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Abstract

We study the statistical learning problems for a class of probabilistic models called
mixture models. Mixture models are usually used to model settings where the ob-
served data consists of different sub-populations, yet we only have access to a limited
number of samples of the pooled data. It includes many widely used models such as
Gaussian mixtures models, Hidden Markov Models, and topic models. We focus on
parametric learning: given unlabeled data generated according to a mixture model,
infer about the parameters of the underlying model. The hierarchical structure of
the probabilistic model leads to non-convexity of the likelihood function in the model
parameters, thus imposing great challenges in finding statistically efficient and com-
putationally efficient solutions.

We start with a simple, yet general setup of mixture model in the first part.
We study the problem of estimating a low rank M x M matrix which represents a
discrete distribution over M? outcomes, given access to sample drawn according to the
distribution. We propose a learning algorithm that accurately recovers the underlying
matrix using ©(M) number of samples, which immediately lead to improved learning
algorithms for various mixture models including topic models and HMMs. We show
that the linear sample complexity is actually optimal in the min-max sense.

There are “hard” mixture models for which there exist worst case lower bounds of
sample complexity that scale exponentially in the model dimensions. In the second
part, we study Gaussian mixture models and HMMs. We propose new learning
algorithms with polynomial runtime. We leverage techniques in probabilistic analysis
to prove that worst case instances are actually rare, and our algorithm can efficiently
handle all the non-worst case instances. In the third part, we study the problem
of super-resolution. Despite the lower bound for any deterministic algorithm, we
propose a new randomized algorithm which complexity scales only quadratically in
all dimensions, and show that it can handle any instance with high probability over
the randomization.

Thesis Supervisor: Munther A. Dahleh
Title: Professor of Electrical Engineering at MIT



Acknowledgments

First of all, I would like to express my sincere gratitude to my advisor Munther Dahlch
for his guidance and support during my five years at MIT. Munther taught me to think
out of the box and always keep the big picture in mind. I am grateful to Sham Kakade
for his great guidance and patience when I first stepped in the field of algorithmic
statistics. I also thank Pablo Parrilo for being on my thesis committee and giving
helpful comments on this work. I sincerely thank my collaborators: Rong Ge, Na Li,
Gregory Valiant, Ye Yuan, Tong Zhang, who arc great teachers and friends, being
most valuable sources of inspiration and encouragement on my way to becoming a.
better rescarcher. I also thank Guy Bresler, Ankur Moitra, Praneeth Netrapalli, Yury
Polyanskiy, Devavrat Shah, John Tsitsiklis, with whom I had numerous insightful and
fun discussions on research problems.

I thank my friends in Laboratory of Information and Decision System — Elie Adam,
Giancarlo Baldan, Diego Cifuente, Hamza Fawzi, Kimon Drakopoulos, Christina Lee,
Shreya Saxena, Jennifer Tang, Omer Tanovic — for making it such a great place to
work. Special thanks to Shreya and Elie for being amazing coffee-mates. I thank my
piano teachers Tal and Lucia, without whom I would probably have written more
papers but much less fun during my Ph.D study.

I thank Mu Li, who shares my laughter and tears, joy and pain throughout the
journey. Most importantly, I thank my parents, whose love have always been my

stronghold of support and encouragement.

This work was supported in part by AOR with UPenn under Grant No. 6927221,

and part of the work was done during internship at Microsoft Research New England.



Contents

1 Introduction

1.1 Background . . .. .. ... ... ...
1.2 Contributions . . . . . .. ...
1.2.1 Part 1: Achieving optimal sample complexity . . ... .. ..
1.2.2 Part 2: Randomized Analysis to Escape Worst Cases . . . . .
1.2.3 Part 3: Randomized Algorithm to Escape Worst Cases . . . .
1.3 Preliminaries . . . . . .. .. ...
1.3.1 Notations . . . .. .. ... ...
1.3.2 Temsor Algebra . . . . . . ... ... ... .. ... ......
1.3.3 Probabilisticanalysis . . . .. .. .. ... ... ... ... ..

Recovering structured matrices

2.1 Problem Statement . . . . .. ... L0 o
2.1.1 Formulation . . . . . ... . ..o L
2.1.2 Related Work . . . .. .. .. ...

22 MainResults . ... ... ... ... .. o oL
2.2.1 Recovering Low Rank Probability Matrices . . . . . . . .. ..
2.2.2 Topic Models and Hidden Markov Models . . .. ... .. ..
2.2.3 Testingvs. Learning . . . . ... ... ... ... .......

2.3  Outline of our estimation algorithm ...................
23.1 Rank2algorithm . . ... ... ... ..............
232 Rank Ralgorithm. . . . .. ... .. ..............

2.4 Details of Rank 2 Algorithm

11
11
15
16
18
20
21
21
22
26



242 Estimatesegmentsof A . .. ... ... ... ... ... ... 57
2.4.3 Stitch the segments of A . . . . .. ... ............ 61
244 Refinement ... .. .. e e e e e 62

2.5 Details of Rank R Algorithm . . . . . . . oo 65
251 Binning . ......... R 65
2.5.2 Spectral concentration in diagonal blocks . . . . . ... . .. .67
2.5.3 Low rank projection . .. .. ... ... ... ... ..., 68
254 Refinement ... .. .. e e 69

2.6 Sample complexity lower bounds . . ... ... ... ......... 70
2.7 Proofsfor Chapter 2 . . ... ... ... . ... ... ........ 74
| 2.7.1 Proofs for Rank 2 Algorithm, Phase I U S 74
2.7.2 Proofs for Rank 2 Algorithm Phase IT. . . . . . . .. .. ... 88
2.7.3 Proofs for Rank R Algorithm . .. ... ... ... IR 94
2.74 Proofs for HMM testing lower bound . . . . . ... ... ... 106
2.7.5 Analyze truncated SVD . . . ... ... ..., 113
276 Auxiliary Lemmas . ... ... .. ... .. .......... 116

3 Learning Gaussian Mixtures in High Dimensions 119
3.1 Problem Statement . . . . . ... ... ... ... 0L, 119
3.1.1 Formulation . . . ... ... ... ... ... .. L ... 119

312 Related Work . . ... .. ... .. ... ... ... 119

32 Mainresults . . . . . ... Lo 122
3.3 Outlineofouralgorithm . . . ... ... .. ... ... .......... 128
3.3.1 Learning Mixture of Zero-Mean Gaussians . . . . ... .. .. 128
3.3.2 Implementing the Steps for Zero-Mean Algorithm . . . . . .. 129
3.3.3 Learning Mixture of General Gaussians . . . . . ... ... .. 137

3.4 Proofs for Chapter 3 e 139
3.4.1 Step 1 of Zero-Mean Case: Span Finding . . . . . ... .. .. 139
3.4.2 Step 2 of Zero-Mean Case. Moments Unfolding . . .. .. .. 160

241 Binning . .. .. ... .. - 4

6



3.4.3 Step 3 of Zero-Mean Case: Tensor Decomposition . . . . . . . 172

3.4.4 Proof of Theorem 3.5 . . . . . o o oo i 176
3.4.5 Proofs for the General Case . . . . .. ... ... ... .... 179
3.4.6 Proofs for Moment Structures . . . . . ... ... L. 191
34.7 Auxiliary Lemmas . . .. .. ... ... ... ... ... 196

4 Realization Problems of Hidden Markov Models 207
4.1 Problem Statement . . . . . . ... ..o L Lo 207
4.2 Mainresults . . . . . ..o oL L. 211
4.2.1 Minimal Quasi-HMM Realization . . ... ... ... ... .. 212
4.2.2 Minimal HMM Realization Problem . . . . . . . . .. .. . .. 218

4.3 Proofs for Chapter4 . . . . . . . .. ... ... ... 222
431 Proofs . ... ....... .. ... ... e 222
4.3.2 Otherproofs. . . . . . . . .. .. ... 226

5 Super-resolution 233
5.1 Problem Statement . . . . . . . ... ... Lo 233
5.1.1 Formulation . . .. . ... ... oo 233
51.2 Related Work . .. . .. ... ... .. L o 235

52 Main Results . . . . . ... ... 238
5.21 Warm-up . . . . . . ..o e 238
5.2.2 Our Algorithm . . . . . ... ... ... ..., e 242
5.2.3 Performance Guarantees . . . . . . .. ... ... ... ... 244
524 KeylLemmas . ... ... ... ... ... 0 0. 245

5.3 Discussions . . . . . ... .ol e e e e e e e 247
53.1 Numerical results . . . . . . .. .. ... oL 247

5.3.2 Connection with learning GMMs . . . . .. ... ... .. .. 250
5.3.3 Openproblems .. ............ P 252

54 Proofs for Chapter 5 . . . . . . . . . . . ... . 253






List of Figures

2-1
2-2
2-3

31
3-2
3-3
34
35

5-1
5-2
o-3

The key algorithmic ideas of our algorithm.. . . . . ... .. .. ... 45
block decomposition of the diagonal block of Bg, 2z corresponding to fk. 60
block decomposition of the diagonal block of Bys corresponding to fk. 80

decomposition of E corresponding to fk, Ek and 7,?\,,g ........... 101
Flow of the algorithm for learning mixture of zero-mecan Gaussians. . 137
Flow of the algorithm for learning mixtures of general Gaussians. . . 137
Structure of thematrix Bg . . . . . . . . . . .. ... ... . ..... 141
Step 1(c): Merging two subspaces. . . . . . . .. .. ... ... ... 153
Flow of the algorithm for the general case . . . .. . .. e 190
Reduction of HMM to noisy parity . . . . ... .. ... ... .. .. 216
Simulation result for 2-D super-resolution . . . . . . .. ... ... .. 248
Cutoff frequency versus the required minimal separation . . . . . . . 249
Number of measurements versus the required minimal separation . . 250



10



Chapter 1

Introduction

1.1 Background

The era of “big data” brings us an abundance of data, and also presents a great variety
of possibilities of statistical modeling, learning, and using the data, for applications
in image and video signal processing, and natural language processing. In practice,
we observe incomplete, noisy, uncertain data samples, which reveal information about
the underlying rules according to which the data is generated. In the presence of large
amount of data and complicated models, the goal is to design a statistically efficient
and computationally efficient learning procedure to infer about the underlying rule
according to which the noisy data is generated. Namely, we want to extract as much
as possible information from available data with fast computation.

In particular, let M denote the degree-of-freedom of the underlying model, and
let € _denote the target accuracy in estimating the model parameters. We evaluate the
“efficiency” of a learning algorithm by its sample complexity, namely how the required
sample size scales with M and e, and its computational complexity, namely how the
algorithm runtime scales with M. Moreovér, in the regime where the data is scarce,
or the model size is large, i.e. M is large or even scales up with the data sample
size, a low sample complexity for learning is crucial. We would like to understand the
information theoretical lower bound of sample complexity, below which it is impossible

for any algorithm to learn, and whether we can have a fast algorithm that achieves
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the optimal sample complexity.

Mixturé model In this work, we focus on mixture models. Mixture models refer
to a class of statistical models which includes Gaussian mixtures, Hidden Markov
models and Stochastic block models that are commonly used in practice and well-
studied in the literature. In abstract, we assume that there are N data samples X =
(X1, ..., Xn) generated according to some underlying probabilistic model Pr(X;0)
specified by its model parameters §. Mixture models impose additional structural
properties on Pr(X;0) such that it can be parameterized with much lower degree of
freedom. In particular, we assume that there exists a latent factor H, and the value it
takes for each sample p.oint, i.e. (Hy,...Hy) is not observed. When conditional the
value H takes, we can characterize the distribution of the data point with relatively
simple probabilistic rules. Namely, the conditional distribution Pr(X;6|H) is some
simple probabilistic model. We are interested in learning about Pr(X;#) without
observe the latent variable H. .

Compared to deep neural networks, which usually have multiple layers of latent
variables, mixture models are “shallow” with only one latent layer. However, this
single latent variable is already powerful in modeling different problems. Usually
with the latent variable a mixture model can provide a concise description of the
observed data and thus enhance the data interpretability. Modeling and using mixture
models has enjoyéd a great success in various machine learning applications. For
éxample, Gaussian mixture models are used for clustering and factor analysis to
identify different populations in social science, topic models are used for unsﬁpervised
document classification, and in natural language processing, Hidden Markov models

are used to model language where the latent variables are the speech tags.

Approaches for learning mixture models The structures of mixture models
also impose challenges that makes parametric learning fundamentally different and
more difficult than that of simple statistical models. On one hand, with the la-

tent variables, mixture models are parameterized with lower degree of freedom and

12



thus have lower model class complexity. However, it not straightforward how to
exploit such structured lower complexity to improve algorithmic efficiency in learn-
ing. On the other hand, the unobserved variable (Hy,..., Hy) makes the likeli-
hood function Pr(X,,.. .kX ~; 8) a non-convex function in the parameters we are in-
terested to learn. In this case, directly solving for the maximum likelihood estimator
6= arg maxg Pr(Xy, ... Xn;0) is computationally intractable.

There. are different approaches for learning mixture models. Next, we briefly
describe the two main approaches: 1. approximating the non-convex optimization
for maximum likelihood estimator; 2. obtaining a consistent estimator by matching

higher order moments with spectral methods.

Approximate MLE For parametric learning, the maximum likelihood estimation
(MLE) and its variations are known to achieve statistical efficiency, and even survive
(asymptotically) model misspeciﬁcatioﬁ [125]. However, in its original form, the like-
lihood function Pr(Xj, ... Xy;#0) is a non-convex function in the parameters 8. With
limited computation, one can only approximately solve the non-convex optimization.

The non-convex program can be “convexified” by techniques such as relaxing or
restricting the support, change of variable, or modifying the non-convex objective
functions. For special cases where strong assumptions are imposed, it is possible
to rigorously bound the gap between the solution to the convex relaxation and the
optimal solution, or even to show that the relaxation is exact. Examples include
using nuclear norm minimization for low rank matrix sensing/ completion under RIP
conditions [32, 99], using sum of square and positive semi-definite relaxations for
dictionary learning [19], and using SDP relaxation for max-cut problem [6]. However
in general, there is usually no theoretical guarantee on the quality of such convex
relaxations. The other potential drawback is that the convexified problems may
still be computationally challenging, for example consider a large size SDP from a
sum-of-square approximation as an example, and this might significantly limit the
applicability of such algorithms at large scale in practice. '

There are also various heuristics which aim to directly tackle the non-convex op-
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-timizations. For example, ExpectationaMaximizatfon (EM) algorithm [86] alternates
between the two steps of posteriori probabilities estimation and model paranieter
estimation while fixing the other until convergence. Similar heuristics include al-
ternating minimization for matrix / tensor factorization [70] and low rank matrix
completion/recovery [69], and brown clustering algorithm for feature extraction in
language processing [79]. However, except for a few special cases [67] [126] with very
strict assumptions on the model parameters, there is still a lack of rigorous study of

the performance guarantee for such heuristics.

Spectral algorithms for moment matching Another way to estimate the model
parameters is through moment matching. One starts with a set of equations that
relate the exact higher order moments (namely the expected values of power of the
random variables, or joint probabilities of subsets of discrete random variables) to the
model parameters of interest. Then the sample data is used to estimate the higher
order moments, and the equations are solved to give estimation of the parameters. For
mixture models with simple conditional distribution Pr(X;6|H), moment matching
usually specifies a system of polynomial equations linking the moments to the model
parameters.

Spectral methods gain the name as it usually involve certain forms of spectral
factorization of linear objects consisting of the estimated moments. It tries to exploit
the structure properties of the polynomial equations to solve the equation system
algebraically. Unlike the non-convex optimization for MLE, those linear algebra op-
erations of the spectral methods based algorithms can usually be efficiently computed
for moderate-sized problems. We refer to [98] for a general introduction of spectral
methods for statistical learning and various applications.

There are two limitations of spectral methods. First, it relies on the fact that the
moments are estimated sufficiently accuréteﬁy ahd tﬁat the spectral factorizations are
numerically stable to recover the parameters from the polynomial equations. The
computational efficiently usually comes at the cost of a much higher sample complex-

ity than that of MLE, namely lower tolerance of statistical noise. Second, the existing

14



spectral methods can only handle mixture models with very simple structures, such
as spherical Gaussian mixtures, stochastic block model for community detection, and
low rank matrix completion under RIP conditions. It is not clear whether there ex-
ist efficient spectral methods for learning many more general and more complicated

mixture models.

Our approach In this work, we mostly adopt the approach of spectral algorithms
for learning different mixture models. Our efforts are in two directions: 1. we want
to improve the sample complexity of spectral methods to meet the information the-
oretical lower bound. 2. we want to have efficient spectral algorithms for learning
the more general cases of mixture models and the cases which are not immediately

modeled as a mixture models.

1.2 Contributions

The main question we are interested in is stated as follows:

“Can we have statistical and computational efficient parametric learning algorithms

for learning mixture models?”

We address the above question from different perspectives in the three parts of this
thesis.

In the first part, we start with a basic setting of mixture model. Despite the non-
convex nature of the likelihood function, we show that it is still possible to exploit
‘the structural properties of the underlying mixture model to efficiently estimate the
model parameters. In particular, we propose a new spectral algorithm and show
that it can achieve the minmax optimal sample complexity with fast and guaranteed
computation, without directly solving for the maximum likelihood estimator.

Unfortunately, there are many well-studied “hard” mixture models, for which
there exist sample complexity lower bounds that scale exponentially in model dimen-
sions. Instances of model parameters have been constructed, for which it is impossible

to obtain an accurate estimator with a polynomial number of samples and / or with
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polynomial computation time. However, such worst case lower bounds usually do
not give a full characterization of the set of the hard case, neither do they preclude
algorithms that can efficiently learn the many non-worst-cases instances in the model
class.

In the second part, we study Gaussian mixture models and Hidden Markov models
and propose new deterministic parametric learning algorithms. We leverage recent
development in probabilistic analysis to show that there are actually not too many
hard instances in the model class, and our algorithms can handle all the rest of the
instances with full polynomial sample complexity with polynomial runtime.

In the third part, we study the problem of super-resolution, where we explore the
randomness in the learning algorithm (compared to the randomness in the analysis as
in the second part) as a way to circumvent the worst case lower bounds. In particular,
we show that the proposed randomized algorithm runs fast, and moreover, for every
instance in the model class, the algorithm is efficient and outputs an accurate estimate,
with high probability over the fandomness of the algorithm.

Mixture models is a rich class and it includes many probabilistic models with
distinguished structural properties. Unfortunately, we do not find a general recipe
which can efficiently learn every mixture model. In order to achieve the desired
learning goals, our case studies show that it is crucial to exploit the problem specific
structures to obtain efficient learning algorithms.

In the rest of this chapter, we briefly introduce the formulations of the three
parts of the thesis and state our main results for each problem. We provide the
review of related literatures and detailed discussions in the later chapters, and for the

convenience of reading, all the proofs are deferred to the end of each chapter.

1.2.1 Part 1: Achieving optimal sample complexity

In Chapter 2, we start with a basic yet general mixture model. We consider the prob-
lem of accurately recovering a matrix B of size M x M, which represents a probability
distribution over M? outcomes, given access to “counts” generated by taking inde-

pendent samples according to the distribution B. How can structural properties of the
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underlying matrix B be leveraged to yield computationally efficient and information
theoretically optimal reconstruction algorithms? When can accurate reconstruction
be accomplished in the rcg‘imc where the number of counts is relatively small com-
pared to M7 This basic problem lies at the core of a number of questions that are
currently being considered by different communities, including community detection
in sparse random graphs, learning structured models such as topic models or hidden
Markov models, and the cfforts from the natural language processing community to
compute “word embeddings”. Many aspects of this problem— in terms of both pa-
rameter estimation and property testing —remain open, on both the algorithmic and
information theoretic sides.

Our results apply to the sctting where B has a particular low rank structure
parameterized as B = PW PT, where the columns of the tall matrix P € RY™*F are
all supported on the standard (M — 1)-simplex, and the mixing matrix W € RfXR
is a PSD matrix and ), ;W;; = 1. For this sctting, we propose an efficient (and
practically viable) algorithm that accurately recovers the underlying M x M matrix
using O(M) samples. Note that it is relatively easy to have algorithms whose sample
Complcxity scales as ©(M log M ). However, it requires extra efforts to push it all the
way to the linear sample complexity that matches the information theoretical lower
bound. Morcover, this extremely sparse data regime is meaningful for a lot of realistic

applications.

Theorem 1.1. Suppose we have access to N i.i.d. samples generated according to
the a probability matriz B. Fiz the target accuracy e = Q(1), for any r > 0, with
N = O(MR2e;**") samples, our algorithm runs in time O(M?) and returns a rank
R estimator B such that with a large probability over the random sampling procedure,

|B - Bl < .

If we further assume that the model parameters satisfy certain eigen-gap assump-
tions, we can sharpen the sample complexity to N = ©(max(M R%¢, (+7) M Re~?2)),
for arbitrary target accuracy e. This result easily translates to ©(M) sample algo-

rithms for learning topic modcls over dictionaries of size M, and learning hidden
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Markov Models with observation distributions supported over M elements.

These linear sample complexities are optimal, up to constant factors, in an ex-
tremely strong sense: even testing basic properties of the underlying matrix, such as
whether it has rank 1 or 2, requires (M) samples. We provide an even stronger lower
bound where distinguishing whether a sequence of observations were drawn from the
uniform distribution over M observations versus being generated by an HMM with
two hidden states requires (M) observations. This precludes sublinear-sample hy-
pothesis tests for basic properties as well as precludes sublinear sample estimators for

quantities such as the HMM entropy rate.

1.2.2 Part 2: Randomized Analysis to Escape Worst Cases

There are mixture models for which parametric learning is usually deemed “hard”
due to the existing lower bound results, which essentially precludes any upperbound
algorithms that can efficiently learn every instance in the model class. In Chapter
3 and Chapter 4, we examine two such classes of “hard” mixture models separately:
Gaussian mixture models (GMMs) and Hidden Markov models (HMMs). We make
use of recent development in probabilistic analysis to show that the bad instances are
actually rare, and we can have efficient learning algorithms for all the good instances.

Efficiently learning mixture of Gaussians is a fundamental problem in statistics and
learning theory. Given samples coming from a random one out of & Gaussian distri-
butions in n-dimensional space, the learning problem asks to estimate the means and
the covariance matrices of these Gaussians. This problem arises in many areas rang-
ing from the natural sciences to the social sciences, and has also found many machine
learning applications. Unfortunately, learning mixture of Gaussians is an information
theoretically hard problem: in the worst case, in order to learn the parameters up
to a reasonable accuracy, the number of samples required scales exponentially in the
number of Gaussian components.

We propose a deterministic algorithm for learning Gaussian mixture models in its
most general form. The central algorithmic ideas consist of new ways to decompose

the moment tensor of the Gaussian mixture model by cxploiting its structural prop-
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erties. The symmetries of this tensor are derived from the combinatorial structurc
of higher order moments of Gaussian distributions (sometimes referred to as Isserlis’
theorem or Wick’s theorem). We show thaﬁ, provided we are in high cnough dimen-
sion n for n > Q(k?), the class of Gaussian mixtures is learnable with polynomial
running time and using polynomial number of samples, under a smoothed analysis
framework. The key of this analysis framework is that we study how the proposed al-
gorithm performs on an instance with randomly perturbed parameters starting from
any point. This serves to bridge the gap between worst case analysis which analyze the
performance on a worst case instance chosen adversarially, and average case analysis

which analyze the performance on a predefined distribution of instances.

Theorem 1.2. In the smoothed analysis setting, when n > Q(k?), given samples from
the perturbed n-dimensional Gaussian mirture model with k components, there is an
algorithm that learns the correct parameters up to accuracy € with high probability,

using polynomial time and polynomial number of samples.

In Chapter 4, we shift attention to stationary Hidden Markov models, which can
be viewed as special a case of a mixture model. We study the minimal realization
problems of HMMs. In particular, given access to length N segments of observable
outputs supported over a size d alphabet, which arc generated by a Hidden Markov
model of order &, we can compute the joint probabilities of scgments of the observ-
ables. The main questions we attempt to dress is that, given such joint probabilitics
of segments, how to construct a model of minimal order that can generate the same

output process, and how large is the required window size N.

Despite the known worst case construction where N is lower bounded by Q(k)
and the worst case computational complexity scales exponentially in &, we use generic
analysis and show that all the hard cases lie in a measure zero set in the parameter
space. Moreover, for all the non-degencrate instances, the required window size is only
in the order of O(log,(k)). In other words, the minimal IMM realization problem

actually can be solved with polynomial complexity for almost all cascs.
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1.2.3 Part 3: Randomized Algorithm to Escape Worst Cases

In Chapter 5, we study the problem of sui)er-resolution and explore the randomness
in the learning algorithm to circumvent the worst case lower bounds.
Super-resolution is the problem of recovering a superposition of point sources us-
ing bandlimited measurements, which may be corrupted with noise. To view it in
the Fourier domain, the learning task is to disentangle a mixture of noisy complex
sinusoids. This signal processing problem arises in numerous imaging problems, rang-
ing from astronomy to biology to spectroscopy, where it is common to take coarse
Fourier measurements of an object. Of particular interest is in obtaining estimation
procedures which are robust to noise, with the following desirable statistical and com-
putational properties: we seek to use coarse Fourier measurements (bounded by some
cutoff frequency); we hope to take a small number of measurements; we desire our

algorithm to run quickly.

Suppose we have k point sources in d dimensions, where the points are separated
by at least A from each other. We provide a randomized algorithm that uses Fourier
measurements at random frequencies, as opposed to taking an exponential number
of measurements on the hyper-grid in the previous algorithms. We show that the
required bandwidth of frequencies is bounded by 5(1 /A), while previous algorithms
require a cutoff frequency- as large as Q(v/d/A). Moreover, the number of measure-
ments taken by and the computational complexity of our algorithm are bounded by a
polynomial in both the number of points k and the dimension d, with no dependence
on the separation A. In contrast, previous algorithms depended inverse polynomi-
ally on the minimal separation and exponentially on the dimension for both of these

quantities.

Theorem 1.3. For a fixed probability of error, the proposed algorithm achieves stable
recovery with a number of measurements and with computational runtime that are
both on the order of O((k + d)?). Furthermore, the algorithm makes measurements

which are bounded in frequency by 5(1 /) (ignoring log factors).
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1.3 Preliminaries

1.3.1 Notations

We utilize the standard O(-), ©(-), Q(-) notation to hide constants, and 5(), o(-), Q()
to hide constants and logarithmic factors. We use R, C, and Z to denote real, complex,
and natural numbers. For d € Z, we use [d] to denote the set [d] = {1,...,d}. Fora
set S, |S] to denote its cardinality. We use @ to denote the direct sum of sets, namely

81@82={((l+b) ZaGSl,bESQ}.

Vectors and Matrices In the vector space R", let (-, -) denote the inner product
of two vectors, and || - || to denote the Euclidean norm. Let e; to denote the i-th
standard basis vector in R", for ¢ € [n].

Let I,, be the identity matrix of dimension n X n. For a tall matrix A € R™*", let
A, j) denote its j-th column vector, let AT denote its transpose, AT = (ATA)"1AT de-
note the pseudoinverse. Let ox(A) denote its k-th singular value. Define the condition
number of a matrix X € R™*" to be conds(X) = 0rmae(X)/Omin(X), where 0,00(X)
and 6,,i,(X) arc the maximal and minimal singular values of X. The spectral norm
of a matrix is denoted as ||A[|, and the Frobenius norm is denoted as ||A||p. We use
A > 0 for positive semidefinitc matrix A.

When converting between vectors and matrices, let vec(A) € R™ denote the
vector obtained by stacking all the columns of A. For a vector z € R™ let mat(z) €

R™*™ denote the inverse mapping such that vec(mat(z)) = x.

Linear subspaces We represent a lincar subspace & € R" of dimension d by a
matrix S € R™*¢, whose columns of S form an (arbitrary) orthonormal basis of the
subspace. The projection matrix onto the subspace S is denoted by Projg = SST,
and the projection onto the orthogonal subspace St is denoted by Projg. = I, —SST.
When we talk about the lincar span of several matrices, we mean the spacc spanned

by their vectorization.
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Matrix Products We use ® to denote tensor product, ® to denote column wise
Katri-Rao product, and ®j, to denote Kronecker product. As an example, for ma-

trices A € R™4** B € R™s8*" (' € R™c*™:

A®B®C e R™* ™5™ [AQ BQCljyjpjs = D, AjiBniClhsiy
=1

ApB oo AB
A®y BER™™  Agu B=| 1 .. |,
AmA,lB e A'm,A,’n.B

A®BeR™™,  [A© Bl.5 = Ak ®kr Bj)-

nxn

Symmetric matrices We use RGX" to denote the space of all n x n symmetric

matrices, which linear subspace has dimension (";“1) Since we will frequently use nxn

n+1)

and k x k symmetric matrices, we denote their dimensions by the constants n, = ( 5

and ke = (’”2'1). Similarly, we use R7.*" to denote the symmetric k-dimensional
multi-arrays (tensors), which subspace has dimension ("*}™'). If a k-th order tensor

= X

X € Ry2->", then for any permutation 7 over [k], we have X,,, Por(1)yees (k) *

sym k

1.3.2 Tensor Algebra

Our learning algorithms are mostly based on spectral methods for moment matching,
which involve spectral factorization of matrices and tensors in different steps. Next,
we introduce some basics of tensor algebra. A more detailed introduction to tensor

algebra can be found in [70] and the references therein.

Definitions A tensor is a multi-dimensional array. Tensor notations are useful for
handling higher order moments. Consider vectors a,b,c € R", define T = a ®b®
c € R*™™ ™ to be the rank one tensor such that T, ;,:; = a;,bi,c,. For a vector
z € R", let the t-fold tensor product z®' denote the t-th order rank one tensor
(®Yi1vig,. e = H;'=1 z;;. We write the tensor product of matrices as AQ B C =
>t Ak ® By @ Cpa.
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Every tensor also defines a multilinear mapping. Consider a 3-rd order tensor
X g€ Rraxmexne For given dimension my4, mg, me, it defines a multi-linear mapping
X(-y-,-) o Rraxma x RUBXms x Rrexme —y RMaXmXme defined as below: (Vi €

[mal, j2 € Img], js € [mc])

[X (W, Va, Vli)].‘il,jmjs = Z Xy iniis {Vl]jhil [‘/2]]'2,1'2 [VJ]Ja?s (1.1)
i1€[nali2€ngl,is€lnc]
If X admits a decomposition X = 2?:1 ALyl @ By ® Cpy for A € R"4*k B €
R sxk (¢ R"** the multi-linear mapping has the form
k
X(Vi,Va, Va) = ) (VT Apg) © (V' Bp) ® (V' G-
. =1
In particular, the vector given by X(e;, e;, I) is the one-dimensional slice of the 3-way
array, with the index for the first dimension to be i and the second dimension to be
7. Note that X can have different forms of decompositions, yet the mappings defined

in (1.1) are all equivalent.

Definition 1.1 (Khatri-Rao product). For matrices A € R*4** B € R"B*F  the
(column) Khatri-Rao product X = A ® B € R*A"8>*k s defined as follows:

X(jr-V)np+izi = Aj1iBjs i,

and each column of X is a rank-1 Khatri-Rao product.

An equivalent representation of a 3rd order tensor X € R"4*"BX"C jg its ma-
tricization, obtained by rearranging the elements of the tensor into a matrix. For
cxample, the matricization along the third modec gives a matrix 7(3) is specified
as: [Y(S)]j3, ((1-Vnp+jz) = Xjijajs- Morcover, if the tensor admits a decomposition
X = A® B®UC, we can write the matricization as Khatri-Rao product of the factors:

X¥ =40 B)T.
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Uniqueness of tensor rank decomposition Tensor algebra has many similarities
to but also many striking differences from matrix algebra. For example, tensor rank
decomposition is a natural extension of matrix rank decomposition to higher order
tensors. However, under very mild conditions, rank decomposition of a tensor is
unique up to column scaling and permutation, which is the key property we will
exploit to consistently estimate the model parameters for various mixture models.
This is in sharp contrast to the matrix minimal rank factorization, where if A = BC
is a minimal rank k factorization, we can write A = (BW)(W~1C) for any full rank

matrix W of size k x k.

Definition 1.2 (Tensor rank decomposition). The rank decomposition of a 3rd or-
der tensor X € R"AX"BXNC 45 g sum of rank-1 tensors for the smallest number of

summands k:
k
X=A®BQC(C= ZA[;,,;] ® Bl.q ® Cla)s
i=1

where matrices A € R**k B ¢ R"8*k (' ¢ R"¢*k The minimal number of sum-

mands k is defined to be the rank of the tensor.

In the following, we state a set of suflicient conditions on the factors A, B, C that

guarantee the uniqueness of a third order tensor decomposition X = AQ B® C.

Definition 1.3 (Kruskal rank). The Kruskal rank of a matriz A € R™*™ equals r if
any set of r columns of A are linearly independent, and there exists a set of (r + 1)

columns that are linearly dependent (if r <m).

Lemma 1.1 (Uniqueness of tensor decomposition ([72, 105))). The tensor factoriza-

tion X = A® B ® C is unique up to column permutation and scaling, if
krank(A) + krank(B) + krank(C) > 2k + 2. (1.2)

Tensor decomposition algorithms Unlike matrix singular value decomposition

(SVD), in general, even if the tensor rank decomposition X = A ® B ® C is unique,
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finding the factors A, B, C' given the rank £ tensor X is a hard problem. Nevertheless,
for cases where the factors satisty certain rank conditions, there exist cfficient and
provable algorithms to find the unique factorization. First, if both the matrix A and
B have full column rank, Algorithms 1 ([77]) can uniquely recover the factors up
to common column permutation, with running time polynomial in the dimension of
the tensor. Other algorithms such as tensor power, method and recursive projection,
which are possibly more stable in practice, also apply in this setting. Second, FOOBI
([42] [63]) is another tensor decomposition algorithm that has polynomial runtime,
and it applies to a subset of instances cven when A and B are not of full column
rank k. Instead, for this algorithm to work, it requires that the factor C' and the
Khatri-Rao product A ® B have full column rank k. For completeness, we list two

standard tensor decomposition algorithms below.

Algorithm 1: Simultaneous diagonalization for 3rd order tensor decomposition
[77]

Input: A 3rd order tensor M € R4"*xd"xd

Output: k, A, B € Rk O ¢ RIxk

1. Randomly pick two unit norm vectors vy, va € R%. Project M along the 3rd
dimension to obtain two matrices:

M, = M(I,I,vy), My=M(I,I,v).
2. Compute the cigen-decomposition of matrix (ﬁl Mz— 1) and (ﬁgfﬁfl), and let

the columns of matrix A and B be the eigenvectors of (ﬁlﬁ{ 1) and (MQHI- b,
respectively.

Scale the columns of A and B to be stochastic, and pair the eigenvectors in A
and B corresponding to the reciprocal eigenvalues, namely:

MiM;' = AANA™', M,M;'=BA'B™',
3. Let k be the number of non-zero cigenvalues.
4. Lot M € R¥"xd be the 3rd dimension matricization of M. Set C to be:
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Algorithm 2: FOOBI for 3rd order tensor decomposition
Input: Three way tensor M.

Output: Rank k and factors A, B, C.

1. Let Hm be the 3rd dimension matricization of M. Compute its SVD
M = vy DyU},.
2. Set k to be the number of non-zero singular values. Let F' = VHD}{”, and
1/2
E =UyDy".

3. Construct matrices {E(" € R¥4 : r ¢ [k]}:
[E(r)]i,j = Ei_1)dtjr Vi, J € [d], Vr € [k].
Construct the 4-th order tensors {Plrs) ¢ Réxdxdxd . 4 o ¢ [k]}:

[PT);, iainsia
= [EDN 41 [ED)s g + [ED)i i [EDNiy g
- [E(T)]il,jz [E(S)]'i2sjl - [E(s)]ilvjz [E(T)]

12,J1°

4. Compute a basis {H® : i € [k]} of the k-dimensional kernel of
{P™) : r s € [k]}:

k
S HOPCED =0, st HY = HY

s,

Vr, s € [k].

rs=1

5. Find the unique W € R¥** that simultancously diagonalizes the basis:
H® = WAOWT,

6. Let C = F(W1)T and A® B = EW. Compute the rank one
decomposition of each column of A ® B, with proper normalization such
that A and B are column stochastic.

1.3.3 Probabilistic analysis

In the rest of this chapter, we review some standard results of matrix perturbation
and concentration inequalities, and prove some corollaries. These will come in handy

for our algorithm analysis in later chapters.
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Matrix perturbation bounds Many spectral algorithms involve matrix decom-
position in different forms, thus characterizing the sample complexity of the learning
algorithm boils down to analyzing the stability of the matrix decompositions. Given
a matrix A and we know that A = A+ E where E is a perturbation matrix of small
magnitude, how docs the singular valucs and singular vectors of A relate to that of A?
This is a well-studied matrix perturbation problem and many results can be found in

Stewart and Sun [108].

Theorem 1.4 (Weyl’s theorem). Given A=A+E , we know that
ox(A) = | E|) < ox(A) < ow(4) + || E].

We can also bound the ¢ norm change in singular values.by Mirsky’s Theorem.

Lemma 1.2 (Mirsky’s thcorem). Given matrices A, E € R™*™ with m > n, then

(0

Y (ai(A+ E) = 0i(A)? < ||Ellr.

i=1

For singular vectors, the perturbation is bounded by Wedin’s Theorem:

Lemma 1.3 (Wedin's theorem; Theorem 4.1, p.260 in [109]). Given matrices A, E €

R™*™ awith m > n. Let A have the singular value decomposition

¥ 0
A=[U,U,Us} | 0 % | W,V
0 0

Let A=A+ E, with analogous singular value decomposition. Let ® be the matriz of
canonical angles between the column span of Uy and that of 171, and © be the matriz
of canonical angles between the column span of Vi and that of ‘71 Suppose that there
exists a 6 such that min, ; [[£4];; — [2a];;] > 6, and min,; |[54]::] > 6, then

£

EE

|| sin ®||* + || sin©|> < 2
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We do not go into the detailed definitions of canonical angles here. The only way

we will be using this lemma is by combining it with the following lemma:

Lemma 1.4 (Theorem 4.5, p.92 in {109]). Let ® be the matriz of canonical angles
between the column span of U and that of U , then

| Projg — Projy|| = || sin @||.
As a corollary, we have:

Lemma 1.5. Given matrices A, E € R™ " with m > n. Suppose that A has rank
k and the smallest singular value is given by ox(A). Let S and S be the subspaces
spanned by the first k eigenvectors of A and A=A+ E, respectively. Then if
IEl < 0x(A)/V?2, we have:

V2| E|

S — S|| < || Projs — Projc|l = || Projz, — Proje.|| < )
I | < ||Projg — Projs|| = || Projs. — Projs.|| < o (A)

Proof. We first prove the first inequality:

|Projz — Projsll = [[25(S - S)T + (5 - S)(§ — 8)7||
> 2|ISIIIS - S| - IS - s
> |IS|IIS — Sl = |5 - S|

The equality is because Projgi = I — Projg so the two differences are the same.

The final step follows from Wedin’s Theorem and Lemma 1.4. O

We often need to bound the perturbation of a product of perturbed matrices,

where we apply the following lemma:

Lemma 1.6. Consider a product of matrices A, - - - Ay, and consider any sub-multiplicative

norm on matriz || - ||. Given Ay, ..., Ay and assume that |A; — Al < |4l then we
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have:

TS 1A - Al
A1 Ay — Ay Al < 2 T A4S IzIA~iI1 :
i=1 i=1 *
The proof of this lemma is straightforward by induction.

Next theorem bounds the perturbation on the pseudo-inverse of a matrix, provided

that the smallest singular value of the matrix is lower bounded.

Theorem 1.5 (Theorem 3.4 in [108]). Consider the perturbation of a matriz A €
R™ ": B = A+ E. Assume that rank(A) = rank(B) = n, then

IBY — AT < V2| AT BY |1 £].

As a corollary, we often use:

Lemma 1.7. Consider the perturbation of a matriz A € R™*": B = A+ E where
IE| < omin(A)/2. Assume that rank(A) = rank(B) = n, then

IB" — All| < 2V2||E||/0min(A)>

Proof. We first apply Theorem 1.5, and then bound || Af|| and || BY||. By definition we
know ||Af|| = 1/0min(A). By Weyl's theorem 0,0 (B) = 0min(A) = || E|| = 0min(A)/2,
hence || BY|| = 0min(B) ™! < 205 (A) 71 |

Concentration inequalities In our probabilistic analysis, we usually need to char-
acterize the behavior of a random variable that depend on a large number of indepen-
dent random variables, in particular, how much it deviates from its expected value
as the number of independent random variables increases. Next we review some

concentration inequalities that bound such deviation.

Lemma 1.8 (Hocffding’s incquality). Let Xy,..., X, be independent random vari-

ables. Assume that X;’s are bounded almost surely, namely Pr[X; € [a;,bi]] = 1.
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Define the empirical mean of these variables X = (X1 + --- + X,,)/n. We have

Pr{[X — EX]| 2 ] < eapl— i)
rf| X - erp— ).
=N L i = a)?
Lemma 1.9 (Multiplicative Chernoff bound). Suppose Xi,--- , X, are independent
random variables with Bernoulli distribution, and P(X; = 1) = u. Then for any

0> 1:
s e\ dnp
P (; X > 6n,u) < (5) .

Lemma 1.10 (Matrix Bernstein). Consider a sequence of N random matriz { Xy}
of dimension M x M which are independent, self-adjoint. Assume that E[Xi] = 0
and Amax(Xx) < R almost surely. Denote the total variance by o? = | Eszl E[XZ]-
Then the following inequality holds for all t > 0:

t2
Me 5%, fort < o%/R;

N i
Pr{ | ZXA:” >t | < Me Z+Rs < .
Me=%, fort> 0*/R.

k=1

Lemma 1.11 (High dimensional sphere projection (Johnson Lindenstrauss lemma)).
Let the random vector u € R? be uniformly distributed on the surface of the d-
dimensional unit sphere,i.e. uniform distribution in the set: {Z?:l u? = 1}. Denote

its projection onto the first dimension to be |uy|. We have:

P(lui] > t) < e T,

Theorem 1.6 (Gershgorin’s theorem). Given a symmetric matriz X € R¥*  q lower

bound on the smallest eigenvalue is given by:

Um.in(X) > ?Elflz]l Xii — z IXiJI o
' JElR), i
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Chapter 2

Recovering structured matrices

2.1 Problem Statement

Consider an unknown M x M probability matrix B, satisfying B; ; > 0 and ZL j B;; =
1. Suppose one is given N independently drawn (i, j)-pairs, sampled according to the
distribution defined by B. How many draws arc necessary to accurately recover B?
What can one infer about the underlying matrix based on these samples? How can
one accurately test whether the underlying matrix possesses certain properties of in-
terest? How do structural assumptions on B — for example, the assumption that
B has low rank — affect the information theoretic or computational complexity of
these questions? For the majority of these tasks, we currently lack both a basic un-
derstanding of the computational and information theoretic lay of the land, as well as
algorithms that seem capable of achieving the information theoretic or computational
limits.

This general question of making accurate inferences about a matrix of probabil-
ities, given a matrix of observed “counts” of discrete outcomes, lics at the core of a
number of problems that disparate communities have been tackling independently.
On the theoretical side, these problems include both work on community detection in
stochastic block models (where the goal is to infer the community memberships from
an adjacency matrix of a graph that has been drawn according to an underlying ma-

trix of probabilities expressing the community structure) as well as the line of work on
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recovering topic models, hidden Markov models (HMMs), and richer structured prob-
abilistic models (where the model parameters can often be recovered using observed
count data). On the practical side, these problems include work on computing low-
rank approximations to sparsely sampled data, which arise in collaborative filtering
and recommendation systems, as well as the recent work from the natural language
processing community on understanding matrices of word co-occurrence counts for
the purpose of constructing good “word embeddings”. Additionally, work on latent
semantic analysis and non-negative matrix factorization can also be recast in this

setting.

In this part, we start this line of inquiry by focusing on the estimation problem
where the probability matrix B possesses a particular low rank structure. While this
estimation problem is rather specific, it gencralizes the basic community detection
problem and also encompasses the underlying problem behind learning HMMs and
topic models. Furthermore, this low rank case also provides a means to study how
property testing and estimation problems are different in this structured setting, as
opposed to the simpler rank 1 setting that is equivalent to the standard setting of

independent draws from a distribution supported on M elements.

We focus on the estimation of a low rank probability matrix B in the sparse dé’ca
regime, near the information theoretic limit. In many practical scenarios involving
sample counts, we seek algorithms capable of extracting the underlying structure in
the sparsely sampled regime. To give two motivating examples, consider forming
the matrix of word co-occurrences—the matrix whose rows and columns are indexed
by the sct of words, and whose (¢, j)-th element consists of the number of times
the i-th word follows the j-th word in a large corpus of text. In the context of
recommendation system, one could consider a low rank matrix model, where the
rows are indexed by customers, and the columns are indexed by products, with the
(i, 7)-th entry corresponding to the number of times the i-th customer has purchased
the j-th product. In both settings, the structure of the probability matrix underlying
these observed counts contains insights into the two domains, and in both domains

we only have relatively sparsc data. This is inherent in many other natural sccnarios
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involving heavy-tailed distributions where, regardless of how much data one collects,
a significant fraction of items (e.g. words, products purchased, genetic mutations,
etc.) will only be observed a few times.

Such estimation questions have been actively studied in the community detection
literature, where the objective is to accurately recover the communities in the regime
where the average degree (e.g. the row sums of the adjacency matrix) are constant.
In contrast, the recent line of works for recovering highly structured models (such
as topic models, HMMs, etc.) are only applicable to the over-sampled regime where
the amount of data is well beyond the information theoretic limits. In these cases,
achicving the information theoretic limits remains a widely open question. This
work begins to bridge the divide between these recent algorithmic advances in both
communities. We hope that the low rank probability matrix setting that studied here
serves as a jumping-off point for the more general questions of developing information
theoretically optimal algorithms for estimating structured matrices and tensors in
general, or recovering low-rank approximations to arbitrary probability matrices, in
the sparse data regime. While the general settings are more challenging, we believe

that some of our algorithmic techniques can be fruitfully extended. -

In addition to developing algorithmic tools which we hope are applicable to a
wider class of problems, a second motivation for considering this particular low rank
case is that, with respect to distribution learning and property testing, the entire
lay-of-the-land seems to change completely when the probability matrix B has rank
larger than 1. In the rank 1 setting — where a sample consists of 2 independent draws
from a distribution supported on {1, ..., M} — the distribution can be learned using
O(M) draws. Nevertheless, many properties of interest can be tested or estimated
using a sample size that is sublinear in M!. However, even just in the case where the
probability matrix is of rank 2, although the underlying matrix B can be represented

with O(M) parameters (and, as we show, it can also be accurately and efficiently re-

! Distinguishing whether a distribution is uniform versus far from uniform can be accomplished
using only O(v/M) draws, testing whether two sets of samples were drawn from similar distributions
can be done with O(M?/3) draws, estimating the entropy of the distribution to within an additive
€ can be done with O(;T‘f—éﬁ) draws, etc.
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covered with O(M) sample counts), sublinear sample property testing and estimation
is generally impossible. This result begs a more general question: what conditions
must be true of a structured statistical setting in order for property testing to be easier

than learning?

2.1.1 Formulation

Assume our vocabulary is the index set M = {1,..., M} of M words and that there
is an underlying low rank probability matrix B, of size M x M, with the following

structure:
B = PWP', where matrix P = [p(l), e ,p(R)] . (2.1)

Here the matrix P is of dimension M x R, and the columns are supported on fhe stan-
dard (M — 1)-simplex. Also, W € R¥*® is the mizing matriz, which is a probability
matrix satisfying -, ; Wi ; = 1.

In the case where R = 2, we denote w, = Wy1 + Wi and w, = Wy + Wy s. Note
that )", B; x = w,p + weq. Define the covariance matriz of any probability matrix P

as:

[Cov(P)ij := P — O_ Pu)O_ Pry)-
k k

Note that Cov(P)1 = 0 and 1" Cov(P) = 0 (where T and 0 are the all ones and zeros
vectors, respectively). This implies that, without loss of generality, the covariance of
the mixing matrix, Cov(W), can be expressed as: Cov(W) = [wg, —wy]' [wg, —wg].
for some real numbers wy, wg € [—1,1]. For ease of exposition, we restrict to the
symmetric case where w;, = wg = w, though our results hold more generally.
Suppose we obtain N, i.i.d. sample counts from B of the form {(é1, j1) (i2, J2), - - - (in,Jn)},

where each sample (i, j,) € M x M. The probability of obtaining a count (z, ) in
a sample is B, ;. Mm;eover, assume that the number of samples follows a Poisson dis-
tribution: N ~ Poi(N). The Poisson assumption on the number of samples is made

only for the convenience of analysis: so that the counts of observing (i,7) follows
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a Poisson distribution Poi(NB; ;) and is independent from the counts of observing
(¢',4") for (¢, j") # (¢,7). As M is asymptotically large, with high probability, NV and
N arec within a subconstant factor of each other and both upper and lower bounds
translate between the Poissonized setting, and the setting of fixed N. Throughout,

our sample complexity results are stated in terms of V.

Notation We usc the following standard shorthand notations throughout this chap-
ter. We denote [n] 2 {1,...,n}. Let T denote a subset of indices in M. For a
M-dimensional vector z, we use vector 2z to denote the elements of x restricting to
the indices in Z; for two index sets Z, J, and a M x M dimensional matrix X, we use
Xzx 7 denote the submatrix of X with rows restricting to indices in Z and columns
restricting to indices in J.

We use Poi()\) to denote a Poisson distribution with rate \; we use Ber(\) to
denote a Bernoulli random variable with success probability \; and we use Mul(z; A)
to denote a multinomial distribution over M outcomes with A number of trials and
cvent probability vector = € Rf such that >, z; = 1.

All of our order notations are with respect to the vocabulary size M, which is
asymptotically large. Also, we say that a statement is true “with high probability” if
the failure probability of the statement is inverse poly in M; and we say a statement
is true “with large probability” if the failure probability is of some small constant 9,

which can be casily boosted via repetition.

2.1.2 Related Work

As mentioned earlier, the general problem of reconstructing an underlying matrix of
probabilities given access to a count matrix drawn according to the corresponding
distribution, lieé at the core of questions that are being actively pursued by several
different communities. We briefly describe these questions, and their relation to the
present work.

Community Detection. With the increasing prevalence of large scale social net-

works, there has been a flurry of activity from the algorithms and probability com-
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munities to both model structured random graphs, and understand how (and when it
is possible) to examine a graph and infer the underlying structures that might have
given rise to the observed graph. One of the most well studied community models is
the stochastic block model [56]. In its most basic form, this model is parameterized by
a number of individuals, M, and two probabilities, «, 5. The model posits that the
M individuals are divided into two equal-sized “communities”, and such a partition
defines the following random graph model: for each pair of individuals in the same |
community, the edge between them is present with probability a (independently of
all other edges); for a pair of individuals in different communities, the edge between
them is present with probability 8 < «. Phrased in the notation of our setting, the
adjacency matrix of the graph is generated by including each potential edge (i, )
independently, with probability B; ;, with B, ; = o or 8 according to whether ¢ and j
are in the same community. Note that B has rank 2 and is expressible in the form of
Equation 2.1 as B = PW PT where P = [p, q] for vectors p = 21, and g = 21> where
I, is the indicator vector for membership in the first community, and I, is defined
analogously, and W is the 2 x 2 matrix with ozi%i on the diagonal and BMTz on the

off-diagonal.

What values of a, 3, and M enable the community affiliations of all individuals to
be accurately recovered with high probability? What values of a, 8, and M allow for
the graph to be distinguished from an Erdos-Renyi random graph (that has no com-
munity structure)? The crucial regime is where a, 8 = O(-Al—i), and hence each person
has a constant, or logarithmic expected degree. The naive spectral approaches will fail
in this regime, as there will likely be at least one node with degree = log M/ loglog M,
which will ruin the top eigenvector. Nevertheless, in a sequence of works sparked by
the paper of Friedman, and Szemeredi [47], the following punchline has emerged: the
naive spectral approach will work, even in the constant expected degree setting, pro-
vided one first either removes, or at least diminishes the weight of these high-degree
problem vertices (c.g. [44, 68, 87, 73, 75]). In the past year, for both the ezact re-
covery problem and the detection problem, the exact tradeoffs between «, 8, and M

were established, down to subconstant factors [88, 1, 81]. More recently, there has
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been further rescarch investigating more complex stochastic block models, consisting

of three or more components, components of unequal sizes, etc. (see e.g. [36, 2]).

Word Embeddings. On the more applied side, some of the most impactful advances
in natural language processing over the past two years has been work on “word
cmbeddings” [83, 78, 111, 15]. The main idca is to map every word w to a vector
v, € R? (typically d ~ 500) in such a way that the geometry of the vectors captures
the semantics of the word.2 One of the main constructions for such embeddings is
to form the M x M matrix whose rows/columns are indexed by words, with (7, j)-th
entry corresponding to the total number of times the i-th and j-th word occur next to
(or near) each other in a large corpus of text (c.g. wikipedia). The word embedding
is then computed as the rows of the singular vectors corresponding to the top rank
d approximation to this empirical count matrix.®> These embeddings have proved
to be extremely cffective, particularly when used as a way to map text to features
that can then be trained in downstream applications. Despite their successes, current
embeddings scem to suffer from sampling noise in the count matrix (where many
transformations of the count data arc cmployed, c.g. see [110])—this is especially
noticeable in the relatively poor quality of the embeddings for relatively rare words.
The recent theoretical work [16] sheds some light on why current approaches arc
so successful, yet the following question largely remains: Is there a more accurate

way to recover the best rank-d approximation of the underlying matrix than simply

computing the best rank-d approximation for the (noisy) matrix of empirical counts?

Efficient Algorithms for Latent Variable Models. There is a growing body
of work from the algorithmic side (as opposed to information theoretic) on how to
recover the structure underlying various structured statistical settings. This body of
work includes work on learning HMMs (58, 90, 34], recovering low-rank structure [14,

13, 24], and learning or clustering various structured distributions such as Gaussian

2The goal of word embeddings is not just to cluster similar words, but to have semantic notions
encoded in the geometry of the points: the example usually given is that the direction representing
the difference between the vectors corresponding to “king” and “queen” should be similar to the
difference between the vectors corresponding to “man” and “woman”, or “uncle” and “aunt”, etc.

3 A mumber of pre-processing steps have been considered, including taking the element-wise square
roots of the entries, or logarithms of the entries, prior to computing the SVD. /

37



mixture models [37, 121, 85, 23, 57, 64, 48] and latent dirichlet allocation (a very
popular topic model) [10]. A number of these methods essentially can be phrased
as solving an inverse moments problem, and the work in [7] provides a unifying
viewpoint for computationally efficient estimatiﬁn for many of these models under a
tensor decomposition perspective. In general, this body of work has focussed on the
computational issues and has considered these questions in the regime in which the

amount of data is plentiful—well above the information theoretic limits.

Sublinear Sample Testing and Estimation. In contrast to the work described in
the previous section on efforts to devise computationally efficient algorithms for tack-
ling complex structural settings in the “over—sampled” regime, there is also significant
work establishing information theoretically optimal algorithms and (matching) lower
bounds for estimation and distributional hypothesis testing in the most basic setting
of independent samples drawn from (unstructured) distributions. This work includes
algorithms for estimating basic statistical properties such as entropy [93, 52, 116, 118],
support size [97, 116], distance between distributions [116, 118, 117], and various hy-
pothesis tests, such as whether two distributions are very similar, versus significantly
different [50, 20, 92, 119, 27], etc. While many of thesc results are optimal in a worst-
case (“minimax”) sense, there has also been recent progress on instance optimal (or
“competitive”) estimation and testing, e.g. [3, 4, 119], with stronger information
theoretic optimality guarantees. There has also been a long line of work beginning
with [28, 21] on these tasks in “simply structured” settings, e.g. where the domain
of the distribution has a total ordering or where the distribution is monotonic or

unimodal.

2.2 Main Results

2.2.1 Recovering Low Rank Probability Matrices

For rank R = 2, it is possible to recover the dictionary P = [p, q] uniquely up to

column permutation. Assume that W is symmetric, where w;, = wg = w (all our
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results extend to the asymmetric case). Define the marginal probability vector, p and

the dictionary separation vector as:
pi=> By, A=uw(p—q). (2:2)
k

Observe that in this rank 2 case, the matrix Cov(B) admits a unique rank-1 decom-

position, which implies that:
B=pp' +AAT. (2.3)

We focus on a class of model paramcters where p and g are well separated, which
assumption guarantecs that the rank 2 matrix B is well-conditioned. This assump-
tion also has natural interpretations in different applications including community

detection, topic modeling, and HMMs.

Assumption 1 (Scparation). Assume that w, and w, are lower bounded by some

constant C,, = (1), and assume that the €1-norm of the dictionary separation is

lower bounded by ||A]l1 > Ca = Q(1).

Theorem 2.1 (Upper bound for rank 2 matrices). Suppose we have access to N
i.i.d. samples generated according to the a rank 2 symmetric probability matriz B
parameterized as (2.1), and suppose the true matriz satisfies Assumption 1. For
€ > 0, with N = ©(M/€*) samples, our algorithm runs in time poly(M) and returns
estimators B . P A, such that with large probability:

IB-Bli<e p—plh<e [A-Ah<e

(here, the £i-norm of an M x M matriz P is simply defined as ||Ply = 3_, ; |Pi;|)-

Note that for R > 2, the dictionary matrix P and the mixing matrix W arc
not uniquely identifiable. We only focus on obtaining a low rank cstimator for the

underlying probability matrix B.
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Theorem 2.2 (Upper bound for rank R, constant accuracy). Suppose we have ac-
cess to N i.i.d. samples generated according to the a probability matriz B parame-
terized as (2.1). Assume the mizing matrix W is PSD with row sums bounded by

zj Wi 2 Wmin. Fiz constant accuracy ¢g > 0 and ¢ = (1), for any r > 0, with

N = G(E;M—;qu:,—.) samples, our algorithm runs in time poly(M) and returns a rank R
min€0

estimator B such that with large probability:
IB — B < e. (2.4)

Compared to the sample complexity result N = ©(M R?) for the community de-
tection problem with R communities as in [36], in the more general parameterization,

. =2
we mcur an extra w, ;.

dependence, which can be easily removed in the special setup

of community detection to recover the result in the community detection problem.

Assumption 2 (Well scparated dictionary). We assume that the minimal singular
value of B*T™ scaled with the inverse square root of the exact marginal probabilities is

lower bounded.
UR(Dz'ag(p,-)_I/QBDiag(p,;)’l/z) > Oomin. (2.5)

Note that in the ideal case where the support of the dictionaries are non-overlapping,

and the mixing matrix W is diagonal, we have
o1(Diag(p;) "/*BDiag(p;)""/?) = or(Diag(p:) "/ *BDiag(p;) ""/?) = 1.

Under the well-separation assumption for the dictionary, we can sharpen the error

bound.

Theorem 2.3. (Upper bound for rank R under separation condition) Under the con-
ditions of Theorem 2.2, further assume that Assumption 2 is satisfied for Omin > €,
and that N = Q(%) for any r > 0. For any € > 0 such that € < €y, with
min~0

N = @(%3) samples, our algorithm runs in time poly(M) and returns a rank R
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estimator B such that with large probability:
IB-B|; <e (2.6)

Note that when the marginal probabilities p; are not roughly uniform, spectral
error bounds in terms of ||§ — B> are not particularly strong. Instead, here we
consider the ¢; norm crror bound, or equivalently the total variation distance, which
is a more natural measure of estimation error for probability distributions. Morcover,
note that naively estimating a distribution over M? outcomes requires order M?
samples. Our algorithm utilizes the low rank structure of the underlying probability
matrix to achieve a sample complexity which is precisely linear in the vocabulary size
M.

We now turn to the implications of this theorem to testing and learning problems.

2.2.2 Topic Models and Hidden Markov Models

One of the main motivations for considering the specific low rank structure on the
underlying matrix B is that this structure encompasses the structure of the matrix of
‘ expected bigrams generated by both topic models and HMMs. We now make these

connections explicit for the rank 2 case, and then briefly discuss the rank R case.

Definition 2.1. A 2-topic model over a vocabulary of size M is defined by a pair of
distributions, p and q supported over M words, and a pair of topic mixing weights
mp and my =1 — m,. The process of drawing a bigram (i, j) consists of first randomly
picking one of the two “topics” according to the mizing weights, and then drawing
two independent words from the word distribution corresponding to the chosen topic.
Thus the probability of seeing bigram (%,7) is (mppip; + 7eqiq;), and so the expected
bigram matriz can be written as B = PWPT with P = [p,q|, and W = [r,,0;0,7,].

Definition 2.2. A hidden Markov model with 2 hidden states (sp, sq) and a size M
observation vocabulary is defined by a 2 x 2 transition matriz T for the 2 hidden states,

and two distributions of observations, p and q, corresponding to the 2 states.
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A sequence of N observations is sampled as follows: First, select an initial state
according to the stationary distribution of the underlying Markov chain [r,,m,]; Then
evolve the Markov chain according to the transition matriz T for N steps; For each
n € {1,...,N}, the n-th observation in the sequence is generated by making an inde-
pendent draw from either distribution p or q according to whether the Markov chain
is in state s, or s, at the n-th timestep.

The probability that seeing a bigram (i,j) for the n and the (n + 1)-th obser-
" vation is gwen by mppi(Tppp; + Tpat;) + Tq@i(Typp; + Tyqq;), and hence the ex-
pected bigram matriz can be written as B = DWDT with D = [p,q], and W =

m 0 Top 1-Tu,
0 m, 1-T,4 Ty
The following corollaries (straightforward by Theorem 2.1) shows that parameter

estimation is possible with sample size linear in M:

Corollary 2.1. (Learning 2-topic models) Suppose we are in the 2-topic model set-
ting. Assume that (1 — mp)|lp — qlli = Q(1). There exists an algorithm which,
given N = Q(M/€?) bigrams, runs in time poly(M) and with large probability returns

estimates Tp, P, ¢ such that

[Ttp — 7| <€, [D—plli <€ |lT— qlli <e.

Corollary 2.2. (Learning 2-state HMMs) Suppose we are in the 2-state HMM setting.
Assume that ||p — q|l1 > C1 and that 70y, Tpp, T, 4 are lower bounded by Co and upper
bounded by 1 — Cs, where both Cy and Cy are Q(1). There exists an algorithm which,
given a sampled chain of length N = Q(M/€?), runs in time poly(M) and returns
estimates ’ﬁp,f, D, q such that, with high probability, we have (that there is exists a

permutation of the model such that)
7 — ol < € |Tpp = Tppl < €Tqq—Toal <& PPl <& l7—qli <e

Furthermore, it is sufficient for this algorithm to only utilize Q(M /€?) random bigrams

and only Q2(1/€?) random trigrams from this chain.
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For topic models with R > 2 topics and HMMs with R > 2 hidden statcs, the
matrix of bigram probabilities does not uniquely determine the underlying HMM.
One can recover the model parameters using sampled trigram sequences (sce [7] for
the moment structure in the trigrams). However, the core step remains to first obtain
an accurate cstimate of B given by Theorem 2.2 and 2.3 4. We do not go into details

here.

2.2.3 Testing vs. Learning

The above theorem and corollaries are tight in an extremely strong sense: for both the
topic model and HMM settings, it is information theoretically impossible to perform
cven the most basic property tests using fewer than ©(AM) samples. For topic models,
the community detection lower bounds [88][73][127] imply that ©(Af) bigrams are
necessary to even distinguish between the case that the underlying model is simply
the uniform distribution over bigrams versus the case of a R-topic model in which cach
topic corresponds to a uniform distribution over disjoint subsets of M /R words. For
2-state HMMSs, cven if we permit an estimator to have more information than merely
bigram counts, namely the full sequence of observations, we prove the following linear

lower bound.

Theorem 2.4. There ezxists a constant ¢ > 0 such that for sufficiently large M, given
a sequence of observations from a HMM with two states and emission distributions
D, q supported on M elements, even if the underlying Markov process is symmetric,
with transition probability 1/4, it is information theoretically impossible to distinguish
the case that the two emission distributions, p = q = Unif[M] from the case that
llp — qlli = 1 with probability greater than 2/3 using a sequence of fewer than cM

observations.

This immediately implies the following corollary for estimating the entropy rate

of an HMM.

‘E.g. see [7] for how the bigram matrix can be used in the estimation problem in a “whitening”
step to reduce the problem from one of M dimensions to one with effectively R dimensions.
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Corollary 2.3. There exists an absolute constant ¢ > 0 such that given a sequence of
observations from a HMM with two hidden states and emission distributions supported
on M elements, a sequence of cM observations is information theoretically necessary

to estimate the entropy rate to within an additive 0.5 with probability of success greater

than 2/3.

These strong lower bounds for property testing and estimation are striking for
several reasons. First, the core of our learning algorithm is a matrix reconstruction
step that uses only the set of bigram counts. Conceivably, one could significantly
benefit from considering longer sequences of observations — even for HMMs that mix
in constant time, there are detectable correlations between observations separated
by O(log M) steps. Regardless, our lower bound shows that actually no additional
information from such longer k-grams can be leveraged to yield sublinear sample
property testing or estimation.

A second notable point is the apparent brittleness of sublinear property testing
and estimation as we deviate from the standard (unstructured) i.i.d sampling setting.
Indeed for nearly all distributional property estimation or testing tasks, including
testing uniformity and estimating the entropy, sublinear-sample testing and estima-
tion is possible in the i.i.d. sampling setting (e.g. [50, 118, 117]). In contrast to the
iid. setting in which estimation and testing require asymptoticaliy fewer samples
than learning, as the above results illustrate, even in the setting of an HMM with just

two hidden states, learning and testing require comparable numbers of observations.

2.3 Outline of our estimation algorithm

Given N samples drawn according to the probability matrix B. Let B denote the
matrix of average empirical counts. By the Poisson assumption on sample size, we
have that [B];; ~ %Poi(NB; ;).

Before introducing our algorithm, let us consider the naive approach of estimating
B by taking the rank R truncated SVD of the empirical matrix B, which concentrates

to B in spectral distance asymptotically. Unfortunately, this approach leads to a
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sample complexity as large as O(M?log M), and in the lincar sample size regime,
the empirical counts matrix is a poor representation of the underlying distribution.
Intuitively, due to the sampling noise, the rows and columns of B corresponding
to words with larger marginal probabilities have higher row and column sums in
cxpectation, as well as higher variances that undermine the spectral concentration of
the matrix as a whole. This observation leads to the idea of pre-scaling the matrix
so that every word (i.e. row/column) is roughly of unit variance. Indeed, with a
slight modification of the truncated SVD, we can improve the sample complexity
of this approach to ©(M log M), which is nearly linear. Interestingly, if we get to
observe a matrix (B + E) where the noise matrix F are i.i.d. sub-Gaussian variables
of unit variance, then truncated SVD indeed gives us the optimal estimator for B.
Our algorithm shows that we can actually shave off the log factor for a broad class
of noise (sub-exponential), which require more carcful steps than truncated SVD to

denoise the empirical matrix.

Next, we sketch the outline of our algorithms (Algorithm 3 for rank 2 case and
Algorithm 4 for general rank R casc). We only highlight the intuition behind the key

ideas, and defer the detailed analysis of the algorithms to Section 2.4 and 2.5.

Zy
pi large —— pi small
Regularize lat;'en-"y|mw.’cuiumn Anchor p'rll'titi()l'l
/ . I
ym
pi small i Refinement

(a) Binning and regularization (b) Anchor partition and refinement

Figure 2-1: The key algorithmic ideas of our algorithm.



2.3.1 Rank 2 algorithm

First, note that it is straightforward to obtain an estimate p close to the true marginal
~ p with linear sample complexity. Also, recall that B—pp" = AAT as per (2.3), hence
after subtracting off the relatively accurate rank 1 matrix of pp', we are essentially

left with a rank 1 matrix recovery problem. Our Algorithm 3 consists of two phases:

Phase I: “binning” and “regularization” In Section 2.1, we drew the connec-
tion between our problem and the community detection problem in sparse random
graphs. Recall that when the word marginals are roughly uniform, namely all in the
order of O(f;), the linear sample regime corresponds to the stochastic block model
setup where the expected row sums are all in the order of dy = & = Q(1). It is
well-known that in this sparse regime, the adjacency matrix, or the empirical count
matrix By in our problem, does not concentrate to the expectation matrix in the
spectral distance. Due to some heavy rows with row sum in the order of Q(%g"lgog—lﬁ),
the leading eigenvectors are polluted by the local pfoperties of these heavy nodes
and do not reveal the global structure of the graph, which are precisely the desired
information in expectation.

In order to enforce spectral concentration in the linear sample size regime, one
of the many techniques is to tame the heavy rows and columns by setting them to
0. This simple idea was first introduced by [47], and followed by analysis works in
[44] and many others. Recently in [75] and [76] the authors provided clean and clever
proofs to show that any such “regularization” essentially leads to better spectral
concentration for the adjacency matrix of random graphs whose row/column sums
are roughly uniform in expectation.

Phase I of Algorithm 3 leverage such “regularization” ideas in our problem where
the marginal probabilities are not uniform with the idea of “binning”. A natural
candidate solution would be to partition the vocabulary M into bins of words ac-
cording to the word marginals, so that the words in the same bin have roughly uniform
marginals. Restricting our attention to the diagonal blocks of B whose indices are in

the same bin, the expected row and column sums arc indeed roughly uniform. Then
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we can regularize (by removing abnormally heavy rows and columns) each diagonal
block separately to restore spectral concentration, to which truncated SVD should
then apply. Figurc 2-1a visualizes the two operations of “binning” and “rcgulariza-
tion” in Phase I of Algorithm 3.

Phasc I returns estimates p and A both up to a small constant accuracy in ¢,
norm with ©(M) samples. There are 3 concerns we rigorously address in order to

prove the correctness of the algorithm:

1. We do not have access to the exact marginal p. With linear sample size, we
only can estimate p up to constant accuracy in ¢; norm. If we implement
binning according to the cmpirical marginals, there is considerable probability
with which words with large marginals are placed in a bin intended for words
with small marginals — which we call “spillover cffect”. When directly applicd
to the empirical bins with such spillover, the existing results of “regularization”

in [76] do not lead to the desired concentration result.

2. When restricting to each diagonal block corresponding to a bin, we throw away
all the sample counts outside the block. This greatly reduces the cffective sample
sizc, and it is not obvious that we retain enough samples in cach diagonal block

to guarantee mecaningful estimation.

3. Even if the “regularization” trick works for cach diagonal block, we need to
extract the uscful information and “stitch” together this information from each
block to provide an estimator for the entire matrix, including the off-diagonal

blocks.

Phase II: “Anchor partition” Under the separation Assumption 1, Phase II of
Algorithm 3 refine the estimates of Phase I to achieve the desired sample complexity
bound.

The key to this refining process is to construct an “anchor partition”, which is
a bi-partition of the vocabulary M based on the signs of the estimate of separation

vector A given by Phase I. We collapse the M x M matrix B into a 2 X 2 matrix
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corresponding to the bi-partition, and accurately estimate the 2 x 2 matrix with the
N samples. Given this extremely accurate estimate of this 2 x 2 anchor matrix, we
can now iteratively refine our estimates of p; and A; for each word ¢ by solving a
simple least square fitting problem.

Similar ideas — estimation refinement based on some crude global information —
has appeared in many works for different problems. For cxample, in a recent paper
[36] on community detection, after obtaining a crude classification of nodes using
spectral algorithm, one round of a “correction” routine is applied to each node based
on its connections to the graph partition given by the first round. This refinement
immediately leads to an optimal rate of recovery. Figure 2-1b visualize the example of
community detection. In our problem, the nodes are the M words, the edges are the
sample counts, and instead of re-assigning the label to each node in the refinement

routine, and we refine the estimation of p; and A; for each word.

2.3.2 Rank R algorithm

We summarize the basic ideas of Algorithm below. In Step 1, we again group
words according to the empirical marginal probabilities, so that in each bin words
are of similar marginals. Then in Step 2, we consider the diagonal blocks of the
cmpirical average bigram matrix B, which rows and columns correspond to the words
in the same bin. In each of such diagonal blocks, the entries have roughly uniform
expectations, similar to Phase 1 of Algorithm 3, we regularize each diagonal block
in the empirical matrix by removing abnormally heavy rows and columns, and then
apply truncated SVD to obtain a sharper concentration bound.

After estimate the span of the dictionary restricted to words in each bin by looking
at the leading rank R subspace of cach diagonal block, in Step 3, we aim to estimate
Diag(p)'/?BDiag(p)/? accurately in spectral norm. With the marginal probability
scaling, such error bound naturally translates into error bound for estimating B in
¢, norm. To achieve this, we regularize and approximately scale the empirical ma- .
trix B with the empirical marginal probability, and then project the entire matrix

to a Rlog M-dimensional subspacc as a union of the spans for cach bin found in
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Step 2. Since such spans are estimated accurately enough, projecting the M x M
dimensional matrix to the Rlog M-dimensional subspace prescrves the signal that
is correlated with the expcctation while significantly reducing the statistical noise
from sampling. This guarantees a sharp spectral concentration to the cxpectation
Diag(p)'/*BDiag(p)"/*.

In the last step, similar to the Phase II of Algorithm 3, if the underlying truc
probability is “well-conditioned” we can further improve the sample complexity by

refine the estimation.

49



Algorithm 3: Rank 2 algorithm

Input: 2V sample counts.

Output: Estimates p, 3, B.

Divide the sample counts into two independent batches of equal size N, and
construct two average empirical matrices. Each of the following two steps uses an
independent copy of B.

Phase I

1. Binning according to the empirical marginal probabilities
Set p; = 3 jeiar[Blij- Partition the vocabulary M into:

:{i:ﬁi<%9,-},flog={i:ﬁi>%ﬂﬂ},fh={ ——< <ek+1} k=1:loglog(M).

—~

2. Estimate separation vector in each bin (up to sign flip). Set A
If > p Pz, < €05 set Aflog =0, else
(Rescaling): Set E = dz‘ag(ﬁzog)‘lﬂ[B - ﬁﬁT]ilngfbgdiag(’p‘flog)‘1/2.
(SVD): Let ulogui](—)g be the rank-1 truncated SVD of E. Set vy = d'iag(b}_log)l/ zulog.
If Zﬁik < egek, set Afk =0, clse
(Regularization): Set d** = (3 ﬁik)i‘%l, if a {f)w/column of [B]fk «7, has sum larger
than 2d]*®, set the entire row/column to 0. Let B denote the regularized block.
(SVD): Let vkvz be the rank-1 truncated SVD of (E — ﬁfkﬁ%k).
3. Stitching the segments. Fix k* = arg maxy, ||vg]|, set ﬁf: = Upr.

For all &, define I,;f ={i:i€y: Z/Si > 0} and I, = Ik\I,:-.
Tiert, jertBlii  Tiert jez-1Blig
L * k > . k

and A= = —uv;, otherwise.
.. P
ieM, ez} Bli iEM.GET Bli.i T

Set Az = vy, if
Phase 11

1. (Construct anchor partition) Set A = ¢. For all empirical bins, if R
||A 2 < (/dPX]N)1/2, skip the bin; otherwise set A = AU {i € T} : A; > 0}.

2. (Estimate anchor matrix)

Set By = [ LicajealBNlii  LicajeaBnlij } Set vector b — [ Licajem[Bnli; ]
LieacjealBNlii  LicacjeacBnlig Lieac jemlBrlij
Set aa' to be rank-1 truncated SVD of the 2 x 2 matrix (B4 — bb').

3. (Refine the estimation:)

s [ £ J =t | Feilen |

Return 5, A, and B = PP+ AAT.
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Algorithm 4: Rank R algorithm

Input: 4N i.i.d. samples from the distribution B of dimension M x M.

(In each of the 4 steps, B refers to an independent copy of the bigram matrix with
N samples.) A R

Output: Rank R estimator B for B, and V for the rank R subspace of scaled
matrix DgB%I"t,

1. (Binning according to the empirical marginal probabilities)

Set pi = >~ je(a[Bliy- Define gy = L-eF. Partition the vocabulary M into:
foz{i:ﬁ.,; <p1}, and T, ={i:pr < Pi < P41}, fork=1:logM.

Sort the M words according to p; in ascending order.

Sct Wy, = Ziefk p; and My = |fh| Set the block diagonal matrix

12
P Ij\}l

Dg = . . (2.7)
_—1/2
Prog M Iﬁlog M

2. (Estimate dictionary span in each bin)

For each bin fk, if Wk < €ge*, st Vk = 0; else consider diagonal block By = [B]fk X

(a) (Regularization): Set d"® = Wkﬁk. If a row/column of By has sum larger than 2d}***,
set the entire row/column to 0. Denote the regularized block by By.
(b) (R-SVD): Let the columns of V. denote the leading R singular vectors ofﬁk.
3. (Estimate dictionary span and an ¢; estimator §2) Set the projection matrix
Projf,l
Projy = . (2.8)
P

10js
J V’log M

(a) (Regularization): For each word ¢ in bin Ty, if the corresponding row in B has sum
larger than 2py, set_the entire row and column to zero. Denote the regularized average
bigram matrix by B.

(b) (R-SVD): Set By to be the rank-R truncated SVD of matrix Proji;DsEDgProjg..

Let the columns of V denote the leading R singular vectors of By.

4. (Refinement to get {; estimator)
Repeat the regularization in Step 3 on B, let B denote regularized average bigram matrix.
Sct Y = (VT DgBDsV)V2(VT DgBDs), Sct B = D3'YY T D3l

Return B and V.




2.4 Details of Rank 2 Algorithm

Given N samples, the goal is to estimate the word marginal vector p as well as the
dictionary scparation vector A up to constant accuracy in £; norm. We denote the
estimates by p and A. Also, we estimate the underlying probability matrix B with
B =pp" + AAT. Note that since lAllL < |lplls = 1, constant ¢; norm accuracy in p

and A immediately lead to constant accuracy of B also in {1 norm.

In this section, we prove Theorem 2.5 and Theorem 2.6 about the correctness of
the 2 Phases of Algorithm 3, the detailed proofs are provided in Section 2.7.1 in the

appendix.

Throughout the section, we denote the ratio between sample size and the vocab-

ulaRy size by
dy = N/M, (2.9)
and we assume that dy is lower bounded by a large constant such that

do/lOgd() > 654.

Theorem 2.5 (Linear sample complexity of Rank 2 algorithm). Fiz € to be a small
constant. Given N = O(M) samples, with large probability, Phase I of Algorithm 3

estimates p and A with accuracy:

I5=pli <€, IIA-Ah<e, [B-Blh<e.

Under the separation assumptions of A, we can refine the estimation to achieve

arbitrary e accuracy.

Theorem 2.6 (Refinement of Rank 2 algorithm). Assume that B satisfies the Q(1)

separation assumption. Given N samples, with probability at least (1 — 6), Phase II
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of our Algorithm & estimates p and A up to accuracy in £; norm:

17~ ol < VMJON, |IA - Al < /M/3N, ||B - B|, = O(v/M/SN).

First, we show that it is casy to estimate the marginal probability vector p up to

constant accuracy.

Lemma 2.1 (Estimate the word marginal probability p). Given the average empirical

count matriz B, we estimate the marginal probabilities by:

pi=Y_ Bij (2.10)

JEM

With probability at least (1 — §), we can bound the estimation accuracy by:

. 1
o — ol < “\/ﬁ' (2.11)

The hard part is to estimate the separation vector A with lincar number of sample
counts, namely when dy = ©(1). Recall that in the lincar sample size regime, naively
taking the rank-1 truncated SVD of (B — pp') fails to reveal any information about
AAT, since the leading cigenvectors of B are dominated by the statistical noise of the
sampling words with large marginal. Algorithm 3 achicves this with dclicate steps.

The organization of this scction is as follows:

1. Section 2.4.1 introduces the binning argument and the necessary notations for
the rest of the section. We group the M words into bins according to the
empirical marginal probabilities, i.e. p;’s. We call a bin “heavy” or “light”

according to the marginal probability of a typical word in that bin.

2. Section 2.4.2 analyzes how to estimate the entries of A restricted to different
empirical bins (up to some common sign flip). To achieve this, for the heaviest
bin where words’ marginals are in the order of Q(log M /M), we can simply
apply truncated SVD to the properly scaled diagonal block of the empirical

average matrix B. For all other empirical bins, we examine the corresponding
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diagonal blocks in B. The main challenge here is to deal with the spillover effect
due to inexact binning, and Lemma 2.12 shows that with high probability, such
spillover effect is very small for all bins with high probability. Then we leverage
the clever proof techniques from [76] to show that given small spillover effect,
we can first regularize each diagonal block and then apply truncated SVD to

estimate the segments of separation vector.

3. Section 2.4.3 shows how to stitch the segments of estimates for A across different

bins.

4. Section 2.4.4 shows that built upon the initialization, if the dictionary further
satisfies certain scparation condition, we can refine the estimation to improve

its dependence on target accuracy ¢ to meet the information theoretic lower

bound.

2.4.1 Binning

In order to estimate the separation vector A, instead of tackling the empirical count
matrix B as a whole, we focus on its diagonal blocks and analyze the spectral con-
centration restricted to each block separately, using the fact that the entrics B;;
restricted to cach diagonal block are roughly uniform.

For any set of words Z, we use Bz 7 to denote the diagonal block of B whose row
and column indices are in the set Z. When restricting to the diagonal block, the rank

2 decomposition of the expected matrix is given by Brz = prpf + AzAT.

Empirical binning We partition the vocabulary M according to the empirical

marginal p in (2.10):
= 1 = ek-1 ek ~ log M

= < i a7 (0 = L S A‘i FVE S og — i: S /\l .
T {z <pi< M} I {z i pi < M} Tiog {z % p}

o4
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We call this empirical binning to emphasize the dependence on the empirical estimator
p, which is a random variable built from the first batch of N sample counts. We
call fo the lightest empirical bin, and flog the heaviest empirical bin, and fk for
1 <k <loglog M the moderate empirical bins.

For the analysis, we further define the ezact bins according to the exact marginal

probabilities:
. € 1 Nt ek . logM
I = L < i —_— N Z, = L < i < — s 1-40 = 1 : S i .
0 {Z M‘“p<M} g {’ M P TH g =\ T =P

(2.13)

Note that since the target accuracy of Phase 1 is a small constant €y, we can safely
discard all the words with marginals less than €y/M as that incurs an ¢, error only

in the order of O(e).

Spillover effect As N incrcases asymptotically, we will have fk coincides with Z;
for every bin. However, in the linear regime where N = ©(M), binning is inexact

and we have the following two spillover effects:

1. Words from a heavy bin Zy/, for &’ much larger than k, are placed in a empirical

bin fk;
2. Words from bin Z;, escape from the corresponding empirical bin fk.

The hope, that we can have good spectral concentration in cach diagonal block
Bz 2, crucially relies on the fact that the entries B;; restricted to this block are
roughly uniform. However, the hope may be ruined by the spillover effects. Next, we
show that with high probability the spillover effects are small for all bins with large

probability mass:

1. In cach empirical bin fk, the total probability mass of heavy words from the

union of bins Ugy.4>k+1)Zk s only in the order of O(e"“kdﬂ/ 2) (sce Lemma 2.12).

2. Most words of 7, stays within the nearest empirical bins, namely the union of

bins Ugpp—1<w<ki13Zr, (scc Lemma 2.9).
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Notations To analyze the spillover effects, we define some additional quantities.

We define the total marginal probability mass in the empirical bins to be:

Wi = Zz‘efk Pi, (2.14)

and let My = |Zx| denote the total number of words in the cmpirical bin. We also
dcfine Wy, = 2 ic, Pi-

We use :7;, to denote the set of spillover words into the empirical bin fk:
T = T 0 (U sy ), (2.15)
and let Ek denote the “good words” in the empirical bin fk:
Ly =T\ Tk (2.16)

We also denote the total marginal probability mass of the heavy spillover words jh
by:

Wi =25 pi- (2.17)

Note that these quantities are random variables determined by the randomness of
the first batch of V samples, in the binning step. We fix the binning when considering
the empirical count matrix B (with independent batches of samples) in the other steps
of the algorithm.

Dcfine the upper bound of the “typical” word marginal in the k-th empirical bin
to be:

P =€ /M,

Recall that we have ), B;x = wpp + wyq and we assume wp, w, > C,, = Q(1). We

can bound each entry in B by the product of marginals probabilities as

2 .
B:; < C—%Pz’ﬂj, Vi, J.
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Let dp* denote the expected max row/column sum of the diagonal block Bz 7 :
KLk
Ay =: M, max B; ; = 2M;p;/C2. (2.18)
Ljel,

2.4.2 Estimate segments of A

Heaviest empirical bin First, we show that the empirical marginal probabilities

of words in the heaviest bin concentrate much better than what Lemma 2.1 implies.

Lemma 2.2 (Concentration of marginal probabilities in the heaviest bin). With high
probability, for all the words with marginal probability p; > €glog(M)/M, for some

universal constant Cy, Cy,

Lemma 2.2 says that we can estimate the marginal probabilities for cvery words
in the heaviest bin with constant multiplicative accuracy. It also suggests that we do
not need to worry about the words from Z,,, get spilled over into much lighter bins.

The next lemmas shows that with proper scaling, we can apply truncated SVD
to the diagonal block to estimate the entries of separation vector A rcstrictcd to the

empirical heaviest bin.

Lemma 2.3 (Estimate A restricted to the heaviest cmpirical bin). Suppose that
Wieg = Zﬁflﬂg > €. Define Dz = Diag(ﬁﬁog). Consider Bz z . the diagonal

block corresponding to flog. Let E be the rank 1 truncated SVD of ﬁ%} Y 2(Bf1 o Fos
og ogr O

N ST AND-Y2 o B
leogpiﬂg)DA . Set vy = D

Ik)g

%/ >EV2. With large probability, we can estimate the
log
dictionary separation vector restricted to the heaviest empirical bin up to sign flip

with accuracy:

. ] 1/dy” A
min{[[ Az, — viegll, 183, + vioglli} = O [ min { ==, 1/dy"* ¢ ). (2.20)
log log " Aflog ” 1

The two cases in the above bound correspond to whether the separation is large or

small, compared to the statistical noise from sampling, which is in the order 1 /dé/ 1
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If the bin contains a large separation, then the bound follows the standard Wedin’s
perturbation bound; if the separation is small, i.e. |]A3,log||1 < 1/dy/*, then the bound

1/ d(l)/ * just corresponds to the magnitude of the statistical noise.

Moderate empirical bins In Lemma 2.12, we upper bound the spillover proba-
bility W} to show that the spillover effects are small for all the moderate bins. Given
that, Lemma 2.5 and Lemma 2.6 show that we can first regularize each diagonal
block and then apply truncated SVD to estimate the entries of the separation vector

A restricted to each bin.

Lemma 2.4 (Bound spillover probabilities). With high probability, for all empirical
bins, we can bound Wy, defined in (2.17), the spillover probability from much heavier

bins, by:

W < 2e /2, ' (2.21)

Now consider Bz, 7, the diagonal block corresponding to bin fk. We restrict
attention to its spectral concentration on indices of Ek, the set of “good words” defined
in (2.16). To ensure the spectral concentration, we “regularize” it by removing the
rows and columns with abnormally large sum. Recall that the expected row sum of
the diagonal block without spillover is bounded by di®* defined in (2.18). Let R
denote the indices of the rows and columns in Bz, 7, whose row sum or column sum

are larger than 2d;’**, namely
Ri = {z €Zp: Y ,ez, Biy > 22 or Y, 5 By > 2dgm} . (2.22)

Starting with By = Bz ., We set all the rows and columns of E;,, indexed by 7/?\,;c to

kX
0.

To make the operation of “regularization” more precise, we introduce some ad-

ditional notations. Define p; to be a vector with the same length as pz,, with the
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entries spillover words j\k sct to 0,
(Pr)i = pilyez,- (2.23)
Similarly define vector ﬁk to be the separaﬁion vector restricted to the good words:
(A)i = Ailyep,. (2.24)

We define the matrix Iﬁk (of the same size as Bfk fk):

By = prpn + AeA[ (2.25)

Note that by definition the rows and columns in Ek and Iﬁk that are zero-cd out
do not necessarily coincide. However, the next lemma shows that Ek concentrates to

lﬁk in the spectral distance.

Lemma 2.5 (Spectral concentration of diagonal blocks.). Suppose that the marginal
of the bin Ty is large enough Wy, =Y Pz, > €oeF. With probability at least (1— M "),

for some universal constant r, we have

15 v/ NdP*>log( N dinax)
N .

“Ek - ﬁk“2 < Cr (2.26)
Proof. Here we highlight the key steps of the proof, and defer the detailed proof to
Section 2.7.1.

In Figure 2-2, the rows and the columns of Bz 7z are sorted according to the exact
marginal probabilitics of the words in ascending order, with the rows and columns
set to 0 by regularization shaded. Consider the block decomposition according to the
good words Ek and the spillover words j;c We bound the spectral distance of the
4 blocks (A;, Az, As, Ay) separately. The bound for the entire matrix Ek is then an
immediate result of triangle incquality.

For block A; whose rows and columns all correspond to the “good words” with

roughly uniform marginals, we show its concentration by applying the result in [76].
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For block As and Ay, we show that after regularization the spectral norm of these two
blocks are small. Intuitively, the expected row sums of block Ay are bounded by 24}
and the expected column sums are bounded by 2(!}?*"“% = O(1/N), as a result of the
bound on Wy in Lemma 2.12. Thus the spectral norm of the block A, is likely to be
bounded by O( \/W ). We show this rigorously with high probability arguments.
Lastly for block Ay, which rows and columns all correspond to the spillover words.
We show that the spectral norm of this block is very small, as a result of the small

spillover marginal W . 0

By, = prdy + DkAf

regularization:
set 1o 0 if row/colunm sum larger than 2d)*

Figure 2-2: block decomposition of the diagonal block of Bz 7 corresponding to fk.

Lemma 2.6 ( Estimate the scparation vector restricted to bins). Suppose that W), =
Eiefk pi > Cie™* for some fized constant C; = Q(1). Letvyv] be the rank-1 truncated

SVD of the matriz (gk — f)‘fk b‘%ﬁ) With high probability, we have

min{||Ax — vkl Ak + vil2}

1/2
VNE=Tog(Nd™) 1 N Tog(N&™)
N 1Az, [l2” N

=0 | min

(2.27)
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Claim 2.1 (Estimatc the scparation vector restricted to the lightest bin). Setting

Z’Sfo = 0 only incurs a small constant error:
o7 €0 o —
18,1 < lloz, s < ezl +Wo < 22M + 27/ = O(e),

where we used the assumption that dy/logdy > €y 4,

2.4.3 Stitch the segments of A

Given vy, for all k as estimation for Afk ’s up to sign flips. Fix k* to be onc good bin
(with large bin marginal and large separation). Partition the words into two groups
Th={i:i €I : A; > 0} and I. = Ip-\Z}.. Without loss of generality assume
that Zig:* ﬁz > Ziel'k} ﬁz We set sz* = vp+. For all other good bins k, we
similarly definc Z;' and Z,;. The next claim shows how to determine the relative sign

flip of v+ and vg.

Claim 2.2 (Pairwise comparison of bins to fix sign flips). For all good bins k € G,

we can fix the sign flip to be ﬁfk =y, if:

Zz‘ez,:a JELE (Bl Eiez,j, JET; [Bli
ZieM,jez,j [B]i,j ZieM,jeI,; [B]i,j

?

and Afk = —uvy, otherwise.

Proof. This claim is straightforward. When restricted to the good bins, the estimates
v, are accurate enough. We can determine that the sign flips of £* and k are consistent
if and only if the conditional distribution of the two word tuple (z,y) € M? satisfies
Pr(z € T |z € Z}}) > Pr(z € T}%

x € Z,), and we should revert v, otherwise. d

Concatenate the segments of 3, we can bound the overall estimation error of the

separation vector.

Lemma 2.7 (Estimate scparation vector in Phase I). For a fized small constant g =

O(1), if do/ log(dy) > €;*, with large probability, Phase I of Algorithm 3 estimates
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the separation vector A with constant accuracy in £, norm
1A — All = O(eo)-

This concludes the proof for Theorem 2.5.

2.4.4 Refinement

Construct an anchor partition Imagine that we have a way to group the M
words in the vocabulary into a new vocabulary with a constant number of superwords.
The new probability matrix is obtained by summing over the rows and columns of
the matrix B according to the grouping. We similarly define marginal vector p4 and
separation vector A4 over the superwords. If we group the words in a way such
that the dictiona,ry‘over the superwords is still well separated, then with N = Q(M)
samples we can estimate the constant dimensional p4 and A4 to arbitrary accuracy.
Such estimates provide us some crude and global information about the true original
dictionary. Now sum the probability matrix only over the rows accordingly, the
expectation can be factorized as pap" + A4AT. Therefore, given accurate estimates
of ps and A4, obtaining refined estimation p and A is as simple as solving a least

square problem.

Definition 2.3 (Anchor partition). Consider a partition of the vocabulary [M] into
(A, A°). denote pa =3 ;capi and Ag =) .. 4 A;. We call it an anchor partition if

for some constant C4 = Q(1),

, A
cond P A < Ca. (2.28)

1—pa, —Ba
If the dictionary is well separated ||Al; = ©(1), it is feasible to find an anchor
partition. Moreover, we will show that we can use the estimator A obtained in Phase
I to comstruct such an anchor partition easily. The next lemma states a sufficient

condition for constructing an anchor partition.
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Lemma 2.8 (Sufficient condition for constructing an anchor partition). Let Az be
the vector of A restricted to a set of words Z. Suppose that ||Az|ly > C||Ally for some
constant C' = Q(1), and that for some constant C' < +C, we can estimate Az up to

Preciston.
1Az = Azlly < C'||Az])s- (2.29)

Denote A = {ieT: A; > 0}. We have that (A\,M\ﬁ) forms an anchor partition
defined in 2.5.

Definition 2.4 (Good bins). Denote the dictionary separation restricted to the “good

words” in each empirical bin fk by:
Sk =12 iz, [Ail = 1 Akll1- (2.30)

Fiz constants Cy = Cy = %||AlL = Q). We call bin Ti a “good bin” if it satisfies
that: A

1. the marginal probability of the bin Wy, > Cie7*.
2. the ratio between the separation and the marginal probability of the bin satisfies

Sk > 0.

W, =
Let G denote the set of all the good bins. Next lemma shows that a constant

fraction of total probability mass is contained in good bins.

Lemma 2.9 (Total mass in good bins). With high probability, we can bound the total

marginal pmbability mass in the “good bins” by:

> okee Wi = 1A /12 (2.31)

This implies a bound of total separation contained in all the good words of the good

bins:

Pictkes 1A = Pheg Sk 2 202 Fo4eq Wi 2 35(1A[1)? = Q(1). (2.32)
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Lemma 2.10 (Estimate the separation vector restricted to good bins). If the em-
pirical bin fk is a good bin, with high probability, the estimate Kik from Phase T
(Lemma 2.6), for the separation vector restricted to the bin satisfies:

1Az, = Al < (2.33)

=1zl

The above two lemmas suggest that we can focus on the “good words” in the
“good bins”, namely Z = UkegEk. Lemma 2.9 showed the separation contained in
T is at least ), .c Sk = C||Al}; for some C = Q(1); Lemma 2.10 showed that with
linear number of samples we can estimate A restricted to Z up to constant accuracy.
Therefore by Lemma 2.8 we can construct a valid anchor partition (A4, M\.A) by
setting: A = {7 : A;>0, forie Ty ke G}.

Ideally, we want to restrict to the “good words” and set the anchor partition
to be {7 : A; > 0, fori € Ly, k € G}, but we cannot distinguish the “good
words” from spillover words. However, the bound on the total marginal of spillover
Dok Wi = O(e~%/?) guarantees that even if we mis-classify all the spillover words,

the construction is still a valid anchor partition.

Estimate the anchor matrix Given the two superwords (A, M\ A) from the
.y . PA, A.A
anchor partition, define the 2 x 2 matrix Dy = to be the anchor
1—pa, —Au
matrix. To cstimate the two scalars p4 and A 4, we apply the standard concentration

bound and argue that with high probability,

ieal BNl s iesclBrlis
EzEA.JGA[ N] 2J ZzEA,JGA[ N] 2J —DAD;H =O(

1
I —=)
ZieAC,je.A[BN ]i.j ZieAC‘,jeAc [BN ]z,, \/N

Recall that by anchor partition, we have [A 4] = Q(1). Thus we can estimate p4 and
A 4 to accuracy —\/% Since N = Q(M) is asymptotically large, we essentially obtain

precisely the anchor matrix D 4.
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Use anchor matrix to refine estimation Now given an anchor partition of the
vocabulary (A, A¢), and given the exact anchor matrix D4 which has ©(1) condition
number, refining the estimation of p; and A; for each i is very easy and achieves

optimal rate.

Lemma 2.11 (Refine estimation). With probability at least 1 — §, Phase II of Algo-

rithm 3 outputs estimates p and A such that

17— pll < V1/6N, ||A - Al <+/1/5N.

The above lemma implies the #; norm accuracy for Theorem 2.6:

17— ol < VM/ON, ||A~ Al < /M/5N.

2.5 Details of Rank R Algorithm

In this section, we examine cach step of Algorithm 4 to prove Theorem 2.2 and
Theorem 2.3. Recall that we are given 4 independent batches of N samples, with
which we construct 4 independent empirical bigram matrix B = B + E where the
noise matrix E are independent and identical copies of sampling noise E. In each of
the 4 steps of the algorithm, an independent and identical copy of the bigram matrix

is used. We omit the index i = 1,.. ., 4 for notation brevity.

2.5.1 Binning

We focus on the symmetric case where the rank R probability matrix is parameterized
as B = PWPT, and W is a PSD matrix. The algorithm and analysis can be easily
extended to deal with more general case. We define the weight w, = Zz Wi, We
assume that the weights are lower bounded by

Winin = Min, w, > Cy = (1).
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The marginal probability is given by

Pi = Zk By = Z wrpgr)

Note that each entry of the probability matrix B can be bounded by the product of

the corresponding marginal probability as below:

t s
Zs t W, thS) 5 ) < Zs,t Ws,tPE )Zt’ P§' =P Zt’ v ) <

"

PipPj- (2.34)

- w1nzn

Again, binning according to the empirical marginal is given by:

Zo=dii @ cpmetl 3L < c ) tork—1it0g M.
SV M Sy BT Shis gy ferk=1iles
Let M}, = |Zx| denote the number of words in bin Zj.

The grouping of words according to the exact marginal probabilities is defined as:

To=1i: 2 Loz [ 1 fork=1:logM
Vi SP<yy E= T ST M’°r'“ F 0B A
Define pi. to be the typical marginal of a word in bin Zj:
ﬁk=6k/M.

For i, j € Iy, we have B, ; < p /wimin.

Due to the statistical noise of sampling, fk may contain words whose exact
marginal is much larger than p;. The next lemma argues that such spillover effect is

small.

Lemma 2.12 (Spillover from heavier bins is small). With high probability, for all

empirical bins fk, we can bound the spillover probability from much heavier bins by:

—W’\’ = Zielk,l:k'>k+7‘ Pi S 26_67+kd0/2' (235)
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Definition 2.5 (Big bin). An empirical bin Iy is a big bin if

Wi =23 ez, 0 > e F. (2.36)

We know that a constant fraction of all the probability mass lies in such big bins.

Morcover for dy > 1, we have Wy, > 7% > 2~ k+7)do/2 > W7

Lemma 2.13 (Escaped probability mass). With high probability, for all big bins, the

mass that escapes from the bin is bounded by
, kT s
"Vlf = ZieIk,'iéffk' for |k—k!|<T pi < AWie™® i do/2,

2.5.2 Spectral concentration in diagonal blocks

Define the regularized probability matrix B by setting the rows/columns correspond-

ing to spillover words from much heavier bins to 0: -
B = Diag(1]p; < 2px])BDiag(1[p; < 2px]) (2.37)

Under the assumption that W is a PSD matrix, we define the M x R matrix B
and Bt to be:

Bt = PW'Y? and Bt = Diag(1[p; < 2px])PW/2. (2.38)
Consider the diagonal block corresponding to the k-th empirical bin
By = [Blz, 7,
Similarly, we define the M} x R matrix restricting bin fk as:
;‘:”‘ =P, W', and Iﬁ%‘i” = Diag(1[p; < 2p:))P; W'/2,

We arguc that, given N = Q(M R?), for cach diagonal block By, Step 2 of Algorithm 4
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finds a subspace V}, correlated with B:**. We can bound HProjﬁ-klﬁgc" - ﬁ;’iﬁll up to

constant accuracy.

Definition 2.6 (Expected row sum in diagonal blocks). Recall that for i,j € Iy, we
have B; ; < ﬁi [Wmin. Define the mazimal expected row sum of the diagonal block By

to be:
d@** = Mypy ) Wnin- (2.39)

Note that in the particular parameterization for the problem community detection

with uniform marginal, we can simply define d;*** to be 1/M and thus get rid of the
-1

min

w, - dependence, and the rest of the analysis follows to recover the sample complexity

result of N = ©(M R?) in the community detection problem with R communities.

Lemma 2.14 (Spectral concentration in each diagonal block). Regularize the k-th
diagonal block By by removing the rows/columns with sum larger than 2d**. Run
rank R truncated SVD on the regularized block Ek. Let the columns of the My x R

matric ‘7k be the leading R singular vectors. Define Proj; = f}kf}_‘r . We have
Vi k

(2.40)

1/2
et ~anr N7 log Nae=
||PromBzz“—Bzz‘||=0(*/ e ) .

2.5.3 Low rank projection

In Step 3 of Algorithm 4, we “stitch” the subspaces Vi for each bin 7 learned in Step
2 to get an estimate for the column span of the entire matrix.

Define the diagonal matrix Dg of dimension M x M to be:

_—1/2
P1 / I;T,il .
Dg = BN . (2.41)

_—1/2
Prog M I Miog At

Define Proj;; to be the block diagonal projection matrix which projects an M x M
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matrix to a subspace ¥ of dimension at most Rlog M:

Projg,
Projp = . . (2.42)

Pro‘] ";iog M

Now consider the empirical average bigram B with the 3rd batch of samples. We
regularize the entire matrix in the following way. For cach row in B, if the word i is
in bin 7, as defined in Step 1, and if the corresponding row has sum larger than 2py,

we sct the entire row and column to zero. Let B denote the regularized matrix.

Lemma 2.15. Let §1 denote the rank R truncated SVD of Projf,DSEDsProjf,. With

large probability, we can bound the spectral distance between El and DS]EDS by:

Nw?,, /M)\"*
log( u’1n7,n/ ) ) . (2.43)

B, — DsBDg|| =

Lemma 2.16. Let §2 = D§1§1D§1, we can get the €, error bound as:

IOg(Nw:“nm/A/I) A
Nw?, /MR? )

min

n&—ﬁm=o(

So far we have proved Theorem 2.2 for Algorithm 4.

2.5.4 Refinement

For a given PSD matrix X = UUT, whose SVD is given by X = VEVT, we define
X2 t0 be XV/?2 = VX2, Note that V = UH for some unknown rotation matrix H.

Lemma 2.17 (Refinement with separation). Recall that initialization B, obtained
from Step 3 such that ||§1—DS@DS|| < (WM R? [Wmin N)Y* Assume that omm(DSI?BDS) >
(w%zamAle/w?ninN)l/zl'

Let V denote the R leading left singular vectors of §1. Regularize B from the 4-th
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batch of samples in the same way as in Step 3. Set
Y = (VT DsBDsV) (VT DsBDg).
Let §3 =YTY and B = D§1§3D§1. We can bound the spectral distance by

~ ~ MR
||Bs — DsBDg|lr = O ——]—V——) (2.44)

I1B: ~ Bl = 0(y/ 2. (2.45)

2.6 Sample complexity lower bounds

Lower bound for estimating probabilities

We reduce the estimation problem to the community detection for a specific set of
model paramecters.
Consider the following topic model with equal mixing weights, i.e. w = w® = 1/2.

For some constant Cx = (1), the two word distributions are given by:

_[1+CA 1+Ca 1—-Cqp 1—-CA:|

M 7 M MM
. 1-Chx 1—Ca 1+Cy 1+ Ca
q= M yee oy M s Af ,.."_——-A/f .

The expectation of the sum of samples is given by

2
E[By] = N%(PPT +qq") = % i ’ 23 i - C%
-CA 1+ 04
Note that the expected row sum is in the order of Q(4f). When N is small, with
high probability the entries of the empirical sum By only take value either 0 or 1,
and By approximately corresponds to a SBM (G(M,a/M,b/M)) with parameter
a=1(1+C3)and b= (1~ C3).

If the number of sample document is large enough for any algorithm to estimating
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the dictionary vector p and q up to £; accuracy € for a small constant e, it can then be
used to achieve partial recovery in the corresponding SBM, namely correctly classify
a < proportion of all the nodes for some constant v = FSA—

According to Zhang & Zhou [127], there is a universal constant C' > 0 such that if
(a —b)?/(a +b) < clog(1/7), then there is no algorithm that can recover a y-correct
partition in expectation. This suggests that a necessary condition for us to learn the
distributions is that

(2(N/M)CR)?

3(NJM) > clog(Ca/e),

namely (N/M) > clog(Ca/€)/2C4. In the well separated regime, this means that
the sample complexity is at least linear in the vocabulary size M.

Note that this lower bound is in a sense a worst case constructed with a particular
distribution of p and ¢, and for other choices of p and ¢ it is possible that the sample

compléxity can be much lower than that Q(M).

Lower bound for testing property of HMMs

In this section, we prove an information theoretic lower bound for testing whether a
sequence of observations consists of independent draws from Uni f[M], verses being a
sequence of observations generated by a 2-state HMM with observation distributions
supported on {1,...,M}. Such a lower bound will immediately yield a lower bound
for estimating various properties of HMMs, including estimating the entropy rate, as
a sequence of independent draws from Uni f[M] has entropy rate log(M), whereas the
2-state HMMs we consider have an entropy rate that is an additive constant lower.
We note that this HMM lower bound is significantly stronger than the analogous
task of testing whether a matrix of probabilities has rank 1 versus rank 2. Such a
task corresponds to only using the bi-gram counts extracted from the sequence of
observations. It is conceivable that by leveraging longer sequences (i.e. k-grams for
k > 2), more information can be extracted about the instance. While this is the

case, as our lower bound shows, even with such information, ©(M) observations are
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required to perform this test and distinguish these two cases.

Theorem 2.7 (Theorem 2.4 restated). Consider a sequence observations from a
HMM with two hidden states {s,,sq}, emission distributions p,q supported on M
elements, and probability t = (1) of transitioning from s, to s, and from s, to
sp. For sufficiently large M, given a sequence of N observations for N = o(M), it
s information theoretically impossible to distinguish the case that the two emission
distributions are well separated, i.e. ||p — q||1 > 1/2, from the case that both p and q

are uniform distribution over [M], namely the HMM is degenerate of rank 1.

In order to derive a lower bound for the sample complexity, it suffices to show
that given a sequence of N = o( M) consecutive observations, one can not distinguish
whether it is generated by a random instance from a class of 2-state HMMs (Defini-
tion 2.2) with well-separated emission distribution p and ¢, or the sequence is simply

N iid. samples from the uniform distribution over M, namely a degenerate HMM

with p = q.
We shall focus on a class of well-separated HMMs parameterized as below: a sym-
1—t, ¢t
metric transition matrix T = , where we set the transition proba-
t, 1—t

bility to ¢ = 1/4; the initial state distribution is m, = m;, = 1/2 over the two states s,
and sg; the corresponding emission distribution p and ¢ are uniform over two disjoint
subscts of the vocabulary, A and M\ A, separately. Moreover, we treat the set A as
a random variable, which can be any of the ( A%z) subsets of the vocabulary of size
M /2, chosen with equal probability 1/ ( AZZ) Note that there is a one to one mapping
between the set A and an instance in the class of well-separated HMM.

Now consider a random sequence of N words GY = [g1,...,gn] € MY, If this
sequence is generated by an instance of the 2-state HMM denoted by A, the joint
probability of (G¥, A) is given by:

Pry(GY, A) = Pra(GY | A)Pra(A) = Pra(GY|A)—— (2.46)

M
(AJ/2)
Moreover, given A, since the support of p and ¢ arc disjoint over A and M\ A by
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our assumption, we can perfectly infer the sequence of hidden states SIY(GY, A) =
[51,..-,8n] € {sp, 84} simply by the rule s; = s, if g; € A and s; = s, otherwise.

Thus we have:

1/2 - i~ Si— i # Sie
Pry(GN|A) = Pra(GY, SN A) = M//QH(1 D1fs 35;““ 7 sl (g 47)

On the other hand, if the sequence G¥ is simply i.i.d. samples from the uniform
distribution over M, its probability is given by

1
MN’

Pry(GY) = (2.48)

We further define a joint distribution rule Pry(G¥, A) such that the marginal proba-

bility agrees with Pry(GY). In particular, we define:

. N
Pry(GY, A) = Pry(A|GY)Pry(GY) = — Cr2(Gr 1 A)

Sac PlGrE) G 240

where we define the conditional probability Pri(A|GY) using the properties of the
2-statc HMM class.

The main idea of the proof of Theorem 2.7 is to show that if N = o(M), the
total variation distance between Pr; and Prs vanishes to zero. It follows immediately
from the connection between the error bound of hypothesis testing and total variation
distance betwceen two probability rules, that if TV (Pry(GY), Pra(GY)) is too small
we are not able to test which probability rule the random sequence G is gencrated
according to.

The detailed proofs are provided in Appendix 2.7.4.

As an immediate corollary of this thcorem, it follows that many natural propertics

of HMMs cannot be estimated using a sublinear length sequence of observations:

Corollary 2.4. For HMMs with 2 states and emission distributions supported on a
domain of size at most M, to estimate the cntropy ratc up to an additive constant

¢ < 1 requires a sequence of Q(M) observations.
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2.7 Proofs for Chapter 2

2.7.1 Proofs for Rank 2 Algorithm, Phase 1

Proof. (to Lemma 2.1 (Estimate the word marginal probability p))
We analyze how accurate the empirical average p is. Note that under the assump-
tion of Poisson number of samples, we have p; ~ +Poi(Np;), and Var(p;) = ~Pi-

Apply Markov inequality:

(M 5 — ol M
Pr Z——z—-——z >t)§—,
2|77 W

M ~~ 2
SN EZA < % (2.50)
prll RRV/Z

Then apply Cauchy-Schwatz, we have

M M M 5 — pil? 1/2 1
1p: — pil < Py | < -
2 LT @

Proof. (to Lemma 2.2 (Concentration of marginal probabilities in the heaviest bin))
Fix constants C; = % and Cy = 2, apply Corollary 2.5 of Poisson tail (note that
for word in the heaviest bin, we have Np; > dylog M to be a super constant), we

show that p; concentrates well:
Pr(C1Np; < Poi(Np;) < CoNp;) > 1 — 4e NPi/2 > 1 _ g~ NlogM/(2M)

Note that the number of words in the heaviest bin is upper bounded by M, <

1 M
minier P = log(M) "

Take a union bound, we have that with high probability, all the
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estimates p;’s in the heaviest bin concentrate well:

. . M viearrom
Pr(Vi € Liog : C1ps < pi < Capi) > 1 — Eg_l\/—le Nlog M/(2M)

> 1 — 4e—Vlog M/(2M)~+log M—loglog M
>1-— M —{(do/2-1)

>1-M™1,
where recall that dy = N/M is a large constant. a

Proof. (to Lemma 2.3 (Estimatc the dictionary scparation restricted to the empirical
hecavicst bin))

(1) First, we claim that with high probability, no word from Z;, for k < log(M) — €2
is placed in Ilog a- Namely all the words in Ilog have true marginals at least Q(m‘r log M ).
This is casy to show, by the Corollary 2.5 of Poisson tail bound, each of the word
from the much lighter bins is placed in f;og a with probability less than 2e~V1°g M/M
Take a union bound over all words with marginal at least 1/M, we can bound the

probability that any of the words being placed in Ilog M by 2MedologM — O pf—do+1),

(2) The appropriate scaling with the diagonal matrix diag(ﬁjz_log)‘l/ 2 on both sides
of the diagonal block is very important, which allows us to apply matrix Bernstein
inequality at a sharper rate.

Note that with the two independent batches of samples, the empirical count matrix
B considered here is independent from the empirical marginal vector p. Thus for every

fixed realization of p, we have that with probability at least 1 — M™%,

_1/2 R A-1/2 log(A/Ilog/(S) log(h[) log(]\/[log/o)
”D ZF ( Ilog Iln Bflog,zbg)D T ”2 < N + N
(M, log(1/6)
=0 (N U+ e

M
-0 (%),
N
where we used the fact that the all the marginals in the heaviest bin can be estimated
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with constant multiplicative accuracy given by Lemma 2.2; also, note that compared
to the Bernstein matrix inequality directly appliéd to the entire matrix as in (2.73),
here with the proper scaling we have Var <1 and B < logfz—lM), since p; > log(M)/M
for all 7 € flog.

We will show that Bfnog Zrog? the diagonal block of the empirical count matrix,
concentrates well enough to ensure that we can estimate the separation restricted to

the heaviest bin by the leading eigenvector of (B3

log» Ilog

_ ﬁﬁof%og)' Note that

~n-1/2 - "—1/2 —1/2 FaN T AN-1/2 A7 —1/2 " T
flog BI[OK’IIOgDTIOg - Il prg(D leOE) + D I AI}og(DA Ilog) ’

Apply triangle inequality we have

—1/2 . ~T A-—-l/? —1/2 ’ —-1/2 - T
”D ( Ilog Il°g pI]OE pi.lOS )Dflog Ilog AI]OE (Dilos AIIOg) ”2

—1/2 L \R-12 1/2 ~T R ~N-1/2
< ”D ( Ilogyl-log - BIlog,Ilog) ilog ! Df] og leogpzl og leogpflog) Tlog 2
M M
=0 ( N) + N
/]VI
—1/2 L 12
(3) Let uu" be the rank-1 truncated SVD of D (BIlog Fog I]og L g)DLo Let
v :lf/ u be our estimate for AA . Apply Wedms theorem to rank-1 matrix
log
(Lemma 2.22), we can bound the dlstance between vector u and DA Y 2A710g by:
- M/N)Y?
min{|1D;" Az, | ~ ull, 1D g, + ula} = Omin {— el vy,
1Dz Az 2
log og
~1/2 /4/2
Note that ||D 1|| = || ||2 1. Apply Cauchy-Schwatz, for any vector z, we

have
1D5 el 2 D5 22 I BY2 1l > |< D3, BY21 > = |l
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therefore, we can bound

. | (N2
min{(|Az = vlly, |8z,  +vlh} <O (mm {-—”—A-;-”—l, (M/N)V*5 ).
log

In the above inequalitics we absorb all the universal constants and focus on the scaling

factors.

Proof. (to Lemma 2.4 (Spillover from much heavier bins is small in all bins))
Define dy, = e¥dy, which is not to be confused with d** dcfined in (2.18).

(1) Consider ¥ = k + 7. The probability that a word i from Ty falls into Zj is
bounded by:
k

k—1
Pr (NGA — < Poi(Np)) < N%) <Pr (Poi(N

e(f+k) k

) <N %) <20

(2.51)

where we apply the Poisson tail bound (1) in Corollary 2.5, and set ¢ = e < 1/2 for
7 > 1. Note that this bound is doubly exponentially decreasing in 7 and exponentially

decreasing in d.
In expectation, we can bound W by:

s . ekl . ek
EWy=E> pi > 1[i€L]Pr (N7 < Poi(Npy) < NM)
tEM k'K >k+741

e(f+k) e
<3 i(N N
_iGZMp Pr <P01( i ) < ]\/I)

< 26_67-}-1(,(10/2

Similarly, apply the Poisson tail bound (2) in Corollary 2.5, and set ¢ = €™ > e for

T > 1, we can bound the probability with which a word ¢ from much lighter bins,
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namely Uz <k—7)Zi, is placed in the empirical bin fk by:

k+1

Pr (NS < Poi(Np) < Nort ) < Pr Poi( Ve -
r( M< oi(Np;) < T/f_)" r(m(

M)>N%)S%4@ (2.52)

and bound the total marginal probability by:

EW, < %~ o

(2) Next, we apply Bernstein’s bound to get a high probability argument. We show
that with high probability, for all the loglog(M) bins, we can bound the spillover
probability mass by W, < E[W] + O(m), which implies that asymptotically as
the vocabulary size M — 0o, we have W, < 2e¢""*%/2 for all .

Consider the word ¢ from the exact bin Zy/, for some k' > k + 7. Let

A = 2(3_€k/‘1l"/2

denote the upper bound (as shown in (2.51)) of the independent probability with
which word 7 is placed in the empirical bin fk (recall the Poisson number of samples
assumption). The spillover probability mass is a random variable and can be written

as

Wi = Z p:Ber(\;),
i€y (k+7)< k' <loglog(M)
Note that the summation of word i is over all the bin Zy for (k+7) < k' < loglog(M),
where recall that in in Lemma 2.2 we showed that with high probability the heaviest
words are retained in the empirical bin flog. ‘Apply Bernstein’s inequality to bound

Wkl

t2/2

PI‘(Wk — ]EW,C > t) < 6_2‘ pyXitmax; pit/3

To ensure that the right hand side is bounded by e™'°8# (this is to create space for
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the union bound over the loglog M bins), we can fix some large universal constant C

and sect £ to be

t=2 ((Z P22 4 mgxp,») log(M).

2

which right hand side can be bounded by:

A\ 1 V2 log M
2 2 —ebd /2 g LV
py ; < — “J(2e 0
(Z Pi ) + miax pi = (iefk,:(k-k‘rg%%’xglog log(M) ( Pi )( ’ )( € )> + M
1% , 1/2 Yy
<(2 max £ eeKdor2 + log M
(k+7)<k'<loglog(M) M M

2e~¢""Tdo/4 og M

+ ,
VM M

where the first inequality is uses the worst case to bound the summation, and the

last inequality uses the fact that dy = Q(1) is a large constant. Therefore, we can set

—(ek+T ) y
= 2(% ( %) logM (10%‘3”2). Finally, take a union bound over at most loglog(M)

moderate bins, we argue that with high probability (at least 1 — O(1/M)), for all the

empirical moderate bins, we can bound the spillover marginal by:

W, <EW, ).
Wi <EW, + O(poly(]\'f))

(3) Morcover, assume that Wy, > e¢7*, we can bound the number of the heavy spillover
words M}, compared to number of words in the exact bin M.

First note that M < 67?7;%—[ Recall that d*®> = NW(e™™* /M) was defined in
(2.18). Also, since Wy, > e™% > W, ~ e~¢"""d  we can lower bound the number of

words in the empirical bin fl by:

Wi
/] >
M, 2 e+ M
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Thus we can bound

o Wi (NWi(eM /M
ﬂfk j{‘f S ( k_i_.r;ﬂj)( ¢ W, / ))
Lk e ((,A:l'r/-}hf)

< MW

QeﬁH-‘r d(J

<1

7

where the second last inequality we used the high probability upper bound for W,

and in the last inequality we use the fact that e* > 2z for all . a

Proof. (of Lemma 2.5 (Concentration of the regularized diagonal block By.))
In Figure 2-2, the rows and the columns of Bz 3 are sorted according to the
k k
exact marginal probabilities of the words in ascending order. The rows and columns

that arc sct to 0 by regularization are shaded.

Bkai.- ]Ek = 5&75}3 =+ ﬁkﬁz

oy . .
z'(:g;ll.[‘ul‘iz;l?.u.;ni
set to 41 vow/cohumn sum larger than 243

Figure 2-3: block decomposition of the diagonal block of Bys corresponding to f;,

On the left hand side, it is the empirical matrix without regularization. We
denote the removed elements by matrix F € Rf"'XM", whose only nonzero entries are
those that arc removed from in the regularization step (in the strips with orange
color), namely F = [Bé!jl[-i or j € ﬁk]] We denote the retained elements by matrix

By = Bz .z \E = B3,z — E.

k
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On the right hand side it is the same block decomposition applied to the maﬁix
which we want the regularized empirical count matrix converges to. Recall that we
defined ]ﬁ%k = pxpy + Z&;\ZZ in (2.25), where we set entries corresponding to the words
in the spillover set jk to 0.

We bound the spectral distance of the 4 blocks (A, As, As, A4) separately. The

bound for the entire matrix Ek is then an immediate result of triangle inequality:

B — Byl = [|[Bnalz, oz, — E — Byl
= [AI\E + A\E + A\ E + A\E — NB|
SANE =Bz, oz, [ + [1A\E| + [ A\ E|| + [ A\E|-
We bound the 4 parts separately below in (a)-(c).
(a) To bound ||A1\E — Bz, , z ||, we first make a few observations:

1. By definition of :7\;, and fk, every entry of the random matrix A, is distributed as
an independent Poisson variable +Poi(Ax), where Ax < N( %)2 < dol—o—gﬂ(lﬂ)- =

o(1).
2. The expected row sum of A, is bounded by of dj**.

3. With the regularization of removing the heavy rows and columns in F, every

column sum and the row sum of A; is bounded by 2d***.

Therefore, by applying the Lemma 2.25 (an immediate extension of the main theorem
in [76]), we can argue that with probability at least 1 — M_" for some constant

r = 0(1),
IANE — Bz, 7 ll2 = O(/di2*/N).

(b) To bound || 42\ E|| and || A3\ E||, the key observations arc:

1. Every row sum of A>\E and cvery column sum of A3\ E is bounded by 2d**.
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2. For every non-zero row of A,, its distribution is entry-wise dominated by a
multinomial distribution +~Mul <ﬁ“§; (2N d;c"ax)), while the entries in E are
set to 0, and note that in A, the columns are restricted to the good words Lr.
Morecover, by the Poisson assumption on N (recall that dj*** = W}p,), we have
that the distributions of the entries in the row are independently dominated by

2Ndmax

1L poi (—m—)

Lemma 2.18 (row/column-wise ¢; norm to £, norm bound (Lemma 2.5 in [76])).

Consider a matriz B in which each row has £, norm at most a and each column has

L1 norm at most b, then || Bl < Vab.

Claim 2.3 (Sparse decomposition of (A2\F)). With high probability, the index subset
T X Ly of (A2\E) can be decomposed into two disjoint subsets R and C such that:
each row of R and each column of C has row/column sum at most (§ log(Ndp™)),

for some constant r.

Recall that from regularization we know that each column of R and each row of
C in A>\F has column/row sum at most 2d**. Therefore we can apply Lemma 2.18

and conclude that with high probability

1A\ Bl < 2 \/rdk IoiSNdk ).

Proof. (to Claim 2.3)

We sketch the proof of Claim 2.3, which mostly follows the sparse decomposition
argument in Theorem 6.3 in [76]. We adapt their argument in our setup where the
entries are distributed according to independent Poisson distributions. We first show
(in (1)) that, with high probability, any square submatrix in (As\ E) actually contains
a sparse column with almost only a constant column sum; then, with this property we
can (in (2)) iteratively take out sparse columns and rows from (A,\FE) to construct
the R and C.

(1) With high probability, in any square submatrix of size m x m in (Ap\E), there

cxists a sparse column whose sum is at most (& log( N dP?*)).
~ 108 k
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To show this, consider an arbitrary column in an arbitrary submatrix of size
m x m in (A2\E). Recall our observation (b).2, that the column sum is dominated

by +Poi(\) with rate
m

A\ = 2N T .
k M, k

Therefore, we can bound the column sum by applying the Chernoff bound for Poisson

distribution (Lemma 2.23):

Pr (a column sum > (7:[— log Nd‘,;‘“)) < Pr (Poi(A) > (rlog Nd;®))

—A (T log Nd;f’ax) —rlog Ndpa
< o [ Tlog Ndi™
a eA

TA'[k —rlog Ndj®*
< —
— \2Ndp*m
< ( ’I‘]\c’[k ) - ’
> om ’

where in the last inequality we used the fact that for Nd?** and r to be large constant,

the following simple inequality holds:

max TA/I TAJ
log(Nd;"®*)log (Wﬁ?%) 2 log ( mk) .
<N ay

Then consider all the m columns in the submatrix of size m x m, which column sums

arc independently dominated by Poisson distributions, we have

Pr (cvcry column sum > (% log Nd;*) ) < (

2m

er) -

Next, take a union bound over all the m x m submatrices of (A2\E) for m ranging

between 1 and My, and recall that block (A;\F) is of size My, x (My, — My). We can
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bound for all the submatrices:

Pr ( for every submatrix in (A,\ F), there exist a column whose sum < -z log Nd@®*
. N k

m=1
Hk 2m —rm
]\/fk T’Mk
>1— —= —
- :/—:‘1 ( m ) ( 2m )
>1— M2, (2.53)

Note that this is indeed a high probability event, since for Wy, > ¢pe™*, we have shown

that My > Me™2k+7,

(2) Perform iterative row and column deletion to construct R and C.

Given (A,\E) of size My x M}, we apply the argument above in (1) iteratively.
First select a sparse column and remove it to C, and apply it to remove columns until
the remaining number of columns and rows are equal, then apply it alternatively to
the rows (move to R) and columns (move to C) until empty. By construction, there
are at most M such sparse columns in C, each column of C ha,s sum bounded by
(% log Nd?>), and each row of C bounded by 2d}"®* because it is in the regularized
(A2\E); similarly R has at most M) rows and each row of R has sum at most
(% log Nd?®) and each column has sum at most 2dp>*.

O

The proof for the other narrow strip (As\E) is in parallel with the above analysis
for (A;\E).

(c) To bound ||A4\E}|, the two key observation are:

1. The total marginal probability mass of spillover heavy words W, = Ziefk pi <

2e=¢""7d/2_ (shown in Lemma 2.12).

2. Similar to the observation in (b).2 above, the distributions of the entries in cach

row of (A4\E) are indcpendently dominated by +Poi (2N dina“"%;:i_—}:)
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In parallel with Claim 2.3, we make a claim about the spectral norm of the block

(As\E):

Claim 2.4 (Sparse decomposition of (A4\E)). With high probability, the index subset
Tr % T of Ay can be decomposed into two disjoint subsets R and C such that: each
row of R and each column of C has sum at most ; each column of R and each row

of C has sum at most d**.

Proof. (to Claim 2.4)
To show this, we construct sparse decomposition similar to that of (A2\F).

The only difference is that, when considering all the m x m submatrices, we only
need to consider all the submatrices contained in the small square (A4\E) of size
T ¥ j;., instead of all submatrices in the wide strip (A2\E) of size Ly x Je. In
this case, taking the union bound leads to factors of My, compared to that of A} in

(2.53).

Here we only highlight the difference in the inequalitics. Consider an arbitrary
column in an arbitrary submatrix of size m x m in (A4\E). Recall that this column

sum is dominated by % Poi()\) with rate

W
A= 2Nd;me:%.

Thus we can bound the probability of having a dense column by:

r 7 T
Pr 5 =)< i <e M=) < (—)".
r(a column sum > N) < Pr(Poi(A) >r) <e (e/\) < (e)\

Take a union over all the squarc matrices of size m x m in block (A4\E), we can
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bound:

. r
Pr(for every submatrix in (A4\E), there exist a column whose sum < YV—)

-3 (7))

m=1
o % (A_Jk>2m (Mk TVVk >—rm
T AZ=\m m e2dPWy,
>1— M;(r—2),

where in the last inequality we used the fact that d* = N Wke%:, and plug in the

high probability upper bound of W, < 2e~¢"""4 a5 in (2.21), we have:

rWi rWiM re(e"*7do)

ezdzlaxwk QeNWkek+re—e‘°+Tdo 2¢(6k+1d0)

Again note that given that the bin has significant total marginal probability, thus
M. > Me=2* the above probability bound is indeed a high probability statement. [1

Proof. (to Lemma 2.6 (Given spectral concentration of block l~3k, estimate the sepa-

ration Ay ))

Recall the result of Lemma 2.5 about the concentration of the diagonal block with

regularization. For empirical bin with large enough marginal W}, we have with high

~ - dma,xlog2dmax
Bi-By| <oy A
” k b 2_0 ‘ N

Also recall that pz is defined to be the exact marginal vector restricted to the em-

probability,

pirical bin fk.
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We can also bound

|Bi - 5.5, - BB, < || (Be - prR) - B - i),

< |55 [, -,

dmax 10g2 dmax
- V N

Note that in the last incquality above we ignored the term [|pz, — pill2 as it is small

for all bins (with large probability):

- 7t <1~

, < \/ﬁk(Mk/Ng TR We/p Mt

over Ly over Ji

]\/ '2—p- 3 dma.x
—_— 0( N ‘))

2
where in the sccond inequality we write ”ﬁfk - ,Bk” into two parts over the sct of
2
good words L and the set of bad words Ji.. To bound the sum over £, we used the
Markov inequality as in the proof of Lemma 2.1; and to bound the sum over Te as

2

we used the fact that if a word i appears in Z;, we must have
2

well as the term I Pz,

pi < Py- The last incquality is duc to MZpy < W2p, < Wip, = diax.
Let vzv be the rank-1 truncated SVD of the regularized block (B —pkpy ). Apply
Wedin’s theorem to rank-1 matrix (Lemma 2.22), we can bound the distance between

vector vy, and Ay by:

min { | & — vill, 1A + vel }

1/2
=0 | min El-?‘fflo,az;(f\/d“’*”‘)——1—— \/ i log (N dinax) /
N FAg N g
O

Proof. (to Lemma 2.7 (Accuracy of A in Phase 1)) Consider for cach empirical bin. 1f

Wi < €ge™" set Afk = (0. We can bound the total ¢, norm crror incurred in those bins
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by €. Also, for the lightest bin, we can bound the total ¢; norm error from setting
Bfo = 0 by ¢g small constant. If Wk > ege™*, we can apply the concentration bounds
in Lemma 2.2, 2.6, and note that Il&fh Az |h < \/Muﬁfk — Az |2

Note that we need to take a union bound of probability that spectral concentration
results holds (Lemma 2.5) for all the bins with large enough marginal. This is true
because we have at most loglog M bins, and each bin’s spectral concentration holds
with high probability (1 — 1/poly(M)), thus even after taking the union bound the
failure probability is still inverse poly in M.

Actually throughout our discussion the small constant failure probability is only
incurred when bounding the estimation error of p, for the same reason of estimating

a simple and unstructured distribution.

Overall, we can bound the estimation error in ¢; norm by:

- dPax 1og Ndma
IA-AL < & + 1/dY* + € +zk: \/M,c(\/L—N——i——)”2

lightest bin  hequiestbin  moderate bins with small marginal P

moderate bins with large marginal

12 ") N 7 =
< ey + 1/dy/* 4 S (ABIAP 0BT
k

1/4 T Wi My, 1/4
< 2¢0 + (log(do)/do) " (1 + € Z( M )%
k

< %€ + (log(do) /do)*(1 +¢)

= O(eo)

where in the second last inequality used Cauchy-Schwartz and the fact W, < 1, so that
S WEMO)YA < 5, (VW M) V2 < (5, Wi S Mi)Y/4 < M4, and in the last
inequality above we use the assumption that dy =: N/M satisfies that dy/log(dp) >
1/€;. a

2.7.2 Proofs for Rank 2 Algorithm Phase 11

Proof. (to Lemma 2.8 (Sufficient condition for constructing an anchor partition))
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(1) First, we show that if for some constant ¢ = (1), a set of words A satisfy

> c||Alls, (2.54)

>a,

i€A

then (A, [M]\A) is a pair of anchor sct defined in 2.3.
By the assumption of constant separation (Ca = Q(1)), >, 4 Ai = Q(1). We can

bound the condition number of the anchor partition matrix by:

pa,  Aa _VI’-4D+T _ yT+4cCa +1
1—pa, —Ba VI?—4D—-T =~ 1+ 4cCa — 1

cond

where T =pq4 —Ag<land D= —paAs— (1 —pa)Aa=—Ay4.

(2) Next we show that A defined in the lemma statement satisfies (2.54).

Denote A* = {i € T : A; > 0} Note that |[Azll; = >, 4o Ai — 2ienar Di
Without loss of generality we assume that 7, . A; > 2]|Az|l; > $C||All;, where
the last inequality is by the condition ||Az|l; > C||All:.

Given Ay that satisfics (2.29). We look at A= {i € T: A; > 0}.

Sa- Y a- Y oa

icA icAnA i€ AN(T\A*)
SO S VRN
€A i€(AN(I\A*))U(A*N(T\A))
> > A 1Az - Agls
i€EA*

1 y

> (0 - Ol
1

> =-C

= 6CCA7

where in the second last inequality we used the fact that, if the sign of E, and A, are

different, it must be that |A; — A;| > |A|. O

Proof. (to Lemma 2.10 (Estimate the scparation restricted to the k-th good bin))

Since it is a good bin, we have the ¢3 bound given by Lemma 2.6 as below (as-
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suming the possible sign flip has been fixed as in Lemma 2.2):

max 2 jmax
||Zk ol < Vv ai* log® df ~1 ‘
N 1 Akll2

Then we can convert the bound to ¢; distance by:

s = Bulls _ VFlve = Bille
12~ 1Al
< VMllor = Az Aillz
T 1A A
< Mk||'vkv,;i— AAT|
1813

My, log®(dp)
< R Jmax_“© _\"Y/
“Cw,f @ N

My . [ Wilog?(do)
< Ckem  [NW—E =2 20
< Cypae *M,” N

| M log*(do)

< Ty — 7
S CEN Nwer

where in the second last inequality, we used the fact that .Mk%; < W}, again, and in

the last inequality we used the assumption Wy > ¢/ ek,

Proof. (to Lemma 2.9 (With Q(1) separation, most words fall in “good bins” with
high probability))

This proof is mostly playing around with the probability mass and converting

something obviously true in expectation to high probability argument.
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(1) Note that by their definition we know that Wy, > 15k, and we have

Z”’»(l[ow~ 2+ 2W 1[2W,, C]>

_Zwkmk( L;*,_cz]ﬂ[ <cz]>

Morcover, note that by definition of Wy, we have >, W, = 1, therefore

. Sk . Sk _
};mzwkl e < Cy) < ; CoWy = Cs.

From the above two inequalities we can bound

1
Wil > Co] > =Y S — Co.
Z 211 2 22; ko2

Also note that

C
> Wil[Wy < 2—;] <C.
k
Therefore according to the definition of “good bins” we have that:

Ch 1
%VV _ZWkl [—>Cf> andW >—2—J 2§;Sk—02—01 (255)

(2) We want to lower bound the quantity 3, Sk to be a constant fraction of ||Al];.

Note that by definition of Sy, we can equivalently write the sum as:

Z Sk = Z Z lAtl = Z |Az| Z 1[L < Ik N U{k’:k’gk—m-}fk’]'
k

k ’LGILO(U{U k./<k+.,)1,€/) i
Consider for cach word i. Assume that word ¢ € Z. Given N = dyM for
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some large constant dy, denote dp = e¥dy, we can bound the probability Pr(i €

Ik N U{k’:k’§k+'r}fk’) as follows:

Pl(l € Ik ] U{kr:klgk.;.,-}fk') Z 1-— PI‘(PO](Np,) > 67/)1;) - PI‘(POl(sz) < e_TNp,-/Z)

e—(r—l)e("+k)d0

>l — ek
V2mwektTd,

>1— 2%,

Therefore at least in expectation we can lower bound the sum by

?

E[Z SL] = E |A,| ZPI‘(Z € Ik n U{k’:k’gk—}-r}fk’) > (1 - 26_d0)“A”1.
k k

(3) Restrict to the exact good bins, for which we know that the exact |lpz [l1 > "
and [|Az, |l1/llpzllh = C.

Here we know that if fk is an good bin, the number of words in this exact good
bin is lower bounded by M > e */p, > M/e*, and since k < loglog M we have
that M > Tﬁm‘ This is important for use to apply Bernstein concentration of the

words in the bin.

Since ||Az, |li/llpz ll1 = C, and that |A;| < p;, we have that out of the M words
there are at least a constant fraction of words with |A;| > %Cpk. Recall that we
denote pr = e¥/M. This is casy to sce as zpy + (My, — 2)3Cpx > 1Az |l = CMypy
thus z > C/2 — C M.

Then we bound the probability that out of these cMj words with good separation,
a constant fraction of them do not escape from the closest 7 empirical bins. Denote
Ax = 2e~%  which is the upper bound of the escaping probability for each of the word,

and is very small. By a simple application of Bernstein bounds of the Bernoulli sum,
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for a small constant ¢y, we have

Pr( Z Ber; (M) > coM;) < Pr( Z Ber;(Ax) — MMy > (co — ) My)
i=1,...cM} 1=1,...cM},
B Yeo—Ag)2nid
< e Midetgleo—e)My
~ e—(:()]\'fk
Then union bound over all the exact good bins. That gives a loglog M multiply
of the probability.
We now know that restricting to the non-escaping good words in the exact good
bins, they alrcady contribute a constant fraction (due to constant non-escaping, con-
stant ratio [|Az |l1/llpz, |1, and constant 37, . oo bin W) Of the total separation

IIA}l1. Thercfore we can conclude that for some universal constant C' we have

Z Sy > C|llAlx.
k

(4) Finally plug the above bound of ), Sy into (2.55), and note the assumption on
the constants 'y and Cs, we can conclude that the total marginal probability mass

contained in “good bins” is large:

- 'l 1 1
Zwk > (C~ 21 ;)—4)HA||1 = EHA”L
ke -

Proof. (to Lemma 2.11 (Estimate p and A with accuracy in ¢; distance))

Consider word 7 we have that

PA, AA Pi ZjeABJ,i
t—pa 24 | | 8| | SienBs
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Set,

-1

pi PA, Aa > jea Bi
A; 1—pa, —Da > jeac Bii

Since Y jeaBii~ S Poi(N(papi+Aadi)), apply Markov inequality, we have that

Pr(Z(Z Bj; - Z]Bji)Q > €?) < ~ 2i(papi+ Dali)  pa

2 Ne2
€ €
i jeA jeA

Note that p4 = Q(1) and that cond(D 4) = ©(1), we can propagate the concentration

to the estimation error of p and A as, for some constant C = (1),

- C ~ C
Pr(|p—pll > €) < =, Pr(lA-All>e) < 1.

2.7.3 Proofs for Rank R Algorithm

Proof. (to Lemma 2.12 )

E[W,] < 2¢™¢ "0/,

First we argue that with high probability, all words in bins k£ > loglog M concen-
trates well. For p; > %M, set constant C' = 1/2, we have

1 .
Pr(Poi(Np;) < §Npi) < 2e~Npi/2 < 9N log M/2M
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There arc at most A 7 such heavy words. Take a union bound over them we have

Pr(Vist. i € Ip, k > loglog M :i € Ty, k' < k — 1)

>1— __&26—N10g]w/21\/]
- log M

> 1—2exp(—Nlog M/2M + log M — loglog M)
> 1—2cxp(—Nlog M/4M)
=1-—2M %/,

Second, define Zy, = {i : i € Ty, k+ 7 < k' < loglog M}. For word i € Zy, let
A\ = e~ do/ 2 we have Wi, = > iz, piBer(X\i). By Bernstein inequality:

t?
Ziefk p?)\z + max’i€fk p'lt

Pr(W; —EW, > t) < exp(— ).

In order to bound the probability by exp(—2loglog M), so that we can take a union
bound over the log M bins, we set t to be t = 2loglog M(1/VM + log M/M) =
O(1/poly(M)), and note that

log M
)2 /2 |
;) +max i) < max— 2\
(O PN ax pi) < (max —pIA)"* + ==

i€Zy,

< (max (¥ /M)2e" /22 4 1og M /M
k' >k+1

<1/VM +log M/M.

Therefore, we argue that with high probability, for all empirical bins fk, we can

bound the spillover probability from heavy bins by:

Wk < 6—8T+k’d0/2‘

Proof. (to Lemma 2.13 ) Consider for a typical word in the bin Z;, we can bound the
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probability that it is not contained in bin fk by:
1
Pr(Poi(Np;) < §Npi or Poi(Np;) > 2Np;) < Qe do/2

Apply Bernstein inequality to all the W /p, words in bin Z;, denote A\, = 4e¢"do/ 2

we have

t2

Pr(W; —EW; > t) < exp(——————
( k k ) p( Mkﬁikk +ﬁkt)

Since the bin is big, we have W), > e™*, we can set

—ekdo/a10g M N log Mloglog M _ ,

t = (Mipr(Me/Mi)Y? + pi) loglog M < 4Wye (1),
M, M

where the last inequality is due to M} > Me~2* Take a union bound over all log M
bins, we can ensure that with high probability, for each bin, the escaped mass is
bounded by 4W;e~¢"d0/2,

a

Proof. (to Lemma 2.14 ) In parallel with the analysis for Rank 2 (see Lemma 2.5),
we know that regularization restores spectral concentration in the diagonal blocks.

Denote the noise matrix in the regularized diagonal block by Ej = By — B.

VN log Ndy==

| Exl| = || Bx — Byl = O( I )

Denote the R-SVD of By, by ViV,

[Projp, BkProjg, — Bk|| = |[Projg, (Bx — Ex)Projy, — Byl
@ Lo :
< |Projg, BiProjy, — Byl + || Projg, Ex|l
® s o .= = = .
< [[Projg, BrProjy, — Bl + || Bk — Bxl| + |[Projy, £l
© ~ _
< |IBx — Bkl + | Exll + ||Projg, Ex||

< 3| Exl; (2.56)
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where inequality (a) (b) are simply triangle inequality; and inequality (c) used the
fact that Proj;,.kngroj‘;k from truncated SVD is the best rank R approximation to

ék that minimizes the spectral norm. Finally, apply Lemma 2.19 we have

||Proj‘7k]B§‘i” - ]B%%’:tﬂ < \/HProj‘;k]BkProjpk — By

Lemma 2.19. Let U be a matrixz of dimension M x R. Let P be a projection matriz,

we have
U - PU|? < |UUT — PU(PU)T|.
Proof. (to Lemma 2.19 ) Let P+ =1 — P, so U — PU = PU. We can write

UUT — PU(PU)" = (P+ PHUUT (P + PY) - PU(PU)T
= P*UU P+ PUUTP+ + PrUUTP.

Let vector v denote the leading left singular vector of PAU and P*U, by orthogonal

projection it must be that Pv = 0. We can bound

|UUT — PU(PU)T| > |0 (PrUUT P+ + PUUT P 4 PLUUT P)o)
= 0T PrUU T Pty

= |PHU]*.

Lemma 2.20 (Scaled noisc matrix). Consider a noise matriz Eg with independent

entries, and each entry has sub-ezponential tail with parameter (o;; = \/Lﬁ,b,i,j =
1 M

W), fO’I" b,’_’j S N

Consider a fivred matriz V' of dimension M x R whose columns are orthonormal,
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with large probability we can bound the norm of VT EsV and VT Eg separately by:
R? ~ RM
T _ L7 T _ nvt
IVTEsV|| = O(y/ a7 and VT Esll = 0(\/ =)

Proof. To bound the norm of the projected matrix, note that we have
IVTEsV|2 < |[VTEsV|% =Tr(VTEsVVTETV).
By Markov inequality, we have

Pr(Tr(VTEsVVTELV) > t) < ETr(VTEsVV T EZV)

IN
| = ok | =

Tr(VTE[EsVVTELV)
S ———
X

o~ | -
=] %

where the last equality is because for the 7, j-th entry of X (let E; denote the i-th
row of E and V, denote the r-th column of V)

2 2 _ s R

Xij =ED (EV)(EV)] =802, [Vill3 = Oij -

Therefore, with probability at least 1 — 4, we have

R2
T <4/ —=.
IVTEsVI < /75

IVTEs||2 < |[VTEs|2 = Tr(VTESELV).

Similarly, note that

By Markov inequality, we have

Pr(Tr(VTESESV) > t) < %ETT(VTEEE:V) = zTT(VTIE[ESEST]V) = %%
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Proof. (to Lemma 2.15 )

We first show the spectral concentration of Pl‘Oj"}DggDSPI'Oj{} to DSﬁDS can be

bounded as:

. ) . = log(N lw?nin M v
|Projp DsBDsProjp — DsBDs|| = O ( Jgfw? /J{I )> . (2.57)

man

Note that by definition the rows and columns that are set to zcro do not necessarily

coincide in B and B (defined in (2.37)), and we do not observe the sparsity pattern

in B.

Define EE = B — B. Apply triangle inequalities we have

|Projy Ds BDsProjg — DsBDg||
<||Projp DsBDsProjy — DsBDg| + ||Projp Ds EDsProjo || (2.58)

Next, we bound the two terms in (2.58) separately.

(1) First, to bound the term |IP1‘oj€,Ds]§D5Projg, - DSIEDSH, we note that
| DsB*"|| < ||diag(p™"/?)Bdiag(p~/?)|| = 1. (2.59)

Apply the block concentration result in Lemma 2.14, and recall that d7'® = Mypi /Wmin =

Wk /Winin, we have
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[IProjo DsB** — DsB*|| < (3 p;,"|Projg, B — BZI™||*)/*
k

N& log N &7
— O((Z \/ k Npk k )1/2)

NWkPk M;, 1/2
(\/—Z —)%)

Wrnin 'wmin

- O((y o \/(og (Fm) +log(Wack) WeeH))
mln k m’t”l

< O tog gy > VIogWre e H)?)
N m'm M mm k

_ o (18N whin/M) + 310g(1/wmin) | *

B Nwpin/M ’

og(Nw H\ v
_0<1 BN m/ﬁ”)) , (2.60)

'rmn

where the last inequality is because log(1l/wWmin) < 1/Wmin, and the second last in-

equality is because

> Viog(Wiek))Wie® < Y~ v/Wike* < \/Z Wi Y ke * <2
k k k k

Therefore, with (2.59) and (2.60) we can bound the first term in (2.58) b,

||Pr0jl7Ds]§DSProj‘7 — DgBDg||
<||(Projp DsB*™* — DsB**)(Projp DsB*™)T|| + || DsB*" (Projgy DBt — B*t)T |
<2|| DsB*"||||Projy DsBt — DgBe™t||

o 9 1/4
—0 (l gl w’"’}'ﬁ" )) . (2.61)

7ﬂZ7Z
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(2) Second, to bound ||P1‘0j‘~,D3EDSPr0 i ||, we carefully analyze the regularization
to take carc of the spillover effect. In Figure 2-4 we divide E into different regions
according to the sparsity pattern of B (as defined in (2.37)) and the regularized
empirical matrix B in this step. We only highlight the division in one diagonal block,
but it applics to the entire matrix across different bins. We bound the spectral norm

of the matrix £ restricting to different regions separately.

Figure 2-4: decomposition of E corresponding to fk, Ek and ﬁ;\,.

In particular, region £, is where rows/columns are not removed by either B or B.
2 1 RTa el ] hY T 1 8) P 1 ' _.___1,_.._. 1 . . . .
The entries arc dominated by independent variables m(Pm(N B,;) — NB;;)
; ey o te : : aramoter AP . N S
and have sub-cxponential tail with parameter (o TN bij =« 5w < 1).
Also, since independent copies of the empirical bigram matrix are used in cach step
of the algorithm, the noisc is independent with the (R log M )-dimensional projection

matrix Projg. Apply Lemma 2.20, with probability at least 1 — ¢ we can bound the

norm of projected noise as:

: : . . [ (Rlog M)?
|Projy Ds E1 DsProjg|| < 2||Projg EsProjg || = O( (——;;’6—)) = o(1)

Region E3 corresponds to the rows/columns that are removed by both B and B,
thus 3 = 0.

Region Es is sct to 0 in B but not in B, thus the entries of Ey arc equal to [IE%], i
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For the rows of B*"t restricted to bin fk, the row sums are bounded by 2p;, and the
column sums arc bounded by Wi = O(Wie ¢"%/2) (Lemma 2.13). Recall the fact
that if a matrix X in which each row has £; norm at most a and each column has

L1 norm at most b, then || Xl < vab. Therefore, we can bound

. . 1 —
|I[Projp DsE2DsProjgl < > (—=+/Wipi)®
— " V/Px
- Z w;
. k

= O(e~N/2M), (2.62)

Region E4isset to0in B but not in E, corresponding to a subset of spillover words,
and Fy = §4. There are at most Wy /px. rows of region Ej in each bin fk. Moreover,
the row/column sum in are bounded by 2p;. Conditional on the row sum, the entries
in the row are distributed as multinomial Mul(p; 2p;), thus the entries of DsEsDg

are dominated by subexponential tail with parameter (0;; = \/—%, bi; = N;\/ﬁiﬁf <1).

With probability at least 6 we can bound
|Projy DsEyDsProjg|| < |Projy|EslaProjy + Proj;,Ds(ﬁklpT)DSProj‘;“
< IIProjy [EslsProjy | + |Projp Ds(p 1) DsProjo|

min(3, ¥, Rlog M)(Rlog M) 1 =
< P E ' 5, 12)1/2
> \/ N +( - (\/5; Wkpk) )

= O(4 / (Rlog M)? —N/2M
- ( N(S +e )?

where the second last inequality is by the same argument as that in (2.62).

By triangle inequality over the 4 different regions, we can bound:

. ~ i RlogM)2 N/
||Projp DsEDgProjp || = O( (—15—6—)—— + e N/2M)y, (2.63)
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Thercfore, with (2.61) and (2.63) we can bound (2.58) by:

LT
2
Nw?

||Pr0jV,DS§DSPr0j‘7 - DSEDSl‘ =0 ( /Af

log(Nw2,,, /M) ) 1/4

Finally note that B 1 18 the best rank R approximation of Proj;,DSEDSProj;f and
that DSﬁDS is of rank at most RB. We have

|B: — DsBDs|| < || By — Projp Ds BDsProjg|| + ||Projp DsBDsProjy — DsBDs||
< 2||Pr0j‘7DS§DSPr0j‘7 — DSIEDSH.

a
Proof. (to Lemma 2.16 ) By triangle inequality we have
|B2 — Bljy < || B — Bj1 + |[B - BJx (2.64)
Note that
2
o _ —ekN/2M _ MR 1/2
IB - Bl|; < Q;W,g =2 zk:e = ol gz )"
Apply Cauchy-Schwatz to the first term we have:
~ ~ 1
By =Bl = S |(Ba)i — Bijl—— /Pt
” 2 “1 g 1( ) J J I m J

< |IDs(Bz = B)Dsllr, [ 3 pir;

< V2R||Ds(B, — B) Dg||

_ o (losNwz,, /M) \ 2
- N w%’LiTL / MR? .

where the second inequality used the fact that if a matrix X if of rank R then
1Xllr < VRIX].
d
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Proof. (to Lemma 2.17 ) After removing the abnormally heavy rows and columns,
we have that each row /column corresponding to a word in Zx (defined according to
Step 1 binning) has row sum and column sum less than 2p;. We have that entries
of Eg =: (D3§D3 — DS@DS) are dominated by entry-wise independent zero mean

sub-exponential variable with parameter (o, ; = 711-—\7, b;j = 7\7_1_—'\/5:5;)’ and b;; < ¥ < 1.

Given the initialization B; from Step 3 such that ||B, — DsBDg]| < ;liomm(Dg]ﬁDg),
the correctness of Step 4 of Algorithm 4 follows Lemma 2.21 below.

Lemma 2.21 (Refinement with separation condition). Consider a noisy low rank
matric X = UUT + Eg. Assume that the noise entries are zero mean, independent
and E[[Es)?;] < %. Assume that omin(U) > (MR?/N)Y/8. Given initialization U
such that |[UUT —UUT|| = €9 < Y0,min(U)?. We can find X such that

-~ MR
IX - X|lr = 0(\/ —N'—)~

Proof. Let V and V denote the leading left singular vectors of U and U.

|IProjo . UU T Projp. || = ||Projp. (DU — UUT)Projp. || < eo.
First, consider the R x R matrix VTX ‘7, we know that with large probability,
~r o~ o~ ~ ~ ~ R2
VXV -VTUUTV|| = [VTEsV| = O( )

Let Z = (VTX 17)1/ 2 we know that there exists some unknown rotation matrix Hz

such that
|1Z = VTUHZ|| = o(1).

Note that U = ProjpU 4+ Projp . U, we have 0,,:,,(U) < a,,,.Li.,I,(I/}TU) + Ormaz (Projp U).
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By assumption of ¢, we have

O min ( Z) = Oynin ( ‘71— U) 2 Omin (U) - 6(1)/2 Z Tmin (U) .

N =

Next, consider the matrix VT X we know that it can be factorized as:

VX =VT(UUT + Eg)
=VTUHZ(UH)" + VT Eg
= Z(UHz)" + VT Es + o(1).

Let U = (Z7'VTX)T. Note that U —UHz = (Z*V " Eg)". Thus we can bound that

|UUT ~UUT ||p = |UUT — UHZ(UHZ) ||
<\ - UHZ)(UHZ) g + (U - UHZ)U ||
<\UHzZ"'VTEs|r + |UZ'VT Eg| p

We bound the two terms separately. First

\UHzZ VT Es|lp < [VTUHzZ "W Eg||p + (VY TUH,Z 'V Eg||p
<NZZ7WVT Eslle + I(VHTUNZ NV Eslle
<IVTEsllp(1 + véo/Trmin)
< 2|V Es||F

We then bound the second term

NWUZ VT Es|lp <\UHzZ 'V Es|lp + [(Z7'VTEs)T 27V Eg||p

< VT Esllr2+ |V Esllr/0min(2)?)

< 6|V Es|lr,

where the last incquality is by the assumption Gy, (U)? > (MR/N)Y* > (MR/N)V? =
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IV Esll .
Finally by Lemma 2.20 we have that with large probability

~a ~ MR
IUUT - UU e < 81V sl = O )
O
2.7.4 Proofs for HMM testing lower bound
Proof. (to Theorem 2.7)
TV (Pri(GY), Pra(GY)) | (2.65)
1
=3 > |Pra(GY, A) — Pri(GY, A)|
Gl eIMN A€(4175)
_ 1 (Gl ,-A) _
"3 L Peerd

GNe[MN AG(M/2)

' 1/2
@ 1 N Pry(GY, A) )2
S 5 Z Prl(Gl )‘A) (Prl(G{V,A) - 1
GYe[MN, Ae(,} /2)
1/2
1 (G{%A))Q
=3 2, PnEl4 ( @ra)

aNe[M¥ ‘AE(M/Z)

(MN) 3 Pr,(G] ,A)( 3 Prg(GNlB))

(M/2 GYe[MIN,A€( 1), Be(M/z)

> ( > Plz(GN|3)) —1) ", (2.67)

(M/2) Gl e[M]¥ BG(M/z

- o
-~

v

1/2

(b)

Ml"“

4

wherc inequality (a) used the fact that E[X] < (E[X?])Y/2; equality (b) used the joint
distributions in (2.46) and (2.49); and equality (c) takes sum over the summand A
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first and makes usc of the marginal probability Pr;(GY) as in (2.48).

2
In order to bound the term Y = (AL};I/!;-V? 2_GNepN (ZBE(A%) Prg(Gf’lB)) in

cquation (2.67), we break the square and write:

> > Pr(GYB)Pro(GY|B). (2.68)

()
M/2) BBe(,y),) G €MV

In Claim 2.5 below we explicitly compute the term ZG{VG[M] ~ Pro(GYN|B)Pry(GY|B')
for any two subscts B, B’ € ( Al};z) Then in Claim 2.6 we compute the sum over B, 5’
and bound Y < W To conclude, we can bound the total variation distance

as:

1 1
TV (Pry(GN). Pry(GM) < = | —m—————— — 1.
( ri(GY), r2(G) )) > 2\} T

M

In the case that N < M, this is bounded as TV (Pri(GY), Pra(GY)) < Y22, /&
which vanishes as N = o(M) for any constant transition probability ¢.

O
Claim 2.5. In the same setup of Theorem 2.7, given two subsets B,B’ € M and
|B| = |B'| = M/2, let B= M\B,B' = M\B' denote the corresponding complement.

Define x € [0, 1] to be:

z = |BNB|/(M/)2). (2.69)

Let n(z) = % (1 +(1-2t+/(1-(1- ét)z)z +(2(1 - 2t))2x2) and let yo(z) =
3 (1 +(1-2t)2— /(1 -(Q-2t)2)2+ (2(1 — 2t))2z2) be functions of [BNB'| and t.
We have: '

MmN L (@1 = 20(E) = 51— 2@
ity OGS i ( 207 (2) = (@) )

Proof. (to Claim 2.5)
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(1) For an instance of 2-state HMM which support for g is specified by set B €
( szv}rz)’ consider two consecutive outputs (gn—1,9,). We first show how to compute

the probability Pra(g,|gn-1, B).

Given B and another set B’, we can partition the vocabulary M into four subsets

as:
Mi=BnB, My=BnB, Ms=BnB, Ms=BnH.

Note that we have |My| = |My| = zM/2 and M| = |M3| = (1 — z)M/2.

Define a subset of tuples Jg C [4]? to be
Is=1{(1,1),(1,2),(2,1),(2,2),(3,3),(3,4),(4,3), 4,4)}, T§ = [4\Ts.

If gn—1 € Mjr, g, € M; and (j', j) € T, we know that the hidden state for the HMM
associated with set B does not change between time slot n—1 and n, namely s,,_; = s,,.
Thus Pra(gn|gn-1, B) = Pra(sn|sn—1, B)Pra(gn|ss, B) = Xl/f_/% Also, if (5, 5) € J§, we
know that there is the state transition and we have Pra(gn|gn-1, B) = #/2

Similarly, for the 2-state HMM associated with set B’, we can definc the set of
tuples

JIp = {(17 1).’ (1: 3)’ (3’ 1)3 (37 3)7 (27 2), (2a 4)7 (43 2)7 (4a 4)}’ Jlg' = [4]2\\73"

Here Pra(gn|gn-1,B) = ;4;/2 if (7',7) € Jp and equals A+/2 if (4/,7) € T

(2) Next, we show how to compute the target sum of the claim statement in a

recursive way.

For fixed sets B and B', define F,, ; forn < N and j = 1,2, 3,4 as below

F.j= Y Pry(G}|B)Pra(G1|B)1[gn € M),

Gte[M]m
and the target sum is ZG‘{"GIM]” Pry(GY|B)Pro(GY|B) = > j=1:4 Fivj- Also, we have
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that

15 = M|/

Making use of the recursive property of the probability rule of the 2-state HMM

as in (2.47), we can write the following recursion in terms of F,, ; for n > 2:

Frj

= Y Pro(GYIB)Pra(GT|B)1[gn € M|
areM)r .

= Z Prz(G;"lIB)Prg(Gﬁ"*lIB’)Pr-z(gan’l‘”l,B)Pr2(g,n,lG'f_l,B')
Gre[M]r
Z gn1 € Mj’ﬁgn € MJ]
j'=1:4

= > PrGBPnGTTB) Y
G te|M]n-1 gn€[M]
Z l[gn—l S Mj”gn € Mj]PrQ(gn.lgn—la B)Pr2(9n|9n~lv B,)
§'=14

Myl S Py (5521007, 9) € T8l + ~s 10,7 € T8

N\ w7 € I

(370" € Tol + 375100, € T51)

where we used the probability Pra(gn|gn—1,8) derived in (1).

Equivalently we can write the recursion as:

Fn,,l EL——I,I

EL,Z _ A; > D;,;T Et—l,? ’

Fu3 (M/2) Fr-13

F'n.,4 -Fn—l,4

T

. . 1 - x . 3 -
for diagonal matrix D, = and the symmetric stochastic matrix
11—z
x



T given by

1-t)? -t 1-tt ¢

1-tt (1-1t)? t2 (1—t)t

1-tt 2 (1-¢)2 (1-t)
t2 1-t)t (1-tt (Q1-t)?*

4
T= = E )\ivw;r,
=1

where the singular values and singuiar vectors of T' are specified as follows: A\ =1, \y =
(1 -2t)%, and v; = 1[1,1,1,1]7, v4 = 1[1,-1,-1,1J7. And Xz = A3 = 1 — 2t with
vg = —lﬁ-[o, 1,—1,0]7 and vy = %[1,0, 0,-1]T.

Note that we can write (FLl,FLQ, Fy3, F1,4)T = %DZ(I, 1,1, 1)T.
(3) Finally we can compute the target sum as:
Y Pr(GY|B)Pra(GY|B)
GVelMN
T
=< 1111 ) ( Fyy Fn2 Fnz Fna )

:(1 11 1)@‘.1721)_1\1’—_1(13”71)]\1_1];{[/221)*”(1 11 1)T
(@)

1
vy (2D, T)N v,

Y
Gr-1) )
__1 1 T T
“aw ! 0)( (1-20%(2c — 1) (1—2t)2 ) 0
H(z)N
®_1 (vl(w)vz(:v)N — @M@ | n@" - n@" )
MN 1(x) — y2(z) 71(2) — v2(r)
_ 1 wWA—yw)-A0-m)
MN M2 ’

where in (a) we used the fact that
2D,Tv; = v1 + (22 — 1)vy, and 2D, Ty = (1 — 2t)%((2z — 1)vy + vg).

In (b) we used the Calley-Hamilton theorem to obtain that for 2 x 2 matrix H(zx) param-
cterized by « and with 2 distinct eigenvalue y1(z) and ~v2(z), its power can be written as

H(z)V =1 (m)yzg():’):zzg;n(z)” Ipxo + '”Aff)::l;(i)]v H(z). Moreover, the distinct cigenval-
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ues of the 2 x 2 matrix H () can be written explicitly as follows:

n(z) = (1 F -2+ /(I -(1-2022+ (1 - 2t))2;z:2) , (2.70)

Y2(z) =

[ SR NN

(1 F-20 - VO -1 —2022+ (20— 2t))2:172) . (2.71)

where recall that we defined x = Ili?/%l so 0 < x < 1, also we have the transition probability

0 <t < 1/2 to be a constant, therefore we have y1 > 2 to be two distinct real roots. O

The next claim makes use of the above claim and bounds the right hand side of

(2.68).

Claim 2.6. In the same setup of Theorem 2.7, we have

N
e Y Y ru@BPuEls) < ——

M \2 2(1—9N
(M/z) B,B’E(Aﬁfz) GV elMN v1- E(iﬁf)ﬁ

Proof. (to Claim 2.6)

Y =

Define f(z) = 1@ Ayl e@ 0N E@) i) 11(x) and y3(x) defined in (2.70)

Y1 () —v2(x)

and (2.71) as functions of z. Recall that z = |[BNB'|/(zM/2) € [0,1].

Use the result of Claim 2.5 we have:

e 2 e
) s i)
Me
@) 2 (7)1 (i)
:(Aj}lfg) g(Mz‘me (A;/2)’ (2.72)

where equality (a) is obtained by counting the number of subscts B, B’ € ( AZQ): for
cach fixed B, there are (* [L/ %) choices of B’ such that |BN B/| = i.

Next we approximately bound Y when M is asymptotically large. First, note that
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7(0) =1 and (1) = 1+ (1 — 2t)2, we can bound () as by exponential function:

(1 + (=267 + /(1 - (1-20)2)2 + (2(1 - 2t))2a:2) < eA-20(-2)

N =

N(z) =

Then note that for N increasing with M and thus asymptotically large, we have

V(1 = 1) = o(1), so we bound f(z) by:

i ~ 1 ’)’2(.73) ) 2
im f(z) s (2)Y —— 127« (1-2)(1-2) N
Y f( ) ’71( ) '71(3:) ’72($)

where we used the fact that 7%%%5 1+ 1/\/1 + xz(ﬁ%{%%—z—P) < 1. and that
1/2<ym <L

2
Second, we use Stirling’s approximation for the combinatorial coefficients (M./ 2)

and (M/2)

( M ) 4M/2
M/2) " \[aM]2’
MI2\® L (MI2\ qaagaaiy ongy:
i M/4
4M/2

~ oA, for log M < < (M/2) — log M.

Finally we can approximately bound Y in (2.72) as follows:

M/2 log M

~ T e (M/z) GARS (M'/2> (A;/Q)

1 4 (M /1/2 ony? 2
< = e y*+4(1-2t)y* N + 0(1)
VM V2 ( y=—1/2

| il 2M / Y2 —y22M(1—2(1—2t)N/M)
y=—1/2

21—26)N
L- M

where the second inequality is because for M asymptotically large and N = O(M),
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we have

5 () ()

i=1

<2 W(Arf/?)ll_ﬂl/?(log ]\c’[)(}\f/?)log Me4(1—2t.)(2log M/M)XN

=o(1).

2.7.5 Analyze truncated SVD

The reason that truncated SVD does not concentrate at the optimal rate is as follows.
What truncated SVD actually optimizes is the spectral distance from the estimator
to the empirical average (minimizing || B — +Byll2), yet not to the expected matrix
B. It is only “optimal” in some very special setup, for example when (%B N — B) arc
entry-wise' i.i.d. Gaussian. In the asymptotic regime when N — oo it is indeed true
that under mild condition any sampling noise converges to i.i.d Gaussian. However in
the sparse regime where N = Q(M), the sampling noise from the probability matrix

is very different from additive Gaussian noise.

Claim 2.7 (Truncated SVD has sample complexity super linear). In order to achieve
€ accuracy, the sample complexity of rank-2 truncated SVD estimator is in given by
N = O(M?log M).

Ezample 1: a =b=w = 1/2, dictionary given by

__l:l—f—CA 1+CA 1-Ca I—CA]

M T M M T M
. 1—-Ca 1—-Ca 1+Ca 1+ Ca
=T T T M T M

Sample complezity is O(M log M).
Ezample 2: modify Example 1 so that a constant fraction of the probability mass
lies in a common word, namely py = q1 = 1/2py = 0.1, while the marginal probability

as well as the separation in all the other words are roughly uniform. Sample complezity
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is O(M?log N).

Proof. (to Claim 2.7 (Truncated SVD has sample complexity super linear))
(1) We formalize this and examine the sample complexity of t-SVD by applying
Bernstein matrix inequality. The concentration of the empirical average matrix at

the following rate:
)2
Pr(l B~ Bl > 1) < ¢~ S os)

where Var = |Eleie] ]|l = ||diag(p)|lz = max; p;, and B = max;; |le;e;ll2 = 1.

Therefore, with probability at least 1 — §, we have that

1 max; p;log(M/§) 11 '
— By —B|| < il . 2.
l% B~ — Bl < \/ N +3qylos(M/9) (2.73)

Since ||zl}s < VM||z||2, in order to guarantee that HE — A1 < ¢, it suffices to
ensure that ||A — Alls < ¢/v/M. Note that the leading two cigenvectors are given
by 01(B) > ||pllz = 1/vV'M and 62(B) = ||All; = Ca/v'M. Assume that we have the

exact marginal probability p, by Davis-Kahan, it suffices to ensure that

By — Bl < 1212

ik

Example 1. Consider the example of (p,¢) in community detection problem,
where the marginal probability p; is roughly uniform. We have ||A]ls = Ca/VM

and max; p; = 1/M, and the concentration bound becomes

II—]l\—,BN - Bl < \/E%LI@, (2.74)

and by requiring

[logM/8) _ J1Al: _ Ca
MN — M M

we get a sample complexity bound N = Q(M log(M/4)), which is worse than the
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lower bound by a log(M) factor.

Example 2. Morcover, modify Example 1 so that a constant fraction of the proba-
bility mass lies in a common word, namely p; = ¢; = 1/2p; = 0.1, while the marginal
probability as well as the separation in all the other words are roughly uniform. In
this case, ||A|l is still roughly Ca/v/M, however we have max; p; = 0.1, and the
sample complexity becomes N = Q(M?log(M/4)). This is even worse than the first

example, as the same separation gets swamped by the heavy common words.

(2) (square root of the empirical marginal scaﬁng (from 1st batch of samples) on

both side of the empirical count matrix (from 2nd batch of samples)). a

Take a closer look at the above proof and we can identify two misfortunes that

make the truncated SVD deviate from linear sample complexity:

1. In the worst case, the nonuniform marginal probabilitics costs us an M factor

in the first component of Bernstein’s inequality;

2. We pay another log(M) factor for the spectral concentration of the M x M

random matrix.

To resolve these two issues, the two corresponding key ideas of Phase I algorithm

arc “binning” and “regularization”:

1. “Binning” mcans that we partition the vocabulary according to the marginal
probabilitics, so that for the words in each bin, their marginal probabilities are
roughly uniform. If we are able to apply spectral method in each bin separately,

we could possibly get rid of the M factor.

2. Now restrict our attention to the diagonal block of the empirical average matrix
T{I—B n whose indices corresponding to the words in a bin. Assume that the bin
has sufficiently many words, so that the expected row sum and column sum arc
at least constant, namely the effective number of samples is at least in the order

of the number of of words in the bin.

We apply regularized spectral method for the empirical average with indices

restricted to the bin. By “regularization” we mcan removing the rows and
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column, whose row and column sum are much higher than the expected row sum,
from the empirical. Then we apply t-SVD to the remaining. This regularization
idea is motivated by the community detection literature in the sparse regime,
where the total number of edges of the random network is only linear in the

number of nodes.

2.7.6 Auxiliary Lemmas

Lemma 2.22 (Wedin’s theorem applied to rank-1 matrix). Denote symmetric matriz
X =vw" + E. Let 90" denote the rank-1 truncated SVD of X. There is a positive
universal constant C such that

CLEL i fll2 .
min{|lv — 0|, v + 3]} < ¢ ™I if lvll* > ClIE];

CIEN'? if |v|* < C||E].

Lemma 2.23 (Chernoff Bound for Poisson variables).

i) >z)<er ()

Pr(Poi(A) > z)<e (e/\) , forxz >\
N <z)<er ()T

Pr(Poi(A) <z)<e (e/\) , forx <A

Lemma 2.24 (Upper bound of Poisson tails (Proposition 1 in [49])). Assume A > 0,

consider the Poisson distribution Poi()).

(1) if 0 < n < A, the left tail can be upper bounded by:
Pr(Poi(A) < n) < (1 - 3)7 Pr(Poi(A) = n).

(2) if n > X —1, for any m > 1, the right tail can be upper bounded by:
/\ n+m—1
Pr(Poi(A) > n) < (1 — (——)™)! Pr(Poi(A) = ).
r(Poi(A) 2 n) < (1= (——7)") z:zn r(Poi()) = ©)

Corollary 2.5. Let A > C for some large universal constant C. For any constant
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d >e, 0<c<1/2, we have the following Poisson tail bounds:

Pr(Poi()) < ¢)) < 2e™2,
Pr(Poi()) > ¢A) < 27,

Proof. Apply Stirling’s bound for A large, we have Al > (2)*. Then, the bound in

Lemma 2.24 (1) can be written as

Pr(Poi(\) < cA) < (1 — ¢) ' Pr(Poi(A) = cA)
< 27N/ (eN)!
< 2 MNP (ehe A
< Qe Merlog(e/c)

< 2072

where in the second inequality we used the assumption that ¢ < 1/2, and in the last
inequality we used the inequality 1 — clog(e/c) > 1/2 for all 0 < ¢ < 1.
Similarly, set m = 1 in Lemma 2.24 (2), we can write the bound as

A
dA+1

<(1=1/) e AN/ (EN)!

S 26—,\(/\)c’)\/(cl)\e—1)(/)\

Pr(Poi(A\) > d)\) < (1 — )~ Pr(Poi()\) = ¢'A)

< 26—0’/\log(c’/e)—1

Qe—c'/\

IN

b

where in both the second and the last inequality we used the assumption that ¢ > e

and ) is a large constant. a

Lemma 2.25 (Slight variation of Vershynin’s theorem (Poisson instead of Bernoulli)).
Consider a random matric A of size M x M, where each entry follows an independent

Poisson distribution A;j ~ Poi(P, ;). Define dyax = M max; ; P, ;. For anyr > 1, the
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following holds with probability at least 1 — M~". Consider any subset consisting of at
most 1022, and decrease the entries in the rows and the columns corresponding to
the indices in the subset in an arbitrary way. Then for some universal large constant

c the modified matriz A’ satisfies:
14" = [EA|| < Cr**(/dmax + V),

where d' denote the mazimal row sum in the modified random matriz.

- Proof. The original proof in [75] is for independent Bernoulli entries A; ; ~ Ber (P, ;).
The specific form of the distribution is only used when bounding the £,, — #; norm

of the adjacency matrix by applying Bernstein inequality:

M
M?*2/2
PI‘(Z Xi,j > ]\'Izt) < exp( 1 M /
ij=1 a7 iy Fii /3

)

where X, ; = (A;; — E[A;j])z:y; for any fixed z;,y; € {+1,~1}.

Recall that a random variable X is sub-exponential if there are non-negative
parameters (o, b) such that E[e!™EXD] < %e*/2 for all |t| < 1. Note that a Poisson
variables X ~ Poi()\) has sub-exponential tail bound with parameters (o = v/2X,b =

1), since
log(E[e!X N]et"7*/2) = (A(e! — 1) — At) — M2 < 0, for |t < 1.

Therefore, when the entries are replaced by independent Poisson entries A;; ~
- Poi(F;;), we can apply Bernstein inequality for sub-exponential random variables
to obtain similar concentration bound:

M

M?t2/2 M??
Pr(Z Xij > M?t) < exp(———7 / ) < exp(— Afl /2 ).
ij=1 il Zi,j V&I’(Xi,j) -+ bt 2'm Zi,j f)i'j +1
The same arguments of the proof in [75] then go through. ]
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Chapter 3

Learning Gaussian Mixtures in

High Dimensions

3.1 Problem Statement

3.1.1 Formulation

In a Gaussian mixture model, there are & unknown n-dimensional multivariate Gaus-
sian distributions. Samples arc gencrated by first picking one of the & Gaussians,
then drawing a sample from that Gaussian distribution. Given samples from the
mixture distribution, our goal is to estimate the means and covariance matrices of

these underlying Gaussian distributions.

3.1.2 Related Work

Learning mixtures of Gaussians is a fundamental problem in statistics and learning
theory, whose study dates back to [94]. Gaussian mixture models arise in numerous
areas including physics, biology and the social sciences ([82, 115]), as well as in image
processing ([100]) and speech ([95]).

In a Gauséian mixture model, there are & unknown n-dimensional multivariate
Gaussian distributions. Samples arc generated by first picking one of the & Gaussians,

then drawing a sample from that Gaussian distribution. Given samples from the
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mixture distribution, our goal is to estimate the means and covariance matrices of
these underlying Gaussian distributions!.

This problem has a long history in theoretical computer science. The seminal
~ work of [37] gave an algorithm for learning spherical Gaussian mixtures when the
means arc well separated. Subsequent works ([39, 103, 121, 29]) developed better al-
gorithms in the well-separated case, relaxing the spherical assumption and the amount
of separation required.

When the means of the Gaussians are not separated, after several works ([22,
64]), [23] and [85] independently gave algorithms that run in polynomial time and
with polynomial number of samples for a fixed number of Gaussians. However, both
running time and sample complexity depend super exponentially on the number of
components k2. Their algorithm is based on the method of moments introduced
by [94]: first estimate the O(k)-order moments of the distribution, then try to find
the parameters that agree with these moments. [85] also show that the exponential
dependency of the sample complexity on the number of components is necessary, by
constructing an example of two mixtures of Gaussians with very different parameters,
yet with exponentially small statistical distance.

Recently, [57] applied spectral methods to learning mixture of spherical Gaussians.
When n > k + 1 and the means of the Gaussians arc lincarly independent, their
algorithm can learn the model in polynomial time and with polynomial number of
samples. This result suggests that the lower bound example in'[85] is only a degenerate
case in high dimensional space. In fact, most (in general position) mixture of spherical
Gaussians are easy to learn. This result is also based on the method of moments, and
only uses second and third moments. Several follow-up works ([25, 12]) use higher
order moments to get better dependencies on n and k.

However, the algorithm in [57] as well as in the follow-ups all make strong re-
quirements on the covariance matrices. In particular, most of them only apply to

learning mixture of spherical Gaussians. For mixture of Gaussians with general co-

! This is different from the problem of density estimation considered in [45, 33]
? In fact, it is in the order of O(eo(k)k) as shown in Theorem 11.3 in [120].

120



variance matrices, the best known result is still (23] and [85], which algorithms arc
not polynomial in the number of components k. This leads to the following natural

question:

Question: Is it possible to learn most mixture of Gaussians in polynomial time using

a polynomial number of samples?

Our Results We give an algorithm that learns most mixture of Gaussians in high
dimensional space (when n > Q(k?)), and the argument is formalized under the
smoothed analysis framework first proposed in [107].

In the smoothed analysis framework, the adversary first choose an arbitrary mix-
ture of Gaussians. Then the mean vectors and covariance matrices of this Gaussian
mixture are randomly perturbed by a small amount p ®. The samples are then gener-
ated from the Gaussian mixturc model with the perturbed parameters. The goal of
the algorithm is to learn the perturbed parameters from the samples.

The smoothed analysis framework is a natural bridge between worst-case and
average-case analysis. On one hand, it is similar to worst-case analysis, as the ad-
versary chooses the initial instance, and the perturbation allowed is small. On the
other hand, even with small perturbation, we may hopc that the instance be different
enough from degenerate cases. A successful algorithm in the smoothed analysis set-
ting suggests that the bad instances must be very “sparse” in the parameter space:
they arc highly unlikely in any small necighborhood of any instance. Recently, the
smoothed analysis framework has also motivated several research work ([65] [25]) in
analyzing learning algorithms.

In the smoothed analysis setting, we show that it is easy to learn most Gaussian

mixtures:

Theorem 3.1. (informal statement of Theorem 3./) In the smoothed analysis setting,
when n > Q(k?), given samples from the perturbed n-dimensional Gaussian mizture
model with k components, there is an algorithm that learns the correct parameters up

to accuracy € with high probability, using polynomial time and number of samples.

3See Definition 3.2 in Section 3.2 for the details.
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An important step in our algorithm is to learn Gaussian‘ mixture models whose
components all have mean zero, which is also a problem of independent interest
([128]). Intuitively this is also a “hard” case, as there is no separation in the means.
Yet algebraically, this case gives rise to a novel tensor decomposition algorithm. The
ideas for solving this decomposition problem are then generalized to tackle the most

general case.

Theorem 3.2. (informal statement of Theorem 3.5) In the smoothed analysis set-
ting, when n > Q(k?), given samples from the perturbed mizture of zero-mecan n-
dimensional Gaussian mizture model with k components, there is an algorithm that
learns the parameters up to accuracy e with high probability, using polynomial running

time and number of samples.

Organization We first focus on learning mixtures of zcro-mean Gaussians. The
‘proposed algorithm for this special case contains most of the new ideas and techniques.
In Section 1.3.1 we introduce the notations for matrices and tensors which are used
to handle higher order moments throughout the discussion. Then in Section 3.2
we introduce the smoothed analysis model for learning mixture of Gaussians and
discuss the moment structure of mixture of Gaussians, then we formally state our
main theorems. Section 3.3.1 outlines our algorithm for learning zero-mean mixture
of Gaussians. The details of the steps are presented in Section 3.3.2. The detailed
proofs for the correctness and the robustness are defé:rred to Appendix (Sections 3.4.1
to 3.4.3). In Section 3.3.3 we bricfly discuss how the ideas for zero-mean case can be
generalized to learning mixture of nonzero Gaussians, for which the detailed algorithm

and the proofs are deferred to Appendix 3.4.5.

3.2 Main results

In this section, we first formally introduce the smoothed analysis framework for our
problem and state our main theorems. Then we will discuss the structure of the

moments of Gaussian mixtures, which is crucial for understanding our method of
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moments based algorithm.

Smoothed Analysis for Learning Mixture of Gaussians Let G, ; denote the
class of Gaussian mixtures with & components in R"™. A distribution in this family is
specified by the following paramecters: the mixing weights w;, the mean vectors p(®

and the covariance matrices @ for i € [k].

k
g'n,,k = {g —_ {(w‘h/“l’(,i)a E(l))}le[kl LWy & R_'_’ sz — 1, M(n € Rn’ E(T») e R:;ly);::’ 2(1) t O} .
i=1
As an interesting special casc of the general model, we also consider the mixture of
“zero-mean” Gaussians, which has p® = 0 for all components i € [k].

A sample z from a mixture of Gaussians is generated in two steps:

1. Sample h € [k] from a multinomial distribution, with probability Pr[h = i] = w;
for i € [k].

2. Sample x € R” from the A-th Gaussian distribution A/(p(, B().

The learning problem asks to estimate the parameters of the underlying mixture of

Gaussians:

Definition 3.1 (Learning mixture of Gaussians). Given N samples ry,x3,...,TN
drawn i.4.d. from a mixture of Gaussians G = {(w,-,u('i),Z(i))}ie[k], an algorithm
learns the mixture of Gaussians with accuracy €, if it outputs an estimation § =
(@i, 89, £D) }Yicy such that there exists a permutation © on [k], and for all i € [k],
we have |F; — wep] < €, I8 — uTO|| < € and |EO — DEO)| <.

In the worst case, learning mixture of Gaussians is a information theoretically
hard problem ([85]). There exists worst-case examples where the number of samples
required for learning the instance is at least exponential in the number of components
k ([82]). The non-convexity arises from the hidden variable h: without knowing h we
cannot determine which Gaussian component each sample comes from.

The smoothed analysis framework provides a way to circumvent the worst case

instances, yet still studying this problem in its most general form. The basic idea
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is that, with high probability over the small random perturbation to any instance,
the instance will not be a “worst-case” instance, and actually has reasonably good
condition for the algorithm.

Next, we show how the parameters of the mixture of Gaussians are perturbed in

our setup.

Definition 3.2 (p-smooth mixture of Gaussian). For p < 1/n, a p-smooth n-dimensional
k-component mizture of Gaussians G = {@:, 1, f}(i))}ie[k} € Gn i is generated as fol-

lows:

1. Choose an arbitrary (could be adversarial) instance G = {(wi, p®, Z)}icpy €
G- Scale the distribution such that 0 < O < 11, and @) < % for all
i € [K].

2. Let A; € RYD be a random symmetric matriz with zeros on the diagonals,
and the upper-triangular entries are independent random Gaussian variables
N(0,p?). Let 6; € R® be a random Gaussian vector with independent Gaussian

variables N'(0, p?).
3. Set a)i = wy, /j(i) = /.I«(i) + (51', i(z) = E(i) + Af,

4. Choose the diagonal entries of £ arbitrarily, while ensuring the positive semi-
definiteness of the covariance matric fl("), and the diagonal entries are upper

bounded by 1. The perturbation procedure fails if this step is infeasible®.

A p-smooth zero-mean mizture of Gaussians is generated using the same procedure,

except that we set i = p =0, for all i € [k].

Remark 3.3. When the original matriz is of low rank, a simple random perturbation
may not lead to a positive semidefinite matriz, which is why our procedure of pertur-
bation is more restricted in order to guarantee that the perturbed matriz is still a valid

covariance matriz.

4 Note that by standard random matrix theory, with high probability the 4-th step is feasible
and the perturbation procedure in Definition 3.2 succeeds. Also, with high probability we have
||| <1 and0 < %O < I, for all i € [k]. ‘
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There could be other ways of locally perturbing the covariance matriz. Our proce-
dure actually gives more power to the adversary as it can change the diagonals after
observing the perturbations for other entries. Note that with high probability if we just
let the new diagonal to be 5v/np larger than the original ones, the resulting matriz
is still a valid covariance matriz. In other words, the adversary can always keep the

perturbation small if it wants to.

Instead of the worst-case problem in Definition 3.1, our algorithms work on the
smoothed instance. Here the model first gets perturbed to G = {(&i,ﬁ(i), i(i))}ie[k];
the samples are drawn according to the perturbed model, and the algorithm tries to

learn the perturbed paramcters. We give a polynomial time algorithm in this case:

Theorem 3.4 (Main theorem). Consider a p-smooth mizture of Gaussians G =
{(@;, 1@, i(i))}ie[k] € Gn for which the number of components is at least > k > Cy
and the dimension n > C1k*, for some fized constants Cy and C,. Suppose that
the mizing weights ; > w, for all i € [k]. Given N samples drawn i.i.d. from G,
there is an algorithm that learns the parameters of G up to accuracy €, with high
probability over the randomness in both the perturbation and the samples. Further-

more, the running time and number of samples N required are both upper bounded by

poly(n, k, 1/w,,1/€,1/p).

To better illustrate the algorithmic ideas for the general case, we first present an
algorithm for learning mixturcs of zero-mean Gaussians. Note that this is not just a
special case of the gencral case, as with the smoothed analysis, the zero mean vectors

are not perturbed.

Theorem 3.5 (Zero-mean). Consider a p-smooth mizture of zero-mean Gaussians
G = {(@;, 0, i(i))},'e[k] € Gnx for which the number of components is at least k > Cjy
and the dimension n > C1k*, for some fived constants Cy and C,. Suppose that

the mizing weights w; > w, for all i € [k]. Given N samples drawn i.i.d. from

5, there is an algorithm that learns the parameters of G up to accuracy €, with

Note that the algorithms of [23] and [85] run in polynomial time for fixed k.
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high probability over the randomness in both the perturbation and the samples. Fur-

thermore, the running time and number of samples N are both upper bounded by

poly(n, k,1/w,,1/€,1/p).

Throughout the discussion we always assume that n > C1k? and @; > w,.

Moment Structure of Mixture of Gaussians Our algorithm is also based on
the method of moments, and we only need to estimate the 3-rd, the 4-th and the
6-th order moments. In this part we briefly discuss the structure of 4-th and 6-th
moments in the zero-mean case (3-rd moment is always 0 in the zero-mean case).
These structures are essential to the proposed algorithm. For more details, and
discussions on the general case see Appendix 3.4.6.

The m-th order moments of the zero-mean Gaussian mixture model G € G, are

given by the following m-th order symmetric tensor My, € Rg ™

k
(Mpl;, g = Elzi 25, = ZwiE [y](? . yj(:)‘] , Vi1, .-, 0m € [n],
i=1

where @ corresponds to the n-dimensional zero-mean Gaussian distribution A(0, £).
The moments for each Gaussian component are characterized by Isserlis’s theorem as

vbclow:

Theorem 3.6 (Isserlis’ Theorem). Let (y1,. .., y2) be a multivariate zero-mean Gaus-

sian random vector N'(0,X), then

E[yl .- ‘?/215] = Z H DI

where the summation is taken over all distinct ways of partitioning v, ..., Yo into t

pairs, which correspond to all the perfect matchings in a complete graph.
Ideally, we would like to obtain the following quantities (recall ny = (";1)):
k k
Xy = Zwivec(E(’))®2 e R™ " Xg = Zwivcc(z(i))®3 € R™2Xm2Xm2 - (31)
=1 i=1
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Note that the entries in X; and X¢ arc quadratic and cubic monomials of the
covariance matrices, respectively. If we have X4 and Xg, the tensor decomposition
algorithm in [7] can be immediately applied to recover w;’s and £®’s under mild
conditions. It is easy to verify that those conditions are indeed satisfied with high
probability in the smoothed analysis setting.

By Isserlis’s theorem, the entries of the moments M, and Mg are indeed quadratic
and cubic functions of the covariance matrices, respectively. However, the structure
of the truc moments M, and Mg have more symmetrics, consider for example,

k k
[Maf1234 = Z wz(zgz)zzgzl + 2%2% + EﬂE%), while [X4](1,2),3,0 = Z MZ%E%
1=1 i=1
Note that due to symmetry, the number of distinct entries in M, ( (":3) ~ nt/24)
is much smaller than the number of distinct entries in Xy (("% 1) ~ n1/8). Similar
observation can be made about Mg and Xg.

Therefore, it is not immediate how to find the desired X4 and Xg based on M4 and
M. We call the moments My, Mg the folded moments as they have morc symmetry,
and the corresponding X4, X¢ the unfolded moments. Onc of the key steps in our
algorithm is to unfold the truec moments My, Mg to get Xy, X¢ by exploiting special
structure of My, M.

In some cases, it is casier to restrict our attention to the entries in My with indices

corresponding to distinct variables. In particular, we define
My = ([Mu]ji osge : 1 S 51 < Jo <Jjs < jy S n] €R™, (3:2)

where ng = (Z) is the number of 4-tuples with indices corresponding to distinct vari-
ables. We define Mg € R" similarly where ng = (2) We will see that these entrics
are nice as they are linear projections of the desired unfolded moments X, and Xg
(Lemma 3.1 below), also such projections satisfy certain “symmetric off-diagonal”

propertics which are convenient for the proof (see Definition 3.3 in Section 3.4.2).

Lemma 3.1. For a zero-mean Gaussian mizture model, there exist two fixed and
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known linear mappings F, : R"2*"2 — R™ and Fg : R2Xm2xn2 — R™ such that:
My = V3Fi(Xy), Me=V15Fs(Xs). (3.3)

Moreover Fy is a projection from a ("')-dimensional subspace to a ny-dimensional
subspace, and Fg is a projection from a ("’2; 2)—dimensional subspace to a ng-dimensional

subspace.

3.3 Outline of our algorithm

3.3.1 Learning Mixture of Zero-Mean Gaussians

In this section, we present our algorithm for learning zero-mean Gaussian mixture
model. The algorithmic ideas and the analysis are at the core of this work. Later
we show that it is relatively easy to generalize the basic ideas and the techniques to
handle the general case.

For simplicity we state our algorithm using the exact moments m and Mﬁ, while
in implelrientation the empirical moments ]T/L and M\B obtained with the samples are
used. In later sections, we verify the correctness of the algorithm and show that
it is robust: the algorithm learns the parameters up to arbitrary accuracy using

polynomial number of samples.
Step 1. Span Finding: Find the span of covariance matrices .

(a) For a set of indices H C [n] of size |H| = v/n, find the span:

S = span{igz] i€ k], 7€ 'H} C R™. (3.4)

(b) Find the span of the covariance matrices with the columns projected onto S*,

namely,
Us = span{vec(ProjSL SOy ie [k]} C R™. (3.5)
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(c) For two disjoint sets of indices H1 and Ha, repeat Step 1 (a) and Step 1 (b)
to obtain Uy and Uz, namely the span of covariance matrices projected onto
two subspaces Si- and Sy. Merge U, and Us to obtain the span of covariance

matrices U :

U= span{i(i) S [k]} C R™. (3.6)

Step 2. Unfolding: Recover the unfolded moments )Z], X’ﬁ.
Given the folded moments ]T’f,;,]/\jfﬁ as defined in (3.2), and given the subspace U €
R 2>k from Step 1, let Yy € R¥* and Yy € RYF<k pe the unknowns, solve the

sym sym

following systems of linear equations.
My = V3F(UYVWUT), Mg=VIsFs(Ys(UT,UT,UT)). (3.7)

The unfolded moments ,3}4,)?6 are then given by )~(4 = UﬁUT,XG = ~’6(UT, ur,um.

Step 3. Tensor Decomposition: learn w; and @ from Y and }76.

Given U, and given Y, and )76 which are relate to the parameters as follows:
1= G(UTSe?, Yo=> @(UTEV)e?,
i=1 i=1
we apply tensor decomposition techniques to recover $@ s and w;’s.

3.3.2 Implementing the Steps for Zero-Mean Algorithm

In this part we show how to accomplish each step of the algorithm outlined in Sec-
tion 3.3.1 and sketch the proof ideas.

For cach step, we first explain the detailed algorithm, and list the deterministic
conditions on the underlying parameters as well as on the exact moments for the step
to work correctly. Then we show that these deterministic conditions are satisfied with
high probability over the p-perturbation of the parameters in the smoothed analysis

sctting. In order to analyze the sample complexity, we further show that when we
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are given the empirical moments which are close to the exact moments, the output
of the step is also close to that in the exact case.

In par{:icular we show the correctness and the stability of each step in the algo-
rithm with two main lemmas: the first lemma shows that with high probability over
the random perturbation of the covariance matrices, the exact moments satisfy the
deterministic conditions that ensure the correctness of gach step; the second lemma,
shows that when the algorithm for each step works correctly, it is actually stable even
when the moments are estimated from finite samples and have only inverse polynomial
accuracy to the exact moments.

The detailed proofs are deferred to Section 3.4.1 to 3.4.3 in the appendix.

Step 1: Span Finding. Given the 4-th order moments M4, Step 1 finds the span
of covariance matrices U as defined in (3.6). Note that by definition of the unfolded
moments X, in (3.1), the subspace U coincides with the column span of the matrix
X

By Lemma 3.1, we know that the entries in M, are linear mappings of entries in
)?4. Since the matrix 5(:4 is of low rank (k < ns), this corresponds to the matriz
sensing problem first studied in [99]. In general, matrix sensing problems can be hard
even when we have many lincar observations ([53]). Previous works ([99, 54, 61])
showed that if the linear mapping satisfy matriz RIP property, one can uniquely
recover )?4 from M4. |

However, properties like RIP do not hold in our setting where the linear mab—
ping is determined by Isserlis’ Theorem. We can construct two different mixtures
of Gaussians with different unfolded moments )?4, but the same folded moment M;
(sce Section 3.4.6). Therefore the existing matrix recovery algorithm cannot be ap-
plied, and we need to develop new tools by exploiting the special moment structure

of Gaussian mixtures.

Step 1 (a). Find the Span of a Subset of Columns of the Covariance
Matrices. The key observation for this step is that if we hit EI; with three basis

vectors, we get a vector that lics in the span of the columns of the covariance matrices:
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Claim 3.1. For a mizture of zero-mean Gaussians G = {(w;, 0, E(i))}ie[k] € Gk, the
one-dimensional slices of the 4-th order moments My are given by:

S EEZ)BZRI]) , Y91, Jo, Js € [n].

¥

k
i i) i) 1)
A’L’(ejl’ €j21€ja> I) = Z Wi (251),-}22}:,]'3] + 2.'(7'1032(
i=1
(3.8)

In particular, if we pick the indices 71, j, j3 in the index set H, we know that the
vector My(ej,, ej,,€j,, ) lics in the desired span § = {EF)J} ;i€ k], € H}.

We shall partition the set H into three disjoint subsets H® of equal size v/n/3,
and pick j; € H® for i = 1,2,3. In this way, we have (|H|/3)® = Q(n'®) such
onc-dimensional slices of My, which all lic in the desired subspace S. Morcover, the
dimension of the subspace S is at most k|H| < n'5. Therefore, with the p-perturbed
paramcters ‘Z(i)’s, we can expect that with high probability the slices of ]174 span the

entire subspace S.

Condition 3.7 (Deterministic condition for Step 1 (a)). Let Qs € R™ (M3 pe the
matriz whose columns are the vectors M4(ejl,ej2,ej3, I) for j; € HW. If the matriz
és achieves its maximal column rank k|H|, we can find the desired span S defined in

(3.4) by the column span of matriz @s-

We first show that this deterministic condition is satisfied with high probability

by bounding the k|#|-th singular value of Qs with smoothed analysis.

Lemma 3.2 (Correctness). Given the exact 4-th order moments JE, for any index
set H of size |H| = /n, With high probability, the k|H|-th singular value of Qs is at
least Q(w,p?n).

The proof idea involves writing the matrix @g as a product of three matrices, and
using the results on spectral properties of random matrices [101] to show that with
high probability the smallest singular value of each factor is lower bounded.

Since this step only involves the singular value decomposition of the matrix és,

we then use the standard matrix perturbation theory to show that this step is stable:
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Lemma 3.3 (Stability). Given the empirical estimator of the 4-th order moments
]/&L = j\L + E4, suppose that the entries of E4 have absolute value at most 6. Let the
columns of matriz S € R™HH! pe the left singular vector of és, and let S be the corre-
sponding matriz obtained with A//Z;. When ¢ is inverse polynomially small, the distance

between the two projections | Projg— Projz|| is upper bounded by O (n1'255 / O'kI'H](és)) i

Remark 3.8. Note that we need the high dimension assumption (n >> k) to guarantee
the correctness of this step: in order to span-the subspace S, the number of distinct
vectors should be equal or larger than the dimension of the subspace, namely |H|3 >
k|H|; and the subspace should be non-trivial, namely k|H| < n. These two inequalities
suggest that we need n > Q(k'®). However, we used the stronger assumption n >

Q(k?) to obtain the lower bound of the smallest singular value in the proof.

Step 1 (b). Find the Span of Projected Covariance Matrices. In this step,
we continue to use the structural properties of the 4-th order moments. In particular,
we look at the two-dimensional slices of My obtained by hitting it with two basis

vectors:

Claim 3.2. For a mizture of zero-mean Gaussians G = {(w;, 0, E(i))}z’e[k] € Gn i, the
two-dimensional slices of the J-th order moments My are given by:
Ma(esi, e, 1, 1) = 3w (59,50 + 50 (0 )T+ 205007, Vi gz € [l

[:.52] [g2] N B
i=1

(3.9)

Note that if we take the indices 7, and j; in the index set H, the slice My(e;,, €, 1, I)
is almost in the span of the covariance matrices, cxcept 2k additive rank-one terms
in the form of Z&ll(Z&ZI)T. These rank-one terms can be eliminated by projecting
the slice to the subspace S* obtained in Step 1 (a), namely,

. k
vec(Projgi Ma(ej, e, 1, 1)) = Y wi), vee(Projgs £O), Vi, jo € H,

J1:J2
i=1

and this projected two-dimensional slice lics in the desired span Us as defined in (3.5).
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Moreover, there are ('H!_,“) = (n) such projected two-dimensional slices, while the

dimension of the desired span Ug is at most £.

Condition 3.9 (Dcterministic condition for Step 1 (b)). Let Qug € R2xIMI(#+1)/2
be a matrix whose (j1, j2)-th column for is equal to the projected two-dimensional slice
'vec(Prostﬁ4(ejl,ejQ,I,I)), for 1 < jo and ji,j> € H. If the matrix @Us achieves
its maximal column rank k, the desired span Us defined in (3.5) is given by the column

span of the matriz @Us'

We show that this deterministic condition is satisfied by bounding the k-th singular

value of @Us in the smoothed analysis setting:

Lemma 3.4 (Correctness). Given the exact 4-th order moments ﬁ;, with high prob-

ability, the k-th singular value of QUS is at least Q(w,p?n').

Similar to Lemma 3.2, the proof is based on writing the matrix Qu, as a product
of three matrices, then bound their k-th singular values using random matrix theory.

The stability analysis also relies on the matrix perturbation theory.

Lemma 3.5 (Stability). Given the empirical 4-th order moments ]\}4 = 1\7!:; + FEy,
assume that the absolute value of entries of Ey are at most d5. Also, given the output
Projg, from Step 1 (a), and assume that ||Proj§ 1= Projz. || £ 6,. When 6, and 0, are
inverse polynomially small, we have || Projg — Projg || < O (n2'5 (02 +201)/ ak(C,jUS)) .

Step 1 (c). Merge U, U, to get the span of covariance matrices .  Note
that for a given index set H, the span Us obtained in Step 1 (b) only gives partial
information about the span of the covariance matrices. The idea of getting the span
of the full covariance matrices is to obtain two sets of such partial information and
then merge them.

In order to achieve that, we repeat Step 1 (a) and Step 1 (b) for two disjoint sets
H, and H,, cach of size v/n. The two subspace S; and Sz thus correspond to the
span of two disjoint sets of covariance matrix columns. Therefore, we can hope that
U; and Us, the span of covariance matrices projected to Si- and Sy contain enough

information to rccover the full span U.
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In particular, we prove the following claim:

Condition 3.10 (Deterministic condition for Step 1 (c)). Let the columns of two (un-
known) matrices V; € R™* and V, € R™* form two basis of the same k-dimensional
(unknown) subspace U C R"™, and let U denote an arbitrary orthonormal basis of U.
Given two s-dimensional subspaces Sy and Sy, denote Sz = Si- U Sy-. Given two pro-
jections of U onto the two subspaces SY and S5 : Uy = Projsi Vi and Uz = Projgu V.

If 025([S1, S2]) > 0 and o (Projg,U) > 0, there is an algorithm for finding U robustly.

The main idea in the proof is that since s is not too large, the two subspaces Si-
and S3- have a large intersection. Using this intersection we can “align” the two basis
V1 and V5, and obtain Vf‘Vz, and then it is easy to merge the two projections of the
same matrix (instead of a subspace).

Moreover, we show that when applying this result to the projected span of co-
variance matrices, we have s = k|H| < n/3, and the two deterministic conditions
025([S1, S2]) > 0 and ox(Projg, Vi) > 0 are indeed satisfied with high probability over
the parameter perturbation. The detailed smoothed analysis (Lemma 3.13 and 3.14)
and the stability analysis (Lemma 3.12) are provided in Section 3.4.1 in the appendix.

Step 2. Unfold the moments to get X, and )?6. We show that given the span
of covariance matrices U obtained from Step 1, finding the unfolded moments )’(v4, )?6
is reduced to solving two systems of linear equations.

Recall that the challenge of recovering X4 and )?6 is that the two linear mappings
Fi and Fg defined in (3.3) are not linearly invertible. The key idea of this step is to
make use of the span U to reduce the number of variables. Note that given the basis
U € R™*¥ of the span of the covariance matrices, we can represent cach vectorized
covariance matrix as @ = U®. Now Let Y; € R’s“;n’i and Y, € Rﬁ;,fbx’“ denote the

unfolded moments in this new coordinate system:

k k
Yo=Y @000 Yo=Y @ig?e®.
i=1

i=1
Note that once we know 174 and f’g, the unfolded moments )?4 and 556 are given by
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X, =UYUT and X4 = f”s(U T .UT, UT). Thercfore, after cilanging the variable, we
need to solve the two linear equation systems given in (3.7) with the variables f’4 and

This change of variable significantly reduces the number of unknown variables.
Note that the number of distinct cntrics in Y3 and Yy are ko = ("'];1) and kg = (k;ﬁz),
respectively. Since ky < mn4 and ks < ng, we can cxpect that the lincar mapping

from f’4 to M. 4 and the one from )7(, to M, ¢ are lincarly invertible. This argument is

formalized below.

Condition 3.11 (Deterministic condition for Step 2). Rewrite the two systems of
linear equations in (3.7) in their canonical form and let H, € R™%k2 and Hg € Rrexks
denote the coefficient matrices. We can obtain the unfolded moments 5\;4 and )A{;ﬁ if

the coefficient matrices have full column rank.

We show with smoothed analysis that the smallest singular value of the two coef-

ficient matrices are lower bounded with high probability:

Lemma 3.6 (Correctness). With high probability over the parameter random pertur-
bation, the kq-th singular value of the coefficient matriz Hy is at least Q(p’n/k), and

the ky-th singular value of the coefficient matriz Hg is at least Q(p®(n/k)").

To prove this lemma we rewrite the cocfficient matrix as product of two matrices
and bound their smallest singular values separately. One of the two matrices corre-
sponds to a projection of the Kronecker product S ®pr &. In the smoothed analysis
setting, this matrix is not necessarily incoherent. In order to provide a lower bound
to its smallest singular value, we further apply a carefully designed projection to it,
and then we use the concentration bounds for Gaussian chaoses to show that after
the projection its columns are incoherent, finally we apply Gershgorin’s Theorem to

bound the smallest singular value 8.

SNote that the idea of unfolding using system of linear equations also appeared in the work of
[62]. However, in order to show the system of linear equations in their setup is robust, i.e., the
coefficient matrix has full rank, they heavily rely on the incoherence assumption, which we do not
impose in the smoothed analysis setting.
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When implementing this step with the empirical moments, we solve two least
squares problems instead of solving the system of linear equations. Again using
results in matrix perturbation theory and using the lower bound of the smallest
singular values of the two coefficient matrices, we show the stability of the solution

to the least squares problems:

Lemma 3.7 (Stability). Given the empirical moments J/\L = M4+E4, ]T/[\(, = M6+E6,
and suppose that the absolute value of entries of E4 and Eg are at most §,. Let U , the
output of Step 1, be the estimation for the span of the covariance matrices, and suppose
that |U — U|| < 8. Let Yy and Ye be the least squares solution respectively. When 6,
and 8y are inverse polynomially small, we have ||Yy—Ya||r < O(\/Tia(81482/ Omin(Hz))
and |[Ys — Ysll» < O(y/n6(81 + 62/ Oin(H)).

Step 3. Tensor Decomposition.

Claim 3.3. Given )7;, }76 and U , the symmetric tensor decomposition algorithm can
correctly and robustly find the mizing weights W;’s and the vectors o;’s, up to some un-
known permutation over [k], with high probability over both the randomized algorithm

and the parameter perturbation.

The algorithm and its analysis mostly follow the algorithm of symmetric tensor

decomposition in [7], and the details are provided in Section 3.4.3 in the appendix.

Proof Sketch for the Main Theorem of Zero-mean Case. Theorem 3.5
follows from the previous smoothed analysis and stability analysis lemmas for cach
step.

First, exploiting the randomness of parameter perturbation, the smoothed analysis
lemmas show that the deterministic conditions, which guarantee the correctness of
cach step, are satisfied with high probability. Then using concentration bounds of
Gaussian variables, we show that with high probability over the random samples,
the empirical moments 1/@1 and J\/;TG are entrywisc d-close to the exact moments ]\74

and Mg. In order to achieve e accuracy in the paramecter estimation, we choose &
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Figure 3-1: Flow of the algorithm for learning mixture of zero-mean Gaussians.
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Figurc 3-2: Flow of the algorithm for learning mixturcs of general Gaussians.

to be inverse polynomially small, and therefore the number of samples required will
be polynomial in the relevant parameters. The stability lemmas show how the errors
propagate only “polynomially” through the steps of the algorithm, which is visualized
in Figure 3-1.

A more detailed illustration is provided in Section 3.4.4 in the appendix.

3.3.3 Learning Mixture of General Gaussians

In this section, we briefly discuss the algorithm for learning mixture of general Gaus-
sians. Figurce 3-2 shows the inputs and outputs of cach step in this algorithm. Many
steps share similar ideas to those of the algorithm for the zero-mean case in previous
sections. We only highlight the basic ideas and defer the details to Section 3.4.5 in

the appendix.

Step 1. Find Z = span{i’ : i € [k]} and £, = span{Projz, E('i)Pronl 11 € [k]}.
Similar to Step 1 in the zero-mean case, this step makes usc of the structure of the

4-th order moments My, and is achieved in three small steps:
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(a) For a subset H C [n] of size |H| = /n, find the span:

§ = span {9, 5 ;i e W,j e U} CR" (3.10)

(b) Find the span of the covariance matrices with the columns projected onto S+,

namely,
. (i . 2
Us = span {vec(PrOJSLZ(")) RS [k]} C R™. (3.11)

(c) For disjoint subsets H; and H,, repeat Step 1 (a) and Step 1 (b) to obtain Uy
and Us, the span of the covariance matrices projected onto the subspaces Si-
and Si. The intersection of the two subspaces U; and U, gives the span of the
mean vectors Z = span {Zl(i),i € [k]} Merge the two subspaces U, and U, to
obtain the span of the covariance matrices projected to the subspace orthogonal

to Z, namely io = span {Projgli(i)Projgl 11 € [k]}

Step 2. Find the Covariance Matrices in the Subspace Z! and the Mix-
ing Weights w;’s. The key observation of this step is that when the samples
are projected to the subspace orthogonal to all the mean vectors, they are equiv-
alent to samples from a mixture of zero-mean Gaussians with covariance matrices
£ = Projz Li(i)Proj 7. and with the same mixing weights @;’s. Therefore, pro-
jecting the samples to Z 1. the subspace orthogonal to the mean vectors, and use
the algorithm for the zero-mean case, we can obtain i(oi)’s, the covariance matrices

projected to this subspace, as well as the mixing weights @;’s.

Step 3. Find the means With simple algebra, this step extracts the projected

covariance matrices $9)’s from the 3-rd order moments 3’73, the mixing weights w;

and the projected covariance matrices f)f,i) ’s obtained in Step 2.

Step 4. Find the full covariance matrices In Step 2, we obtained if}'), the

covariance matrices projected to the subspace orthogonal to all the means. Note
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that they are equal to matrices (3® + 1 (7®)T) projected to the same subspace.
We claim that if we can find the span of these matrices (@ + 7@ (E®)TYs), we
can get cach matrix (5@ + Z®(@®)T), and then subtracting the known rank-onc
component to find the covariance matrix S This is similar to the idea of merging

two projecctions of the same subspace in Step 1 (c) for the zero-mean case.

The idea of finding the desired span is to construct a 4-th order tensor:

k
./Wi = ﬁ4 + 2 Zai(ﬁ(i)®4),
i=1

which corresponds to the 4-th order moments of a mixturc of zero-mecan Gaussians

with covariance matrices @ + @ ()T and the same mixing weights &;'s. Then
we can then use Step 1 of the algorithm for the zero-mean case to obtain the span of

the new covariance matrices, i.c. span{E® + O @ENT - i € [k]}.

3.4 Proofs for Chapter 3

3.4.1 Step 1 of Zero-Mean Case: Span Finding

Recall that in Step 1 of the algorithm for learning mixture of zZero-mean Gaussians,
we find the span of the covariance matrices in threc small steps. In this section, we
prove the correctness and the robustness of cach step with smoothed analysis.

For completeness we restate cach substep and highlight the key properties we

necd, followed by the detailed proofs.

Step 1(a). Finding S, the span of a subset of columns of 0,

In Step 1 (a), for any set H of size v/n, we want to show that the one-dimensional
slices of My span the entire subspace & = span {f]ﬁ] 1€ k), j€ ’H}, which is the

span of a subset of the columns in the covariance matrices.
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Algorithm 5: FindColumnSpan
Input: 4-th order moments My, set of indices H.
Output: span{Zg-’) : 1 € [k],j € H}, represented by an orthonormal matrix
S e Rnx[?ﬂk’

Let @ be a matrix of dimension n x |H|* whose columns are all of
]\/14(6,'1 y €igy €ig, I), for iq,40,i3 € H.
Compute the SVD of Q: Q = UDVT.

Return: The first k|#] left singular vectors S = [Upy, .- ., Ukl

Recall that in Claim 3.1 we showed:

k
]\/14(651’ €j2 s> I) = Z aj" (Zgzl),jzzﬁ?i:s] + Zgzl)yjszf:?‘iz] + zg),jazﬁ)jl]) ? le’ j27j3 € [n]
. i=1

This in particular means when j,, j2, j3 € H, the vector M4(ej1, €jy,€js, 1) is in S.
. We need to show that the columns of the matrix @ indeed span the entire subspace

S.

It is sufficient to show that a subset of the column span the entire subspace. Form
a three-way even partition of the set #, i.e., |[H(V| = |HP| = |H®)| = |H|/3 = \/n/3,
and only consider the one-dimensional slices of 1’\/74 corresponding to the indices j; €
H® for s = 1,2,3. In particular, we define matrix és with these one-dimensional

slices of ]’\71/4
QS = [[[H4(e:i1’ej276j371) :j3 € H(S)] :j2 € H(2)] :jl € H(l)] € Rnx(l’}{l/.‘.’.):*. (3~12)

Define matrix Pg with the corresponding columns of the covariance matrices, forming

a basis (although not orthogonal) of the desired subspace S:

ﬁS = [[[if?’] 11 E [k]] ] € %(1)] = 1, 2, 3] = [i[z,’ﬂ(l)]?i[:,?{(?)]? E[:’H(s)]] S Rnka[.

(3.13)

In the following two lemmas, we show that with high probability over the random

perturbation, the column span of @s is cxactly equal to the column span of ﬁs, and
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Figure 3-3: Structure of the matrix Bg
robustly so.

Lemma 3.8 (Lemma 3.2 restated). Given ﬁh the exact 4-th order moment of the
p-smooth mizture of zero-mean Gaussians, for any subset H € [n| with cardinality
|H| = /n, let Qg be the matriz defined as in (3.12) with the one-dimensional slices
of ﬁl For any € > 0, and for some absolute constant Cy,Cs, Cy > 0, with probability
at least 1 — (C1e)2", the k|H|-th singular value of @3 18 bounded below by:

UA‘.!’H|(QS) > 03w0€292n- (31—1)

In order to prove this lemma, we first write és as the product of three matrices.

Claim 3.4 (Structural). Under the same assumptions of Lemma 3.8, the matriz @5

can be written as
Qs = Ps (Ds @i Iny) (Bs)”, (3.15)

where Py € R™MM a5 defined in Equation (8.13 has columns equal to the columns
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mn ifz)ﬁ] ; the diagonal matriz in the middle is the Kronecker product of two diagonal

matrices and depends only on the mizing weights w;’s.

With the observation that the columns of ﬁs form a basis of the subspace S,
and each column of @3 is a linear combination of the columns in 135, the rows of
Bs € RUHI/3**KH can be viewed as the coefficients for the linear combinations,
and has some special structures. In particular, it consists of three blocks: §s =
[E(l), B®, 5(3)]. The first tall matrix B e ROMI/3°<k(HI/3)  corresponding to the
coefficient of the linear combinations on the subset of basis E[uﬂ“)]‘ By the indexing
order of the columns in és, the matrix B® is block diagonal with identical blocks
equal to ir,{(z) @, defined as follows:

ifH(z) ,'H(3) = [[i (z)

Ju.J2

T hEHD eI i e [k]] € RUMI/3Pxk

With some fixed and known row permutation 7® and 7®, the matrix B® and BO
can be made block diagonal with identical blocks equal to iﬂ(l)’ﬂ(s) and iﬂm’%(z),
respectively. Note that the three parts B®, B® B® do not have any common entry,
nor do they involve any diagonal entry of the covariance matrices, therefore the three
parts are independent when the covariances are randomly perturbed in the smoothed
analysis.

It is easier to understand the structure by picture, sec Figure 3-3. The rows of
the matrix should be indexed by (j1,Ja,73) € HM x H® x H®) which can also
be interpreted as a cube (in the right). The block structure in the first part B®
correspond to a slice in H® x H® direction (for each block, the element in H® is
fixed, the clements in H® and H® take all possible values). Similarly for B® and

B® (as shown in figure).

Proof. (of Claim 3.4 ) The proof of this claim is using Claim 3.1, the definition of ma-
trices and the rule of matrix multiplication. Consider the column in @g corresponding
to the index (ji, ja, j3) for 51 € HD, jo € HP j3 € H®), and the row of By together
with the mixing wights specifies how this column is formed as a linear combination of

3k columns of 135. By the structure of M, in Claim 3.1, the (j1, j2, j3)-th row of BW
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“has cxactly k entrics corresponding to i;;) j, for i e [k], these entries are multiplied
by @; in the middle (diagonal) matrix. Therefore, these directly correspond to the k
terms in Claim 3.1. Similarly the entries in B®@ and B® correspond to the other 2k

terms. ) 0

Using Claim 3.4, we need to bound the smallest singular value for cach of the
matrices in order to bound the k|H|-th singular value of Qs, this is deferred to the
end of this part. The most important tool is a corollary (Lemma 3.32) of the random
matrix result proved in [101], which gives a lowerbound on the smallest singular value
of perturbed rectangular matrices.

By Lemma 3.8, we know @5 has exactly rank k|#|, and is robust in the sense that
its k|H|-th singular value is large (polynomial in the amount of perturbation p). By
standard matrix perturbation theory, if we get @5 close to @s up to a high accuracy
(inverse polynomial in the relevant parameters), the top k[#| singular vectors will
span a subspace that is very close to the span of @s- We formalize this in the

following lemma.

Lemma 3.9 (Lemma 3.3 restated). Given the empirical estimator of the 4-th order
moments J/LZ; = ]TL + Ey. and suppose that the absolute value of entries of E, are
at most 8. Let the columns of matriz S € RVHH pe the left singular vector of C~Qs,
and let S be the corresponding matriz obtained with ﬂz;. Conditioned on the high

probability event O’kml(és) > 0, for some absolute constant C' we have:

Cn1.25

|| Projg — Projg|| < ——=—0.
7 ou(Qs)

(3.16)

Proof. Note that the columns of S arc the leading left singular vectors of QQg. We
apply the standard matrix perturbation bound of singular vectors. Recall that $ is

defined to be the first k|H| left singular vector of Qg, and we have

”@S - és" < “@S - @S”F < V/n(|H]|/3)342.

Thercfore by Wedin’s Theorem (in particular the corollary Lemma 1.5), we can con-

143



clude (3.16). \ a

Next, we prove Lemma 3.8.

Proof of Lemma 3.8 We first use Claim 3.4 to write @5 = 135 (D;, Ok IIHI) (ES)T,
note that the matrix (Dg®4, Ijpy) has dimension k|#|x k||, therefore we just need to
show with high probability each of the three factor matrix has large k|#|-th singular
value, and that implies a bound on the k|H|-th singuiar value of és by union bound.
The smallest singular value of ﬁs and ég are bounded below by the following two

Claims.
Claim 3.5. With high probability ox(Ps) > Q(py/n).

Proof. This claim is easy as ﬁs € R™**Hl is a tall matrix with n > 5k|H| rows. In par-
ticular, let Pj be the block of Ps with rows restricted to HC = [n]\H. Note that P is
a linear projection of Pg, and by basic property of singular values in Lemma 3.28, the
k|H| singular values of 13§ provide lower bounds for the corresponding ones of ﬁs. We
only consider the restricted rows so that ﬁg does not involve any diagonal elements of
the covariance matrices, which are not randomly perturbed in our smoothed analysis
framework.

Now }3}; is a randomly perturbed rectangular matrix, whose smallest singular value

can be lower bounded using Lemma 3.32, and we conclude that with probability at

least 1 — (Ce)0%n,

awp(Ps) > epy/n.

Next, we bound the smallest singular value of ES.
Claim 3.6. With high probability oypy(Bs) > Q(pv/n).

Proof. We make use of the special structure of the three blocks of Bg to lower bound

its smallest singular value.
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First, we prove that the block diagonal matrix B has large singular values, cven
after projecting to the orthogonal subspace of the column span of B® and B®. This
idea appeared several times in our proof and is abstracted in Lemma 3.29. Apply the

lemma and we have:

orpu|(Bs)
2 min {ok(21H1/3)([B(2)7 B(J)])’ Uk(PrOj([E(z),§(3)]{j)xn(z)xn(s))izﬂ(z).’?{(f’)) : J € H(l)}
> min {ak(2|H|/3)([§(2)7 E(d)])a

Uk(PrOj([Em)’é(S)](j}x’n(z)\(uw))L Projzl E/H(2)"H(3)) : ] < H(l)}, (3.17)

#(2) 714(3)

where the j-th block of [B®, B®)] has dimension ([#H|/3)? x 2k|#|/3. Since
(|H|/3)® — k — 2k|H|/3 = Q(n/9 — k — 2kn"5/3) > Q(n),

this mecans for each block, cven after projection it has more than 3k rows. Note
that by definition the three blocks B®), B@ and B® are independent and do not
involve any diagonal clements of the covariance matrices, so each block after the two
projections is again a rectangular random matrix. We can apply Lemma 3.31, for any
7, for some absolute constant Ci, Co, C3 (not fixed throughout the discussion), with
probability at lcast 1 — ( C1€)¢?" over the randomness of Eﬂ(z),,{(a), we have:

3 E'H(zi'ﬂ(:s)) > €PN/ 0371 (318)

o(Proj, ze » Proj
k( ‘]([B(Z))B(m](j}><u(2)><1-xc(3)}l JS;@),H(

Now we can takec a union bound over the blocks and conclude that with high

probability, the smallest singular value of cach block is large.

In order to bound oy(2p/3)( [E(Q), 5(3)]), we usc the same strategy. Note that B®
also has a block structure that corresponds to the H® x H®) faces (see Figure 3-3).
Again check the condition on dimension (|H|/3)® — k — k|[H|/3 > Q(n) > 3k, we can

apply Lemma 3.29 again to show that for any j, with probability at lcast 1 — (Cye)“2"
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over the randomness of ¥4 @), we have:

ak(zmg/s)([é(?)’ §(3)]) > min {C’k(|%|/3)(§(3)),

Projg. iy(l),mm) 1J € 7{(2)}.

or(Proj =
k( J([3(3’]H(1)x{j}xﬂ(3))l HD 13

(3.19)

Again by Lemma 3.31, for any j, with probability at least 1 — (C1e)“?" over the
randomness of EH(U,H(Q, we have:
iu(l)ﬂ(s)) > epy/Csn. (3.20)

(o) (PrOj ([E(:;)] Oj

PI‘ 1
HOx @ B ) 4

Finally, for B® it is a block diagonal structure with blocks correspond to H® x
H® faces (see Figure 3-3). Each block is a perturbed rectangular matrix, therefore
we apply Lemma 3.31 to have that with high probability over the randomness of

i7{(1),11((2):
Uk(|7.¢|/3)(§(3)) > Uk(i%(l),ﬂ(z)) > Ep\/ﬁ. (3.21)

Now plug in the lower bounds in (3.18) (3.20) (3.21) into the inequalities in (3.17)
and (3.19). By union bound we conclude that with high probability:

Jle|(§S) 2 €PN/ an.

a

Finally, the diagonal matrix in the middle is given by the Kronecker product
of Ijyy and Dg. Recall that Dy is the diagonal matrix with the mixing weights
w;’s on its diagonal. By property of Kronecker product and the assumption on the
mixing weights, the smallest diagonal element of Dz ®p, 1| 1| is at least wy. Therefore
ok (Dz ®kr Iiayp) = wo.

We have shown that the smallest singular value of all the three factor matrices

are large with high probability. Therefore, apply union bound, we conclude that with
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probability at lcast 1 — exp(—£(n)),
O'k}?ﬂ(@S) > oy (Ps)onay (D @kr Ly )0 (Bs) > Owep®n).

Step 1 (b). Finding Ug, the span of S’s with columns projected to S*.

Algorithm 6: FindProjectedSigmaSpan
Input: 4-th order moments My, set of indices H, subspace S C R"
Output: span{vec(Projg.®) : i € [k]}, represented by an orthonormal
matrix Ug € R %k,

Let @ be a matrix whose columns are vec(Projg. My(e;, e, 1, 1)) for all
ijEM, i#]
Compute the SVD of Q: Q =UDV .

Return: The first k left singular vectors Ug = [Upq, - - -, Upx)-

In Step 1 (b), given the subsct of indices H and the subspace S obtained in Step
1 (a), we want to show that the projected two-dimensional slices of ]’L\I:; span the
subspacc Ug defined in (3.5), which is the span of the covariance matrices with the

columns projected the subspace S*:
Us = span {VCC(PI'Ost SD):ie [k]} c R™.

Recall that in Claim 3.2, we characterized the two dimensional slices of the 4-th

moments My of mixture of zero-mean Gaussians as below:

T, $60 (60 T C
J1.J2 Z,jl] [:,jg]) + 2[7]2](2[’31]) ) ) v]],]Q € [n]

k

Mi(ej,,e50,1,1) =Y i (2@. £0 4+ 50 (ED
i=1

(3.22)

For notational convenicnce, we let J denote the set J = {(j1,J2) : 51 < Jo, J1,92 €

‘H}, and note that the cardinality is |J| = ('Hl;'l) = (n + /n)/2. First, we define the

. =y 2 . . . . . A
matrix Qu, € R" <171 whose columns are the vectorized two-dimensional slices of M,

147



with the columns projected to the subspace S*:
@Us = [vec(ProjSLMAejl,ejz,I, D) : (1, J2) € ._7] . (3.23)
Similarly we define éUo € R™*7! with the siices without the projection:
Quo = [vee(Ma(ejs e, 1,1)) : (i, 2) € T

Observe the structure in (3.22) and we see the columns of QUO is “almost” in the
span of covariance matrices, except for some additive rank one terms. Note that all

the rank one terms lie in the subspace S obtained from Step 1 (a), and they vanish if
®
)
all j € S. Let the columns of the matrix Py, € R**** be the vectorized and projected

we project the slice to the orthogonal subspace S*. In particular, Proj SJ_E | = 0 for

covariance matrices as below:
Py, = [VCC(PrOjSJ_i(i)) RS [k]] . (3.24)

In the following claim, we show that the columns of QUS indeed lie in the column

span of }NDUS :

Claim 3.7. Given S obtained in Step 1(a), the span of if')]] for 5 € H and for all i,
then for j1,j2 € H, we have:
—~—~— k o~ ~ .
PTOjSlM4(ej17ej27 I, I) = Zaizg),jgprojslx(z)) Vi, J2 € [n]
i=1
Similar as in Step 1(a), in the next lemma we show that the columns of @Us indeed

span the entire column span of ﬁus. Since the dimension of the column span of ﬁUS

is no larger than £, it is enough to the k-th singular value of @Us:

Lemma 3.10 (Lemma 3.4 restated). Given ]TL, the exzact 4-th order moment of the
p-smooth mizture of Gaussians , define the matriz éUs as in (3.23) with the two-

dimensional slices of ]’\Z;. For any € > 0, and for some absolute constant Cy,Cs, Cy >
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0, with probability at least 1 — 2(C1€)°?", the k-th singular value of éUs 18 bounded

below by:
0:(Qus) = Cswo(ep)®nt™.

Similar as before, we first cxamine the structure of the matrix Qu,:

Claim 3.8 (Structural). Under the same assumption as Lemma 3.10, we can write

éUs in the following matriz product form:
Qus = Puy D3] (3.25)

The columns of the matrix ﬁus € RY** gre the vectorized and projected covariance
matrices as defined in (3.24); Dz is the diagonal matriz with the mizing weights W;
on its diagonal; and the matriz Sy is defined as:

5, = [vec[zg)m) (rja) €J) 1 € [k]] € RWIxk,
Proof. This claim follows from Claim 3.7, and the rule of matrix product. The cocffi-
cients w; ig? j, for the lincar combinations of vec(Projg. i(i)) arc given by the columns
of the product Dgi} The coefficients are then multiplied by ﬁUS to select the correct

columns. O

To prove Lemma 3.10, similar to the proof ideas of Lemma 3.8, we lower bound

the k-th singular value of all the three factors.

Proof of Lemma 3.10 By the structural Claim 3.8, we know the matrix éUs can
be written as a product of the three matrices as @Us = INjyng’Zv]-Jr.

We lower bound the k-th singular value of each of the three factors. It is easy for
the last two métriccs. Note that by assumption ox(Dg) > w,, and since }EI is just a
perturbed rectangular matrix, we can apply Lemma 3.31 and with high probability
we have 0(2) > Q(pv/n).
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The first matrix }SUS is more subtle. Let us define the projection Dgi. = Projg1 Qg
I, € R™>*"*  This is just a way of saying “apply the projection Projg. to all columns”
and then vectorize the matrix. In particular, for any matrix A we have Dgivec(A) =

vec(Projgi A), therefore by definition of ﬁUs we can write ﬁUs = Dg. 3.

However, we cannot apply the same trick to directly bound the smallest singular
value of Dg: and Proj Dgy % separately. The problem here is that Ds1 and T are not
independent, as the subspace S obtained in Step 1(a) also depends on the perturbation
on i, therefore Proj Dy li is not simply a projected perturbed matrix. Instead, we
show that even conditioned on the part of randomness that is common in S and i,
S still has sufficient randomness due to the high dimensions, and we can still extract

a tall random matrix out of it. This is elaborated in the following claim:

Claim 3.9. Under the assumptions of Lemma 3.10, with high probability the matric
ﬁUs = DS_Li has smallest singular value at least Q(pn).

Let £ be the set of thé (j1, j2)-th entries of S® for all i and one of ji, jo is in the
sct . By Step 1(a), the subspace S’ = span(S, e; : j € H) is only dependent on the
entries in £. Here we need to include the span of e;’s for j € H because the diagonal
entries can depend on the other random perturbations. By adding the span of the
vector e;’s for 7 € H the subspace remains invariant no matter how the diagonal

entries change.

Let Z = span(X, S’ ®y, I,), and recall that the columns of ¥ are the factorization
of the unperturbed covariance matrices. The subspace Z has dimension no larger

than |H|(k + 1)n + k < n?/10, and depends on the randomness of L.

Let £ = ¥+ E where E is the random perturbation matrix. Now we condition on
the randomness in £. By definition the subspace Z is deterministic conditional on L.
However, even if we only consider entries of E\ L there are still at least (n—;cl%l) > n?/4
independent random variables. We shall show the randomness is enough to guarantee

that the smallest singular value of Proj D, Li is lower bounded with high probability
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conditioned on L:

O-k?(ﬁUg) - O'k(DS.Li)
> 0(Projz. X))
= 0 (Projz1 ¥ + Projz. E)

= ox(Projz. F).

Here we used the fact that projection to a subspace cannot increase the singular
values (Lemma 3.28).

Conditioned on the randomness of entries in £, E\ L still has at least n%/4 random
directions, while the dimension of the deterministic subspace Z is at most n?/10.
Therefore we can apply Lemma 3.31 again to arguc that conditionally, for every

€ > 0, with probability at least 1 — (Cy€)%" we have:

ak(ﬁUs) > €EPV 03112.

In summary, apply union bound and we can conclude that with probability at

least 1 — (Cye)c™,
o:(Qus) = ox(Pug)on(Dg)on(Ey) > Caw,(ep)®n'?.

O
Next, we again use matrix perturbation bounds to prove the robustness of this

step, which depends on the singular value decomposition of the matrix @Us-

Lemma 3.11 (Lemma 3.7 restated). Given the empirical 4-th order moments M, =
M, + E4, and given the output Projg, from Step 1 (a). Suppose that ||Projg. —
Projz. || < 61, and suppose that the absolute value of entries of Ey are at most 82 for -

0 < “@Us“ r/Vn3. Conditioned on the high probability event ok(QUS) > 0, we have:

125 (1 + 26, /85)
Uk(@Us)

| Projg, — Projg || <

8. (3.26)
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Proof of Lemma 3.11 Note that the columns of Us are the leading left singular
vectors of @Us- We want to apply the perturbation bound of singular vectors.
Similar to the proof of Lemma 3.9, we first need to bound the spectral distance

between @Us and @US. In fact we will even bound the Frobenius norm difference:

1Qus — Qusllr = | Ds1Quo — Dss Quollr
= [1Ds+(Quy — Quy) + (Ds+ = Ds1)Quy + (Dss — Ds1)(Quy — Qua)llr
< || DsellrllQus — Quollr + 201 Ds1 — DsulpllQu,llr
< Vn2|| Dy |21Qus — QuollF + 2v/nlIProjg. — Projz. |7/l Quo I <

< n\/n2|7183 + 2/ /w217 Projs. — Prois. I
< nZE(l + 2||Projg. — Projgz, ||2/62)02,

where we used the assumption |£®|| < 1 to bound ||Qu, ||#, used the upperbound
on [|Qu, — Quoll» to bound the term [[(Dss — Dss)(@uy — Quo)llr < II(Dss —
Dg1)||pb2/n2]T] < ||(l/55¢ - ES,L)”F”éUO”F, and used the fact that Frobenius

norm is sub-multiplicative. Apply Wedin’s Theorem (in particular the corollary

Lemma 1.5), we can conclude (3.26). O

Step 1 (c). Finding U by Merging the Two Projected Span

Algorithm 7: MergeProjections
Input: two subspaces S;, S, € R™** two subspaces Uy, U, € R *¥ (the span
of covariance matrices projected to the corresponding Si-, S3-).
Output: span{Z® : i € [k]}, represented by an orthonormal matrix
U e R™xk,
Let A be the first 2ks left singular vectors of Sy, Sa).
Let Sz be the first (n — 2ks) left singular vectors of I — AAT.
Let Q = [I2, Projs,e,, 1, Projy,] T Uz, compute the SVD of Q.

Return: matrix U, whose columns are the first k left singular vectors Q.

Pick two disjoint sets of indices H,, H,, and repeat Step 1 (a) and Step 1 (b) on
each of them to get gf and ﬁj for j =1,2. In Step 1 (c), we merge the two span U
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U,

o = - .

Figure 3-4: Step 1(c): Merging two subspaces.

and UT_; to get U.
If we are given two projections Proj stU and Projg1U of a matriz U, and if the
union of the two subspaces Si- and Sy have full rank, namely dim(S; USs) = n, then

we can recover U by:

U = Proj s Proj st U

P[‘OjSéL Projg LU

However, it is slightly different if we are given two projections of a subspace U, since a
subspace can be equivalently represented by different orthonormal basis up to linear
transformation.

In particular, in our setting for j = 1,2, we can write l}j = (Proj sl Rer In)iﬁ”j
for some fixed but unknown full rank matrix W; (which makes the colunns of matrix
EW} an orthonormal basis of ). Recall that we define £ = [vee(S) : € [k]], and
DS,}'L = Proj s Qe Iy for j=1,2.

The following Lemma shows that we can still robustly recover the subspace U if
the two projections have sufficiently large overlapping. The basic idea is to use the
overlapping part to align the two basis of the subspace which the two projections act

OI1.

Lemma 3.12 (Robustly merging two projections of an unknown subspace). This is
the detailed statement of Condition 3.10.
Let the columns of two fived but unknown matrices Vi € R™** and V4 € R™¥ form

two basis (not necessarily orthonormal) of the same k-dimensional fized but unknown
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subspace U in R™.

For two s-dimensional known subspaces S; and Sz, Let the columns of A be the
first 2s singular vectors of [S1,Ss), and let the columns of Ss correspond to the first
(n — 2s) singular vectors of (I, — Proj,), therefore S3 C (S; U S’g)J‘. Suppose that
or(Projg,U) > 0 and that 025([S1,S2]) > 0. Define matrices Uy = Projgi Vi and
Uz = Projgs Vy and we know that U'U, =U Uy = .

We are given S1, 8, and Uy, Us, and suppose that for j = 1,2, we have ||§j—Sjl|F <
ds and ||(7] —Ujllp < 8y, for 6s < 1,6, < 1.

Let the columns of A be the first 2s singular vectors of [§1, gg], and let the columns
of Sy be the first (n — 2s) singular vectors of (I, — Projz). Define matrix U € R
to be:

U= 0 D.S50)'SI0) | (3.27)

If ox(Projs,U) > 0 and 09,([S1, S2]) > 0, then for some absolute constant C' we have:

C\/E(éu + 63/023([817 52]))
or(Projs,U)2024([S1, 52])3

|| Projs; — Projy|| <

Proof. The proof will proceed in two steps, we first show that if we are given the exact
inputs, namely 8, = 8, = 0, then the column span of U defined in (3.27) is identical
to the desired subspace U. Then we give a stability result using matrix perturbation
bounds.
1. Solving the problem using exact inputs.

Given the exact inputs Sy, S5, Uy, U,, first we show that under the conditions
02s([S1,82]) > 0 and o4 (Projg,U) > 0, then we show that the column span of the
matrix [Us, Uy(S5 U1)1(S; Uz)] is indeed identical to U = span(Vy) = span(Va).

Claim 3.10. Under the same assumptions of Lemma 3.12, given a matriz V € RF<k
such thatV = V;’VQ, let Projy, be the projection to the column span of Uy = [Us, U3V,

then we have Projy, = Projy.

Proof. Given V = V,'V4, then UV = Proj st ViV = Projg.Va. Recall that by def-
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inition Uy = Proj i Va, then the problem is now reduced to the simple problem of
merging two projcctions (Us = Proj S%Vg and U1V = Proj S}LVQ) of the same matrix
(V2). Therefore, to show that the columns of Uy = [Us, U; V] indeed span V, and thus
the desired subspace U, we only need to show that [Projg:, Projgs] has full column

span. We show this by bounding the smallest singular value of it:

S 0
a',n([PI'OjSQL,PI‘Oij_]) 2028([P1.0jS§L7PI‘Oij~] ' )
Sa
2023( ] (In — SQS;_)Sl, (In — Slsir)SQ ])
r N I -SrS
=03s( S1, Sz e )
- - L "'S;—Sl IS
- . [ ST
=ou([ S5 || L[ S5 ])
L J —-S2
- - T
=023(L S1, 52 I S1, =8> ] [ S1, =52 ])

:028([517 521)3
>0, | (3.28)

where the last inequality is by the assumption that g4,([S;, S2]) > 0. a

Next, we show that in the cxact case, the matrix V = Vng can be computed
by V = (S5 U1)1(S] Uz). The basic idea is to usc the overlapping part of the two
projections U; and Us to align the two basis V and V5. Recall that by its construction,

Sz = (S1US2)* = S{- NSy, and Projg, = Projgiqgy. Then for j =1 and 2, we have:
S, U; = SJProjSJ_ﬂ/.j = S;(PrOjS:}LPTOjsj. + ProjsaProjsiL)Vj =85 (0+ Projg,)V; = Sy V.

Moreover, since U; = Projg.Vj is an orthonormal matrix, we have that all singular
J
values of V; are equal or greater than 1. Also note that U is an orthonormal matrix,

so we have that o4(Projg,V;) > o0x(Projg,U) > 0. In other words, Sy V; has full
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column rank k. Therefore,

V = (S5 U1)1(S5 Uy)
= (S5 VA)(S5 V%)
= (V," 8353 V1) 7'V S5( S Va)
= (Vi 8585 VA) "' VT 8385 VaVi'V,
=Viv,

where the third equality is the Moore-Penrose definition, the fourth equality is because
V1 and V; are basis of the same subspace, there exists some full rank matrix X € R¥<k

such that Vo = V1 X, so we have VlVsz = VlVfVlX =WX =V,
2. Stability result.

Given §1,§2 and (71, ﬁz which are close to the exact Sy, S53,U; and U,, we then
need to bound the distance ||Proj; — Projy||. This follows the standard perturbation
analysis. In order to apply Lemma 1.5 we need to bound the distance between
U = Us||r, and lower bound the smallest singular value of Up, namely o1 (Up). Recall

that we define U, same as in (3.27) for the exact case with §; = 6, = 0.

First, we bound ||U — Up||r. Note that we can write Uy as Uy = U,B, where

B =1, UI(S.‘IUI)TSS]T'
Recall that S3 = (S; U Sp)*, apply Lemma 1.5 and we have:

51, S2] — [S1, Sa)ll < 2v/20,

5 . : |
. — Sall < & 5 — <2 .
155 = Ssll < “ProJSlUS2 Projs,us,ll < V2 02s([S1, S2]) = 025([51, S])

Next, note that ||S5 — S| < 1 and ||Uy — Uy|| < 6, < 1, apply Lemma 1.6 we have:
13501 = S0 < 2(185 — Ssl + T2~ Th).

Next, note that 04 (Sg Uy) = 04(Projg, Vi) > 0 by assumption. Apply Lemma 1.7, we
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have:

2v2||55 Uy — ST U]
or(Projg, V1)

1655 00 = (S50l <
Next, apply Lemma 1.6 again we can bound the perturbation of matrix product:

1T — Us|| = |U=B — U:B||
< 2(|Us - Us|| + | B - BY))
= 2(||Us — Us|| + |U(S5 U1)'Ss — U (S5 U ) Ss]))

< 2(||Us = Us]| + 4(|Th — U || + 1(S5 U0 = (S5 U + 185 — Ss]))-

< C((Su + 53/023([317 82]))
- or(Projg,V1)? ’

where C' is some absolute constant, and the last inequality summarizes the previous
three inequalities, and used the fact that oy (Projg,V4) < 1. Note that |](7 —Upllr <
VENT = Us|l-

We are left to bound o4 (Up). Recall that o (V2) > 04(Uz2) = 1, and we have shown
that in the exact case Up = [Projgy V2, ProjgiVa]. Then we can bound the smallest

singular value of Uy following the inequality in (3.28):
ax(Uop) 2an([Projgy, Projsi]) > oas([S1, S2))°.

Finally we can apply Lemma 1.5 to bound the distance between the projections

by:

V2\U = Uyllp < CVE(8u + 85/02:(151, S2])

J|Proj» — Proj < - .
IProig Joa | < 0e(Uo) = ow(Projg,V1)?o2s([S1, S2])°

a

In Step 1 (c), we are given the output U, and U, from Step 1 (b), as well as the
output S and S5 from Step 1 (a). Recall that I = span{vec(E®) : i € [k]}, and for

j = 1,2, the matrix (7]- given by Step 1 (b) corresponds to the subspace U projected
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to the subspace Ej = §Jl Qkr L.

Let matrix S3 = S{- NS4 = (S;US,)* (obtained by taking the singular vectors of
(I, — AAT), where A corresponds to the first 2k|H| singular vectors of [Sy, S5]), and
denote §3 = §3 ®kr In. Define the matrix @U to be:

Qu= 0o, Ui(BTY'BsD2) | (3.29)

and similarly define the perturbed version @U to be:

—~

Qu = [ Us,  Un(BsUh)tBsls) ] :

Now we want to apply Lemma 3.12 to show that PronU = Projy and bound
the distance ||Projs — Projg||. In order to use the lemma, we first use smoothed
analysis to show (in Lemma 3.13 and Lemma 3.14 )that the conditions required by the
lemma are all satisfied with high probability over the p-perturbation of the covariance

matrices, then conclude the robustness of Step 1 (c) in Lemma 3.15.

Lemma 3.13. With high probability, for some constant C
crk(ijﬁggl) > Cepn.

Proof. This is in fact exactly the same as Claim 3.9.

Given S = 2+ E , by the definition of §3 and §3 we know that §3 only depends

on the randomness of P;E for i = 1,2, where
J ={(41,72) : h € H1UHz, or j1 € H1 UHa},

and P, denotes the mapping that only keeps the coordinates corresponding to the set

J. Therefore, we have:

0x(P10j3,5) > 04(Proj gy sy Projz, B).
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Note that the rank of Bi is 2nk|H|) and |J| = 2n|H|, thus ny — |J| — 2nk|H| —
k = Q(n?) > 2k. So we can apply Lemma 3.31 to conclude that for some absolute

constants Cy, Ca, C3, with probability at least 1—(Cye)<", ak(EJ i) >epvCsn2. O

Lemma 3.14. With high probability, for some constant C,
U2kIH|([§1, Sy)) > Cw,(ep)?n=o%.

Proof. For i = 1,2, recall that S; is the singular vectors of ési, where @gi is defined
with the set H; as in (3.12). We can write the singular value decomposition of Qs,

as Qs, = SiDiViT for some diagonal matrix D; and orthonormal matrix V;, and

WwWD' 0

[§17 §Z] - [éSnéSz] ~ o~
0 VD3t

Note that we can write [Qs,, Qs,] = [Ps,, ﬁgz](diag(Bgl, Bg,))", and following almost
cxactly with the proof of Lemma 3.8, we can argue that, with probability at least

1— (CIG)CQ'H,,

gann([Qsy, @s,]) = Cw,(ep)?n.

Morcover, by the structure of M; and the bounds on sO < %I , we can bound

1Qs.1l < 3+/n(JH[/3)?, and thus:

1
_ Q(n-—l.QS)’

1
omen(05) — 3Y/nHIBR

Therefore, we can conclude that, for some absolute constant C, we have:

ka[(Vif?{l) =

0-2’”"7'{'([517 §2]) Z Cwo(ep)2n—0.25'

O

In the next lemma, we apply Lemma 3.12 to show that under perturbation, with
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high probability the column span of Projg,, = Projg and this step is robust.

Lemma 3.15. Given the output §1, Sy and Uy, Uy from Step 1 (a) and (b) based on
the empirical moments AZ. Suppose that fori=1,2, IIS’;—,’S'V,”F < 4, ||(71*(71”F < 4,
for és,6, < 1. Let the columns of U € R™F be the k leading singular vectors of QU
defined in (3.29). Then for some absolute constants C, with high probability,

CVR(Bu + 85T (o))

36881125
wiesp®n

| Projg — Projg|| < (3.30)

Note that O'leqﬂn([gl,gg]) = 02k|7{|([§1a§2])’ and for ¢ = 1,2, we have “Ez -
g@” r < \/ﬁ||§1 - §1H r < v/nds;. Therefore, with the above two smoothed analysis
Lemmas showing polynomial bound of 0'2k|7{|([§1’ §2]) and ox(Projg, (f))), the proof

of Lemma 3.15 follows by applying Lemma 3.12.

3.4.2 Step 2 of Zero-Mean Case. Moments Unfolding

Algorithm 8: EstimateY,;Y;s

Input: 4-th order moments M, € R™, 6-th order moments Mg € R"¢, the
span of (vectorized with distinct entries) covariance matrices U € R"2*¥.
Output: Unfolded moments in the coordinate system of U:

Y'4 c kak Y'b c kakxk'

sym) sy
Let Yy be the solution to miny, cpexk IV3FLUY,UT) — M4|)%.
Let ¥ be the solution to miny, cpixixs ||V 5FsYs(UT,UT,UT) — Mg||%.
Return: Y,, Ys.

In the second step of the algorithm, we solve two systems of linear equations to

recover the unfolded moments.

Unfolding the 4-th Order Moments

Recall the first system of linear equations is

M4 B \/5]:4 o X‘QU(YA;)
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In the cquation, Yy € REX is the unknown variable which can be viewed as a k x
k symmetric matrix. Given U € R™** the column span of 5 that we learned
in ‘Step 1, the first lincar transformation Xf is simply X7 (Yy) = UY,UT. It is
supposed to transform Y} into the unfolded moments Xy € R}2%"2, which is defined
to be 38 wivee(ED)vee(EM)T. The next transformation v/3F, maps the unfolded
moments X, to the folded moments M4 € R™. As we showed in Lemma 3.1, the
mapping J4 is a projection.

Since U is the column span matrix of f), there must exist a Y, such that X, =
SDzET = UY,UT (recall that Dy is the diagonal matrix with entries &;), so the
system must have at least one solution.

Rewrite the system of linear equations M4/v/3 = Fy 0o XY (Y;) in the canonical
form: M43 = Hyvee(Y,) where the variable vec(Y;) € RF2, and the cocfficient
matrix Hy € R™**2 is a function of U and therefore also a function of the parameter
¥ (recall ny = (}) and ky = ("?;1)) The system has a unique solution if the smallest
singular value of the coefficient matrix H, is greater than zcro.

The main theorem of this section shows that with high probability over the p-

perturbation the system has a unique solution:

Theorem 3.12. With high probability over the p-perturbation of f?, the smallest sin-
gular value of the coefficient matriz H, is lower bounded by omi,n,(_fﬂ) > Q(p*n/k).

As a corollary, the system has a unique solution.
In order to prove this theorem, we first need the following structural lemma:

Lemma 3.16. The coefficient matriz Ii; 'is equal to ;1’454. The first matriz g4 €
R"™**2 has columns indezed by pair {(i,7) : 1 < i < j <k}, and the (i,5)-th column
is equal to Ci,jf4(vec(§(i)) ® vec(SD)). Here Cij=lifi=7and C;; =2 1ifi < j.

The second matriz B, € Rk2xk2 transforms a k x k symmetric matrices Yy into:
Byvec(Yy) = vec((STU)Y(STU)T).

Next we need to prove the bounds on the smallest singular values for A, and B,.

The first matrix A, is essentially a projection of the Kronecker product (f) R i‘)
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In particular, this projection satisfy the “symmetric off-diagonal” property defined

below:

Definition 3.3 (symmetric off-diagonal). Let the columns of matrizx P € R xd:
form an (. afbitmry) basis of the subspace P, and index the rows of P by pair (i,j) €
[ne] X [ng]. The subspace P and the matriz P is called symmetric off-diagonal, if (i,1)-
th row of P is 0 (“off-diagonal”), and the (i,j)-th row and (j,1)-th row are identical

( “symmetric”).

Remark 3.13. Since symmetric off-diagonal is a property on the structure of rows
of the basis P. If one basis of the subspace P is symmetric off-diagonal, then any
basis is too. Moreover, any orthogonal basis of the subspace P will still be symmetric

off-diagonal.

Consider a Kronecker product of the same matrix E € R"2**, The columns of
E Q4 E are indexed by pair (i,5) € [k] x [k]. Consider applying a symmetric off-
diagonal projection P' to the Kronecker product. By the property of symmetry the
projection will map two columns E.; © E|.;; and E}.; ® E}.; to the same vector.
Therefore the projected Kronecker product PT(E ®y, E) will not have full column
rank k2. However, we will show that the ko “unique” columns after the projection
are linearly independent.

To formalize this, we define the matrix (E ®kr E)unig € R™*k2 with the “unique”

columus of E ®y, E labeled by pairs {(¢,j) : 1 <i < j < k}. In particular,
[(E Qkr E)un-iq][:,(i,j)] = E[,z] O] E[:,j]-

In the following main lemma, we show even after projection to any symmetric off-
diagonal space with sufficiently many dimensions, the “unique” columns of a Kro-

necker product of random matrices still has good condition number.

Lemma 3.17. Let E € R"** be a Gaussian random matriz (each entry distributed

as N(0,1)). Let P € R™>% be q symmetric off-diagonal subspace of dimension
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dy = Q(n2). Then for any constant C > 0, when ny > k> we have with high

probability omin(PT(E @k E)unig) > Qnz).

Let us first sec how Theorem 3.12 follows from the two lemmas (Lemma 3.16 and

Lemma 3.17 ).

Proof. (of Theorem 3.12) Using the structural Lemma 3.16, we know we only need to
bound the smallest singular value of A, and By separately. The following two claims

directly imply the theorem.
Claim 3.11. 0, (As) > Q(p?ny).
Claim 3.12. 0, (B1) > 1/@|S|2) > 1/(4nk).

Next we prove the above two claims.

We apply Lemma 3.17 to prove Claim 3.11. Note that the p-perturbed covariances
¥ is not a random Gaussian matrix, yet it is equal to the unperturbed matrix ¥ plus
a random Gaussian matrix Fy = pE’. Since we consider arbitrary ¥, the columns of
¥ as well as the columns ,L may not be incoherent.

Instead, we project ,L to a subspace to strip away the terms involving the original
matrix ¥. Let S be the range space corresponding to the projection Fy;. Recall that
|S| = n4 = Q(n2), and by the definition of Fy, S is symmetric off-diagonal. Define
the subspace S’ = span(S+t, ¥ ®ur Iy, In, Qe B). Let P = (S"). By construction
|P| > |S| — 2kny = Q(n2). Also, since P = (S')* is a subspace of S, it must also be
symmetric off-diagonal (sce Remark 3.13). After projecting A4 to P, we know that
the (4, §)-th column (1 < i < j < k) of PT A, is given by:

PTAd ) = Cii P (S © Bpjy + pELy O By + pE1a © Epy) + 0° By © B )
= Ci;p*PT B © Bp).

"Note that the diagonal entries are then arbitrarily perturbed, but we will project on a symmetric
off-diagonal subspace so changes on diagonal entries do not change the result.
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Thus in PT;L; all the terms involving ¥ disappears. Therefore

Umin(;{cl) Zo'min(PTAvél) = O'min(I)T(i ®kr i)'u'niq)
=p20'min(PT(E ®kr E)um’q) 2 Q(P2n2),

where the first inequality is because the smallest singular value cannot become larger
after projection, the first equality is by definition, the second equality is by the prop-
erty of P, and the final step uses Lemma 3.175.

For Claim 3.12. Pick any Y; € Rk we have

sym?

1B = Ivee( E )Y E) ) = |EVYETD) e
> || Yillpomin(ETU) = Yalle/IZ]?,

where the inequality is because ||AB||r > Omin(A)||B|lr if A € R™ ™ and m > n.
Since ||vec(Y,)|| is within a factor of v/2 to ||Yy||r, and by the assumption ) < 11
we can bound ||§|| < Q(v/nk), we have the desired bound for omin(Bi). a

Structure of the Coefficient Matrix Next we prove the structural Lemma 3.16.

Proof. (of Lemma 3.16) First, assume we know the true N matrix, then in order to get
the unfolded moments X, we only need to solve the equation ]74(§~3D4§T): M, with
the £ x k£ symmetric variable D,, and the solution should be equal to the diagonal
matrix Dj.

However, we only know U which is the column span of f), so we can only use
UY,UT and let UY,UT = £D,7. Note that there is a one-to-one correspondence
between Y; and Dy. In particular we know D, = (STU)Yy(EtU)T, this is exactly the
second part §4.

Now the first matrix A4 should map vec(D,) to My. By construction, the (i, j)-th
column (i < j) of Ay is equal to F4(E® @ £D + £0) @ £0) = 2F,(X® © £0)), since

F4 is symmetric off-diagonal we know Fy(v; ® ve) = Fy(ve @ v1) for any two vectors

8Note that although diagonal entries are not perturbed, we also have P = 0 so we can still
apply the lemma.
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vy, va. For the (Z,7)-th column, by construction they are equal to fﬁi(i(“ ® f](")) as

we wanted. O

Main Lemma on Projection of Kronecker Product In this part we prove
Lemma 3.17.

The singular values of Kronecker Product between two matrices are well-understood:
they are just the products of the singular values of the two matrices. Therefore, the
Kronecker product of two rank k matrices will have rank k2. However, in our case
the problem becomes more complicated because we only look at a projection of the
resulting matrix. The projected Kronecker product may no longer have rank k2 be-
cause of symmetry. Here we are able to show that even with projection to a low

k+1). :

dimensional space, the rank of the new matrix is still as large as ( 2

The basic idea of the proof is to consider the inner-products between columns,

and show that the columns are incoherent cven after projection.

Proof. (of Lemma 3.17) Consider the matrix (E Qur E) iy PP (E ®kr E)uniq, we shall
show the matrix is diagonally dominant and hence its smallest singular value must

be large. In order to do that we need to prove the following two claims:

Claim 3.13. For any i,j < k, i < j, with high probability |P"(E.4 © Ep)|* >
Q(n3).

Claim 3..14. For anyi,j <k, i <j, with high probability

> | (PT(Eq © Ep.j), PT(Erin © Epjn)) | < o(n).
1</ <5 <k, (2,5) #(,57) ‘

With this two claims, we can apply Gershgorin’s Disk Theorem 1.6 to conclude
that omin((E @k E)IquPT(E Okr E)unig) > Q(n2). Therefore 0,0 (P (E Qg
E)uniq) = Q(na).

Now we prove the two claims. For Claim 3.13, it essentially says the projec-
tion of a random vector to a fixed subspace should have large norm. If the vec-

tor has independent cntrics, this is first shown in [113]. Recently [124] general-
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ized the result to K-concentrated vectors, scec Lemma 3.33. By Lemma 3.34 we
know conditioned on ||Ep ||, | Epll < 2v/n2, (Epy © Epj)pe® # q) is O(y/n2)-
concentrated. By assumption P ignores all the (E}; © Ep.;))pp entries. Therefore
Pr{||PT(Epq © Epg)|I2 — da| > 2tv/dz + 8% < Ce/m) | ¢=2m)  We then pick
t = \/d3/5 > Q(n,), which implies Pr[||P(E}.) ® Ep. ;) ||? < d2/2] < Ce~"2). This is
what we need for élaim 3.13.

We need to bound terms of the form (PT(Epq © Ei.;1), PT(Ep# © Ep.j)) in order
to show Claim 3.14. These are degree-4 Gaussian chaoses and are well-studied in [74].

We break the terms according to how many of ¢/, j’ appears in ¢, 7.
Case 1: i',5' ¢ {i,5}. In this case we first randomly pick Ei;, E.;}, and condi-
tion on the high probability event that ||Ep |, [|E; ]l < 24/n2. In this case the
inner-product can be rewritten as (PPT(Ep. 3 © Ep.3)), (E.# © Ej.5)), and we know
||PPT(E[;,1»] © Epj;))|| < 4ny. Also, since P is symmetric off-diagonal we know in this
degree-2 Gaussian chaos (only E. s and E[ ;| are random now) there are no “diago-
nal” terms. Therefore the Decoupling Theorem 3.20 shows without loss of generality
we can assume i’ # j'. Apply Theorem 3.19 we know this term is bounded by O(n}**)
with high probability for any € > 0.
Case 2: One of ¢,5 is in {i,7}. Without loss of generality assume i’ € {i,5}
(the other case is symmetric). Again we first randomly pick E.;, E.; and condi-
tion on the high probability event that |E ||, | E. /I < 2¢/nz (but this will also
determine Ej. ;). After the conditioning, only Ej ;) is still random, and the inner-
product can be rewritten as (mat(PPT(E[;,i] ® E[:,j])E[;ﬂ;/], E'{;,j/]> Wheré the fixed vec-
tor mat(PPT(E}.; ® Ei. ;) Ep.# has norm bounded by ||PPT(E; © Ep ;) ||| Epall <
8n§/ 2, By property of Gaussian with high probability the inner-product is bounded
by O(ng/ *+¢) for any € > 0. |
Case 3: 7,5’ € {i,j}. Since ¢, j' cannot be equal to i, j, there is only one possibility:
¢, 7' are both equal to one of i,5 and ¢ 7é' j. Without loss of generality assume
i’ = j' =1+ j. We can swap 1, j with 7/, 7 and this actually becomes Case 2. By the
same argument we know this term is bounded by O(ng/ 2"‘e) for any € > 0.

There are O(k?) terms in Case 1, O(k) terms in Case 2 and O(1) terms in Case 3.
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Therefore by union bound we know the sum is bounded by O(kng/ P4 kPndte) with
high probability. Recall we are assuming ne > k2+¢ (which only requires n > kO,

Choose € to be a small cnough constant depending on C' gives the result. g

Unfolding 6-th Order Moments

Recall the second system of linear equations is
Mg/V15 = Fso X (Ye).

In the cquation, Ys € R’;yf,”;'x’“ is the unknown variable which can be viewed
as a k x k x k symmetric tensro. The first linear transformation XY transforms
Ys into the unfolded moments X4 € R{27"2*"2, which is supposed to be equal to
Zle @ivec(S®)®3. The transformation is simply Xg = XV (Ye) = Ya(UT,UT,UT)
where U € R"*¥ is the column span of % that we learned in the previous section.

The next transformation Fg maps the unfolded moments Xg to the folded moments
Mg € R", which as we showed in Lemma 3.1 is a projection. Recall that ng = (2 .

Rewrite the system of linear equations Mg/v/15 = Fg 0 AV (Ye) in the canonical
form: Mg/V/15 = ﬁﬁvcc(Yﬁ) where the coefficient matrix Hg € R"*% is a function
of U and therefore is a function of & (recall ks = ().

The second system of lincar equations tries to unfold the 6-th order moment Mg

to get Yg. Similar to Theorem 3.12 the following thecorem guarantees that with high

probability over the perturbation the system has a unique solution.

Theorem 3.14. With high probability over the perturbation, the coefficient matriz
Hg has smallest singular value O-min(ﬁ(j) > Q(p*(n/k)1?). As a corollary, the system

has a unique solution.

The proof of this theorem is very similar to the proof of Theorem 3.12. Here we
list the important steps and highlight the differences.

As before the theorem relies on a structural lemma (Lemma 3.18), and a main
lemma about the symmetric off-diagonal projection of a Kronecker product of three

identical matrices (Lemma 3.19).
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Lemma 3.18. The coefficient matriz ﬁ(,‘ is equal to x:{(jgﬁ. The first matrix Zg €
R™*%s has columns indeved by triples (iy,i2,i3) for 1 < 4y < iy < i3 < k, and are

given by:
[l 612,600 = CirsiniaFo(vec(Z) © vee(E) @ vec(E®)),

where C;, 4,4, 15 a constant depending only on multiplicity of the indices (i1,1s,13).

The second matriz Bs € RF>** transforms a k x k x k symmetric tensor Yy into:
Bs(Ys) = Y5((Zt0)T, (ZH0)T, (E0)").

Before stating the main lemma, we update the definition of symmetric off-diagonal

subspace.

Definition 3.4. Let the columns of matriz P € R"3%ds form a basis of a subspace P.
Indez the rows of P by triples (i1,12,%3) € [na] X [ng] X [n2]. The matriz P and the
subspace P are called symmetric off-diagonal if: whenever iy,12,13 are not distinct the
corresponding row is 0 ( “off-diagonal”); and for any permutation w over {1,2,3}, the

rows corresponding to (iy,i,i3) and (i,r(l),i,,(g), i,,(g,)) are identical (“symmetric”).

It is easy to verify that since the moments in Mg all have indices corresponding to
distinct variables, the projection Fg is indeed symmetric off-diagonal. The constraints
in this definition is closely related to the decoupling Theorem 3.20 of Gaussian chaoses.

Similarly, we define the “unique” columns in the 3-way Kronecker product to
be the matrix (E Qpr E Qir E)unig € R"*%s whose columns are labeled by triples
(41,42,43) : 1 < 4y < dp < i3 <k, and (E Qir £ ®kr E)uniq)[s (i1 izsis)] = Elis] @ Elig) @
Ej. 4.

Lemma 3.19. Let E € R™** be a Gaussian random matriz. Let P € R™x% pe g
symmetric off-diagonal subspace of dimension d3 > Q(n3). For any constant C > 0,
if ny > K2YC, with high probability o min(PT (E @y E Qe E)unig) = Q(ng/ 2).

The proofs of Theorem 3.14 are based on the above two lemmas. The proof of
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Lemma 3.18 is essentially the same as Lemma 3.16. The proof of Lemma 3.19 is very

similar to that of Lemma 3.17, and we highlight the only different case below:

Proof. (of Lemma 3.19)
As before we try to prove that the columns of PT(E®y, E®y, E).niq are incoherent.

Recall we needed the following two claims:

Claim 3.15. For any 1 <14y < i < i3 < k, with high probability | PT(Ej.;,) ® Efiy) ©
E )P > Q(n3).

Claim 3.16. For any 1 < iy < iy < i3 < k, with high probability

> [{PT(Eiy) @ Epia) © Epag))s P (Epiy) © By © Eppagg))| < o(n).
1<, <ily <l (i1 yi2i3) () i .i%)

The first claim can still be proved by the projection Lemma 3.33, except the
vector B ;1 © Epiy) © Bl is now O(ng)-concentrated (the proof is an immediate
generalization of Lemma 3.34).

The second claim can be proved using similar ideas, however there is one new
case. We again separate the terms according to the number of i, #},4; that do not
appear in {i1,12,13}.

Case 1: At least one of i}, i), i does not appear in {i1,142,43}. Suppose there are ¢ of

iy, 15,75 that do not appear in {i1,1%,, i3}, similar to before we first sample E;,, Ey,, E;,
and condition on the cvent that they all have norm at most 2,/n;. The inner-product
then becomes an order ¢t Gaussian chaos with Frobenius norm ng—t/ . By Theo-
rem 3.20 and Theorem 3.19 we know with high probability all these terms are bounded
by nS~**¢ for any constant € > 0.

Case 2: All of 4,15, appear in {i1,,23}. In the previous proof (of Lemma 3.17),
there was only one possibility and it reduces to Case 1. However for 6-th moment we
have a new case: i = i; = iy = 1} < i5 = 4 = i3 = j (and the symmetric casc iy =} =
i < iy = i3 = 14). For this we will treat T = PPT as a 6-th order tensor with Frobe-
nius norm at most ng/ 2 (as a matrix it has spectral norm 1, and rank at most n3). The

tensor is applied to the vectors Ep; and Ep.j) as T'(Epq), By By £y £y Erg))-
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First we sample E};), by Lemma 3.36 we know with high probability what remains
will be a 3-rd order tensor T'(E ), Ei.q, I, Et.q, I, I) with Frobenius norm bounded
by O(n2*€). Notice that here it is important that Lemma 3.36 can handle diagonal
entries, because E|.; appears on the 1,2,4-th coordinate (instead of the first three).
We the apply Lemma 3.36 again on T'(Ey, Ey. 4, I, Epq, I, I(EL 3, B3, Ep.;)°, and
conclude that with high probability the term is bounded by O(n3°*%) which is still

much smaller than n3.

Finally we take the sum over all terms and choose € to be small enough (depending

on C), then when k*+C < ng the sum is a lower-order term. O

Stability Bounds

For the two linear equation systems in (3.7), we can write them in canonical form with
coefficient matrices Hy, Hg and the unknown variable vec(Yy), vec(Ys), corresponding

to the ks, k3 distinct elements in symmetric Yy, Ys, namely:
Hyvec(Yy) = M4/v/3, Hgvec(Ys) = Mg/ V15.

When A/L, ]\//.76, the empirical moment estimations for M4, Mg, are used throughout
the algorithm, both the coefficient matrices I?4, Hg and the constant terms M4, Mg
are affected by the noise from empirical estimation. In practice, instead of solving
systems of linear equations, we solve the least square problem:

min [[V3FUYUT) - M4,  min [VISFYe(UT,UT,UT) — M|

Yy E]Rs;(m 6€ s'yrr; xk

(3.31)

and the solution to the least square problems are given by: vec(ﬁ) = ﬁl]\? 4 and

vee(Yg) = I?g]&//.?a.

9The notation might be confusing here: T(Epq, Epipy I, Ep i), I,I) is a 3rd order ten-
sor, and we are applying it to E; j, Ep.; B - The whole expression is equal to
T(ELq, By Bt g1 Brigs Bre g1y Epg))-
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Lemma 3.20. Given the empirical 4-th and 6-th order moments ]/\74 = M4 + Ey,
]/\iﬁ = j\;fﬁ + Fg, and suppose that the absolute value of entries in E; and Fg are at
most 6,. Let U be the output of Step 1 for the span of the covariance matrices, and
suppose that |U = U|| < 8. Suppose that 6, < min{l|ﬁ4||p/\/n_4, “]’\\iﬁllp/\/n—()}, and
02 < min{l,akz(fﬁ)/Q, okS(ﬁﬁ)/Q}. Then, conditioned on the high probability event
that both oy, (Hy), ox,(Hg) are bounded below, we have:

oo N 02 Vo
”Y4~Y:1”FSO ((()1+*“'~—> n .
ow(Ha2 )

~ o~ 5o
Vs - Yellr <O ((51 b2 ) ﬁ) ,
6 6 O'k3(H6)2 \ 6

Proof. We write the proof for )?4, the proof for 176 is exactly the same except changing

the subscripts.

Recall that the coefficient matrix I:E; corresponds to the composition of two linear
mappings F4(UY;U ") on the variable Y;. Since we have showed that F; is a projection
determined by the Isserlis’ Theorem and independent of the empirical estimation of

the moments, we can bound the perturbation on the coefficient matrices by:
[1Hs = Hal| < |U @ =U @ | < 2T = TITN + T - U3 < 38, < || Hall-

Similarly, we have || Hg — He|| < |U @3 —U @3 | < 78, < ||Hg||.
Therefore we can analyze the stability of the solution to the least square problems

in (3.31) as follows:
Ivec(¥a) = veo(¥)| = || A1, — F{M|
< O E}|I|My — Mall + || H] — H||| M)
< O(| My — My|| + || ] - H}||v/na)
< 0 (vl + | IE]15))

<0 (\/"_4(51 + ——1:—)—-2-52)) ;

Ok, (Hy
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where the first inequality is by applying Lemma 1.6 and note that ||(ﬁ4 - K_i;)”p <
divmy < ||ﬁ4|| F, the second inequality is because |Iﬁ4|| F < O(y/ng), the third
inequality is by applying the perturbation bound of pseudo-inverse in Theorem 1.5,
the fourth inequality is by the assumption that . is sufficiently small compared to
the smallest singular value of Hy thus ox,(Hy) = O(oy,(H,)).

U

3.4.3 Step 3 of Zero-Mean Case: Tensor Decomposition

Algorithm 9: TensorDecomp

Input: the span of covariance matrices U € R"2** (vectorized with distinct
entries), the unfolded 4-th and 6-th moments Y; € R¥** and Ys € R¥***¥ jn
the coordinate system of U.
Output: Parameters G = {(w;, X®) : i € [k]}.

Compute the SVD of Yy: Yy = VLAV, .

Let G = Ys(VaA; 2, VaA; 2 VaA; %)

Find the (unique) first k£ orthogonal eigenvectors v; and the corresponding
eigenvalues ); of G, denoted by {(v;, \;) : 7 € [k]}

For all i € [k], let vec(S®) = AUVaAY?v;, let w; = (A) 2.

Return: G = {(w;, =®) : 4 € [k]}.

Given the estimations of the unfolded moments Y; and Yg from Step 2, and given
the span of covariance matrices U from Step 1, Step 3 use tensor decomposition to
robustly find the parameters of the mixture of zero-mean Gaussians.

Recall that in the coordinate system with basis U, the covariance matrices (vector-
ized with distinct entries) are given by £® = U5® for all i. The unfolded moments

in the same coordinate system are:
k k
Y, = E &,5(’) ®2, Ys = E 51'5(1) ®'3 .
i=1 i=1

We will apply tensor decomposition algorithm to find the 5®’s. We restate the
theorem for orthogonal symmetric tensor decomposition in Anandkumar et al. [7]

below:
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Theorem 3.15 (Theorem 5.1 in [7]). Consider k orthonormal vector vy,...vy €
R™’s and k positive weights A1, ... \x. Define the tensor T = Zle Aivi®3. Given
T = T + E and assume that |E|| < Cymin{\;}/k, then there is an algorithm that
finds A\;’s and v;’s in polynomial running time with the following guarantee: with
probability at least 1 — e™™, for some permutation 7 over [k] and for all i € [k], we

have:

lvi — Bl < OUIEN/N), A — Nl < O(IE).

In order to reduce our problem to the orthogonal tensor decomposition so that
the tensor power method (Algorithm 1, page 21 in [7]) caﬁ be applied, we use the
same “whitening” technique as in [7]. We first compute the SVD of the unfolded 4-th
moments }74 = %Kﬂ%ﬂ then use the singular vectors to transform the unfolded 6-th
moments Yg into an orthogonal symmetric tensor %(%K; Y 2, %K; Y 2, \727&; Y 2).

Next we complete the stability analysis for the two-step procedure, i.e. whitening

and orthogonal tensor decomposition, which was not analyzed in [7].

Theorem 3.16. Consider k linearly independent vectors aq,...,ar € R", and k
positive weights wy, . ..,wx. Define Gy = Ele wia;®a; € Ry and Gy = Zle w;a; ®

a; ®a; € RZ;,,?X"- Let Yinin = IIl'lIl{O'mm(Gg), 1}: Ymax = Uv‘naw(GQ): and let w, =

min{w;}. Given Gs,Gs and assume that:

N 25 . L5
G, — G <y <of —2 ), Gs— G < by < o B2
1Go — Gallr < 65 < (k”G3”) 18y — Gl < ( - )

There exists an algorithm that finds @; and @; in polynomial (in all the variables
(n, k,1/0min(G2))) running time with the following guarantee: with probability at least

1 —e™™, for some permutation  over (k] and for all i € [k] we have:

“aﬂ'(i) - a'rr('i)” S pozy(”GBH; 1/01nin(G2)7 1/w0)52 + pOl:U("G;;”, l/o'min(G2)) 1/("-70)63)
10: — will < poly([Gsll; 1/0min(G2))d2 + poly(||Gsll, 1/ Tmin(G2))ds.
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Proof. (to Theorem 3.16)

1. Algorithm

We first apply the whitening technique in [7]: Let Gy = "}21’{2{}21’ be the singular
value decomposition of @2, ‘and note that the matrix 1721/{2— 172 whitens (G5 in the sense
that @2(172.&_ 1 2, %K; 1 2) = I,,. Similarly we can whiten @3 with the matrix VQK; 12

and obtain the following symmetric 3-rd order tensor G € Rf;’;,ﬁ"k :

G = Gs(VoAy "2, Vok5 2, 1585717%).
Note th at in the exact case with G2 and G3, we have that:

k
G= Z /\ivi®31

=1

Y 2, and the vectors v; = A; 1V2TA2_ 1 Zai and they are orthonormal.

where \; = w;
Also note that A > 1 and Apee < wo 12 We can then apply orthogonal tensor
decomposition (Algorithm 1 in [7]) to G to robustly obtain estimations of v;’s and
Ai’s. After obtaining the estimation v; and /)\\.,- ’s, we can further obtain the estimation

of a;’s and w;’s as:
a = Vahy®oN, o= ()2 (3.32)

2. Stability analysis

The estimation of the vectors and weights are given in (3.32). In order to bound
the distance ||a; — a,|| and ||&; — w;||, we show the stability of the estimation V5, As,
and v;, Py separately.

First, note that by assumption |]@2 — Gsl|p < 03, we can apply Lemma 1.2 and

Lemma 1.3 to bound the singular values and the singular vectors of @2 by:
V2 = Vall < V262/Ymin, 1Az — Asl| < 8.

Define X = VoA, /2 and define Ay = X -X. By the assumption that 2 < o(ymin),
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we have ||[Va — V|| < 1 and ||!A\;1/2 — A;1/2|| < ||A'2_1/2|| < 742 Therefore we can

"ymin.

apply Lemma 1.6 to bound ||Ax]|:

lAx] < Oz = Vallllag il + IVallliAz ™ = A1)

(52 -1/2 —1/2
S O ( ,),1 ) Py'mir/l, + (77n'i7/b )262

Moreover, since d3 < 0(Ypmin), We also have ||Ax|| < | X || = 7,52,

Next, we bound the distance H@ — G||. Recall that G = @3()?, )/f,),&\) Using the
fact that tensor is a multi-lincar operator, and by the assumption that H@;:,——G;;H < 03,

we have:

e= |G - G|l < ||IGs(X, X, X) — G5(X, X, X)|
<IGs(X, X, X) - G3(X, X, X)| + 1G5(X, X, X) — G5(X, X, X)|
< 3)|Gs(Ax, X, X)|| +3]|Gs(Ax, Ax, X)|| + [Gs(Ax, Ax, Ax)|| + 5 X|1°
< TNGsIIXIPIAX] + (X | + 1Ax )8

Gsl . 1
=0 (L-z%“"? + ?53> :

mn min

2.5 . 1.5

Note that by the assumption §y < o(%), 63 < o(*=i2), we have € < o(3).
Therefore we can apply Theorem 3.16 to conclude that with probability at least
1 — e~ (over the randomness of the randomized algorithm itself), the tensor power
algorithm runs in time poly(n,k,1/Ann) and for some permutation 7 over [k] it

returns:

- 8e -~ .
07y — vl < T A — Ail < Be, V€ k]

min

Finally, since we also have 5e < 1/2 < A,,,/2 we can bound the estimation error
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of @; and @; as defined in (3.32) by:

~ 1 8e 1
"(lﬂ-(i) - (Iz“ S 3(”AX“/\ma:c + m——"f‘/\maw + —Wf)f)
mi man min

< poly([|Gsll, 1/ min(Ga), 1/wo)8s + poly(|Gsll, 1/Tmin(Ga), 1/wo)ds,
|1@; — wi|l < poly(l|Gsll, 1/0min(G2))d2 + poly(|Gsll, 1/0min(G2))ds.

Now we can apply Theorem 3.16 to our case.

Lemma 3.21. Given Yy, Ys, U and suppose that ||Ys — Ya||r, |Ye — Yellr as well as
||[7 —U|| are bounded by some inverse poly(n, k, 1/w,, 1/p)8. There ezists an algorithm
that with high probability, returns SO’s and w;’s such that for some permutation
over [k], we have the distance ||£® — £O|| and ||&; — @;|| are bounded by 5. Moreover,

the running time of the algorithm is upperbounded by poly(n,k,1/w,,1/p).

Proof. (to Lemma 3.21 )

We apply Theorem 3.16, and pick G, = 174, Gz = }76. We only need to verify that
| Ysl| and 1/ O‘,nin(ﬁ) are polynomials of the relevant parameters. This is easy to see,
since amm(ﬁ) > wocrmm(f])z, and the matrix & is a perturbed rectangular matrix
which by Lemma 3.31 has 0min(E) > Q(py/nz) with high probability.

Finally, given 6%, and given the output of Step 2, i.e. U , with inverse polynomial
accuracy, we can recover SO = U5 up to accuracy polynomial in the relevant

parameters. ]

3.4.4 Proof of Theorem 3.5

The results in all previous sections showed the correctness and robustness of each indi-
vidual step for the algorithm for zero-mean case, In this section, we summarize those

results to prove that the overall algorithm has polynomial time/sample complexity.

Lemma 3.22 (Concentration of empirical moments). Given N samples z1,...,zn

drawn i.i.d. from the n-dimensional mizture of k Gaussians, if N > n" /6%, then with
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Algorithm 10: MainAlgorithm (Zero-mean casc)
Input: Samples z; from the mixture of Gaussians , number of components k.
Output: Sct of parameters G = {(w;, ) : i € [k]}.

Estimate My, Mg using the samples.

1 N 1 N
I E a3 I, — E .8
A/L; = -—N 2 ;Q7, A[(, = “"N £ r, ® .

Let s = 9[y/n|
(Step 1 (a) Algorithm 5)
Sy = FindColumnSpan(My, {1, ..., s}),
S2 = FindColumnSpan(M,, {s + 1, ..., 2s}).
(Step 1 (b) Algorithm 6)
U, = FindProjectedSigmaSpan(My, {1, ..., s}, S1),
U, = FindProjectedSigmaSpan(My, {s + 1, ..., 2s}, S2).
(Step 1 (c) Algorithm 7)
U = MergeProjections(Sy, Uy, Sz, Us).
(Step 2 Algorithm 8)
(Y4, Y()) = EstimatoY4 ,6(]\’147 Af()*, L])
(Step 3 Algorithm 9)
G = TensorDecomp(Yy, Ys, U)

Return: G.

high probability, we have that for all jy,...,js € [n]:

——— — — —~—
(M4, gs.gsds — [Malj s gsgs| < 0 l[ﬁ'fﬁ]jl,js,js,ﬁ,js,je — [ M)y gs s garisds| < O-

Proof. Let 2 denote the random vector of this mixture of Gaussians. We first truncate
its tail probabilitics to make all the entries ([z]; for j € [n]) in the vector = be in the
range [—+/n,v/n]. Apply union bound, we know that with high probability (at lcast

< n3. Then we can

1—0(e™)), for all indices ji,...,js € [n], we have ‘[x]jl o2

apply Hoeffding’s incquality to bound the empirical moments by:

= 262 N*?
Pr [|IE[.1cj1 o T — Elzy, . .oxj)| > 6] < exp(—N

———(5-7;,,72—) +0(e™) < 0(e™).

Proof. (of Theorem 3.5 )
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We show that, to achieve € accuracy in the output of Step 3 in the algorithm for the
zero-mean case, the number of samples we need to estimate the moments My and My
is bounded by a polynomial of relevant parameters, namely poly(n, k, 1/w,,1/¢,1/p),
and each step of the algorithm can be done in polynomial time.

We backtrack the input-output relations from Step 3 to Step 2 and to Step 1, and
we show that the estimation error in the empirical moments and the inputs / outputs
only polynomially propagate throughout the steps.

First note that we have shown that every steps fails with negligible probability
(O(e‘"‘c) for any absolute constant C'). Then apply union bound, we have that the
entire algorithm works correctly with high probability.

1. By Lemma 3.21, in order to achieve € accuracy in the final estimation of the
mixing weights and the covariance matrices, we need to drive the input accuracy
of Step 3 (also the output accuracy of Step 2) to be bounded by some inverse
polynomial in (n,1/¢,1/p,1/w,), Also recall that this step has running time
poly(n, k,1/p, 1/w,).

2. Theorem 3.12 and Theorem 3.14 guarantee that with smoothed analysis amin(ﬁ4)
and (qu‘.n(ﬁ ) are lower bounded polynomially. Then by Lemma 3.20, in order to
have the output accuracy of Step 2 be bounded by inverse poly(n, 1/¢,1/p,1/w,),
we need to drive the input accuracy of Step 2 (U' , Jm) to be bounded by some
other inverse polynomial. Step 2 involves solving linear systems of dimension

nake and ngks, thus it running time is polynomial.

3. Lemma 3.13 and 3.14 guarantees that with smoothed analysis ok(@U) is lower
bounded polynomially. Then by Lemma 3.15, in order to have the output
accuracy of Step 1 (c) (17 ) be bounded by inverse polynomial, we need to drive
the input accuracy V(output S; of Step 1 (a) and output U; of Step 1 (b) ) to be
bounded by some other inverse polynomial. Step 1 (c) involves multiplications
and factorization of matrices of polynomial size, and thus the running time is

also polynomial.
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4. Lemma 3.10 guarantecs that with smoothed analysis ak(éys) is lower bounded
polynomially. Then by Lemma 3.11, in order to have the output accuracy
of Step 1 (b) (lAfs) be bounded by inverse polynomial, we need to drive the
input accuracy (output S; of Step 1 (a) ) to be bounded by some other inverse
polynomial. Step 1 (b) involves multiplications and factorization of matrices of

polynomial size, and thus the running time is also polynomial.

5. Lemma 3.8 guarantces that with smoothed analysis Jk(és) is lower bounded by
inverse polynomial. Then by Lemma 3.9, in order to have the output accuracy
of Step 1 (a) (§) be bounded by inverse polynomial, we need to drive the input
accuracy (the moment estimation JE) to be bounded by some other inverse
polynomial. Step 1 (a) involves multiplications and factorization of matrices of

polynomial size, and thus the running time is also polynomial.

6. Finally, by Lemma 3.22, in order to have the accuracy of moment estimation
(E, m) be bounded by inverse polynomial, we need the number of samples N

polynomial in all the relevant parameters, including k.

3.4.5 Proofs for the General Case

In this section, we present the algorithm for learning mixture of Gaussians with
general means. The algorithm generalizes the insights obtained from the algorithm for

the zero-mean case. The steps are very similar, and we will highlight the differences.

Step 1. Span finding In this step, we find the following two subspaces:
Z = span{i® :i e [k]}, T, = span{PronLi(i)Prosz}.

This is very similar to Step 1 in the algorithm for the zero-mean case, and can be

achicved in three small steps:
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Algorithm 11: MainAlgorithm (General Case)

Input:

Samples {z; e R" :1=1,..., N} from the mixture of Gaussians,

number of components k.
Output: Set of parameters G = {(w;, u®,2®) : i € [k]}.
Estimate M3 My, Mg using the samples

Step 1.

Step 2.

Step 3.

Step 4.

1 N 1 N 1 N
3 = — @3 = — @1 My=— 3
M; N;x,®,M4 N;x@,m N;x@

(a) This can be accomplished similar to Algorithm 5 FindColumnSpan
Let #; = {1,...,12y/n}, find S; = span{®, iﬁ] ri€kl,j € Hat
Let Hy = {12y/n +1,...,24y/n}, find S; = span{ﬁ(i),flﬁ)j] 11 € [k],7 € Ha}.
(b) This can be accomplished similar to Algorithm 6 FindProjectedSigmaSpan
Find U = span{Projg; £ : i € [k]}.
Find U; = span{ProjSZL’Zv](") 1 € [k]}.
(¢) This can be accomplished similar to Algorithm 7 MergeProjections

Merge U, and U, to get Z = span{u® : i € [k]},

U’ = span{vec(Proj;.XM) : i € [k]}, and U, = span{Proj,. Z®Proj,. : i € [k]}.
Project the samples to the subspace Z+: Proj,iz = {Projz.z1,...,Projzizx}.
Apply the algorithm for zero mean case to the projected samples, let G, =
{(wi, Projz. Z®Pioj,. ) : i € [k]} = MainAlgorithm (Zero-mean case)(Proj,. z).
Let T = [vec(Proj ;1 £@Proj,.) : 4 € [k.]]fT € R¥** and let T® for i € [k]
denote the columns of T.

Let My € R™"* be the matricization of M3 along the first dimension.
Let u@ = M3)T® Jw; for i € [k] and let p = [u® : i € [K]].

Let My = My +23%  wu®d,
Find the span § = span{vec(E®) + 79 0 59 : i € [k]}.

This can be achieved by treating M as the 4-th moments of a mixture of
zero-mean Gaussians, and apply Step 1 in the algorithm for zero-mean case to
find the span of the covariance matrices, and let S denote the result.

Let ¥ = [vec(2®) : i € [k]] = (ProjgU’ — 1 © p).

Return: G = {(w;, p®, D) 4 € [K]}.
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1. Step 1 (a). For a subset H of size 124/n, find the span S of the mecan vectors

and a subset of columns of the covariance matrices:

S =span{i®, T 1 i € [k],j € H}.

2. Step 1 (b). Find the span of covariance matrices projected to the subspace S*:

Us = span{Projg. =D : i € [k]}.

3. Step 1 (c). Run 1(a) and 1(b) on two disjoint subsets H; and 2. Merge the
two spans Uy and U, to get Z and span{Proj Z 120 e K]}

Next, we discuss each small step and compare it with the similar analysis of the

algorithm for the zero-mean case.

Step 1 (a). Find the span S of the means and a subset of the columns of
the covariance matrices Similar to Step 1 (a) for the zero-mean case, in this step
we want to find a subspace S which contains the span of a subset of columns of OLY
However, with the mean vector 1)’s appearing in the moments, the subspace we find
also contains the span of all the mean vectors. In particular, for a subset H € [n]

with |H| = v/n, we aim to find the following subspace:
S = span{n®, i?)]] 1 € k], 7 € H}. (3.33)

Similar to Claim 3.1 for the zcro-mean case, the key observation for finding the
subspace is the structure of the one-dimensional slices of the 4-th order moments for

the general case:

Claim 3.17. For any indices j1,js,js € [n], the one-dimensional slices of ]174 are

181



given by:

My(ejy, €js, €55, 1) (3.34)
— ~ ~(1) ~(8) ~(1) ~ (i SO ~(8)7(5) 53 () SO OO
=D G (“jl ol A9+ D B0 S0 FAES)) + £ m R ))
=1 (41.32,33),
WG{(jz,js,jl),}
(43,41.42)
Note that if we pick the indices ji, j2,j3 € H, all such one-dimensional slice of M,
lie in the subspace S. We again evenly partition the set H into three disjoint subset
H® and take j; € H® for i = 1,2, 3. Define the matrix Qg € R™(H/3® a5 in (3.12)

whose columns are the one-dimensional slices of JE:
Qs = |[(Males, esnren 1) : js € HO): o € HO] - i € HO| € RIS (335

The proof of this step is similar to the Lemmas 3.8 (for smoothed analysis) and
3.9 (for stability analysis). The main difference is that in the matrix B defined in the
structural Claim 3.4, there is now another block B© with k columns that corresponds
to the i) directions, which we can again handle with Lemma 3.29.

Lemma 3.23 shows the deterministic conditions for Step 1 (a) to correctly identify
the subspace S from the columns of @ s, and uses smoothed analysis to show that the

conditions hold with high probability.

Lemma 3.23 (Correctness). Given M, of a general mizture of Gaussians , for any
subset H € [n] and |H| = cok with the constant ¢y > 9, let Qg be the matriz defined
as in (3.35). The columns of Qg give the desired span S defined in (3.33) if the
matriz Qs achieves the mazimal column rank k + k|H|. With probability (over the
p-perturbation) at least 1 — Ce®™ for some constant C, the k(1 + |H|)-th singular

value of @5 s bounded below by:

ak(1+m|)(@s) > pe/n.

The proof idea is similar to that of Lemma 3.8. We construct a basis 135 €
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Rm*(k+kHD) for the subspace S as follows.

Po= ([0 i€ (), [B0) i € ) 25 € 1] 1= 1,2,

= [ﬁ, i[:"H(l)], E[Z,Hm)], i[:"H(B)]] . (336)

Note that the dimension of the subspace S is at most k(|H| + 1) < n/3. Then we
show by the Claim about the moment structure that the matrix Qs can be written
as a product of ﬁs and some coeflicient matrix E’S. Then we bound the smallest
singular value of the two matrices 135 and Es via smoothed analysis separately. The
cocfficient matrix ES is slightly different than that in the zero-mean case, but has
similar block-diagonal structure properties.

The detailed proof is provided below.

Proof. (of Proposition 3.23 )
Similar to structural property in Claim 3.4 for the zero-mean case, we can write

the matrix ég in a product form:
Qs = Ps (Dz @ Iy)) (Bs) "

We will bound the smallest singular value for each of the factor, and apply union
bound to conclude the lower bound of ok(1+|Hl)(és).

The matrix Pg € R™EHHH) is defined in (3.36). Restricting to the rows cor-
responding to [n]\H, we can use Lemma 3.32 to argue that oxaip) > €p/n with
probability at least 1 — (Ce)%-%m.

In order to lower bound am.m(gs), we first analyze the structure of this coefficient

matrix. The matrix §S has the following block structure:

By = [ BO® BW B®. §(3>] ,

The first block B© € RU#I/3°*k ig 5 summation of four matrices EZ-(O) fori =0,1,2,3,

where g(()o) = [y O @ O iy, and E%O) = ’EVJH(-&),H@) ® [ty . With some fixed and
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known row permutation 7® and 7, the other two matrix blocks §§0) and §§0) are
equal to iﬂ(s),;{u) © Hy@ and E’H(Z),H(l) @ [y, separately.

The block BM € RIHI/3)xKMI/3 i block diagonal with the identical block 4y g+
Py © Ry . Similarly, with the row permutation 7@, 73 the other two matrix
blocks 5(2),3(3) are equal to the block diagonal matrices with the identical block
(Eno 2w + B © Fiagny) and (Spg 20y + Figgr O Jiggn) respectively.

Note that we can write the block B© as:

BO =(fiy0) © figga + iuw),fum) ® Tigw + (D) (T O Figgy + i%(a';,mn) O Hay@

+ (1) (g2 © Fipgy + iu@),wl)) O By ~— 26y O By@ © Ay,

where it is easy to see the first summand (fye © fye + fn(g),ﬂ(z)) ® Lo is a
linear combination of the columns of the block diagonal matrix §(1), and similarly
the second and third summands are linear combinations of the columns of B® and
§(3), and the last summand is simply ——25((,0). Therefore for some absolute constant
C (the smallest singular value corresponding to the linear transformation) we have

that:

Omin(Bs) > COmin( [E(()O), BW B® §(3)] )

Note that E(()O) = fy®» O fy@ © fyn only depends on the randomness over
the mean vectors. Note that the Khatri-Réo product is a submatrix of the Kro-
necker product,‘ therefore for tall matrices Q; and @2, we have that 0,,,(Q1 © @2) <
Omin(@1 ®kr @2) = Omin(Q1)Tmin(Q2). In particular, we can bound the smallest

singular value of B{" with high probability (at least 1 — Ce%5n) as follows:

ow(BY”) 2 ou(fine)on (g )ow(figen) > (pev/m)®.

Then condition on the value of the means, we further exploit the randomness over
the covariance matrices to lower bound oy (Proj BOL [B®, B® B (3)]). It is almost
0

the same as the argument of the proof for Proposition 3.8. For example, compared
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to (3.18) we have the following inequality instead:

O (Pro‘]([E(O)’E(Z)’g(s)]{j}xﬂ(z)xH(3))LPI'OJ(EH(L?),H('J)+‘7n(2)®ﬁu(3))l(EH@’H(:}) + iy © /"‘H(“)))

>epy/n,

and note that any block in B©® is independent of the randomness of covariance
matrices, and we have (|H|/3)? — k — 2k|H|/3 > 2k. Similar modifications apply to
the inequalities in (3.20),(3.21).

Finally by the argument of Lemma 3.29 we can bound a,m-.n(gg) with probability
at least 1 — C'e®> (over the randomness of both the perturbed means and covariance

matrices):
Oumin(Bs) > min{(pev/n)?, epv/n} = ep/n,

as we assume p to be small perturbation and pey/n < 1.

Step 1 (b). Find the projected span of covariance matrices Given the
subspace S = span{u?, ‘ZF)H] : i € [k]} obtained from Step 1 (a), Step 1(b) finds the

span of the covariance matrices with the columns projected to S+, namely:
Us = span{P10jg. £V : i € [k]}.

This is in parallel with Step 1 (b) for the zero-mean case, and we rely on the struc-
ture of the two-dimensional slices of ]’\/74 to find the span of the projected covariance
matrices. Similar to Claim 3.7 for the zero-mean case, the following claim shows how:

the structure of the two-dimensional slices is related to the desired span.

Claim 3.18. For a mizture of general Gaussians, the two-dimensional slices of ]T'L
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are given by:

k
]\44(9:)’17 €j,, I, I) = Z 51,( E.gl),?z (2)( (t))T)(E(z) + ~(1) (~(z)) )

i=1

+ﬁ§i)(ﬁ(i)(§fi)-])T+E(z) (~(i))T)+u§12)(ﬁ(z)(E(z) )T+2(1) ('LL(z))T)

[1,2) M

+EED)T+EE0)T), Vinsa € )

)V ]

Note that given the set of indices H we chose in Step 1 (a) and the subspace S, if
we pick the indices j;,j2 € H, project the two-dimensional slice to S+, all the rank
one terms in the sum are eliminated and the projected slice lies in the desired span

USZ

Projg: My(ej,,e;,, I, 1) = Zw,(zg?m, ~§?(,un) )Projs. 8D, Vi, jo € H.

Applying the same argument as in Lemma 3.10 for the zero-mean case, we can
show that with high probability over the perturbation, all the projected slices span
the subspace Us.

Step 1 (c). Merge the two projections of covariance matrices Pick two
disjoint index set H; and H, and repeat the previous two steps 1 (a) and 1 (b), we
can obtain the two spans U; and Us, corresponding to the subspace of the covariance
matrices projected to &7 and S,, respectively.

In this step, we apply similar techniques as in Step 1 (c¢) for the zero-mean case
to merge the two spans U; and Us: we first use the overlapping part of the two
projections Proj st and Proj s4 to align the basis of U; and Uz, then merge the two
spans using the same basis.

Note that for the general case, by definition the span of the mean vectors Z liein
both subspaces S; and S, thercfore we have S ¢ Z* and S € Z+. We can show
that S US; = Z* by lower bounding On—k([Proj sty Proj SQL]) with high probability,
similar to that in (3.28). This gives us the span of the mean vectors Z.

Moreover, in the general case, from merging U; and Us; we are only able to find
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the span of covariance matrices projected to the subspace Z+. In particular, we can
follow Lemma 3.12 and Lemma 3.15 in Step 1 (c) for the zero-mcan case to show that
for the general case, we can merge Uy and U, to obtain the span span{Proj; 20
i € [k]. By further projecting the span to Zl from the right side, we can also obtain

5, = span{Projz, LV Projz, : i € [k]}.

Step 2. Find the covariance matrices in the subspace orthogonal to the
means  Given the subspace Z and 5, = span{Proj 5 L SOProj 71 11 € [k]} obtained
from Step 1, Step 2 applies the zero-mean case algorithm to find the covariance
matrices projected to the subspace 21, i.c., Projz Jhi(i)Proj 71's, as well as find the
mixing weights w;’s.

This follows the same arguments as in Step 2 and Step 3 for the zero mean case.
Consider projecting all the samples to VA L the subspace orthogonal to all the means.
In this subspace, the samples are like from a mixture of zero-mean Gaussians with
the projected covariance matrices, and the 4-th and 6-th order moment are given by
1/\71/4(Pr0j2~l, Projz.,Projz.,Projz,) and Hﬁ(Pronl, Projz.,Projz.,Projz,,Projz.,Projz. ).
Since Z is of dimension k, the dimension of the zero-mean Gaussian in the projected
space is at least n — k = O(n).

Note that the subspace zL only depends on the randomness of the means, and
random perturbation on the covariance matrices is independent of that of p. The
smoothed analysis for the moment unfolding in Step 2 and tensor decomposition in
Step 3 for the zero-mean case, which only depend on the randomness of the covariance

matrices, still go through in the projected space.

Step 3. Find the means This step finds the mean vectors based on the outputs
of the previous steps. The key observation for this step is about the structure of the

3-rd order moments in the following claim:

Claim 3.19. Let the matriz H3(1) € R™™ be the matricization of ]T[i; along the first
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dimension. The j-th row of M3(1) s given by:

[M“(l)] [[]E[xjlesz] J1 € {n]] j2 € [n]]
= Z Wi (“ vec(ED) + 50 @ 70 + £, 0 50 + 10 © 2&])

(3.37)

The following lemma shows how to extract the means ®’s from Mg(l) using the
information of the covariance matrices projected to the subspace orthogonal to the

means, i.e. ¥,, and the mixing weights @;’s.

Lemma 3.24. Given the miring weights w;’s and the projected covariances 2(’)’

define the matriz T € R™** to be the pseudo-inverse of Eo:
~ . T
T = [vec(zg’)) (1€ [k]]
The mean [i®) of the i-th component can be obtained by:
1O = 2 My
ai by

This step correctly finds the means if the EO is full rank with good condition numpber,

and this holds with high probability over the perturbation.

Proof. (of Lemma 3.24 )

The basic idea is that since &, lies in the span of P= Projz, ®xr Projz,, and the
last three summands in the parenthesis in (3.37) all lie in span{I, ®i,Projz, Proj;®x.
I,} = span{P}. Therefore hitting the matrix Msq) with £} from the right will
eliminate those summands and pull out only the mean vectors.

Recall that the columns of the matrix ¥, are vec(Proj F1 S®Proj 1) = Pvec(S™)s,
and the columns of  are vec(i(‘))’s |

Note that T = (PE)!T = PE!T, and the columns of T lie in span{P}. Also note
that for all 4,5 € [k] the vectors i ® 1®, Zf’)ﬂ ® ® and ® @ EE’)J.] all lie in the
subspace span{I, Q- Projz, Projz ®, In} = Span{lgi}. Therefore these terms will
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be eliminated if we multiply the columns of T to the right of ]Tff;;(l )- For the first term
Ng-i)vcc(i(i)), since vec(SW) Ty = (Pvee(SU))TT. ;) = 1y Therefore, we have
M) T = .

The smoothed analysis for the correctness of this step is easy. We only need to
show that both io and robustly have full column rank with high probability over
perturbation of the covariance matrices, and thus the pseudo-inverse T is well defined.
This follows from Lemma 3.31.

Finally, the stability analysis for this step is also straightforward using the per-

turbation bound for pseudo-inverse in Theorem 1.5. O

Step 4. Find the unprojected covariance matrices Note that by definition
© Z = span{i® : i € [k]}, the projected covariance Proj 7 L (E®) we obtained in Step 2
is also equal to Projz . (Z@ + A (A)T). In Step 4 we try to recover the missing part
of the covariance matrices in the subspace Z. Note that since we have also obtained
the means in Step 3, it is cquivalent to finding (5@ + FO(E®)T) for all i. We will
show that if we can find the span{(Z® + @ (E@)T) : i € [k]}, the projected vector
Projz (@ + i@ (7®)T) can be used as anchor to pin down the unprojected vector.

They key observation for finding the span of span{(S® + ZO(EOT) : 4 € [k]} is
to first construct a 4-th order tensor M 4 which corresponds to the 4-th moment of a
mixture of zero-mean Gaussians with covariance matrices (@ +E® (7)), and then
follow Step 1 in the algorithm for zero-mean case to find the span of the covariance
matrices for this new mixture of Gaussians.

The next lemma shows how to construct such 4-th order tensor:

Lemma 3.25. Given the 4-th moment J\A/L for a mizture of Gaussians with parameters

{@;, 7D, SO} define the 4-th order tensor M) to be:
My =M;+2) mip®e?,
=1

then M. 1 s equal to the 4-th moment of a mizture Gaussians with parameters {@;, 0, SONE
OGO T,
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Figure 3-5: Flow of the algorithm for the gencral case

The proof follows directly from Isserlis’ Theorem. Therefore we can repeat Step 1
in the zero-mean case here to find the span of the space {vec(E@)+a®D@a® : i € [k]}.
Since we also know the projection of S@ in a large subspace (in the subspace

Projz. ®, Projz, obtained from Step 2), we can easily recover S

Lemma 3.26. For any matriz U € RY* and any subspace P, given P'U and the

span S of columns of U, the matriz U can be computed as
U=S8(PTSHYPTU).

Further, this procedure is stable if 0, (PTS) is lower bounded.

Proof. This is a special case of the Step 1 (¢) where we merge two projections of an
unknown subspacc.

The span S is cqual to UV for some unknown matrix V. We can compute V =
(PTUYTPTS, and hence U = SV™! = S(PTS)(PTU). The stability analysis is

similar (and simpler than) Lemma 3.12. O

We will apply this lemma to where the subspace P is Projz, ®g,. Projz,. Since
the perturbation of the means and the covariance matrices are independent, we can

lower bound the smallest singular value of P'S.

Proof Sketch of the Main Theorem 3.4 The proof follows the same strategy as
Theorem 3.5. First we apply the union bound to all the smoothed analysis lemmas,
this will ensure the matrices we are inverting all have good condition number, and

the whole algorithm is robust to noise.
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Then in order to get the desired accuracy €, we need to guarantee inverse polyno-
mial accuracy in different steps (through the stability lemmas). The flow of the algo-
rithm is illustrated in Figure 3-5. In the end all the requirements becomes a inverse

polynomial accuracy requirement on J/\/Z; and ﬁ(j, which we obtain by Lemma 3.22.

3.4.6 Proofs for Moment Structures

In this section we characterize the structure of the 3-rd, 4-th and 6-th moments of
Gaussians mixtures.

As described in Section 3.2, the m-th order moments of the Gaussian mixture
model arc given by the following m-th order symmetric tensor M € R?X “*":

sym

k
[A/'["”]jlw-..,jm =K [117_7‘1 Ce. Ijm] = Z LU,]E [yj(:) . ’yj:')l] y Vj], ce 7j7n S [TL],
i=1

where y( corresponds to the n-dimensional Gaussian distribution N (pt, @),
Gaussian distribution is a highly symmetric distribution, and in the zero-mean

case the higher moments are well-understood by Isserlis’ Theorem:

Theorem 3.17 (Isscrlis). Lety = (y1,...,yx) be a multivariate Gaussian random

vector with mean zero and covariance X, then

]E[yl o y2t.] = Z H 2u,va

Efy; ... Yor-1) = 0,

where the summation is taken over all distinct ways of partitioning yi, ..., yss into t
pairs, which correspond to all the perfect matchings in a complete graph. Thus there

are (2t — 1)!! terms in the sum, and each summand is a product of t terms.

The non-zero mean casce is a direct corollary using Isserlis’ Theorem and linearity

of expectation.

Corollary 3.1. Lety = (y1,...,y:) be a multivariate Gaussian random vector with
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mean [ and covariance X, then

]E[yl - oyt] = ZHEu,vHMw-

where the summation is taken over all distinct ways of partitioning vy, ...,y into p

pairs of (u,v) and s singletons of (w), wherep >0, s >0 and 2p+ s =*t.

As an example, Ely yays| = papiopts + 1223 + paXas + p3Xs 2.

Proof of Lemma 3.1

We shall first prove Lemma 3.1 in Section 3.2. Recall that this lemma shows that for
mixture of zero-mean Gaussians, the 4-th moments M4 and the 6-th moments Mg

with distinct indices can be viewed as a linear projection of the unfolded moment X,

and Xg defined in (3.1).

Proof. (of Lemma 3.1)
By Isserlis Theorem 3.6, the mapping v/3F; is characterized by: (V1<ji1<ja<

J3 < ja <)

J1.927 33,4 J1,J3 52 .74 Jl 2Ja 2,93

[A{4 iragads = sz(z(‘l) 2(@) —I—E(L) E(ﬁ) (Z) E(z) )
= [Xal(G1.52),Gsga) T+ (Xl Grogo) Gzra) + [ X G150 (Gods) -

Therefore, with the normalization constant v/3, the (j1, j2, 43, j4)-th mapping of Fy is
a projection of the three elements in X,. Similarly, we have for v15Fs: (V1 < j; <

j2 <-+-<je <)

=[X6](51,42).(G3.0).Gs.ds) T [X6] (i1, G2,3),Gd6) + [X6)G1.0),02.33).Gs.e) F 1K 6] (51,d).(2.d) G o)
+ [Xe6] (51,2503, Gsdo) F+ [X6)(G1,d0), (2.5, Gande) F (K6 Grda).(Ganis), o) T [X6] (1,50), 02 G8), G o)
+ [ X6 (51.d5). (2,38 Gd6) + 1K 6)(2,50),(Gus) G2de) T K6 Ga).(n,ds), o) T 1K 6) (35, indz) Gz o)
+ [X6) 2.3 (50,35, (G1.d6) T [X6](G2.50),(G3.5).G1.de) F [X6) Guds). (Gs,da). Gr.e) -
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Thus with the normalization constant v/15, the mapping Fg is a linear projection. [

Slices of Moments

Next we shall characterize the slices of the moments of mixture of Gaussians.
For mixture of zero-mean Gaussians, a one-dimensional slice of the 4th moment

tensor is a vector in the span of corresponding columns of the covariance matrices:

Claim 3.20 (Claim 3.1 restated). For a mizture of zero-mean Gaussians, the one-

dimensional slices of the 4-th moments My are given by:
(B (@) (?) i) i) i) L.
My(ej,, ej,, €55, 1) = Zw, ( 111 Pg[’h + X BZ{ " 252 JsEf ﬂ]) , Vi1, Je, Js € [n].

Proof. By the definition of multilincar map, My(ej,, ej,, €j,, I) is a vector whose p-th

entry is equal to My(e;,, €, €j,, ). We can compute this entry by Isserlis” Theorem:

k
- (# 0) (1) $(3) (@) 0
L ACTE N 67’ B Z Wi (En 102[1) Ja) + 2Jl Jszlpaz + 2}2 .].32[1? n])
1=1
this dircctly implies the claim. a

For mixture of zero-mean Gaussians, a two-dimensional slice of the 4th moment
M, is a matrix, and it is a lincar combination of the covariance matrices with some

additive rank one matrices:

Claim 3.21 (Claim 3.2 restated). For a mizture of zero-mean Gaussians, the two-
dimensional slices of the 4-th moment My are given by:

a]?]

]\4[4(6jl, ejz,I I sz (Zﬁ)p (1) + 20_11](2(%) T Ef’t)n]( F?n )T) , ‘v’jl,jz S [n]

Proof. Again this follows from Isserlis’ theorem. By definition of multilinear map this

is a matrix whose (p, ¢)-th entry is equal to

k
My(ej,, ey, €p, €9) =
l:

@ 5
Wi ( J1 .722

[pa] J1.pg,52
1

@ w@ (0) )
429 5 ]+2J2p2[m])
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and this directly implies the claim.

Similarly, for mixture of general Gaussians, we prove the following claims:

Claim 3.22 (Claim 3.17 restated). For a mizture of general Gaussians, the (j1, ja, j3)-

th one-dimensional slice of My is given by:

M, (ejl » €425 €43 I)

—_ ( ) ( ) T G 2 ) ) 3 %
sz (W2PuPu®+ 3 (20,30 + puOsl - 50 L u0u0) ).
(41,4233),
WE{(jz,ja,jx),}
(j3’jlyj2)
Proof. This is very similar to Claim 3.1 and follows from the corollary of Isserlis’s
theorem (Corollary 3.1). There are 10 ways to partition the indices {j, ja, 73, ja} into
pairs and singletons: ((]1)7 (j?)’ (j3)7 (.74))7 ((j17j2)7 (j3)7 (.74))7 ((j17j3)7 (j2)7 (.74))7
((j17j4)7(j2)?(j3))7 ((j27j3)3(j1)’(j4))7 ((j27j4)’(j1): (j&))a ((.73’.74)7 (jl): (.72))a
((J1,J2)s (43, 34))s  ((41,33), (Ja, 3a)),  ((41,74), (42, 73)). From this enumeration, we

can specify each clement in the vector of the one-dimensional slice. d

Claim 3.23 (Claim 3.19 restated). For a mizture of general Gaussians, let the matriz
My € R™"* be the matricization of M3 along the first dimension. The j-th row of
M3y is given by:

(Mg = Z wi (1 vec(0) + pPu? © 4 + 50 © 4 + 40 © 2{’)31)
| i=1

Proof. Note that [M3y)]};, = [vec(]E[xjxxT])] = vec(E[z;z®z]). Again following the
corollary of Isserlis’s theorem (Corollary 3.1, there are 4 ways to partition the indices
{j1, 2,75} into pairs and singletons: ((j1), (2,73)), ((451), (J2), (Us)), ((41,J2), (Ja)),
((42), (41, J3), and they correspond to the four terms in the summation.) a

L
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Two mixtures with same M, but different X,

Since M, gives linear observations on the symmetric low rank matrix Xy, it is natural
to wonder whether we can use matrix completion techniques to recover Xy from My.
Here we show this is impossible by giving a counter example: there are two mixture
of Gaussians that gencrates the same 4th moment My, but has different X, (even the

span of $(’s are diffcrent).

By ((a,b), (¢,d)) we denote a 5 x 5 matrix A which has 2’s on diagonals, and the
only nonzcro off-diagonal cntrics are A, = Apg = Acq = Age = 1. For example,

((1,2),(4,5)) will be the following matrix:

— (3]
N =

2 1
. 12)

where all the missing entries are 0’s. Now we construct two mixtures of 3 Gaussians,
all with mean 0 and weight 1/3. The covariance matrices are ((1, 2), (4, 5)), ((1, 3), (2,5)),
((1,4),(3,5)) for the first mixture and ((1,2), (3,5)),((1,3), (4,5)), ((1,4),(2,5)) for
the second mixture. These are clearly different mixtures with different span of $()’s:
in the first mixture, Z% = 25;’5 for all matrices, but this is not true for the second

mixture.

These two mixture of Gaussians have the same 4th moment My. This can be
checked by using Isserlis’ thecorem to compute the moments. Intuitively, this is true
because all the pairs (1,7) and (,5) appeared exactly twice in the covariance ma-
trices for both mixtures; also, every 4-tuple (1,4, 7,5) appcared exactly once in the

covariance matrices for both mixtures.

195



3.4.7 Auxiliary Lemmas

In general, matrix perturbation bounds are the key for the perturbation lemmas, and
concentration bounds are crucial for the smoothed analysis lemmas. We also prove

some corollaries of known results that are very useful in our settings.

Lowerbounding the Smallest Singular Value

Sometimes, it is easier to consider the projection of a matrix. Lowerbounding the
smallest singular value of a projection will imply the same lowerbound on the original

matrix:

Lemma 3.27. Suppose A € R™*" let P € R™*¢ be a subspace, then or(PTA) <
ok(A). ‘

Proof. Observe that (PTA)T(PTA) = AT(PPT)A < AT A (because P is a subspace).
Therefore the eigenvalues of (PTA)T(PT A) must be dominated by the eigenvalues of
AT A. Then the lemma follows from the definition of singular values. )

As a corollary we have the following lemma:

Lemma 3.28. Let A € R™*" and suppose that m > n. For any projection Projg, we

have that the singular valués are non-increasing after the projection:
oi(Projg(A)) < 0i(A), fori=1,...,n.

In several places of this work we want to bound the singular value of a matrix,

where part of the matrix has a block structure.

Lemma 3.29. For given matrices B® € R™" and C® € R™" fori=1,...,d.
Suppose md > (n + n'd), Define the tall matriz A € R™4*(n+dn’) .

[ B ¢c® o ... 0
B® o c® ... o .
A= T | =B, diag(C)].
B@ o ... CW ]
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The smallest singular value is bounded by:
O (ntan) (A) > min{o,(B), UTL/(P'FOj(B(i))LC(i)) ci=1,...,d}.

Proof. The idea is to break the matrix into two parts A = ProjgA + Projg. A.Since
these two spaces arc orthogonal we know o(,any(A) > min{o, (ProjgA), o4 (Projgi A)}.
For the first part, clearly o,(ProjgA) > 0,(B), as B is a submatrix of ProjzA.
For the second part, we actually do the projection to a smaller subspace: for cach
block we project to the orthogonal subspace of B®. Under this projection, the block
structure is preserved. The dn’-th singular value must be at least the minimum of

the n/-th singular value of the blocks. In summary we have:

O (ntany(A) > min{o,(B), dau(Projp.diag(C?))}
> min{o,(B), O4n’ (diag(PrOj(B(i))LC(i)))}

> min{o,(B), an:(Proj(B(i))iC(i)) ci=1,...,d}.
|

Smallest singular value of random matrices In our analysis, we often also
want to bound the smallest singular value of a matrix whose entries arc Gaussian
random variables. Our analysis mostly builds on the following results in random

matrix theory.

For a random rectangular matrix, [101] gives the following nice result:

Lemma 3.30 (Theorem 1.1 in [101]). Let A € R™ " and suppose that m > n.
Assume that the entries of A are independent standard Gaussian variable, then for
every € > 0, with probability at least 1 — (Ce)™ ™! + e=C"" where C,C" are two

absolute constants, we have:

on(A) > e(v/m — vn —1).
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We will mostly use an immediate corollary of the above lemma with slightly sim-

pler form:

Corollary 3.2. Let A € R™*"™ and suppose that m > 2n. Assume that the entries
of A are independent standard Gaussian variable, then for every e > 0, and for some

absolute constant C, with probability at least 1 — (Ce)**™, we have:
on(A) > ey/m.

This lemma can also be applied to a projection of a Gaussian matrix:

Lemma 3.31. Given a Gaussian random matric E € R™*"  for some set J € [m]
define E; = [Ey; : j € J] and Eje = [E}j : j € [m]/J]. Define matriz S € R™"
whose columns are orthonormal. Suppose that the matriz S is an arbitrary function

of E; and is independent of Ej.. Assume that

m—|J|—r>2n (3.38)

Then for any € > 0, we have that with probability at least 1 — (Ce)*3("=171=1) _ for

some absolute constant C, the smallest singular value of the projected random matriz

is bounded by:
on(ProjgL E) > en/m — |J| — . (3.39)
Proof. For a matrix A € R™*™, define the fixed matrix Pje € R™=17Dxm gych that:

[[Pre)i s 5 € T] =0, [[Preltg 2 3 € )/ T] = Ionei 7y x (m—171)

which only keeps the coordinates that correspond to [m]/J of any vector in R™. Note
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that

0.(Projgi E) > 0,(Pye(Projg. E))
> 0,(Projp,.5yL PrcProjgi E)

= 0,(Proj(p,. 5. Pse E).
We justify the last equality below. Note that
Projq. E = F — ProjgE,
and note that the columns of (PjProjgE) lic in the column span of P,.S, therefore,

Projp,.5)1 PseProjgi E = Proj p,, 5)L Py E — Projp, )1 (PjeProjs )

= PIOj(PJcs)LPJcE.

Finally, note that Pj.S, with column rank no more than r, is independent of Pj.E,
which is a random Gaussian matrix of size (m — |J|) x n, therefore we have that
Projp,.syL Pse E is equivalent to a (m — |J| —7) x n random Gaussian matrix. Since
(3.38) is satisfied, we can apply Lemma 3.30 and conclude (3.39) with high probability.

O

However, in the smoothed analysis setting, the matrix we are interested in arc
often not random Gaussian matrices. Instead they are fixed matrices perturbed by
Gaussian variables. We call these “perturbed rectangular matrices”, their singular

values can be bounded as follows:

Lemma 3.32 (Perturbed rectangular matrices). Let A € R™*" and suppose that
m > 3n. If all the entries of A are independently p-perturbed to yield A, then for
any € > 0, with probability at least 1 — (Ce)?*™, for some absolute constant C, the

smallest singular value of A is bounded below by:

Ta(A) > epv/m.
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Proof. The idea is to use the previous lemma and project to the orthogonal subspace

of A. We have that A = A + E, where £ € R™*" is a random Gaussian matrix.
0u(A) 2 0,(Proj 41 4) = 7,(Proj 4. E).
Since m — n > 2n, we can apply Lemma 3.31 to conclude that for any € > 0,

Un(Proin E) 2> 6p\/av

with probability at least 1 — (Ce)®3(™~™) < 1 — (Ce)25™, O

Projection of random vectors

In Step 2, we need to bound the norm of a random vector of the form u ® v after a
projection, where u and v are two Gaussian vectors. In order to show this, we apply
the result in [124] which provides a concentration bound of projection of well-behaved

(K-concentrated) random vectors.

First we cite the definition of “K-concentrated” below:

Definition 3.5. A random vector X = (&1,&s, ..., &n) is K -concentrated (where K may
depend on n) if there are constants C,C’' > 0 such that for any convex, 1-Lipschitz

function f: C" — R and for any t > 0, we have:
! t2
Pr[|F(X) — med(F(X))| > t] < Cexp <—C —Eé—) ,

where med(-) denotes the median of a random variable (choose an arbitrary one if

there are many).

Lemma 3.33 (Concentration for Random Projections (Lemma 1.2 in [124])). Let v
be a K-concentrated random vector in C*. The entries of v has expected norm 1.

Then there are constants C,C’ > 0 such that the following holds. Let Projs be a
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projection to a d-dimensional subspace in C".

t2

P ("UTPTOjsl’ - dl > 2tVd + t2) < C'ezp(—C'—K?).

In order to apply this lemma in our sctting, we need to prove the vectors that we

are interested in is K-concentrated:

Lemma 3.34. Conditioned on the high probability event that || Ep ||, | Ep 5]l < 2v/n2,
the vector [[Ef. ;) © Ep jls,s : 8 < §'] is 2\/ng)-concentrated.

Proof. For any 1-Lipschitz function F on [[Ep g @ Ejlss : s < 8], we can define a
function G(E 4, Ep;) = F([[Epg © Epjjlss : 8 < §) (if ¢ = j then the function G
only takes E|.; as the variable). Under the assumption that || Ey g, [| Ep. 3]l < 24/n2,
this new function G' is 2,/ny-Lipschitz.

Now we extend G to G* when the input || B

|, | B0l > 24/n2. Define the trun-
cation function trunc(v) = v for ||v]| < 2y/nz, and trunc(v) = 2y/ngv/||v|| for |jv|| >
2y/n3. Define the extended function G*(EL.q, Ep.;) = G(trunc(Ep ), trunc(Ey. j)),
which is still 2,/nz-Lipschitz since the truncation function is 1-Lipschitz.

Note that for the two Gaussian random vectors E. 3, E. 5 ~ N(0, ] ), we can apply

Gaussian concentration bound in Theorem 3.18 on G*, which implies
P|G*(E.q, Ep.j) — med(G™ (B, B )| > 1) < C exp(—=C't*/4ny).

Since the probability of the event || Ep y|, | Ep 5|l > 24/nz is very small (~ exp(—£(ng))),
we have § = |med(G(ELy, Ey;)) — med(G*(E4, E.j))| in the order of O(/n).
- Therefore, for t ~ Q(,/n3), we have

P“G*(E[;?i], E[:yj]) — mCd(G(E[;,i], E[;yj]))| > t]
<P[|G*(EL4, Ep. ;) — med(G(ELy, Ep50))| =t~ 6]
<Coxp(—C't*/4n,).



Finally,

P [|G(BL, Bi) — med(G(Br.a, Bea)) = t|| Bl | Bl < 2v/73)
P(IG* (B, E,j) — med(G(EL,q, Big))| > ¢
Pl Exll = 2y/nz or | Epqll > 2¢/ng]
<Cexp(—C't?/4n,).

Therefore the random vector [[Ep 3 ® Ef. jlss : 8 < §'] is 24/na-concentrated. O

Theorem 3.18 (Gaussian concentration bound). Let f : R® — R be a function which
is Lipschitz with constant 1. Consider a random vector X ~ N (0, I,,). For any s > 0

we have
P (|£(X) —E[f(X)]] > 5) < 2e7°7,

for all s > 0 and some absolute constant C > 0.

Gaussian Chaoses

In Step 2, we want to show that the inner product of two random vectors of the form
< Proj(u ® v), Proj(u ® v) > is small, where u,u’ and v,v’ are Gaussian vectors. In
order to show this, we treat the inner product as a (homogeneous) Gaussian chaos,
which is defined to be a homogeneous polynomial over Gaussian random variables®.
Our analysis builds on the results of many works studying the concentration bound
of Gaussian chaoses.

For decoupled Gaussian chaoses, we mostly use the following theorem, which is a

simple corollary of Lemma 3.35.

Theorem 3.19. Suppose a = (a;,,. 4,)1<iy,.iq<n S @ d-indezed array, and |la||r

denotes its Frobenius norm. Let (Xi(j ))15i5.n,j=1,,,,,d be independent copies of X ~

101n fact, the squared norm of projected random vectors considered previously is a special case of
Gaussian chaos, and we treat it separately.
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N(0,1,,). For any fized € > 0, with probability at least 1 — Cexp (~C’n2"/ ‘1) ,

15eyig=1

Lemma 3.35 (Gaussian chaoses concentration (Corollary 1 in [74])). Suppose a =
Gy, i 1<y, ig<n 45 @ d-indexed array. Consider a decoupled Gaussian chaos G =
Zn 7777 iy Qiryenia X M. -Xé:l), where Xi(k) are independent copies of the standard normal

random variable for alli € [n],k € [d].

1 t 2/k
P(lG| >t) < Cyexp| —— min min _ ,
(1G] 2 %) < Ca p( Cy 1<k<d (I,....Ix)ES(kd) (||a||11’_,,,1k) )

where Cyq € (0,00) depends only on d, and S(k,d) denotes a set of all partitions of
{1,...,d} into k nonempty disjoint sets Iy, ..., I, and the norm || - ||1,,.. 1, is given

by:

1 k 1 k
lalln,.n = sup 3 D @ gwly ) Y (@) <1 (@) <1

1150en0td iry ir,

Proof. (of Theorem 3.19) Apply the inequality:
lally..qay < lalln,..n < llalig = llellr, V(... L) € S(k, d).

For a fixed order d and for any € > 0, apply Lemma 3.35 and set ¢t = n||al|p. We
have that P (|G| > t) < Cexp (—C’n2€/d), for some constant C, C". a

For coupled Gaussian chaoses, namely when X )’s arc identical copies of the same

X, we first cite the following decoupling theorem in [40].

Theorem 3.20. (Decoupling) Let (a;,,.. i )1<iy...iq<n be @ symmetric d-indezed array
such that a;, . ;, = 0 whenever there exists k # 1 such that ¢, = 4;. Let X,,..., X,

be independent random variables and (Xi(j))lsisn for 7 = 1,dots,d, be independent
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copies of the sequence (X;)1<i<n, then for allt > 0,

1 d
[ g X X9 2Ldt]
..... ig=1
{ Z a‘l]_, ,’Ld .'Xid ZLdt}
21yeentg=1
ngPr[ Z @iy, g XD - XD >L;1tJ,
Uy entg=1

where Ly € (0,00) depends only on d.

Essentially this theorem shows for a symmetric tensor with no “diagonal” terms,
i.e., a;,. i, = 0 whenever there exists k # [ such that i, = 4;), there is only a constant

factor difference between the coupled and decoupled Gaussian chaos distribution.

In most of our applications, we do have symmetric tensors with no “diagonal”
terms. However there is one case where we do have diagonal terms, for which we nced

the following lemma.

Lemma 3.36. Let (Qi, i,,i5)1<iy,...ia<n b€ a symmetric 3-indexed array and let ||a|z
denote its Frobenius norm. Let X ~ N(0,1,), then for any € > 0, with probability at
least 1 — Cnexp(—C'n?*/3), |

n
z @iy i, iz X iy XigXis S4|Ia||pn°-5+6_

11,i2,33=1

Proof. The sum of the “diagonal” terms isequal to 33, ,; a::; X7 X;+1/2)7, a3 X2,
Since X; are independent standard Gaussian random variables, with probability at

least 1 — Cnexp(—C'n?/3) (union bound), |X;| < n/? for all ¢ € [n]. Conditioned on
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this high probability event, the absolute value of the sum is bounded by:

3 aii XPX;+ 3 Z:ame <3 langll X1X7

< 3l{aii ) 1<ij<nllin®
< 3\/EH (ai,i,j ) 1<i,j<n ” Fn(;

S 3“0'“17'710'54_6-

By Theorem 3.19, we know that with probability at least 1 — Cexp (—C'nze/ 3),
the absolute valuc of the sum of the “non-diagonal” terms is bounded by |al|#n®.

Therefore we can conclude the proof by applying the union bound. U
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Chapter 4

Realization Problems of Hidden

Markov Models

4.1 Problem Statement

Preliminaries on HMMs An HMM determines the joint probability distribution
over scquences of hidden states {x; : t € Z} and observations {y; : t € Z}. For sim-
plicity, we call each output y; as a “letter” taking value from some discrete alphabet
[d], and a sequence of n letters is referred to as a “string”, taking value from the
Cartcsian product [d]*. We usc [dV] = {1,...,d"} to denote the vectorized indices
in [d]"™.

The joint distribution of {z;,y, : t € Z} from a stationary HMM is parameterized
by a pair of matrices: the state transition matrix ¢} € Rﬁf‘k, and the observation
matrix O € ]Rf_x’“, which satisfy e'O = e and e’ Q - e', where e is the all ones

vector. The hidden state z; cvolves following a Markov process:
P(zpn = jloe =14) = Q)

Let 7 denote the stationary state distribution, i.e., m; = Plz; = ¢ and Q7 = =.

Without loss of gencrality, we assume that 7m; > 0 for all i € [k]. We also define the
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backward transition matrix Q € R¥**:
P(xi1 = jlo, = 4) = Qs

Observe that the matrix @Q is related to Q as: Q = Diag(n)QT Diag(w)~*. Condi-

tioned on the hidden state taking value ¢, the probability of observing letter j is:
P(y: = jlzs = 1) = O;.

We call two HMMs equivalent if the output processes are statistically indistinguish-
able.

The order of the HMM is defined to be the number of hidden states, denoted by
k. We will denote the class of all HMMs with output alphabet size d and order k£ by
Ol

Realization problems Hidden Markov Models (HMMs) are widely used for de-
scribing discrete random processes, especially in the applications involving temporal
pattern recognition such as speech and gesture recognition, part-of-speech tagging and
parsing, and bioinformatics. The Markovian property of the hidden state evolution
potentially leads to a low complexity representation of the output random process.
In this work, we consider the long-standing HMM realization problem: given some
partial knowledge about the output process of an unknown HMM, can we generalize
it to a full description of the random process?

Consider a discrete random process {y; : t € Z}, which assumes values in a finite
alphabet [d] ={1,---,d}. Assume that y, is the output process of a stationary HMM
of finite order. Let the random vector yY = (y1,...,yn) denote an string of length
N, which assumes values in the N-ary Cartesian product [d]¥. The process v, is
fully characterized by the joint probabilities of strings of any length in the countably
infinite table (denoted by P)):

{P(y1 =h, -, yn=1In): VY € [d¥,VN € Z}‘
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There are three main concerns in the realization problem:

1. (Informational complexity) Suppose that the underlying HMM is of order k,

and we are given the joint probabilities of all the length N strings, namely:
PN = {]P’(yl =1, ,yv =In): VY € [d]N}>

how large does N need to be so that we can compute P() based on PM)?

2. (Computational complexity) Can we solve the realization problem with run-

time polynomial in the dimensions (alphabet size d and order of the underlying

HMM k)?

3. (Statistical complexity) When P®) is cstimated from sample sequences and has

some estimation error, arc the rcalization algorithms robust to the input errors?

These are long standing questions, and there are several lines of work within
different communities at tempting to address these questions. It has long been known
that, in the information theoretic sense, there exist hard cases of HMMs that are not
cfficiently PAC learnable [66] [89]. However, a more practical question is, can we .
efficiently solve the realization / learning problem for most HMMs? In this work,
we focus on generic analysis and show that, for almost all HMMs, i.e., excluding
thosc whose parameters arc in a measure zero set !, the realization problems can be

efficiently solved with poly time algorithms.

Minimal realization problems The realization problem takes as inputs the prob-
abilities of finite length strings for a fixed window size N (P™™), and finds a finite
state model of the minimal order to describe the entire output process (P)). We
aim to find the most succinct description of the process, namely the minimal order

realization, where the “order” refers to the number of states of the underlying finite

1 In our setting, algebraic genericity coincides with the measure theoretic notion of generic.
Throughout the discussion, for fixed alphabet size d and order k, we cail an HMM in general
position if its transition and observation matrix are in general position, which is equivalent to
“almost everywhere in the parameter space of {Q € R 0 R . eTQ=¢T,eTO=e"}".
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state model. Without loss of generality, we assume that the process has a minimal
realization of order k and examine under what conditions the algorithms can recover

an equivalent minimal order recalization.

Next, we introduce two classes of finite state models, both of which can realize an

HMM output process.

Definition 4.1 (Quasi-HMM realization [123]). Let 6° be a tuple: 6° = (k,u,v €
R* AW € R¥*k . V5 € [d]). We call 6° a quasi-HMM realization of order k for a
stationary process {y, : t € Z} if the three conditions hold: (V¥ € [d|N,VN € Z)

P(yY = 1Y) = uT A A®) . 4Gy, (4.1)

d
uT(Z AV =47, (4.2)

d

O A =w. (4.3)
j=1
Definition 4.2 (Equivalent quasi-HMM realizations). Two quasi-HMM realizations
6° = (k,u,v,A9 : j € [d]) and o = (k,u,v, AW : J € [d]) are called equivalent, if

there is a full rank matriz T € R*** such that:
=TT, =T v, AV = T'AOT, vj e [d.

Definition 4.3 (HMM realization). Let 8" be a tuple: 0" = (k,0 € RY*, Q € RE*¥).
We call 0" an HMM realization of order k for a stationary random process {y.:t ez},
if the matrices Q) and O are column stochastic, and the output process of the HMM
defined by the transition matriz Q) and observation matriz O has the same distribution

as Y.

HMM realizations are in a subset of the model class of quasi-HMM realizations.

Given an HMM realization 0" = (k,O,Q), one can construct the following quasi-
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HMM rcalization 6° = (k,u,v, AY) : j € [d]):

u=-e, (4.4)
v=m, | (4.5)
AY = QDiag(0y4), Vi € [d]. (4.6)

The minimal (quasi-)HMM realization problem is formally stated below: Assume
that the random process is the output of an HMM of order &. How large does the
window size N need to be, so that given the joint probabilities PY) we can efficiently

construct a minimal (quasi-)HMM realization for the process?

1}

4.2 Main results

To study the HMM realization problems, we focus on algorithms based on the spec-
tral method. The basic idea is to exploit the recursive structural propertics of the
underlying finite state model, and write the joint probabilities in PV into a specific
form which admits rank decomposition, where the rank reveals the minimal order of
the realization and the model parameters can be extracted from the factors.

In the first part (Section 4.2.1), we consider the problem of finding the minimal
quasi-HMM realization. Quasi-HMMs arc associated with different names in different
communities, for cxample finite state regular automata [17, 18], regular quasi realiza-
tion [123, 89], and opcrator models [89, 58]. We mostly follow the terminologies in
[123]. Algorithm 12 is the well-known algorithm for finding the minimal order quasi-
HMM realization (to be rigorously defined later). However, in general the window
size N can not be specified a priori and thus the complexity of the algorithm cannot
be explicitly determined. In Theorem 4.2, we show that, if the output process is
generated by an general position HMM with order £, we only need the window size
N in the order of O(log,(k)) for pinning down P(®) based on P™), where d is the
output alphabet size. Moreover, we show that Algorithm 12 has runtime and sample

complexity both polynomial in the relevant parameters.
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In the second part (Section 4.2.2), we consider the problem of finding the minimal
HMM realization, using tensor decomposition methods, which rely on the uniqueness
of tensor decomposition to recover the minimal order HMM that is unique up to hid-
den states permutation. Tensor decomposition based algorithms for learning HMMs
are studied in [7, 5, 26]. In these works, the transition matrix is always assumed to
be of full rank. Similar to that in the quasi-HMM realization problem, in general the
required window size N and also the complexity of the algorithm cannot be deter-
mined a priori. In [5], the authors examined the generic identifiability conditions of

HMM, and showed that generically it suffices to pick the window size N = 2n +1 for

+d—1

*°7") > k. In the case where d is much smaller

some positive integer n, such that ("
than k, n nceds to be in the order of O(k/?4). Another bound on the window size N
is given in [26], which is in the order of O(k/d). However, the size of the tensor in the
decomposition is exponential in n, thus all these bound lead to runtime exponential
in k.

In Section 4.2.2, we propose a two-step realization approach, and analyze the
identifiability issue of the two steps. Then, we show that for the processes generated
by almost all HMMs, the window size N only needs to be in the order of O(log,(k))
for finding the minimal HMM realization. This means that for most HMMs, finding

minimal quasi-HMM and minimal HMM realizations are actually of equal difficulty.

4.2.1 Minimal Quasi-HMM Realization

In this section, we address the minimal quasi-HMM realization problem. We first
review the widely used algorithm[11, 18]; then we show for HMMs in general position,
the window size N only needs to be in the order of O(log,(k)) to guarantee the
correctness of the algorithm; we also give an example of hard case (degenerate) which

needs N to be as large as k; finally we examine the stability of the algorithm.

Algorithm For notational convenience, we define the bijective mapping L : [d]” —
[d"] which maps the multi-index 1Y = (I3,---,1,) € [d]” to the index L(I}) = (I, —
Dd" ' + (ls— 1)d" 2+ + 1, € [d"].

212



Algorithm 12: Minimal quasi-HMM realization
Input: H® HY ¢ R > for all j € [d]
Output: 6° = (k,u,7, AY) : j € [d])

1. Compute the SVD of H®: H® = UyDyV},. Set U = UyDY?, 'V =VyD}*.

2. Let k be the rank of HO, and let & = U’e, ¥ =V'e.

3. Let U t and V1 be the pseudo inverse of U and V. Set
AU = gtHO(VYY, V) e [d).

Given the length N joint probabilities P®Y), where N = 2n + 1 for some positive

number 7, we form two matrices H®, HU) € R¥"*4" for all j € [d] as below:

[H(O)]L(]}‘).L(l:'l‘) = P(y:? =127 yo ' = l';‘), (4.7)

[H(j)]L(l';),L(I:?) = P(Y:in =17V, % =75y1 = l?’), (4.8)

where 17 = (Iy,...,1,) and 17 = (I_3,1_9,...,l_;) € [d]" denotes the length n string
corresponding to the future and the past n time slots, respectively. Note that the
“future” observations and the “past” obscrvations are independent conditioned on
the “current” state, which is the Markovian property that Algorithm 12 relies on.
The core idea of Algorithm 12 was discussed in [60], and it has been rediscovered
numerous times in the literature in slightly different forms [11, 18]. We summarize

the main idea below.

Remark 4.1 (Minimal order). Let 8° = (k,u,v,AY : j € [d]) be a minimal quasi-
HMM realization of order k for the process considered. Since the joint probabilities
can be factorized in terms of the AD’s as in (4.1), one can factorize H® and HV’s

as below:
HO — E'FT, HY = EA(j)FT’

where the matrices E,F € R¥*¥ are functions of 6°. In particular, the L(1})-th row
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of E and F are given by:

- Epanyg = u' (A ... 40, (4.9)
F[L(]’f),:] = ’UT(A(Z") M A(ll))T. (410)

Note that if both E and F have full column rank k, then H® has rank k, according to
Sylvester’s inequality. Any rank factorization leads to an equivalent minimal quasi-
HMM realization of order k. The minimal order condition, though not explicitly
enforced, is reflected in the rank factorization, as any quasi-HMM realization of lower

order results in a matriz HO of lower rank, which leads to a contradiction.

The correctness of the algorithm crucially relies on matrix H© achieving its max-
imal rank k, which equals the order of the minimal realization. A necessary condition

for the correctness of the algorithm is stated below.

Lemma 4.1 (Correctness of Afgorithm 12). Assume the process has a minimal quasi-
realization 0° of order k. Algorithm 12 returns o minimal quasi-HMM realization 6°
that is equivalent to 6°, if the matrices E, F defined in (4.9) and (4.10) have full

column rank k.

Increasing the window size N can potentially boost the rank of H® in the hope
that the H(® reaches its maximal rank and Algorithm 12 can correctly finds the
minimal realization. However, for a given random process, the study of [106] showed
that it is undecidable to verify whether it has a finite order quasi-HMM realization.
Even under our assumption that the process indeed has an order k¥ minimal quasi-
HMM realization, it is still not clear how large the size of matrix H©® (d" x d*)
needs to be so that it achieves the maximal rank k. In previous works, it was usually
implicitly assumed that N is large enough so that H(® achieves its maximal rank
[18]. Yet without a bound on n or N the computational complexity of the algorithm

is ambiguous.

Generic Analysis of Information Complexity = We desire a small window size

N while guaranteeing the full column rank of the matrices E and F' defined in (4.9)
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and (4.10). The following thcorem shows that if the random process is generated by an
order K HMM in gencral position, then we only need window size N > 4[log,(k)] +1

to guarantee the correctness of Algorithm 12.

Theorem 4.2 (Window size N for quasi-HMM). (1) Consider (-)z‘d,k), the class of all
HMMs with output alphabet size d and order k. There exists a measure zero set
£e 6’(1“), such that for all the output process generated by HMMs in (—)&k)\fj , Al-
gorithm 12 returns a minimal quasi-HMM realization, if window size N = 2n+1

for some n such that:

n > 8[log,(k)]. (4.11)

(2) For any pair of (d, k), randomly pick an instance from the class G?d’k). If for a
given wz’ndow' size N = 2n+ 1, the matrizc HO achieves its mazimal rank k, then
for all HMMs in @{‘d,k), excluding a measure zero set, N is sufficiently large for

the correctness of Algorithm 12.

Since the elements of matrices E and F' are polynomials of the parameters @) and
O, in order to show E has full column rank for QQ and O in general position, it suffices
to construct an instance of HMM for which the matrix F has full column rank. In
particular, we fix the transition matrix ¢ and randomize the observation matrix O
and bound the singular values of F in probability. The detailed proof is provided in
Appendix 4.3.

For all (d, k) pairs in the set {2 < d < k < 3000}, we implemented the test in
Theorem 4.2 (2), and found that for all these cases n = [logy(k)] is sufficient. We
conjecture that in general, n > logé(k) is enough.

In the worst case [123], the “Hankel rank” of the matrix H® with infinite window
size can be larger than the rank of any finite size block of the infinite matrix. Instead
of the worst case analysis, our generic analysis examines the average cases, and it has
the following implications: if the process is generated by some average case HMM of

order k, then the Hankel rank equals k; morcover, the window size n only needs to be
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in the order of O(log,(k)) so that the rank of finite matrix H® .achieves the Hankel

rank.

Existence of Hard Cases We showed that for generic HMM output processes,
Algorithm 12 is has polynomial runtime. There exists a long line of hardness results
for learning HMMs [66, 89, 114], showing that in the worst case (lie in the mea-
sure zero set in the parameter space) learning the distribution of an HMM can be
computationally hard under cryptographic assumptions.

In Fig. 4-1, we adapt the hardness results to our setting and give an example to
lower bound the worst case computational complexity. The state diagram describes
the transition and observation probabilities. In the state transition diagram, for
stage t = 1,--- ,T — 1, the emission state E; is uniformly distributed over {0,1} and
is observed. For stage t = 2,--- ,T — 1, the parity state S; computes F;_; @ S;_1,
cxcept for at one unknown stage s, Sy = S;—;. At stage T, with probability 7, the
correct parity state Sp_; is revealed, and with probability 1 — 7, the complement is
observed. (T'+1) is a reset stage, with probability p it stays in the reset stage. Solving
the realization problem is equivalent to learning the joint distribution of the process.
One can verify that the window size N needs to be at least as large as T, which
is proportional to the order of the underlying HMM, and therefore the computation
complexity is exponential in the order of the HMM.

State = (Emission, Parity sum, Stage}

Skig stage for parity surn

i(ooz) §—7(003) {00s-1) (00s}
Uniform 0.5 i X
{co1) (102) (103) (10s-1) (10s)

(101} T(D’lZ) 613) (O1s~1)Xm1S)

\(112) (113} {11s-1) {11s}

r0T+1) ¢

1-p ] Reset stage
/ \ P

Figure 4-1: Reduction of HMM to noisy parity

We point out that not all HMMs in the measure zero set are information theo-
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retically hard to learn. For instance, consider the degenerate HMM in [5] with the
transition matrix @) = [, and with gencral position observation matrix Q. Supposc
that d < k, it was shown that the window size N needs to be in the order of k4 so
that matrices £ and F attain full column rank. However the distribution of this i.i.d.
process is not fundamentally difficult to learn. It remains an open problem to find

realization algorithmn that can handle more cases.

Stability Analysis In practice, the joint probabilities in P®V) are estimated based
on finite sample sequences of the process. In the next theorem, we show that in order
to achieve e-accuracy in the parameters of the minimal quasi-HMM rcalization, the
number of sample scquences we need to estimate P®Y) is polynomial in all relevant

parameters, including the order k.

Theorem 4.3. Given T independent sample sequences of the output process of an
HMM of order k and with alphabet size d. Construct H® and HY’s as in (4.7)
and (4.8) with the empirical probabilities. Let N = 2n + 1, and n = 2[logy(k)].
Let 0° = (k,@,7,A9 : j € [d]) and 6° = (k,w,7,A0 : j € [d]) be the output of
Algorithm 12 with the empirical probabilities and the exact probabilities for the input,
respectively. Then, in order to achieve €-accuracy in the output with probability at

least 1 — n, namely:
la-all <e I5-7] <e A - A9 < ¢V,

the number of independent sample sequences we need is given by:

Ckbd* (2k4d2>

where oy, is the k-th singular value of HO) and C is some absolute constant.

Since the core of the algorithm is singular value decomposition of the matrix H®,
the stability analysis mostly uses the standard matrix perturbation results. The

detailed proof is provided in [59].
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Remark 4.4. Note that Theorem 4.2 shows that for window size N large enough
(O(logy(k))), the exact realization problem (no estimation noise) can be solved with
poly time algorithm. When empirical probabilities are used, Theorem 4.3 shows that
the required number of independent samples is polynomial in k, d, and 1/0oy. o
depends on the HMM that generates the process. In tﬁe proof of Theorem 4.2, it is
showed that there exist cases for which oy is lower bounded by constant, for which
case the sample complexity is indeed polynomial; however there also exists hard cases
for which oy is arbitrarily small. We defer the analysis of sample complexity, which
relies on understanding the relation between window size, HMM parameter, and oy,

to future work.

4.2.2 Minimal HMM Realization Problem

Recall that an HMM can be easily converted to a quasi-HMM of the same order as
shown in (4.4)—(4.6), yet given a quasi-HMM realization it is difficult to construct an
HMM [11]. In this section, we apply tensor decomposition techniques to study the
minimal HMM realization problem and discuss its connection to the previous section.
In particular, we show that for processes generated by general position HMMs, the

two realization problems have similar computational complexity.

Formulation For a fixed window size N = 2n+1, given the exact joint probabilities
in PM)| similar to the construction of H© in (4.7), one can construct a 3rd order

tensor M € R¥"*d"xd 44 helow:
M oo, 0 =P(¥2 =10), V2, € [dY. (4.12)

Suppose that the process has a minimal HMM realization 8" = (k, @, O) of order k.

We can write M as a tensor product:

M=A®B®C, - (4.13)
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where the matrices A, B € R¥"** and C € R¥** correspond to the conditional prob-

abilities:
ArLaym = P(Y;" =17

BL(l:;'),m = ]P)(y:rll = l:?

Ciom = lP’(yo =1, o = m) ) (4.16)

Ty = m) , (4.14)

Ty = m), (4.15)

Moreover, observe that A anh B are recursive linear functions of the model parameters

@ and O as below:

xp = m) = (00 A")Q, (4.17)

BW=P@jhww@=WO®HWWQ, (4.18)

and A® = OQ and BY = OQ. In particular, for the given window size N = 2n + 1,

we have:
A=A"  B=B®W (= O0Diag(rn). : (4.19)

The basic idea of recovering the minimal HMM realization 6" (up to hidden state
relabeling) is to first recover the factors A, B and C via tensor decomposition, and
then extract the transition and observation probabilities from the factors.  The
minimal order condition is again reflected in the tensor rank factorization, as any
HMM realization of lower order results in a tensor M of lower tensor rank, which is

a contradiction.

Identifiability The identifiability of the minimal HMM relies on the fact that
the tensor rank decomposition indeed recovers the factor A, B, C defined in (4.14)-
(4.16). Note that by definition, the column stochastic observation matrix O must
have Kruskal rank greater than 2, otherwise there exist two identical columns in O,

and the corresponding two hidden states can be merged to give an equivalent HMM
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realization of smaller order.

Lemma 4.2 (Uniqueness of tensor decomposition). Given window size N, if the
matrices A, B € R¥** defined in (4.17)—(4.19) have full column rank k, then M can
be uniquely decomposed into column stochastic matrices A, B,C as in (4.13) (up to

common column permutation).

In parallel with Theorem 4.2, the next theorem shows that the condition above is

satisfied for a general position HMM process with sufficiently large window size N.

Theorem 4.5 (Choice of N for HMM realization). Consider G?M), the class of all
HMMs with output alphabet size d and order k. There exists a measure zero set
£e @?d’k) such that for all output processes generated by HMMs in the set @?d,k)\f,
the minimal quasi-HMM realization can be computed based on the joint probabilities

in PW) | if window size N = 2n + 1 for some n such that:
n > 8{log,(k)]- (4.20)

Algorithms The matrices A4, B and C, defined in (4.17)-(4.19), are polynomial
functions of the parameters @ and O of the minimal HMM realization. The fol-
lowing theorem exploits the recursive structure of these polynomials to recover the

parameters @ and O if the factors A, B, C are given.

Theorem 4.6 (Recovering @ and O from A, B,C). Given the matriz C, one can

obtain the observation matriz by:
0[:,,'] = C’[:,i]/(eTC[:,i]), Vi € [k] (4.21)

Given the matriz A € RY"** we first scale each of the column similar to (4.21) so that
each column is stochastic, and corresponds to the conditional probabilities P(y}|zo) as
shown in (4.14). We marginalize the conditional distribution to get A®) = P (y|xo) €
R¥>* gnd A=Y =P (y7~|z) € RT ¥k,
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(1) If A has full column rank k ([5]):
Q= (0 ® A<"~1>) "4 | (4.22)
(2) If C has full column rank k:
Q = OtAW, (4.23)

where (X))t = (XTX)™'XT denotes the pseudo-inverse of a matriz X.

In the proof of Theorem 4.5, we show that for gencral position HMMs with suffi-
ciently large window size, the matrices A and B achicve full column rank k. When
this holds, Algorithm 1 computes the unique tensor decomposition to rccover the
factors A, B, C. Theorcm 4.6 (1) applies to recover @ and O from the factors.

However, if the transition matrix @ of the minimal HMM realization does not have
full rank, and no matter how large the window size is, the matrix A never achieves
full rank. Note that these HMMs are degenerate cases belonging to the measure zero
set in Theorem 4.5, and Algorithm 1 is not applicable for decomposing the tensor M.
However, it is still possible to apply Algorithm 2. Note that a nccessary condition for
it to work is that d > k and the observation matrix is of full column rank.

Let @f‘de) denote the model class of HMMs with output alphabet d and order
k, for d > k and the transition matrix ¢ has rank r < k. Note that @?d’k;r)_ is a
subset of the measure zero set £ in Theorem 4.5. The following theorem shows that
if Algorithm 2 runs correctly for a random instance in this subset, then the algorithm

works for almost all HMMs in this subset.

Theorem 4.7 (Correctness of Algorithm 2). Given d,k and r and consider the set
Ofirr- Let A, B,C be defined as in (4.17)~ (4.19) forn =1, and let M = AQ BRC.
If Algorithm 13 returns “yes”, then there exists a measure zero set £ € G?a,k’r), such
that Algorithm 2 returns the tensor decomposition M = A® B ® C for all HMMs
in the set G?d,kﬂr)\c‘f . Moreover, if the latter is true, Algorithm 13 returns “yes” with

probability 1.



For this class of degenerate HMMs, Theorem 4.6 (2) applies to recover @ and O.

Note that for both the general position case and this degenerate case, the com-
putation complexity to recover the parameters of the minimal HMM realization are
polynomial in both d and k, and this is an immediate result of the log upper bound

of the window size.

Algorithm 13: Check Condition
1. Randomly choose an HMM from 6" € Ok

2. Construct matrices A, B, C' with (Q, O) as defined in (4.17)—(4.19) for n = 1,
- namely A = 0Q, B = 0OQ, and C = ODiag(r).

3. Let M = A® B® C. Run Algorithm 2 with the input M.

4. Return “yes” if the algorithm returns A, B, C uniquely up to a common
column permutation, and “no” otherwise.

4.3 Proofs for Chapter 4

4.3.1 Proofs

Assume that the observed process has a minimal HMM realization 6" of order k,
ie, 6" ¢ 6@1,6), and let 6° denote the equivalent order k£ quasi-HMM as shown in
(4.4)-(4.6). For window size N = 2n + 1, define the matrices E and F for #° as in
(4.9) and (4.10) and note that:

Erap).
= [uT (AW ... Aty

= e P(Tn, Yn1 = ln| 1) - - P(x1, %0 = la|zo = )

=P(y5" = 1;‘\:50 =i),
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and similarly,
Frap.i = (AW AW, = P(y:? =1,20 = Z>

Lemma 4.1 shows that a sufficient condition for the correctness of Algorithm 12
is that both £ and F' have full column rank k. In this proof, we show that when @
and O of the HMM 6" € 9'&1,,6) are in general position, this rank condition is satisfied
if the window size N = 2n + 1 satisfies (4.11).

Note that the minors of E' and F are polynomials in the elements of () and O, thus
it defines a algebraic set in the parameter space by setting all the minors to zero to
make F and F to be rank deficient. By basic algebraic geometry [51], the algebraic set
cither occupies the entire Zariski closure or is a low-dimensional manifold of Lebesgue
measure zero. In particular, the Zariski closure of G?d’k), defined to be the smallest
algebraic set containing G?d,k), is given by @’&,‘k) ={0 e R** Q e R¥>* . eTO =
e’,e'@Q = e} (note that the clement-wise non-negativity constraints can be omitted
when considering the Zariski closure). Therefore, it is enough to show that for some
specific choice of ) and O in @?’d’k), the matrices E' and F' achieve full column rank k.
Moreover to construct an instance, we can further ignore the stochastic constraints,

as scaling does not the independence property of the columns in E and F.

We fix the transition matrix @) to be the state shifting matrix as below:
Qi1i=1, for2<i<k, and Qi =1, (424)

Note that with this choice of @, 7 = %e, and é = @Q'. Due to the symmetry of the
forward and backward transitions, we can focus on showing that E has full column
rank and the sémc argument applics to F.

We randomize the observation matrix O and let the columns be independent
random variables uniformly distributed on the d-dimensional sphere. In order to
show that there exists a construction of (Q, O) such that E has full column rank, it
suffices to show that E achicves full column rank with positive probability over the

randomness of O. We apply Gershgorin’s theorem to prove that the columns of F
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are incoherent.

Note that for the shifting matrix ), we have:
E[:,z’] = O[:,i] ORR O[:,’H—n—l]~

Since we have d > 2 and n < k, for notational convenience, we slightly abuse notation
to write the j-th column of O as O, while for k¥ < j < 2k, it actually refer to the
(j — k)-th column of O.

Define matrix X € R*** to be:

n—1

Xij = El By = [[(Of;1mOpssm), Visj € [K].

m=0
By the assumption that the columns of O are uniformly distributed on the d-dimensional
sphere, we have X;; = 1, for all ¢ € [k].
Fix some 83,y = 3% € (0,1). Suppose that, for any i # j,

A

Then apply union bound on j, we have for any i:

k
P (Z X4 < ﬁ) >P (w € K5 #4,1Xi4 < —f—)
J#i
T

]____
71T

Again apply union bound on %, we have:
P (Vi € [k], [ Xl = Z | Xigl > 1 - ﬂ) >1 - k% =1-17.
J#i ‘

Apply Gershgorin’s theorem, we have that with probability at least 7, the matrix
X = ETE is of full rank k, and the smallest singular value is at least 1 — 8. There

must exist some instance of O such that this statement holds.
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Next, we verify the statement in (4.25). Equivalently, we want to show that for

R

n-—1
15 <P (H |Of s Ot | < ?)

n—1 k
=P ZIOg |O Ji+mn) O[ _]+'m]|) < _]Og(ﬁ))

n—1 .
=P (Z log 1 > log(—g-)

m=0 |O[ i+n) O {5,5+m)
n 1 k

where v, are i.i.d. random variables with the distribution as the projection of a
uniform unit-norm vector in R? onto the first dimension. The last equality is duc to

the independence of the columns of O.

Define the indicator random variable s,, for m € [n]:

Sm = log (

1 1 1
< Zlog(d)| =1 ||vm| > = |,
ro) < Hog(@)] =1 lonl > |
where we pick constant ¢ = 4. Assume that d > 2 + (8¢)? (as we really only care

about the scaling), apply Johnson Lindenstrauss lemma, setting u; to be v, and ¢ to

be l/d%, we have:

4 1 d—2
em<——e§d—275

=P(s,,=1) <
p=P( ) T 5

Note that by definition:

Zlog(lvml> Zn: log(d)(1 — spn).-

m=1 m= 1
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Therefore it suffices to show that

1— A_z <P (Z —Elog(d)(l - sm) > log(—g-)) ’

m=1

or equivalently,
v = _ log(k/B)
2 >P (Z Sm >N C—_—log(d)
(% log(k/B)
_P(Zsm>ac log(d) ,
where we set n = (1 + a)clog,(k/B) for some o > 1.

Apply the multiplicative Chernoff bound, by setting X,, = s, for m = 1,---n

log(k/B) e __ __enp 1+a —Vid/2 a
log(d) ’ and § = olow(k/B] — ep<e < 1, we have

log(d)

log(k/B)
log (k / B) 1+a *CTog(d)
(Z sm > ac=o = | <\ —gem .

We want to show that the RHS is less than /k?. Taking log, this is equivalent to:

and set dnu = ac

log(k/B) a log(k?/7)
*ogld) ((1+a)eu)> log(d)

d—
Recall that we have y = 8%, H2ep <e 33277 ¢ = 4 the above inequality holds if

we pick o =4/c =1, as

a log(eiza) Vd
acloed g yen) 2 4 og@ = Yiog(d) =

Now we can conclude that (4.25) holds.

4.3.2 Other proofs
(Proof of Theorem 4.3)
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Recall that the output of Algorithm 12 is given by:

AV = PL2GT OV, DV,

-~

@=D""Uje, ©=DV]e,

where U y and ‘7}1 are the first k left and right singular vectors of H © and the
diagonal matrix D has the first k singular values of H® on its main diagonal. In
order to bound the distance between AY) and A®), G and @, ¥ and 7, we analyze the
perturbation bound for each of the factor separately and apply Lemma 1.6 to bound

the overall perturbation of the product form.

First, denote E; = H® — HO for j = 0,1,...,d. For any clement in E; we can
be bound its norm using Hocffding’s inequality (Lcmma 1.8 ): with probability at
least 1 — 2¢727%" the (i1,is)-th clement of E; is bounded by: ||[Ej]iell < 6 < 1.
Moreover, apply union bound to j and all elements in each E;, with probability at

least 1 — 2k4d3e_2T‘52, for all j =0,1,...,d, we have
1Ejllr < VEdné < k2d°,
where the last inequality is due to d™ < k%d.

Second, we apply the matrix perturbation bound (Lemma ??) to bound the dis-

tance of the singular vectors:

V2| Eollr
O'k(H(o)) ?

V2| Eollr

Uy — Uy < .
” H H“ = O'k(H(O))

Vi — V|| <

And we can apply Mirsky’s theorem (Lemma ?? ) to bound the distance of the

singular values:
|D — D|| < || Eoll -

Denote A; = o;(H®) — oi(H®) and let 0; = 0;(H®). Note that if || Eo|| < 04/2, we
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have that for any i = 1,...k, |A;| < | Eo| < 0:/2, then

1 2 __1)2
v ,+A‘V“'A/°@ E
—(Ai/ai+2_2\/l+Ai/0i)

__—z(3lA il/o:)

61A|

where the first inequality is due to |A;| < 4;/2, and the second inequality is due to
V1+A;/o; > 1—|A;/0;]. Therefore we have that |

V6t A _ /6vEID - DI

”5—1/2 _D—1/2“ < <
oL (2

Finally, we apply Lemma 1.6 to bound the output perturbation. Note that
\D~Y2|| = 1/+/7%, |Uxll = 1,||Vall = 1. Moreover note that the probabilities in
each row of HY sum up to less than 1, therefore by Perron-Frobenius theorem we

have ||HY|| < 1. Therefore we have

| AW — 4G
<t 2 6A1/2IIE0||F 2v2 ||E0|1F ILE;l
<o 2\/_]{:075(1025505 N 2\/—kd055 kd®5§
- ’}75 0"\, ak
.5
S144k.2do 505,
Ok

where the first inequality is due to ||E;|| < ||Ej||r, and the second inequality is due
tod<land oy, <oy <1.

Similarly we can bound ||@ — @|| and ||[v — v|| by:

5d

@ —a| < |ID7Y2Uf — D™VAUR||Var <
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In summary, if we want to achicve € accuracy in the output. we need d to be no
larger than e20?/(144k%d?). Set the failure probability to be n = 2k*d%e 27", then
number of sample sequences needed to estimate the empirical probabilities is given

by:

1442k5d* 2kAd3
€‘oy, 7

(Proof of Theorem 4.5)

With exactly the same argument and constructional proof as for Theorem 4.2,
we can show that for the window size N = 2n + 1 satisfies (4.20), the matrices A
and B have full column rank. By Leﬁlma 4.2 we have that the tensor decomposition
of M is unique. Morecover, by the argument in Theorem 4.6 (1), we have that the
model parameters @, O can be uniquely recovered from the factors A, B, C'. Thus in
conclusion P ig sufficient for finding the minimal HMM realization.

d

(Proof of Theorem 4.6)

By the uniqueness of tensor decomposition (up to column permutation and scal-
ing) the columns of C are proportional to the columns of O (up to some hidden
state permutation), and each column of O must satisfy the normalization constraint:
e' O, = 1,Vi € [k]. The normalization in (4.21) recovers O from C.

Recall that

A=A = (00 A" )Q.

Since the matrix A has full column rank k, the matrices Q € R¥** and (O® A("~V) ¢
R4 >k both have full column rank k, as well as the pseudo-inverse of (O@Z), therefore
Q= (00 AV)iA "
By definition we have A = OQ, thus if O is of full column rank k, we can obtain
Q = ota,
O
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(Proof of Theorem 4.7)
Denote the minimal order HMM realization by 6* = (k,Q, O), and since n = 1,

the matrices are given by:
A=0Q, B=0Q, C =O0Diag(r).

Define two linear operators Ipype : R — R? and Peyge : R — R such that
for any matrix X € R¥>%: [Ip, pvec(X) = vec(X) and Pgpygevec(X) = vec(XT).

Moreover, define matrix R € R¥*%* and Q € R %4 to be:
R:Idzxﬁ—szxd% G‘—"R@R

Note that the kernel of (Ip2yq2 — Pyz2xq2) is the space of symmetric matrices, thus R
is of rank d> —d(d +1)/2 = d(d — 1)/2, and G is of rank d?(d — 1)2/4. Define matrix
N dtx (gt d2d=1? )
G+ e R¥X( 7 ) such that its columns are orthogonal to the columns of G.
According to [41, 42, 63], there are two deterministic conditions for Algorithm 2

to correctly recover the factors A, B, C' from the rank k tensor M:
1. Both A ® B and C have full column rank k.

2. Define T € Re" x(m+(k=1k/2) 14 pe:

d?(d - 1)?

4 b
A} © o) © By © By 1 1< b < by < .

The columns of T are linear independent.

- Parameterize the rank r transition matrix by Q@ = UV'T for some matrices U,V €

R¥*" Define the parameter space Q:
Q={QeR**.Q=UV" U,VeR" e'Q=¢"}

Note that by construction, the minors of A® B and T' are nonzero polynomials in
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the clements of the parameters U, V' and O, in order to show that the two deterministic
rank conditions arc satisfied for almost all instances in the class G)f‘d’k’r), it is enough
to construct an instance in the model class that satisfies the two conditions (by the
random check in Algorithm 13). Morcover, if it is true, then with probability one,

the two conditions arc satisfied for a randomly chosen instance in the model class.

O

(Proof of Lemma 4.1)

If both E and F have full column rank k, by Sylvester inequality the rank of the
matrix H© is also equal to &, the order of minimal quasi-HMM realization. Therefore,
for the two matrices U and V obtained in Step 2 in Algorithm 1, there exists some

full rank matrix W € R*** such that:
U=EW, VI =W'FT
Thercfore, Step 3 returns
AV = W ETEAOFT(FTY'W = W 1AW,
By the normalization constraint in Definition 4.1, we have

d d
wWW=u" Y AW =uTw ) AW

=1 =1
Moreover, since
[ WT(AD ... AW | O CH
u(AD ... AP) A .. 4@
U= . W=uW ,
uT(A@ ... AW) A@D ... 4@
L J i d

in Step 2 we obtain 4" = u" W, and similarly, we can argue that ¥ = W~ v. Thus we

conclude that the output §° = (k,u,v, AU L€ [d)]) is a valid minimal quasi-HMM
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realization of order k, and is equivalent to #° up to a linear transformation.
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Chapter 5

Super-resolution

5.1 Problem Statement

5.1.1 Formulation

We follow the standard mathematical abstraction of this problem (Candes & Fernandez-
Granda (31, 30]): consider a d-dimensional signal z(t) modeled as a weighted sum of

k Dirac measures in R%:
k
z(t) = Z W50, (5.1)
j=1

where the point sources, the 49)’s, are in R%. Assume that the weights w; arc complex
valued, whose absolute values are lower and upper bounded by some positive constant.
Assume that we are given k, the number of point sources!.

Define the measurement function f(s) : R — C to be the convolution of the point

source x(t) with a low-pass point spread function ¢ <%*> as below:
k .
f(S) _ / ei1r<t,s>l.(dt) — Z wjeur<ﬂ(.1),s>' (52)
teRd : j=1

In the noisy setting, the measurements are corrupted by uniformly bounded pertur-

! An upper bound of the number of point sources suffices.
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bation z:

f(s) = f(&) + 2(s), [2(9)] S &5, Vs, (5.3)

<

Suppose that we are only allowed to measure the signal x(¢) by evaluating the
measurement function f(s) at any s € R¢, and we want to recover the parameters of
the point source signal, i.e., {wj, p) : j € [k]}. We follow the standard normalization
to assume that:

p@ e [-1,+1]%,  |w,;| €[0,1] Vj € [K].

Let Wynin = min, |w;| denote the minimal weight, and let A be the minimal separation

of the point sources defined as follows:
A = min || — pG,, (5.4)
J#i’

where we use the Euclidean distance between the point sources for ease of exposition?.
These quantities are key parameters in our algorithm and analysis. Intuitively, the
recovery problem is harder if the minimal separation A is small and the minimal
weight w,,;, is small.

The first question is that, given exact measurements, namely ¢, = 0, where and
how many measurements should we take so that the original signal z(¢) can be cxactly

recovered.

Definition 5.1 (Exact recovery). In the ezact case, i.e. €, = 0, we say that an
algorithm achieves exact recovery with m measurements of the signal x(t) if, upon

input of these m measurements, the algorithm returns the exact set of parameters

{wj,u? : j € [K]}.

Moreover, we want the algorithm to be measurement noise tolerant, in the sense
that in the presence of measurement noise we can still recover good estimates of the

point sources.

20ur claims hold withut using the “wrap around metric”, as in [31, 30|, due to our random
sampling. Also, it is possible to extend these results for the £,-norm case.
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Definition 5.2 (Stable recovery). In the noisy case, i.e., €, > 0, we say that an
algorithm achieves stable recovery with m measurements of the signal z(t) if, upon
input of these m measurements, the algorithm returns estimates {w;, 1" : j € [k]}

such that
min max { || — "D, : j € [k]} < poly(d, k)e.,

where the min is over permutations m on [k] and poly(d,k) is a polynomial function

ind and k.

By definition, if an algorithm achieves stable recovery with m measurements, it
also achieves exact recovery with these m measurements.

The terminology of “super-resolution” is appropriate due to the following remark-
able result (in the noiscless case) of Donoho [43]: suppose we want to accurately
recover the point sources to an error of v, where 7 < A. Naively, we may expect to
require measurements whose frequency depends inversely on the desired the accuracy
7. Donoho [43] showed that it suffices to obtain a finite number of measurements,
whose frequencies are bounded by O(1/A), in orcicr to achieve ezact rccovery; thus
resolving the point sources far more accurately than that which is naively implied by
using frequencies of O(1/A). Furthermore, the work of Candes & Fernandez-Granda
(31, 30] showed that stable recovery, in the univariate case (d = 1), is achievable with
a cutoff frequency of O(1/A) using a convex program and a number of measurements

whose size is polynomial in the relevant quantities.

5.1.2 Related Work

We are interested in stable recovery procedures with the following desirable statistical
and computational properties: we seek to use coarse (low frequency) measurements;
we hope to take a (quantifiably) small number of measurements; we desire our algo-

rithm run quickly. Informally, our main result is as follows:

Theorem 5.1 (Informal statement of Theorem 5.3). For a fized probability of error,

the proposed algorithm achieves stable recovery with a number of measurements and
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d=1 d>1
cutoff freq | measurements | runtime | cutoff freq | measurements runtime
SDP x klog(k)log(3) | poly(x.k) | £% (&) | poly((Z=)%, k)
MP a a ) - - -
Ours 1 (klog(k))? | (klog(k)? | <& | (klog(k)+ d)? | (klog(k) + d)?

Table 5.1: See Section 5.1.2 for description. See Lemma 5.1 for details about the
cutoff frequency. Here, we are implicitly using O(-) notation.

with computational runtime that are both on the order of O((klog(k) +d)?). Further-
more, the algorithm makes measurements which are bounded in frequency by O(1/A)

(ignoring log factors).

Notably, our algorithm and analysis directly deal with the multivariate case, with
the univariate case as a special case. Importantly, the number of measurements and
the computational runtime do not depend on the minimal separation of the point
sources. This may be important even in certain low dimensional imaging applications
where taking physical measurements are costly (indeed, super-resolution is important
in settings where A is small). Furthermore, our technical contribution of how to
decompose a certain tensor constructed with Fourier measurements may be of broader
interest to related questions in statistics, signal processing, and machine learning.

Table 5.1 summarizes the comparisons between our algorithm and the existing
results. The multi-dimensional cutoff frequency we refer to in the table is the maximal
coordinate-wise entry of any measurement frequéncy s (ie. ||slleo). “SDP” refers
to the semidefinite programming (SDP) based algorithms of Candes & Fernandez-
Granda (30, 31]; in the univariate case, the number of measurements can be reduced
by the method in Tang et. al. [112] (this is reflected in the table). “MP” refers to the
matrix pencil type of methods, studied in [80] and [84] for the univariate case. Here,
we are defining the infinity norm separation as Ay, = minjzj || — pU"| ., which
is understood as the wrap around distance on the unit circle. Cq > 1 is a problem

dependent constant (discussed below).
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Observe the following differences between our algorithm and prior work:

1) Our minimal separation is measured under the f>-norm instead of the infinity
norm, as in the SDP based algorithm. Note that A, depends on the coordinate
system; in the worst case, it can underestimate the separation by a 1/ Vd factor,

namely Ay ~ A/Vd.

2) The computation complexity and number of measurements are polynomial in di-
mension d and the number of point sources &, and surprisingly do not depend on
the minimal separation of the point sources! Intuitively, when the minimal sep-
aration between the point sources is small, the problem should be harder, this is
only reflected in the sampling range and the cutoff frequency of the measurements

in our algorithm.

3) Furthermore, one could project the multivariate signal to the coordinates and
solve multiple univariate problems (such as in [96, 91], which provided only exact

recovery results). Naive random projections would lead to a cutoff frequency of

O(Vd/A).

SDP approaches: The work in [30, 31, 46] formulates the recovery problem
as a total-variation minimization problem; they then show the dual problem can be
formulated as an SDP. They ‘focused on the analysis of d = 1 and only explicitly
extend the proofs for d = 2. For d > 1, Ingham-type theorems (see [102, 71]) suggest
that Cy = O(Vd).

The number of measurements can be reduced by the method in [112] for the
d = 1 case, which is noted in the table. Their method uses sampling “off the grid”;
technically, their sampling scheme is actually sampling random points from the grid,
though with far fewer measurements.

Matrix pencil approaches: The matrix pencil method, MUSIC and Prony’s
method are essentially the same underlying idea, executed in different ways. The
original Prony’s method directly attempts to find roots of a high degree polynomial_,
where the root stability has few guarantees. Other methods aim to robustify the

algorithm.
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Recently, for the univariate matrix pencil method, Liao & Fannjiang [80] and
Moitra [84] provide a stability analysis of the MUSIC algorithm. Moitra [84] studied
the optimal relationéhip between the cutoff frequency and A, ‘showing that if the
cutoff frequency is less than 1/A, then stable recovery is not possible with matrix

pencil method (with high probability).

5.2 Main Results

5.2.1 Warm-up

1-D case: revisiting the matrix pencil method Let us first review the matrix
pencil method for the univariate case, which stability was recently rigorously analyzed

in Liao & Fannjiang [80] and Moitra [84].

A square matrix H is called a Hankel matrix if its skew-diagonals are constants,
namely H;; = H,;_1;41. For some positive constants m € Z, sample to get the
measurements f(s) evaluated at the sampling set S3 = {0,1,...,2m}, and construct

two Hankel matrices Hy, H, € C™*™:

f0)  FQO) ... fm—1) | ) f@ .. f(m)
oo | W T@ e m | @ SO e fmry
| fm=1) fm) ... flem—1) | | fm) fm+1) ... f(2m)

(5.5)

Define D, € Cﬁ;’; to be the diagonal matrix with the weights on the main diago-

. — kxk _imp®
nal: [D,];; = w;. Define D, € CgX¢ to be [D,];; = ™.
A matrix V is called a Vandermonde matriz if each column is a geometric pro-
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gression. defined the Vandermonde matrix V,,, € C™** as below:

1 e 1
arn(ON1 i1
e ... e'mt
vo—| ™) () (5.6)
i (e‘iﬂ.“(l))m_l . (eiﬂ‘p,(k))m—l ]

The two Hankel matrices Hy and Hy admit the following simultaneous diagonal-
1zation:

HD = L’Yme‘/ Hl - ‘/meD,uVT

m m*

(5.7)

As long as V,, is of full rank, this simultaneous diagonalization can be computed by
solving the gencralized eigenvalue problem, and the parameters of the point source
can thus be obtained from the factor V,, and_‘Du,.

The univariate matrix pencil method only needs m > k to achicve exact recovery.
In the noisy case, the stability of generalized eigenvalue problem depends on the
condition number of the Vandermonde matrix V,, and the minimal weight w,,;;,.

Since all the nodes (ei”“(j)’s) of this Vandermonde matrix lie on the unit circle in
the complex plane, it is straightforward to see that asymptotically lim,, o condz(V;,) =
1. Furthermore, for m > 1/A, [80, 84] showed that condz(V;,) is upper bounded by a
constant that does not depend on £ and m. This bound on condition number is also
implicitly discussed in [96].

Another way to view the matrix pencil method is that it corresponds to the
low rank 3rd order tensor decomposition (see for example [8]). This view will help
us gencralize matrix pencil method to higher dimension d in a direct way, without
projecting the signal on each coordinate and apply the univariate algorithm multiple
times. For m > k, construct a 3rd order tensor F € C™™*? with elements of H,

and H, defined in (5.5) as:
Fiwg = [Hj-l]i,i', Vi€ [2],4,i € [m].
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Note that the two slices along the 3rd dimension of F' are Hy and H;. Namely
F(I,1,e;) = Hy, and F(I,1,e3) = H;. Recall the matrix decomposition of Hy and
H, in (5.7). Since m > k and the pU)’s are distinct, we know that F' has the unique

rank k tensor decomposition:
F =V, ® V;, ® (VaDy,).

Given the tensor F’, the basic idea of the well-known Jennrich’s algorithm ([55,
77]) for finding the unique low rank tensor decomposition is to consider two random
projections v;,v2 € R™, and then with high probability the two matrices F(I,I,v,)
and F(I,I,v;) admit simultancous diagonalization. Therefore, the matrix pencil

method is indeed a special case of Jennrich’s algorithm by setting v, = e, and vy = e,

The multivariate case: a toy example One could naively extend the matrix
pencil method to higher dimensions by using taking measurements from a hyper-
grid, which is of size exponential in the dimension d. We now examine a toy problem
which suggests that the high dimensional case may not be inherently more difficult
thétn the univariate case.

The key ideas is that an appropriately sampled set can significantly reduce the
number of measurements (as compared to using all the grid points). Tang et al [112]
made a similar observation for the ﬁnivariate case. They used a small random subset
of measurements (actually still from the grid points) and showed that this contains
enough information to recover all the measurement on the grid; the full measurements
were then used for stably recovering the point sources.

Consider the case where the dimension d > k. Assume that w;’s are real valued,
and for all j € [k] and n € [d], the parameters p$ are ii.d. and uniformly dis-
tributed over [—1, +1]. This essentially corresponds to the standard (L) incoherence

conditions (for the u¥’s). 3 The following simple algorithm achieves stability with

3 This setting is different from the 2-norm separation condition. To see the difference, note that
the toy algorithm does not work for constant shift ) = u(® + A. This issue is resolved in the
general algorithm, when the condition is stated in terms of 2-norm separation.

240



polynomial complexity.

First, take d® number of measurements by evaluating f(s) in the set S3 = {s =
€ny + €ny + €ny  [n1, M2, 3] € [d] x [d] % [d]}, noting that Ss contains only a subset of
d? points from the grid of [3]¢. Then, construct a 3rd order tensor F € C#4*¢ with

the measurements in the following way:

Fn],ng,us = f(3)| ana N2, Ng € [d]

5=€n,+enyteng’
Note that we have the measurement

k k

- . 3, Gy () (G . (5) ()
f(el + ey +63) _ § :,wjeur(ul +pg ug) E ,wjez‘lrul ey’ gimug”
Ji=1 j=1

It is straightforward to verify that F' has a rank-k tensor factorization F' = V;@ V3 ®
(VyD,,), where the factor V; € R4 is given by:

[ () (k) ]
P .. e )

Vy= . (5.8)
NS . (k)

Under the distribution assumption of the point sources, the entries e are ii.d.
and uniformly distributed over the unit circle on the complex plane. Therefore almost
surely the factor Vd has full column rank, and thus the tensor decomposition is unique.
Moreover here w;’s are real and cach eclement of Vg has unit norm, we have a rescaling
constraint with the tensor decomposition, with which we can uniquely obtain the
factor Vg and the weights in D,,. By taking element-wise log of Vs we can read off the
paramecters of the point sources from Vg directly. Moreover, with high probability, we
have that condy(V}) concentrates around 1, thus the simple algorithm achieves stable

reCoOVery.
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Algorithm 14: General algorithm

Input: R, m, noisy measurement function f()
Output: Estimates {@;, u" : j € [k]}.

1. Take measurements:

Let S = {sM, ..., s(m)} be m i.i.d. samples from the Gaussian distribution
N(0, R?1444). Set st = ¢, for all n € [d] and s™™*1) = 0. Denote
m =m+d+1.

Take another random samples v from the unit sphere, and set v = v and

1 ’ “
v® = 2v. Construct a tensor F € C™*™>3; [, .. = f(S)|s:s<n1)+g(n2;+v<n3).

2. Tensor Decomposition: Set (Vg/,ﬁw) = TensorDecomp(ﬁ).

Forj=1,...,k, set [Val; = [Vsl;/ Vs lm.i

3. Read of estimates: For j = 1,...,k, set ) = Real(log([VS][m+1;m+d,j]) /(im)).

4. Set W = arg minyy cck l|ﬁ - ‘75r ® ‘7:5'/ ® f’;dDw“F-

5.2.2 OQOur Algorithm

We briefly describe the steps of Algorithm 14 below:

(Take measurements) Given positive numbers m and R, randomly draw a sam-
pling set & = {3(1),...5(’”)} of m i.id. samples of the Gaussian distribution
N(0, R?*I4x4). Form the set &' = S U {s™D = ¢;,..., s+ = ¢, s(m+d+l) —
0} ¢ R% Denote m’ = m + d + 1. Take another independent random sample v
from the unit sphere, and define v(!) = v, v® = 2v. Construct the 3rd order tensor
F € C™>*™'*3 with noise corrupted measurements f(s) evaluated at the points in

S' @S @ {vM, v}, arranged in the following way:

Frymams = F(8)| gt gma) yotngyr Y102, 12 € [M], 5 € [2]. (5.9)
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(Tensor decomposition) Decfine the characteristic matriz Vs to be:

6'i71'<,u(1),s(1)> eiﬂ'<,ll,(k),3(l)>
ein<u(1),s(2)> 6i7r<u(’“),s(2’>

Vg = . (5. 1 0)
e'i7r<u(l) 50 > eim<pt®) () >

and define matrix V! € C™** to be

Ve = v, : (5.11)
1,...,1

where V; € C¥* is defined in (5.8). Define

€i7r<u(1),'v(1)> e'ivr<p("’),v(1]>
Vo = ei7r<u(”,'v(2)> 6i7r<”‘(k)""(2)>
1 e 1

Note that in the exact case (e, = 0) the tensor F' constructed in (5.9) admits a

rank-k decomposition:
F=Vag@Ve® (Vng), (5.12)

Assume that Vg has full column rank, then this tensor decomposition is unique up
to column permutation and rescaling with very high probability over the randomness
of the random unit vector v. Since each clement of Vg has unit norm, and we know
that the last row of Vg and the last row of V5 are all ones, there exists a proper
scaling so that we can uniquely recover w;’s and columns of Vg up to common

permutation.

Here we adopt Jennrich’s algorithm (see Algorithm 15) for tensor decomposition.

Other algorithms, for cxample tensor power method ([8]) and recursive projection
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Algorithm 15: TensorDecomp
Input: Tensor F € C™™<3_rank k.
output: Factor V e Cmxk,

1. Compute the truncated SVD of F (I,1,e;) = PAPT with the k leading singular
values.

2. Set E = ﬁ(]?’, 13, I). Set E; = E(I,I,el) and B, = E(I,I, €s).

3. Let the columns of U be the eigenvectors of E\IEQ_ 1 corresponding to the k
eigenvalues with the largest absolute value.

4. Set V = /mPU.

([122]), which are possibly more stable than Jennrich’s algorithm, can also be applied

here.

(Read off estimates) Let log(V;) denote the element-wise logarithm of V. The

estimates of the point sources are given by:

W @ W] = log.(Vd)_

5 i

7
Remark 5.2. In the toy example, the simple algorithm corresponds to using the
sampling set 8" = {e1,...,eq}. The conventional univariate matriz pencil method
corresponds to using the sampling set S’ = {0,1,...,m} and the set of measurements

S’ DS DS corresponds to the grid [m]>.

5.2.3 Performance Guarantees

In this section, we discuss how to pick the two parameters m and R and prove that the
proposed algorithm indeed achieves stable recovery in the presence of measurement

noise.

Theorem 5.3 (Stable recovery). There exists a universal constant C' such that the

following holds.
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Fiz €;,8,,0, € (0,3);
pick m such that m > max {!‘j,/Slog 5%, d};
ford=1, pick R > Y¥———— ZIOgW(yZ/%) ; ford > 2, pick R > Y——— Ql‘zi’ék/fm).

Assume the bounded measurement noise model as in (5.3) and that €, < Dby

100v/dk5
With probability at least (1 — ;) over the random sampling of S, and with prob-

ability at least (1 — &,) over the random projections in Algorithm 15, the proposed

1 wjdu(,-)

Algorithm 14 returns an estimation of the point source signal T(t) = Zi‘:

with accuracy:

R .
mﬂin max{Hﬁ(’) — "Dy 5 e K]} <C 2

V Ak Wingg (1 + 2e, ) 5

Ab, w? 1— 2¢,

man

where the min is over permutations m on [k]. Moreover, the proposed algorithm has

time complezity in the order of O((m')?).

The next lemma shows that essentially, with overwhelming probability, all the
frequencies taken concentrate within the hyper-cube with cutoff frequency R’ on each

coordinate, where R’ is comparable to R,

Lemma 5.1 (The cutoff frequency). For d > 1, with high probability, all of the 2(m')?
sampling frequencies in S’ ® S' @ {vM, v} satisfy that ||sUV) + sU2) 4 )| <
R, Vji,j2 € [m],73 € [2], where the per-coordinate cutoff frequency is given by
R = O(Ry/logmd).

For d = 1 case, the cutoff frequency R’ can be made to be in the order of R =
O(1/A). '

Remark 5.4 (Failure probability). Querall, the failure probability consists of two
pieces: O, for random projection of v, and 0, for random sampling to ensure the
bounded condition number of Vs. This may be boosed to arbitrarily high probability

through repetition.

5.2.4 Key Lemmas
Stability of tensor decomposition: In this paragraph, we give a brief description
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and the stability guarantee of the well-known Jennrich’s algorithm ([55, 77]) for low
rank 3rd order tensor decomposition. We only state it for the symmetric tensors as
appeared in the proposed algorithm.

Consider a tensor F = V @ V ® (\oD,,) € C™™*3 where the factor V has
full column rank k. Then the decomposition is unique up to column permutation
and rescaling, and Algorithm 15 finds the factors efficiently. Moreover, the eigen-
decomposition is stable if the factor V is well-conditioned and the eigenvalues of

FaFJ are well separated.

Lemma 5.2 (Stability of Jennrich’s algorithm). Consider the 8rd order tensor F =
VeVve (WD, e C™*™*3 of rank k < m, constructed as in Step 1 in Algorithm 1.

Given a tensor F that is element-wise close to F, namely for all ny,na, ng € [m),
|Fn1m,n3 — Fnhm,’nsl < €., and assume that the noise is small €, < ™ ‘/d—k?:m":":;'; PR
Use F as the input to Algorithm 15. With probability at least (1—0,) over the random

projections vV and v?, we can bound the distance between columns of the output 1

and that of V by:

\/EkZ Wmax
AS, w?

min

minmax { |V; = Vagyll2 -5 € W]} < € condy(V )%, (5.13)
T

where C 1s a universal constant.

Condition number of Vg: The following lemma is helpful:

Lemma 5.3. Let Vg € Cm+4+DXk be the factor as defined in (5.11). Recall that
Vo = [Vs; Va3 1], where Vy is defined in (5.8), and Vs is the characteristic matriz
defined in (5.10).

We can bound the condition number of Vg by
condy(Vsr) < /1 + Vkcondy(Vs). (5.14)

Condition number of the characteristic matrix Vg: Therefore, the stability

analysis of the proposed algorithm boils down to understanding the relation between
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the random sampling set S and the condition number of the characteristic matrix V.

This is analyzed in Lemma 5.5 (main technical lemma).

Lemma 5.4. For any fized number €, € (0,1/2). Consider a Gaussian vector s with

distribution N (0, R*I4xq4), where R > ———-—~—“2th(W€m) ford>2, and R > ¥——"= QIOgT&H/Ew) for

d = 1. Define the Hermitian random matriz X, € CF* to be

herm

e—ir<p(1),s>

—3 (2)
e el 8>

X

i (1) It (2) i (k)
[em<u ,s>, em<//. ,s>, . ez7r<;z ,s>] . (515)

—i (k)
e < 8>

We can bound the spectrum of E4[X,] by:
(1 — Em)lkxk = ES[XS] = (]. -+ Ez)Ikxk' (516)

Lemma 5.5 (Main technical lemma). In the same setting of Lemma 5.4, Let S =
{3(1), cee s(m)} be m independent samples of the Gaussian vector s. Form > ;’%\ /8log %,
with probability at least 1 — 6, over the random sampling, the condition number of the

factor Vg is bounded by:

1+ 2¢,
1—2e,

condy(Vg) < (5.17)

5.3 Discussions

5.3.1 Numerical results

We empirically demonstrate the performance of the proposed super-resolution algo-
rithm in this section.

First, we look at a simple instance with dimension d = 2 and the minimal separa-
tion A = 0.05. Our perturbation analysis of the stability result limits to small noise,

i.c. €, is inverse polynomially small in the dimensions, and the number of measure-
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ments m needs to be polynomially large in the dimensions. However, we believe these
arc only the artifact of the crude analysis, instead of being intrinsic to the approach.
In the following numerical example, we examine a typical instance of 8 randomly
generated 2-D point sources. The minimal separation A is set to be 0.01, and the
weights arce uniformly distributed in [0.1, 1.1] The measurement noise level €, is set to
be 0.1, and we take only 2178 noisy measurements (< 1/A?). Figure 5-1 shows the
recovery result. The xy plane shows the coordinates of the point sources: true point
sources (cyan), the two closest points (blue), and the estimated points (red); the z

axis shows the corresponding mixing weights.

2

Figure 5-1: Simulation result for 2-D super-resolution

Next, we examine the phase transition properties implied by the main theorem.

Figure 5-2 shows the dependency between the cutoff frequency and the minimal
separation. For cach fixed pair of the minimal separation and the cutoft frequency
(A, R), we randomly gencrate & = 8 point sources in 4-dimensional space while
maintaining the same minimal separation. The weights are uniformly distributed in
[0.1,1.1]. The recovery is considered successful if the error -, v/ [EY) — p@ |13 <
0.1 (on average it tolerates around 4% error per coordinate per point source). This
process is repeated 50 times and the rate of success was recorded. Figure 5-2 plots
the success rate in gray-scale, where 0 is black and 1 is white.

We observe that there is a sharp phase transition characterized by a lincar relation
between the cutoff frequency and the inverse of minimal separation, which is implied

by Theorem 5.3.
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Figurc 5-2: Cutoff frequency versus the required minimal separation

In a similar setup, we examine the success rate while varying the minimal scpa-

ration A and the number of measurement m.

Fix dimension d = 4, number of point sources k& = 8, and the measurement noise
level e, = 0.03. We vary the minimal separation such that A ranges from 0.01 to 0.2,
and we use the corresponding cutoff frequency R = % . We also vary the number of
measurements m from 4 to 64. For cach pair of (A, m) we randomly generate & point
sources and run the proposed algorithm to recover the point sources. The recovery
is considered successful if the error 37 4y /[[09) — pl?(|3 < 0.1. This process is

repeated 50 times and the rate of success was recorded.

In Figure 5-3, we observe that there is a threshold of m below which the number of
measurements is too small to achieve stable recovery; when m is above the threshold,
the success rate increases with the number of measurements as the algorithm becomes
more stable. However, note that given the appropriately chosen cutoff frequency R,
the number of measurements required does not depend on the minimal separation,
and thus the computation complexity does not depend on the minimal separation

neither.
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Figure 5-3: Number of measurements versus the required minimal separation

5.3.2 Connection with learning GMMs

One reason we arc interested in the scaling of the algorithm with respect to the
dimension d is that it naturally leads to an algorithm for learning Gaussian mixture
models (GMMs).

Recall the problem of learning GMMs: given a number of N ii.d. samples com-
ing from a random one out of k Gaussian distributions in d dimensional space, the
learning problem asks to estimate the means and the covariance matrices of these
Gaussian components, as well as the mixing weights. We denote the parameters by
{(wj, p9), £9) }iciy where the mean vectors pt) € [—1, +1]%, the covariance matrices
¥ € R¥4 and the mixing weights w; € Ry.

In this brief discussion, we only consider the case where the components are spher-
ical Gaussians with common covariance matrices, namely £ = 21,4 for all j.
Moreover, we define the separation Ag by:

minzgr |9 — pb];
Ag = i

a

and we will focus on the well-separated case where Ag is sufficiently large. This class
of well-separated GMMs is often used in data clustering.

By the law of large numbers, for large d, the probability mass of a d-dimensional
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Gaussian distribution tightly concentrates within a thin shell with a v/do distance
from the mean vector. This concentration of distance leads to a line of works of
provably learning GMMs in the well-separated case, started by the seminal work of
Dasgupta[37] (spherical and identical &, Ag > Q(d'/?), complexity poly(d, k)) and
followed by works of Dasgupta & Schulman [39] (spherical and identical 3, d > log(k),
Ag > Q(d'/*), complexity poly(d,k)), Arora & Kannan [103] (general and identical
3, Ag > Q(dY*) complexity O(k%)).

Instead of relying on the concentration of distance and use distance based cluster-
ing to learn the GMM, we observe that in the well-separated case the characteristic
function of the GMM has nice properties, and one can exploit the concentration of
the characteristic function to learn the parameters. Note that we do not impose any
other assumption on the dimensions & and d.

Next, we sketch the basic idea of applying the proposed super-resolution algorithm
to learn well-separated GMMSs, guarantceing that N the required number of samples
from the GMM, as well as the computation complexity both are in the order of
poly(d, k). Since o is a bounded scalar parameter, we can simply apply grid-scarch
to find the best match. In the following we assume that the o is given and focus on

learning the mean vectors and the mixing weights.

Evaluate the characteristic function of a d dimensional Gaussian mixture X, with

identical and spherical covariance matrix ¥ = 0%1;,4, at s € R%:

$x(s) = Blg<™>] = Y~ wjem s Ieliricute>,
' j€lk]

Also we let c;S\X (s) denote the empirical characteristic function cvaluated at s based

on N iid. samples {z1,...xny} drawn from this GMM:

- 1 -
¢X(3) — -]V Z ei<TLS>

"le[N]

Note that |e*<®5>| = 1 for all samples, thus we can apply Bernstein concentration

inequality to the characteristic function and argue that |¢x (s) — dx(s)] < O(:/l-——ﬁ) for
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all s.

In order to apply the proposed super-resolution algorithm, define

f(s) _ 6%027r2||3||%¢x(7r3) — Z wjeiw<u(a'),s>, and f(s) _ 6%71—202”3”%3)((8).
Jelk]

In the context of learning GMM, taking measurements of f(s) corresponding to eval-
uating the empirical characteristic function at different s, for ||s|j.c < R, where R is
the cutoff frequency. Note that this implies ||s||? < dR2. Therefore, we have that
with high probability the noise level €, can be bounded by

- eazdRz
€= max |f(s) = f(s)| =0 ( i ) :

In order to achieve stable recovery of the mean vector (9’s using the proposed algo-
rithm, on one hand, we need the cutoff frequency R = ©(1/0A¢); on the other hand,
we need the noise level €, = o(1). It suffices to require 02dR? = 0(1), namely having
large enough separation Ag > Q(dl/ %). In summary, when the separation condition is
satisfied, to achieve target accuracy in estimating the parameters, we need the noise
level €, to be upper bounded by some inverse polynomial in the dimensions, and this
is equivalent to requiring the number of samples from the GMM to be lower bounded
by poly(k,d).

Although this algorithm does not outperform the scaling result in Dasgupta[37],
it still sheds light on a different approach of learning GMMs. We leave it as future
work to apply super-resolution algorithms to learn more general cases of GMMs or

even learning mixtures of log-concave densities.

5.3.3 Open problems

In a recent work, Chen & Chi [35] showed that via structured matrix completion,
the sample complexity for stable recovery can be reduced to O(k log* d). However,

the computation complexity is still in the order of O(k%) as the Hankel matrix is
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of dimension O(k%) and a semidefinite program is used to complete the matrix. It
remains an open problem to reduce the sample complexity of our algorithm from
O(k?) to the information theoretical bound O(k), while rctaining the polynomial
scaling of the computation complexity.

Recently, Schiebinger et al [104] studied the problem of learning a mixture of
shifted and re-scaled point spread functions f(s) = >, w;p(s, ©9)). This model has
the Gaussian mixture as a special case, with the point spread function being Gaussian

GNT 2= (g5 . )
)"E7 =) We have discussed the connection

point spread (s, u@) = e+
between super-resolution and learning GMM. Another interesting open problem is
to gencralize the proposed algorithm to learn mixture of broader classes of nonlinear

functions.

5.4 Proofs for Chapter 5

Proof. (of Theorem 5.3) The algorithm is correct if the tensor decomposition in Step
2 is unique, and achieves stable recovery if the tensor decomposition is stable. By the
stability Lemma of tensor decomposition (Lemma 5.2), this is guaranteed if we can
bound the condition number of V. It follows from Lemma 5.3 that the condition
number of Vi is at most v/ 1 + v/k times of conda(Vs). By the main technical lemma
(Lemma 5.5) we know that with the random sampling set S of size m, the condition
number conds(Vs) is upper bounded by a constant. Thus we can bound the distance
between Vg and the estimation Vg according to (5.13).

Since we adopt Jennrich’s algorithm for the low rank tensor decomposition, the
overall computation complexity is roughly the complexity of SVD of a matrix of sizc

m' x m/, namely in the order of O((m/)?). O

Proof. For d > 1 case, with straightforward union bound over the m’ = O(k?) samples
each of which has d coordinatcs, one can show that the cutoff frequency is in the order
of R+/log(kd), where R is in the order of @ as shown in Theorem 5.3.

For d = 1 case, we bound the cutoff frequency with slightly more careful analysis.

Instcad of Gaussian random samples, consider uniform samples from the interval
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[—R', R']. We can modify the proof of Lemma 5.4 and show that if R’ > 1/(A(1+¢,)):

o () — O R
'1,7r(uJ —pulidys Sm(ﬂ# H I )
ZIY’JJI ZZR’/ —Z Wlu(j')-—ﬂ(j)lR’

3'#i J #J R, i
Z bln(lﬂ'AR’ sin(rtAR')/(rAR') <e
- (IrAR") — 1 —sin(rAR')/(rAR) — °

. . . . . sin(a+b) sin(a) sin(b)
where the second last inequality uses the inequality that > S T, = O

Proof. (of Lemma 5.2) The proof is mostly based on the arguments in [89, 9], we still

show the clean arguments here for our case.

We first introduce some notations for the exact case. Define D; = diag([V2]1..D.)
and D, = diag([Vz]s,.D,). Recall that the symmetric matrix F; = F(I,1,e;) =
VD,VT. Consider its SVD F; = PAPT. Denote U = PTV € C¥**. Define the

whitened rank-k tensor .
E:F(P,P,I) = (PTV) ®(PTv) ®(‘/2Dw) — U®U®(‘/2Dw) c Ckxka.

Denote the two slices of the tensor E by E, = E(I,I,e;) = UD\U" and E, =
E(I,1,e3) = UDyUT. Define M = E\E;', and its eigen decomposition is given by
M =UDU™?, where D = D1 D5 1 Note that in the exact case, D is given by:

D= diag(ei”<“(j)’”(1)””(2)> 7€ [k])

Note that |D; ;| = 1 for all j. Define the minimal separation of the diagonal entries

in D to be:
sep(D) = min{min |D;5 — Dy},
J#£3

1. We first apply perturbation bounds to show that the noise in F propagates the
estimates P and E in a mild way when the condition number of V' is bounded by a

constant.
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Proof. Apply Wedin’s matrix perturbation bound, we have:

IFy = Fills c_ &Vm

P-rla<
H ”' - O"m'm(Fl) - u"m.‘ino-'m,in(v)2

And then for the two slices of E = ﬁ(ﬁ, P, I), namely E,=FE + 7 fori= 1,2, we
can bound the distance between estimates and the exact case, namely Z; = ﬁTf’zﬁ —

PTF,P, by:

Wrnin

35 20 Winaz ¥
1Zll < 8IFNPHIE — Pl + 4| PIPIE = Fil| < 16-—==conds(V)*e.v/m

2. Then, recall that M = E,E;' = UDU™!. Note that
M = (Ey + Z))(Bs+ Z2) " = E\E;\(I — Zo(I + B3 25)'E5Y) + Z,E5 .
Let H and G denote the perturbation matrices:
H=—-2,(I+E;'Z)'E;Y, G=Z,E;*

In the following claim, we show that given M= Elﬁ.; '= M(I + H) + G for somc
small perturbation matrix H and G, if the perturbation ||H| and ||G| are small
cnough and that sep(D) is large enough, the eigen decomposition M =UDU'is
close to that of M.

Claim 5.1. If ||MH + G| < %, then the eigenvalues of M are distinct and

we can bound the columns of U and U by:

Uma:c(H)omaw(D) + Uma:t(G)
amin(U)Sep(D)

min max |U; — Un(jlls < 3 U120V l2-

Proof. Let Aj and U; for j € [k] denote the cigenvalue and corresponding eigenvectors
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of M. If [MH+ G| < %, we can bound
WM = M| = ||[U (M + (MH + G))U — D|| = ||[UNMH + G)U|| < sep(D)/2Vk,

thus apply Gershgorin’s disk theorem, we have |3: - N S NUHMH + G)UJ |1 <
VE|[[UY(MH + G)U],||2 < sep(D)/2. Therefore, the eigenvalues are distinct and we

have

~ ~ 1 1
A=Al 2 1 = Ayl = 1A = Al 2 1Ay = Ay 2 5sep(D). (5.18)

Note that {U;} and {ﬁJ} define two sets of basis vectors, thus we can write
U'j = >y cyUj (with the correct permutation for columns of (7j and Uj) for some
coefficients Zj, c?, = 1. Apply first order Taylor expansion of eigenvector definition

we have:

€U, = = (M + (MH + G)) Z cpUp =3 ApeyUy + (MH + G)Tj.

J’ J’

Since we also have \;0; = 2 ,):jcj/Uj/, we can write Zj,(xj - Aj)cyUy = (MH +
G)(?j, and we can solve for the coeflicients c;/’s from the linear system as [(XJ —Aj)ey
Jelk]]=UYMH + G)ﬁj Finally plug in the inequality in (5.18) we have that for
any j: |

1T = Usliz = > U5 + (¢; — VU513

J'#j
<2y Vil
J'#i
< QU ME + &)Tjl13
- sep(D)?
(amaz(D)Umaz.(H) + Omaz (G))
Tmin(U)%sep(D)? 1T51311V;H3
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3. Note that in the above bound for ||l7] — Uj||, we can bound the perturbation
matrices H and G by:

\ A |22l | Z2||
Ornax H S — _<.. S )
( ) (1 - Um,a.z(Ez IZQ))Umin(E2) Jrni1L(E2) - ||Z2” O'min(U)Qo'min(DQ) - “ZQH

U’ITL(LIL'(Zl) - ”ZQH
Omaz G S S 3
( ) Omin ( E2 ) Omin ( U) 20mz’n ( D 2 )

Note that 0,,,(D2) > Wiin and oyax(D) = 1 by definition. In the following claim, we

apply anti-concentration bound to show that with high probability sep(D) is large.

Claim 5.2. For any d, € (0, 1), with probability at least 1 — 6, we can bound sep(D)
by:

Ad,
Vidk?

sep(D) >

Proof. Denote v = v — v® | and note that |Jv|| < v/2. In the regime we concern,
for any pair j # 5/, we have |em<#?v> _ ei“<”(j’)’”>| < | < p9 —pul) v >|. Apply
Lemma 5.8, we have that for § € (0, 1),

. ., ; iy O
P(| < p — 00 > | < lm(:) —pl ‘)"ﬁ) < 4.

Take a union bound over all pairs of 7 # j', we have that

; " , Ny 0 )
P (for somej # j',| < p@ — p) v > | < [|p — pw)| \/&kf*) < kzﬁ =J.

Recall that A = minzj ||ju¢) — pt7|). O

4. Recall that U = PTV. Note that since P has orthonormal columns, we have

Unz-in(U) = O-min,(v) and ”Uz” S v;l = \/E

Finally we apply perturbation bound to the estimates 17; = ﬁﬁq and conclude
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with the above inequalities:

IV — Vil < 2(I1P = PIIUsI| + I PINT: — Uil

€1/ O maz(H)Omaz(D) + Omaz(G) . .
S 2 (wminamin(v)2 +3 Urnirt(U)sep(D) ”V;”) nv;n
&vm Iz 01Vl |
o 2 o -t Yy o o) L
Vdk?m wpezcondy (V)?
< s, W g (V)

NVillez,

for some universal constant C'. Note that the last inequality used the assumption

that ¢, is small enough. O

Proof. (of Lemma 5.3) By definition, there exist some constants A and X’ such that
condy(Vs) = XN/, and for all w € Pf,, we have A < ||[Vsw|| < X. Note that each

element of the factor Vg lies on the unit circle in the complex plane, then we have:
X < Vsl < Verwllf < (V)2 + Vid.

We can bound the condition number of Vg by:

conds(Ver) < \/ M = \/1 + (\—i—%%condz(lfg) < /1 + Vkcondy(Vs),

where the last inequality is because that max, |[Vsw||3 > ||[Vseil3 = d, we have

(V)2 > d.

Proof. (of Lemma 5.4) Denote Y = E,[X,]. Note that Y;; = 1 for all diagonal

entries. For d =1 case, the point sources all lic on the interval [—1, 1], we can bound
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the summation of the off diagonal entries in the matrix Y by:

Z | J | — 17r<,1,(J )_ﬂ(“’) 5>]

Ji'#i
= e 3@ —pl B R?
i'#
< e BARE | om3EMRP |y -3 (m(k/2AR)

< 26—%(7@3)2/(1 - 6—%(«[&3)2)

< €.

For d > 2 case, we simply bound each off-diagonal entries by:

Y, = e 3 -nDIBR: o = int AR g
Apply Lemma 5.7 (Gershgorin’s Disk Theorem) and we know that all the eigenvalues
of Y are bounded by 1 % ¢,. O

Proof. (of Lemma 5.5) Let {X® ..., X(™} denote the i.i.d. samples of the random
matrix X defined in (5.15), with s evaluated at the i.i.d. random samples in S. Note

that we have

)
||Vs’wl|§ = ‘lLIT‘v/;VSuJ = wT (_ E X(z)) w.
m
i=1

By definition of condition number, to show that cond2(Vs) < \/%I—L%Z"’ it suffices to

show that

m

1 ;
(1 - 26;5)Ikxk j (E' Z X(l)) j (]_ —+ 26$)Ikxk-

i=1

By Lemma 5.4, the spectrum of E,[X] lies in (1 — €;,1 + €,). Here we only need
to show that the spectrum of the sample mean (71? Yo X (")) is close to the spectrum
of the expectation E,[X,]. Since each element of the random matrix X, € C¥** lies
on the unit circle in the complex plane, we have X2 < k%I almost surely. Therefore

we can apply Lemma 5.6 (Matrix Hoeffding) to show that for m > £~ /8log 5L, with
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probability at least 1 — &, it holds that || L S°7 X&) —E[X,]|> < €,. O

Auxiliary lemmas

Lemma 5.6 (Matrix Hoeflding). Consider a set {X® . Xt} of independent,
random, Hermitian matrices of dimension k x k, with identical distribution X. As-
sume that E[X] is finite, and X? < oI for some positive constant o almost surely,

then, for all ¢ > 0,
Pr (

Lemma 5.7 (Gershgorin’s Disk Theorem). The eigenvalues of a matriz Y € C***

1 > X —EX]
m i=1

are all contained in the following union of disks in the complex plane: Ule’D(Y;,j, R;),

where disk D(a,b) = {x € C*: ||z — a|| <b} and R; = 2z 1 Yigrl-
Lemma 5.8 (Vector Random Projection). Let a € R™ be a random vector distributed

uniformly over Pi'y, and fix a vector v € C™. For § € (0,1), we have:

Pr(|<a,v>|§%5)§5

em

Proof. This follows the argument of Lemma 2.2 from Dasgupta & Gupta [38]. Ex-
tension to complex number is straightforward as we can bound the real part and the

imaginary part separately. J
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