
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2017-003 February 17, 2017

The Tensor Algebra Compiler
Fredrik Kjolstad, Shoaib Kamil, Stephen Chou,
David Lugato, and Saman Amarasinghe

The Tensor Algebra Compiler

Fredrik Kjolstad
Massachusetts Institute of Technology

fred@csail.mit.edu

Shoaib Kamil
Adobe Research

kamil@adobe.com

Stephen Chou
Massachusetts Institute of Technology

s3chou@csail.mit.edu

David Lugato
French Alternative Energies and

Atomic Energy Commission
david.lugato@cea.fr

Saman Amarasinghe
Massachusetts Institute of Technology

saman@csail.mit.edu

Abstract
Tensor and linear algebra is pervasive in data analytics
and the physical sciences. Often the tensors, matrices or
even vectors are sparse. Computing expressions involving
a mix of sparse and dense tensors, matrices and vectors re-
quires writing kernels for every operation and combination
of formats of interest. The number of possibilities is infi-
nite, which makes it impossible to write library code for all.
This problem cries out for a compiler approach. This paper
presents a new technique that compiles compound tensor
algebra expressions combined with descriptions of tensor
formats into efficient loops. The technique is evaluated in a
prototype compiler called taco, demonstrating competitive
performance to best-in-class hand-written codes for tensor
and matrix operations.

1. Introduction
Dense linear algebra is a powerful and ubiquitous tool, and
many libraries, languages and compilers have been built to
support it. However, many real-world problems are sparse
and it is wasteful or intractable to store the zero values. Fur-
thermore, many phenomena are multi-dimensional and ben-
efit from the generalization of linear algebra to tensor alge-
bra. Tensors generalize vectors and matrices to more dimen-
sions and have applications in science [19, 42], engineer-
ing [18, 24] and data analytics [4, 10]. For example, many
large real-world data sets used in big data analysis are large
sparse tensors, such as Netflix ratings [12] and Facebook ac-
tivities [45]. The number of algorithms for such data sets are
growing and they require high performance, which means
compiler support for optimizing tensor algebra expressions
and operations on sparse data is of utmost importance.

A number of languages [13, 22, 28], libraries [2, 5, 20, 36,
43, 48], and compilers [31, 39] have been developed to sup-
port dense linear algebra. These libraries focus on providing
fast implementations of the most highly-used operations. In

contrast, compiled languages optimize complex compound
linear algebra statements with multiple operations [29, 49,
50]. However, there have been only a few systems that sup-
port either sparse matrix operations or dense tensor opera-
tions and even fewer for sparse tensor computations. Most
sparse matrix applications use libraries [11, 20, 32, 46],
though some compilers [14, 26, 44] do support sparse linear
algebra. More recently, new libraries [3] and compilers [7]
for dense tensors are emerging. Libraries for sparse tensors
are also being developed [9, 37]. However, to the best of our
knowledge, no high performance compiler exists for sparse
tensor algebra.

This paper presents the first technique that generates effi-
cient code for any compound tensor and linear algebra ex-
pression, where the operands are dense, sparse or mixed.
In order to represent different tensor formats, we develop
a unified representation. In addition, we define an intermedi-
ate representation for compound tensor expressions. Using
these two, we present a code generation algorithm. Finally,
we implement these techniques in a compiler. The main con-
tributions of this paper are:

• A Tensor Storage representation that recursively defines
the storage of multi-dimensional tensors. Each dimension
can be stored using a dense or sparse layout, which lets us
map sparse data sets into highly-efficient compact memory
layouts. This storage representation encompasses many
widely-used matrix and tensor formats (§ 3).

• An Iteration Schedule intermediate representation describ-
ing how to iterate through the multi-level sparse iteration
space of any compound tensor algebra expression (§ 4).

• A Merge Lattice representation that lets us generate effi-
cient code for merge iteration spaces (§ 5.1).

• A Code Generation Algorithm that translates an iteration
schedule to efficient code that evaluates the corresponding
tensor algebra expression through a single pass over the
sparse iteration space of its operands (§ 5.2–5.3).

A compiler for dense and sparse tensor algebra. 1 2017/2/17

 for (int i = 0; i < m; i++) {

 for (int j = 0; j < n; j++) {
 int jB_ptr = i * n + j;
 int jA_ptr = i * n + j;

 for (int k = 0; k < p; k++) {
 int kB_ptr = jB_ptr * p + k;

 A.vals[jA_ptr] += B.vals[kB_ptr]
 * c.vals[k]);

 }}}

 for (int iB_ptr = B.D0.ptr[0];
 iB_ptr < B.D0.ptr[1];
 iB_ptr++) {
 int i = B.D0.idx[iB_ptr];
 for (int jB_ptr = B.D1.ptr[iB_ptr];
 jB_ptr < B.D1.ptr[(iB_ptr + 1)];
 jB_ptr++) {
 int j = B.D1.idx[jB_ptr];
 int jA_ptr = i * A.D1.ptr + j;
 for (int kB_ptr = B.D2.ptr[jB_ptr];
 kB_ptr < B.D2.ptr[(jB_ptr + 1)];
 kB_ptr++) {
 int k = B.D2.idx[kB_ptr];

 A.vals[jA_ptr] += B.vals[kB_ptr]
 * c.vals[k];

 }}}

 for (int iB_ptr = B.D0.ptr[0];
 iB_ptr < B.D0.ptr[1];
 iB_ptr++) {
 int i = B.D0.idx[iB_ptr];
 for (int jB_ptr = B.D1.ptr[iB_ptr];
 jB_ptr < B.D1.ptr[(iB_ptr + 1)];
 jB_ptr++) {
 int j = B.D1.idx[jB_ptr];
 int jA_ptr = i * A.D1.ptr + j;
 int kB_ptr = B.D2.ptr[jB_ptr];
 int kc_ptr = c.D0.ptr[0];
 while (kB_ptr < B.D2.ptr[(jB_ptr + 1)]
 && kc_ptr < c.D0.ptr[1]) {
 int kB = B.D2.idx[kB_ptr];
 int kc = c.D0.idx[kc_ptr];
 int k = min(kB, kc);
 if (kB == k && kc == k) {
 A.vals[jA_ptr] += B.vals[kB_ptr]
 * c.vals[kc_ptr];
 }
 if (kB == k) kB_ptr++;
 if (kc == k) kc_ptr++;
 }}}

 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

(a) Dense Aij , Bijk, ck (b) Sparse Bijk, Dense Aij and ck (c) Sparse Bijk and ck, Dense Aij

Figure 1: Generated code for Aij =
∑

k Bijk ∗ ck with different data layouts of B and c.

• A C++ Library implementation of our compiler technique
called taco, short for Tensor Algebra Compiler (§ 6).

• A demonstration of the performance of taco-generated
code compared to hand-coded implementations from state-
of-the-art widely used linear and tensor algebra libraries.
We show that taco generates efficient code for both sim-
ple kernels like SpMV and complex kernels like the Matri-
cized Tensor Times Khatri-Rao (MTTKRP) product (§ 7).

Our technique can be used in libraries such as Tensor-
Flow [3], or Eigen [20] or integrated into the compilers of
MATLAB [28], Julia [13] or Simit [23].

2. Motivation
It is well understood how to write high performance code for
dense linear and tensor algebra operations. Such codes only
require a single loop nest that accesses arrays using simple
affine indices, and it is well known how to optimize such
loops. However, sparse linear and tensor algebra and com-
plex compound expressions are a completely different story.
First, sparsity comes in many different formats. For exam-
ple a sparse matrix, a 2-tensor, can be stored using many
different formats such as Compressed Sparse Row (CSR)
and Columns (CSC), DCSR/DCSC for also compressing
the first dimension, or BCSR/BCSC/BDCSR which includes
dense inner blocks. For higher-order tensors there are more
formats, including Compressed Sparse Fiber (CSF). Hav-
ing multiple sparse tensors in an operation causes a com-
binatorial blow-up of the number of kernels needed. Sec-
ond, many important problems require compound epxres-
sions likeBT c+d,B◦(CD) orB(1)(C�D). Forcing com-
putation kernels to divide these into multiple simpler opera-
tions at the smallest granularity requires producing too many
intermediate results, reducing available locality and hinder-
ing performance. Thus, it is important to compute the result

using a loop nest that makes a single pass over the expres-
sion. This makes it impossible to create a library of opti-
mized functions as there are too many to consider. Third, the
code to simultaneously iterate over a dimension of multiple
sparse structures is non-trivial. Consider a tensor-by-vector
multiplication expression

Aij =
∑

k

Bijk ∗ ck

where i, j and k are index variables ranging over the tensor
dimensions. The code to evaluate this expression depends
entirely on the formats of the three operands. The simplest
code is when the formats are all dense row-major, as shown
in Figure 1(a). It is simple to iterate over the m × n × p
iteration domain to compute the required values, since the
input tensor and vector are dense.

However, if most entries in B are zero it is more effi-
cient to only store the non-zeros, reducing the storage cost
from θ(m × n × p) to θ(nnz), where nnz is the number
of non-zeros. Sparse tensor representations such as Com-
pressed Sparse Fiber (CSF) [37] do this, but the code to it-
erate through the non-zero subset of the iteration space is
complicated. Figure 1(b) shows code for computing the ex-
pression when B is stored with CSF where all dimensions
are compressed, while c and A remain dense. The loops iter-
ate through the subset of each dimension in B that contains
non-zeros (lines 1–13), performs a multiplication, and stores
the result in the correct place in A (lines 18–19).

The code is even more complex when both operands are
sparse. In Figure 1(c), the inner loop simultaneously iterates
over the sparse dimensions of B and the sparse entries of c,
and computes only when there is a non-zero entry in both
operands with the same location in dimension k, as shown
on line 17. This restriction makes the innermost loop tricky
to implement, since it needs to run through the k dimension

A compiler for dense and sparse tensor algebra. 2 2017/2/17

0ptr 2 54

1idx 2 42 3

SEGMENT BOUNDS

ITERATION
DIRECTION

0 ptr2
0 idx2

0 ptr3 5
0 idx2 03 3

6 vals9 58 7

for (iB_ptr = B.L0.ptr[0];

 iB_ptr < B.L0.ptr[1];

 iB_ptr++) {

 i = B.L0.idx[B_ptr];

 for (jB_ptr = B.L1.ptr[iB_ptr];

 jB_ptr < B.L1.Ptr[jB_ptr+1];

 jB++) {

 j = B.L1.idx[jB_ptr];

 val = vals[jB_ptr];

 printf(“B(%d,%d) = %f”, i, j, val);

 }}

SEGMENT

0 1 2 3

0 1 2 3 4

(a) (b)

Figure 2: (a) Understanding iteration and access for a
Sparse storage level. Segment bounds are given by val-
ues in the ptr array, while idx stores index values for
the segment. (b) Iteration through a 2-tensor stored in
(Sparsed1,Sparsed2) format to access the highlighted value,
showing the correspondence between code and storage.

of both operands simultaneously (lines 12–16) and decide
whether to compute a value at each loop iteration.

It is hard write optimized sparse tensor code by hand,
since it depends on the tensor dimensionality, storage for-
mats and the expression itself. In fact, the tensor-vector mul-
tiplication example in Figure 1 shows only three out of the
768 possible implementations that are needed to handle all
the combinations of formats we support. Hand-coding 768
kernels for this expression alone is not realistic. The tech-
nique in this paper obviates the need to write this code, mak-
ing it possible to mix and match formats to implement any
tensor algebra operation automatically.

3. Tensor Storage
In this section, we describe a space of tensor formats that our
technique supports. Many matrix and tensor formats have
been proposed in the literature and several important ones
are points in our space, such as CSR, CSC, BCSR, DCSR
and CSF. However, tensors can have any order (dimension-
ality) so there are an unbounded number of formats. For it to
be possible to develop a general code generation approach,
we developed a way to describe formats recursively from
simple composable parts that also lead to a composable code
generation algorithm. Consider B from our running exam-
ple, which is a tensor with three dimensions. The simplest
storage format is a dense multidimensional array, but it is
wasteful if most components are zeroes.

Intuitively, we find it convenient to think of a tensor as a
tree with one tree level per dimension (plus a root node), as
shown for a 2-tensor in Figure 3(a)-(c). In this formulation,
each tree-path represents a tensor coordinate with a non-
zero value. Each path starts from the root going down to a
leaf. The non-root nodes along the path are the coordinates
and the non-zero value is attached to the leaf node. Finally,
depending on the order in which the dimensions of B are
stored, the levels of the tree occur in different order, e.g.
(d1, d2, d3) or (d3, d1, d2) where di is a dimension.

In our technique, the storage format of a tensor is given by
the order dimensions are stored in, and for each dimension,
whether it is stored using dense or sparse (compressed) level
storage. Tensor values are always stored in a separate array,
but the tensor format index arrays are necessary to interpret
them. For each kind of level storage we store index metadata:

Dense requires only storing the size of the dimension,
since it stores all indices in the dimension.

Sparse stores only the subset of the corresponding di-
mension that has non-zero values. This requires two index
arrays, ptr and idx, that together form a segmented vector
with one segment per entry in the previous dimension (par-
ent node in the tree). The idx array stores all the non-zero
indices in the dimension, while the ptr array stores the loca-
tion in the idx array where each segment begins. Thus seg-
ment i is stored in locations ptr[i]:ptr[i+1] in the idx
array (there’s a sentinel at the end of ptr with the size of the
idx array). We store each segment in idx in sorted order.

Note that the index arrays in a sparse dimension are
those in the CSR matrix format. In addition to higher-order
tensors, our formulation lets us represent several common
sparse matrix formats. Figure 3, shows all 8 ways to store
a 2-tensor (matrix) using our technique. The first column
shows dense row- and column-major storage. The second
column shows the CSR and CSC formats. Both are rep-
resented as (Dense,Sparse), but the order dimensions is
switched. The third column shows the (Sparse,Dense) for-
mat, which is not as commonly-used but is useful for some
circumstances (see § 7). Finally, the fourth column shows
(Sparsed1,Sparsed2) format, which corresponds to Doubly-
Compressed Sparse Row (DCSR) [16]. We also support the
corresponding column-first format DCSC. Furthermore, the
number of formats increases exponentially as the tensor di-
mensionality increases (actually 2dd!), which makes making
hand-coding intractable. Other important sparse formats we
support include sparse vectors, blocked CSR (which we rep-
resent as a 4-tensor), and the CSF format for higher order
tensors, which is sparse in every dimension [37].

Sparse storage for a dimension does not allow efficient
random access to indices and values. However, Sparse is
optimized for iteration in a specific order. Figure 2(a) shows
how a Sparse level is accessed. The ptr array gives the
bounds for each segment in the idx array; iterating over
the indices in a segment is a unit-stride access. Figure 2(b)
shows the correspondence between code and storage for it-
erating through a (Sparsed1,Sparsed2) 2-tensor for printing
out the non-zero entries; the arrows show the current posi-
tions of each loop when printing the highlighted value. The
complexity of iterating through Sparse levels is one of the
reasons why writing sparse tensor code is difficult.

The two kinds of per-level storage we support can express
a wide space of formats suitable for storing sparse tensors.
We anticipate adding more kinds of per-level storage to sup-
port an even wider variety of formats in the future. Describ-

A compiler for dense and sparse tensor algebra. 3 2017/2/17

7

8

DIMENSION 2

DI
M

EN
SI

O
N

1

3210

2

1

0 6

5

89 0 2

2 3 0 3

9 8 5 7VALUES

DIMENSION 1

DIMENSION 2 0

6

DIMENSION 2

DIMENSION 1

0 3

2 0 0 20

5 9 8 7VALUES 6

2

6 0 9 8 0 0 0 0 5 0 0 7

3 DIMENSION 1size

4 DIMENSION 2size

vals

6 0 5 0 0 0 9 0 0 8 0 7

4 DIMENSION 2size

3 DIMENSION 1size

vals

3 DIMENSION 1size

0
DIMENSION 2

ptr 3 53
0idx 2 03 3

6vals 9 58 7

0 DIMENSION 1
ptr 2

0idx 2

4 DIMENSION 2size

6 0 9 8 5 0 0 7vals

0
DIMENSION 2

ptr 3
0idx 2

3 DIMENSION 1size

6 0 5 9 0 0 8 0vals

3

7

0 DIMENSION 1
ptr 2

0idx 2

0 DIMENSION 2
ptr 3 5

0idx 2 03 3

6vals 9 58 7

4 DIMENSION 2size

0 DIMENSION 1
ptr 2 53

0idx 2 00 2

6vals 5 89 7

2

0
DIMENSION 2

ptr 3
0idx 2 3

0 DIMENSION 1
ptr 2 53

0idx 2 00 2

6vals 5 89 7

(a)

(d) (Densed1,Densed2)

(e) (Densed2,Densed1)

(f) (Densed1,Sparsed2)

(g) (Densed2,Sparsed1)

(h) (Sparsed1,Densed2)

(i) (Sparsed2,Densed1)

(j) (Sparsed1,Sparsed2)

(k) (Sparsed2,Sparsed1)

Figure 3: The matrix (2-tensor) is shown in (a) with the tree that describes how to access elements if dimension 1 is accessed
before dimension 2, and reverse. The storage formats in (d) and (e) are row-major and column major dense matrix storage. (f)
and (g) are similar to Compressed Sparse Row (CSR) and Column (CSC) formats which only stores nonzeros of the tensor.
(h) stores full rows of the tensor, but omits empty rows while (i) does the same for columns. (j) and (k) are similar to Doubly-
Compressed Sparse Row (DCSR) and Column (DCSC) formats, for storing hypersparse matrices used in graph algorithms [16].

ing the space of tensor storage formats in this manner allows
us to support an unbounded number of formats and to use a
modular code generation approach that generates code spe-
cific to each tensor storage level, as described in § 5.

4. Iteration Schedules
Iteration Schedules describe how to iterate over the non-zero
values of a tensor expression and are the intermediate repre-
sentation of our approach. They are sufficiently general to
let us produce efficient code from any tensor expression,
from SpMV to Matricized Tensor Times Khatri-Rao prod-
ucts (Aij = Bikl ∗ Ckj ∗ Dlj) and beyond. They also rep-
resent the access restrictions on sparse tensors, which makes
them ideal for generating code from sparse expressions.

Tensor storage is recursively defined and specify each di-
mension to be either dense or sparse. Thus, the storage pro-
vide an order for iterating over the dimensions of the ten-
sor. We call this order a tensor path and it is the key build-
ing block of iteration schedules. A tensor storage format
can support multiple paths if some dimensions are dense.
A sparse dimension supports only one path direction as that
dimension needs to be iterated on before its children, while
a dense dimension can be iterated through before or after its
children. For example a dense row-major matrix can be it-
erated in (d1, d2) order or (d2, d1) order. However, a CSR
matrix can only be efficiently iterated in (d1, d2) order.

To make this concrete, consider the tensor index expres-
sion from § 2 Aij =

∑
k Bijk ∗ ck and the loops that iter-

ates over the indices of sparse B in Figure 1(b). An itera-
tion schedule is a graph where the index variables (i,j,k) of
an expression become vertices and where read expressions
(Bijk) become directed tensor paths.

ji kB2B1 B3

In this example, each index variable vertex corresponds
to a loop nest in the code. Further, the tensor path of Bijk

corresponds to the loop bounds, which iterate over the per-
dimension levels of the tensor storage to visit its non-zero
values. In § 3 each path in a tensor storage tree corresponded
to a non-zero tensor value. A tensor path symbolically repre-
sents all the paths in the forest of trees of operands. Further-
more, each tensor read expression results in a tensor path. In
our example there are three read expressions:

ji k

C1

A1 A2

B1

M(i) = B1

M(j) = B2
B2 B3

M(k) = B3 C1^
In this example two operand paths meet at k. In Fig-

ure 1(c) we showed that if both B and c are sparse then
special code is needed to merge their indices. This need to
merge tensor indices is described in iteration schedules us-
ing merge rules. Every index variable has a merge rule and
they are propositional logic expressions where the atoms are
steps of tensor paths. The merge rule of k isM(k) = B3∧c1,
which means the code iterates over those values of k for

A compiler for dense and sparse tensor algebra. 4 2017/2/17

which both B and c have non-zero values. Finally, the path
for Aij in this schedule is special; it is the result path. Result
paths do not take part in merge rules, since we iterate over
the operand and not the result indices.

We are now ready to define iteration schedules.

DEFINITION 1. An iteration schedule is a graph defined by
the ordered tuple S = (V, P,M(V)) comprising a sequence
V = (i1, i2, ..., in) of index variable vertices, a set P of
directed tensor paths through vertices, and a map M from
each index variable to a merge rule.

DEFINITION 2. A tensor path p ∈ P is an ordered tuple of
o index variable vertices, where o is a positive number. The
kth index variable pk of tensor path is called its kth step.

DEFINITION 3. A merge rule is a propositional logic expres-
sion (no quantifiers) where the atoms are tensor path steps.

Iteration schedules are constructed from index expres-
sions as follows. The expression’s index variables become
the iteration schedule’s vertices. Each sub-expression that
reads a tensor value (e.g. Bijk) results in a tensor path that
has length o, where o is the tensor order. The order of the
steps in the path is determined by the order of the levels in
the tensor’s storage. If the levels are ordered (d1, d2, d3),
where d1 is the tensor’s first dimension, then the path is
(i, j, k). Conversely, if the levels are ordered (d2, d1, d3)
then the path is (j, i, k) and so on.

Next, the merge rules are constructed for each index vari-
able in turn, by rewriting the index expression to proposi-
tional logic. First, we replace the operators that are annihi-
lated by zero (0⊗ a = 0), such as ∗ and /, with conjunctions
(∧). Next, we replace operators that are not annihilated by
zero (a⊕ 0 = a), such as + and−, with disjunctions (∨). Fi-
nally, we replace the index expression’s tensor read operands
with the corresponding tensor path step that is incoming on
the index variable. If the tensor path is not incoming on this
index variable then we throw the sub-expression away.

As a final step, we order the index variables. The ordering
constraint is that the graphs formed by the tensor paths must
be a directed acyclic graph (no cycles). Any topological or-
der will do, so we order the index variables by a topological
sort. If no topological order exists, then it is not possible to
produce an iteration schedule, and the user must re-order a
tensor’s storage to remove cycles.

To make this concrete we will construct the iteration
schedule for a tensor addition Aijk = Bijk + Cijk.

ji k

A1

B1

M(i) = B1

M(j) = B2
B2 B3

M(k) = B3 C3_C2C1

_
_A3A2

C3

C2

C1

The expression’s index variables i, j and k are our ver-
tices. Further, the expression has three tensor reads Aijk,
Bijk and Cijk and these become our tensor paths. Let’s as-
sume the storage for all three tensors are ordered by increas-

ji k lB1 B2 B3 B4

a1

a2
aik =

X
j

X
l

Bijklcjl

c1 c2

M(i) = B1

M(j) =

M(l) =

M(k) =

^B2

^
B3

c1

B4 c2

h) Blocked matrix-vector multiplication a = Bc, where the for-
mat of B is (Dense0, Sparse1, Dense2, Dense3).

ji k lA2 C2

C1 B2

B3

Aij =
X

k

X
l

BiklCkjDlj

D2
D1

M(i) = B1

M(j) =

^
M(l) =

M(k) = C2

^C1 D1

B2

^B3 D2

A1

B1

ji l kA1 A2 A3

B1 B2 B3

M(i) = B1

M(j) =
C2

B2

M(l) = C2

Aijl =
X

k

BijkClk

e) Tensor-matrix multiplication A = B ⇥3 C

ki j

A1 A2

B1 B2

C1 C2

D2

D1

M(i) = B1 ^C1

M(j) = ^D1B2

M(k) = C2^D2

Aij =
X

k

BijCikDkj

d) Matrix component-wise multiplication with the result of an-
other matrix multiply A = B ⌦ (CD)

ji

A1

B1

A2

B2

y1 x1

M(i) =

M(j) = ^
A1 _ B1

(A2)B2_ x1

yi =
X

j

↵(Aij + Bij)xj

c) Sum of two matrices multiplied by a vector y = ↵(A+B)x

ji

y1

x1

A1
A2

M(i) =

M(j) = ^ x1

A1

A2

yi =
X

j

Aijxj

a) Matrix-vector multiplication y = Ax

C1

^M(k) = B3 C1

f) MTTKRP computation A = B(1)(C � D), where (1) is a
mode-1 matricization and � is a Khatri-Rao product. The ma-
trices C and D are stored using CSC (reverse arrows).

Figure 4: The index expression and the iteration schedule for
a few selected matrix and tensor computations.

ing dimension (d1, d2, d3). If we name the paths by the ten-
sor that is read, then we have P = {A,B,C}, A = (i, j, k),
B = (i, j, k) and C = (i, j, k). Finally, we must construct
one merge rule for each index variable. Since the expres-
sion is an addition and since every tensor path goes through
every index variable, all three merge rules are disjunctions:
M(i) = B1 ∨ C1,M(j) = B2 ∨ C2 andM(k) = B3 ∨ C3.

Figure 4 contains more examples of iteration sched-
ules, ranging from a simple matrix-vector multiplication to
blocked matrix-vector multiplication and MTTKRP.

5. Code Generation
The tensor storage formats from § 3 and the iteration sched-
ules from § 4 come together in this section to generate loops
that iterate over the sparse iteration space of an index expres-
sion. The challenge in code generation is three-fold. First,
we must separate the code generation for different index
variables so that we can compile arbitrarily-complex expres-
sions from simple, composable building blocks. Second, we

A compiler for dense and sparse tensor algebra. 5 2017/2/17

1 int a1_ptr = a.d1.ptr[0];
2 int b1_ptr = b.d1.ptr[0];
3 int ic_ptr = c.d1.ptr[0];
4 while (b1_ptr < b.d1.ptr[1] && ic_ptr < c.d1.ptr[1]) {
5 int ib = b.d1.idx[b1_ptr];
6 int ic = c.d1.idx[ic_ptr];
7 int i = min(ib, ic);
8
9 if (ib == i && ic == i)
10 a.vals[a1_ptr++] = b.vals[b1_ptr] + c.vals[ic_ptr];
11 else if (ib == i)
12 a.vals[a1_ptr++] = b.vals[b1_ptr];
13 else if (ic == i)
14 a.vals[a1_ptr++] = c.vals[ic_ptr];
15
16 if (ib == i) b1_ptr++
17 if (ic == i) ic_ptr++;
18 }
19 while (b1_ptr < b.d1.ptr[1]) {
20 a.vals[a1_ptr++] = b.vals[b1_ptr++];
21 }
22 while (ic_ptr < c.d1.ptr[1]) {
23 a.vals[a1_ptr++] = c.vals[ic_ptr++];
24 }

Figure 5: C code for sparse vector addition ai = bi + ci.

must generate code that merges the iteration spaces of ten-
sors that can both be added and multiplied together. Third,
we must insert compute and index assembly statements at
the correct levels of the emitted loops. We will first intro-
duce a new concept we call merge lattices that will help us
generate merge code (§ 5.1). We will then present a general
code generation algorithm (§ 5.2), before finally addressing
how to insert compute and assembly statements (§ 5.3).

5.1 Merge Rules and Merge Lattices
As we described in § 4 each index variable has an associated
merge rule. The merge rule of an index variable specifies
how the tensor storage indices of incoming tensor path steps
should be merged. Merge rules consist of two operators: con-
junctions (∧) and disjunctions (∨). A conjunction means the
index variable iterates over the intersection of the incoming
tensor path steps. A disjunction means the index variable it-
erates over the union of the incoming tensor path steps. A
merge rule can merge any number of tensor path steps, so
we will develop a general scheme that iterates over the set
combination of any number of tensor path steps.

The motivation for merge lattices is that it is expensive
to merge two sparse indices using a disjunction, because the
merge loop must check whether each of the merged indices
still have values. For this reason algorithms such as the two-
finger merge algorithm with three loops to merge indices
were developed. In a two-finger merge the first loop iterates
until one index runs out of values, followed by two loops
to merge in the rest of the index that still has values. We
generalize this insight and introduce a new representation
we call merge lattices that we will depend on to generate
merged loops in § 5.

Let us first consider a concrete example. Sparse vector
addition ai = bi+ci requires a disjunction merge as the non-
zero values in a must be the union of the non-zero values of
b and c. The reason for this is that addition is not annihilated

ai = bi + ci

ai = bi

a cb

bici

ci

bi ^ ci

bi ci

?
bi

c has no more values (first loop exits)

Figure 6: Sparse vector addition example ai = bi + ci and
the merge lattice for i’s disjunction merge rule bi ∨ ci.

by zero (a+0 = a), which means that if any of the operands
of a scalar addition is non-zero then the result is non-zero.
Figure 5 shows the C code to add two sparse vectors and
the left hand side of Figure 6 shows an example. The code
performs a two-finger merge that iterates over the union of
the sparse operands using three loops. The first loop on line
4 iterates while both a and b have any remaining values. Line
7 in the loop body computes the value of i as the smallest of
the index values of b and c. If both indices have a value at i
they are added together on line 10. Otherwise the index with
a value at i is stored in a at lines 12 and 14. Finally, lines 16–
17 increment the ptr variable of the indices that had a value
at i. After the first loop has terminated one of the vectors
may have more values left. The loops at lines 19–24 iterates
over the remaining values of b or c and stores them in a.

The disjunction code for vector addition has three loops.
As we saw in Figure 1(c), a conjunction merge has one
merge loop (the inner-most loop). In general an n-ary merge
requires more loops. To describe these loops we introduce
the concept of a merge lattice.

DEFINITION 4. A merge lattice L is an ordered lattice, con-
sisting of n ordered lattice points (L1, ...,Ln). A lattice point
Lp is a conjunctive merge of m indices associated with ten-
sor path steps, and the lattice points are ordered on indices
running out of values.

Figure 6 depicts the merge lattice of the vector addition.
The top of the lattice represents the first merge loop, which
iterates while any of the merged indices have values left.
The middle represents the additional loops that are needed
to merge sub-expressions that still have values. Finally, the
bottom of the merge lattice is when there are no more index
variable values left to consider. The arrows (ordering) of
the merge lattice represents a merged index running out of
values, which means a while loop terminates and control
moves on to the next loop.

Merge lattices rewrite merge rules to a canonical form
containing a sequence of disjunctions where the terms are
conjunctions. For example, a disjunction is re-written as

bi ∨ ci = (bi ∧ ci) ∨ (bi) ∨ (ci)

Each disjunction becomes a while loop in a sequence of
loops as we’ll see in § 5.2. With this insight we can con-

A compiler for dense and sparse tensor algebra. 6 2017/2/17

struct a merge lattice for any merge rule as follows. Let us
first define multiplication on merge lattice points, and both
multiplication and addition on merge lattices.

DEFINITION 5. Let the multiplication of two lattice points
Lp × Lq be the concatenation of their tensor path steps.

DEFINITION 6. Let the multiplication of two merge lattices
L1 × L2 be the cartesian product of all their lattice points
(L1

0, ...,L1
n)× (L2

0, ...,L2
m).

DEFINITION 7. Let the addition of two merge lattices L1 +
L2 be their multiplication, followed by the lattice points in
L1, followed by the lattice points in L2.

Given these operations we can recursively construct a
merge lattice from a bottom up traversal of a merge rule
using the following construction rules:

• Tensor path step atom: construct a merge lattice with one
lattice point that contains the tensor path step.

• Conjunction: multiply sub-expression merge lattices.
• Disjunction: add sub-expression merge lattices.

To see this algorithm in action, consider the vector
expression ai = bi + (ci ∗ di); a combined addition and
component-wise multiplication. The merge rule for i is
bi∨(ci∧di). Starting at the expression leaves we construct a
merge lattice for each of the operands containing one lattice
point each. We then compute the merge lattice for (ci∧di) by
multiplying the operand merge lattices, producing a merge
lattice with just one lattice point [[ci ∧ bi]]. Finally, the top
expression is a disjunction so we add the merge lattices for
the sub-expressions

[[ai]] + [[ci ∧ di]] = [[ai ∧ ci ∧ di] ∨ [ai] ∨ [ci ∧ di]].

bici _ di

ci _ di

bi ^ ci ^ di

bi ci ^ di

?

bi

This merge lattice is shown here pic-
torially. The top represents a loop
that iterates over the conjunction of
all three indices. If either ci or di are
exhausted the lattice drops down to
the lattice point for bi. Furthermore,
if bi is exhausted the lattice drops
down to the lattice point [ci ∧ di].

5.2 Code Generation Algorithm
In this section we describe how to generate code to compute
a tensor index expression whose operands are a mix of dense
and sparse tensors. Figure 7 contains the recursive algorithm
that emits code that iterates over the merged iteration space
of an index expression described by its iteration schedule.
The algorithm uses a meta-programming syntax where com-
piler code is colored blue while emitted code is colored black
and surrounded by quotation marks. In emitted code blue
text denotes the value of compiler variables.

The algorithm generates code for one index variable
vertex at a time. For each index variable it emits code to

merge the iteration spaces of the indices of the incoming
tensor paths, recursively emitting code for the next itera-
tion variable where appropriate. To achieve this, the algo-
rithm defines three mutually recursive functions that take
an index variable as arguments: codegen, merge-dense
and merge-sparse. The codegen function drives the re-
cursion and produces code for an index variable using either
merge-dense or merge-sparse (if there are any index vari-
ables left). The merge-dense function is used if the merge
rule for the index variable only merges dense index dimen-
sions. It produces dense loops that iterate over all entries in
the tensor dimension corresponding to ik. In the loop body
it computes the sub-expressions that can be computed at that
loop level (if any), and recursively calls codegen to generate
code for the next index variable.

The merge-sparse function generates loops that merge
sparse index dimensions. Figure 7(a) shows generated code
for a matrix add, where the inner dimension is a sparse
merge. Numbered parts shows code generated from different
stages of code generation, and parts 4–5 shows the loops that
merges sparse indices. The code generation relies heavily on
the merge lattices from the previous section to generate this
code. The body of a while loop first merges the index vari-
ables produced by each sparse index by taking the smallest
value (parts 6). The intuition is that we step through the it-
eration space in increasing order, and the indices with the
smallest index value are next.

The next step is to produce nested if statements that han-
dle the various cases of the merge such as one index hav-
ing a value at that point, all indices having a value, etc.
(parts 8). Each if statement computes the sub-expression that
can be computed for that case, recursively generate code for
the next variable given the case expression and insert val-
ues into sparse output indices. See § 5.3 for information on
how this is managed. Finally, the merge-sparse function
emits code that conditionally increments those indices that
were just used to compute (parts 9). The jB index value of
B is compared to the min index value j. If they are equal,
then we move to the next location in B.

5.3 Computation and Tensor Index Assembly
In the previous section we showed how to generate the loop
nests. However, we left two functions undefined, namely
compute and insert. These functions are called in the case
handling in step 8 of Figure 7 at each recursive level. Note
that these functions are independent and it is possible to
generate code that uses either or both of them. This makes
it possible to emit code that only assembles the indices,
only computes, or both computes and assembles indices.
In many iterative applications tensor values change, but not
their structure and it is useful to be able to assemble the
indices in the outer loop and then merely compute thereafter.

The compute function emits a scalar expression to com-
pute the index expression in the base case of the loop nests.
The operands of the expression are read from the operand

A compiler for dense and sparse tensor algebra. 7 2017/2/17

merge-dense(index-expr, ik)

 let d be the size of the tensor dimension ik iterates over

 emit “for (int ik = 0; ik < d; ik++) {”

 for Ij in M(ik)

 emit “int Ij_ptr = (Ij-1_ptr * d) + ik;”

 end
 compute(index-expr, ik)

 codegen(ik+1)

 emit “}”
end

merge-sparse(index-expr, ik)

 let L be the merge lattice of merge rule M(ik)

 # emit code to initialize sparse ptr variables
 for Ij in M(ik) if Ij is sparse

 emit “int Ij_ptr = Ij.ptr[Ij-1_ptr];”

 end

 for Lp in lattice points of L

 let sparse-indices = [Ij in Lp if Ij is sparse]

 let dense-indices = [Ij in Lp if Ij is dense]

 # emit code to iterate while all the sparse indices have more values
 let c = “&&”.join([“Ij_ptr < Ij.ptr[Ij_ptr+1]” for Ij in sparse-indices])

 emit “while(c) {“

 # emit code to compute sparse index variables
 for Ij in sparse-indices

 emit “int ik_Ij = Ij.idx[Ij_ptr];”

 end

 # emit code to combine sparse index variables using min
 let index-variables = “, ”.join([“ik_Ij” for Ij in sparse-indices])

 emit “int ik = min(index-variables);”

 # emit code to compute dense ptr variables
 for Ij in dense-indices

 let d be the size of the tensor dimension ik iterates over

 emit “int Ij_ptr = (Ij-1_ptr * d) + ik;”

 end

 # emit code for each case of the merge lattice points dominated by Lp
 let ifcond = “ && ”.join([“ik_Ij == ik” for Ij in sparse-indices])

 emit “if (ifcond) {”
 compute(index-expr, ik)

 codegen(case-expr, ik+1)

 insert(Ij, ik)

 emit “Ik_ptr++;” where Ik is the result index corresponding to k

 emit “}”
 for Lq in lattice points strictly dominated by Lp in level order

 let elifcond = “ && ”.join([“ik_Ij == ik” for Ij in Lq if Ij is sparse])

 emit “else if (elifcond) {”
 let case-expr = sub-expression(expr, Lq)
 compute(case-expr, ik)

 codegen(case-expr, ik+1)

 insert(Ij, ik)

 emit “Ik_ptr++;” where Ik is the result index corresponding to k

 emit “}”
 end

 # conditionally increment the sparse ptr variables
 for Ij in sparse-indices

 emit “if (ik_Ij == ik) Ij_ptr++;”

 end
 emit “}”
 end
end

3

2

4

5

6

7

8

9

int B0_ptr = 0;
int C0_ptr = 0;
int A0_ptr = 0;
for (int i = 0; i < B.D0.ptr; i++) {
 int B1_ptr = (B0_ptr * B.D0.ptr) + i;
 int C1_ptr = (C0_ptr * C.D0.ptr) + i;
 int A1_ptr = (A0_ptr * A.D0.ptr) + i;

 int B2_ptr = B.D1.ptr[B1_ptr];
 int C2_ptr = C.D1.ptr[C1_ptr];
 while (B2_ptr < B.D1.ptr[B1_ptr+1] &&
 C2_ptr < C.D1.ptr[C1_ptr+1]) {
 int jB = B.D1.idx[B2_ptr];
 int jC = C.D1.idx[C2_ptr];
 int j = min(jB, jC);
 int A2_ptr = (A1_ptr * A.D1.ptr) + j;

 if (jB == j && jC == j)
 A.vals[A2_ptr] = B.vals[B2_ptr] + C.vals[C2_ptr];
 else if (jB == j)
 A.vals[A2_ptr] = B.vals[B2_ptr];
 else if (jC == j)
 A.vals[A2_ptr] = C.vals[C2_ptr];

 if (jB == j) B2_ptr++;
 if (jC == j) C2_ptr++;
 }

 while (B2_ptr < B.D1.ptr[B1_ptr+1]) {
 int jB = B.D1.idx[B2_ptr];
 int j = min(jB);
 int A2_ptr = (A1_ptr * A.D1.ptr) + j;

 if (jB == j)
 A.vals[A2_ptr] = B.vals[B2_ptr];

 if (jB == j) B2_ptr++;
 }

 while (C2_ptr < C.D1.ptr[C1_ptr+1]) {
 int jC = C.D1.idx[C2_ptr];
 int j = min(jC);
 int A2_ptr = (A1_ptr * A.D1.ptr) + j;

 if (jC == j)
 A.vals[A2_ptr] = C.vals[C2_ptr];

 if (jC == j) C2_ptr++;
 }
}

1

2

3

4

5

6

5
6

5

8

8

8

9

9

9

7

6
7

7

codegen(index-expr, iteration-schedule)
 # emit code that sets the 0th ptr variables
 for I in indices of iteration-schedule
 emit “int I0_ptr = 0;”

 end
 codegen(index-expr, i1)

end

codegen(index-expr, ik)

 if k <= n
 if M(ik) merges only dense tensor path steps

 merge-dense(index-expr, ik)

 else
 merge-sparse(index-expr, ik)

 end
 end
end

1

b) Top-level code generation functions c) Dense and sparse index variable merge code generation functions.

a) Sparse matrix add example (Aij = Bij + Cij),
where B, C are CSR matrices (Dense, Sparse) and
A is dense (Dense, Sparse). The algorithm in b)
and c) has been applied to generate code. Follow-
ing code generation, conditional constant and copy
propagation can be applied to simplify the code, re-
moving the conditional in the unary while loops.

Figure 7: Code generation algorithm for tensor index notation expressions given an iteration schedule (§ 4). The generated
code iterates over the combined sparse iteration space of the index expression, computes values and inserts them into the result
tensor. The example code (a) and algorithm (b and c) are tagged with matching numbers.

A compiler for dense and sparse tensor algebra. 8 2017/2/17

vals arrays at the location of their last ptr variable, and the
result is stored into the result vals array at the location of
it’s last ptr variable. For example,
A.vals[A2_ptr] = B.vals[B2_ptr] + C.vals[C2_ptr];

This is a simple solution. A more sophisticated scheme
would insert expressions into the highest loop level where
their last ptr variables are available.

The insert function takes care of building the index
structure for sparse levels in the result. Recall that the in-
dex structure for sparse levels consists of two arrays: ptr
that contains the beginning of each index segment, and idx
which contains the index values for all the segments. The
insert function sets the values of both. The idx array is
set to the index location at the current level (ik in the code
generation algorithm) and the current ptr array location is
incremented to reflect the additional value. For example,
A.d2.idx[A2_ptr++] = j;
A.d2.ptr[A1_ptr + 1] = A2_ptr;

However, there is a complication in outer loops. It can
happen that the sub-computation did not produce any values.
For example, in an elementwise matrix multiplication two
rows might both have values, but the intersection might
not. To prevent empty locations in the result index structure
(legal, but sub-optimal compression) we emit code to check
if the sub-computation produced non-zeroes. For example,
if (A.d2.ptr[A1_ptr+1] > A.d2.ptr[A1_ptr]) {
A.d1.idx[A1_ptr++] = i;
A.d1.ptr[A0_ptr + 1] = A1_ptr; }

The conditional tests whether the current and previous ptr
for the sub-loops are the same. If they are not, the sub-loops
produced values, so we insert a new location into the index.

Finally, it is necessary to allocate memory for the re-
sult tensor. This can be handled by emitting code to check
whether there is more space left in the idx and ptr and vals
arrays before they are written to. If there is no more space
left, then the emitted code allocates more memory. We rec-
ommend doubling the memory when running out and to emit
code to shrink it after the loop nest.

6. taco: The Tensor Algebra Compiler
We have implemented the technique in this paper in a C++
library called taco (short for Tensor Algebra Compiler).
Figure 8 demonstrates how to compute the tensor-vector
multiplication shown in § 2 using taco.

Tensor objects, which correspond to mathematical ten-
sors, are created by specifying the dimensions, the type of
its entries, and storage format. The storage format of a ten-
sor can in turn be declared by creating a Format object de-
scribing the storage kind of each tensor level and the order
in which levels are stored, following the formulation in § 3.
On lines 1–6 in our example for instance, A is defined to be
a 1024× 1024 DCSC matrix of doubles, B is defined to be a
1024× 1024× 2048 CSF tensor of doubles, and c is defined

1 Format dcsc({Sparse,Sparse}, {1,0});
2 Format csf({Sparse,Sparse,Sparse}, {1,0,2});
3 Format dv({Dense}, {0});
4 Tensor<double> A({1024,1024}, dcsc);
5 Tensor<double> B({1024,1024,2048}, csf);
6 Tensor<double> c({2048}, dv);
7
8 B.insert({0,0,0}, 1.0);
9 B.insert({1,2,0}, 2.0);
10 B.insert({1,2,1}, 3.0);
11 c.insert({0}, 4.0);
12 c.insert({1}, 5.0);
13 B.pack();
14 c.pack();
15
16 Var i, j, k(Var::Sum);
17 A(i,j) = B(i,j,k) * c(k);
18
19 A.compile();
20 A.assemble();
21 A.compute();

Figure 8: C++ tensor-vector multiplication using taco.

to be a dense vector of doubles of length 2048. Tensor that
only serve as inputs to computations can be initialized with
user-specified data as illustrated on lines 8–14.

Tensor algebra computations are expressed with tensor
index notation, as shown on lines 16–17. Note the resem-
blance between line 17 and the mathematical expression of
tensor-vector multiplication from the beginning of § 2. Var
objects in taco correspond to indices in tensor index nota-
tion, with summation reductions implied over variables de-
clared as type Sum (such as k in the example).

Once a tensor algebra computation is defined, invoking
compile on the target of the computation (A) prompts taco
to generate code that evaluates the computation. taco does
this by applying the algorithm described in § 5. Next, the
assemble method assembles the sparse index structure of
the output tensor and preallocates its memory. Finally, the
actual computation is performed by invoking the compute
method to execute the code generated by compile.

Alternatively, we can invoke assembleCompute to simul-
taneously assemble index structures and compute values,
which is the approach many libraries take. However, in many
applications the matrix or tensor values change, but not their
structure. Since allocating memory and assembling indices
is expensive, it is beneficial to be able to separate these tasks.

7. Results
To demonstrate the performance of taco on the linear alge-
bra subset of tensor algebra, we compare it to four widely
used existing sparse linear algebra libraries: Eigen [20],
pOSKI [46], uBLAS [47], and Gmm++ [34]. Eigen, uBLAS
and Gmm++ are all examples of C++ libraries that exploit
templates to specialize linear algebra operations for fast ex-
ecution wherever possible. Eigen in particular has proven
popular due to its high performance and relative ease of use,
and it is used in many large-scale projects such as Google’s
TensorFlow [3]. pOSKI is a C library that automatically

A compiler for dense and sparse tensor algebra. 9 2017/2/17

tunes sparse linear algebra kernels to take advantage of op-
timizations such as register blocking and vectorization.

A limitation of existing sparse linear and tensor algebra
libraries is that the developers must write code for every
combination of kernels and formats they wish to support.
For this reason, they typically choose a subset of formats
to support. However, real-world matrices and tensors benefit
from different formats and thus kernels. To demonstrate this,
in § 7.3 we show results for four classes of real-world matri-
ces that benefit from different formats. In § 7.4 we demon-
strate that some matrices benefit greatly from blocked stor-
age, which further motivates a general compiler approach.

Finally, we demonstrate the performance of taco on ten-
sor algebra by comparing to two existing sparse tensor alge-
bra libraries, namely SPLATT [38] and the MATLAB Ten-
sor Toolbox [8]. SPLATT is a high-performance C++ toolkit
designed with sparse tensor factorization in mind. The MAT-
LAB Tensor Toolbox is a more general library for MATLAB
that also implements a number of sparse tensor factorization
algorithms and also supports a variety of more primitive op-
erations on general (non-factorized) sparse tensors.

7.1 Methodology
All of our experiments were run on a cluster of two-socket
Intel Xeon E5-2695 v2 machines running at 2.4 GHz with
30 MB of L3 cache and 128 GB of main memory. The
machines run Ubuntu 14.04.5 and all tests were compiled
using GCC 5.4. Each run was made in exclusive mode, and
we use 100 timing measurements to obtain our final results.
Because taco currently does not support parallelism, all runs
are done without parallelism.

We got inputs for our experiments from several sources.
We obtained sparse matrices from real-world applications
from the SuiteSparse Matrix Collection [17]. Sparse ten-
sors were assembled from a data set of wall posts from the
Facebook New Orleans networks [45] and the Enron email
dataset [1]; the sparse tensor assembled from the Facebook
data set has dimensions 1591× 63891× 63890 and contains
737934 non-zero elements, while the sparse tensor assem-
bled from the Enron data set has dimensions 86321× 184×
184 and contains 125409 non-zero elements.

7.2 Sparse Matrix-Vector Multiplication
Sparse matrix-vector multiplication (SpMV) is one of the
most important operations in sparse linear algebra, given its
use in iterative methods for solving linear systems. We eval-
uated the performance of SpMV code generated by taco for
matrices stored in the (Dense,Sparse) and (Sparse,Sparse)
formats and compared it against that of SpMV kernels im-
plemented in existing sparse linear algebra libraries.

The results of this experiment, shown in Figure 9, clearly
demonstrate that the techniques described in § 5 that taco
implements is indeed capable of generating efficient SpMV
kernels that are at least competitive in terms of execution
time with all existing libraries we compared against. For

every input matrix, taco is able to generate a competitive
SpMV kernel for at least one supported sparse matrix for-
mat. Note that we compare against running pOSKI with-
out tuning here, which executes CSR SpMV; we compare
against tuned (blocked) pOSKI in § 7.4.

7.3 Choice of Matrix Format
Existing sparse linear algebra libraries tend to support a
limited set of sparse matrix formats. For instance, support for
sparse matrix storage in Eigen is restricted to the CSC and
CSR formats, while pOSKI supports only CSR and BCSR
matrices. However, many real-world applications deal with
matrices that have structures that make using variants of
CSR less than ideal.

Figure 10 shows representatives of four classes of real-
world matrices. For each matrix, we show results of matrix-

webbase
-1M

mc2depi
consph

can
t

pdb1HYS

shipsec
1

0

2

4

6

8

10

12

Ti
m

e
(m

s)

taco (DS) taco (SS) Eigen
pOSKI uBLAS Gmm++

Figure 9: SpMV performance on matrices from real-world
applications using taco and other existing libraries.

DD DS SD SS

5.82
6.93 6.97

7.69

Ti
m

e
(m

s)

(a) Dense matrix

DD DS SD SS

2,756.71

1.26

3,560.59

2.62

6

Ti
m

e
(m

s)

(b) Sparse matrix from FEM

DD DS SD SS

4,477.6

2.34 1.93
3.44

6

Ti
m

e
(m

s)

(c) Sparse matrix from slicing

DD DS SD SS

4,496.7

3.33
2.07

1.24

6

Ti
m

e
(m

s)

(d) Hypersparse matrix

Figure 10: Performance of SpMV on various matrices with
distinct sparsity patterns using taco. The left half of each
subfigure depicts the sparsity pattern of the matrix, while the
right half shows the average execution time of SpMV using
the formats listed on the axis to store the matrix.

A compiler for dense and sparse tensor algebra. 10 2017/2/17

vector multiplications with the matrix stored in each of four
formats. The results show that each matrix benefits from
a different format with the same properties as the matrix’s
sparsity pattern, which demonstrates the importance sup-
porting multiple formats. Figure 10(a) shows a dense matrix,
which benefits from (Dense,Dense) storage. Figure 10(b)
shows the kind of sparse matrix that is ubiquitous in mesh
code such as a finite element simulation or a geometry op-
timization problem, which tends to have a small bounded
number of entries on each row. As mentioned above, these
matrices perform well when stored using (Dense,Sparse)
storage (CSR). Figure 10(c) show a matrix where most rows
are empty, but where the non-empty rows are dense. These
matrices can result from slicing a dense matrix and benefit
from (Sparse,Dense) storage. Finally, Figure 10(d) shows a
hypersparse matrix, which frequently show up in graph com-
putations [16]. These matrices have many empty rows and
non-empty rows have few values, which makes it inefficient
to store either of the two dimensions using dense storage.

7.4 Block Matrices
Matrices that originate from physical domains often exhibit
structure that are mostly sparse but contain small dense
blocks of nonzeros. pOSKI takes advantage of such matri-
ces by implementing optimized code for the Blocked Com-
pressed Sparse Row (BCSR) format. In taco, the equivalent
to this is a 4-tensor, where the inner tensor dimensions are
stored as Dense.

webbase
-1M

mc2depi
consph

can
t

pdb1HYS

shipsec
1

shipsec
1-b

can
t-b

rm
a10-b

0

0.5

1

1.5

2

Sp
ee

du
p

taco(DS) taco(SS) taco(DSDD) pOSKI(tuned)

Figure 11: Performance of blocked SpMV on various matri-
ces using taco compared with (tuned) pOSKI.

Figure 11 compares taco performance with pOSKI for
the six matrices from § 7.2 and three synthetic matrices ob-
tained by filling in 3 × 3 blocks inside an existing matrix
(the rightmost -b matrices). We show speedup relative to
taco (Dense,Sparse) format. In addition to the taco for-
mats shown before, we show performance for tuned pOSKI
and taco’s BCSR-equivalent format. Tuned pOSKI uses
auto-tuning plus a cost model to determine the best block
size for the specific matrix; due to time constraints, we

only compare against a single block size (3×3) for taco.
For three of the matrices, one of the taco formats outper-
forms pOSKI; in two cases, the performance is nearly iden-
tical, and in four cases pOSKI has the highest performance.
pOSKI shows that auto-tuning over a large number of block
sizes is an effective way to speed up computation on some
matrices; such auto-tuning can also be built on top of taco.
Overall, these results show that even without auto-tuning, the
wide variety of formats taco supports can result in higher
overall performance, depending on matrix structure.

7.5 Tensor Algebra
We assessed the effectiveness of our technique for sparse
tensor algebra by comparing the performance of several ten-
sor algebra kernels generated by taco with the same kernels
implemented in the MATLAB Tensor Toolbox and SPLATT.
We focused our attention on the following set of kernels, all
of which are commonly used in real-world applications:

1. Aij =
∑

k Bijk ∗ ck
2. Aik =

∑
j Bijk ∗ cj

3. Aijl =
∑

k Bijk ∗ Clk

4. Ailk =
∑

j Bijk ∗ Clj

5. Ail =
∑

j,k Bijk ∗Cjl∗Dkl

6. Ajl =
∑

i,k Bijk ∗Cil ∗Dkl

The first two kernels correspond to mode-k and mode-
j tensor-vector multiplications (TTV-k and TTV-j) while
the third and fourth correspond to mode-k and mode-j
tensor-matrix multiplications (TTM-k and TTM-j). The last
two are called mode-i and mode-j matricized-tensor times
Khatri-Rao products (MTTKRP-i and MTTKRP-j), which
along with TTM form an essential part of many algorithms
for computing tensor decompositions like the Tucker decom-
position and the canonical polyadic decomposition [38].

We show the average time it takes to execute each of the
kernels on sparse tensor inputs assembled from the Facebook
and Enron datasets in Figure 12. (Note that taco uses the
(Sparse,Sparse,Sparse) format to store its sparse tensor
input for this experiment.) No results are shown for tensor-
vector multiplication and tensor-matrix multiplication for
SPLATT as those particular kernels are not implemented
in the library, which already suggests the usefulness of a
technique that can emit arbitrary kernels without requiring
a library developer to manually implement it.

TTV-k
TTV-j

TTM-k
TTM-j

MTTKRP-i

MTTKRP-j
1

10

100

1,000

10,000

E
xe

cu
tio

n
tim

e
(m

s)

taco
MATLAB
SPLATT

(a) Facebook dataset

TTV-k
TTV-j

TTM-k
TTM-j

MTTKRP-i

MTTKRP-j
1

10

100

1,000

10,000

E
xe

c.
tim

e
(×

10
−

1
m

s)

taco
MATLAB
SPLATT

(b) Enron dataset
Figure 12: Performance of sparse tensor algebra kernels gen-
erated with taco and implemented in other existing libraries.

A compiler for dense and sparse tensor algebra. 11 2017/2/17

In all of the cases we examined, we observe that the per-
formance of the taco-emitted kernel exceeded that of the
equivalent MATLAB Tensor Toolbox kernel by a notable
margin, usually an order of magnitude or more. We also ob-
served that the performance of taco-emitted MTTKRP ker-
nels was competitive with SPLATT’s hand-optimized ker-
nel in a sequential setting (even exceeding it for the En-
ron tensor when computing the mode-i MTTKRP). This
demonstrates that our technique is able to generate high-
performance sparse tensor algebra codes that can be used
in real-world applications.

8. Related Work
There are several lines of prior work on libraries, languages
and compilers for dense and sparse linear and tensor algebra.

Dense Linear and Tensor Algebra There has been a lot
of work on languages [13, 22, 28], libraries [2, 5, 20,
36, 43, 48], and compilers [31, 39] for dense linear alge-
bra and loop transformations that can optimize dense loop
nests [29, 49, 50]. The Tensor Contraction Engine [7] is a
framework for automated optimization of dense tensor con-
tractions developed for the quantum chemistry simulation
software NWChem. TensorFlow is a recent interface for ma-
chine learning algorithms that passes dense tensors between
kernels in a dataflow computation [3]. However, this work
does not directly carry over to sparse linear algebra compila-
tion due to complications introduced by indirect references.

Sparse Linear Algebra Libraries and Languages The
use of general sparse matrices goes back to Tinney and
Walker [41] and an early library for sparse matrix oper-
ations is described by McNamee [30]. Gustafson [21] later
expanded these operations to include matrix-matrix multipli-
cation. More recently MATLAB [28], Julia [13], Eigen [20]
and PETSc [11] have become popular for computing with
sparse matrices. MATLAB and Eigen are general systems
that support all basic linear algebra operations. However,
their sparse matrix formats are limited to coordinate, CSR
and CSC. PETSc targets distributed systems and scientific
computing. Another well known library is OSKI [46] (and
the parallel pOSKI), developed to explore auto-tuning of
select sparse kernels. However, the feature set is limited to
SpMV, Tridiagonal Solves, Matrix powers, and simultane-
ously multiplying a matrix and its transpose by vectors.

Sparse Linear Algebra Compilers Most related to our ap-
proach is previous work on compiling sparse linear algebra.
Several researchers have presented techniques to compile
dense linear algebra loops to sparse linear algebra loops. Bik
and Wijshoff [14, 15] developed a compiler framework that
compiled dense loops computing on dense arrays, where ze-
ros in the arrays make the computation a no-op, to sparse
loops over the non-zero values of those arrays. They used
a technique they call guard encapsulation to move non-zero
guards into sparse data structures.

The Bernoulli project [25–27, 40] reduced declarative
constraint expressions that enumerate sparse iteration spaces
to relational algebra queries, converting sparsity guards into
predicates on relational selection and join expressions. This
avoided having to find a sequence of loop transformations
that result in the right form for guard encapsulation. They
then build on techniques from the database literature to
optimize queries and insert efficient join implementations.
The Bernoulli approach to code generation is less general
than ours as they only support conjunctive loops with unary
merges. For example, SpMV and the linear combination of
rows version of SpMM [25, Introduction and Chapter 5].
They conjecture that their approach can be extended to dis-
junctive binary loops (e.g. matrix addition) by implementing
binary disjunctions as outer joins [40, Chapter 15.1], but
they did not explore this further [25, Chapter 11.2].

Venkat et al. present the transformations compact and
compact-and-pad which turn dense loops with a conditional
guard into into loops over a sparse matrix in one of several
formats [44]. However, they do not discuss loops with more
than one sparse matrix, which require merging indices and
gives rise to many different schedules.

SIPR [33] is an IR for sparse matrix operations that gen-
erates calls to a C++ library to implement sparse code from
dense code. SIPR can handle row swaps, but does not ad-
dress index merging in a general way, restricting what kinds
of element-wise operations are possible. Further, LL [6] is a
small language designed for functional verification of sparse
formats and can generate code for binary sparse operations
as well as verifying their correctness. However, LL does not
generate code for compound linear algebra.

More recently, Sparso demonstrated that context can be
exploited to optimize sparse linear algebra programs by re-
ordering matrices and taking advantage of matrix proper-
ties [35]. These optimizations are orthogonal to our tech-
nique and can reinforce each other.

In contrast, our approach generalizes beyond linear alge-
bra to sparse tensor expressions, while supporting compound
linear algebra expressions. In addition, we start with index
expressions instead of loops, freeing us from needing to de-
rive programmer intent from arbitrary code.

Sparse Tensor Algebra An early system for sparse tensor
computations is the MATLAB Tensor Toolbox [9].The ten-
sor toolbox provides several hand-coded kernels for com-
puting important tensor operations using coordinate format.
SPLATT is an optimized C library with support for shared
memory parallelism [38]. It supports fast MTTKRP opera-
tions and tensor contractions. Finally, TensorFlow recently
added some support for sparse tensor computations in the
form of hand-coded kernels [3]. However, this work appears
to still be in its infancy as the supported operations are lim-
ited. In contrast, our approach is to compile kernels as op-
posed to hand-coding them.

A compiler for dense and sparse tensor algebra. 12 2017/2/17

9. Conclusions and Future Work
We have presented the first technique to compile any com-
pound sparse linear and tensor algebra expression to efficient
loops that make one pass over the expression’s sparse itera-
tion space. This puts sparse linear and tensor algebra on a
firm compiler foundation to build on. Implemented in a li-
brary or behind a linear algebra language it lets the program-
ming system shape code around the data structures at hand,
so that data does not need to be converted. We believe code
should be malleable, so that data can be at rest.

We see four main directions for future work. First, we will
open source taco so that it can be used directly or incorpo-
rated into full fledged linear algebra languages such as Julia
and Simit. Second, we believe that our tensor storage tech-
nique can be extended to support other important formats
such as coordinate, ellpack and dia. Third, we plan on im-
plementing the ability to traverse sparse formats in reverse
directions, which can be useful if the data you have does
not match the ideal layout for the computation at hand. We
also believe our approach can be extended to support paral-
lel, distributed and accelerator architectures and for the first
time provide true portability for this class of problems.

References
[1] http://cis.jhu.edu/ parky/Enron/enron.html.

[2] Intel math kernel library reference man-
ual. Technical report, 630813-051US, 2012.
http://software.intel.com/sites/products/
documentation/hpc/mkl/mklman/mklman.pdf.

[3] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-
den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Ten-
sorFlow: Large-scale machine learning on heterogeneous sys-
tems, 2015. URL http://tensorflow.org/. Software avail-
able from tensorflow.org.

[4] A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and
M. Telgarsky. Tensor decompositions for learning
latent variable models. J. Mach. Learn. Res., 15
(1):2773–2832, Jan. 2014. ISSN 1532-4435. URL
http://dl.acm.org/citation.cfm?id=2627435.2697055.

[5] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen. LAPACK Users’ Guide.
Society for Industrial and Applied Mathematics, Philadelphia,
PA, third edition, 1999. ISBN 0-89871-447-8 (paperback).

[6] G. Arnold. Data-Parallel Language for Correct and Efficient
Sparse Matrix Codes. PhD thesis, University of California,
Berkeley, 2011.

[7] A. A. Auer, G. Baumgartner, D. E. Bernholdt, A. Bibireata,
V. Choppella, D. Cociorva, X. Gao, R. Harrison, S. Krish-

namoorthy, S. Krishnan, C.-C. Lam, Q. Lu, M. Nooijen,
R. Pitzer, J. Ramanujam, P. Sadayappan, and A. Sibiryakov.
Automatic code generation for many-body electronic struc-
ture methods: the tensor contraction engine. Molecular
Physics, 104(2):211–228, 2006.

[8] B. W. Bader and T. G. Kolda. Efficient MATLAB compu-
tations with sparse and factored tensors. SIAM Journal on
Scientific Computing, 30(1):205–231, December 2007. doi:
10.1137/060676489.

[9] B. W. Bader and T. G. Kolda. Efficient matlab computations
with sparse and factored tensors. SIAM Journal on Scientific
Computing, 30(1):205–231, 2007.

[10] B. W. Bader, M. W. Berry, and M. Browne. Discussion
Tracking in Enron Email Using PARAFAC, pages 147–163.
Springer London, London, 2008. ISBN 978-1-84800-046-9.

[11] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. Effi-
cient management of parallelism in object oriented numerical
software libraries. In E. Arge, A. M. Bruaset, and H. P. Lang-
tangen, editors, Modern Software Tools in Scientific Comput-
ing, pages 163–202. Birkhäuser Press, 1997.

[12] J. Bennett and S. Lanning. The netflix prize. In KDD Cup and
Workshop 2007, August 2007.

[13] J. Bezanson, S. Karpinski, V. B. Shah, and A. Edel-
man. Julia: A fast dynamic language for technical com-
puting. CoRR, abs/1209.5145, September 2012. URL
http://arxiv.org/abs/1209.5145.

[14] A. J. Bik and H. A. Wijshoff. Compilation techniques for
sparse matrix computations. In Proceedings of the 7th interna-
tional conference on Supercomputing, pages 416–424. ACM,
1993.

[15] A. J. Bik and H. A. Wijshoff. On automatic data structure
selection and code generation for sparse computations. In
Languages and Compilers for Parallel Computing, pages 57–
75. Springer, 1994.

[16] A. Buluc and J. R. Gilbert. On the representation and multipli-
cation of hypersparse matrices. In IEEE International Sympo-
sium on Parallel and Distributed Processing, (IPDPS)., pages
1–11, April 2008. doi: 10.1109/IPDPS.2008.4536313.

[17] T. A. Davis and Y. Hu. The university of florida sparse matrix
collection. ACM Trans. Math. Softw., 38(1):1:1–1:25, Dec.
2011. ISSN 0098-3500. doi: 10.1145/2049662.2049663.
URL http://doi.acm.org/10.1145/2049662.2049663.

[18] T. Delmarcelle and L. Hesselink. The topology of
symmetric, second-order tensor fields. In Proceedings
of the Conference on Visualization ’94, VIS ’94, pages
140–147, Los Alamitos, CA, USA, 1994. IEEE Com-
puter Society Press. ISBN 0-7803-2521-4. URL
http://dl.acm.org/citation.cfm?id=951087.951115.

[19] R. Feynman, R. B. Leighton, and M. L. Sands. The Feynman
Lectures on Physics. Addison-Wesley, 1963. 3 volumes.

[20] G. Guennebaud, B. Jacob, et al. Eigen v3.
http://eigen.tuxfamily.org, 2010.

[21] F. G. Gustavson. Two fast algorithms for sparse matrices:
Multiplication and permuted transposition. ACM Trans. Math.
Softw., 4(3):250–269, Sept. 1978. ISSN 0098-3500.

A compiler for dense and sparse tensor algebra. 13 2017/2/17

[22] K. E. Iverson. A Programming Language. Wiley, 1962.

[23] F. Kjolstad, S. Kamil, J. Ragan-Kelley, D. I. Levin, S. Sueda,
D. Chen, E. Vouga, D. M. Kaufman, G. Kanwar, W. Matusik,
and S. Amarasinghe. Simit: A language for physical simula-
tion. ACM Transactions on Graphics, 2015. To appear.

[24] J. C. Kolecki. An Introduction to Tensors for Students of
Physics and Engineering. Unixenguaedu, 7(September):29,
2002. ISSN 18733514. doi: 10.1049/sqj.1936.0070.

[25] V. Kotlyar. Relational Algebraic Techniques for the Synthesis
of Sparse Matrix Programs. PhD thesis, Cornell University,
1999.

[26] V. Kotlyar, K. Pingali, and P. Stodghill. A relational approach
to the compilation of sparse matrix programs. In Euro-Par’97
Parallel Processing, pages 318–327. Springer, 1997.

[27] V. Kotlyar, K. Pingali, and P. Stodghill. Compiling parallel
sparse code for user-defined data structures. Technical report,
Cornell University, 1997.

[28] MATLAB. version 8.3.0 (R2014a). The MathWorks Inc.,
Natick, Massachusetts, 2014.

[29] K. S. McKinley, S. Carr, and C.-W. Tseng. Improving data
locality with loop transformations. ACM Transactions on
Programming Languages and Systems (TOPLAS), 18(4):424–
453, 1996.

[30] J. M. McNamee. Algorithm 408: a sparse matrix package (part
i)[f4]. Communications of the ACM, 14(4):265–273, 1971.

[31] T. Nelson, G. Belter, J. G. Siek, E. Jessup, and B. Norris. Re-
liable generation of high-performance matrix algebra. ACM
Trans. Math. Softw., 41(3):18:1–18:27, June 2015.

[32] C. NVIDIA. Cusparse library. NVIDIA Corporation, Santa
Clara, California, 2014.

[33] W. Pugh and T. Shpeisman. Sipr: A new framework for gen-
erating efficient code for sparse matrix computations. In Lan-
guages and Compilers for Parallel Computing, pages 213–
229. Springer, 1999.

[34] Y. Renard. Gmm++. URL
http://download.gna.org/getfem/
html/homepage/gmm/first-step.html.

[35] H. Rong, J. Park, L. Xiang, T. A. Anderson, and M. Smelyan-
skiy. Sparso: Context-driven optimizations of sparse linear
algebra. In Proceedings of the 2016 International Confer-
ence on Parallel Architectures and Compilation, PACT ’16,
pages 247–259, New York, NY, USA, 2016. ACM. ISBN
978-1-4503-4121-9. doi: 10.1145/2967938.2967943. URL
http://doi.acm.org/10.1145/2967938.2967943.

[36] C. Sanderson. Armadillo: An Open Source C++ Linear Alge-
bra Library for Fast Prototyping and Computationally Inten-
sive Experiments. Technical report, NICTA, Sept. 2010.

[37] S. Smith and G. Karypis. Tensor-matrix products with a com-
pressed sparse tensor. In Proceedings of the 5th Workshop on
Irregular Applications: Architectures and Algorithms, page 5.
ACM, 2015.

[38] S. Smith, N. Ravindran, N. Sidiropoulos, and G. Karypis.
Splatt: Efficient and parallel sparse tensor-matrix multiplica-
tion. In 2015 IEEE International Parallel and Distributed

Processing Symposium (IPDPS), pages 61–70, May 2015.
doi: 10.1109/IPDPS.2015.27.

[39] D. G. Spampinato and M. Püschel. A basic linear algebra
compiler. In Proceedings of Annual IEEE/ACM International
Symposium on Code Generation and Optimization, page 23.
ACM, 2014.

[40] P. Stodghill. A Relational Approach to the Automatic Gener-
ation of Sequential Sparse Matrix Codes. PhD thesis, Cornell
University, 1997.

[41] W. F. Tinney and J. W. Walker. Direct solutions of sparse net-
work equations by optimally ordered triangular factorization.
Proceedings of the IEEE, 55(11):1801–1809, 1967.

[42] M. Valiev, E. Bylaska, N. Govind, K. Kowalski, T. Straatsma,
H. V. Dam, D. Wang, J. Nieplocha, E. Apra, T. Windus, and
W. de Jong. Nwchem: A comprehensive and scalable open-
source solution for large scale molecular simulations. Com-
puter Physics Communications, 181(9):1477 – 1489, 2010.
ISSN 0010-4655.

[43] S. Van Der Walt, S. C. Colbert, and G. Varoquaux. The
numpy array: a structure for efficient numerical computation.
Computing in Science & Engineering, 13(2):22–30, 2011.

[44] A. Venkat, M. Hall, and M. Strout. Loop and data transforma-
tions for sparse matrix code. In Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2015, pages 521–532, 2015.

[45] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi. On
the evolution of user interaction in facebook. In Proceedings
of the 2nd ACM SIGCOMM Workshop on Social Networks
(WOSN’09), August 2009.

[46] R. Vuduc, J. W. Demmel, and K. A. Yelick. OSKI:
A library of automatically tuned sparse matrix kernels.
Journal of Physics: Conference Series, 16(1):521+, 2005.
ISSN 1742-6596. doi: 10.1088/1742-6596/16/1/071. URL
http://dx.doi.org/10.1088/1742-6596/16/1/071.

[47] J. Walter and M. Koch. uBLAS. URL
http://www.boost.org/libs/numeric/ublas/doc/index.htm.

[48] R. C. Whaley and J. Dongarra. Automatically tuned linear al-
gebra software. In SuperComputing 1998: High Performance
Networking and Computing, 1998.

[49] M. E. Wolf and M. S. Lam. A data locality optimiz-
ing algorithm. SIGPLAN Not., 26(6):30–44, May 1991.
ISSN 0362-1340. doi: 10.1145/113446.113449. URL
http://doi.acm.org/10.1145/113446.113449.

[50] M. J. Wolfe. Optimizing Supercompilers for Supercomput-
ers. PhD thesis, University of Illinois at Urbana-Champaign,
Champaign, IL, USA, 1982. AAI8303027.

A compiler for dense and sparse tensor algebra. 14 2017/2/17

