparable capabilities. However, with a scene setup that com-

prises obstacles, the stochastic optimal control approach could display great strength

since in this case complex trajectory planning is required with standard controllers,

while cost-based optimization-approaches solved over the entire state space, like the

stochastic optimal controller used in this thesis, would integrate the obstacles (as high

costs) into the control design. Therefore this control design concept seems promising

for further research. A discussion on this follows in Section 8.2.1.
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Summary

An experimental performance evaluation of the overall integrated systems was pre-

sented in this chapter. It showed the platform’s hover capabilities and demonstrated

that tensor-decomposition-based nonlinear stochastic optimal controllers can control

the quadrotor to approach a target region.

The next and concluding chapter summarizes this thesis, discusses limitations and

suggests starting points for future work.
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Chapter 8

Conclusion

8.1 Summary

In this work a quadrotor platform was built that enables fast, vision-based au-

tonomous maneuvering, bridging the gap between slow but fully autonomous and fast,

but dependent platforms. To this end, the platform utilizes a high-performance em-

bedded computing unit and demonstrates a proof-of-concept use of tensor-decomposition-

based, stochastic globally optimal feedback controller. During this work it was demon-

strated that:

1. the high-performance embedded computing unit with a GPU enables the ap-

plication of fast, high-resolution computer vision, estimation and control on

board.

2. the developed platform offers sufficient computing reserves to add scene under-

standing, feature tracking or obstacle detection using standard approaches from

e.g. the openCV libraries that can exploit the onboard GPU unit.

3. the modular software design allows to easily switch in and out new estimators,

controllers, feature trackers, etc. Due to the use of the LCM-message-handling-

framework low data exchange latency is achieved and signals from high-level

tasks down to motor-level commands can be handled by the same infrastruc-
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ture.

4. tensor-train-decomposition based approaches can be used to synthesize a stochas-

tic globally optimal feedback controller that complies with nonlinear 6-dimensional

quadrotor dynamics and actuator constraints, and shows trajectory planning

capabilities to drive the system into a desired final state.

5. these recent developments in utilizing compressed computation can be used to

synthesize controllers that work in simulation and on real systems. Extensive

tuning is required to generate reliable, deployable controllers.

In this thesis’ specific problem setup of approaching and passing a target region,

the stochastic optimal controller demonstrates its strength for initial conditions

that require complex maneuvers. These initial conditions especially comprise

initial conditions close to the state-space bounds. While one of these complex

control maneuvers near the bounds was successfully demonstrated on simplified

dynamics for some initial conditions, it could be reproduced less reliably on

more complex dynamics and unsuccessfully on the real system. For the problem

setup of passing a target region without obstacles in the state-space, tracking

controllers combined with fast trajectory planning as presented by Mellinger et

al. [45] are assumed to promise at least comparable capabilities. However, with

a scene setup that comprises obstacles, the stochastic optimal control approach

could display great strength since, in this case, complex trajectory planning is

required with standard controllers; cost-based optimization-approaches on the

other hand, like the stochastic globally optimal controller used in this thesis,

would integrate the obstacles (as high costs) into the control design.

8.2 Future Work

This section suggests future work to build on the results of this thesis. While this work

presents a working, prototypical system that incorporates visual-inertial estimation
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and tensor-decomposition based optimal feedback control techniques there are clear

avenues how to advance the current implementation.

8.2.1 Controller libraries, Non-cascaded Controllers and Image-

based Visual Servoing

As mentioned in Section 8.1, stochastic globally optimal controllers can fully display

their strength for more complex scene settings, including obstacle fields. This could

be explored through building value function-libraries for a variety of obstacle scenes.

Then, for every scene in that library, an optimal control output exists for every point

in a scene’s state space. During runtime, a quadrotor would then select the scene

from the library that suits the actual scene the quadrotor finds itself in.

On quadrotor model side, more complex models should be integrated. The current

implementation synthesizes optimal controllers for a reduced quadrotor model that

assumes the quadrotor’s orientation as a direct actuator. This concept results from

cascading the quadrotor dynamics into an outer position loop and an inner orientation

loop. Ideally, the controller synthesis should be based on the full 12-dimensional

quadrotor model such that the orientation dynamics are taken into account instead of

being assumed as perfectly controlled by the inner-loop orientation controller. Solving

the 6-dimensional nonlinear stochastic optimal control problem as done in this work

demonstrated the potential of tensor-decomposition based methods. However, while

the solution approach theoretically scales well with dimensions, a 12-dimensional

model will require additional investigations, especially if the goal is to generate robust

controllers that work for a large state-space and arbitrary initial conditions. As

an intermediate step, adding two states to the 6-dimensional position model could

approximate the actual, 4-dimensional pitch- and roll-dynamics with two first-order

delay systems.

While these approaches model the mechanical dynamics from end to end, an

additional avenue to synthesize optimal controllers is to incorporate the entire visual-

mechanical pipeline into the models. Work on image-based visual servoing does that:
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Instead of controlling on fullstate errors, errors in the observed image are controlled.

This challenging approach would render estimators redundant.

8.2.2 Visual-inertial Odometry for Robust State Estimation

The visual-inertial estimation presented as proof-of-concept setup in this thesis suffers

from the necessity of priorly known visual cues. Once lost, the estimation purely relies

on accelerometer measurements which is known for its unreliable drift. This prevented

to actual fly through a window (which would result in losing track of the known visual

cues).

Visual-inertial odometry promises to be a great remedy to this issue. Both openCV

as well as NVIDIA’s visionworks-toolbox offer out-of-the-box feature tracking. These

features can be fed into SLAM-algorithms that estimate the features’ 3D-positions as

well as the camera’s pose.

GTSAM [56] offers a factor graph-based optimizer to that problem. [19] extends

and evaluate this framework for improved use with IMU measurements and their

manifold structure of the rotational components.

Initial tests of this framework with preliminary modifications running on the TK1

showed promising results in terms of accuracy. This removes the need for priorly

known visual cues being detected at high rates, which, in turn, allows to integrate

target region detectors that run at considerably lower frame rate than the estimation.

It can also be used as a starting point to build sparse 3D maps of the environ-

ment. Kleiner et al. follow a semi-direct SLAM-approach that does not solely rely on

extracted and tracked features and present a solution for live dense 3D mapping [39].

8.2.3 Target Region Detection in Unknown Environments

As Section 8.2.2 points out, the detection of the target region can and should be

enhanced. Given the scenario of exploring indoor-environments quickly without pri-

orly known visual cues, the tasks reduces to finding doors, windows, openings, or

generally, open alleys in an unknown environment. Since, when using visual-inertial-
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odometry-based state estimation, this detection can run at considerably lower rates

than the estimation, many options come to mind: standard classification techniques

like HoG-classifiers [17] could be tested to spot distinct openings or approximate,

dense 3D-vision could reveal open alleys to fly through.
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Appendix A

Tables

Table A.1: Aerodynamic Parameters as in [14], with adapted parameters

Air density 𝜌aero 1.204
Lock number 𝛾aero 0.839
Blade root angle 𝜃b0 0.52
Blade twist angle 𝜃b1 -0.35
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Table A.2: Marker Detection Parameters

Minimum area ratio 𝐴 2.5
Maximum area ratio 𝐴 7
Minimum distance ratio 𝜁 0.02
Maximum distance ratio 𝜁 0.2

Table A.3: PD-controller Gains

KP,r′ diag(
[︀
0.2 0.25 5

]︀
)

KD,r′ diag(
[︀
0.15 0.22 3

]︀
)

KP,𝜂 diag(
[︀
6.3 31.5 31.5

]︀
)

KD,𝜂 diag(
[︀
4.5 7.2 7.2

]︀
)

Table A.4: Stochastic Optimal Control Parameters

State bounds
𝑥𝐼 −5 < 𝑥𝐼 < 0.0 m
𝑦𝐼 ±2.5 m
𝑧𝐼 ±2 m
𝑣𝐼𝑥, 𝑣

𝐼
𝑦 , 𝑣

𝐼
𝑧 ±5 m/s

Controller Limits
Thrust 𝑇 −𝑚𝑔 ± 3 N
Orientation 𝜃′, 𝜑′ ±0.4 rad
Costs
Control Costs Su diag([0 0.03 0.2])
Position Costs Sr diag([8 4 8])
Time Cost 𝜚𝑡 60
Noise
Position Noise 𝜎𝑟 2𝐸−2I3
Velocity Noise 𝜎𝑣 15𝐸−1I3
Discount factor
𝛽 1
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Appendix B

Transformations

B.1 Orientation

From Position-Controller Orientation To Quadrotor Orientation

D−1
𝜓 D𝜃′D𝜑′

⎡⎢⎢⎢⎣
0

0

1

⎤⎥⎥⎥⎦ = D𝜃D𝜑

⎡⎢⎢⎢⎣
0

0

1

⎤⎥⎥⎥⎦
⇔⎡⎢⎢⎢⎣

cos(𝜑′) cos(𝜓) sin(𝜃′) − sin(𝜑′) sin(𝜓)

− cos(𝜓) sin(𝜑′) − cos(𝜑′) sin(𝜃′) sin(𝜓)

cos(𝜃′) cos(𝜑′)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
𝑏0

𝑏1

𝑏2

⎤⎥⎥⎥⎦ = D𝜃D𝜑 =

⎡⎢⎢⎢⎣
cos(𝜑) sin(𝜃)

− sin(𝜑)

cos(𝜃) cos(𝜑)

⎤⎥⎥⎥⎦
⇒

𝜑 = sin−1(−𝑏1)

𝜃 = sin−1(𝑏0/ cos(𝜑))
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