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ABSTRACT

A multivariable sampled-data feedback system contains a

digital computer embedded in a sampled-data compensator

that controls an analog system. Conic sectors that can

be used to analyze this feedback system are presented,

and then it is shown how to use them to determine closed

loop stability and to analyze robustness. These conic

sector analysis techniques are an alternative to

z-transform techniques. They directly incorporate the

prefilter, sample rate, and hold device in the analysis,

and allow the sampled-data feedback system to be rigor-

ously approximated by a linear time invariant feedback

system.

*This research was carried out at the M.I.T. Laboratory for Information and

Decision Systems with support provided by NASA under grant NGL-22-009-124

and by the General Electric Corporate Research and Development Center.

This paper has been prepared for the 9th IFAC Congress in July, 1984.



-2-

I. INTRODUCTION

Digital computers are commonly used to control analog systems. Exam-

ples can be found across the spectrum of engineering disciplines, especially

in the aerospace industry, where they' have been used to control

aircraft, helicopters, missiles, and spacecraft. Digital computers have won

wide acceptance for a variety of reasons including cost, reliability, and

flexibility. Here we are primarily concerned with the ability of digital

computers to mimic analog compensators, despite their "sampled-data" nature.

Most analysis and design techniques for sampled-data control systems

are based on the use of z-transforms, as explained in many textbooks inclu-

ding the one by Franklin and Powell [1]. In this paper, we introduce new

analysis techniques that are based on the use of conic sectors, which were

developed for a general class of feedback systems by Zames [2] and Safonov

[3,4].
The sampled-data compensator consists of a prefilter, synchronous sam-

pler, digital computer, and hold device and can be modeled as a linear time

varying (LTV) transformation from its input to its output. This transforma-

tion can be approximated by a linear time invariant (LTI) transformation,

thereby allowing the use of Laplace transform matrices. Conic sectors are

used to make this a rigorous approximation, by which we mean an approxima-

tion that is valid for all possible inputs, The center and radius of the

conic sector, or cone, are used to determine closed loop stability and var-

ious robustness margins.

It is well known that sampled-data compensators behave like LTI com-

pensators for low frequency (< T rad/sec) inputs but not for high frequency
T

inputs. This fuzzy idea is made precise by characterizing the uncertain

high frequency behavior as a frequency dependent modeling error, i.e. as the

radius of a cone. When this is done then it can be treated as are other

frequency dependent modelling errors, such as unmodelled high frequency dynamics,

structural resonances, unmodeled!time delays, and the like. It is the sub-

ject of robustness to show that stability is preserved in spite of these

modelling errors. The usual design procedure for doing so; which is at

least as old as Nyquist and Bode, God rest their souls, and Nichols, may he

live long and prosper; is to roll off the loop transfer function at high

frequencies.



- 3 -

One of the problems with existing z-transform theory is its inability

to justify the need for prefiltering. Stability, robustness margins, and

performance constraints can all appear marvelous even with no prefiltering!

The problem of selecting the prefilter and also the problem of selecting the

sample rate are well known, and from a practical engineering point of view

solved, but the theory still lags behind. Our approach offers the advantage

of directly incorporating the prefilter, sample rate, and hold device into

the analysis, because they all affect the frequency dependent modeling error.

This paper is an expose of research in this subject conducted over the

last several years at MIT's Laboratory for Information and Decision Systems.

Previous publications [5, 6, 7, 8] are referenced where appropriate. We be-

gin in Section II by setting up in sufficient generality the conic sector

analysis techniques. In Section III these are particularized to sampled-data

control systems. This involves the foremost result to data (Lemma 5) - the

discovery of a new conic sector that contains a sampled-data operator. In

Sections IV, V, and VI three different techniques for applying this new conic

sector are described. The ability to determine closed loop stability and to

measure robustness margins is demonstrated in examples. The effect of vary-

ing the sample rate is explored. In Section VII future research is discussed

and conclusions are presented.

II. MATHEMATICAL PRELIMINARIES

We establish notation, define the sampled-data control system, and then

review conic sector sufficient conditions for closed loop stability. We make

a few qualitative statements about conic sectors and then review how they

can be applied to LTI operators.

Notation

Rn, Cn, Rnxm, Cnxm = finite dimensional real and complex Euclidean spaces

,L2 = n-dimensional space of square integrable functions

L2e = extended L2 space

A Cnxm = matrix (underlined capital Roman letters)

a c Cn = vector (underlined small Roman letters)

a, a £ C = scalars (small Roman and Greek letters)

A c 2e x L2e = relation or operator (capital script letters)
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a C L2e = vector of functions (small Roman letters underlined by a tilda)

A-1 = matrix inverse

AI = inverse of relation or operator

I allE = Euclidean vector norm

I IAII = matrix norm induced by Euclidean vector norm

I allT = truncated function norm

I IA II operator norm induced by truncated function norm

'max(AJ = IAl I = maximum singular value of A

amin(A) = minimum singular value of A

Abbreviations:

R. = real numbers > 0

a = F(jw-jwst),where ws = 2./T

D = D(z) evaluated at z=ejwT

Z(o) = sum from = -o to o
k

2( ) = sum from k = -A to - except the.:ken term
kmn

g end of statement of Lemma or Theorem

Particular operators associated with sampled-data control system:

K = sampled-data operator (LTV)

G = plant operator (LTI)

T = loop transfer operator (LTV)

K,R = center and radius of cone that contains K (LTI operators)

G, Rg = center and radius of cone that contains G (LTI operators)

T, Rt = center and radius of cone that contains T (LTI operators)

Associated with each LTI operator A is the Laplace transform matrix A(z),

and with each function a the Laplace transform a(K'). Associated with the
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sampled-data operator K are the Laplace transform matrices F(,s) and H(S),

the z-transform matrixD_(z), and the sample period of T seconds. The Laplace

transforms are often evaluated on the imaginary axis, z = jw and the

z-transforms on the unit circle, Z = ejwt.

The Sampled-Data Control System

A block diagram of the multivariable sampled-data feedback system is

shown in Figure 1. The nominal plant is modeled by the Laplace transform

matrix _Gq_). Frequency dependent modeling errors are characterized by the

multiplicative perturbation EgS), and the actual plant is

G() = G() [ I + E ()] (1)

max[Er (ji)] < tm(w) for all & j (2)

The multiplicative perturbation is unstructured because the only information

known about it is a bound on its maximum singular value. For information on

singular values see [9,10] and their references.

The sampled-data compensator contains a prefilter, computer, and hold

device which are modelied, respectively, by-PC(6),' 'iz), and _I(). The single

synchronous sampler outputs new samples every T seconds. The transformation

from the error signal e(o) to the plant input u(4) is a LTV transformation
defined by ' 

u = H D*1 z k (3)
T k

The closed loop transformation from the command input r(s) to the plant

output y(s) is the following:

H Dcl T k (4)

=d = -k Fk Hk (6)
Tk

The z-transform Gd(z) is the discretized plant.
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synchronous sampler

analog signal \ discrete sequence

r e

Sampled-data compensator Plant

Figure 1: The sampled-data feedback system

Sampled-data Plant
compensator

Figure2: Then sampled-data feedback system, represented with operator notation
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Conic Sectors

The most general application of conic sectors gives sufficient con-

ditions for closed loop stability of nonlinear, time-varying, noncausal,

and ill-posed control systems. The elements of the control systems are

relations defined as cross products on extended normed linear spaces. We

don't need all of this blazing generality, and quickly descend to the

sampled-data control system of Figure 2, which is the same as Figure 1,

except that operator notation is used. The plant G is a LTI operator

with the transformation defined by (1). The compensator K is a LTV operator

with the transformation defined by (3).

We now present some standard definitions all of which are further dis-

cussed in [2], [3], [4], and [7]. A "relation" is a subset of the cross

product space Lme x Lre. An "operator" is a special case of relation

that satisfies the 2 properties that (1) their domains are all of L2e and

(2) for every input there exists a unique output. The only extended normed

linear space used in this paper is L2e* Its elements are square integrable

m-dimensions functions x : R+ - Rm, from the set of real numbers > 0 to

the set of m-dimensional vectors, such that for all T £ R+ they have finite

truncated norms:

|)x)T2 : 1 I1x(t)|2ldt (7)

The extended space and its truncated norm are used so that both stable and

unstable relations are defined in the same way.

Let A be an arbitrary operator. The input-output pair (x, )c A can
equivalently be denoted by the transformation y = Ax. The "gain" of the

operator A is defined

| A|I S Axl IT (8)IIAl : sup

where the suprenum is taken over all x in the domain of A and all T C R+ such

that f|xIl. # 0. If the gain of A is finite then it is "L2 -stable". The
"inverse" of the operator A always exists, though it may be a relation and

not an operator, and is defined by
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AI = { (x,y) L2e L2e I ) A } (9)

The composite operators A + B, AB, A-B are more-or-less obviously defined.

The unity operator is I.

There are two different definitions given for conic sectors. The re-
lation A is "strictly inside cone (C,R)" with center C and radius R if

I L- Cxi I 2 < IIR xl II Ixll I (10)

for all (zx,y) £ A, all T e R+, and some e > 0. In contrast to
(10), the relation A is "outside cone (C,R)" if

I I Y-CxI 11 > I IRXI IT (11)

for all (x,y) ) A and all T e R+.
The radii that we will use will always have the property that both

R and RI are LTI I2e-stable operators. This implies that the Laplace trans-
form matrix R(s) associated with R has all of its poles and zeros in the
left-half-plane and does not roll off at high frequencies (i.e.
R(s) - 0 as s + -).

Referring now to the control system of Figure 2, it is assumed to be
causal and well-posed, which is equivalently stated, thanks to Willems [11],

that (I + GK)I is a causal operator. Define F and E to be closed loop opera-
tors which transform r to e and u, respectively. The closed loop system is

stable if both F and E and L2e-stable. A sufficient condition for this to
be true is given by the "Small Gain Theorem" [2]:

IIGKHI < 1-s for some e > 0 (12)

As everyone knows, or at least should know, this condition is too restrictive

to be of any but theoretical interest. Modifications using conic sectors,
however, are indeed useful. It can be argued, somewhat facetiously, that the
following conic sector stability conditions, indeed all of [2], [3], and
[4], are but trivial consequences of a trivial theorem.
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The closed box system of Figure 2 is stable if there exists a cone
(K,R) such that

K is strictly inside cone (K,R)
(13)

_~I is outside cone (K,R)

Similarly, by switching the roles of G and K, another sufficient con-
dition for closed loop stability is

0 is strictly inside cone (G,R)
-KI is outside cone (G,R)

It is arbitrary how the elements of the control system are divided.
Let T be the loop transfer operator for the loop broken at any point,
and then it follows that the closed loop system is stable if

T is strictly inside cone (T,R)

-I is outside cone (T,R) (15)

The cone can be considered a "topological separation" between elements of
the control system. It is this idea of topological separation that leads
to the further generalizations of Safonov [4].

An important point to be made is that the conic sector stability results
are also robustness results. They determine stability not just for
particular operators G and K but for any such operators that satisfy the
conic sector conditions.

Some Insight

Having worked for some time with conic sectors we offer the following
qualitative information. Consider when the operator A is strictly inside
cone (C,R). The center C is an approximation of A. If C is to be a useful

approximation then it should be simple (i.e. linear time invariant) and in
some sense close to A, at least for a certain class of input signals, the
most useful being low frequency sinewaves. A trivial cone always exists by
making the radius infinitely large. Nontrivial cones exist when the operator

A-C is L2e-stable. The radius R should be as small as possible.
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The radius is intuitively a bound on the errors of the approximation

C, abstractly an additive pertubation, and precisely a bound on the energy

of certain signals. The truncated function norm is proportional to the

energy of the truncated signal. Therefore the conic sector inequality (10)

can be stated that the energy of (A-C)x is less than the energy of Rx for

all possible x.

Next consider when -A' is outside cone (C,R). It is not useful to think

of C, or anything else, as an approximation of A. More useful is to consider

the feedback system with A in the feedforward position and C in the feedback

position. If this feedback system is well-posed and closed loop stable

then the condition that -AI is outside cone (C,R) is equivalent to the

condition that the gain of RA (I+CA)I is < 1.

In all robustness work a nominal system is defined and then assumed or

shown to be stable. If -AI is outside cone (CR) then the nominal system

has the loop transfer operator CA. If both C and A are LTI then so is the

nominal system.

Conic Sectors for LTI Control Systems.

We will use the following three Lemmas, which show how conic sectors are

applied to LTI operators. Lemma 1 gives sufficient conditions for a LTI

operator G to be strictly inside of a cone.

Lemma 1. Define the LTI operators G, G, and R Assume that R is also

a LTI operator, and that Rg and Rg are L2e-stable. Then G is strictly inside
cone (G,Rg) if

(i) G-G is L2e-stable

(ii) amin [-g(j)] > 1/2 max [G(ji)-G(jw)]
(l1cyE/2m x

for all X and some C > 0 * (16)

A proof of Lemma 1 is contained in [4]. If the uncertainty of the

plant G is characterized by a multiplicative perturbation as in (1), then

G is strictly inside of a cone with center G and radius Rg, for any Rg such
that

mifn[Ra ng(jd)] > _m(_) amax17G(j)]

for all w and some £ > O (17)



The next Lemma gives sufficient conditions for a LTI operator G to

satisfy the property that -GI is outside of a cone. It is also proved

in [4]. The assumption that (I + KG)I is a LTI operator is for well-

posedness. Condition (i) can be thought of as a condition that the

nominal LTI is closed loop stable, and can be checked by a variety of

well known techniques.

Lemma 2. Define the LTI operators G, K, and R. Assume that RI and

(I + KG)I are LTI operators. Then -GI is outside cone (K,R) if

(i) G(I+KG)I is L2 e-stable

(18)

(ii) a x[R G (I+GK)l(jw)] < 1 for all 

The third Lemma is a combination of the previous two. The LTI

operator G is strictly inside of a cone which has a radius that satisfies

(16) and (17). Sufficient conditions were given for all possible G's

strictly inside of this cone to be outside of another cone. The proof is

presented in Appendix A.

Lemma 3. Define the LTI operators G, G, and Rg, and assume that G is

strictly inside cone (G, Rg), as shown in Lemma 1. In addition, define the

LTI operators K and R, and assume that -GI is outside cone (K,R), as shown

in Lemma 2. For all allowable G's it follows that -GI is outside cone

(K,R) if

amin [I + K G (ij)] - fmax[R G (jw)]

maxK G ()] + amax[R G w) all (19)

This completes the section of mathematical preliminaries. We are now

ready to apply conic sectors to sampled-data control systems.
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III. Conic Sectors for Sampled-Data Operators

The task before us is to show the existence of a useful cone that

contains the sampled-data operator K. To be useful, this cone must be

computable and result in non-conservative sufficient conditions for

closed loop stability and robustness. In this section we discuss three

different cones. It is argued that the first two fail the test of

usefulness. The next three sections of this paper are used to argue

that the third cone is indeed useful.

We emphasize the distinction between showing existence and showing

usefulness. We know, for instance, that the trivial cone with an infinitely

large radius always exists. We also know, for instance, that this cone

is not in the least bit useful.

The first non-trivial cone was found by Kostovetsky [5,6]. He con-

sidered a very specific type of sampled-data operator which he named the

"optimal hybrid approximation." Its prefilter, computer, and hold are

chosen to minimize the mean square difference of the outputs of the

sampled-data and LTI operators when the input is white noise. This turns

out not to be a practical compensator because the prefilter, computer, and

hold all contain internal models of the LTI operator. Because this cone

only applies to the optimal hybrid approximation we do not consider it to

be a useful cone, and we will not further discuss it. We nonetheless applaud

the pioneering efforts of its founder.

The second cone was found by Stein and reported in [6]. It is a

generalization of the first cone that can be applied to any L2e-stable K.

The center K is arbitrary, though it should in some sense be close to K, and

the radius R is the non-dynamic scalar multiplier R(s) = rI. The result is

stated below as Lemma 4. Its proof and a discussion of the impulse response

K(t,e) are contained in [6].l1

Lemma 4. Define the sampled-data operator K, the LTI operator K, and

their respective impulse response matrices K(t,e) and K(t-e). Assume both

are L2e-stable. K is strictly inside cone (K,R) if R(s) = rI, where

0

1Lemma 4 is true not just for the sampled-data operator K but for any LTI
operator K.

____. _______ __~_...~... .- ~ ..~.1.~-.~.~~-~ . -- -- -·- ---r.F-n·~;-- -
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where

m(t-e) > max [K(te)-K(t-e)]
77-E) max -

for all t,8 and some £ > 0 m (21)

Computing r involves a difficult maximization over both t and e.

A lower bound for T is

r > max [K(jw)] evaluated at w T (22)

which is explained by the fact that a sinewave input at 7/T rad/sec

can result in zero output.
This second cone fails the test for usefulness because it is difficult

to compute. Even if we were clever enough to find an easy way to compute r,

the cone is not useful because of the more serious reason that any cone with

a nondynamic radius will result in conservative sufficient conditions for

closed loop stability. This conservativeness can be shown by example, or

explained intuitively as follows. The scalar multiplier r must be large

to bound the significant differences in the outputs of K and K in response

to high frequency inputs. This same value of r will be a conservative

(i.e. too large) bound for low frequency inputs, which in turn results in

conservative sufficient conditions for a stability and robustness.

After the discovery and analysis of the first two cones it was recognized

that yet another cone was needed - this time with a dynamic radius. Such a

cone was found by Thompson and reported in [6,7,8]. The result is shown below:

Lemma 5. Define the sampled-data operator K and the LTI operators K and

R. Assume that RI is also a LTI operator, and that K, K, R and RI are L2e2e
stable. Then K is strictly inside cone (K,R) if

> 1 2 (H * 02 * 2
Omin[R(jw)] > 1) 1 [ Zn k amax (lHk ) + i (HkD fk-Ek)/)]

O-E - k n)O:k k

for all w and some s > 0 (23)

Furthermore, the choice of center K = H D F, called the "optimal center,"

minimizes the lower bound for the radius. a
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The proof is contained in the above references. The basic idea is

to show that for all possible inputs the conic sector inequality (10)

is satisfied. The summations and double summations in (23) result from

the way the synchronous sampler shifts and adds the Laplace transform of

the sampled input signal 

The size of the radius depends on how rapidly both the prefilter and

the hold roll off. At one extreme both the prefilter and hold at band-

limited, in which case (23) of Lemma 5 begins to look like (16) of Lemma 1.

At the other extreme the prefilter or hold do not roll off, for example

F(s) = constant, in which case the radius is infinite. As shown in [7], the

infinite summations converge if both the prefilter and hold have at least a
1
2 pole rolloff.

The size of the radius also depends on the choice of center. Poor

choices result in large radii. An optimal choice is given in the statement

of Lemma 5. It is optimal because it zeros out the single summation over k

in (23). It has the potential disadvantage of being infinite dimensional,

due to the eST terms. If needed, we didn't need it, a low order finite

dimensional K(s) can be chosen, at the expense of a larger radius.

Approximate and exact methods for computing the radius are discussed in

[7]. Because the radius is periodic and even it need only be computed for

0 < w < T' The approximate analysis proceeds by truncating the infinite

sums in (23) and showing that the remainder approaches zero. Usually1 it

suffices to truncate the single and double summations at ±20 terms. We found

this to be the best way to compute the radius, and did so even for those

cases where we know the exact solution.

The exact solution to (23) uses the matrix exponential. The most in-

volved case we worked out is for a SISO K when h(s) is a zero-order-hold and

f(s) is given by a state space representation.2

"Usually" means that the prefilter and hold have at least one pole rolloff
with break frequencies < r/T rad/sec.

2We happened upon the following infinite series, which arises from the use of
the zero-order-hold, and whose sum we haven't found in any tables:

Z Ihk12 = 1, where h(s) (1-e ST)/sT
k
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IV. Stability and Robustness when K is Strictly Inside of a Cone.

In this section we assume the existence of cones that respectively

contain G and K, and then we use their centers and radii to give sufficient

conditions for closed loop stability.- Because conic sectors are used this

stability result is also a robustness result.

We must distinguish between the nominal and actual feedback systems.

The usual procedure for analyzing robustness is to (1) define perturbations

of the nominal system that include as a special case the actual system, (2)

assume or show that the nominal system is closed loop stable, and (3) show

that all allowable perturbations of the nominal system preserve the closed

loop stability.

The nominal feedback system has the LTI loop transfer operator KG, and

the actual feedback system has the LTV loop transfer operator KG. The closed

loop stability result is now stated:

Theorem 1. The feedback system with the loop transfer operator KG is

closed loop stable if

(i) K is strictly inside cone (K,R)
(ii) G (I+KG)1 is L2e-stable, i.e. the LTI nominal feedback system is

closed loop stable (26)

(iii) amax [R G (I + KG) (j)] < 1 for all m
The actual feedback system with the loop transfer operator KG is closed loop

stable if in addition + K G(j)(

(iv) m(M) <ma i amax[R G(j) ] for all X (27)

The first part of Theorem 1 determines closed loop stability for just

the nominal plant. Condition (i) is that K is strictly cone (K,R). If

conditions (ii) and (iii) are true then by Lemma 2 it follows that -GI is

outside of the same cone. Hence, by the conic sector stability condition (13),

it follows that the feedback system with KG is closed loop stable.

The second part of Theorem 1 determines closed loop stability for all

allowable perturbations of the nominal plant characterized by m(w). If
condition (iv) is true then by Lemma 3 it follows that all allowable G's

satisfy the property that -_I is outside of cone (K,Rg). Hence, again by

(13), it follows that the actual feedback system with KG is closed loop stable.
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One of the properties of an operator is its gain, as defined by (8).

It is well known, at least to those that already know it, that the gain of

a LTI operator G is

II G II = sup Omax[G(jw)] (24)
0<0 <co

As a corollary to Lemma 5, we can find an upperbound for the gain of a

sampled-data operator K. For the SISO case we can construct a signal that

achieves the upperbound, see [7] and [8], thereby showing that the upper-

bound actually is the gain.

Lemma 6. An upperbound for the gain of the sampled-data operator K

is

, <[1 2 1/2
- [_2 k n amax - En

O-c T k n

Furthermore, this upperbound equals the gain when H, D , and F are SISO. m
This result is proved in a few steps by substituting the zero center

K(s) = 0 into (23) of Lemma 5 and then by taking the suprenum over the
fundamental frequency range. We have not yet succeeded in constructing a

signal which achieves the upperbound for the multivariable case, and

conjecture that (25) actually is the gain. The algebra is considerably more

complex than for the SISO case, where it is bad enough, and we leave the

multivariable result as an incentive for someone else to become interested

in this problem.

At this point we have established the fundamental result, Lemma 5, which

shows the existence of a cone that contains a sampled-data operator. The key

fact that distinguishes this cone from earlier ones is that its radius is

dynamic (i.e. has a nonconstant Laplace transform). We now proceed to

demonstrate its usefulness.
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To apply Theorem 1 start with a description of a sampled-data control

system, i.e. knowledge of F(s), T, D(z), H(s), G(s), and ,m(w). Construct

a cone that contains K by choosing a center and then by computing the

radius using (23) of Lemma 5. Check condition (ii) of Theorem 1 by any

of a variety of techniques for determining closed loop stability of LTI

systems. Graphically check conditions (iii) and (iv) to determine closed

loop stability of the actual system.

Example 1. In this example Theorem 1 is demonstrated. We start with

the SISO control system with the LTI plant and compensator:

g(s) +1)(+3) (28a)
(sS l )(s+3)

k,(s)= (+3)2 (28b)
ka(S) : (s+.4)(s+22.5)

The compensator was designed by classical control techniques (loop shaping

on a Bode plot) so as to meet the specifications (i) dc gain > 50, (2) phase

margin > 450, and (3) bandwidth < 12 rad/sec. The lead-lag compensator

contributes phase lag below 3 rad/sec and phase lead above 3 rad/sec. The

phase margin is about 600, which was set high to account for the inevitable

phase lag introduced by a sampled-data compensator.

The LTI compensator is to be digitally implemented. The following are

chosen for the prefilter, sample period, digital computer z-transform, and
hold:

f(s) - 2500 (2nd order Butterworth, break freq = 50 rad/sec) (29a)
s +70s+2500

T = .031416 sec (foldover freq = 100 rad/sec) (29b)

.80498(z-.90993)2d(z) = z-.98750(z-.470993744) (Tustin prewarped about 3 rad/sec) (29c)

d) : -. )-sT
h(s) = 1 T (zero-order-hold) (29d)

The conic sector analysis techniques do not depend on any particular method

for designing the sampled-data compensator. We have chosen to discretize

an analog compensator. Another possibility is to first discretize the plant

and then design d(z) by a direct digital method.
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A cone is now constructed that contains the sampled-data operator.

The optimal center is chosen and the radius is computed by truncating (23):

k(jw) = h d* f (30a)

(30)

20 20 20
r(jw) =12 O E Ihkd fn 231/2 for 0 < <

T k=20 n--20 - -T
nOk

A magnitude Bode plot of the radius r(jw) is shown in Figure 3. The

multiplicative radius k lr(jw) and the loop transfer function kg(jw) of

the nominal system are shown in Figure 4.

The multiplicative radius gives the relative size of the center and

radius and is more useful than the absolute size of the radius. As seen in

Figure 4 the multiplicative radius is << 1 at low frequencies, indicating

that the center is a good approximation of the sampled-data operator. At

frequencies where the multiplicative radius is slightly-less than or greater

than 1 the center is a poor approximation of the sampled-data operator. At

these frequencies the loop gain should be << 1, as is the case in Figure 4.

The cone we just constructed satisfies condition (i) of Theorem 2.

Condition (ii) is that the nominal feedback system with the loop transfer

function kg(jw) is closed loop stable. That it is indeed closed loop stable

can be shown by a straightforward use of Bode, Nyquist, or Nichols plots.

Because k(jw) is infinite dimensional it is not feasible to examine closed

loop pole locations.

Condition (iii) of Theorem 1 is verified in Figure 5, where it is shown

that

I rg(l+gk)-l(jw) I < 1 for all w (31)

At this point we know that the sampled-data control system is closed loop

stable for the nominal plant.

Condition (iv) is satisfied for any Q m() such that
m

9m(m) < l+kg -I rg I for all w (32)
m kg + rg 
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Figure 4: The multiplicative radius k-lr(jw) and the loop transfer function kg(jw)



-20-

Irg( 14kg) (w) I < 1 for ll w

4-4 

e i_."._-.... .... .. 1

freqwuncy irad/iec)
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Figure 6: Condition (iv) of Theorem 1, tested for example 1
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The right hand side of (32) is plotted in Figure 6. Various types of

km(W)'s can be concocted to correspond to uncertainties in g(jw), such

as phase uncertainties, gain uncertainties, unmodelled higher order

dynamics, unmodelled time delays, and so on. For example, the minimum

value of a = .57 in Figure 6 guarantees that the closed loop system will
remain stable in spite of phase uncertainties in g(jw) up to +cos (1-a2/2) =
±33° at all frequencies [13]. Theorem 1 only gives sufficient conditions

for closed loop stability, which means that a 2m(w) that violates (32)

may still result in a closed loop stable system.

This completes the section on analyzing stability and robustness when

K and G are each strictly inside their respective cones. The next section

is a variation on this theme, which involves splitting up the loop transfer

operator into two different operators T and I and placing each of these

strictly inside their respective cones.
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V. Stability and Robustness when T is strictly Inside of a Cone

In some cases it is better to combine the nominal plant G with the
compensator K and place the combination strictly inside of a cone. We

have seen in the previous section that the size of the radius depends on

the amount of rolloff of both the prefilter and hold. The intuitive idea
used in this section is that the rolloff of the plant can be used to
increase the rolloff of the prefilter and/or hold.

The question arises where to place the plant? For the purpose of

analysis we can break the feedback loop anywhere we want, which determines
where the plant is placed. Define T as the combination of K and G. Both

k and T are sampled-data operators. Associated with K are F(s), T, D(z),

and H(s). Associated with T are F(s), T, D(z), and H(s). Where the loop

is broken determines F(s) and H(s). Always it must be the case that FH(s) =
FGH(s). Three choices are

Plant with hold: F = F , H = G H

Plant with prefilter: F = F G , H = H

Optimal combination: (F G H) 1/ 2, H (F G H)1/ 2

Deciding how to combine the nominal plant and the sampled-data operator

adds a layer of difficulty to the conic sector analysis. This difficulty
can be resolved for the SISO case. Assume a cone (T,Rt) is constructed

that contains T. The radius rt(jw) is minimized for each w by the optimal
combination of G and K shown in (33). This is proved in Appendix B. The
importance of this result is that it gives the least conservative sufficient

conditions for closed loop stability and robustness. A block diagram of the

sampled-data feedback system showing the optimal combination of G and K is

in Figure 7.

For any combination of G and k the end result is that the sampled-data

feedback system is divided into two elements T and i. The LTI operator I
is the perturbation of the plant, It is strictly inside of a cone with the

identity operator I as the center and a radius determined by m(w). The
nominal feedback system has the LTI loop transfer operator T, and the actual
feedback system has the LTV loop transfer operator TI. Sufficient conditions
for the actual feedback system to be closed loop stable are given in

Theorem 2, which is a variation of Theorem 1.
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Figure 7: The optimal T for SISO systems
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Figure 8: The multiplicative radius t lrt(j) and the loop transfer function t(jw)
for example 2
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Theorem 2. The feedback system with the loop transfer operator T is

closed loop stable if

(i) T is strictly inside cone (T,R t)

(ii) (I+T)I is L2e-stable, i.e. the LTI nominal feedback system

is closed loop stable

(iii) amax I[Rt(_T) (jo)] < 1 for all w (34)
The actual feedback system with the loop transfer operator T is closed loop

stable if in addition

ami n [I+T(jw ) a]-max [Ru (jw)

(iv) Qm(M) < o max Li(jm)J+OmaxR LBt (jw ) ] m (35)

The proof of Theorem 2 is similar to the proof of Theorem 1. If the

first three conditions are true then T is strictly inside and -I is outside

cone (T,Rt). If in addition condition (iv) is true then all allowable I's

satisfy the property that -I is outside cone (T,Rt).

Example 2. We start with the same analog system (28) and sampled-data

compensator (29) as in Example 1. In this example we choose T to be the

optimal combination of G and K, construct a cone (T,Rt) that contains T, and

then use Theorem 2 to determine close loop stability. We will see that the

optimal combination of G and K results in less conservative robustness margins

than in Example 1. This example then continues by showing how the radius

depends on the choice of the sample rate.

The optimal combination T of G and K is shown in Figure 7. We now

construct a cone (T,Rt) that contains this T. The optimal center is chosen

and the radius is computed by truncating (23) of Lemma 5:

t(jw) T 1 ghd f (36a)

rt(j) = - 2E 2 (f0 (fgh)d(fgh)n 1/2 for 0 < w < (36b)

nL k
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We know that this radius is smaller at each w.than for any other combination

of G and K. The magnitude Bode plot of the center t(jw) and the multiplicative

radius t- rt(jw) are shown in Figure 8.

We now check the conditions of Theorem 2. Condition (i) is satisfied

by the cone just constructed. Condition (ii) is satisfied because the

nominal LTI feedback system is the same as in Examp-le 1, and we already know

it is closed loop stable. Condition (iii) is verified in Figure 9, where it

is shown that

rt(l+t)-l(jw) I < 1 for all X (37)

At this point we know the sampled-data system with the nominal plant is closed

loop stable. Stability is preserved for any multiplicative perturbation of

the nominal plant that satisfies condition (iv), which is

I+t w (38)km() -< l+t( - rt(iJ) for all X (38). t(jw) I + j rt(Jw)

The right hand side of (38) is shown in Figure 10. Its minimum value of

a = .74 guarantees that stability is preserved for phase uncertainties in

g(j ) up to ±43° at all frequencies. By placing T and not just K strictly

inside of a cone we have obtained a less conservative robustness margin.

It comes close to meeting our original specification of a 450 phase margin.

Selecting the Sample Period. We continue Example 2 by demonstrating

how conic sector techniques can be used to select the sample period T. Both

the center and the radius of the cone (T,Rt) depend on T. Here we choose T

so that the multiplicative radius is much less than one (tl rt << 1) over
the bandwidth of the nominal LTI system (t > 1).

All of the components of the sampled-data compensator depend on T.

Here we select these components so that T is the only variable:

f(s) = 2nd order Butterworth with break freq = A-d rad/sec (39a)

d(z) = Tustin prewarped version of ka(s) about 3 rad/sec (39b)

h(s) = zero-order-hold (39c)
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For each of five sample periods a cone (T,Rt) is constructed around

T. The optimal combination of G and K is used for T, which means that the

prefilter and hold of T are each (fgh)1/ 2. The five sample periods are

T = .31416, .062832, .031416, .002832, and .0031416 seconds; which cor-
respond respectively to the foldover frequencies r/T = 10, 50, 100, 500,

and 1000 rad/sec. The multiplicative radii are shown in Figure 11 and

compared with the center of the cone when the sample period is the T =
.031416 used earlier in this example.

The multiplicative radius is a frequency dependent modelling error

and it behaves as we intuitively expect it to - as the sample period T

decreases the frequency range increases over which the modelling error is

significant. We see from Figure 11 that there is little to be gained by

decreasing T below .031416 seconds, because the multiplicative radius is

already << 1 over the bandwidth of the system. Also we must consider that

the plant has its own frequency dependent modelling error m(u) and there
is little to be gained by decreasing the multiplicative radius so that

t r << m .
On the other hand, we see from Figure 11 that increasing T to .31416

seconds increases the size of the multiplicative radius so that it is
significant near the bandwidth of. 7 rad/sec. This indicates trouble with
either stability or poor robustness margins.

This completes the section of placing T and I strictly inside of their

respective cones. Now we move on to what might be considered the opposite

approach.
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VI. Stability and Robustness when -KI is Outside of a Cone.

The conic sector analysis techniques of Sections IV and V respectively

place K and T strictly inside of cones. These techniques differ in how the

nominal plant G is treated, but both work by placing the sampled-data

portion of the loop transfer operator G K strictly strictly inside of a cone.

The major restriction to these techniques, you may have noticed, is that

the sampled-data operators K and T must be open-loop stable.

In this section we change the analysis techniques so that the sampled-

data portion of G K is outside of a cone. We do so by constructing a cone

(G,R9) such that -K' is outside of the cone. This is possible if the nominal

feedback system with the loop transfer operator G K is closed loop stable, as

can be determined by digital techniques (discrete Nyquist, location of

plane poles, guaranteed stability by discrete optimal control, and so on).
This condition is less restrictive than open loop stability of K or T.

Note that we have changed the nominal system from the G K of the previous

two sections to the G K of this section. We lose the intuitive appeal
of a LTI nominal system, but gain by having a less
restrictive analysis technique. No matter what choice is for a
nominal system, the actual system will always have the loop transfer
function G K.

In the following Lemma sufficient conditions are given for the existence

of a cone such that -KI is outside of the cone.

Lemma 7. Define the sampled-data operator K and the LTI operators G and

Rg. Assume that RI and (I + G K)I are also LTI operators, and that both

Rg and Rg are L2e-stable. Then -K is outside cone (G,Rg) if

(i) K (I + G K)I is L2e-stable

(ii) amrax[R (j)] < [ am2x (HD )] 1/2 for all X * (40)

The proof of Lemma 7 is contained in [7] and [8]. The proof is similar

to that of Lemma 5, due to the fact that K (I + G K)I is a sampled-data

operator with a structure similar to K. They have the same prefilters, sample

periods, and hold devices; and differ in that K has the digital computer D(z)

as opposed to DcZ(z) of (5). Lemma 5 is true, i.e. K is strictly inside cone
(K,R), if and only if the composite operator (K-K)RI has gain < 1. Lemma 7
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is true, i.e. -KI is outside cone (G,Rg), if and only if the composite
operator RgK (I + G K)I has gain < 1. The proofs of Lemmas 5 and 7 use
similar methods to show the gains are < 1.

Sufficient conditions for closed loop stability are given below in
Theorem 3. If conditions (i) and (ii) are true then -KIis outside cone

(G,Rg),,and if condition (iii) is true then G is strictly inside of the
same cone. Hence, by (14), the closed loop system is stable. The following
theorem is a robustness as well as a stability result, because it applies

to any GI strictly inside of cone (G,Rg).

Theorem 3. The actual feedback system with the loop transfer operator
G K is closed loop stable if

(i) K (I + G K) is L2e-stable, i.e. the nominal feedback system
with the loop transfer operator G K is closed loop stable

(ii) OKI is outside cone (G,Rg)

(iii) km(w) < omin[R4jw)]/Gmax[G(jw)] for all w (41)

This theorem is implemented in three steps. First, the closed loop
stability of the nominal feedback system is determined by digital techniques.

Second, the radius Rg(jw) is computed by equation (40) of Lemma 7. Third,
the inequality (41) is graphically checked.

Example 3. The conic sector analysis technique of Theorem 3 is demonstrated
for a SISO example. The open loop plant and prefilter are

g(s) 1= 1 (42a)

ka(s) = 1 (42b)

Due to the analog integrator the closed loop system has zero steady state
error for a step input. The closed loop bandwidth is .8 rad/sec. The
sampled-data implementation of the analog integrator is:
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f(s) = 25 (2nd order Butterworth with break freq = (43a)
s +70s+25 5 rad/sec)

T = .31416 seconds (foldover freq = 10 rad/sec) (43b)

z+ld(z) = .1579 z-l (Tustin prewarped about .8 rad/sec) (43c)

h(s) = zero-order hold (43d)

Though this example is very simple it serves the purpose of demonstrating
Theorem 3 for systems with digitally implemented integrators.

The first step in implementing Theorem 3 is to show that the nominal
closed loop system is closed loop stable. This can be done, for example, by

plotting the discrete Nyquist diagram d(z)gd(z) for z ejmT and 0 < M < rr/T.
The second step is to compute rg(jw) by truncating (40):

9 20 20 for (44)r_(jW) = [ Z Z I hkd f or 0 < w < (44)
rgj T-20 n=-20 n-0 

Stability of the actual feedback system is preserved for any multiplicative

perturbation m(w) that satisfies

km(w) < I rg(jw)/g(j) I for all X (45)

The right hand side of (45) is shown in Figure 12. As mentioned earlier,

many different km(w)'s can be concocted to correspond to a variety of plant
uncertainties. The minimum value of a = .53 in Figure 11 corresponds to a
tolerance for +31° phase uncertainty in g(jw) at all frequencies.

This completes the section on placing -Ioutside of a cone, which is

the last of the three conic sector analysis techniques presented in this paper.
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Figure 12: Condition (iii) of Theorem 3, tested for example 3
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VII. Conclusion.

Conic sectors can be used to determine closed loop stability and to

analyze robustness of sampled-data feedback systems. Analysis techniques

based on conic sectors form an alternative to the use of z-transforms.

They have a practical advantage in that the robustness margins depend on

the prefilter, sample period, and hold device; and therefore can be used

to help in their selection. Conic sector analysis techniques also have a

conceptual advantage in that they allow the sampled-data feedback system

to be rigorously approximated by a LTI feedback system. Frequency dependent

modelling errors are due to (1) the plant uncertainties and (2) the use of

a sampled-data as opposed to a LTI compensator.

In Sections II and III of this paper some background material was

reviewed leading up to a new conic sector (Lemma 5), which is considered

"useful" because it is computable and results in nonconservative sufficient

conditions for stability and robustness. We do not focus attention on

mathematical proofs, most of which are referenced, but on the following

analysis techniques, which differ in how the loop transfer operator is

divided:

Section IV: K is strictly inside and .'I is outside cone (K,R)

Section V: K is strictly inside and -GI is outside cone (T,Rt)

Section VI; G is strictly inside and -_I is outside cone (G,Rg)

Equations are given to construct each of these cones. Their centers and

radii are then used to graphically determine closed loop stability and

robustness margins.

The research to date has concentrated on the use of conic sectors to

analyze sampled-data feedback systems with single synchronous samplers.

This is a class of systems for which z-transform techniques work well, albeit

with a few loose ends concerning the selection of prefilters and sample rates.

Further research is being conducted to extend these results to systems

with nonsynchronous samplers or with multiple samplers operating at different

rates. Existing z-transform techniques work less well for these systems, and

it is here that conic sector analysis techniques may prove to be the most

beneficial. Preliminary results for the multirate case [7] have already been

obtained.
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Appendix A

Proof of Lemma 3

The objective is to show that all G's strictly inside cone (G,Rg) are

outside cone (K,R). This is done by showing that all such G's satisfy

conditions (i) and (ii) of Lemma 2.

Condition (i) is that G (I + K G)I is L2e stable. It Is assumed that

G (I + K G)I is L 2e-stable, and it is a LTI robustness result, e.g. [12],

that G (I + K G) is L2e-stable if

amin[I + K. G (jw)]
m (a) a + K G(j] for all w (A.1)

which is implied by (19) of Lemma 3.

Condition (ii) of Lemma 2 is true for all allowable G's because:

omax[R G (I + K G) (j)]< omax[R _ ]/[min +Ki (A+2)

< omax[R G](l+2m)/amin[I + K G] (A.3)

< amax[R G](l+Zm)/{amin[I + K G] -
(A.4)

amax[K G_] m}

< 1 (A.5)

The last step is implied by (19) of Lemma 3, and this completes the proof.
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Appendix B

The Optimal Combination of K and G.
The sampled-data operator K and nominal plant G can be combined in

many different ways, each resulting in a different T. Here we show SISO
systems that the T of Figure 6 minimizes the radius of the cone (T,Rt).

The prefilter, digital computer, and hold devide for T are respectively
f(s), d(z), and h(s). It must always be the case that hf = fgh. For any
choice of h and f assume the center of the cone is the same. The radius is:

rt(jw) = [rl(w) + r2() + r3(w)]1/2, where (B.la)

rl( ) -k n 2r = | d 2[ I hkI ][E I n (B.lb)T k n

r2(w) -= I i 2[E I hkf 1k (B.lc)

r3(w) =h fk ' -~tk I (B.ld)k T
Equation (B.1) follows in a few steps from (23) of Lemma 5-. The double
summation in (23) is converted to a single summation by adding and subtracting
the k = n term.

The only part of the radius calculation that depends on the particular
choice of f and h is the r2(w) tenm. We know from the Cauchy-Schwartz
inequality that

[z [ZhkIfk| ] '2 hk [2 ] [n 2] (B.2)
k k n

Hence, rl(w) is minimized for each w when h = f, which means that rt(W) is
minimized for each w when both h and f are equal to (fgh)1/ 2.
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