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Abstract We introduce algorithms to visualize feature spaces
used by object detectors. Our method works by inverting
a visual feature back to multiple natural images. We found
that these visualizations allow us to analyze object detection
systems in new ways and gain new insight into the detec-
tor’s failures. For example, when we visualize the features
for high scoring false alarms, we discovered that, although
they are clearly wrong in image space, they often look de-
ceptively similar to true positives in feature space. This re-
sult suggests that many of these false alarms are caused by
our choice of feature space, and supports that creating a bet-
ter learning algorithm or building bigger datasets is unlikely
to correct these errors without improving the features. By
visualizing feature spaces, we can gain a more intuitive un-
derstanding of recognition systems.

1 Introduction

Figure 1 shows a high scoring detection from an object de-
tector trained on a large database of images. Why does this
detector think that sea water looks like a car?

Unfortunately, computer vision researchers are often un-
able to explain the failures of object detection systems. Some
researchers blame the features, others the training set, and
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Fig. 1: A natural image and a high scoring car detection from
(Felzenszwalb et al, 2010b). Why did the detector fail?

Fig. 2: We show the crop for the false car detection from Fig-
ure 1. On the right, we show our visualization of the HOG
features for the same patch. Our visualization reveals that
this false alarm actually looks like a car in HOG space.

even more the learning algorithm. Yet, if we wish to build
the next generation of object detectors, it seems crucial to
understand the failures of our current detectors.

In this paper, we introduce a tool to explain some of the
failures of object detection systems. We present algorithms
to visualize the feature spaces of object detectors. Since fea-
tures are too high dimensional for humans to directly in-
spect, our visualization algorithms work by inverting fea-
tures back to natural images. We found that these inversions
often provide an intuitive visualization of the feature spaces
used by object detectors.
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Fig. 3: We visualize some high scoring detections from the deformable parts model (Felzenszwalb et al, 2010b) for per-
son, chair, and car. Can you guess which are false alarms? Take a minute to study this figure, then see Figure 21 for the
corresponding RGB patches.
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Fig. 4: Since there are many images that map to similar fea-
tures, our method recovers multiple images that are diverse
in image space, but match closely in feature space.

Figure 2 shows the output from our visualization algo-
rithm on the features for the false car detection. This visu-
alization reveals that, while there are clearly no cars in the
original image, there is a car hiding in the feature descriptor.
Histogram of Oriented Gradients (HOG) (Dalal and Triggs,
2005) see a slightly different visual world than what we see,
and by visualizing this space, we can gain a more intuitive
understanding of our object detectors.

Figure 3 inverts more top detections on PASCAL for a
few categories. Can you guess which are false alarms? Take
a minute to study the figure since the next sentence might
ruin the surprise. Although every visualization looks like a
true positive, all of these detections are actually false alarms.
Consequently, even with a better learning algorithm or more
data, these false alarms will likely persist. In other words,
the features are responsible for these failures.

The primary contribution of this paper is a general algo-
rithm for visualizing features used in object detection. We
present a method that inverts visual features back to images,
and show experiments for two standard features in object
detection, HOG and activations from Convolutional Neural
Networks (CNN) (LeCun et al, 1998). Since there are many
images that can produce equivalent feature descriptors, our
method moreover recovers multiple images that are percep-
tually different in image space, but map to similar feature
vectors, illustrated in Figure 4.

The remainder of this paper presents and analyzes our
visualization algorithm. We first review a growing body of

work in feature visualization for both handcrafted features
and learned representations. We evaluate our inversions with
both automatic benchmarks and a large human study, and
we found our visualizations are perceptually more accurate
at representing the content of a HOG feature than standard
methods; see Figure 5 for a comparison between our visual-
ization and HOG glyphs. We then use our visualizations to
inspect the behaviors of object detection systems and ana-
lyze their features. Since we hope our visualizations will be
useful to other researchers, our final contribution is a public
feature visualization toolbox.1

2 Related Work

Our visualization algorithms are part of an actively grow-
ing body of work in feature inversion. Oliva and Torralba
(2001), in early work, described a simple iterative proce-
dure to recover images given gist descriptors. Weinzaepfel
et al (2011) were the first to reconstruct an image given
its keypoint SIFT descriptors (Lowe, 1999). Their approach
obtains compelling reconstructions using a nearest neigh-
bor based approach on a massive database. d’Angelo et al
(2012) then developed an algorithm to reconstruct images
given only LBP features (Calonder et al, 2010; Alahi et al,
2012). Their method analytically solves for the inverse im-
age and does not require a dataset. Kato and Harada (2014)
posed feature inversion as a jigsaw puzzle problem to invert
bags of visual words. Mahendran and Vedaldi (2015) de-
scribe a gradient-descent based method for inverting visual
features from both HOG and CNNs by incorporating natu-
ral image priors. Dosovitskiy and Brox (2015) further invert
both HOG and CNN features by training another CNN to
reconstruct the original image given the feature.

Since visual representations that are learned can be dif-
ficult to interpret, there has been recent work to visualize
and understand learned features. Zeiler and Fergus (2014)
present a method to visualize activations from a convolu-

1 Available online at http://mit.edu/hoggles

http://mit.edu/hoggles
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Fig. 5: In this paper, we present algorithms to visualize fea-
tures. Our visualizations are more perceptually intuitive for
humans to understand.

tional neural network. In related work, Simonyan et al (2013)
visualize class appearance models and their activations for
deep networks. Girshick et al (2014) proposed to visualize
convolutional neural networks by finding images that acti-
vate a specific feature.

Our method builds upon work that uses a pair of dic-
tionaries with a coupled representation for super resolution
(Yang et al, 2010; Wang et al, 2012) and image synthesis
(Huang and Wang, 2013). We extend these methods to show
that similar approaches can visualize features as well. More-
over, we incorporate novel terms that encourage diversity in
the reconstructed image in order to recover multiple images
from a single feature.

Feature visualizations have many applications in com-
puter vision. The computer vision community has been us-
ing these visualization largely to understand object recog-
nition systems so as to reveal information encoded by fea-
tures (Zhang et al, 2014; Sadeghi and Forsyth, 2013), inter-
pret transformations in feature space (Chen and Grauman,
2014), studying diverse images with similar features (Tatu
et al, 2011; Lenc and Vedaldi, 2015), find security failures
in machine learning systems (Biggio et al, 2012; Weinza-
epfel et al, 2011), and fix problems in convolutional neural
networks (Zeiler and Fergus, 2014; Simonyan et al, 2013;
Bruckner, 2014).

Visualizations enable analysis that complement a recent
line of papers that provide tools to diagnose object recog-
nition systems, which we briefly review here. Parikh and
Zitnick (2011, 2010) introduced a new paradigm for hu-
man debugging of object detectors, an idea that we adopt
in our experiments. Hoiem et al (2012) performed a large
study analyzing the errors that object detectors make. Div-
vala et al (2012) analyze part-based detectors to determine
which components of object detection systems have the most
impact on performance. Liu and Wang (2012) designed al-
gorithms to highlight which image regions contribute the
most to a classifier’s confidence. Zhu et al (2012) try to de-
termine whether we have reached Bayes risk for HOG. The
tools in this paper enable an alternative mode to analyze ob-

ject detectors through visualizations. By putting on ‘HOG
glasses’ and visualizing the world according to the features,
we are able to gain a better understanding of the failures and
behaviors of our object detection systems.

3 Inverting Visual Features

We now describe our feature inversion method. Let x0 ∈ RP
be a natural RGB image and φ = f(x0) ∈ RQ be its corre-
sponding feature descriptor. Since features are many-to-one
functions, our goal is to invert the features φ by recovering a
set of images X = {x1, . . . , xN} that all map to the original
feature descriptor.

We compute this inversion setX by solving an optimiza-
tion problem. We wish to find several xi that minimize their
reconstruction error in feature space ||f(xi)− φ||22 while si-
multaneously appearing diverse in image space. We write
this optimization as:

X = argmin
x,ξ

N∑
i=1

||f(xi)− φ||22 + γ
∑
j<i

ξij

s.t. 0 ≤ SA(xi, xj) ≤ ξij ∀ij

(1)

The first term favors images that match in feature space and
the slack variables ξij penalize pairs of images that are too
similar to each other in image space where SA(xi, xj) is the
similarity cost, parametrized by A, between inversions xi
and xj . A high similarity cost intuitively means that xi and
xj look similar and should be penalized. The hyperparam-
eter γ ∈ R controls the strength of the similarity cost. By
increasing γ, the inversions will look more different, at the
expense of matching less in feature space.

3.1 Similarity Costs

There are a variety of similarity costs that we could use. In
this work, we use costs of the form:

SA(xi, xj) = (xTi Axj)
2 (2)

where A ∈ RP×P is an affinity matrix. Since we are inter-
ested in images that are diverse and not negatives of each
other, we square xTi Axj . The identity affinity matrix, i.e.
A = I , corresponds to comparing inversions directly in the
color space. However, more metrics are also possible, which
we describe now.

Edges: We can designA to favor inversions that differ in
edges. Let A = CTC where C ∈ R2P×P . The first P rows
of C correspond to the convolution with the vertical edge
filters [−1 0 1 ] and similarly the second P rows are for the
horizontal edge filters [−1 0 1 ]T .

Color: We can also encourage the inversions to differ
only in colors. Let A = CTC where C ∈ R3×P is a matrix
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Fig. 6: Inverting features using a paired dictionary. We first
project the feature vector on to a feature basis. By jointly
learning a coupled basis of features and natural images, we
can transfer coefficients estimated from features to the im-
age basis to recover the natural image.

that averages each color channel such that Cx ∈ R3 is the
average RGB color.

Spatial: We can bias the inversions to be only differ in
certain spatial regions. Let A = CTC where C ∈ RP×P is
a binary diagonal matrix. A spatial region of x will be only
encouraged to be diverse if its corresponding element on the
diagonal of C is 1. Note we can combine spatial similarity
costs with both color and edge costs to encourage color and
edge diversity in only certain spatial regions as well.

3.2 Optimization

In order to find the inversions, we must optimize the ob-
jective given in equation 1. Several works in feature inver-
sion have explored a variety of optimization strategies for
cases without similarity terms (γ = 0). For example, Wein-
zaepfel et al (2011) propose a nearest neighbor based ap-
proach, Kato and Harada (2014) pose the problem as a jig-
saw puzzle, Mahendran and Vedaldi (2015) leverage back-
propagation and use gradient-descent, and Dosovitskiy and
Brox (2015) train a convolutional network to estimate one
solution. In our work, we wish to reconstruct the image from
the feature while also incorporating the similarity terms. While
there many possible approaches, we relax the objective so
that it is convex, and use off-the-shelf solvers. We make two
modifications to the objective:

Modification 1: The first term of the objective depends
on the feature function f(·), which may not be convex. Con-
sequently, we approximate an image xi and its features φ =
f(xi) with a paired, over-complete basis to make the objec-
tive convex. Suppose we represent an image xi ∈ RP and
its feature φ ∈ RQ in a natural image basis U ∈ RP×K
and a feature space basis V ∈ RQ×K respectively. We can
estimate U and V such that images and features can be en-
coded in their respective bases but with shared coefficients
α ∈ RK :

x0 = Uα and φ = V α (3)

Fig. 7: Some pairs of dictionaries for U and V . The left of
every pair is the gray scale dictionary element and the right
is the positive components elements in the HOG dictionary.
Notice the correlation between dictionaries.

If U and V have this paired representation, then we can in-
vert features by estimating an α that reconstructs the fea-
ture well. See Figure 6 for a graphical representation of the
paired dictionaries.

Modification 2: However, the objective is still not convex
when there are multiple outputs. We approach solving equa-
tion 1 sub-optimally using a greedy approach. Suppose we
already computed the first i− 1 inversions, {x1, . . . , xi−1}.
We then seek the inversion xi that is only different from the
previous inversions, but still matches φ.

Taking these approximations into account, we solve for
the inversion xi with the optimization:

α∗i = argmin
αi,ξ

||V αi − φ||22 + λ||αi||1 + γ

i−1∑
j=1

ξj

s.t. SA(Uαi, xj) ≤ ξj

(4)

where there is a sparsity prior on αi parameterized by λ ∈
R.2 After estimating α∗i , the inversion is xi = Uα∗i .

The similarity costs can be seen as adding a weighted
Tikhonov regularization (`2 norm) on αi because

SA(Uαi, xj) = αTi Bαi where B = UTATxTj xjAU

Since this is combined with lasso, the optimization behaves
as an elastic net (Zou and Hastie, 2005). Note that if we
remove the slack variables (γ = 0), our method reduces to
(Vondrick et al, 2013) and only produces one inversion.

As the similarity costs are in the form of equation 2, we
can absorb the slack variables SA(x;xj) = ||B 1

2 ai||22 into
the `2 norm of equation 4. This allows us to efficiently opti-
mize equation 4 using an off-the-shelf sparse coding solver.
We use SPAMS (Mairal et al, 2009) in our experiments. The
optimization typically takes a few seconds to produce each
inversion on a desktop computer.

2 We found a sparse αi improves our results. While our method will
work when regularizing with ||αi||2 instead, it tends to produce more
blurred images.



Visualizing Object Detection Features 5

Fig. 8: Averaging the images of top detections from an exemplar LDA detector provide one method to invert HOG features.

3.3 Learning

The bases U and V can be learned such that they have paired
coefficients. We first extract millions of image patches x(i)

0

and their corresponding features φ(i) from a large database.
Then, we can solve a dictionary learning problem similar to
sparse coding, but with paired dictionaries:

min
U,V,α

∑
i

‖x(i)
0 − Uαi‖22 + ‖φ(i) − V αi‖22 + λ‖αi‖1

s.t. ‖U‖22 ≤ ψ1, ‖V ‖22 ≤ ψ2

(5)

for some hyperparameters ψ1 ∈ R and ψ2 ∈ R. We optimize
the above with SPAMS (Mairal et al, 2009). Optimization
typically took a few hours, and only needs to be performed
once for a fixed feature. See Figure 7 for a visualization of
the learned dictionary pairs.

4 Baseline Feature Inversion Methods

In order to evaluate our method, we also developed several
baselines that we use for comparison. We first describe three
baselines for single feature inversion, then discuss two base-
lines for multiple feature inversion.

4.1 Exemplar LDA (ELDA)

Consider the top detections for the exemplar object detector
(Hariharan et al, 2012; Malisiewicz et al, 2011) for a few im-
ages shown in Figure 8. Although all top detections are false
positives, notice that each detection captures some statistics
about the query. Even though the detections are wrong, if we
squint, we can see parts of the original object appear.

We use this observation to produce our first baseline.
Suppose we wish to invert feature φ. We first train an ex-
emplar LDA detector (Hariharan et al, 2012) for this query,
w = Σ−1(y − µ) where Σ and µ are parameters estimated
with a large dataset. We then score w against every slid-
ing window in this database. The feature inverse is the av-
erage of the top K detections in RGB space: f−1(φ) =
1
K

∑K
i=1 zi where zi is an image of a top detection.

This method, although simple, produces reasonable re-
constructions, even when the database does not contain the

category of the feature template. However, it is computation-
ally expensive since it requires running an object detector
across a large database. Note that a similar nearest neighbor
method is used in brain research to visualize what a person
might be seeing (Nishimoto et al, 2011).

4.2 Ridge Regression

We describe a fast, parametric inversion baseline based off
ridge regression. Let X ∈ RP be a random variable repre-
senting a gray scale image andΦ ∈ RQ be a random variable
of its corresponding feature. We define these random vari-
ables to be normally distributed on a P + Q-variate Gaus-
sian P (X,Φ) ∼ N (µ,Σ) with parameters µ = [ µX µΦ ]
and Σ =

[
ΣXX ΣXΦ
ΣTXΦ ΣΦΦ

]
. In order to invert a feature φ, we

calculate the most likely image from the conditional Gaus-
sian distribution P (X|Φ = φ):

f−1(φ) = argmax
x∈RP

P (X = x|Φ = φ) (6)

It is well known that a Gaussian distribution have a closed
form conditional mode:

f−1(φ) = ΣXΦΣ
−1
ΦΦ(φ− µΦ) + µX (7)

Under this inversion algorithm, any feature can be inverted
by a single matrix multiplication, allowing for inversion in
under a second.

We estimate µ and Σ on a large database. In practice, Σ
is not positive definite; we add a small uniform prior (i.e.,
Σ̂ = Σ + λI) so Σ can be inverted. Since we wish to invert
any feature, we assume that P (X,Φ) is stationary (Hariha-
ran et al, 2012), allowing us to efficiently learn the covari-
ance across massive datasets. Since features have varying
spatial dimensions, we use a stationary assumption similar
to (Hariharan et al, 2012).

4.3 Direct Optimization

We now provide a baseline that attempts to find images that,
when we compute features on it, sufficiently match the orig-
inal descriptor. In order to do this efficiently, we only con-
sider images that span a natural image basis. LetU ∈ RD×K
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be the natural image basis. We found using the firstK eigen-
vectors of ΣXX ∈ RD×D worked well for this basis. Any
image x ∈ RD can be encoded by coefficients ρ ∈ RK in
this basis: x = Uρ. We wish to minimize:

f−1(y) = Uρ∗

where ρ∗ = argmin
ρ∈RK

||f(Uρ)− y||22
(8)

Empirically we found success optimizing equation 8 using
coordinate descent on ρ with random restarts.

4.4 Nudged Dictionaries

In order to compare our ability to recover multiple inver-
sions, we describe two baselines for multiple feature inver-
sions. Our first method modifies paired dictionaries. Rather
than incorporating similarity costs, we add noise to a fea-
ture to create a slightly different inversion by “nudging” it
in random directions:

α∗i = argmin
αi

||V αi − φ+ γεi||22 + λ||αi||1 (9)

where εi ∼ N (0Q, IQ) is noise from a standard normal dis-
tribution such that IQ is the identity matrix and γ ∈ R is a
hyperparameter that controls the strength of the diversity.

4.5 Subset Dictionaries

In addition, we compare against a second baseline that mod-
ifies a paired dictionary by removing the basis elements that
were activated on previous iterations. Suppose the first in-
version activated the firstR basis elements. We obtain a sec-
ond inversion by only giving the paired dictionary the other
K − R basis elements. This forces the sparse coding to use
a disjoint basis set, leading to different inversions.

5 Evaluation of Single Inversion

We evaluate our inversion algorithms using both qualitative
and quantitative measures. We use PASCAL VOC 2011 (Ev-
eringham et al, 2005) as our dataset and we invert patches
corresponding to objects. Any algorithm that required train-
ing could only access the training set. During evaluation,
only images from the validation set are examined. The database
for exemplar LDA excluded the category of the patch we
were inverting to reduce the potential effect of dataset bi-
ases. Due to their popularity in object detection, we first fo-
cus on evaluating HOG features.

Original ELDA Ridge Direct PairDict

Fig. 9: We show results for all four of our inversion al-
gorithms on held out image patches on similar dimensions
common for object detection.

5.1 Qualitative Results

We show our inversions in Figure 9 for a few object cate-
gories. Exemplar LDA and ridge regression tend to produce
blurred visualizations. Direct optimization recovers high fre-
quency details at the expense of extra noise. Paired dictio-
nary learning tends to produce the best visualization for HOG
descriptors. By learning a dictionary over the visual world
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Fig. 11: We show visualizations from our method to invert
features from deep convolutional networks. Although the vi-
sualizations are blurry, they capture some key aspects of the
original images, such as shapes and colors. Our visualiza-
tions are inverting the last convolutional layer of Krizhevsky
et al (2012).

and the correlation between HOG and natural images, paired
dictionary learning recovered high frequencies without in-
troducing significant noise.

Although HOG does not explicitly encode color, we found
that the paired dictionary is able to recover color from HOG
descriptors. Figure 10 shows the result of training a paired
dictionary to estimate RGB images instead of grayscale im-
ages. While the paired dictionary assigns arbitrary colors
to man-made objects and indoor scenes, it frequently col-
ors natural objects correctly, such as grass or the sky, likely
because those categories are correlated to a HOG descriptor.

We also explored whether our visualization algorithm
could invert other features besides HOG, such as deep fea-
tures. Figure 11 shows how our algorithm can recover some
details of the original image given only activations from the
last convolutional layer of Krizhevsky et al (2012). Although
the visualizations are blurry, they do capture some important
visual aspects of the original images such as shapes and col-
ors. This suggests that our visualization algorithm may be
general to the type of feature.

While our visualizations do a good job at representing
HOG features, they have some limitations. Figure 12 com-
pares our best visualization (paired dictionary) against a greedy
algorithm that draws triangles of random rotation, scale, po-
sition, and intensity, and only accepts the triangle if it im-
proves the reconstruction. If we allow the greedy algorithm
to execute for an extremely long time (a few days), the visu-
alization better shows higher frequency detail. This reveals
that there exists a visualization better than paired dictionary
learning, although it may not be tractable for large scale
experiments. In a related experiment, Figure 13 recursively
computes HOG on the inverse and inverts it again. This re-
cursion shows that there is some loss between iterations, al-

Original PairDict (seconds) Greedy (days)

Fig. 12: Although our algorithms are good at inverting HOG,
they are not perfect, and struggle to reconstruct high fre-
quency detail. See text for details.

Original x x′ = φ−1 (φ(x)) x′′ = φ−1 (φ(x′))

Fig. 13: We recursively compute HOG and invert it with a
paired dictionary. While there is some information loss, our
visualizations still do a good job at accurately representing
HOG features. φ(·) is HOG, and φ−1(·) is the inverse.

40× 40 20× 20 10× 10 5× 5

Fig. 14: Our inversion algorithms are sensitive to the HOG
template size. We show how performance degrades as the
template becomes smaller.

though it is minor and appears to discard high frequency de-
tails. Moreover, Figure 14 indicates that our inversions are
sensitive to the dimensionality of the HOG template. De-
spite these limitations, our visualizations are, as we will now
show, still perceptually intuitive for humans to understand.

5.2 Quantitative Results

We quantitatively evaluate our algorithms under two bench-
marks. Firstly, we use an automatic inversion metric that
measures how well our inversions reconstruct original im-
ages. Secondly, we conducted a large visualization challenge
with human subjects on Amazon Mechanical Turk (MTurk),
which is designed to determine how well people can infer
high level semantics from our visualizations.

Pixel Level Reconstruction: We consider the inversion
performance of our algorithm: given a HOG feature y, how
well does our inverse φ−1(y) reconstruct the original pix-
els x for each algorithm? Since HOG is invariant up to a
constant shift and scale, we score each inversion against the
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Fig. 10: We show results where our paired dictionary algorithm is trained to recover RGB images instead of only grayscale
images. The right shows the original image and the left shows an inverse.

original image with normalized cross correlation. Our re-
sults are shown in Table 1. Overall, exemplar LDA does the
best at pixel level reconstruction.

Semantic Reconstruction: While the inversion benchmark
evaluates how well the inversions reconstruct the original
image, it does not capture the high level content of the in-
verse: is the inverse of a sheep still a sheep? To evaluate
this, we conducted a study on MTurk. We sampled 2,000
windows corresponding to objects in PASCAL VOC 2011.
We then showed participants an inversion from one of our
algorithms and asked participants to classify it into one of
the 20 categories. Each window was shown to three differ-
ent users. Users were required to pass a training course and
qualification exam before participating in order to guarantee
users understood the task. Users could optionally select that
they were not confident in their answer. We also compared
our algorithms against the standard black-and-white HOG
glyph popularized by (Dalal and Triggs, 2005).

Our results in Table 2 show that paired dictionary learn-
ing and direct optimization provide the best visualization of
HOG descriptors for humans. Ridge regression and exem-
plar LDA perform better than the glyph, but they suffer from
blurred inversions. Human performance on the HOG glyph
is generally poor, and participants were even the slowest at
completing that study. Interestingly, the glyph does the best
job at visualizing bicycles, likely due to their unique circular
gradients. Our results overall suggest that visualizing HOG

Category ELDA Ridge Direct PairDict
aeroplane 0.634 0.633 0.596 0.609
bicycle 0.452 0.577 0.513 0.561
bird 0.680 0.650 0.618 0.638
boat 0.697 0.678 0.631 0.629
bottle 0.697 0.683 0.660 0.671
bus 0.627 0.632 0.587 0.585
car 0.668 0.677 0.652 0.639
cat 0.749 0.712 0.687 0.705
chair 0.660 0.621 0.604 0.617
cow 0.720 0.663 0.632 0.650
table 0.656 0.617 0.582 0.614
dog 0.717 0.676 0.638 0.667
horse 0.686 0.633 0.586 0.635
motorbike 0.573 0.617 0.549 0.592
person 0.696 0.667 0.646 0.646
pottedplant 0.674 0.679 0.629 0.649
sheep 0.743 0.731 0.692 0.695
sofa 0.691 0.657 0.633 0.657
train 0.697 0.684 0.634 0.645
tvmonitor 0.711 0.640 0.638 0.629
Mean 0.671 0.656 0.620 0.637

Table 1: We evaluate the performance of our inversion al-
gorithm by comparing the inverse to the ground truth image
using the mean normalized cross correlation. Higher is bet-
ter; a score of 1 is perfect.

with the glyph is misleading, and visualizations from our
paired dictionary are useful for interpreting HOG features.

Our experiments suggest that humans can predict the
performance of object detectors by only looking at HOG vi-



Visualizing Object Detection Features 9

Category ELDA Ridge Direct PairDict Glyph Expert
aeroplane 0.433 0.391 0.568 0.645 0.297 0.333
bicycle 0.327 0.127 0.362 0.307 0.405 0.438
bird 0.364 0.263 0.378 0.372 0.193 0.059
boat 0.292 0.182 0.255 0.329 0.119 0.352
bottle 0.269 0.282 0.283 0.446 0.312 0.222
bus 0.473 0.395 0.541 0.549 0.122 0.118
car 0.397 0.457 0.617 0.585 0.359 0.389
cat 0.219 0.178 0.381 0.199 0.139 0.286
chair 0.099 0.239 0.223 0.386 0.119 0.167
cow 0.133 0.103 0.230 0.197 0.072 0.214
table 0.152 0.064 0.162 0.237 0.071 0.125
dog 0.222 0.316 0.351 0.343 0.107 0.150
horse 0.260 0.290 0.354 0.446 0.144 0.150
motorbike 0.221 0.232 0.396 0.224 0.298 0.350
person 0.458 0.546 0.502 0.676 0.301 0.375
pottedplant 0.112 0.109 0.203 0.091 0.080 0.136
sheep 0.227 0.194 0.368 0.253 0.041 0.000
sofa 0.138 0.100 0.162 0.293 0.104 0.000
train 0.311 0.244 0.316 0.404 0.173 0.133
tvmonitor 0.537 0.439 0.449 0.682 0.354 0.666
Mean 0.282 0.258 0.355 0.383 0.191 0.233

Table 2: We evaluate visualization performance across
twenty PASCAL VOC categories by asking MTurk partic-
ipants to classify our inversions. Numbers are percent clas-
sified correctly; higher is better. Chance is 0.05. Glyph refers
to the standard black-and-white HOG diagram popularized
by (Dalal and Triggs, 2005). Paired dictionary learning pro-
vides the best visualizations for humans. Expert refers to
MIT PhD students in computer vision performing the same
visualization challenge with HOG glyphs.

sualizations. Human accuracy on inversions and object de-
tection AP scores from (Felzenszwalb et al, 2010a) are cor-
related with a Spearman’s rank correlation coefficient of 0.77.

We also asked computer vision PhD students at MIT to
classify HOG glyphs in order to compare MTurk partici-
pants with experts in HOG. Our results are summarized in
the last column of Table 2. HOG experts performed slightly
better than non-experts on the glyph challenge, but experts
on glyphs did not beat non-experts on other visualizations.
This result suggests that our algorithms produce more intu-
itive visualizations even for object detection researchers.

6 Evaluation of Multiple Inversions

Since features are many-to-one functions, our visualization
algorithms should be able to recover multiple inversions for
a feature descriptor. We look at the multiple inversions from
deep network features because these features appear to be
robust to several invariances.

To conduct our experiments with multiple inversions,
we inverted features from the AlexNet convolutional neu-
ral network (Krizhevsky et al, 2012) trained on ImageNet
(Deng et al, 2009; Russakovsky et al, 2015). We use the pub-
licly available Caffe software package (Jia, 2013) to extract

Original
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Original
Image

Inversions

(a) Affinity = Color

Original
Feature 1st 2nd 3rd

Original
Image

Inversions

(b) Affinity = Edge

Original
Feature 1st 2nd 3rd

Original
Image

Inversions

(c) Nudged Dict

Original
Feature 1st 2nd 3rd

Original
Image

Inversions

(d) Subset Dict

Fig. 15: We show the first three inversions for a few patches
from our testing set. Notice how the color (a) and edge (b)
variants of our method tend to produce different inversions.
The baselines tend to be either similar in image space (c)
or do not match well in feature space (d). Best viewed on
screen.

features. We use features from the last convolutional layer
(pool5), which has been shown to have strong performance
on recognition tasks (Girshick et al, 2014). We trained the
dictionaries U and V using random windows from the PAS-
CAL VOC 2007 training set (Everingham et al, 2005). We
tested on two thousand random windows corresponding to
objects in the held-out PASCAL VOC 2007 validation set.

6.1 Qualitative Results

We first look at a few qualitative results for our multiple fea-
ture inversions. Figure 15 shows a few examples for both
our method (top rows) and the baselines (bottom rows). The
first column shows the result of a paired dictionary on CNN
features, while the second and third show the additional in-
versions that our method finds. While the results are blurred,
they do tend to resemble the original image in rough shape
and color. The color affinity in Figure 15a is often able to
produce inversions that vary slightly in color. Notice how
the cat and the floor are changing slightly in hue, and the
grass the bird is standing on is varying slightly. The edge
affinity in Figure 15b can occasionally generate inversions
with different edges, although the differences can be sub-
tle. To better show the differences with the edge affinity, we
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Fig. 16: The edge affinity can often result in subtle differ-
ences. Above, we show a difference matrix between the first
three inversions that highlights differences between all pairs
of a few inversions from one CNN feature. The margins
show the inversions, and the inner black squares show the
absolute difference. White means larger difference. Notice
that our algorithm is able to recover inversions with shifts of
gradients.

visualize a difference matrix in Figure 16. Notice how the
edges of the bird and person shift between each inversion.

The baselines tend to either produce nearly identical in-
versions or inversions that do not match well in feature space.
Nudged dictionaries in Figure 15c frequently retrieves inver-
sions that look nearly identical. Subset dictionaries in Figure
15d recovers different inversions, but the inversions do not
match in feature space, likely because this baseline operates
over a subset of the basis elements.

Although HOG is not as invariant to visual transforma-
tions as deep features, we can still recover multiple inver-
sions from a HOG descriptor. The block-wise histograms of
HOG allow for gradients in the image to shift up to their
bin size without affecting the feature descriptor. Figure 17
shows multiple inversions from a HOG descriptor of a man
where the person shifts slightly between each inversion.

6.2 Quantitative Results

We wish to quantify how well our inversions trade off match-
ing in feature space versus having diversity in image space.
To evaluate this, we calculated Euclidean distance between
the features of the first and second inversions from each
method, ||φ(x1)−φ(x2)||2, and compared it to the Euclidean
distance of the inversions in Lab image space, ||L(x1) −
L(x2)||2 where L(·) is the Lab colorspace transformation.3

We consider one inversion algorithm to be better than an-
other method if, for the same distance in feature space, the
image distance is larger.

3 We chose Lab because Euclidean distance in this space is known to
be perceptually uniform (Jain, 1989), which we suspect better matches
human interpretation.

Fig. 17: The block-wise histograms of HOG allow for gra-
dients in the image to shift up to their bin size without af-
fecting the feature descriptor. By using our visualization al-
gorithm with the edge affinity matrix, we can recover mul-
tiple HOG inversions that differ by edges shifting. We show
a difference matrix between the first three inversions for an
image of a man shown in the top left corner. Notice the verti-
cal gradient in the background shifts between the inversions,
and the man’s head move slightly.

We show a scatter plot of this metric in Figure 18 for our
method with different similarity costs. The thick lines show
the median image distance for a given feature distance. The
overall trend suggests that our method produces more di-
verse images for the same distance in feature space. Setting
the affinity matrix A to perform color averaging produces
the most image variation for CNN features while also re-
constructing features well. The baselines in general do not
perform as well, and baseline with subset dictionaries strug-
gles to even match in feature space, causing the green line
to abruptly start in the middle of the plot. The edge affinity
produces inversions that tend to be more diverse than base-
lines, although this effect is best seen qualitatively in the
next section.

We consider a second evaluation metric designed to de-
termine how well our inversions match the original features.
Since distances in a feature space are unscaled, they can be
difficult to interpret, so we use a normalized metric. We cal-
culate the ratio of distances that the inversions make to the
original feature: r = ||φ(x2)−f ||2

||φ(x1)−f ||2 where f is the original
feature and x1 and x2 are the first and second inversions. A
value of r = 1 implies the second inversion is just as close



Visualizing Object Detection Features 11

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

CNN Distance

Im
ag

e
D

is
ta

nc
e

NudgeDict
SubsetDict

Color
Edge
Identity

Baselines:

Similarity Costs:

Fig. 18: We evaluate the performance of our multiple inver-
sion algorithm. The horizontal axis is the Euclidean distance
between the first and second inversion in CNN space and the
vertical axis is the distance of the same inversions in Lab
colorspace. Thick lines show the median image distance for
a given feature distance. This plot suggests that our method
can produce diverse, multiple visualizations for the same re-
construction error.

(a) Color (b) Identity (c) Edge

(d) Nudged Dict (e) Subset Dict

Fig. 19: We show density maps that visualize image distance
versus the ratio distances in feature space: r = ||φ(x2)−f ||2

||φ(x1)−f ||2 .
A value of r = 1 means that the two inversions are the
same distance from the original feature. Black means most
dense and white is zero density. Our results suggest that our
method with the affinity matrix set to color averaging pro-
duces more diverse visualizations for the same r value.

to f as the first. We then compare the ratio r to the Lab dis-
tance in image space.

We show results for our second metric in Figure 19 as
a density map comparing image distance and the ratio of
distances in feature space. Black is a higher density and im-
plies that the method produces inversions in that region more
frequently. This experiment shows that for the same ratio
r, our approach tends to produce more diverse inversions
when affinity is set to color averaging. Baselines frequently

(a) Human Vision (b) HOG Vision

Fig. 20: Feature inversion reveals the world that object de-
tectors see. The left shows a man standing in a dark room.
If we compute HOG on this image and invert it, the previ-
ously dark scene behind the man emerges. Notice the wall
structure, the lamp post, and the chair in the bottom right.

performed poorly, and struggled to generate diverse images
that are close in feature space.

7 Understanding Object Detectors

While the goal of this paper is to visualize object detection
features, in this section we will use our visualizations to in-
spect the behavior of object detection systems. Due to bud-
get, we focus on HOG features.

7.1 HOGgles

Our visualizations reveal that the world that features see is
slightly different from the world that the human eye per-
ceives. Figure 20a shows a normal photograph of a man
standing in a dark room, but Figure 20b shows how HOG
features see the same man. Since HOG is invariant to illu-
mination changes and amplifies gradients, the background
of the scene, normally invisible to the human eye, material-
izes in our visualization.

In order to understand how this clutter affects object de-
tection, we visualized the features of some of the top false
alarms from the Felzenszwalb et al (2010b) object detection
system when applied to the PASCAL VOC 2007 test set.
Figure 3 shows our visualizations of the features of the top
false alarms. Notice how the false alarms look very simi-
lar to true positives. While there are many different types
of detector errors, this result suggests that these particular
failures are due to limitations of HOG, and consequently,
even if we develop better learning algorithms or use larger
datasets, these will false alarms will likely persist.
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Fig. 21: We show the original RGB patches that correspond to the visualizations from Figure 3. We print the original patches
on a separate page to highlight how the inverses of false positives look like true positives. We recommend comparing this
figure side-by-side with Figure 3.

Figure 21 shows the corresponding RGB image patches
for the false positives discussed above. Notice how when we
view these detections in image space, all of the false alarms
are difficult to explain. Why do chair detectors fire on buses,
or people detectors on cherries? By visualizing the detec-
tions in feature space, we discovered that the learning algo-
rithm made reasonable failures since the features are decep-
tively similar to true positives.

7.2 Human+HOG Detectors

Although HOG features are designed for machines, how well
do humans see in HOG space? If we could quantify hu-
man vision on the HOG feature space, we could get insights
into the performance of HOG with a perfect learning algo-
rithm (people). Inspired by Parikh and Zitnick’s methodol-
ogy (Parikh and Zitnick, 2011, 2010), we conducted a large
human study where we had Amazon Mechanical Turk par-
ticipants act as sliding window HOG based object detectors.

We built an online interface for humans to look at HOG
visualizations of window patches at the same resolution as
DPM. We instructed participants to either classify a HOG
visualization as a positive example or a negative example
for a category. By averaging over multiple people (we used
25 people per window), we obtain a real value score for a
HOG patch. To build our dataset, we sampled top detections
from DPM on the PASCAL VOC 2007 dataset for a few
categories. Our dataset consisted of around 5, 000 windows
per category and around 20% were true positives.

Figure 22 shows precision recall curves for the Human
+ HOG based object detector. In most cases, human subjects
classifying HOG visualizations were able to rank sliding
windows with either the same accuracy or better than DPM.
Humans tied DPM for recognizing cars, suggesting that per-
formance may be saturated for car detection on HOG. Hu-
mans were slightly superior to DPM for chairs, although per-
formance might be nearing saturation soon. There appears
to be the most potential for improvement for detecting cats
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Fig. 22: By instructing multiple human subjects to clas-
sify the visualizations, we show performance results with an
ideal learning algorithm (i.e., humans) on the HOG feature
space. Please see text for details.

with HOG. Subjects performed slightly worst than DPM for
detecting people, but we believe this is the case because hu-
mans tend to be good at fabricating people in abstract draw-
ings (Gosselin and Schyns, 2003; Vondrick et al, 2015).

We then repeated the same experiment as above on chairs
except we instructed users to classify the original RGB patch
instead of the HOG visualization. As expected, humans have
near perfect accuracy at detecting chairs with RGB sliding
windows. The performance gap between the Human+HOG
detector and Human+RGB detector demonstrates the amount
of information that HOG features discard.

Although our visualizations are not perfect, our previous
experiments support that our inversion is a decent recon-
struction, suggesting that human performance can provide
a lower expectation on performance with HOG. Our exper-
iments suggest that there is still some performance left to
be squeezed out of HOG. However, DPM is likely operating
close to the performance limit of HOG. Since humans are
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Fig. 23: We visualize a few deformable parts models trained with (Felzenszwalb et al, 2010b). Notice the structure that
emerges with our visualization. First row: car, person, bottle, bicycle, motorbike, potted plant. Second row: train, bus, horse,
television, chair. For the right most visualizations, we also included the HOG glyph. Our visualizations tend to reveal more
detail than the glyph.

the ideal learning agent and they still had trouble detecting
objects in HOG space, HOG may be too lossy of a descriptor
for high performance object detection. If we wish to signif-
icantly advance the state-of-the-art in recognition, we sus-
pect focusing effort on building better features that capture
finer details as well as higher level information will lead to
substantial performance improvements in object detection.

7.3 Model Visualization

We found our algorithms are also useful for visualizing the
learned models of an object detector. Figure 23 visualizes
the root templates and the parts from (Felzenszwalb et al,
2010b) by inverting the positive components of the learned
weights. These visualizations provide hints on which gradi-
ents the learning found discriminative. Notice the detailed
structure that emerges from our visualization that is not ap-
parent in the HOG glyph. Often, one can recognize the cat-
egory of the detector by only looking at the visualizations.

8 Conclusion

We believe visualizations can be a powerful tool for under-
standing object detection systems and advancing research in
computer vision. To this end, this paper presented and eval-
uated several algorithms to visualize object detection fea-
tures. We propose a method that learns to invert features, and
we show results for both hand-crafted and learned features.
We hope more intuitive visualizations will prove useful for
the community.
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