
Efficient Algorithms for Learning Mixture Models

by

Qingqing Huang

BEng, BBA, Hong Kong University of Science and Technology (2011)
S. M, Massachusetts Institute of Technology(2013)

Submitted to
Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2016

@ Massachusetts Institute of Technology 2016. All rights reserved.

Author.

Certified

Signature redacted.........
Department of Electrical Engineering and Computer Science

August 12, 2016

by. Signature redacted ................
Munther A. Dahleh

Professor of Electrical Engineering at MIT
Thesis Supervisor

Accepted by.......Signature redacted...........
6' ' Leslie A. Kolodziejski

Chairman, Department Committee on Graduate Theses
MASSACHUNS INSITUTEOF TECHNOLOGY i

SEP 2 8 2016

LIBRARIES



MITLibraries
77 Massachusetts Avenue
Cambridge, MA 02139
http://Iibraries.mit.edu/ask

DISCLAIMER NOTICE

Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to
provide you with the best copy available.

Thank you.

The images contained in this document are of the
best quality available.





Efficient Algorithms for Learning Mixture Models

by

Qingqing Huang

Submitted to Department of Electrical Engineering and Computer Science

on August 12, 2016, in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

Abstract

We study the statistical learning problems for a class of probabilistic models called
mixture models. Mixture models are usually used to model settings where the ob-
served data consists of different sub-populations, yet we only have access to a limited

number of samples of the pooled data. It includes many widely used models such as

Gaussian mixtures models, Hidden Markov Models, and topic models. We focus on

parametric learning: given unlabeled data generated according to a mixture model,
infer about the parameters of the underlying model. The hierarchical structure of

the probabilistic model leads to non-convexity of the likelihood function in the model
parameters, thus imposing great challenges in finding statistically efficient and com-

putationally efficient solutions.

We start with a simple, yet general setup of mixture model in the first part.

We study the problem of estimating a low rank M x M matrix which represents a
discrete distribution over M2 outcomes, given access to sample drawn according to the

distribution. We propose a learning algorithm that accurately recovers the underlying
matrix using 9(M) number of samples, which immediately lead to improved learning
algorithms for various mixture models including topic models and HMMs. We show

that the linear sample complexity is actually optimal in the min-max sense.
There are "hard" mixture models for which there exist worst case lower bounds of

sample complexity that scale exponentially in the model dimensions. In the second

part, we study Gaussian mixture models and HMMs. We propose new learning
algorithms with polynomial runtime. We leverage techniques in probabilistic analysis
to prove that worst case instances are actually rare, and our algorithm can efficiently

handle all the non-worst case instances. In the third part, we study the problem

of super-resolution. Despite the lower bound for any deterministic algorithm, we

propose a new randomized algorithm which complexity scales only quadratically in

all dimensions, and show that it can handle any instance with high probability over

the randomization.

Thesis Supervisor: Munther A. Dahleh
Title: Professor of Electrical Engineering at MIT
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Chapter 1

Introduction

1.1 Background

The era of "big data" brings us an abundance of data, and also presents a great variety

of possibilities of statistical modeling, learning, and using the data, for applications

in image and video signal processing, and natural language processing. In practice,

we observe incomplete, noisy, uncertain data samples, which reveal information about

the underlying rules according to which the data is generated. In the presence of large

amount of data and complicated models, the goal is to design a statistically efficient

and computationally efficient learning procedure to infer about the underlying rule

according to which the noisy data is generated. Namely, we want to extract as much

as possible information from available data with fast computation.

In particular, let M denote the degree-of-freedom of the underlying model, and

let E denote the target accuracy in estimating the model parameters. We evaluate the

"efficiency" of a learning algorithm by its sample complexity, namely how the required

sample size scales with M and c, and its computational complexity, namely how the

algorithm runtime scales with M. Moreover, in the regime where the data is scarce,

or the model size is large, i.e. M is large or even scales up with the data sample

size, a low sample complexity for learning is crucial. We would like to understand the

information theoretical lower bound of sample complexity, below which it is impossible

for any algorithm to learn, and whether we can have a fast algorithm that achieves
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the optimal sample complexity.

Mixture model In this work, we focus on mixture models. Mixture models refer

to a class of statistical models which includes Gaussian mixtures, Hidden Markov

models and Stochastic block models that are commonly used in practice and well-

studied in the literature. In abstract, we assume that there are N data samples X =

(X1,..., XN) generated according to some underlying probabilistic model Pr(X;9)

specified by its model parameters 0. Mixture models impose additional structural

properties on Pr(X; 0) such that it can be parameterized with much lower degree of

freedom. In particular, we assume that there exists a latent factor H, and the value it

takes for each sample point, i.e. (H1,... HN) is not observed. When conditional the

value H takes, we can characterize the distribution of the data point with relatively

simple probabilistic rules. Namely, the conditional distribution Pr(X; OIH) is some

simple probabilistic model. We axe interested in learning about Pr(X;9) without

observe the latent variable H.

Compared to deep neural networks, which usually have multiple layers of latent

variables, mixture models are "shallow" with only one latent layer. However, this

single latent variable is already powerful in modeling different problems. Usually

with the latent variable a mixture model can provide a concise description of the

observed data and thus enhance the data interpretability. Modeling and using mixture

models has enjoyed a great success in various machine learning applications. For

example, Gaussian mixture models are used for clustering and factor analysis to

identify different populations in social science, topic models are used for unsupervised

document classification, and in natural language processing, Hidden Markov models

are used to model language where the latent variables are the speech tags.

Approaches for learning mixture models The structures of mixture models

also impose challenges that makes parametric learning fundamentally different and

more difficult than that of simple statistical models. On one hand, with the la-

tent variables, mixture models are pararneterized with lower degree of freedom and
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thus have lower model class complexity. However, it not straightforward how to

exploit such structured lower complexity to improve algorithmic efficiency in learn-

ing. On the other hand, the unobserved variable (H1,..., HN) makes the likeli-

hood function Pr(X1,... XN; 9) a non-convex function in the parameters we are in-

terested to learn. In this case, directly solving for the maximum likelihood estimator

9 = arg maxo Pr(X1, . . . XN; 9) is computationally intractable.

There are different approaches for learning mixture models. Next, we briefly

describe the two main approaches: 1. approximating the non-convex optimization

for maximum likelihood estimator; 2. obtaining a consistent estimator by matching

higher order moments with spectral methods.

Approximate MLE For parametric learning, the maximum likelihood estimation

(MLE) and its variations are known to achieve statistical efficiency, and even survive

(asymptotically) model misspecification [125]. However, in its original form, the like-

lihood function Pr(X1 , ... XN; 9) is a non-convex function in the parameters 9. With

limited computation, one can only approximately solve the non-convex optimization.

The non-convex program can be "convexified" by techniques such as relaxing or

restricting the support, change of variable, or modifying the non-convex objective

functions. For special cases where strong assumptions are imposed, it is possible

to rigorously bound the gap between the solution to the convex relaxation and the

optimal solution, or even to show that the relaxation is exact. Examples include

using nuclear norm minimization for low rank matrix sensing/ completion under RIP

conditions [32, 99], using sum of square and positive semi-definite relaxations for

dictionary learning [19], and using SDP relaxation for max-cut problem [6]. However

in general, there is usually no theoretical guarantee on the quality of such convex

relaxations. The other potential drawback is that the convexified problems may

still be computationally challenging, for example consider a large size SDP from a

sum-of-square approximation as an example, and this might significantly limit the

applicability of such algorithms at large scale in practice.

There are also various heuristics which aim to directly tackle the non-convex op-
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timizations. For example, Expectation-Maximization (EM) algorithm [861 alternates

between the two steps of posteriori probabilities estimation and model parameter

estimation while fixing the other until convergeice. Similar heuristics include al-

ternating minimization for matrix / tensor factorization [701 and low rank matrix

completion/recovery [69], and brown clustering algorithm for feature extraction in

language processing [79]. However, except for a few special cases [67] [126] with very

strict assumptions on the model parameters, there is still a lack of rigorous-study of

the performance guarantee for such heuristics.

Spectral algorithms for moment matching Another way to estimate the model

parameters is through moment matching. One starts with a set of equations that

relate the exact higher order moments (namely the expected values of power of the

random variables, or joint probabilities of subsets of discrete random variables) to the

model parameters of interest. Then the sample data is used to estimate the higher

order moments, and the equations are solved to give estimation of the parameters. For

mixture models with simple conditional distribution Pr(X; 0IH), moment matching

usually specifies a system of polynomial equations linking the moments to the model

parameters.

Spectral methods gain the name as it usually involve certain forms of spectral

factorization of linear objects consisting of the estimated moments. It tries to exploit

the structure properties of the polynomial equations to solve the equation system

algebraically. Unlike the non-convex optimization for MLE, those linear algebra op-

erations of the spectral methods based algorithms can usually be efficiently computed

for moderate-sized problems. We refer to [98] for a general introduction of spectral

methods for statistical learning and various applications.

There are two limitations of spectral methods. First, it relies on the fact that the

moments are estimated sufficiently accurately and that the spectral factorizations are

numerically stable to recover the parameters from the polynomial equations. The

computational efficiently usually comes at the cost of a much higher sample complex-

ity than that of MLE, namely lower tolerance of statistical noise. Second, the existing
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spectral methods can only handle mixture models with very simple structures, such

as spherical Gaussian mixtures, stochastic block model for community detection, and

low rank matrix completion under RIP conditions. It is not clear whether there ex-

ist efficient spectral methods for learning many more general and more complicated

mixture models.

Our approach In this work, we mostly adopt the approach of spectral algorithms

for learning different mixture models. Our efforts are in two directions: 1. we want

to improve the sample complexity of spectral methods to meet the information the-

oretical lower bound. 2. we want to have efficient spectral algorithms for learning

the more general cases of mixture models and the cases which are not immediately

modeled as a mixture models.

1.2 Contributions

The main question we are interested in is stated as follows:

"Can we have statistical and computational efficient parametric learning algorithms

for learning mixture models?"

We address the above question from different perspectives in the three parts of this

thesis.

In the first part, we start with a basic setting of mixture model. Despite the non-

convex nature of the likelihood function, we show that it is still possible to exploit

the structural properties of the underlying mixture model to efficiently estimate the

model parameters. In particular, we propose a new spectral algorithm and show

that it can achieve the minmax optimal sample complexity with fast and guaranteed

computation, without directly solving for the maximum likelihood estimator.

Unfortunately, there are many well-studied "hard" mixture models, for which

there exist sample complexity lower bounds that scale exponentially in model dimen-

sions. Instances of model parameters have been constructed, for which it is impossible

to obtain an accurate estimator with a polynomial number of samples and / or with

15



polynomial computation time. However, such worst case lower bounds usually do

not give a full characterization of the set of the hard case, neither do they preclude

algorithms that can efficiently learn the many non-worst-cases instances in the model

class.

In the second part, we study Gaussian mixture models and Hidden Markov models

and propose new deterministic parametric learning algorithms. We leverage recent

development in probabilistic analysis to show that there are actually not too many

hard instances in the model class, and our algorithms can handle all the rest of the

instances with full polynomial sample complexity with polynomial runtime.

In the third part, we study the problem of super-resolution, where we explore the

randomness in the learning algorithm (compared to the randomness in the analysis as

in the second part) as a way to circumvent the worst case lower bounds. In particular,

we show that the proposed randomized algorithm runs fast, and moreover, for every

instance in the model class, the algorithm is efficient and outputs an accurate estimate,

with high probability over the randomness of the algorithm.

Mixture models is a rich class and it includes many probabilistic models with

distinguished structural properties. Unfortunately, we do not find a general recipe

which can efficiently learn every mixture model. In order to achieve the desired

learning goals, our case studies show that it is crucial to exploit the problem specific

structures to obtain efficient learning algorithms.

In the rest of this chapter, we briefly introduce the formulations of the three

parts of the thesis and state our main results for each problem. We provide the

review of related literatures and detailed discussions in the later chapters, and for the

convenience of reading, all the proofs are deferred to the end of each chapter.

1.2.1 Part 1: Achieving optimal sample complexity

In Chapter 2, we start with a basic yet general mixture model. We consider the prob-

lem of accurately recovering a matrix B of size M x M, which represents a probability

distribution over M2 outcomes, given access to "counts" generated by taking inde-

pendent samples according to the distribution B. How can structural properties of the
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underlying matrix B be leveraged to yield computationally efficient and information

theoretically optimal reconstruction algorithms? When can accurate reconstruction

be accomplished in the regime where the number of counts is relatively small com-

pared to A? This basic problem lies at the core of a number of questions that are

currently being considered by different communities, including community detection

in sparse random graphs, learning structured models such as topic models or hidden

Markov models, and the efforts from the natural language processing community to

compute "word embeddings". Many aspects of this problem- in terms of both pa-

rameter estimation and property testing -remain open, on both the algorithmic and

information theoretic sides.

Our results apply to the setting where B has a particular low rank structure

parameterized as B = PWPT, where the columns of the tall matrix P E R are

all supported on the standard (M - 1)-simplex, and the mixing matrix W E RR

is a PSD matrix and E 17j = 1. For this setting, we propose an efficient (ard

practically viable) algorithm that accurately recovers the underlying M x M matrix

using O(M) samples. Note that it is relatively easy to have algorithms whose sample

complexity scales as E(M log M). However, it requires extra efforts to push it all the

way to the linear sample complexity that matches the information theoretical lower

bound. Moreover, this extremely sparse data regime is meaningful for a lot of realistic

applications.

Theorem 1.1. Suppose we have access to N i.i.d. samples generated according to

the a probability matrix B. Fix the target accuracy E0 =(1), for any r > 0, with

N = e(MR2C0(4+r)) samples, our algorithm runs in time O(M3 ) and returns a rank

R estimator B such that with a large probability over the random sampling procedure,

JIB - B|1 1 <; co.

If we further assume that the model parameters satisfy certain eigen-gap assump-

tions, we can sharpen the sample complexity to N = e(max(MRJ(,I+r), MRE- 2)),

for arbitrary target accuracy e. This result easily translates to O(M) sample algo-

rithms for learning topic models over dictionaries of size Al, and learning hidden
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Markov Models with observation distributions supported over M elements.

These linear sample complexities are optimal, up to constant factors, in an ex-

tremely strong sense: even testing basic properties of the underlying matrix, such as

whether it has rank 1 or 2, requires Q(M) samples. We provide an even stronger lower

bound where distinguishing whether a sequence of observations were drawn from the

uniform distribution over M observations versus being generated by an HMM with

two hidden states requires Q(M) observations. This precludes sublinear-sample hy-

pothesis tests for basic properties as well as precludes sublinear sample estimators for

quantities such as the HMM entropy rate.

1.2.2 Part 2: Randomized Analysis to Escape Worst Cases

There are mixture models for which parametric learning is usually deemed "hard"

due to the existing lower bound results, which essentially precludes any upperbound

algorithms that can efficiently learn every instance in the model class. In Chapter

3 and Chapter 4, we examine two such classes of "hard" mixture models separately:

Gaussian mixture models (GMMs) and Hidden Markov models (HMMs). We make

use of recent development in probabilistic analysis to show that the bad instances are

actually rare, and we can have efficient learning algorithms for all the good instances.

Efficiently learning mixture of Gaussians is a fundamental problem in statistics and

learning theory. Given samples coming from a random one out of k Gaussian distri-

butions in n-dimensional space, the learning problem asks to estimate the means and

the covariance matrices of these Gaussians. This problem arises in many areas rang-

ing from the natural sciences to the social sciences, and has also found many machine

learning applications. Unfortunately, learning mixture of Gaussians is an information

theoretically hard problem: in the worst case, in order to learn the parameters up

to a reasonable accuracy, the number of samples required scales exponentially in the

number of Gaussian components.

We propose a deterministic algorithm for learning Gaussian mixture models in its

most general form. The central algorithmic ideas consist of new ways to decompose

the moment tensor of the Gaussian mixture model by exploiting its structural prop-
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erties. The symmetries of this tensor are derived from the combinatorial structure

of higher order moments of Gaussian distributions (sometimes referred to as Isserlis'

theorem or Wick's theorem). We show that, provided we are in high enough dimen-

sion n for n > 2(k2 ), the class of Gaussian mixtures is learnable with polynomial

running time and using polynomial number of samples, under a smoothed analysis

framework. The key of this analysis framework is that we study how the proposed al-

gorithm performs on an instance with randomly perturbed parameters starting from

any point. This serves to bridge the gap between worst case analysis which analyze the

performance on a worst case instance chosen adversarially, and average case analysis

which analyze the performance on a predefined distribution of instances.

Theorem 1.2. In the smoothed analysis setting, when n > Q(k 2 ), given samples from,

the perturbed n-dimensional Gaussian mixture model with k components, there is an

algorithm that learns the correct parameters up to accuracy e with high probability,

using polynomial time and polynomial number of samples.

In Chapter 4, we shift attention to stationary Hidden Markov models, which can

be viewed as special a case of a mixture model. We study the minimal realization

problems of HMMs. In particular, given access to length N segments of observable

outputs supported over a size d alphabet, which are generated by a Hidden Markov

model of order k, we can compute the joint probabilities of segments of the observ-

ables. The main questions we attempt to dress is that, given such joint probabilities

of segments, how to construct a model of minimal order that can generate the same

output process, and how large is the required window size N.

Despite the known worst case construction where N is lower bounded by Q(k)

and the worst case computational complexity scales exponentially in k, we use generic

analysis and show that all the hard cases lie in a measure zero set in the parameter

space. Moreover, for all the non-degenerate instances, the required window size is only

in the order of O(log(k)). In other words, the minimal 11MM realization problem

actually can be solved with polynomial complexity for almost all cases.
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1.2.3 Part 3: Randomized Algorithm to Escape Worst Cases

In Chapter 5, we study the problem of super-resolution and explore the randomness

in the learning algorithm to circumvent the worst case lower bounds.

Super-resolution is the problem of recovering a superposition of point sources us-

ing bandlimited measurements, which may be corrupted with noise. To view it in

the Fourier domain, the learning task is to disentangle a mixture of noisy complex

sinusoids. This signal processing problem arises in numerous imaging problems, rang-

ing from astronomy to biology to spectroscopy, where it is common to take coarse

Fourier measurements of an object. Of particular interest is in obtaining estimation

procedures which are robust to noise, with the following desirable statistical and com-

putational properties: we seek to use coarse Fourier measurements (bounded by some

cutoff frequency); we hope to take a small number of measurements; we desire our

algorithm to run quickly.

Suppose we have k point sources in d dimensions, where the points are separated

by at least A from each other. We provide a randomized algorithm that uses Fourier

measurements at random frequencies, as opposed to taking an exponential number

of measurements on the hyper-grid in the previous algorithms. We show that the

required bandwidth of frequencies is bounded by 0(1/A), while previous algorithms

require a cutoff frequency as large as Q(v'd/A). Moreover, the number of measure-

ments taken by and the computational complexity of our algorithm are bounded by a

polynomial in both the number of points k and the dimension d, with no dependence

on the separation A. In contrast, previous algorithms depended inverse polynomi-

ally on the minimal separation and exponentially on the dimension for both of these

quantities.

Theorem 1.3. For a fixed probability of error, the proposed algorithm achieves stable

recovery with a number of measurements and with computational runtime that are

both on the order of 0((k + d) 2 ). Furthermore, the algorithm makes measurements

which are bounded in frequency by 0(1/A) (ignoring log factors).
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1.3 Preliminaries

1.3.1 Notations

We utilize the standard O((.) , Q(-) notation to hide constants, and O(),8(),Q(.)

to hide constants and logarithmic factors. We use R, C, and Z to denote real, complex,

and natural numbers. For d E Z, we use [d] to denote the set [d] {1, ... , d}. For a

set S, ISI to denote its cardinality. We use ( to denote the direct sum of sets, namely

S 1 D S2 = {(a + b) : a E SI, b E S21.

Vectors and Matrices In the vector space R", let (-,-) denote the inner product

of two vectors, and to denote the Euclidean norm. Let ei to denote the i-th

standard basis vector in R", for i E [71.

Let I, be the identity matrix of dimension n x n. For a tall matrix A E R"'"r, let

A[:,j] denote its j-th column vector, let AT denote its transpose, At = (AT A)--AT de-

note the pseudoinverse. Let ok(A) denote its k-th singular value. Define the condition

number of a matrix X E R" to be cond2 (X) = Urnax(X)/ornir(X), where Umax(X)

and ornin(X) are the maximal and minimal singular values of X. The spectral norm

of a matrix is denoted as ||Ail, and the Frobenius norm is denoted as IIAIIF- We use

A - 0 for positive semidefinite matrix A.

When converting between vectors and matrices, let vec(A) E R"" denote the

vector obtained by stacking all the columns of A. For a vector x E R" 2 , let mat() E

Rn" denote the inverse mapping such that vec(mat(x)) = x.

Linear subspaces We represent a linear subspace S E R"' of dimension d by a

matrix S E R" xd, whose columns of S form an (arbitrary) orthonormal basis of the

subspace. The projection matrix onto the subspace S is denoted by ProjS = SST,

and the projection onto the orthogonal subspace S' is denoted by Projs = I1 -SST.

When we talk about the linear span of several matrices, we mean the space spanned

by their vectorization.
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Matrix Products We use 0 to denote tensor product, 0 to denote column wise

Katri-Rao product, and ®k, to denote Kronecker product. As an example, for ma-

trices A E R"rn", B E RMrBXn, C E RmcXn:

n

A ® B 0 C E R"^AXMBXMC, [A ® B® C]12,j3 = Aj1 ,iBj2 ,iC3 ,i,
i=1

A 1,1 B ... A1,.,B

A~~kTBEI~rnArnB XnAkrB.A o9k B (E R^*", A eD, B= .

AmA,1B ... ArnA,nB

A® B c R MArrlBXfl7 [A®( BI[:,j] A[,jl Okr B[:,jlI

Symmetric matrices We use R nm" to denote the space of all n x n symmetric

matrices, which linear subspace has dimension ("j 1). Since we will frequently use x n

and k x k symmetric matrices, we denote their dimensions by the constants n2 = (T 2)

and k2 = (k+1). Similarly, we use R n" .Xn to denote the symmetric k-dimensional

multi-arrays (tensors), which subspace has dimension (+-1). If a k-th order tensor

X E R" "Xn, then for any permutation 7r over [k], we have Xri... Xf = X,

1.3.2 Tensor Algebra

Our learning algorithms are mostly based on spectral methods for moment matching,

which involve spectral factorization of matrices and tensors in different steps. Next,

we introduce some basics of tensor algebra. A more detailed introduction to tensor

algebra can be found in [70] and the references therein.

Definitions A tensor is a multi-dimensional array. Tensor notations are useful for

handling higher order moments. Consider vectors a, b, c E R", define T = a 0 b &

C E RnX" to be the rank one tensor such that Tii2 = a=j bj 2 c1 3. For a vector

x EE R let the t-fold tensor product x0' denote the t-th order rank one tensor

(x(t)i 2 ,.  = - . We write the tensor product of matrices as A ® B GO =

kfi A[:,i] @ B[:,i] 0 C[:,i].
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Every tensor also defines a multilinear mapping. Consider a 3-rd order tensor

X E R"^X.B XnC. For given dimension 'mA, mB, mc, it defines a multi-linear mapping

X (.. ,) : R /IAXA x R 'B XnB x R CXrn -+ R^ rlA'"-B "c defined as below: (Vji E

['MA], J2 E [mnB, j3 E [mc])

[X(V1 V2, V3)]Ij2,J3 = Xilni2,i3 [V1]ilhIiV2]j2,i2[IV3]j3,i3- 11
i E [TLA] ,i2 ErB ,i3 E[nc]

If X admits a decomposition X =- A i] 0 B[:,] 0 C[:,i for A E R11Axk, B E

RTBxk, C EE R xk, the multi-linear mapping has the form

k

X(V, 1/2, V3) Z(V1T A[:,i) 0 (V2T B[:,ii) 0 (VT0:]).

In particular, the vector given by X(ej, ej, I) is the one-dimensional slice of the 3-way

array, with the index for the first dimension to be i and the second dimension to be

j. Note that X can have different forms of decompositions, yet the mappings defined

in (1.1) are all equivalent.

Definition 1.1 (Khatri-Rao product). For matrices A E RAxk, B E RB xk the

(column) Khatri-Rao product X = A 0 B E RAB x k is defined as follows:

X(jl-l)+nBj 2 - Ajl,iBj2,iI

and each column of X is a rank-1 Khatri-Rao product.

An equivalent representation of a 3rd order tensor X E R" 'IB X C is its ma-

tricization, obtained by rearranging the elements of the tensor into a matrix. For

example, the matricization along the third mode gives a matrix X(3 ) is specified
-- (3)as: [X 3

h, ((j-1)nB+j2) = X,.j2,j3. Moreover, if the tensor admits a decomposition

X = A 0 B o C, we can write the inatricization as Khatri-Rao product of the factors:

Xy = C(A 0 B)T.
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Uniqueness of tensor rank decomposition Tensor algebra has many similarities

to but also many striking differences from matrix algebra. For example, tensor rank

decomposition is a natural extension of matrix rank decomposition to higher order

tensors. However, under very mild conditions, rank decomposition of a tensor is

unique up to column scaling and permutation, which is the key property we will

exploit to consistently estimate the model parameters for various mixture models.

This is in sharp contrast to the matrix minimal rank factorization, where if A = BC

is a minimal rank k factorization, we can write A = (BW)(W- 1 C) for any full rank

matrix W of size k x k.

Definition 1.2 (Tensor rank decomposition). The rank decomposition of a 3rd or-

der tensor X E R*AXBXnc is a sum of rank-1 tensors for the smallest number of

summands k:

k

X = A 0 B 0 C ZA[:, 0 B[:, & C[:,i],

where matrices A E Rn^xk, B E RnBxk, C E Rncxk The minimal number of sum-

mands k is defined to be the rank of the tensor.

In the following, we state a set of sufficient conditions on the factors A, B, C that

guarantee the uniqueness of a third order tensor decomposition X = A 0 B 0 C.

Definition 1.3 (Kruskal rank). The Kruskal rank of a matrix A c RrLXr" equals r if

any set of r columns of A are linearly independent, and there exists a set of (r + 1)

columns that are linearly dependent (if r < M).

Lemma 1.1 (Uniqueness of tensor decomposition ([72, 105])). The tensor factoriza-

tion X = A 0 B 0 C is unique up to column permutation and scaling, if

krank(A) + krank(B) + krank(C) > 2k + 2. (1.2)

Tensor decomposition algorithms Unlike matrix singular value decomposition

(SVD), in general, even if the tensor rank decomposition X = A 0 B 0 C is unique,
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finding the factors A, B, C given the rank k tensor X is a hard problem. Nevertheless,

for cases where the factors satisfy certain rank conditions, there exist efficient and

provable algorithms to find the unique factorization. First, if both the matrix A and

B have full column rank, Algorithms 1 ([77]) can uniquely recover the factors up

to common column permutation, with running time polynomial in the dimension of

the tensor. Other algorithms such as tensor power, method and recursive projection,

which are possibly more stable in practice, also apply in this setting. Second, FOOBI

([42] [63]) is another tensor decomposition algorithm that has polynomial runtime,

and it applies to a subset of instances even when A and B are not of full column

rank k. Instead, for this algorithm to work, it requires that the factor C and the

Khatri-Rao product A 0 B have full column rank k. For completeness, we list two

standard tensor decomposition algorithms below.

Algorithm 1: Simultaneous diagonalization for 3rd order tensor decomposition

[77]
Input: A 3rd order tensor A E Rdnxd"xd

Output: k, A, B c Rd' k, C E Rd

1. Randomly pick two unit norm vectors v 1 , v 2 E Rd. Project M along the 3rd
dimension to obtain two matrices:

li = M(I,I, v), 2 = M(I, I,lv 2 ).

2. Compute the eigen-decomposition of matrix (M1Ml 1) and (M2M 11), and let

the columns of matrix A and B be the eigenvectors of (M 1 ) and (M 2 ME ),
respectively.

Scale the columns of A and B to be stochastic, and pair the eigenvectors in A
and B corresponding to the reciprocal cigenvalues, namely:

M1 M71 = AAA- 1, j25y Q = BA 1 B- 1 .

3. Let k be the number of non-zero eigenvalues.

4. Let M c Rd2n xd be the 3rd dimension matricization of Al. Set C to be:

C =M 3 ((A ® B)t)T
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Algorithm 2: FOOBI for 3rd order tensor decomposition

Input: Three way tensor M.

Output: Rank k and factors A, B, C.

1. Let ] be the 3rd dimension matricization of M. Compute its SVD

T 3 = VH DHUH

2. Set k to be the number of non-zero singular values. Let F = VD 1 2, and

E = UHD 2

3. Construct matrices {E(r) E Rdxd : r E [k]}:

[EM],,j = E(i-l)d+j,,Vi, j E [d], Vr E [k].

Construct the 4-th order tensors {P(rs) E Rdxdxdxd: r, s E [k]}:

[P '9)]ii,42,hJ2

[E(r)],1 ,j [E(s)] 2,2 + [E(s)]j1,j [E(r)] 2,J2

- [E(r)]ij J2 [E(8)] 2,1 - [E(s)]iJ2 [E (r)]i2,J1 -

4. Compute a basis {H(') : i E [k]} of the k-dimensional kernel of
{p(rs) : r, s E [k]}:

k

HrP(rs) = 0, s.t. H$,() = H(, Vr, s E [k].
r,s=1

5. Find the unique W E Rkxk that simultaneously diagonalizes the basis:
H(-) = WA(i)WT.

6. Let C = F(W-1)T and A 0 B = EW. Compute the rank one
decomposition of each column of A 0 B, with proper normalization such
that A and B are column stochastic.

1.3.3 Probabilistic analysis

In the rest of this chapter, we review some standard results of matrix perturbation

and concentration inequalities, and prove some corollaries. These will come in handy

for our algorithm analysis in later chapters.
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Matrix perturbation bounds Many spectral algorithms involve matrix decom-

position in different forms, thus characterizing the sample complexity of the learning

algorithm boils down to analyzing the stability of the matrix decompositions. Given

a matrix A and we know that A = A + E where E is a perturbation matrix of small

magnitude, how does the singular values and singular vectors of A relate to that of A?

This is a well-studied matrix perturbation problem and many results can be found in

Stewart and Sun [108].

Theorem 1.4 (Weyl's theorem). Given A A + E, we know that

OUk(A) - jJEll < oak(A) < Ok(A) + IJEJJ.

We can also bound the f2 norm change in singular values by Mirsky's Theorem.

Lemma 1.2 (Mirsky's theorem). Given matrices A, E E R"" with m > n, then

(o-(A + E) - o- (A)) 2 < IEj|F-

For singular vectors, the perturbation is bounded by Wedin's Theorem:

Lemma 1.3 (Wedin's theorem; Theorem 4.1, p.2 6 0 in [109]). Given matrices A, E E

R" " with m > n. Let A have the singular value decomposition

E1 0

A= [U1 , U2 , U3] 0 E2 [V 1 ,V2 ] .

0 0

Let A= A + E, with analogous singular value decomposition. Let 4) be the matrix of

canonical angles between the column span of U1 and that of U1 , and e be the matrix

of canonical angles between the column span of V1 and that of V. Suppose that there

exists a 6 such that mninij |[E1 4,i - [E2]j,jI > 6, and mini,j|[E1]i,i| > 6, then

sin 4D 12 + sin 0112 < 2 .1E112
62

27



We do not go into the detailed definitions of canonical angles here. The only way

we will be using this lemma is by combining it with the following lemma:

Lemma 1.4 (Theorem 4.5, p.9 2 in [1091). Let (D be the matrix of canonical angles

between the column span of U and that of U, then

|Proj& - ProjI| =|sinDl[.

As a corollary, we have:

Lemma 1.5. Given matrices A, E E R"m*n with m

k and the smallest singular value is given by cUk(A).

spanned by the first k eigenvectors of A and A

|tE|| crk(A)/v , we have:

> n. Suppose that A

Let S and S be the

A + E, respectively.

has rank

subspaces

Then if

I - S| |Projg - Projs|| = IIProig - Projs1|| - .2(E)
O'k(A)

Proof. We first prove the first inequality:

IlProjg - Projs11 = 112S(S- S)T + (S- S)(S S)TI1

> 2||S |11 -S || - | - ||2

> ||S||||$ - Si| = II - 1.

The equality is because Projs- = I - Projs so the two differences are the same.

The final step follows from Wedin's Theorem and Lemma 1.4. l

We often need to bound the perturbation of a product of perturbed matrices,

where we apply the following lemma:

Lemma 1.6. Consider a product of matrices A 1 ... Ak, and consider any sub-multiplicative

norm on matrix | -1. Given A 1 ,... Ak and assume that I|A| - AI|l ||Ai||, then we
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have:

k k^

|A1---.Ak-A1-... A <2 k-1 |lAi|| Ai| Aii=1 i=1 I~l

The proof of this lemma is straightforward by induction.

Next theorem bounds the perturbation on the pseudo-inverse of a matrix, provided

that the smallest singular value of the matrix is lower bounded.

Theorem 1.5 (Theorem 3.4 in [108]). Consider the perturbation of a matrix A C

Rinl, f: B = A + E. Assume that rank(A) = rank(B) = n, then

||B' - A4t|| < V-2|At||||Bt||l\E||.

As a corollary, we often use:

Lemma 1.7. Consider the perturbation of a matrix A C Rrxn: B A + E where

||E|l < omrin( A)/2. Assume that rank(A) = rank(B) = n, then

J|Bt - At1| 5 2v'||E||I/u.rrjn(A) 2.

Proof. We first apply Theorem 1.5, and then bound IAt | and IIBt 1. By definition we

know IIAhtI = 1/u- 1j,(A). By Weyl's theorem o-min(B) > -min(A) -IE Urn(A)/2,

hence IBt|I orrin(B)- 1 < 2Umijr(A)- 1.

Concentration inequalities In our probabilistic analysis, we usually need to char-

acterize the behavior of a random variable that depend on a large number of indepen-

dent random variables, in particular, how much it deviates from its expected value

as the number of independent random variables increases. Next we review some

concentration inequalities that bound such deviation.

Lemma 1.8 (Hoeffding's inequality). Let X1 ,...,X,, be independent random vari-

ables. Assume that Xi 's are bounded almost surely, namely Pr[Xi E [ai, bi]] = 1.
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Define the empirical mean of these variables X = (X1 + + X,)/n. We have

2n 2t
Pr[IX - E[X]I > t] < exp(~ n t 2)-

Ei (bi -- ai)

Lemma 1.9 (Multiplicative Chernoff bound). Suppose X1, - -, X are independent

random variables with Bernoulli distribution, and P(Xi = 1) =p. Then for any

S> 1:

nn
P Xi > 6npI < .eIn

Lemma 1.10 (Matrix Bernstein). Consider a sequence of N random matrix {Xk}

of dimension M x M which are independent, self-adjoint. Assume that E[Xk] = 0

and Amax(Xk) < R almost surely. Denote the total variance by a.2 = || _N E[X2]||.

Then the following inequality holds for all t > 0:

3t
2

2

Me-8, for t < a2/R;

Me-8R, for t > a/R.

Lemma 1.11 (High dimensional sphere projection (Johnson Lindenstrauss lemma)).

Let the random vector u G Rd be uniformly distributed on the surface of the d-

dimensional unit sphere, i.e. uniform distribution in the set: { jiL = 1}. Denote

its projection onto the first dimension to be Ju1 I. We have:

4 d -2P(uil > t) < ; e 2

/d _ 2

Theorem 1.6 (Gershgorin's theorem). Given a symmetric matrix X E R kxk, a lower

bound on the smallest eigenvalue is given by:

0-rnin(X) > min Xi,2- IXi'j .iE[k)IE[k]
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Chapter 2

Recovering structured matrices

2.1 Problem Statement

Consider an unknown Al x Al probability matrix B, satisfying Bij ;> 0 and E BiJ =

1. Suppose one is given N independently drawn (i, j)-pairs, sampled according to the

distribution defined by B. How many draws are necessary to accurately recover B?

What can one infer about the underlying matrix based on these samples? How can

one accurately test whether the underlying matrix possesses certain properties of in-

terest? How do structural assumptions on B - for example, the assumption that

B has low rank - affect the information theoretic or computational complexity of

these questions? For the majority of these tasks, we currently lack both a basic un-

derstanding of the computational and information theoretic lay of the land, as well as

algorithms that seem capable of achieving the information theoretic or computational

limits.

This general question of making accurate inferences about a matrix of probabil-

ities, given a matrix of observed "counts" of discrete outcomes, lies at the core of a

number of problems that disparate communities have been tackling independently.

On the theoretical side, these problems include both work on community detection in

stochastic block models (where the goal is to infer the community memberships from

an adjacency matrix of a graph that has been drawn according to an underlying ma-

trix of probabilities expressing the community structure) as well as the line of work on
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recovering topic models, hidden Markov models (HMMs), and richer structured prob-

abilistic models (where the model parameters can often be recovered using observed

count data). On the practical side, these problems include work on computing low-

rank approximations to sparsely sampled data, which arise in collaborative filtering

and recommendation systems, as well as the recent work from the natural language

processing community on understanding matrices of word co-occurrence counts for

the purpose of constructing good "word embeddings". Additionally, work on latent

semantic analysis and non-negative matrix factorization can also be recast in this

setting.

In this part, we start this line of inquiry by focusing on the estimation problem

where the probability matrix B possesses a particular low rank structure. While this

estimation problem is rather specific, it generalizes the basic community detection

problem and also encompasses the underlying problem behind learning HMMs and

topic models. Furthermore, this low rank case also provides a means to study how

property testing and estimation problems are different in this structured setting, as

opposed to the simpler rank 1 setting that is equivalent to the standard setting of

independent draws from a distribution supported on M elements.

We focus on the estimation of a low rank probability matrix B in the sparse data

regime, near the information theoretic limit. In many practical scenarios involving

sample counts, we seek algorithms capable of extracting the underlying structure in

the sparsely sampled regime. To give two motivating examples, consider forming

the matrix of word co-occurrences-the matrix whose rows and columns are indexed

by the set of words, and whose (i, j)-th element consists of the number of times

the i-th word follows the j-th word in a large corpus of text. In the context of

recommendation system, one could consider a low rank matrix model, where the

rows are indexed by customers, and the columns are indexed by products, with the

(i, j)-th entry corresponding to the number of times the i-th customer has purchased

the j-th product. In both settings, the structure of the probability matrix underlying

these observed counts contains insights into the two domains, and in both domains

we only have relatively sparse data. This is inherent in many other natural scenarios
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involving heavy-tailed distributions where, regardless of how much data one collects,

a significant fraction of items (e.g. words, products purchased, genetic mutations,

etc.) will only be observed a few times.

Such estimation questions have been actively studied in the community detection

literature, where the objective is to accurately recover the communities in the regime

where the average degree (e.g. the row sums of the adjacency matrix) are constant.

In contrast, the recent line of works for recovering highly structured models (such

as topic models, HMMs, etc.) are only applicable to the over-sampled regime where

the amount of data is well beyond the information theoretic limits. In these cases,

achieving the information theoretic limits remains a widely open question. This

work begins to bridge the divide between these recent algorithmic advances in both

communities. We hope that the low rank probability matrix setting that studied here

serves as a jumping-off point for the more general questions of developing information

theoretically optimal algorithms for estimating structured matrices and tensors in

general, or recovering low-rank approximations to arbitrary probability matrices, in

the sparse data regime. While the general settings are more challenging, we believe

that some of our algorithmic techniques can be fruitfully extended.

In addition to developing algorithmic tools which we hope are applicable to a

wider class of problems, a second motivation for considering this particular low rank

case is that, with respect to distribution learning and property testing, the entire

lay-of-the-land seems to change completely when the probability matrix B has rank

larger than 1. In the rank 1 setting - where a sample consists of 2 independent draws

from a distribution supported on {1, . . . , M} the distribution can be learned using

O(M) draws. Nevertheless, many properties of interest can be tested or estimated

using a sample size that is sublinear in Mi. However, even just in the case where the

probability matrix is of rank 2, although the underlying matrix B can be represented

with O(M) parameters (and, as we show, it can also be accurately and efficiently re-

'Distinguishing whether a distribution is uniform versus far from uniform can be accomplished
using only O(vJI) draws, testing whether two sets of samples were drawn from similar distributions
can be done with O(M2/3) draws, estimating the entropy of the distribution to within an additive
e can be done with O( m ) draws, etc.
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covered with O(M) sample counts), sublinear sample property testing and estimation

is generally impossible. This result begs a more general question: what conditions

must be true of a structured statistical setting in order for property testing to be easier

than learning?

2.1.1 Formulation

Assume our vocabulary is the index set M = {1,..., M} of M words and that there

is an underlying low rank probability matrix B, of size M x M, with the following

structure:

B = PWPT, where matrix P = [p(l) p () (2.1)

Here the matrix P is of dimension M x R, and the columns are supported on the stan-

dard (M - 1)-simplex. Also, W E R IxR is the mixing matrix, which is a probability

matrix satisfying >' Wi,, = 1.

In the case where R = 2, we denote wp = W1,1 + W1,2 and Wq = W2 ,1 + W2 ,2 . Note

that Z& Bi,k = wpp + wqq. Define the covariance matrix of any probability matrix P

as:

[Cov(P), := Pi - (Z Pi,)(E Pkj).
k k

Note that Cov(P)1 = * and frCov(P) = d (where i and 0 are the all ones and zeros

vectors, respectively). This implies that, without loss of generality, the covariance of

the mixing matrix, Cov(W), can be expressed as: Cov(W) = [WL, -WL ]T WR, -WR] -

for some real numbers WL, WR E [-1, 1]. For ease of exposition, we restrict to the

symmetric case where WL = WR = w, though our results hold more generally.

Suppose we obtain N, i.i.d. sample counts from B of the form {(ii, ji) (i2 , j 2), . .. (iN, jN)

where each sample (ia, jn) E M x M. The probability of obtaining a count (i, j) in

a sample is Bi, . Moreover, assume that the number of samples follows a Poisson dis-

tribution: N ~ Poi(N). The Poisson assumption on the number of samples is made

only for the convenience of analysis: so that the counts of observing (i, j) follows
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a Poisson distribution Poi(NBj,) and is independent from the counts of observing

(i', j') for (i', j') # (i, j). As M is asymptotically large, with high probability, N and

N are within a subconstant factor of each other and both upper and lower bounds

translate between the Poissonized setting, and the setting of fixed N. Throughout,

our sample complexity results are stated in terms of N.

Notation We use the following standard shorthand notations throughout this chap-

ter. We denote [n] {1,..., n}. Let I denote a subset of indices in M. For a

M-dimensional vector x, we use vector x1 to denote the elements of x restricting to

the indices in I; for two index sets I, J, and a M x M dimensional matrix X, we use

Xjx3 denote the submatrix of X with rows restricting to indices in I and columns

restricting to indices in J.

We use Poi(A) to denote a Poisson distribution with rate A; we use Ber(A) to

denote a Bernoulli random variable with success probability A; and we use Mul(x; A)

to denote a multinomial distribution over M outcomes with A number of trials and

event probability vector x c R+ such that K Xi = 1.

All of our order notations are with respect to the vocabulary size M, which is

asymptotically large. Also, we say that a statement is true "with high probability" if

the failure probability of the statement is inverse poly in M; and we say a statement

is true "with large probability" if the failure probability is of some small constant 6,

which can be easily boosted via repetition.

2.1.2 Related Work

As mentioned earlier, the general problem of reconstructing an underlying matrix of

probabilities given access to a count matrix drawn according to the corresponding

distribution, lies at the core of questions that are being actively pursued by several

different communities. We briefly describe these questions, and their relation to the

present work.

Community Detection. With the increasing prevalence of large scale social net-

works, there has been a flurry of activity from the algorithms and probability com-
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munities to both model structured random graphs, and understand how (and when it

is possible) to examine a graph and infer the underlying structures that might have

given rise to the observed graph. One of the most well studied community models is

the stochastic block model [56]. In its most basic form, this model is parameterized by

a number of individuals, M, and two probabilities, a,,3. The model posits that the

M individuals are divided into two equal-sized "communities", and such a partition

defines the following random graph model: for each pair of individuals in the same

community, the edge between them is present with probability a (independently of

all other edges); for a pair of individuals in different communities, the edge between

them is present with probability # < a. Phrased in the notation of our setting, the

adjacency matrix of the graph is generated by including each potential edge (i, J)
independently, with probability Bij, with Bij = a or / according to whether i and j
are in the same community. Note that B has rank 2 and is expressible in the form of

Equation 2.1 as B = PWPT where P = [p, q] for vectors p = 2I1 and q = -I2 where

I, is the indicator vector for membership in the first community, and I2 is defined

analogously, and W is the 2 x 2 matrix with af2 on the diagonal and #32 on the

off-diagonal.

What values of a, 3, and M enable the community affiliations of all individuals to

be accurately recovered with high probability? What values of a,/3, and M allow for

the graph to be distinguished from an Erdos-Renyi random graph (that has no com-

munity structure)? The crucial regime is where a,/ = O(y), and hence each person

has a constant, or logarithmic expected degree. The naive spectral approaches will fail

in this regime, as there will likely be at least one node with degree - log M/ log log M,

which will ruin the top eigenvector. Nevertheless, in a sequence of works sparked by

the paper of Friedman, and Szemeredi [47], the following punchline has emerged: the

naive spectral approach will work, even in the constant expected degree setting, pro-

vided one first either removes, or at least diminishes the weight of these high-degree

problem vertices (e.g. [44, 68, 87, 73, 75]). In the past year, for both the exact re-

covery problem and the detection problem, the exact tradeoffs between a, /3, and M

were established, down to subconstant factors [88, 1, 81]. More recently, there has
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been further research investigating more complex stochastic block models, consisting

of three or more components, components of unequal sizes, etc. (see e.g. [36, 2]).

Word Embeddings. On the more applied side, some of the most impactful advances

in natural language processing over the past two years has been work on "word

embeddings" [83, 78, 111, 15]. The main idea is to map every word w to a vector

vo, E Rd (typically d ~ 500) in such a way that the geometry of the vectors captures

the semantics of the word.2 One of the main constructions for such embeddings is

to form the M x M matrix whose rows/columns are indexed by words, with (i, j)-th

entry corresponding to the total number of times the i-th and j-th word occur next to

(or near) each other in a large corpus of text (e.g. wikipedia). The word embedding

is then computed as the rows of the singular vectors corresponding to the top rank

d approximation to this empirical count matrix.3  These embeddings have proved

to be extremely effective, particularly when used as a way to map text to features

that can then be trained in downstream applications. Despite their successes, current

embeddings seem to suffer from sampling noise in the count matrix (where many

transformations of the count data are employed, e.g. see [110)-this is especially

noticeable in the relatively poor quality of the embeddings for relatively rare words.

The recent theoretical work [16] sheds some light on why current approaches are

so successful, yet the following question largely remains: Is there a more accurate

way to recover the best rank-d approximation of the underlying matrix than simply

computing the best rank-d approximation for the (noisy) matrix of empirical counts?

Efficient Algorithms for Latent Variable Models. There is a growing body

of work from the algorithmic side (as opposed to information theoretic) on how to

recover the structure underlying various structured statistical settings. This body of

work includes work on learning HMMs [58, 90, 34], recovering low-rank structure [14,

13, 24], and learning or clustering various structured distributions such as Gaussian

2 The goal of word embeddings is not just to cluster similar words, but to have semantic notions
encoded in the geometry of the points: the example usually given is that the direction representing
the difference between the vectors corresponding to "king" and "queen" should be similar to the
difference between the vectors corresponding to "man" and "woman", or "uncle" and "aunt", etc.

3A number of pre-processing steps have been considered, including taking the element-wise square
roots of the entries, or logarithms of the entries, prior to computing the SVD.
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mixture models [37, 121, 85, 23, 57, 64, 48] and latent dirichlet allocation (a very

popular topic model) [10]. A number of these methods essentially can be phrased

as solving an inverse moments problem, and the work in [7] provides a unifying

viewpoint for computationally efficient estimation for many of these models under a

tensor decomposition perspective. In general, this body of work has focussed on the

computational issues and has considered these questions in the regime in which the

amount of data is plentiful-well above the information theoretic limits.

Sublinear Sample Testing and Estimation. In contrast to the work described in

the previous section on efforts to devise computationally efficient algorithms for tack-

ling complex structural settings in the "over-sampled" regime, there is also significant

work establishing information theoretically optimal algorithms and (matching) lower

bounds for estimation and distributional hypothesis testing in the most basic setting

of independent samples drawn from (unstructured) distributions. This work includes

algorithms for estimating basic statistical properties such as entropy [93, 52, 116, 118],

support size [97, 116], distance between distributions [116, 118, 117], and various hy-

pothesis tests, such as whether two distributions are very similar, versus significantly

different [50, 20, 92, 119, 27], etc. While many of these results are optimal in a worst-

case ("minimax") sense, there has also been recent progress on instance optimal (or

"Ccompetitive") estimation and testing, e.g. [3, 4, 119], with stronger information

theoretic optimality guarantees. There has also been a long line of work beginning

with [28, 21] on these tasks in "simply structured" settings, e.g. where the domain

of the distribution has a total ordering or where the distribution is monotonic or

unimodal.

2.2 Main Results

2.2.1 Recovering Low Rank Probability Matrices

For rank R = 2, it is possible to recover the dictionary P = [p, q] uniquely up to

column permutation. Assume that W is symmetric, where WL = WR = w (all our
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results extend to the asymmetric case). Define the marginal probability vector, p and

the dictionary separation vector as:

pi := Bik, A := w(p - q). (2.2)
k

Observe that in this rank 2 case, the matrix Cov(B) admits a unique rank-1 decom-

position, which implies that:

B= PPT + AAT. (2.3)

We focus on a class of model parameters where p and q are well separated, which

assumption guarantees that the rank 2 matrix B is well-conditioned. This assump-

tion also has natural interpretations in different applications including community

detection, topic modeling, and HMMs.

Assumption 1 (Separation). Assume that wu and wq are lower bounded by some

constant C, = Q(1), and assume that the t'1-norm of the dictionary separation is

lower bounded by I||\||1 > CA = Q(1).

Theorem 2.1 (Upper bound for rank 2 matrices). Suppose we have access to N

i.i.d. samples generated according to the a rank 2 symmetric probability matrix B

parameterized as (2.1), and suppose the true matrix satisfies Assumption 1. For

e > 0, with N = e(M/ 2 ) samples, our algorithm runs in time poly(M) and returns

estimators B, p, A, such that with large probability:

LIB - ili 5 e, lI^- p1k < E, HA - All1 < E.

(here, the f 1-norm of an M x M matrix P is simply defined as ||P|11 = |j3 puij).

Note that for R > 2, the dictionary matrix P and the mixing matrix W are

not uniquely identifiable. We only focus on obtaining a low rank estimator for the

underlying probability matrix B.
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Theorem 2.2 (Upper bound for rank R, constant accuracy). Suppose we have ac-

cess to N i.i.d. samples generated according to the a probability matrix B parame-

terized as (2.1). Assume the mixing matrix W is PSD with row sums bounded by

3 Wij > Wmin. Fix constant accuracy Eo > 0 and Eo = Q(1), for any r > 0, with

N = E(- MR+) samples, our algorithm runs in time poly(M) and returns a rank R

estimator B such that with large probability:

IB - B|1, < 60. (2.4)

Compared to the sample complexity result N = e(MR2 ) for the community de-

tection problem with R communities as in [36], in the more general parameterization,

we incur an extra w-2 dependence, which can be easily removed in the special setup

of community detection to recover the result in the community detection problem.

Assumption 2 (Well separated dictionary). We assume that the minimal singular

value of Bqrt scaled with the inverse square root of the exact marginal probabilities is

lower bounded.

O'R(Diag(pj) -1/2 BDiag(pi) -1/2) ;> O'min. (2.5)

Note that in the ideal case where the support of the dictionaries are non-overlapping,

and the mixing matrix W is diagonal, we have

o- (Diag(pi) -1 12BDiag(p )-12) = JR(Diag(pi) -112 BDiag(p) -1/2) _ 1.

Under the well-separation assumption for the dictionary, we can sharpen the error

bound.

Theorem 2.3. (Upper bound for rank R under separation condition) Under the con-

ditions of Theorem 2.2, further assume that Assumption 2 is satisfied for ormin > EO,

and that N = Q( MR 2 ) for any r > 0. For any e > 0 such that e < eo, with

N = E( ) samples, our algorithm runs in time poly(M) and returns a rank R
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estimator B such that with large probability:

JIB - Bill < e. (2.6)

Note that when the marginal probabilities pi are not roughly uniform, spectral

error bounds in terms of lIB - B11 2 are not particularly strong. Instead, here we

consider the El norm error bound, or equivalently the total variation distance, which

is a more natural measure of estimation error for probability distributions. Moreover,

note that naively estimating a distribution over M2 outcomes requires order M2

samples. Our algorithm utilizes the low rank structure of the underlying probability

matrix to achieve a sample complexity which is precisely linear in the vocabulary size

AI.

We now turn to the implications of this theorem to testing and learning problems.

2.2.2 Topic Models and Hidden Markov Models

One of the main motivations for considering the specific low rank structure on the

underlying matrix B is that this structure encompasses the structure of the matrix of

expected bigrams generated by both topic models and HMMs. We now make these

connections explicit for the rank 2 case, and then briefly discuss the rank R case.

Definition 2.1. A 2-topic model over a vocabulary of size Al is defined by a pair of

distributions, p and q supported over M words, and a pair of topic mixing weights

ir and 7 q = 1 - 7p. The process of drawing a bigram (i, j) consists of first randomly

picking one of the two "topics" according to the mixing weights, and then drawing

two independent words from the word distribution corresponding to the chosen topic.

Thus the probability of seeing bigram (i, j) ZS (7FpPiPj + 7Fqqiqj), and so the expected

bigram matrix can be written as B = PWPT with P = [p, q], and W = [7p, 0; 0, 1q].

Definition 2.2. A hidden Markov model with 2 hidden states (sP, sq) and a size M

observation vocabulary is defined by a 2 x 2 transition matrix T for the 2 hidden states,

and two distributions of observations., p and q, corresponding to the 2 states.
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A sequence of N observations is sampled as follows: First, select an initial state

according to the stationary distribution of the underlying Markov chain [rp, 7q]; Then

evolve the Markov chain according to the transition matrix T for N steps; For each

n E {1,... , N}, the n-th observation in the sequence is generated by making an inde-

pendent draw from either distribution p or q according to whether the Markov chain

is in state sp or sq at the n-th timestep.

The probability that seeing a bigram (i, j) for the n and the (n + 1)-th obser-

vation is given by irppi(T,p + Tp,qqj) + 7rqqi(T,ppj + Tq,qqj), and hence the ex-

pected bigram matrix can be written as B = DWDT with D = [p, q], and W

rp 0 TP, I - TP7P

0 7rg 1 - Tqq T,,

The following corollaries (straightforward by Theorem 2.1) shows that parameter

estimation is possible with sample size linear in M:

Corollary 2.1. (Learning 2-topic models) Suppose we are in the 2-topic model set-

ting. Assume that irp(1 - 7rp)|lp - q|l = Q(1). There exists an algorithm which,

given N = Q(M/e 2 ) bigrams, runs in time poly(M) and with large probability returns

estimates irppq such that

I'- 7rpI < E, 11'r pill < E, HIq- qil, < e

Corollary 2.2. (Learning 2-state HMMs) Suppose we are in the 2-state HMM setting.

Assume that Ip - qIII > C1 and that 7rp, Tpp, Tq,q are lower bounded by C2 and upper

bounded by 1 - C2, where both C1 and C2 are Q(1). There exists an algorithm which,

given a sampled chain of length N = Q(M/e 2 ), runs in time poly(M) and returns

estimates R , fI , q such that, with high probability, we have (that there is exists a

permutation of the model such that)

7 11P < C, -Tp~p < j lTq,q - Tq,q I < IE, jl'- pi l h- qhhi E.

Furthermore, it is sufficient for this algorithm to only utilize Q(Me2 ) random bigrams

and only Q(1/c 2 ) random trigrams from this chain.
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For topic models with R > 2 topics and HMMs with R > 2 hidden states, the

matrix of bigram probabilities does not uniquely determine the underlying HMM.

One can recover the model parameters using sampled trigram sequences (see [7] for

the moment structure in the trigrams). However, the core step remains to first obtain

an accurate estimate of B given by Theorem 2.2 and 2.3 '. We do not go into details

here.

2.2.3 Testing vs. Learning

The above theorem and corollaries are tight in an extremely strong sense: for both the

topic model and HMM settings, it is information theoretically impossible to perform

even the most basic property tests using fewer than O(M) samples. For topic models,

the community detection lower bounds [88][73][127] imply that E(M) bigrams are

necessary to even distinguish between the case that the underlying model is simply

the uniform distribution over bigrams versus the case of a R-topic model in which each

topic corresponds to a uniform distribution over disjoint subsets of M/R words. For

2-state HMMs, even if we permit an estimator to have more information than merely

bigram counts, namely the full sequence of observations, we prove the following linear

lower bound.

Theorem 2.4. There exists a constant c > 0 such that for sufficiently large M, given

a sequence of observations from a HMM with two states and emission distributions

p, q supported on M elements, even if the underlying Markov process is symmetric,

with transition probability 1/4, it is information theoretically impossible to distinguish

the case that the two emission distributions, p = q = Unif[M] from the case that

I - qj I| = 1 with probability greater than 2/3 using a sequence of fewer than cM

observations.

This immediately implies the following corollary for estimating the entropy rate

of an HMM.
4E.g. see [7] for how the bigram matrix can be used in the estimation problem in a "whitening"

step to reduce the problem from one of M dimensions to one with effectively R dimensions.
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Corollary 2.3. There exists an absolute constant c > 0 such that given a sequence of

observations from a HMM with two hidden states and emission distributions supported

on M elements, a sequence of cM observations is information theoretically necessary

to estimate the entropy rate to within an additive 0.5 with probability of success greater

than 2/3.

These strong lower bounds for property testing and estimation are striking for

several reasons. First, the core of our learning algorithm is a matrix reconstruction

step that uses only the set of bigram counts. Conceivably, one could significantly

benefit from considering longer sequences of observations - even for HMMs that mix

in constant time, there are detectable correlations between observations separated

by O(log M) steps. Regardless, our lower bound shows that actually no additional

information from such longer k-grams can be leveraged to yield sublinear sample

property testing or estimation.

A second notable point is the apparent brittleness of sublinear property testing

and estimation as we deviate from the standard (unstructured) i.i.d sampling setting.

Indeed for nearly all distributional property estimation or testing tasks, including

testing uniformity and estimating the entropy, sublinear-sample testing and estima-

tion is possible in the i.i.d. sampling setting (e.g. [50, 118, 117]). In contrast to the

i.i.d. setting in which estimation and testing require asymptotically fewer samples

than learning, as the above results illustrate, even in the setting of an HMM with just

two hidden states, learning and testing require comparable numbers of observations.

2.3 Outline of our estimation algorithm

Given N samples drawn according to the probability matrix B. Let B denote the

matrix of average empirical counts. By the Poisson assumption on sample size, we

have that [Blij ~ yPoi(NBi,).
Before introducing our algorithm, let us consider the naive approach of estimating

B by taking the rank R truncated SVD of the empirical matrix B, which concentrates

to B in spectral distance asymptotically. Unfortunately, this approach leads to a
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samplji( (ompj~lexitv as larg( as ((MA log A), and in the linear sanple siz regime

the einpirical co)nnts natrix is a poor representation of the undhrlying (listribulltion.

lintitivelv, due to the sampling iio ise, the rows anad columns of B corresponding

to words with larger marginal probabilities have higher row and coluinl sums in

expectation, as well as iigher varianlces that underlline the Spectral concentration of

the matrix as a whole. This observation leadis to the idea of pre-scaling the matrix

so that every word (i.e. row/colunn) is roughly of unit variance. Indeed, with a

slight iodification of the truncated SVD, we can improve the sampA complexity

of this approach to e(Al log Af), which is nearly linear. Interestingly, if we get to

observe a matrix (B + E) where the noise natrix E are i.i.d. sub-Gaussian variables

of unit variance, then truncated SVD indeed gives us the optimal estinator for B.

Our algorithin shows that we can actually shave off the log factor for a broad class

of noise (sul-exponential), which require more careful steps than trurnated SVD to

denoise the empirical matrix.

Next, we sketch the outline of our algorithms (Algorithm 3 for rank 2 case and

Algorithm 4 for general rank R case). We only highlight the intuition behind the key

ideas, and defer the detailed analysis of the algorithms to Section 2.4 and 2.5.

S large small

(a) Binning and regularization

Figure 2-t: The key algorithinic

Anchor partition

B R'finImt
(b) AnchIr partition and refinement

ideas of our algoritlun.

*15

B2

i snall



2.3.1 Rank 2 algorithm

First, note that it is straightforward to obtain an estimate ' close to the true marginal

p with linear sample complexity. Also, recall that B - ppT = AAT as per (2.3), hence

after subtracting off the relatively accurate rank 1 matrix of pT, we are essentially

left with a rank 1 matrix recovery problem. Our Algorithm 3 consists of two phases:

Phase I: "binning" and "regularization" In Section 2.1, we drew the connec-

tion between our problem and the community detection problem in sparse random

graphs. Recall that when the word marginals are roughly uniform, namely all in the

order of O( ) the linear sample regime corresponds to the stochastic block model

setup where the expected row sums are all in the order of do = Q(1). It is

well-known that in this sparse regime, the adjacency matrix, or the empirical count

matrix BN in our problem, does not concentrate to the expectation matrix in the

spectral distance. Due to some heavy rows with row sum in the order of Q( * ),

the leading eigenvectors are polluted by the local properties of these heavy nodes

and do not reveal the global structure of the graph, which are precisely the desired

information in expectation.

In order to enforce spectral concentration in the linear sample size regime, one

of the many techniques is to tame the heavy rows and columns by setting them to

0. This simple idea was first introduced by [47], and followed by analysis works in

[44] and many others. Recently in [75] and [76] the authors provided clean and clever

proofs to show that any such "regularization" essentially leads to better spectral

concentration for the adjacency matrix of random graphs whose row/column sums

are roughly uniform in expectation.

Phase I of Algorithm 3 leverage such "regularization" ideas in our problem where

the marginal probabilities are not uniform with the idea of "binning". A natural

candidate solution would be to partition the vocabulary M into bins of words ac-

cording to the word marginals, so that the words in the same bin have roughly uniform

inarginals. Restricting our attention to the diagonal blocks of B whose indices are in

the same bin, the expected row and column sums are indeed roughly uniform. Then
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we can regularize (by removing abnormally heavy rows and columns) each diagonal

block separately to restore spectral concentration, to which truncated SVD should

then apply. Figure 2-la visualizes the two operations of "binning" and "regulariza-

tion" in Phase I of Algorithm 3.

Phase I returns estimates ' and A both up to a small constant accuracy in e1

norm with O(M) samples. There are 3 concerns we rigorously address in order to

prove the correctness of the algorithm:

1. We do not have access to the exact marginal p. With linear sample size, we

only can estimate p up to constant accuracy in e1 norm. If we implement

binning according to the empirical marginals, there is considerable probability

with which words with large marginals are placed in a bin intended for words

with small marginals - which we call "spillover effect". When directly applied

to the empirical bins with such spillover, the existing results of "regularization"

in [76] do not lead to the desired concentration result.

2. When restricting to each diagonal block corresponding to a bin, we throw away

all the sample counts outside the block. This greatly reduces the effective sample

size, and it is not obvious that we retain enough samples in each diagonal block

to guarantee meaningful estimation.

3. Even if the "regularization" trick works for each diagonal block, we need to

extract the useful information and "stitch" together this information from each

block to provide an estimator for the entire matrix, including the off-diagonal

blocks.

Phase II: "Anchor partition" Under the separation Assumption 1, Phase II of

Algorithm 3 refine the estimates of Phase I to achieve the desired sample complexity

bound.

The key to this refining process is to construct an "anchor partition", which is

a bi-partition of the vocabulary M based on the signs of the estimate of separation

vector A given by Phase I. We collapse the M x M matrix B into a 2 x 2 matrix
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corresponding to the bi-partition, and accurately estimate the 2 x 2 matrix with the

N samples. Given this extremely accurate estimate of this 2 x 2 anchor matrix, we

can now iteratively refine our estimates of pi and Ai for each word i by solving a

simple least square fitting problem.

Similar ideas - estimation refinement based on some crude global information -

has appeared in many works for different problems. For example, in a recent paper

[36] on community detection, after obtaining a crude classification of nodes using

spectral algorithm, one round of a "correction" routine is applied to each node based

on its connections to the graph partition given by the first round. This refinement

immediately leads to an optimal rate of recovery. Figure 2-1b visualize the example of

community detection. In our problem, the nodes are the M words, the edges are the

sample counts, and instead of re-assigning the label to each node in the refinement

routine, and we refine the estimation of pi and Ai for each word.

2.3.2 Rank R algorithm

We summarize the basic ideas of Algorithm below. In Step 1, we again group

words according to the empirical marginal probabilities, so that in each bin words

are of similar marginals. Then in Step 2, we consider the diagonal blocks of the

empirical average bigram matrix B, which rows and columns correspond to the words

in the same bin. In each of such diagonal blocks, the entries have roughly uniform

expectations, similar to Phase 1 of Algorithm 3, we regularize each diagonal block

in the empirical matrix by removing abnormally heavy rows and columns, and then

apply truncated SVD to obtain a sharper concentration bound.

After estimate the span of the dictionary restricted to words in each bin by looking

at the leading rank R subspace of each diagonal block, in Step 3, we aim to estimate

Diag(p)1 /2 BDiag(p)1 /2 accurately in spectral norm. With the marginal probability

scaling, such error bound naturally translates into error bound for estimating B in

f1 norm. To achieve this, we regularize and approximately scale the empirical ma-

trix B with the empirical marginal probability, and then project the entire matrix

to a R log M-dimensional subspace as a union of the spans for each bin found in
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Step 2. Since such spans are estimated accurately enough, projecting the M x Al

dimensional matrix to the R log M-dimensional subspace preserves the signal that

is correlated with the expectation while significantly reducing the statistical noise

from sampling. This guarantees a sharp spectral concentration to the expectation

Diag(p) / 2 BDiag(p)1/2*

In the last step, similar to the Phase II of Algorithm 3, if the underlying true

probability is "well-conditioned" we can further improve the sample complexity by

refine the estimation.
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Algorithm 3: Rank 2 algorithm
Input: 2N sample counts.

Output: Estimates p, A, B.

Divide the sample counts into two independent batches of equal size N, and
construct two average empirical matrices. Each of the following two steps uses an
independent copy of B.

Phase I

1. Binning according to the empirical marginal probabilities

Set p^ = E[M] [B]ij. Partition the vocabulary M into:

Zo = {i: < <g i > M } - - {i } , k = 1 : log log(M).

2. Estimate separation vector in each bin (up to sign flip). Set Aj = 0.

If E pg < Eo, set AI0 g = 0, else

(Rescaling): Set E = diag(pi )- 1/ 2 [B - pT]i xgjdiag(&g1 )-1/2.

(SVD): Let ulogu T be the rank-1 truncated SVD of E. Set vlog = diag( )1/2uiog.

If < Eoe- set E = 0, else

(Regularization): Set dk"X = (Z ) ,if a row/column of [B]i x has sum larger

than 2d", set the entire row/column to 0. Let B denote the regularized block.

(SVD): Let VkVkT be the rank-1 truncated SVD of (B - p:: kp k

3. Stitching the segments. Fix k* = arg maxk llVkll, set Aj, =Vk..

For all k, define I = {i : i E :- Ai > 0} and Ik = k\ k'

Set - = i -[ if] , and A ,= -tk otherwise.
Set Al - VkiTE-M, + [Bi Z EM.jEl-[Bik

Phase II

1. (Construct anchor partition) Set A = #. For all empirical bins, if
"Tk 112 ( dx/N) /2 skip the bin; otherwise set A = A U {i E : Ai > 0}.

2. (Estimate anchor matrix)

Set BA [ Z AJEA[BN ii iEAJAC[BN i,j . Set vector b = [ ieAJEM[BNiiJ
Z ciEA ,jA[BNij 3 1i.Ac1Ac[BN i,3 AjEM[BNij

Set aaT to be rank-1 truncated SVD of the 2 x 2 matrix (BA - bbT).

3. (Refine the estimation:)

Set = [a, b-1 [ Z A [BNbI,M

Rtun A, ad ' EA[BN=iM

Return p,,and B = -^ + EA -
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Algorithm 4: Rank R algorithm

Input: 4N i.i.d. samples from the distribution B of dimension M x M.
(In each of the 4 steps, B refers to an independent copy of the bigram matrix with
N samples.)
Output: Rank R estimator B for B, and V for the rank R subspace of scaled
matrix DBs~qrt.

1. (Binning according to the empirical marginal probabilities)

Set & = Z[4B]j. Define Pk = Iek. Partition the vocabulary M into:

1={i : <,61}, and Zk= {i : Pk : p Pk+1}, fork = 1: log.A.

Sort the M words according to i in ascending order.

Set W1, ^ A and MTk- = fEJ. Set the block diagonal matrix

-- 1/2

DS (2.7)
1/2 T

log M -L 11g M J

2. (Estimate dictionary span in each bin)

For each bin Zk, if Wk <coe-, set 7 k, = 0; else consider diagonal block Bk [ B] x

(a) (Regularization): Set d' = WkPk. If a row/column of Bk has sum larger than 2d"',

set the entire row/column to 0. Denote the regularized block by Bk.

(b) (R-SVD): Let the columns of 1 k denote the leading R singular vectors of Bk.

3. (Estimate dictionary span and an t1 estimator B2 ) Set the projection matrix

Proj f

Projp, = [ . . (2.8)

Proji-,

(a) (Regularization): For each word i in bin Zk, if the corresponding row in B has sum
larger than 2 pk, set the entire row and column to zero. Denote the regularized average
bigram matrix by B.

(b) (R-SVD): Set B0 to be the rank-R truncated SVD of matrix ProjpDsBDsProjp.

Let the columns of V denote the leading R singular vectors of B0 .

4. (Refinement to get fi estimator)

Repeat the regularization in Step 3 on B, let B denote regularized average bigram matrix.

Set Y = (VT DsBDsV)~ 1/ 2(V T DSBDs), Set B = D'YYTDSl.

Return B and V.
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2.4 Details of Rank 2 Algorithm

Given N samples, the goal is to estimate the word marginal vector p as well as the

dictionary separation vector A up to constant accuracy in fl norm. We denote the

estimates by ^ and A. Also, we estimate the underlying probability matrix B with

'T + .AT Note that since |Alli < IIplll = 1, constant 4l norm accuracy in p

and A immediately lead to constant accuracy of B also in 4l norm.

In this section, we prove Theorem 2.5 and Theorem 2.6 about the correctness of

the 2 Phases of Algorithm 3, the detailed proofs are provided in Section 2.7.1 in the

appendix.

Throughout the section, we denote the ratio between sample size and the vocab-

ulaRy size by

do N/I, (2.9)

and we assume that do is lower bounded by a large constant such that

do/log do > f .

Theorem 2.5 (Linear sample complexity of Rank 2 algorithm). Fix Eo to be a small

constant. Given N = E(M) samples, with large probability, Phase I of Algorithm 3

estimates p and A with accuracy:

1p- P11 < 6o, IIA - AlNI < Co, IIL - B1i < EO.

Under the separation assumptions of A, we can refine the estimation to achieve

arbitrary E accuracy.

Theorem 2.6 (Refinement of Rank 2 algorithm). Assume that B satisfies the Q(1)

separation assumption. Given N samples, with probability at least (1 - 6), Phase II
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of our Algorithm 3 estimates p and A up to accuracy in f1 norm:

p - p| < s/M/6N, |E - Al1 < /M/3N, B - | = O(1M/6N).

First, we show that it is easy to estimate the marginal probability vector p up to

constant accuracy.

Lemma 2.1 (Estimate the word marginal probability p). Given the average empirical

count matrix B, we estimate the marginal probabilities by:

S Bij. (2.10)
jEM

With probability at least (1 - 6), we can bound the estimation accuracy by:

1
IIP - P1 < . (2.11)

The hard part is to estimate the separation vector A with linear number of sample

counts, namely when do = E(1). Recall that in the linear sample size regime, naively

taking the rank-1 truncated SVD of (B - 'T) fails to reveal any information about

AAT, since the leading eigenvectors of B are dominated by the statistical noise of the

sampling words with large marginal. Algorithm 3 achieves this with delicate steps.

The organization of this section is as follows:

1. Section 2.4.1 introduces the binning argument and the necessary notations for

the rest of the section. We group the M words into bins according to the

empirical marginal probabilities, i.e. pi's. We call a bin "heavy" or "light"

according to the marginal probability of a typical word in that bin.

2. Section 2.4.2 analyzes how to estimate the entries of A restricted to different

empirical bins (up to some common sign flip). To achieve this, for the heaviest

bin where words' marginals are in the order of Q(log M/M), we can simply

apply truncated SVD to the properly scaled diagonal block of the empirical

average matrix B. For all other empirical bins, we examine the corresponding

53



diagonal blocks in B. The main challenge here is to deal with the spillover effect

due to inexact binning, and Lemma 2.12 shows that with high probability, such

spillover effect is very small for all bins with high probability. Then we leverage

the clever proof techniques from [76] to show that given small spillover effect,

we can first regularize each diagonal block and then apply truncated SVD to

estimate the segments of separation vector.

3. Section 2.4.3 shows how to stitch the segments of estimates for A across different

bins.

4. Section 2.4.4 shows that built upon the initialization, if the dictionary further

satisfies certain separation condition, we can refine the estimation to improve

its dependence on target accuracy E to meet the information theoretic lower

bound.

2.4.1 Binning

In order to estimate the separation vector A, instead of tackling the empirical count

matrix B as a whole, we focus on its diagonal blocks and analyze the spectral con-

centration restricted to each block separately, using the fact that the entries Big
restricted to each diagonal block are roughly uniform.

For any set of words I, we use B1 ,1 to denote the diagonal block of B whose row

and column indices are in the set I. When restricting to the diagonal block, the rank

2 decomposition of the expected matrix is given by BI,_ = pjpT + AEAI.

Empirical binning We partition the vocabulary M according to the empirical

marginal ' in (2.10):

(ek-1 1k log 2-EO= :--_p <-,I -- : Pi <- , Er, -- A:<pM M M M M-

(2.12)
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We call this empirical binning to emphasize the dependence on the empirical estimator

p, which is a random variable built from the first batch of N sample counts. We

call Io the lightest empirical bin, and 'log the heaviest empirical bin, and 1A for

1 < k < log log M the moderate empirical bins.

For the analysis, we further define the exact bins according to the exact marginal

probabilities:

,0 _-1 e-1 ek log A,
Io ={i :- Pi <Y-}, Ik ={i : Pi <F---- ,Iiog={i: og P}.

M M M M

(2.13)

Note that since the target accuracy of Phase I is a small constant Eo, we can safely

discard all the words with marginals less than Eo/A1 as that incurs an f1 error only

in the order of O(eo).

Spillover effect As N increases asymptotically, we will have I. coincides with I,

for every bin. However, in the linear regime where N = e(M), binning is inexact

and we have the following two spillover effects:

1. Words from a heavy bin 1k', for k' much larger than k, are placed in a empirical

bin Ik;

2. Words from bin Ik escape from the corresponding empirical bin 'E.

The hope, that we can have good spectral concentration in each diagonal block

B kkj, crucially relies on the fact that the entries Bj restricted to this block are

roughly uniform. However, the hope may be ruined by the spillover effects. Next, we

show that with high probability the spillover effects are small for all bins with large

probability mass:

1. In each empirical bin Zk, the total probability mass of heavy words from the

union of bins U{k':k'>k+1}Ik' is only in the order of O(e-ek /2) (see Lemma 2.12).

2. Most words of Ek stays within the nearest empirical bins, namely the union of

bins U{k1:k-1<k'<k+1}I', (see Lemma 2.9).
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Notations To analyze the spillover effects, we define some additional quantities.

We define the total marginal probability mass in the empirical bins to be:

Wk = EEkPj7 (2.14)

and let MAk = -I denote the total number of words in the empirical bin. We also

define IVA = Pi

We use jk to denote the set of spillover words into the empirical bin k:

Jk =k f n(U(kI:kI>k+1}IkI), (2.15)

and let 4 denote the "good words" in the empirical bin Ik:

4k = Ik\Jl,. (2.16)

We also denote the total marginal probability mass of the heavy spillover words J,

by:

WkZ= EiE-Pi- (2.17)

Note that these quantities are random variables determined by the randomness of

the first batch of N samples, in the binning step. We fix the binning when considering

the empirical count matrix B (with independent batches of samples) in the other steps

of the algorithm.

Define the upper bound of the "typical" word marginal in the k-th empirical bin

to be:

pk = e T+1 /M,

Recall that we have Ek Bi,k = WpP + wqq and we assume WU, Wq > Cw = Q(1). We

can bound each entry in B by the product of marginals probabilities as

2
Bi < 2,.
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Let d" denote the expected max row/column sum of the diagonal block B;

d M k =: M. max Bij = 2AlkP/C,2 . (2.18)
1,JG6 k

2.4.2 Estimate segments of A

Heaviest empirical bin First, we show that the empirical marginal probabilities

of words in the heaviest bin concentrate much better than what Lemma 2.1 implies.

Lemma 2.2 (Concentration of marginal probabilities in the heaviest bin). With high

probability, for all the words with marginal probability pi > fo log(A)/M, for some

universal constant C1 , C2 ,

C1 < /pj CP2 . (2.19)

Lemma 2.2 says that we can estimate the marginal probabilities for every words

in the heaviest bin with constant multiplicative accuracy. It also suggests that we do

not need to worry about the words from log get spilled over into much lighter bins.

The next lemmas shows that with proper scaling, we can apply truncated SVD

to the diagonal block to estimate the entries of separation vector A restricted to the

empirical heaviest bin.

Lemma 2.3 (Estimate A restricted to the heaviest empirical bin). Suppose that

WVIog = Z 0 g > co. Define D ,g = Diag(-g ). Consider B , the diagonal

block corresponding to i.g. Let E be the rank 1 truncated SVD of Di'2 (B Iog
1/ 

iog g 

1 og

,,1og p g)Di 2 . Set ving = D-2 E1/2. With large probability, we can estimate the

dictionary separation vector restricted to the heaviest empirical bin up to sign flip

with accuracy:

min{||AVg - v g|1,| |iAig + 'Iog1} = o (m 1/d 1 2 , 1/d ). (2.20)

The two cases in the above bound correspond to whether the separation is large or

small, compared to the statistical noise from sampling, which is in the order 1/d 1 4.
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If the bin contains a large separation, then the bound follows the standard Wedin's

perturbation bound; if the separation is small, i.e. 11A2g 1ii < 1/d' 4 , then the bound

1/dl 4 just corresponds to the magnitude of the statistical noise.

Moderate empirical bins In Lemma 2.12, we upper bound the spillover proba-

bility Wk to show that the spillover effects are small for all the moderate bins. Given

that, Lemma 2.5 and Lemma 2.6 show that we can first regularize each diagonal

block and then apply truncated SVD to estimate the entries of the separation vector

A restricted to each bin.

Lemma 2.4 (Bound spillover probabilities). With high probability, for all empirical

bins, we can bound Wk defined in (2.17), the spillover probability from much heavier

bins, by:

Wk < 2ek do (2.21)

Now consider B ,?k, the diagonal block corresponding to bin k. We restrict

attention to its spectral concentration on indices of Lk, the set of "good words" defined

in (2.16). To ensure the spectral concentration, we "regularize" it by removing the

rows and columns with abnormally large sum. Recall that the expected row sum of

the diagonal block without spillover is bounded by dm' defined in (2.18). Let Rk

denote the indices of the rows and columns in B-k - whose row sum or column sum

are larger than 2dm'", namely

]k { i C Zy ; B 2dg'" or Zjek B > 2dn'a}. (2.22)

Starting with Bk = B-k xik, we set all the rows and columns of Bk indexed by JZk to

0.

To make the operation of "regularization" more precise, we introduce some ad-

ditional notations. Define p5. to be a vector with the same length as pik, with the

58



entries spillover words J. set to 0,

(p5-)i = PiliEEC. (2.23)

Similarly define vector Ek to be the separation vector restricted to the good words:

We define the matrix fk (of the same size as B k):

k =k&k + Ak4. (2.25)

Note that by definition the rows and columns in Bk and Fk that are zero-ed out

do not necessarily coincide. However, the next lemma shows that Bk concentrates to

Bk in the spectral distance.

Lemma 2.5 (Spectral concentration of diagonal blocks.). Suppose that the marginal

of the bin 1A is large enough IV =, piT > eoe-k. With probability at least (1-MA/),

for some universal constant r, we have

Q~'"log(Ndkr"
Bk - :k 2 <15 d oN. (2.26)

2 N

Proof. Here we highlight the key steps of the proof, and defer the detailed proof to

Section 2.7.1.

In Figure 2-2, the rows and the columns of B ,k, are sorted according to the exact

marginal probabilities of the words in ascending order, with the rows and columns

set to 0 by regularization shaded. Consider the block decomposition according to the

good words L4 and the spillover words Jk. We bound the spectral distance of the

4 blocks (A 1, A 2 , A 3 , A 4) separately. The bound for the entire matrix Bk is then an

immediate result of triangle inequality.

For block A 1 whose rows and columns all correspond to the "good words" with

roughly uniform marginals, we show its concentration by applying the result in [76].
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For Ilock A -d Aid we show that after rgilarization thc spectral norm of these two

blocks are small. hituitivelv, the expected row siuns of block A42 are bounded by '2d'J"

and the expected colin sumns are bounid led by 2d"*N =(1/N), as a result of the

bound on W 1 in Lenna 2.12. Thus the spectral norm of th block A 2 is likely to be

bounded by O(d2""/N). We show this rigorously with high proba bility argunents.

Lastly for block A, which rows ad columns al corrospond to the spillover words.

We show that the spectral norm of this block is very small, as a. result of the small

spillover marginal W4%.. .

BT ~ ~ T
xk PkPki- kAk

I 1  43 kk

A2 A 0 0

Figure 2-2: block (ecomillpositionl of the diagonl block of Bi2, , corr(sponding to I,.

Lemma 2.6 ( Estimate the separation v ctor rstricted to bins). Suppose that 117A

2 pg > Cze-- for some fixed conostont C, = Q(1). Let t7vk be the rank-i trancated

SVD of the matrix (Bk - 7 ). With high probability, we have

iii{| | -- 'k 12, 1 -+ 1h2}

1/2

J) yn log(NdA" ( Nd IaX log(Nd")

0N |A(2 ?N)

(2.27)
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Claim 2.1 (Estimate the separation vector restricted to the lightest bin). Setting

A10 = 0 only incurs a small constant error:

IIA4I 1  ! ItpT0I1i - Ilp-ioI1i + 14 o < : + 2edo/2 =OE)

where we used the assumption that do/ log do > e- 4 .

2.4.3 Stitch the segments of E

Given Vk for all k as estimation for Ay,'s up to sign flips. Fix k* to be one good bin

(with large bin marginal and large separation). Partition the words into two groups

4f= {i : i E 1  : Aj > 0} and IC. = 'k.\4. Without loss of generality assume

that > Ej E A. We set Ajk. = vk*. For all other good bins k, we

similarly define If and 1
k. The next claim shows how to determine the relative sign

flip of Vk. and Vk.

Claim 2.2 (Pairwise comparison of bins to fix sign flips). For all good bins k E

we can fix the sign flip to be Ayk Vk if:

and AT = --Vk otherwise.

Proof. This claim is straightforward. When restricted to the good bins, the estimates

Vk are accurate enough. We can determine that the sign flips of k* and k are consistent

if and only if the conditional distribution of the two word tuple (x, y) E M 2 satisfies

Pr(x E Ik. x E If) > Pr(x E I.x IE 1
A), and we should revert vk otherwise. E

Concatenate the segments of A, we can bound the overall estimation error of the

separation vector.

Lemma 2.7 (Estimate separation vector in Phase I). For a fixed small constant eo =

0(1), if do/ log(do) E0 4, with large probability, Phase I of Algorithm 3 estimates
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the separation vector A with constant accuracy in f, norm:

||A- Al =O(EO).

This concludes the proof for Theorem 2.5.

2.4.4 Refinement

Construct an anchor partition Imagine that we have a way to group the M

words in the vocabulary into a new vocabulary with a constant number of superwords.

The new probability matrix is obtained by summing over the rows and columns of

the matrix B according to the grouping. We similarly define marginal vector PA and

separation vector AA over the superwords. If we group the words in a way such

that the dictionary over the superwords is still well separated, then with N = Q(M)

samples we can estimate the constant dimensional PA and AA to arbitrary accuracy.

Such estimates provide us some crude and global information about the true original

dictionary. Now sum the probability matrix only over the rows accordingly, the

expectation can be factorized as PAPT AAAT. Therefore, given accurate estimates

of pA and AA, obtaining refined estimation ' and A is as simple as solving a least

square problem.

Definition 2.3 (Anchor partition). Consider a partition of the vocabulary [M] into

(A, Ac). denote pA = Zi pi and AA = iCAAi. We call it an anchor partition if

for some constant CA = (1),

cond <PA A CA. (2.28)
1 - PA, -AA

If the dictionary is well separated |hAil 1 = Q(1), it is feasible to find an anchor

partition. Moreover, we will show that we can use the estimator A obtained in Phase

I to construct such an anchor partition easily. The next lemma states a sufficient

condition for constructing an anchor partition.
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Lemma 2.8 (Sufficient condition for constructing an anchor partition). Let A1 be

the vector of A restricted to a set of words I. Suppose that |A|Il|l CIIAIII for some

constant C Q(1), and that for some constant C' < -C, we can estimate A1 up to

precis ion:

E Zr - A11  C'11A111 1. (2.29)

Denote A {i E I : Aj > 0}. We have that (A, M\A) forms an anchor partition

defined in 2.3.

Definition 2.4 (Good bins). Denote the dictionary separation restricted to the "good

'words" in each empirical bin Ik by:

Sk- =: (| |= 1. 2.30)

Fix constants C1 = C2 = |AII = Q(1). We call bin k a "good bin" if it satisfies

that:

1. the marginal probability of the bin Wk > C1e-.

2. the ratio between the separation and the marqinal probability of the bin satisfies

k S C2Q

Let 9 denote the set of all the good bins. Next lemma shows that a constant

fraction of total probability mass is contained in good bins.

Lemma 2.9 (Total mass in good bins). With high probability, we can bound the total

marginal probability mass in the "good bins" by:

Ekeg Wk > IA li/12. (2.31)

This implies a bound of total separation contained in all the good words of the good

bins:

-- Sk > 2C2Zgg > (lA1)2 = Q(1). (2.32)
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Lemma 2.10 (Estimate the separation vector restricted to good bins). If the em-

pirical bin 'k is a good bin, with high probability, the estimate Alk from Phase I

(Lemma 2.6), for the separation vector restricted to the bin satisfies:

IIAk kIll Vo |1Ai" Ili (2.33)

The above two lemmas suggest that we can focus on the "good words" in the

"good bins", namely I = Ukag4k. Lemma 2.9 showed the separation contained in

I is at least Ekeg Sk = CIJAIA for some C = Q(1); Lemma 2.10 showed that with

linear number of samples we can estimate A restricted to I up to constant accuracy.

Therefore by Lemma 2.8 we can construct a valid anchor partition (A, M\A) by

setting: A= {i: Ai> 0, for iE , kE g}.

Ideally, we want to restrict to the "good words" and set the anchor partition

to be {i : A > 0, for i E 4, k E g}, but we cannot distinguish the "good

words" from spillover words. However, the bound on the total marginal of spillover

Zk Wk = O(e-do/ 2 ) guarantees that even if we mis-classify all the spillover words,

the construction is still a valid anchor partition.

Estimate the anchor matrix Given the two superwords (A, M\A) from the

anchor partition, define the 2 x 2 matrix DA = to be the anchor
1-PA, -AA

matrix. To estimate the two scalars PA and AA, we apply the standard concentration

bound and argue that with high probability,

e A,EA[BN]i,j

iEACjEA[BN]i,j

ZieA,jeAc [BN]i,j - DAD TI| = O( 1)
ZieAjeAc [BNiAJ ]

Recall that by anchor partition, we have IAAI = Q(1). Thus we can estimate PA and

AA to accuracy 1. Since N = Q(M) is asymptotically large, we essentially obtain

precisely the anchor matrix DA.
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Use anchor matrix to refine estimation Now given an anchor partition of the

vocabulary (A, A'), and given the exact anchor matrix DA which has Q (1) condition

number, refining the estimation of pi and Ai for each i is very easy and, achieves

optimal rate.

Lemma 2.11 (Refine estimation). With probability at least 1 - 6, Phase II of Algo-

rithm 3 outputs estimates P and A such that

||p- p|l < \1/6N, |A| - All < V1/6N.

The above lemma implies the Li norm accuracy for Theorem 2.6:

|Ip- p|1, < VM/6N, HA| - All1 < VM/6N.

2.5 Details of Rank R Algorithm

In this section, we examine each step of Algorithm 4 to prove Theorem 2.2 and

Theorem 2.3. Recall that we are given 4 independent batches of N samples, with

which we construct 4 independent empirical bigram matrix B = B + E where the

noise matrix E are independent and identical copies of sampling noise E. In each of

the 4 steps of the algorithm, an independent and identical copy of the bigram matrix

is used. We omit the index i =1,.. , 4 for notation brevity.

2.5.1 Binning

We focus on the symmetric case where the rank R probability matrix is parameterized

as B = PWPT, and W is a PSD matrix. The algorithm and analysis can be easily

extended to deal with more general case. We define the weight w, = E W,i, We

assume that the weights are lower bounded by

uw11' =mwin.w, >r C1 = 2(1).
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The marginal probability is given by

PA =Zic1 i,k =Zr WrPV'

Note that each entry of the probability matrix B can be bounded by the product of

the corresponding marginal probability as below:

= ~ ~ S ZM wspP Kt4stps) E (t'W) W) I

Again, binning according to the empirical marginal is given by:

(2.34)

1k {I: < ^< }, fork =1: logM.

Let Mk = l~kI denote the number of words in bin Zk.
The grouping of words according to the exact marginal probabilities is defined as:

- . ek-1 ek
Ik= ?: - , fork=1:logM.M MJ

Define Pk to be the typical marginal of a word in bin I:

Pk =eki/M.

For i,j E Ik, we have Bi, / p2WmiT.

Due to the statistical noise of sampling, Ik may contain words whose exact

marginal is much larger than fk. The next lemma argues that such spillover effect is

small.

Lemma 2.12 (Spillover from heavier bins is small). With high probability, for all

empirical bins 'k, we can bound the spillover probability from much heavier bins by:

Wk := ZieI,,:k'>k+r pi 2e-e'r do/2 (2.35)
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Definition 2.5 (Big bin). An empirical bin A is a big bin if

T~17 =jEgA. Pi > e-k. (2.36)

We know that a constant fraction of all the probability mass lies in such big bins.

Moreover for do > 1, we have W> > e- > 2e-(k)do/2 W

Lemma 2.13 (Escaped probability mass). With high probability, for all big bins, the

mass that escapes from the bin is bounded by

.3 : EE~kiV~.,for Ik-k'I<-r pi < 4WVIeekTo2

2.5.2 Spectral concentration in diagonal blocks

Define the regularized probability matrix lB by setting the rows/columns correspond-

ing to spillover words from much heavier bins to 0:

= Diag(1[pi < 2Pk])BDiag(1[pj < 2fk]) (2.37)

Under the assumption that W is a PSD matrix, we define the M x R matrix B"4qr

and Fsqr" to be:

B"srt - PW1/2, and ,q'r = Diag(1[pi < 2P1)PWI/2V (2.38)

Consider the diagonal block corresponding to the k-th empirical bin

Bar [B]xkxtk.

Similarly, we define the Nb,. x R matrix restricting bin 'k as:

and 1B53 = Diag(1[pi < 2p)PgWI/ 2 ,

We argue that, given N = Q(MR2 ), for each diagonal block Bk, Step 2 of Algorithm 4
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finds a subspace Vk correlated with B'rt We can bound IIProjBqrt - Bqrt Up to

constant accuracy.

Definition 2.6 (Expected row sum in diagonal blocks). Recall that for i, j E Ik, we

have Bi < p/ Define the maximal expected row sum of the diagonal block Bk

to be:

'tax= MP/Wmn. (2.39)

Note that in the particular parameterization for the problem community detection

with uniform marginal, we can simply define drma to be 1/M and thus get rid of the

w- dependence, and the rest of the analysis follows to recover the sample complexity

result of N = e(MR2 ) in the community detection problem with R communities.

Lemma 2.14 (Spectral concentration in each diagonal block). Regularize the k-th

diagonal block Bk by removing the rows/columns with sum larger than 2dma". Run

rank R truncated SVD on the regularized block Bk. Let the columns of the Mk x R

matrix VA, be the leading R singular vectors. Define Projp =Yk~T . We have

)1/2
II~roY ~sqrt sqrtj1 ~ Ndx'log Nd,ka

laqk -E Nsq )~ a (2.40)

2.5.3 Low rank projection

In Step 3 of Algorithm 4, we "stitch" the subspaces Vk for each bin Z. learned in Step

2 to get an estimate for the column span of the entire matrix.

Define the diagonal matrix Ds of dimension M x M to be:

Ds = 1/ l. . (2.41)

- 1/2Plog Al Ms.

Define Proji, to be the block diagonal projection matrix which projects an M x M
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matrix to a subspace V of dimension at most R log M:

Proji--

Projp =P'.. . (2.42)

Projf-

Now consider the empirical average bigram B with the 3rd batch of samples. We

regularize the entire matrix in the following way. For each row in B, if the word i is

in bin .'Z. as defined in Step 1, and if the corresponding row has sum larger than 2pk,

we set the entire row and column to zero. Let B denote the regularized matrix.

Lemma 2.15. Let B1 denote the rank R truncated SVD of Projf DsbDsProjf. With

large probability, we can bound the spectral distance between B1 and DsIDs by:

ogN2 / 1) 4
JIB, - DsBDsI = 0 "("M)) . (2.43)

Lemma 2.16. Let B 2 = DS B1 Df , we can get the f1 error bound as:

log(Nw2/M) 1/4
l|B 2 - Bl11 =0 W2.

(Nw 2I,,/M R2

So far we have proved Theorem 2.2 for Algorithm 4.

2.5.4 Refinement

For a given PSD matrix X = UUT, whose SVD is given by X = VEVT, we define

X 1/ 2 to be X 1/ 2 
- V 1 /2. Note that V = UH for some unknown rotation matrix H.

Lemma 2.17 (Refinement with separation). Recall that initialization B1 obtained

from Step 3 such that |1B-Ds5Ds|| 1 (WmaxAM R2 /wzn N)1/ 4 Assume that comin(DsIDs) >

(w 2  AR 2 /W 2  N 1/4.
max d i scsih

Let V denote the ft leading left singular vectors of B1 . Regularize B from the 4-th
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batch of samples in the same way as in Step 3. Set

y (VTDsBDsV)- 1/ 2 (vTDshDs).

Let 13 = yTY and B = D SB3 DS1 . We can bound the spectral distance by

M R
IB3 - DsBDsF O( N

M R

(2.44)

(2.45)

2.6 Sample complexity lower bounds

Lower bound for estimating probabilities

We reduce the estimation problem to the community detection for a specific set of

model parameters.

Consider the following topic model with equal mixing weights, i.e. w = wC = 1/2.

For some constant CA = Q(1), the two word distributions are given by:

[1+ Ca

P= -M '.

q [= - Can I
S M '~

1-Ca

' M '

The expectation of the sum of samples is given by

E[BN1 =N 1 (ppT
2

T N 1+ Ca2
+qq = _

Note that the expected row sum is in the order of Q(}). When N is small, with

high probability the entries of the empirical sum BN only take value either 0 or 1,

and BN approximately corresponds to a SBM (G(M, a/M, b/M)) with parameter

a= (1+Cl) and b = m(1 - C).

If the number of sample document is large enough for any algorithm to estimating
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the dictionary vector p and q up to Ci accuracy e for a small constant c, it can then be

used to achieve partial recovery in the corresponding SBM, namely correctly classify

a -y proportion of all the nodes for some constant 7 = .

According to Zhang & Zhou [127], there is a universal constant C > 0 such that if

(a - b) 2 /(a + b) < c log(1/-y), then there is no algorithm that can recover a 'y-correct

partition in expectation. This suggests that a necessary condition for us to learn the

distributions is that

(2~~~ (I)CA >C log (CA/0),
2 (N/M)

namely (N/M) > clog(CA/e)/2C1. In the well separated regime, this means that

the sample complexity is at least linear in the vocabulary size M.

Note that this lower bound is in a sense a worst case constructed with a particular

distribution of p and q, and for other choices of p and q it is possible that the sample

complexity can be much lower than that Q(AI).

Lower bound for testing property of HMMs

In this section, we prove an information theoretic lower bound for testing whether a

sequence of observations consists of independent draws from Unif [MI, verses being a

sequence of observations generated by a 2-state HMM with observation distributions

supported on {1, . .. , M}. Such a lower bound will immediately yield a lower bound

for estimating various properties of HMMs, including estimating the entropy rate, as

a sequence of independent draws from Unif [M] has entropy rate log(M), whereas the

2-state HMMs we consider have an entropy rate that is an additive constant lower.

We note that this HMM lower bound is significantly stronger than the analogous

task of testing whether a matrix of probabilities has rank 1 versus rank 2. Such a

task corresponds to only using the bi-gram counts extracted from the sequence of

observations. It is conceivable that by leveraging longer sequences (i.e. k-grams for

k > 2), more information can be extracted about the instance. While this is the

case, as our lower bound shows, even with such information, 0(M) observations are
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required to perform this test and distinguish these two cases.

Theorem 2.7 (Theorem 2.4 restated). Consider a sequence observations from a

HMM with two hidden states {sP, sq}, emission distributions p, q supported on M

elements, and probability t = Q(1) of transitioning from sp to sq and from sq to

sP. For sufficiently large M, given a sequence of N observations for N = o(M), it

is information theoretically impossible to distinguish the case that the two emission

distributions are well separated, i.e. Ip - qII > 1/2, from the case that both p and q

are uniform distribution over [M], namely the HMM is degenerate of rank 1.

In order to derive a lower bound for the sample complexity, it suffices to show

that given a sequence of N = o(M) consecutive observations, one can not distinguish

whether it is generated by a random instance from a class of 2-state HMMs (Defini-

tion 2.2) with well-separated emission distribution p and q, or the sequence is simply

N i.i.d. samples from the uniform distribution over M, namely a degenerate HMM

with p = q.

We shall focus on a class of well-separated HMMs parameterized as below: a sym-

metric transition matrix T = [ t, , where we set the transition proba-

bility to t = 1/4; the initial state distribution is rp = lrq= 1/2 over the two states s,

and sq; the corresponding emission distribution p and q are uniform over two disjoint

subsets of the vocabulary, A and M\A, separately. Moreover, we treat the set A as

a random variable, which can be any of the (M/2) subsets of the vocabulary of size

M/2, chosen with equal probability 1/ (M2). Note that there is a one to one mapping

between the set A and an instance in the class of well-separated HMM.

Now consider a random sequence of N words Gj = [91,..., gN] E MN. If this

sequence is generated by an instance of the 2-state HMM denoted by A, the joint

probability of (G N, A) is given by:

Pr2(G , A) = Pr2(G NIA)Pr2(A) = Pr2(GNJA) 1 (2.46)
(M/2)

Moreover, given A, since the support of p and q are disjoint over A and M\A by

72



our assumption, we can perfectly infer the sequence of hidden states S(Gy, A)=

[sI, sN (sE {sp, sq}N simply by the rule si = sl, if gi E A and si Sq otherwise.

Thus we have:

Pr2(G NIA) = Pr2(GN, SlIA) = 1/2 N (1 - t)1[si = si_1] + t1[si 2si] (2.47)MJ / fIA/2 (2/27

On the other hand, if the sequence G is simply i.i.d. samples from the uniform

distribution over M, its probability is given by

1
Pri(GI) MN' (2.48)

We further define a joint distribution rule Pri(GN, A) such that the marginal proba-

bility agrees with Pri (GN). In particular, we define:

Pri (G, A) = Pri(AIG.)Pri(G) = Pri(GN), (2.49)
Es sPr2GNIB) I

L3C(AM 2 ) Pr2(G )

where we define the conditional probability Pri(AIGN) using the properties of the

2-state HMM class.

The main idea of the proof of Theorem 2.7 is to show that if N = o(M), the

total variation distance between PrI and Pr2 vanishes to zero. It follows immediately

from the connection between the error bound of hypothesis testing and total variation

distance between two probability rules, that if TV(Pri(G ), Pr2(GN)) is too small

we are not able to test which probability rule the random sequence G' is generated

according to.

The detailed proofs are provided in Appendix 2.7.4.

As an immediate corollary of this theorem, it follows that many natural properties

of HMMs cannot be estimated using a sublinear length sequence of observations:

Corollary 2.4. For HMMs with 2 states and emission distributions supported on a

domain of size at most M, to estimate the entropy rate up to an additive constant

c < 1 requires a sequence of Q(AI) observations.
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2.7 Proofs for Chapter 2

2.7.1 Proofs for Rank 2 Algorithm, Phase I

Proof. (to Lemma 2.1 (Estimate the word marginal probability p))

We analyze how accurate the empirical average p'is. Note that under the assump-

tion of Poisson number of samples, we have ^ ~ Poi(Npi), and Var(p) = pi.

Apply Markov inequality:

Pr(M 1- 12 > t) M
Pr A A , N

thus probability at least 1 - J, we can bound

M A - A 2

-< N (2.50)

Then apply Cauchy-Schwatz, we have

M M Al - 2) 1/2

p^1 -p2 p p

Proof. (to Lemma 2.2 (Concentration of marginal probabilities in the heaviest bin))

Fix constants C1 = and C2 = 2, apply Corollary 2.5 of Poisson tail (note that

for word in the heaviest bin, we have Npi > do log M to be a super constant), we

show that ^ concentrates well:

Pr(C1 Npi < Poi(Npi) < C2Npi) > 1 - 4 e-Npj12 > 1 - 4 logM/(2M)

Note that the number of words in the heaviest bin is upper bounded by Mog

i g - < .og(M) Take a union bound, we have that with high probability, all the
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estimates ''s in the heaviest bin concentrate well:

Pr(Vi E Ilog : Cipi < ' < C2Pi) > 1 - e log AM/(2Al)
log M

> 1 - 4e-N log M/(2M)+log M-log log M

> 1 -- M-(do/2- 1 )

> 1 -

where recall that do = N/MA is a large constant.

Proof. (to Lemma 2.3 (Estimate the dictionary separation restricted to the empirical

heaviest bin))

(1) First, we claim that with high probability, no word from IA for k < log(M) - e2

is placed in Ilog m. Namely all the words in Ziog have true marginals at least Q( 12 ).

This is easy to show, by the Corollary 2.5 of Poisson tail bound, each of the word

from the much lighter bins is placed in log A. with probability less than 2 e-NlogM/M

Take a union bound over all words with marginal at least 1/M, we can bound the

probability that any of the words being placed in log M by 2Me-do logA = Q(M-do+l)

(2) The appropriate scaling with the diagonal matrix diag(p )1/2 on both sides

of the diagonal block is very important, which allows us to apply matrix Bernstein

inequality at a sharper rate.

Note that with the two independent batches of samples, the empirical count matrix

B considered here is independent from the empirical marginal vector p. Thus for every

fixed realization of ', we have that with probability at least 1 - M- 1 ,

S log(1/6)))=e0 -(d + )
N log(M)

(M)

where we used the fact that the all the marginals in the heaviest bin can be estimated
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with constant multiplicative accuracy given by Lemma 2.2; also, note that compared

to the Bernstein matrix inequality directly applied to the entire matrix as in (2.73),

here with the proper scaling we have Var < 1 and B < since pi > log(M)/M

for all i C 11g.

We will show that By the diagonal block of the empirical count matrix,

concentrates well enough to ensure that we can estimate the separation restricted to

the heaviest bin by the leading eigenvector of (B-,2o - #gP~ ). Note that

1/2 - 1
/

2  
_ -

1 / 2  
-

1 / 2  T - 1/2 / 1/ 2  T

'log 'log ,'log og log log 'log log 'log log flog og

Apply triangle inequality we have

2 B T -12 -1 2 -/ T
D-- ~'(B-g~o - ~'g)D 1 / - 1 A~ (D-1/2 A j0 g )12

=0 +

+N + FAYg~ Pig~g)j~

=0(F

(3) Let unT be the rank-1 truncated SVD of D" 2 (B-I -log ^ liog 'log

V = ~~-iog 1log),?log )D 1 .Le
V = og u be our estimate for A 0 g. Apply Wedin's theorem to rank-1 matrix

(Lemma 2.22), we can bound the distance between vector u and D /l2 A by:

1/2,Ail~g D- 1/2,A_(M/N)1/2 (I)14)min{I|b 2A - u112, /211 x + u112} = O(min { , ( /N)1/4 }).Ti liog -log 1/"2A g12

Note that 11D|/2 1112 = |1 /2 112 = 1. Apply Cauchy-Schwatz, for any vector x, we
'log 

T log

have

||$ 2112 D |- 112 $ D/22 > 1< f /2Ix, D''- 1 > =||x|1,
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therefore, we can bound

- Vo7i, IAio, + vi1} < (min { IA11N , 1/ (MI/N)1/4 )

In the above inequalities we absorb all the universal constants and focus on the scaling

factors.

l

Proof (to Lemma 2.4 (Spillover from much heavier bins is small in all bins))

Define dk = ekdo, which is not to be confused with dm' defined in (2.18).

(1) Consider k' = k + T.

bounded by:

S k-1
Pr (N < Poi(N pi)

The probability that a word i from 'k, falls into 1k is

Nk)
< N" M < Pr (Poi(N

e(T+k)

MI
Ne) 2rTkdo/2< N( < 2e- 2.5

M) -

(2.51)

where we apply the Poisson tail bound (1) in Corollary 2.5, and set c = e- T < 1/2 for

T >1. Note that this bound is doubly exponentially decreasing in T and exponentially

decreasing in do.

In expectation, we can bound Wk by:

EWk=EZpi E1
iEM k':k'>k+r+1

1[i E Ik'] Pr N < Poi( Npk) < N )

e(T+k)
< E piPr (Poi(N Al)

iEM

<4

<;2ee'+'do/2

Similarly, apply the Poisson tail bound (2) in Corollary 2.5, and set c' = e' > e for

T > 1, we can bound the probability with which a word i from much lighter bins,
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namely U{:k<k-,rIk, is placed in the empirical bin Ik by:

Pr N < Poi(Npi) < N < Pr Poi(N e(kr) M e- < 2e ekdo, (2.52)
N ~- PM - M M

and bound the total marginal probability by:

(2) Next, we apply Bernstein's bound to get a high probability argument. We show

that with high probability, for all the log log(M) bins, we can bound the spillover

probability mass by Wk E[Wk] + O(vd(1)), which implies that asymptotically as

the vocabulary size M -+ oo, we have Wk < 2 e-er+do/2 for all k.

Consider the word i from the exact bin -k', for some k' > k + T. Let

/i=2 e-'kf do/2

denote the upper bound (as shown in (2.51)) of the independent probability with

which word i is placed in the empirical bin Ik (recall the Poisson number of samples

assumption). The spillover probability mass is a random variable and can be written

as

Wk piBer(Ai),
iEIkt:(k+r)< k' <loglog(M)

Note that the summation of word i is over all the bin Ik, for (k+T) 5 k' < log log(M),

where recall that in in Lemma 2.2 we showed that with high probability the heaviest

words are retained in the empirical bin 1iog. Apply Bernstein's inequality to bound

Wk:

T2 s

Pr(Wk - EWk > t) K e -PXjaxpi/

To ensure that the right hand side is bounded by e-log A (this is to create space for
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the union bound over the log log MA bins), we can fix sonic large universal constant C

and set t to be

t = 2 (( pAi) 1/ 2 + max pi log(AI).

which right hand side can be bounded by:

( )1/2 + max p i< :(k <;'og og( ~)-eAdo/2) 1/2 log A"I

1/2I y 2 k (kT-): k log1og(AI) Pi ol
< (2 max ek'-Ck'do/2 /2+ log MI

(k+r)<kl<log log(M) MM

2e-k T do/4 log M

where the first inequality is uses the worst case to bound the summation, and the

last inequality uses the fact that do = Q(1) is a large constant. Therefore, we can set

Gk+ T do /4) log M + (Ig M)
2

t - 2( + M). Finally, take a union bound over at most log log(M)

moderate bins, we argue that with high probability (at least 1 - O(1/M)), for all the

empirical moderate bins, we can bound the spillover marginal by:

Wk < EWk + O( )
poly(m)

(3) Moreover, assume that Wk > e-k, we can bound the number of the heavy spillover

words MIk compared to number of words in the exact bin J,.

First note that Ik /M. Recall that d" = NW(eT+k/M) was defined in

(2.18). Also, since Wk > e-k >> Wke r e-kedo we can lower bound the number of

words in the empirical bin i1 by:

Wk
i- ek+7-/
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< c k+ d 0 (iV (
( k

< 1

where the second last iinoquality w used the high prob)ability upper bound for V/,

a nd in the last ineq uality we use the fact that e" > 2x for all .

Proof. (of Lemma 2.5 (Coricenttration of the regularized diagonal block BA,.))

in Figure 2-2, the rows and the columns of B7 A are sorted according to the

exact marginal probabilities of the words in ascending order. The rows an( columns

that are set to 0 by regularization are shaded.

By T TB7  ~BA 4-P "A Ak

Figure 2-3: b)100k dlecompl1 ositionl of thie diagonal 1)10ck of B1v2 corresponding to Z(.

On the left hand sidle, it is the empirical matrix without reguharization. W'e

dletote the remlovedl Olemen~ts i)y matrix 1E E Rh""i whlosO only nlOnzerO) entries are

those that are remo0v0d from ini the regniarization st01p (iin the strip~s with orange

color), namely E = [B 1 ( i or j E RA] . WXe dlelote thme retainled elemenits hy matrix

BA =~ B- \ E = B7 - - E.
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On the right hand side it is the same block decomposition applied to the matrix

which we want the regularized empirical count matrix converges to. Recall that we

defined 3k =Pk + AkA in (2.25), where we set entries corresponding to the words

in the spillover set JA to 0.

We bound the spectral distance of the 4 blocks (A1 , A 2 , A 3 , A 4 ) separately. The

bound for the entire matrix Bk is then an immediate result of triangle inequality:

Bk - k| = |[BN 2_kx.k E - BkI

IIA1\E + A2\E + A 3\E + A4\E - NfikII

< |141\E - Bx1 + ||A2\E| + ||A3\E+ IIA4\E|I.

We bound the 4 parts separately below in (a)-(c).

(a) To bound 11A1\E - BE k 11, we first make a few observations:

1. By definition of JA, and Zk, every entry of the random matrix A1 is distributed as

an independent Poisson variable kPoi(Ak), where Ak < N(k )2 < do =i)

o(1).

2. The expected row sum of A 1 is bounded by of dkx.

3. With the regularization of removing the heavy rows and columns in E, every

column sum and the row sum of A1 is bounded by 2dmay.

Therefore, by applying the Lemma 2.25 (an immediate extension of the main theorem

in [76]), we can argue that with probability at least 1 - ' for some constant

r - 9(1),

IIAi\E - BEkX4 112 =O(V adr/N).

(b) To bound 1A2\EII and 1A3\EII, the key observations are:

1. Every row sum of A2\E and every column sum of A 3\E is bounded by 2dg".
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2. For every non-zero row of A 2 , its distribution is entry-wise dominated by a

multinomial distribution 1Mul ; (2Nd x)), while the entries in E are

set to 0, and note that in A 2 the columns are restricted to the good words 4.

Moreover, by the Poisson assumption on N (recall that d" = Wkiik), we have

that the distributions of the entries in the row are independently dominated by

-Poi 2kd
N Mk.

Lemma 2.18 (row/column-wise f1 norm to f2 norm bound (Lemma 2.5 in [76])).

Consider a matrix B in which each row has C1 norm at most a and each column has

L1 norm at most b, then JjB|12 < V'U.

Claim 2.3 (Sparse decomposition of (A 2 \E)). With high probability, the index subset

Jk x C4 of (A2\E) can be decomposed into two disjoint subsets 7Z and C such that:

each row of 7Z and each column of C has row/column sum at most (i log(Ndk'a)),

for some constant r.

Recall that from regularization we know that each column of R and each row of

C in A 2\E has column/row sum at most 2dk". Therefore we can apply Lemma 2.18

and conclude that with high probability

\ rdmax log(Ndmax)
|| A2\E||2 < 2 V k .

N

Proof. (to Claim 2.3)

We sketch the proof of Claim 2.3, which mostly follows the sparse decomposition

argument in Theorem 6.3 in [76]. We adapt their argument in our setup where the

entries are distributed according to independent Poisson distributions. We first show

(in (1)) that, with high probability, any square submatrix in (A 2 \E) actually contains

a sparse column with almost only a constant column sum; then, with this property we

can (in (2)) iteratively take out sparse columns and rows from (A 2 \E) to construct

the R and C.

(1) With high probability, in any square submatrix of size m x m in (A2 \E), there

exists a sparse column whose sum is at most (g log(Ndnax)).
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To show this, consider an arbitrary column in an arbitrary submatrix of size

m x m in (A 2\E). Recall our observation (b).2, that the column sum is dominated

by 1Poi(A) with rate

A = 2Ndmx M.

Therefore, we can bound the column sum by applying the Chernoff bound for Poisson

distribution (Lemma 2.23):

Pr a column sum > log Nd%'y))
N k <Pr (Poi(A) > (r log Nd"'))

_eA (r log N ax) -r log Nd"
< CArlg d

-- eA

r 1 ) -r log Nd 'x

2Ndm)7

2m

where in the last inequality we used the fact that for Nd'k"' and r to be large constant,

the following simple inequality holds:

log(Ndmax ) log >rlk log (r .k
2Ndkxm /- m 

Then consider all the m columns in the submatrix of size m x m, which column sums

are independently dominated by Poisson distributions, we have

Pr every column sum > (-- log Nd"nax) ) .(rAA
N 2m

Next, take a union bound over all the m x m submatrices of (A 2 \E) for mi ranging

between 1 and Mk, and recall that block (A 2 \E) is of size Mk x (Mi - AM). We can
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bound for all the submatrices:

Pr for every submatrix in (A 2 \E), there exist a column whose sum < log Nd,")

>1 - M M -N

kMk " M
>1 - (1) (Mk)

M 2m

> 1 - Mk (MAk ) 2m (rMk7)-fl

M=1

>1 - k- M . (2.53)

Note that this is indeed a high probability event, since for Wk > coe-k, we have shown

that MA. > M-1 2 ker.

(2) Perform iterative row and column deletion to construct R and C.

Given (A 2\E) of size Mk x MAk, we apply the argument above in (1) iteratively.

First select a sparse column and remove it to C, and apply it to remove columns until

the remaining number of columns and rows are equal, then apply it alternatively to

the rows (move to R) and columns (move to C) until empty. By construction, there

are at most MAk such sparse columns in C, each column of C has sum bounded by

(r log Nda"), and each row of C bounded by 2d" because it is in the regularized

(A 2\E); similarly R has at most Mk rows and each row of R has sum at most

(j log Ndy") and each column has sum at most 2d'.

E]i

The proof for the other narrow strip (A 3\E) is in parallel with the above analysis

for (A 2\E).

(c) To bound |A4\E||, the two key observation are:

1. The total marginal probability mass of spillover heavy wordsWk E i

2e-ek+r/2. (shown in Lemma 2.12).

2. Similar to the observation in (b).2 above, the distributions of the entries in each

row of (A 4\E) are independently dominated by !Poi (2Ndma-c i).
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In parallel with Claim 2.3, we make a claim about the spectral norm of the block

(A4\E):

Claim 2.4 (Sparse decomposition of (A 4\E)). With high probability, the index subset

Jk. x JA, of A 2 can be decomposed into two disjoint subsets R and C such that: each

row of R and each column of C has sum at most L; each column of 7 and each row

of C has sum at most dm'

Proof. (to Claim 2.4)

To show this, we construct sparse decomposition similar to that of (A 2 \E).

The only difference is that, when considering all the 7n x m. submatrices, we only

need to consider all the submatrices contained in the small square (A 4\E) of size

Jk x Jk, instead of all submatrices in the wide strip (A 2\E) of size Lk X Jx'. In

this case, taking the union bound leads to factors of Mk, compared to that of MA. in

(2.53).

Here we only highlight the difference in the inequalities. Consider an arbitrary

column in an arbitrary submatrix of size m x m in (A 4\E). Recall that this column

sum is dominated by 1Poi(A) with rate

A = 2Nd --
kWkk

Thus we can bound the probability of having a dense column by:

> r) <(r r
Pr(a column sum > -) Pr(Poi(A) > r) < e () -eA

Take a union over all the square matrices of size m x m in block (A4\E), we can
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bound:

Pr(for every submatrix in (A4\E), there exist a column whose sum < )
kN

Mk M~ 2,rn ( M rWA, -r
>1 - (

m mt2V e2dcaW k)

>1 - /fM(r-
2 )

where in the last inequality we used the fact that d" = NWk ek, and plug in the

high probability upper bound of Wk K 2e-ek'rdo as in (2.21), we have:

rWk rWkM re (ek+do)

e2dmaxWk 2eNWek+re ek+ Tdo -2e(ek+rd o )

Again note that given that the bin has significant total marginal probability, thus

A, > Me- 2k, the above probability bound is indeed a high probability statement. l

FLI

Proof. (to Lemma 2.6 (Given spectral concentration of block Bk, estimate the sepa-

ration ak ))

Recall the result of Lemma 2.5 about the concentration of the diagonal block with

regularization. For empirical bin with large enough marginal WA, we have with high

probability,

B~ ~ d"'i log2 d"
2 N

Also recall that p is defined to be the exact marginal vector restricted to the em-

pirical bin Ik.
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We can also bound

(13k -P~~ - AkAj 2P (Bk <A - IkjI) - (51 k Pk)2

11 ~ + 1T '11

dmax log 2 d"M"< C k k
-- N

Note that in the last inequality above we ignored the term p - P1 2 as it is small

for all bins (with large probability):

P ~P~~k~k 4 ~~P~k P k P /k~ji/V P~~/k iP

overhk over Jk

o( n dlax)

- N N '

where in the second inequality we write -- Ak2 into two parts over the set of
Pk 2

good words L and the set of bad words Jk. To bound the sum over 4 we used the

Markov inequality as in the proof of Lemma 2.1; and to bound the sum over jk as
2

well as the term p we used the fact that if a word i appears in 'k, we must have
||2

p- <P. The last inequality is due to MA[ < WPgk < Wapk dmax

Let VkVT be the rank-1 truncated SVD of the regularized block (Bk -pkg). Apply

Wedin's theorem to rank-1 matrix (Lemma 2.22), we can bound the distance between

vector VA and ak by:

min {I|ak -VkII, |ak +Vkjl

dax 1 dmnax , 1/2

=0 (mn { log(Nd" ) , log(Nd") })

Proof. (to Lemma 2.7 (Accuracy of A in Phase I)) Consider for each empirical bin. If

Wk, < 'oek set Ag, 0. We can bound the total f, norm error incurred in those bins
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by co. Also, for the lightest bin, we can bound the total f, norm error from setting

= 0 by Eo small constant. If Wk > coek-, we can apply the concentration bounds

in Lemma 2.2, 2.6, and note that AIEgk - AII1 A MILi, - A. 2

Note that we need to take a union bound of probability that spectral concentration

results holds (Lemma 2.5) for all the bins with large enough marginal. This is true

because we have at most log log M bins, and each bin's spectral concentration holds

with high probability (1 - l/poly(M)), thus even after taking the union bound the

failure probability is still inverse poly in M.

Actually throughout our discussion the small constant failure probability is only

incurred when bounding the estimation error of p for the same reason of estimating

a simple and unstructured distribution.

Overall, we can bound the estimation error in f, norm by:

dmax* lo Ndm"axIjA - Al1  d + / + C + ) VTIk d~k l 1/2
k N

lightest bin heaviestbin moderate bins with small marginal

moderate bins with large marginal

1/ 4  lJWkiPk log(NWpkk) )1/4< 2o + 1/do + E( N
k

< 2co + (log(do)/do) 1/4(1 + er >(kM )1/4)
k

< 2c + (log(do)/do) 1/4(1 + eT )

= O(,o)

where in the second last inequality used Cauchy-Schwartz and the fact Wk K 1, so that

(WIe) 1/ 4 < Z -(VVVM )1/2 Z/ W2 E MAk) 1/4 < M 1 / 4 , and in the last

inequality above we use the assumption that do =: N/M satisfies that do/ log(do) >

1/cs. LI

2.7.2 Proofs for Rank 2 Algorithm Phase II

Proof. (to Lemma 2.8 (Sufficient condition for constructing an anchor partition))
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(1) First, we show that if for some constant c = Q(1), a set of words A satisfy

EA > cIIAIII, (2.54)
iEA

then (A, [M]\A) is a pair of anchor set defined in 2.3.

By the assumption of constant separation (CA = Q(1)), iEA Ai = 9(1). We can

bound the condition number of the anchor partition matrix by:

PA, AA 1 T2 -4D+T V1+4c +I
cond < =j (1

1 -PA, -AA T2 -- 4D - T - l+ 4cCA - 1

where T = P - AA < 1 and D -PAAA - (1 - PA)AA = -A A.

(2) Next we show that A defined in the lemma statement satisfies (2.54).

Denote A* = {i E I : Aj > 0}. Note that ||A1||1 = EiEA Ai - EiuI\* A.i

Without loss of generality we assume that .iA* Ai > 1IIA|I11 > !CIIAII 1 , where

the last inequality is by the condition IA1I|1 CIIAII 1 .

Given A that satisfies (2.29). We look at A {i C I: Aj > 0}.

y Ai= E Ai- A3 i
iEj iEAnA* iEfn(I\A*)

= 1: , - E |Ajj
iEA* iE(An(2\A*))u(A*n(I\A))

> Y
iEA*

1
> ( C - C') hAil1

1
> -CC,

6

where in the second last inequality we used the fact that, if the sign of Ai and Ai are

different, it must be that jA - Ail > IAIE.

Proof. (to Lemma 2.10 (Estimate the separation restricted to the k-th good bin))

Since it is a good bin, we have the f2 bound given by Lemma 2.6 as below (as-
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suming the possible sign flip has been fixed as in Lemma 2.2):

-k dajx log 2 dax 1
I~k - < kN ||sk I2

Then we can convert the bound to f1 distance by:

II~ < \,Mkl~ v- AJ2nbV'-kI\Vk - AkII 2IIkIiIlAkII2J ll

-~ 1 k 1 N1 i
<Mk11Vk - ak kI

IIAk112
Mk Wo g 2 (do)

W k N

Mk log2

Ik Wk lo 2 (do)
<C e' VNWk-T

WZ 'Ik N

<Ce' M
NWkek

logdo))= ( d d0

where in the second last inequality, we used the fact that Mk'j < Wk again, and in

the last inequality we used the assumption Wk > co/ek.

Proof. (to Lemma 2.9 (With Q(1) separation, most words fall in "good bins" with

high probability))

This proof is mostly playing around with the probability mass and converting

something obviously true in expectation to high probability argument.
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(1) Note that by their definition we know that W,4, > 1 Sk, and we have

SW , >
k 1 2Wk -

k Wk S k
k V .

C21+ S-
2W VV-

S'
2W,

< C2])

C2] +1[ Sk
2Wk

r ne tSk
k

Moreover, note that by definition of W.k, we have Ek Wk = 1, therefore

W 2 1
2V < C21 < C2Wk = C2.

k

From the above two inequalities we can bound

Z 1kl[
k W

> C2] > S'- C2.
k

Also note that

(Z A [1'4,,k

Therefo.re according to the definition of "good bins" we have that:

WA- 2 k > 02 and W , > 1 Z Sk - C2 - Cl
k

(2) We want to lower bound the quantity Ek S11 to be a constant fraction of |IA |1.

Note that by definition of S, we can equivalently write the sum as:

5 Sk
k k iElk(U{k': k<k+,}1

k')

'Ai = ( |Aii I i E-kn

ik

Consider for each word i. Assume that word i E Ak. Given N = dOAI for
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< 1 < C1 .

E Wk
kcg

(2.55)

k>
2W4'k -

= E
k

U~k':k'<k+-r}Zk'-



some large constant do, denote dk = ekdo, we can bound the probability Pr(i E

z, n U{kI:k'<k+T}EZk) as follows:

Pr(i E -Ek nU{k':k' k+r}Zk') > 1 - Pr(Poi(Npi) > e'pi) - Pr(Poi(Np) < e-'Nj/2)

-(r-1)e(r+k)do
> e - -e-k

V2irek+rdo

> 1 -

Therefore at least in expectation we can lower bound the sum by

E[S Sk ] = E |63| Pr(i E 'k n U{k':k'<k+r} 1 k') > (1 - 2e-do) l01.
k i k

(3) Restrict to the exact good bins, for which we know that the exact |1p , 1, e-k

and IIA , lI > C.

Here we know that if k is an good bin, the number of words in this exact good

bin is lower bounded by Mk e-k/pk > M/e-k, and since k < log log M we have

that MAk > . This is important for use to apply Bernstein concentration of the

words in the bin.

Since IIAzk l/hpii 1 C, and that lAjI pi, we have that out of the MAk words

there are at least a constant fraction of words with jA I > jCpk. Recall that we

denote Pk = ek/M. This is easy to see as XPk + ( Mk - x)ACpk > IlAk III C Mk Pk

thus x > C/2 - CMk.

Then we bound the probability that out of these cMk words with good separation,

a constant fraction of them do not escape from the closest T empirical bins. Denote

Ak = 2e-dk, which is the upper bound of the escaping probability for each of the word,

and is very small. By a simple application of Bernstein bounds of the Bernoulli sum,
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for a small constant co, we have

Pr( Beri(Ak) > coAMe) K Pr( Beri(Ak) - Ak N > (c> - Ak) -H)
i=1,...cA1k i=1 ...cA

< e Mk~k+-31(CO-k)AIk

Then union bound over all the exact good bins. That gives a log log M multiply

of the probability.

We now know that restricting to the non-escaping good words in the exact good

bins, they already contribute a constant fraction (due to constant non-escaping, con-

stant ratio IIA1 ,I1/Ipk , and constant Zkhexact good bin W/) of the total separation

I|jA 1. Therefore we can conclude that for some universal constant C we have

ESk > Cj|A||1.
k

(4) Finally plug the above bound of Ek SAJ into (2.55), and note the assumption on

the constants C1 and C2, we can conclude that the total marginal probability mass

contained in "good bins" is large:

1 1 1
We2(C -l -- A11 AI.24 24 12

kEg

Proof. (to Lemma 2.11 (Estimate p and A with accuracy in E2 distance))

Consider word i we have that
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Set

[AJ

F ~ 1 -I
PA, AA E jA B,i

1 - PA, -A EAC B

Since EiCA Bj, ~ Poi(N(pApi+AAAj)), apply Markov inequality, we have that

Pr(E(Z Bj, -
i jeA

YB,)2 > E2)
jcA

<k N-1 (PAPi + AAAi)

Note that PA = Q(1) and that cond(DA) = Q(1), we can propagate the concentration

to the estimation error of p and A as, for some constant C = Q(1),

C
Ne2 '

Pr(IIA-Al >E)-
C

Nc 2 -

LII

2.7.3 Proofs for Rank R Algorithm

Proof. (to Lemma 2.12)

E[Wkl < 2eeT +d/

First we argue that with high probability, all words in bins k > log log M concen-

trates well. For pi > 1g, set constant C = 1/2, we have

1
2
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There are at most '" such heavy words. Take a union bound over them we havelog Al

Pr(Vi s.t. i EIk, k > log log M : i E k',k' < k - 1)

> 1 - 2 ,-N log M/2M
-- log Al

> 1 - 2exp(-N log M/2M + log M - log log M)

> 1 - 2exp(-N log M/4M)

1 - 2-do/4

Second, define 'k {i : k E T,k < k' < log log M}. For word i E Ek', let

Ai = 2e- k'dO/2, we have IW4= = piBer(A ). By Bernstein inequality:

Pr(Wk - EWk > t) < exp(- t.

In order to bound the probability by exp(-2 log log M), so that we can take a union

bound over the log M bins, we set t to be t = 2 log log M(1/v/M + log M/M)

O(1/poly(M)), and note that

((S P2A) 1/2 + max pi)
-~k iyk

1 

(1/2 + log M

iEyk Ai l

< ( max (ek/M)2e-ek'do/2)1/2 + log M/Al
k'>k+r

< 1/V'5 + log M/M.

Therefore, we argue that with high probability, for all empirical bins I, we can

bound the spillover probability from heavy bins by:

P . L 2 ) s fk t do/2r

Proof. (to Lemma 2.13 ) Consider for a typical word in the bin kwe can bound the
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probability that it is not contained in bin k by:

Pr(Poi(Npi) < 1Npi or Poi(Npi) > 2Npi) < 4ek /2
2

Apply Bernstein inequality to all the Wk/Pk words in bin k, denote Ak 4e ekdo/2

we have

Pr(Wk' - EWk' > t) < exp(- _/kp )
'Ikp Ak + pkt

Since the bin is big, we have Wk > e-k, we can set

t = (MkPk(Ak/Mk) 1/ 2 + Pk) log log M < 4We~-,kd 4 + log M log log M

where the last inequality is due to MAk > Me- 2 k Take a union bound over all log M

bins, we can ensure that with high probability, for each bin, the escaped mass is

bounded by 4Wkeekdo2

Proof. (to Lemma 2.14) In parallel with the analysis for Rank 2 (see Lemma 2.5),

we know that regularization restores spectral concentration in the diagonal blocks.

Denote the noise matrix in the regularized diagonal block by Ek =B -- fk.

VNd,na log Nd~rk
|JEk-J= J --k 1 J= 0( N

Denote the R-SVD of Bk by VkAkv> .

|IProj pjkProj -- kII| I|Proji (Bk - Ek)Pro j - Bk II
(a)

IIProjpj BkProjp, - Bk|| + |IProj , EkII

(b)
< |Proj iBkProjf, - BkI + k - 13k|| + ||Proj p En||

(c) - +
3Ik -( 2.56 + |E)-|| + ||Projp Ek 0

< 3||Ek||, (2.56)
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where inequality (a) (b) are simply triangle inequality; and inequality (c) used the

fact that Proj j, BkProjp, from truncated SVD is the best rank R approximation to

ik that minimizes the spectral norm. Finally, apply Lemma 2.19 we have

sqrt - sqrtj< iLJkkIJkI.||Projp 5f -B 11f < 5 roj -5Projp, -k 0

Lemma 2.19. Let U be a matrix of dimension M x R. Let P be a projection matrix,

we have

IU - PU11 2 < IIUUT - PU(PU) T II.

Proof. (to Lemma 2.19 ) Let P' = I - P, so U - PU = P'LU. We can write

UUT - PU(PU)T = (P + PI)UUT(P + P') - PU(PU)T

= P IUUTPI + PUUTPI + PLUUTP.

Let vector v denote the leading left singular vector of P LT and P' U, by orthogonal

projection it must be that PV = 0. We can bound

|UUT - PU(PU) TII > Iv(PlUUTPI + PUUTPI + PIUUTP)vI

- |)TPLUUTPIt,1

|1PLU11 2.

Lemma 2.20 (Scaled noise matrix). Consider a noise matrix Es with independent

entries, and each entry has sub-exponential tail with parameter (-, = bij =

Npj )' for b j
NCoi a i .

Consider a fixed matrix V of dimnension Al x R whose columns are orthonormal,
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with large probability we can bound the norm of VTEsV and VT Es separately by:

|1VTEsVII = O( ) and 11PTEsII =0(

Proof. To bound the norm of the projected matrix, note that we have

11VTEsV|| < IIVTEsV|| = Tr(VTESVVTEkTV).

By Markov inequality, we have

Pr(Tr(TEsVVTESTV) > t) < -ETr( T EsVV T ESTV)
t

T(VT E[EsVVT EsI V)
t

x
1R 2
t N'

where the last equality is because for the i, j-th entry of X (let Ei denote the i-th

row of E and Vr denote the r-th column of V)

Xi, = E[E(EiV)(EjVr)= 6o,'j V =J12 Rj, .
rI r

Therefore, with probability at least 1 - 6, we have

||VTEsVII \

Similarly, note that

IV2T EsII V FIVTEsII = Tr(V T EsE V).

By Markov inequality, we have

Pr(Tr(VT EsEV) > t) K ETr(vT Es 4)
-t

= -Tr(V TE[EsEs ]
t
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Proof. (to Lemma 2.15 )

We first show the spectral concentration of ProjpDsBDsProjp to DsBDs can be

bounded as:

IProjkDsBDsProjk - DsBDs=
(log(Nw2M) 1/4

~rni/M)NW 2 ". IA
nwn.,/

Note that by definition the rows and columns that are set to zero do not necessarily

coincide in B and 13 (defined in (2.37)), and we do not observe the sparsity pattern

in 1.

Define F B - 1. Apply triangle inequalities we have

IIProjiiDsBDsProjf - DsIDsI

11ProjipDsDsProji - Ds5Ds | + IProjpDsEDsProjpjj

Next, we bound the two terms in (2.58) separately.

(2.58)

(1) First, to bound the term IProjVDsFDsProjp - Ds Ds|Ij we note that

Apply the block concentration result in Lemma 2.14, and recall that d"" = MAk2/Wmin

Wkpk/'wni-, we have
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|ProjpDsg"qI - Ds q1< (E ijjProjp, jsqr - isqr
t

11
2

)1/
2

k ~ ma k o 1k. -Ek

= ((og Nd ) 1/ 2 )
k NP

0 log(NW P Mk )1/2)

7N W jn Wfn

O(( log(NWkek )Wke-k)1/ 2 )NWMrn, MWmin

N rn E +1g(Wvek))W 1ek)l/ 2)
m04 kmi

M N EVIo(
0(( M- log M Z log(Wxek))Wxe-k)l/ 2)V V~Nwm Mmnk

(log(Nw2 in/M) + 3log(1/wmjn)
NWmin/M

= log(Nw1//4w?,n/M ) '

) 1/4

(2.60)

where the last inequality is because log(1/wmiii) 1/wmin, and the second last in-

equality is because

S /log(Wkek))Wke-k S V,/Wke- k
k k

W I ke-k < 2.
kgk k

Therefore, with (2.59) and (2.60) we can bound the first term in (2.58) by:

|IProjpDsiDsProji - Ds DslI

|11(Projp Ds 'q, -Ds' )(ProjpDSsqrt)T

<2|Ds5 f4sr IIProjpD sqrl -Ds stI I
o (log(Nw/2Ai)> 1/4

\ Nwin/M)

1| + JIDs 5,qq')(ProjpD sqt - 5st)T 11

(2.61)

100



(2) Second, to hound Proj D KDProj;. we carefully analyze the regularization

to take care of the spillover effect. In Figure 2-1 we divide 1" into different regions

according to the sparsity pattern of B (as defined in (2.37)) and the regularized

empirical matrix B in this step. We only highlight the division in one diagonal block,

but it applies to the entire matrix across different biiis. We bonid the spectral norm

of tHe ( atrix E restricting to different regionis separateY.

41.

Rk

Figure 2-4: decomposition of k corresponding to Ii,, L, and 7Rk.

In particular, region 1"7t is where rows/columns are not removed by either B or B.

The entries are doninat ed by independent variables /(Poi(N ) - NE,

and have sub-exponential tail with parauleter (ou, = , < 1)

Also, since independent copies of the empirical bigrain matrix are used iII ach step

of the algorithm, the noise is independent with the (1? log M)-dimliensional projectiol

matrix Proji. Apply Lemnna 2.20, with probability at least I - 6 we can bound the

norm of projected noise as:

(R log Al) 2  (
jProjp DSEDsProjy|| < 2||ProjjpEsProjJI = O( ) = (

Region Ej corresponds to the rows/columns that are removed by both l and B,

thus E = f.

Region1 E is set to 0 in h hut not in B, thus the entries of E2 are equal to [1] .
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For the rows of T3sqr restricted to bin k, the row sums are bounded by 2 Pk, and the

column sums are bounded by Wk. = O(Wke--edo/2) (Lemma 2.13). Recall the fact

that if a matrix X in which each row has L1 norm at most a and each column has

L, norm at most b, then |IX|12 V/ab. Therefore, we can bound

IProjpDsE 2DSProjp E ( P WPk) 2

k

.k

= O(e-N/ 2M). (2.62)

Region E4 is set to 0 in 1 but not in B, corresponding to a subset of spillover words,

and E4 = B 4. There are at most Wki/Pk rows of region E4 in each bin k. Moreover,

the row/column sum in are bounded by 2Pk. Conditional on the row sum, the entries

in the row are distributed as multinomial Mul(p; 2fk), thus the entries of DsE4Ds

are dominated by subexponential tail with parameter (-,ij = , bi 1 < 1).

With probability at least 6 we can bound

IProjpDsE4DsProj,| < |IProjf [Es] 4Projp + ProjjpDs(pk1pT )DsProjplI

IIProjii,[Es]4Projfjj +I ProjpDs(Pk1pT )DsProjp||

( , R logM)(R logM) (( W
<V! ln k o + ((W k pk2 1/2

VN6 k V -

(RlIogM) 2 +N2)
N6

where the second last inequality is by the same argument as that in (2.62).

By triangle inequality over the 4 different regions, we can bound:

(R logM) 2

jjProjpDsEDsProjp.||j = 0( V NLR oI + e-N/2M).(.3
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Therefore, with (2.61) and (2.63) we can bound (2.58) by:

IProjpDsBDsProji - Ds3DsI = 0
(log(Nw2 n/M) 4

Nw2 J

Finally note that B 1 is the best rank R approximation of ProjpDsBDsProjp and

that DsBDs is of rank at most R. We have

JB 1 - DsBDsI - JIB, - ProjipDsBDsProjp|| + I|ProjkDsBDsProjp - DsBDs|

< 2||Projp' DsbDsProjp - DsBDsI.

l

Proof. (to Lemma 2.16 ) By triangle inequality we have

|JB2 - ]Bill IB2 - ]Bil + JIB - Bill

11 -Bill 2 - 2 E -ekN/2A1 -(jAIR )1/2

k k rninn

Apply Cauchy-Schwatz to the first term we have:

< |lDs(B2 - B)DsI|F >3 Pip3

" v/2RIIDs(B 2 - B)DsI

- (log(Nw2M)1/4

Nw t iMR2

where the second inequality used the fact that if a matrix X if of rank R then

||X||F <_ V/||X||.

nI
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Proof. (to Lemma 2.17 ) After removing the abnormally heavy rows and columns,

we have that each row /column corresponding to a word in 1 (defined according to

Step 1 binning) has row sum and column sum less than 2P. We have that entries

of Es =: (DsBDs - DsIDs) are dominated by entry-wise independent zero mean

sub-exponential variable with parameter ( = , = N)' and b <1.

Given the initialization B1 from Step 3 such that JIB1 - DsBDsl < o-rnin(DsBDs),

the correctness of Step 4 of Algorithm 4 follows Lemma 2.21 below.

F-1

Lemma 2.21 (Refinement with separation condition). Consider a noisy low rank

matrix X = UUT + Es. Assume that the noise entries are zero mean, independent

and E[[Es 12] < Assume that -min(U) > (MR2/N) 1/8 . Given initialization U

such that IUU| T - UUTI =Eo < j'min(U)2 . We can find X such that

MR
IIX - XIIF = O( N)

Proof. Let V and V denote the leading left singular vectors of U and U.

|lProjkiUU TProjpilI =IProp'(U0T - UUT)Projpill <to.

First, consider the R x R matrix VTXV, we know that with large probability,

II' TX - PTUUTV = IIPTEsI = ( )

Let Z = (VTXV)1/ 2 , we know that there exists some unknown rotation matrix Hz

such that

I|Z - V T UHzII = 0(1).

Note that U = ProjfU+Projp1 U, we have o-in (U) cmin (VT U) + .(ProjviU).
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By assumption of -o we have

((Z) = V (T U) > Omrin(U) - C1/2 2 ()

Next, consider the matrix VTX we know that it can be factorized as:

VTX = T(UUT + Es)

= VT UHz(UHz)T + v TEs

= Z(UHz)T + iTEs + o(1).

Let U = (Z-lVTX)T. Note that U - UHz = (Z1vTEs)T. Thus we can bound that

IIUUT - UUT F T - UHz(UHz)T IF

( |U -UHz)(UHz)TIF 1I(U -UHZ)UT ||F

|UHzZ- 17TEs|F IIUZ-v TESF

We bound the two terms separately. First

IUHzZ1 VT EsIIF if HzZ10TEsI|F + H ( v)TUHZZ-1 T Es||F

< IZZ-1v TEs |iF + 1i(V') T U|I iiZ-1|| |||| T EsIF

< 11-TESiIF(1 + fii/I'/rnin)

<2i|VT Es|qF

We then bound the second term

||UZ-1TEsI|F iiUHzZ-1VTEs F + | (Z-lVTEs)TZ-1 vTEsF

< 11|v TEsiIF(2 + IIvTEsI FI/ .min(Z) 2 )

6H T Es||,

where the last inequality is by the assumption omin(U)2 > (MR/N)1/4 > (MR/N)1 / 2
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11 TES 1F-

Finally by Lemma 2.20 we have that with large probability

|IUUT - UUT IIF 811VT ESF = 0( R)

2.7.4 Proofs for HMM testing lower bound

Proof. (to Theorem 2.7)

TV(Pri(GN), Pr 2(GA)) )

STV(Pri(G N, A), Pr2(G N, A))

G N [MI AG

G N M}

1~ E[],A12

IPr2(G , A) - Pri(G , A)l

Pr2 (GP A)r1

2 M 2 _ 2

Pri(GN, A) (Pr2(G N A)
Pri (G{ N A)

1

1/2

Pr1(GN, A)

Pri(GN, A) Pr2 (Gy|B))
Be (/2)

GN [MIN M

1/2

-1)

(2.67)

Y

where inequality (a) used the fact that E[X] (E[X2 ]) 1 / 2 ; equality (b) used the joint

distributions in (2.46) and (2.49); and equality (c) takes sum over the summand A
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(2.65)

(2.66)

1/2

(a)1

(b)1

GNC-[M]N A

GNE[M]N M2

MN 
)2

\ M(/) G1EMNA(M2
Pr2(Gy|) - 1 ,1



first and makes use of the marginal probability Pr1 (Ge) as in (2.48).

In order to bound the term Y = N [M]N MNE M Pr2(G1B) in(M122 13C- b(A M/2)

equation (2.67), we break the square and write:

AIN Ll Pr2(GflB)Pr2(Gf|B'). (2.68)
(A/2)

2 
B AE(A) GN E[M]N

In Claim 2.5 below we explicitly compute the term EGNE[A]N Pr2 (GNIB)Pr 2 (G f 1B')

for any two subsets B, B' E (A/2). Then in Claim 2.6 we compute the sum over B, B'

and bound Y < To conclude, we can bound the total variation distance

V ~ ~ 1 _ 1 2,I

TV(Pr (G N) Pr2(G N)) < -
22(1-2t)N

In the case that N < Al this is bounded as TV(Pri(G ), Pr2(GN)) V 2 N

which vanishes as N = o(M) for any constant transition probability t.

Claim 2.5. In the same setup of Theorem 2.7, given two subsets B, B' E M and

|13 = IB'i = M/2, let P = M\B,B' = M\B' denote the corresponding complement.

Define x E [0, 1] to be:

x = 1B n B'I/(M/2). (2.69)

Let -y 1(x) = + (+ (1 - 2t)2 + /(i - (1 - 2t)2)2 + (2(1 - 2t))2x2) and let 72()

1 1 + (1 - 2t) 2 - 1(1 - (1 - 2t)2 ) 2 + (2(1 - 2t))2x2 be functions of |B n B'| and t.

We have:

Pr2( N I)Pr(G NB,) 1 (-y (x)N'(1 - 2-t2 (x)) - -y 2(x)( -yj()
/ Pr2(G2fB)Pr2(G2B') =

2 (12(x) -- 2(X))

G E[AI]N N

Proof. (to Claim 2.5)
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(1) For an instance of 2-state HMM which support for q is specified by set B E

(/2), consider two consecutive outputs (gn 1 , gn). We first show how to compute

the probability Pr2 (g9ngn-1, B).

Given B and another set B', we can partition the vocabulary M into four subsets

as:

M1 = BnB', M2 = B A , M3 =Bn]B', M4 =BnB1.

Note that we have 1M 11 = IM41 = xM/2 and 1M21 = IM 31 = (1 - x)M/2.

Define a subset of tuples JB C [412 to be

JB = {(1, 1), (1, 2), (2, 1), (2, 2),(3,3), (3,4), (4, 3),(4,4)}, J = [4]2 j

If gn_1 E My', g, E Mj and (j', j) E JB, we know that the hidden state for the HMM

associated with set B does not change between time slot n-I and n, namely s"-1 = sn.

Thus Pr2(g9ngn-1,B) = Pr2 (s8Isn-1,B)Pr 2 (gnjsn,B) = . Also, if (j',.j) E JL, we

know that there is the state transition and we have Pr2 (gnlg - 1 , B) -

Similarly, for the 2-state HMM associated with set B', we can define the set of

tuples

JB' = {(1, 1), (1,3), (3,1), (3,3), (2,2), (2,4), (4,2), (4, 4)}, J, = [4]2 .

Here Pr2 (g9ngn- 1 , B') = if (j',j) E JB, and equals t if (j',j) c 3j,.

(2) Next, we show how to compute the target sum of the claim statement in a

recursive way.

For fixed sets B and B', define Fj for n < N and j = 1, 2, 3, 4 as below

= S=Pr2 (G"'B)Pr2(G"IB')1[gn E Mj,
GCE[M]-

and the target sum is ZGrE[M]N P 2(GflS)Pr2(Gf LB') = Ej: FN,j. Also, we have
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that

Fj = IMi/Al 2 .

Making use of the recursive property of the probability rule of the 2-state HMM

as in (2.47), we can write the following recursion in terms of F,,j for n > 2:

Pr2 (G Bj13)Pr2(G'IB')1[g, c MVjI
GnE[M]"

Pr2(G-IL3)Pr 2 (G~-1 IL')Pr2 (gnIG ~ , B)Pr 2(gn.G-', 1')
G-E[M]-

E 1[E1 E Mj', g E Mj]
j'=1:4

Pr2 (G' 1 1B)Pr2(G"-B') Z
gnE[M]

Z 1 [,-i E M , grt Mj]Pr2 (gg,-19 , 1)Pr2 (gngt-1, B')
j'=1:4

=MIA1 E -
j'=1:4

1 - t 1  K i ll A

MI/2[(' )E

j) E J] + t 1[(j,j') E

t
JB] + [/2M/2

where we used the probability Pr2 (g,, -1, B) derived in (1).

Equivalently we can write the recursion as:

F.,2

,.4
1=1

D-/ T
(M'/2) I ,

x

for diagonal matrix Dx =
1 -x

1 - x
and the symmetric stochastic matrix
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T given by

( _ t)2 (1 _ t)t (1 - t)t t2 \

(T - t)t (1 - t)2 t2 (1 - t)t 4 T

( 12- t)t t2 (1 _ t)2 (1 _

P2 ( -)t -t)t (1 _ t)t (Z t)2,

where the singular values and singular vectors of T are specified as follows: A = 1, 4 =

(1 - 2t) 2 , and vi [1, 1, 1, 1]T, v4 = 1[1, - 1, 1, 1]T. And A2 = A 3 = 1 - 2t with

V2 = [ 1, -1, 0]T and v2 = [1, 0, 0 T.

Note that we can write (F1,1, F1,2 , F1,3 , F1,4)
T = 1, 1, )T.

(3) Finally we can compute the target sum as:

Pr2 (GNILB)Pr 2 (G eIB')

G EIM]N

1 1 1)(FN,1 FN,2 FN,3 FN,4

1 1 1 1 1 (DT)N-1 
2  (1 111

(M12)N1\~ M2 ~ x

(a) 1 
NV

MWN 1v(2DxT)N
_ ( N

1 1 (2x - 1) (1 O)T

IN(1  ) (1 - 2t) 2(2x - 1) (1 - 2t)2

H(x)N

(b) 1 /1 (X)Y2(x)N _ 72(X)_Y1(X)N 1(X)N - 2()N

MN 1() _ 72(X) 7 1(X) - 72(X) /

Y1 7{(1-'2) - 2N (1 _ 71)
M N 71 - Y2

where in (a) we used the fact that

2DxTv1 = v1 + (2x - 1)v4, and 2DxTv4 = (1 - 2t) 2 ((2x - 1)V1 + V4).

In (b) we used the Calley-Hamilton theorem to obtain that for 2 x 2 matrix H(x) param-

eterized by x and with 2 distinct eigenvalue 1yi(x) and y2(x), its power can be written as

H (XN-)N 2x2 + (Y) (X)N 2 (x)N H(x). Moreover, the distinct eigenval-H y (X) -72 (X)71 (X) -r2 (X)
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ues of the 2 x 2 matrix H(x) can be written explicitly as follows:

'y 1() ~ i +(1 -2t) ~1 -(1 - 2t)2)2 + (2(1-2)22

-y2(X) (1 + (1 - 2t) ( (1 - 2t)2 )2 + (2(1 -2t))2X2)

(2.70)

(2.71)

where recall that we defined x = 20 so 0 < x < 1 also we have the transition probability

0 < t < 1/2 to be a constant, therefore we have 71i > 7Y2 to be two distinct real roots. 0

The next claim makes use of the above claim and bounds the right hand side of

(2.68).

Claim 2.6. In the same setup of Theorem 2.7, we have

Pr2(GNIB)Pr 2(G |LB') <
1

1 - 2(1-2t)N

Proof. (to Claim 2.6)

Define f(x) = ' . N-yI(X)) with ml(x) and -y2(x) defined in (2.70)

and (2.71) as functions of x. Recall that x = JB n B'I/(xM/2) c [0, 1].

Use the result of Claim 2.5 we have:

(N

Y= 2 E A
M 33(M/2) se

(a) ( M)

m ) 2 (M/2)
\M/2/

IN

M/2 2i

(M/2

'
(2.72)

M/2

S=
I A 2 M/2) 2

where equality (a) is obtained by counting the number of subsets B, B' E ( A ): for

each fixed B, there are (A(/2) choices of B' such that lB n B'I

Next we approximately bound Y when Al is asymptotically large. First, note that
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-/1(0) = 1 and '1(1) = 1 + (1 - 2t) 2 , we can bound 7y1 (x) as by exponential function:

=(x) = 1 + (1 - 2t) 2 + <( - (1 - 2t) 2 )2 + (2(1 - 2t))2(2 2t)(1-2x)2

Then note that for N increasing with M and thus asymptotically large, we have

72N( -- 71) = o(1), so we bound f(x) by:

lim f(X) -71(X)N I 2 W
M-+00 71 (X) - 2 (X)

< e(1-2t)(1-2x)
2 N

where we used the fact that 1 2 (1 1/ 1+ X2(1-2t) )2) < 1. and that

1/2 < -Y < 1.

Second, we use Stirling's approximation for the combinatorial coefficients (A1/2) 2

and (AM2),

M 4 M/2

M/2 /7rM/2'

M/2 2 (M/2 e-(M/2-2i)2/2(M1/2))2
i ) M/4)

4 M/2
~ e2(i/(A/2-1/2)2 , for log M

irMA/4
< i < (M/2) - log M.

Finally we can approximately bound Y in (2.72) as follows:

2

+ T/2

M/2 .
1 - 2M( \

Y e- i _2 k / /72f M1

1 4 (M

A f1/2
2M

1

log M

i1/2 e-2My2+4(1-2t)y2N +o(1)

e- 2 2M(I-2(1-2t)N/M)

1 - 2(1-2t)N
r tM

where the second inequality is because for M asymptotically large and N = O(M),
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we have

2 log A
2 /2 z:(,

M/2) i=1/

<2 Mr (M/2)4-/ 2 (log l)(M/2)loM Me4 (1- 2 t)(2 log M/M) 2 N

=o(1).

2.7.5 Analyze truncated SVD

The reason that truncated SVD does not concentrate at the optimal rate is as follows.

What truncated SVD actually optimizes is the spectral distance from the estimator

to the empirical average (minimizing JB - 1BN112), yet not to the expected matrix

B. It is only "optimal" in some very special setup, for example when ( BN - B) are

entry-wise i.i.d. Gaussian. In the asymptotic regime when N -s oc it is indeed true

that under mild condition any sampling noise converges to i.i.d Gaussian. However in

the sparse regime where N = Q(M), the sampling noise from the probability matrix

is very different from additive Gaussian noise.

Claim 2.7 (Truncated SVD has sample complexity super linear). In order to achieve

e accuracy, the sample complexity of rank-2 truncated SVD estimator is in given by

N = O(M 2 log M).

Example 1: a = b =,w = 1/2, dictionary given by

[+C A1+ CA 1-C a 1- Ca]
p= M '' M ' M '' M

Al'Al ~q 1-CO 1 -CA l+CA 1+C

Sample complexity is O(M log Al).

Example 2: modify Example 1 so that a constant fraction of the probability mass

lies in a common word, namely p1 = q1 = 1/ 2 p1 = 0.1, while the marginal probability

as well as the separation in all the other words are roughly uniform. Sample complexity
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is O(M2 log N).

Proof. (to Claim 2.7 (Truncated SVD has sample complexity super linear))

(1) We formalize this and examine the sample complexity of t-SVD by applying

Bernstein matrix inequality. The concentration of the empirical average matrix at

the following rate:

D~iI
1

D(Nt)
2

Pr(I-BN -- Bl| > t) e eNVar+BNt/3+10(M)

where Var = IIE[eie7]l| 2 = Idiag(p)1|2 = maxipi, and B = maxijllejejs|2 = 1.

Therefore, with probability at least 1 - J, we have that

1 max p, log(M/S) 1 1
II BN - B1I N + 3 -log(M/J). (2.73)

Since 114lli < v'IllxIz 2 , in order to guarantee that IIA - All, < c, it suffices to

ensure that IA - Al12 < E/v/K. Note that the leading two eigenvectors are given

by o((B) ;> |1PI12 = 1/v/fK and U2 (I) = ||A1l 2 = CA/v 7 . Assume that we have the

exact marginal probability p, by Davis-Kahan, it suffices to ensure that

ll1BN - B11 2  E II2
N VI'_

Example 1. Consider the example of (p, q) in community detection problem,

where the marginal probability pi is roughly uniform. We have ||All 2 =CA/vlI

and maxi pi = 1/M, and the concentration bound becomes

"1 -" log(M/J)
NBN - MN (2.74)

and by requiring

log(M/6) < hAil 2  CA
V MN -"

we get a sample complexity bound N = Q(M log(M/J)), which is worse than the
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lower bound by a log(M) factor.

Example 2. Moreover, modify Example 1 so that a constant fraction of the proba-

bility mass lies in a common word, namely pi = qi = 1/2p, = 0.1, while the marginal

probability as well as the separation in all the other words are roughly uniform. In

this case, j|Ail2 is still roughly CA,/VKI, however we have maxi pi = 0.1, and the

sample complexity becomes N = Q(M 2 log(M/6)). This is even worse than the first

example, as the same separation gets swamped by the heavy common words.

(2) (square root of the empirical marginal scaling (from 1st batch of samples) on

both side of the empirical count matrix (from 2nd batch of samples)). E

Take a closer look at the above proof and we can identify two misfortunes that

make the truncated SVD deviate from linear sample complexity:

1. In the worst case, the nonuniform marginal probabilities costs us an 1l factor

in the first component of Bernstein's inequality;

2. We pay another log(M) factor for the spectral concentration of the Al x A

random matrix.

To resolve these two issues, the two corresponding key ideas of Phase I algorithm

are "binning" and "regularization":

1. "Binning" means that we partition the vocabulary according to the marginal

probabilities, so that for the words in each bin, their marginal probabilities are

roughly uniform. If we are able to apply spectral method in each bin separately,

we could possibly get rid of the A! factor.

2. Now restrict our attention to the diagonal block of the empirical average matrix

kBN whose indices corresponding to the words in a bin. Assume that the bin

has sufficiently many words, so that the expected row sum and column sum are

at least constant, namely the effective number of samples is at least in the order

of the number of of words in the bin.

We apply regularized spectral method for the empirical average with indices

restricted to the bin. By "regularization" we mean removing the rows and
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column, whose row and column sum are much higher than the expected row sum,

from the empirical. Then we apply t-SVD to the remaining. This regularization

idea is motivated by the community detection literature in the sparse regime,

where the total number of edges of the random network is only linear in the

number of nodes.

2.7.6 Auxiliary Lemmas

Lemma 2.22 (Wedin's theorem applied to rank-1 matrix). Denote symmetric matrix

X = vVT + E. Let i7T denote the rank-1 truncated SVD of X. There is a positive

universal constant C such that

C|E if V 2 > CIIEI;
min{IoV - '1|, + 11V I} CIIEII'12 if 11v12 < CIIEII.

Lemma 2.23 (Chernoff Bound for Poisson variables).

Pr(Poi(A) > x) e-' -x for x > A,eA

Pr(Poi(A) < x) < e-A - , for x < A.
eA -

Lemma 2.24 (Upper bound of Poisson tails (Proposition 1 in [49])). Assume A > 0,

consider the Poisson distribution Poi(A).

(1) if 0 < n < A, the left tail can be upper bounded by:

Pr(Poi(A) < n) < (1 - n)-) Pr(Poi(A) = n).A

(2) if n > A - 1, for any m > 1, the right tail can be upper bounded by:

A n+m-1
Pr(Poi(A) > n) (1 - ( + ))-1 Pr(Poi(A) = i).

S + i n

Corollary 2.5. Let A > C for some large universal constant C. For any constant
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c' > e, 0 -< c < 1/2, we have the following Poisson tail bounds:

Pr(Poi(A) cA) < 2 e-A/2,

Pr(Poi(A) c'A) 2e--' .

Proof. Apply Stirling's bound for A

Lemma 2.24 (1) can be written as

Pr(Poi(A) < cA)

large, we have A! > ()A . Then, the bound in

< (1 - c)- 1 Pr(Poi(A) = cA)

< 2e-A(A) A/(cA)!

K 2e-A(A)CA/(cAe-)A

<2-A+cA log(e/c)

< 2e-A/2 I

where in the second inequality we used the assumption that c < 1/2, and in the last

inequality we used the inequality 1 - clog(e/c) 1/2 for all 0 < c < 1.

Similarly, set m = 1 in Lemma 2.24 (2), we can write the bound as

Pr(Poi(A) > c'A) < (1 - A Pr(Poi(A) c'A)
c'A + 1

< (1 - 1/c')-e~ (A)-A/(c'A)!

" 2e- (A)c'A/(c'Ae-)A

" 2e-c' AlO(c'/e)-1

" 2e~-&

where in both the second and the last inequality we used the assumption that c' > e

and A is a large constant. El

Lemma 2.25 (Slight variation of Vershynin's theorem (Poisson instead of Bernoulli)).

Consider a random matrix A of size M x M, where each entry follows an independent

Poisson distribution Ai, ~ Poi(P, ). Define d,,a, = Al maxij Pj. For any r > 1. the
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following holds with probability at least 1 - M-. Consider any subset consisting of at

most 10dM, and decrease the entries in the rows and the columns corresponding to

the indices in the subset in an arbitrary way. Then for some universal large constant

c the modified matrix A' satisfies:

||A' - [EA]II < Cr3/ 2( dma + ')

where d' denote the maximal row sum in the modified random matrix.

Proof. The original proof in [75) is for independent Bernoulli entries Ai~ Ber(Pj).

The specific form of the distribution is only used when bounding the f" f, 4 norm

of the adjacency matrix by applying Bernstein inequality:

M >M2t 2 /2
Pr( X > M2 t) :; expZ( )

ij=- M2  Pi,j + t/3

where Xi, = (Ai, - E[A ,j])xiyj for any fixed xi, yj G {+1, -1}.

Recall that a random variable X is sub-exponential if there are non-negative

parameters (0-, b) such that E[et(X-E[XI)] e 2,
2 /2 for all Itl < 1. Note that a Poisson

variables X ~ Poi(A) has sub-exponential tail bound with parameters (o- = VF b =

1), since

log(E[et(X-A) e-t2 ,2/2) - (A(et - 1) - At) - At 2 < 0, for It| < 1.

Therefore, when the entries are replaced by independent Poisson entries Ai ~

Poi(Pj), we can apply Bernstein inequality for sub-exponential random variables

to obtain similar concentration bound:

M M 2t2 /2 m 2 t 2 /2
Pr(T E Xsa > M2t of e p i 7 e h

M' EM Var(Xij) + bt ~ 2 dP~

The same arguments of the proof in [75] then go through.
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Chapter 3

Learning Gaussian Mixtures in

High Dimensions

3.1 Problem Statement

3.1.1 Formulation

In a Gaussian mixture model, there are k unknown n-dimensional multivariate Gaus-

sian distributions. Samples are generated by first picking one of the k Gaussians,

then drawing a sample from that Gaussian distribution. Given samples from the

mixture distribution, our goal is to estimate the means and covariance matrices of

these underlying Gaussian distributions.

3.1.2 Related Work

Learning mixtures of Gaussians is a fundamental problem in statistics and learning

theory, whose study dates back to [941. Gaussian mixture models arise in numerous

areas including physics, biology and the social sciences ([82, 115]), as well as in image

processing ([100]) and speech ([95]).

In a Gaussian mixture model, there are k unknown n-dimensional multivariate

Gaussian distributions. Samples are generated by first picking one of the k Gaussians,

then drawing a sample from that Gaussian distribution. Given samples from the
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mixture distribution, our goal is to estimate the means and covariance matrices of

Ithese underlying Gaussian distributions

This problem has a long history in theoretical computer science. The seminal

work of [37] gave an algorithm for learning spherical Gaussian mixtures when the

means are well separated. Subsequent works ([39, 103, 121, 29]) developed better al-

gorithms in the well-separated case, relaxing the spherical assumption and the amount

of separation required.

When the means of the Gaussians are not separated, after several works ([22,

64]), [23] and [85] independently gave algorithms that run in polynomial time and

with polynomial number of samples for a fixed number of Gaussians. However, both

running time and sample complexity depend super exponentially on the number of

components k2 . Their algorithm is based on the method of moments introduced

by [94]: first estimate the 0(k)-order moments of the distribution, then try to find

the parameters that agree with these moments. [85] also show that the exponential

dependency of the sample complexity on the number of components is necessary, by

constructing an example of two mixtures of Gaussians with very different parameters,

yet with exponentially small statistical distance.

Recently, [57] applied spectral methods to learning mixture of spherical Gaussians.

When n > k + 1 and the means of the Gaussians are linearly independent, their

algorithm can learn the model in polynomial time and with polynomial number of

samples. This result suggests that the lower bound example in [85] is only a degenerate

case in high dimensional space. In fact, most (in general position) mixture of spherical

Gaussians are easy to learn. This result is also based on the method of moments, and

only uses second and third moments. Several follow-up works ([25, 12]) use higher

order moments to get better dependencies on n and k.

However, the algorithm in [57] as well as in the follow-ups all make strong re-

quirements on the covariance matrices. In particular, most of them only apply to

learning mixture of spherical Gaussians. For mixture of Gaussians with general co-

' This is different from the problem of density estimation considered in [45, 33]
2 In fact, it is in the order of O(eO(k)k) as shown in Theorem 11.3 in [120].
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variance matrices, the best known result is still [23 and [85], which algorithms are

not polynomial in the number of components k. This leads to the following natural

question:

Question: Is it possible to learn most mixture of Gaussians in polynomial time using

a polynomial number of samples?

Our Results We give an algorithm that learns most mixture of Gaussians in high

dimensional space (when n > Q(k 2 )), and the argument is formalized under the

smoothed analysis framework first proposed in [107].

In the smoothed analysis framework, the adversary first choose an arbitrary mix-

ture of Gaussians. Then the mean vectors and covariance matrices of this Gaussian

mixture are randomly perturbed by a small amount p '. The samples are then gener-

ated from the Gaussian mixture model with the perturbed parameters. The goal of

the algorithm is to learn the perturbed parameters from the samples.

The smoothed analysis framework is a natural bridge between worst-case and

average-case analysis. On one hand, it is similar to worst-case analysis, as the ad-

versary chooses the initial instance, and the perturbation allowed is small. On the

other hand, even with small perturbation, we may hope that the instance be different

enough from degenerate cases. A successful algorithm in the smoothed analysis set-

ting suggests that the bad instances must be very "sparse" in the parameter space:

they are highly unlikely in any small neighborhood of any instance. Recently, the

smoothed analysis framework has also motivated several research work ([65 [25]) in

analyzing learning algorithms.

In the smoothed analysis setting, we show that it is easy to learn most Gaussian

mixtures:

Theorem 3.1. (informal statement of Theorem 3.4) In the smoothed analysis setting,

when n > Q(k2 ), given samples from the perturbed n-dimensional Gaussian mixture

model with k components, there is an algorithm that learns the correct parameters up

to accuracy E with high probability, using polynomial time and number of samples.

3See Definition 3.2 in Section 3.2 for the details.
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An important step in our algorithm is to learn Gaussian mixture models whose

components all have mean zero, which is also a problem of independent interest

([128]). Intuitively this is also a "hard" case, as there is no separation in the means.

Yet algebraically, this case gives rise to a novel tensor decomposition algorithm. The

ideas for solving this decomposition problem are then generalized to tackle the most

general case.

Theorem 3.2. (informal statement of Theorem 3.5) In the smoothed analysis set-

ting, when n > Q(k2 ), given samples from the perturbed mixture of zero-mean n-

dimensional Gaussian mixture model with k components, there is an algorithm that

learns the parameters up to accuracy e with high probability, using polynomial running

time and number of samples.

Organization We first focus on learning mixtures of zero-mean Gaussians. The

proposed algorithm for this special case contains most of the new ideas and techniques.

In Section 1.3.1 we introduce the notations for matrices and tensors which are used

to handle higher order moments throughout the discussion. Then in Section 3.2

we introduce the smoothed analysis model for learning mixture of Gaussians and

discuss the moment structure of mixture of Gaussians, then we formally state our

main theorems. Section 3.3.1 outlines our algorithm for learning zero-mean mixture

of Gaussians. The details of the steps are presented in Section 3.3.2. The detailed

proofs for the correctness and the robustness are deferred to Appendix (Sections 3.4.1

to 3.4.3). In Section 3.3.3 we briefly discuss how the ideas for zero-mean case can be

generalized to learning mixture of nonzero Gaussians, for which the detailed algorithm

and the proofs are deferred to Appendix 3.4.5.

3.2 Main results

In this section, we first formally introduce the smoothed analysis framework for our

problem and state our main theorems. Then we will discuss the structure of the

moments of Gaussian mixtures, which is crucial for understanding our method of
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moments based algorithm.

Smoothed Analysis for Learning Mixture of Gaussians Let 9 .,k denote the

class of Gaussian mixtures with k components in R'. A distribution in this family is

specified by the following parameters: the mixing weights wi, the mean vectors [L(i)

and the covariance matrices E(), for i E [k].

k

Wr, W (i}i~Iw~Cl~ - 1, [t(i) Ei R, n 7 E(' EE R_"E'
i=1

As an interesting special case of the general model, we also consider the mixture of

"zero-mean" Gaussians, which has ft() = 0 for all components i c [k].

A sample x from a mixture of Gaussians is generated in two steps:

1. Sample h E [k] from a multinonial distribution, with probability Pr[h = i] = wi

for i E [k].

2. Sample x E R' from the h-th Gaussian distribution A/(p (h), E(h)).

The learning problem asks to estimate the parameters of the underlying mixture of

Gaussians:

Definition 3.1 (Learning mixture of Gaussians). Given N samples Xl, X 2 , ... ,N

drawn i.i.d. from a mixture of Gaussians g = {(wi, p(), Z(0)}<Eik], an algorithm

learns the mixture of Gaussians with accuracy e, if it outputs an estimation g

{ , ( i)}}E[ such that there exists a permutation 7r on [k], and for all i E [k],

we have |I - i , ||p() - c("(i)|| e and 112(W - E((.))|| 6.

In the worst case, learning mixture of Gaussians is a information theoretically

hard problem ([85]). There exists worst-case examples where the number of samples

required for learning the instance is at least exponential in the number of components

k ([82]). The non-convexity arises from the hidden variable h: without knowing h we

cannot determine which Gaussian component each sample comes from.

The smoothed analysis framework provides a way to circumvent the worst case

instances, yet still studying this problem in its most general form. The basic idea
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is that, with high probability over the small random perturbation to any instance,

the instance will not be a "worst-case" instance, and actually has reasonably good

condition for the algorithm.

Next, we show how the parameters of the mixture of Gaussians are perturbed in

our setup.

Definition 3.2 (p-smooth mixture of Gaussian). For p < 1/n, a p-smooth n-dimensional

k-component mixture of Gaussiansg= {i, pj), I())}E[k] E n, is generated as fol-

lows:

1. Choose an arbitrary (could be adversarial) instance g {(wi, y(i), zE(i)}i[k E

Gn,k. Scale the distribution such that 0 -< E) - !In and 1p()|| < { for all

ic[k].

2. Let Aj E R, be a random symmetric matrix with zeros on the diagonals,

and the upper-triangular entries are independent random Gaussian variables

K(O, p2 ). Let 6i c R be a random Gaussian vector with independent Gaussian

variables A/(0, p2 ).

3. Set Di = wi, Ti(') - p() + 6j, Z() - EW + Ai.

4. Choose the diagonal entries of >() arbitrarily, while ensuring the positive semi-

definiteness of the covariance matrix (), and the diagonal entries are upper

bounded by 1. The perturbation procedure fails if this step is infeasible4 .

A p-smooth zero-mean mixture of Gaussians is generated using the same procedure,

except that we set pO) = - 0, for all i c [k].

Remark 3.3. When the original matrix is of low rank, a simple random perturbation

may not lead to a positive semidefinite matrix, which is why our procedure of pertur-

bation is more restricted in order to guarantee that the perturbed matrix is still a valid

covariance matrix.

' Note that by standard random matrix theory, with high probability the 4-th step is feasible
and the perturbation procedure in Definition 3.2 succeeds. Also, with high probability we have
I||$Oi < 1 andO -< 5](0 -- In for all i E [k].
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There could be other ways of locally perturbing the covariance matrix. Our proce-

dure actually gives more power to the adversary as it can change the diagonals after

observing the perturbations for other entries. Note that with high probability if we just

let the new diagonal to be 5 Vnp larger than the original ones, the resulting matrix

is still a valid covariance matrix. In other words, the adversary can always keep the

perturbation small if it wants to.

Instead of the worst-case problem in Definition 3.1, our algorithms work on the

smoothed instance. Here the model first gets perturbed to g = {(Os,(i, Z())},

the samples are drawn according to the perturbed model, and the algorithm tries to

learn the perturbed parameters. We give a polynomial time algorithm in this case:

Theorem 3.4 (Main theorem). Consider a p-smooth mixture of Gaussians g =

{({J, F,(t Z([k)}E] c G,, for which the number of components is at least 5 k > Co

and the dimension n > CIk2 , for some fixed constants Co and C1 . Suppose that

the mixing weights 5i > w, for all i E [k]. Given N samples drawn i.i.d. from g,

there is an algorithm that learns the parameters of g up to accuracy E, with high

probability over the randomness in both the perturbation and the samples. Further-

more, the running time and number of samples N required are both upper bounded by

poly(n, k, 1/w", 1/c, 1/p).

To better illustrate the algorithmic ideas for the general case, we first present an

algorithm for learning mixtures of zero-mean Gaussians. Note that this is not just a

special case of the general case, as with the smoothed analysis, the zero mean vectors

are not perturbed.

Theorem 3.5 (Zero-mean). Consider a p-smooth mixture of zero-mean Gaussians

G = {(&i, 0, Z(i)}iE[k] E gn,, for which the number of components is at least k > CO

and the dimension n > C1k2 , for some fixed constants Co and C1. Suppose that

the mixing weights Ei > wo for all i E [k]. Given N samples drawn i.i.d. from

G, there is an algorithm that learns the parameters of G up to accuracy c, with

5Note that the algorithms of [23] and [85] run in polynomial time for fixed k.

125



high probability over the randomness in both the perturbation and the samples. Fur-

thermore, the running time and number of samples N are both upper bounded by

poly(n, k, 1/w0 , 1/E, 1/p).

Throughout the discussion we always assume that n > C1 k2 and Di w.

Moment Structure of Mixture of Gaussians Our algorithm is also based on

the method of moments, and we only need to estimate the 3-rd, the 4-th and the

6-th order moments. In this part we briefly discuss the structure of 4-th and 6-th

moments in the zero-mean case (3-rd moment is always 0 in the zero-mean case).

These structures are essential to the proposed algorithm. For more details, and

discussions on the general case see Appendix 3.4.6.

The m-th order moments of the zero-mean Gaussian mixture model g E .,k are

given by the following m-th order symmetric tensor Mm c Rn ,Xf:

k

[Mm] ,.. Jm :=E [xj, ... xjm] = wjiE y . 5.)] , Vji,...,jm E [n],

where y(') corresponds to the n-dimensional zero-mean Gaussian distribution .A(0, E).

The moments for each Gaussian component are characterized by Isserlis's theorem as

below:

Theorem 3.6 (Isserlis' Theorem). Let (y1,... , Y2t) be a multivariate zero-mean Gaus-

sian random vector K(0, E), then

E[yi... Y2t] =Z JJ u,,v

where the summation is taken over all distinct ways of partitioning yi,..., y2t into t

pairs, which correspond to all the perfect matchings in a complete graph.

Ideally, we would like to obtain the following quantities (recall n2 = (

k k

X4= Zwivec(Ei))0 2 e R n2 xn2, X 6 = Zwivc((Ei)3 E R72X72xn2. (3.1)
i=1 i=1
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Note that the entries in X4 and X6 are quadratic and cubic monomials of the

covariance matrices, respectively. If we have X 4 and X6 , the tensor decomposition

algorithm in [7] can be immediately applied to recover wi's and E()'s under mild

conditions. It is easy to verify that those conditions are indeed satisfied with high

probability in the smoothed analysis setting.

By Isserlis's theorem, the entries of the moments 114 and AM6 are indeed quadratic

and cubic functions of the covariance matrices, respectively. However, the structure

of the true moments A14 and 116 have more symmetries, consider for example,

k k

[2 4 ]1 ,2 ,3,4 = ( + E 1,3) while [X4j(1,2),(3,4) = (i)
i=1 i=l

Note that due to symmetry, the number of distinct entries in Al 4 ( (,j 3 ) n4 /24)

is much smaller than the number of distinct entries in X4 ((112+1) ~ n4/8). Similar

observation can be made about 116 and X6 .

Therefore, it is not immediate how to find the desired X4 and X6 based on Al 4 and

A/16 . We call the moments A 4 , Al 6 the folded moments as they have more symmetry,

and the corresponding X4 , X6 the unfolded moments. One of the key steps in our

algorithm is to unfold the true moments A14 , M6 to get X4, X6 by exploiting special

structure of A14 , Al6 .

In some cases, it is easier to restrict our attention to the entries in 1l 4 with indices

corresponding to distinct variables. In particular, we define

Ml 4 = [A141j1,J2,J3 J4 :1 :J1 < j < h~<J < j4 nt] E R 4  (3.2)

where n4  (4) is the number of 4-tuples with indices corresponding to distinct vari-

ables. We define M6 E R"6 similarly where n6 = ('). We will see that these entries

are nice as they are linear projections of the desired unfolded moments X4 and X6

(Lemma 3.1 below), also such projections satisfy certain "symmetric off-diagonal"

properties which are convenient for the proof (see Definition 3.3 in Section 3.4.2).

Lemma 3.1. For a zero-mean Gaussian mixture model, there exist two fixed and
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known linear mappings .74 : Rr12x2 -+ R4 and F6 : R12xf2xl2 -+ R16 such that:

94 = x/F4(X4), M6 = v15'F6 (X6). (3.3)

Moreover.74 is a projection from a (n21) -dimensional subspace to a n4 -dimensional

subspace, and T6 is a projection from a (n22 -dimensional subspace to a n6 -dimensional

subspace.

3.3 Outline of our algorithm

3.3.1 Learning Mixture of Zero-Mean Gaussians

In this section, we present our algorithm for learning zero-mean Gaussian mixture

model. The algorithmic ideas and the analysis are at the core of this work. Later

we show that it is relatively easy to generalize the basic ideas and the techniques to

handle the general case.

For simplicity we state our algorithm using the exact moments M 4 and M 6 , while

in implementation the empirical moments 14 and Al 6 obtained with the samples are

used. In later sections, we verify the correctness of the algorithm and show that

it is robust: the algorithm learns the parameters up to arbitrary accuracy using

polynomial number of samples.

Step 1. Span Finding: Find the span of covariance matrices

(a) For a set of indices W C [n] of size |7| = s/H, find the span:

S = span{2.,:i c [k],J E ?i I . (3.4)

(b) Find the span of the covariance matrices with the columns projected onto S',

namely,

Us = span {vec(ProjsiZi)) : i E [k] C R" (3.5)
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(c) For two disjoint sets of indices H1 and 72, repeat Step 1 (a) and Step 1 (b)

to obtain U1 and U2 , namely the span of covariance matrices projected onto

two subspaces S' and S. Merge U1 and U2 to obtain the span of covariance

matrices U:

U = span i E [k]} c R (3.6)

Step 2. Unfolding: Recover the unfolded moments V4, X6.

Given the folded moments A 4 , M 6 as defined in (3.2), and given the subspace U E

Rn2xk from Step 1, let 4 E R"' and 6 c R""' be the unknowns, solve the

following systems of linear equations.

M 4 = M4(UY4 UT), M 6 = Vi5Y 6 (Y(UT, UT, UT)). (3.7)

The unfolded moments J(4, -6 are then given by -4 UY kUT, X6 Y6(UT, UT UT).

Step 3. Tensor Decomposition: learn oi and DO from Y4 and Y6.

Given U, and given Y4 and Y6 which are relate to the parameters as follows:

k k

Y= i(UT(i))®2, Y6 -- E i(UTS]))® 3

we apply tensor decomposition techniques to recover DO's and A i's.

3.3.2 Implementing the Steps for Zero-Mean Algorithm

In this part we show how to accomplish each step of the algorithm outlined in Sec-

tion 3.3.1 and sketch the proof ideas.

For each step, we first explain the detailed algorithm, and list the deterministic

conditions on the underlying parameters as well as on the exact moments for the step

to work correctly. Then we show that these deterministic conditions are satisfied with

high probability over the p-perturbation of the parameters in the smoothed analysis

setting. In order to analyze the sample complexity, we further show that when we
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are given the empirical moments which are close to the exact moments, the output

of the step is also close to that in the exact case.

In particular we show the correctness and the stability of each step in the algo-

rithm with two main lemmas: the first lemma shows that with high probability over

the random perturbation of the covariance matrices, the exact moments satisfy the

deterministic conditions that ensure the correctness of each step; the second lemma

shows that when the algorithm for each step works correctly, it is actually stable even

when the moments are estimated from finite samples and have only inverse polynomial

accuracy to the exact moments.

The detailed proofs are deferred to Section 3.4.1 to 3.4.3 in the appendix.

Step 1: Span Finding. Given the 4-th order moments .A 4 , Step 1 finds the span

of covariance matrices U as defined in (3.6). Note that by definition of the unfolded

moments X 4 in (3.1), the subspace U coincides with the column span of the matrix

X4.

By Lemma 3.1, we know that the entries in A14 are linear mappings of entries in

X 4 . Since the matrix X 4 is of low rank (k < n2 ), this corresponds to the matrix

sensing problem first studied in [99]. In general, matrix sensing problems can be hard

even when we have many linear observations ([53]). Previous works ([99, 54, 61])

showed that if the linear mapping satisfy matrix RIP property, one can uniquely

recover X 4 from Al 4 .

However, properties like RIP do not hold in our setting where the linear map-

ping is determined by Isserlis' Theorem. We can construct two different mixtures

of Gaussians with different unfolded moments 5 4 , but the same folded moment T14

(see Section 3.4.6). Therefore the existing matrix recovery algorithm cannot be ap-

plied, and we need to develop new tools by exploiting the special moment structure

of Gaussian mixtures.

Step 1 (a). Find the Span of a Subset of Columns of the Covariance

Matrices. The key observation for this step is that if we hit Yl 4 with three basis

vectors, we get a vector that lies in the span of the columns of the covariance matrices:
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Claim 3.1. For a mixture of zero-mean Gaussians g {(wi, 0, E())}iE[k nk, the

one-dimensional slices of the 4-th order moments A14 are given by:

k

AM 4 (e, ,e 2 ,eI) = wj (S E + + E E , Vj, J2 , 3 E [n.

(3.8)

In particular, if we pick the indices j1, j2, j3 in the index set W, we know that the

vector M4 (eg, e j, e h, I) lies in the desired span S = E i E [k],j E .

We shall partition the set R into three disjoint subsets 'H(') of equal size Vnt /3,

and pick Ji E H(') for i = 1,2,3. In this way, we have (IRI/3)3 Q(n' 5 ) such

one-dimensional slices of A14 , which all lie in the desired subspace S. Moreover, the

dimension of the subspace S is at most k[I-WI < n' 5 . Therefore, with the p-perturbed

parameters ()'s, we can expect that with high probability the slices of 114 span the

entire subspace S.

Condition 3.7 (Deterministic condition for Step 1 (a)). Let s E R'x(1111/3)3 be the

matrix whose columns are the vectors A4(ej1 ,eh, e, I) for ji E 'H() . If the matrix

Qs achieves its maximal column rank k|7-t, we can find the desired span S defined in

(3.4) by the column span of matrix Qs.

We first show that this deterministic condition is satisfied with high probability

by bounding the k|N|-th singular value of Qs with smoothed analysis.

Lemma 3.2 (Correctness). Given the exact 4-th order moments M 4 , for any index

set 71 of size |R1 = y/ , With high probability, the kIR|-th singular value of Qs is at

least Q(wop2 n).

The proof idea involves writing the matrix Qs as a product of three matrices, and

using the results on spectral properties of random matrices [101] to show that with

high probability the smallest singular value of each factor is lower bounded.

Since this step only involves the singular value decomposition of the matrix Qs,

we then use the standard matrix perturbation theory to show that this step is stable:
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Lemma 3.3 (Stability). Given the empirical estimator of the 4-th order moments

AM 4 = M 4 + E4 , suppose that the entries of E4 have absolute value at most 5. Let the

columns of matrix S E Rn"xIil be the left singular vector of Qs, and let S be the corre-

sponding matrix obtained with M4 . When J is inverse polynomially small, the distance

between the two projections I|ProJg-ProJg|| is upper bounded by 0 (n1.256 -kWJ @ s))-

Remark 3.8. Note that we need the high dimension assumption (n >> k) to guarantee

the correctness of this step: in order to span- the subspace S, the number of distinct

vectors should be equal or larger than the dimension of the subspace, namely |71|' >

k|W|; and the subspace should be non-trivial, namely k|?\ < n. These two inequalities

suggest that we need n > Q(k 1-5 ). However, we used the stronger assumption n >

Q(k 2 ) to obtain the lower bound of the smallest singular value in the proof.

Step 1 (b). Find the Span of Projected Covariance Matrices. In this step,

we continue to use the structural properties of the 4-th order moments. In particular,

we look at the two-dimensional slices of M!4 obtained by hitting it with two basis

vectors:

Claim 3.2. For a mixture of zero-mean Gaussians g = {(wi, 0, E('))}i[k] E Gn,k, the

two-dimensional slices of the 4-th order moments M14 are given by:

k

A4 (eje 2,II) = Zwi (Ei) - EW +E (E )T + 1 () (EW)) , Vji, j 2 E [n].

(3.9)

Note that if we take the indices ji and J2 in the index set W, the slice M4 (e 1 , ej2 , I, I)

is almost in the span of the covariance matrices, except 2k additive rank-one terms

in the form of E (E )T. These rank-one terms can be eliminated by projecting

the slice to the subspace S' obtained in Step 1 (a), namely,

k

vec(ProjsM 4(e, e 2 , 1, I)) = w E vec(ProjsE()), Vji, j 2

and this projected two-dimensional slice lies in the desired span Us as defined in (3.5).
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Moreover, there are (1'+) = Q(n) such projected two-dimensional slices, while the

dimension of the desired span UM is at most k.

Condition 3.9 (Deterministic condition for Step 1 (b)). Let QuS E R 2 X[NI(Ii+1)/2

be a matrix whose (j1 , j2 )-th column for is equal to the projected two-dimensional slice

vec(ProjsM4 (e*,e*, I, I)), forj1 j2 and j 1 , j 2 G N. If the matrix Qu, achieves

its maximal column rank k, the desired span Us defined in (3.5) is given by the column

span of the matrix Q LJ.

We show that this deterministic condition is satisfied by bounding the k-th singular

value of Qu5 in the smoothed analysis setting:

Lemma 3.4 (Correctness). Given the exact 4-th order moments RI, with high prob-

ability, the k-th singular value of Qu5 is at least Q(wop2n 1 5 ).

Similar to Lemma 3.2, the proof is based on writing the matrix Qu5 as a product

of three matrices, then bound their k-th singular values using random matrix theory.

The stability analysis also relies on the matrix perturbation theory.

Lemma 3.5 (Stability). Given the empirical 4-th order moments R4 4  E4,

assume that the absolute value of entries of E4 are at most 62. Also, given the output

Proj 1 from Step 1 (a), and assume that ||Proj - Projg1 || 61. When 61 and 62 are

inverse polynomially small, we have 1|Proj 5,-ProjgIj| 0 (n2-5 (62 + 261) /-k(QUs))

Step 1 (c). Merge M1 ,M 2 to get the span of covariance matrices U. Note

that for a given index set R, the span Us obtained in Step 1 (b) only gives partial

information about the span of the covariance matrices. The idea of getting the span

of the full covariance matrices is to obtain two sets of such partial information and

then merge them.

In order to achieve that, we repeat Step 1 (a) and Step 1 (b) for two disjoint sets

7 1 and W2, each of size V/T. The two subspace S1 and S 2 thus correspond to the

span of two disjoint sets of covariance matrix columns. Therefore, we can hope that

U1 and U2 , the span of covariance matrices projected to S' and Sf contain enough

information to recover the full span U.
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In particular, we prove the following claim:

Condition 3.10 (Deterministic condition for Step 1 (c)). Let the columns of two (un-

known) matrices V E Rnxk and V2 c Rn^k form two basis of the same k-dimensional

(unknown) subspace U C R', and let U denote an arbitrary orthonormal basis of U.

Given two s-dimensional subspaces S1 and S2, denote S3 = Si U S Given two pro-

jections of U onto the two subspaces S' and S2: U1 = ProjsJ V1 and U2 = Projs V2.

If u2r( [S1, S2]) > 0 and Uk (Projs U) > 0, there is an algorithm for finding U robustly.

The main idea in the proof is that since s is not too large, the two subspaces S'

and S2 have a large intersection. Using this intersection we can "align" the two basis

V1 and V2 and obtain VWV2, and then it is easy to merge the two projections of the

same matrix (instead of a subspace).

Moreover, we show that when applying this result to the projected span of co-

variance matrices, we have s = kinI < n/3, and the two deterministic conditions

02s (S1, S2]) > 0 and Uk(Projs, V1 ) > 0 are indeed satisfied with high probability over

the parameter perturbation. The detailed smoothed analysis (Lemma 3.13 and 3.14)

and the stability analysis (Lemma 3.12) are provided in Section 3.4.1 in the appendix.

Step 2. Unfold the moments to get A?4 and 54. We show that given the span

of covariance matrices U obtained from Step 1, finding the unfolded moments X 4 , J4

is reduced to solving two systems of linear equations.

Recall that the challenge of recovering X4 and X 6 is that the two linear mappings

F 4 and F 6 defined in (3.3) are not linearly invertible. The key idea of this step is to

make use of the span U to reduce the number of variables. Note that given the basis

U E Rf72 xk of the span of the covariance matrices, we can represent each vectorized

covariance matrix as = Ua('). Now Let Y 4 E R x and Y 4 E Rkxkxk denote the

unfolded moments in this new coordinate system:

k k

4
2  6 3

i=1 i=v

Note that once we know Y1 and Y6, the unfolded moments A?4 and A?6 are given by
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L4 Y U4U and Z6 = Y6 (UT UT UT). Therefore, after changing the variable, we

need to solve the two linear equation systems given in (3.7) with the variables Y4 and

6.

This change of variable significantly reduces the number of unknown variables.

Note that the number of distinct entries in Yi andi 6 are k2 =( ) and k =

respectively. Since k2  T 4 and k3 < n6 , we can expect that the linear mapping

from Y4 to A14 and the one from 1' to A1 6 are linearly invertible. This argument is

formalized below.

Condition 3.11 (Deterministic condition for Step 2). Rewrite the two systems of

linear equations in (3.7) in their canonical form and let H 4  R R7 s4 .k2 and 6  R""k3

denote the coefficient matrices. We can obtain the unfolded moments -k 4 and A? 6 if

the coefficient matrices have full column rank.

We show with smoothed analysis that the smallest singular value of the two coef-

ficient matrices are lower bounded with high probability:

Lemma 3.6 (Correctness). With high probability over the parameter random pertur-

bation, the k2-th singular value of the coefficient matrix H4 is at least Q(p2n/k), and

the k 3-th singular value of the coefficient matrix H6 is at least Q(p 3(n/k)1 5 ).

To prove this lemma we rewrite the coefficient matrix as product of two matrices

and bound their smallest singular values separately. One of the two matrices corre-

sponds to a projection of the Kronecker product Z 0', E. In the smoothed analysis

setting, this matrix is not necessarily incoherent. In order to provide a lower bound

to its smallest singular value, we further apply a carefully designed projection to it,

and then we use the concentration bounds for Gaussian chaoses to show that after

the projection its columns are incoherent, finally we apply Gershgorin's Theorem to

6bound the smallest singular value

6 Note that the idea of unfolding using system of linear equations also appeared in the work of
[62]. However, in order to show the system of linear equations in their setup is robust, i.e., the
coefficient matrix has full rank, they heavily rely on the incoherence assumption, which we do not
impose in the smoothed analysis setting.
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When implementing this step with the empirical moments, we solve two least

squares problems instead of solving the system of linear equations. Again using

results in matrix perturbation theory and using the lower bound of the smallest

singular values of the two coefficient matrices, we show the stability of the solution

to the least squares problems:

Lemma 3.7 (Stability). Given the empirical moments A4 4 = 1 4 +E4 , A6 = 16+E6,

and suppose that the absolute value of entries of E4 and E6 are at most 61. Let U, the

output of Step 1, be the estimation for the span of the covariance matrices, and suppose

that I|U - U11 < 62. Let Y4 and Y6 be the least squares solution respectively. When J1

and 62 are inverse polynomially small, we have ||Y4 -Y 4 ||F 0(- (61+62/Orin 4)

and ||Y6 - Y611F O(Vn6(61 + 62 /0'rniin(H6)).

Step 3. Tensor Decomposition.

Claim 3.3. Given Y4 , Y6 and U, the symmetric tensor decomposition algorithm can

correctly and robustly find the mixing weights i 's and the vectors a, 's, up to some un-

known permutation over [k], with high probability over both the randomized algorithm

and the parameter perturbation.

The algorithm and its analysis mostly follow the algorithm of symmetric tensor

decomposition in [71, and the details are provided in Section 3.4.3 in the appendix.

Proof Sketch for the Main Theorem of Zero-mean Case. Theorem 3.5

follows from the previous smoothed analysis and stability analysis lemmas for each

step.

First, exploiting the randomness of parameter perturbation, the smoothed analysis

lemmas show that the deterministic conditions, which guarantee the correctness of

each step, are satisfied with high probability. Then using concentration bounds of

Gaussian variables, we show that with high probability over the random samples,

the empirical moments AI 4 and A16 are entrywise 6-close to the exact moments AI 4

and Al6 . In order to achieve e accuracy in the parameter estimation, we choose 6
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Figure 3-1: Flow of the algorithm for learning mixture of zero-iean Gaussiains.
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Figure 3-2: Flow o the algorithm for learning mixtures of general Ganssians.

to be inverse polynoiially smll. and therefore the number of samiples required will

be polynomial in the relevant paraieters. The stability lemmas show how the errors

propagate only "polynomially" through the steps of the algorithm, whicli is visualize(l

in Figure 3-1.

A more (letaile(l illustration is provi(Ie(d in Section 3.1.4 in the ajppeni(x.

3.3.3 Learning Mixture of General Gaussians

in this section, we briefly discuss the algorithm for learning mixture of grenl Gauis-

sians. Figure 3-2 shows the in puts and outputs of each step iii this algorithm. Many

steps share similar ideas to those of the algorithm for the zero-mean case in previous

sectioiis. We only highlight the basic ideas al defer the details to Section 3.4.5 in

the appn1dix.

Step 1. Find Z =span{fi) : I E [k]} and E= span{Proj 7- Z'"Proj : i e [k]} .

Similar to Step I iii the zero-mean case, this step makes use of the structure of the

I-th orler moments 3I.1, a11(d is achieved in three snmall stej)s:
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(a) For a subset R C [n] of size |W- = /n, find the span:

S = span {(p), E : i [k], j E R c R". (3.10)

(b) Find the span of the covariance matrices with the columns projected onto SI,

namely,

Us = span {vec(ProjsiZ()) : i E [k]} C R"2. (3.11)

(c) For disjoint subsets R1 and R2, repeat Step 1 (a) and Step 1 (b) to obtain U1

and U2 , the span of the covariance matrices projected onto the subspaces Sf

and S2. The intersection of the two subspaces U1 and U2 gives the span of the

mean vectors Z = span { p(j), i E [k] }. Merge the two subspaces U1 and U2 to

obtain the span of the covariance matrices projected to the subspace orthogonal

to Z, namely Z, = span Proj Z(i)Proj2  : i E [k]}.

Step 2. Find the Covariance Matrices in the Subspace Z' and the Mix-

ing Weights Di's. The key observation of this step is that when the samples

are projected to the subspace orthogonal to all the mean vectors, they are equiv-

alent to samples from a mixture of zero-mean Gaussians with covariance matrices

Zi-(' = Proj-D()Proj2 and with the same mixing weights oi's. Therefore, pro-

jecting the samples to Z', the subspace orthogonal to the mean vectors, and use

the algorithm for the zero-mean case, we can obtain Z0 's, the covariance matrices

projected to this subspace, as well as the mixing weights ji's.

Step 3. Find the means With simple algebra, this step extracts the projected

covariance matrices Zo 's from the 3-rd order moments X13 , the mixing weights ED

and the projected covariance matrices Z0 's obtained in Step 2.

Step 4. Find the full covariance matrices In Step 2, we obtained ZIP, the

covariance matrices projected to the subspace orthogonal to all the means. Note
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that they are equal to matrices ( (i) + i()(A())T) projected to the same subspace.

We claim that if we can find the span of these matrices ((Z(i) + 7()(g())T)'s), we

can get each matrix (i() + t(i)(Ti(i))T), and then subtracting the known rank-one

component to find the covariance matrix D(. This is similar to the idea of merging

two projections of the same subspace in Step 1 (c) for the zero-mean case.

The idea of finding the desired span is to construct a 4-th order tensor:

k

A 14~ AM4+2Z i) 04),
i= 1

which corresponds to the 4-th order moments of a mixture of zero-mean Gaussians

with covariance matrices (i) + i(i) (ij(i))T and the same mixing weights Fi's. Then

we can then use Step 1 of the algorithm for the zero-mean case to obtain the span of

the new covariance matrices, i.e. span{Z(i) + j(i) ((i))T : i E [k]}.

3.4 Proofs for Chapter 3

3.4.1 Step 1 of Zero-Mean Case: Span Finding

Recall that in Step 1 of the algorithm for learning mixture of zero-mean Gaussians,

we find the span of the covariance matrices in three small steps. In this section, we

prove the correctness and the robustness of each step with smoothed analysis.

For completeness we restate each substep and highlight the key properties we

need, followed by the detailed proofs.

Step 1(a). Finding S, the span of a subset of columns of (O's.

In Step 1 (a), for any set 'R of size \n, we want to show that the one-dimensional

slices of M4 span the entire subspace S = span { : i E [k], j E R }, which is the

span of a subset of the columns in the covariance matrices.
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Algorithm 5: FindColumnSpan

Input: 4-th order moments M4 , set of indices X.
Output: span{E' : i C [k], j E W }, represented by an orthonormal matrix

S E R~xinI.

Let Q be a matrix of dimension n x INHI whose columns are all of
A4(ei, e 2, eg3,I), for i 1 ,i 2 ,i 3 E X.

Compute the SVD of Q: Q = UDVT.

Return: The first kjI' left singular vectors S = [U[,lj, ... , ,ii-l.

Recall that in Claim 3.1 we showed:

k

Ai 4 (ej1, ej2, e3,I l Zi~3  + +33 .~ 3iZ ' Vjlj2,j3 E [n]l.

This in particular means when Ji, j2, J3 E W, the vector M 4 (ejj, ej2, ei, I) is in S.

We need to show that the columns of the matrix Q indeed span the entire subspace

S.

It is sufficient to show that a subset of the column span the entire subspace. Form

a three-way even partition of the set N, i.e., |H(1) I - |?1(2)1 - l'(3)I = IWJ/3 = Vn/3,

and only consider the one-dimensional slices of 1 4 corresponding to the indices ji E

WCO for i = 1, 2, 3. In particular, we define matrix Qs with these one-dimensional

slices of M14:

Qs = [[[T/i4(e 1 , ej2, ej, I) : jh E 7(3)] : j2 E ?(2) : ji E W(1) IE Rrlx(II/3)3 . (3.12)

Define matrix Ps with the corresponding columns of the covariance matrices, forming

a basis (although not orthogonal) of the desired subspace S:

s = [[E : i [k]] : j E ? )] : 1 = 1, 2,3 = [Z[:,( ], 3f:,()], ][:,.(3)] E R nIlI.

(3.13)

In the following two lemmas, we show that with high probability over the random

perturbation, the column span of Qs is exactly equal to the column span of Ps, and
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k~-C ~ J(2) P

l -- 7

13(2)

Figure 3-3: Structure of the matrix Bs

robustly so.

Lemnia 3.8 (Lemna 3.2 restated ). Given. Al 1, the exact 4-th ordr mot-ment of the

p-smroothrmire of zero-invean Gaussianis, for any subset ' E [.] with cardinality

|H = a, let Os be the matrix dcfined os in (3.12) with the one-dimensional sliees

of l 1. For any e > 0, and for some absolute constaInt C'. ("', C2. > ( , wi'th. pyrobabilIty

at least 1 - (C e ." the k|N|-lb cin ular va/ue of Qs is bounded below by:

(Tk -H (Q~S > csjWO f )-ln. ('3.1 14)

In order to prove this lemma, we first write Qs as the product of three matrices.

Claim 3.4 (Structural). Under the same assumptions of Lemma 2.8, the matrix Q

can be written. as

QS I> (D(, zAo Il) (B,5 )T, (3.15)

where I z e R" a(s dc/muned in. Equation (3. has colunmns qual to the colaruns
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in 5 the diagonal matrix in the middle is the Kronecker product of two diagonal

matrices and depends only on the mixing weights i 's.

With the observation that the columns of P5s form a basis of the subspace S,

and each column of Qs is a linear combination of the columns in Ps, the rows of

B5s E R(R 1/3)3xkjuj can be viewed as the coefficients for the linear combinations,

and has some special structures. In particular, it consists of three blocks: Bs

L3(1), (2), b(3)]. The first tall matrix b() E R([jiI/3) 3 xk(INi/3), corresponding to the

coefficient of the linear combinations on the subset of basis Z,u>. By the indexing

order of the columns in Qs, the matrix j( 1 ) is block diagonal with identical blocks

equal to ER(2),sH3), defined as follows:

(2i E , ( E ( )]T : i E [ki] (E R( INI/3)2 xk.

With some fixed and known row permutation 7r( 2 ) and jr3), the matrix f(2) and f3 3 )

can be made block diagonal with identical blocks equal to ER(1),7j(3) and

respectively. Note that the three parts B(1), 3(2), (3) do not have any common entry,

nor do they involve any diagonal entry of the covariance matrices, therefore the three

parts are independent when the covariances are randomly perturbed in the smoothed

analysis.

It is easier to understand the structure by picture, see Figure 3-3. The rows of

the matrix should be indexed by (ji, j2 ,j 3 ) E -) X H(2) X R(3), which can also

be interpreted as a cube (in the right). The block structure in the first part b5l)

correspond to a slice in ?P 2 ) x ((3) direction (for each block, the element in 70) is

fixed, the elements in 7t(2) and j (3 ) take all possible values). Similarly for b 2 ) and

b(3) (as shown in figure).

Proof. (of Claim 3.4 ) The proof of this claim is using Claim 3.1, the definition of ma-

trices and the rule of matrix multiplication. Consider the column in Qs corresponding

to the index (ji, j 2 , j3 ) for ji E 7),j 2  ?j(2),j3 E 7), and the row of Bs together

with the mixing wights specifies how this column is formed as a linear combination of

3k columns of Ps. By the structure of M4 in Claim 3.1, the (ji, j2 ,j 3 )-th row of 501
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has exactly k entries corresponding to S( for i E [k], these entries are multiplied

by oe in the middle (diagonal) matrix. Therefore, these directly correspond to the k

terms in Claim 3.1. Similarly the entries in Bi 2
) and f( correspond to the other 2k

terms.

Using Claim 3.4, we need to bound the smallest singular value for each of the

matrices in order to bound the k17-t-th singular value of Qs, this is deferred to the

end of this part. The most important tool is a corollary (Lemma 3.32) of the random

matrix result proved in [101], which gives a lowerbound on the smallest singular value

of perturbed rectangular matrices.

By Lemma 3.8, we know Qs has exactly rank k 7-L1, and is robust in the sense that

its kIlI-th singular value is large (polynomial in the amount of perturbation p). By

standard matrix perturbation theory, if we get Qs close to Qs up to a high accuracy

(inverse polynomial in the relevant parameters), the top kI )I singular vectors will

span a subspace that is very close to the span of Qs. We formalize this in the

following lemma.

Lemma 3.9 (Lemma 3.3 restated). Given the empirical estimator of the 4-th order

moments M 4 =M4 + E4 . and suppose that the absolute value of entries of E4 are

at most 6. Let the columns of matrix S E R"xkI'I be the left singular vector of Qs,

and let S be the corresponding matrix obtained with A14 . Conditioned on the high

probability event akIR (Qs) > 0, for some absolute constant C we have:

Cn'-2
|Proj - Proj'II ~ 3. (3.16)

UkII (QS)

Proof. Note that the columns of S are the leading left singular vectors of Qs. We

apply the standard matrix perturbation bound of singular vectors. Recall that S is

defined to be the first kIR I left singular vector of Qs, and we have

|IQs - Qs|| < IcQs - QsIIF n(LNI/3)362.

Therefore by Wedin's Theorem (in particular the corollary Lemma 1.5), we can con-
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clude (3.16).

Next, we prove Lemma 3.8.

Proof of Lemma 3.8 We first use Claim 3.4 to write s = Ps (Di ®kr IiuI) (Bs)T,

note that the matrix (D® OkrIn) has dimension kI1711 x kIW|, therefore we just need to

show with high probability each of the three factor matrix has large kj7t-th singular

value, and that implies a bound on the k Ilj-th singular value of Qs by union bound.

The smallest singular value of Ps and Bs are bounded below by the following two

Claims.

Claim 3.5. With high probability okIWi (!s) Q(pV).

Proof. This claim is easy as Ps E RuxkHli is a tall matrix with n > 5k1Wt rows. In par-

ticular, let PS be the block of Ps with rows restricted to RC = [n]\W. Note that PS is

a linear projection of Ps, and by basic property of singular values in Lemma 3.28, the

kIWI singular values of PS provide lower bounds for the corresponding ones of Ps. We

only consider the restricted rows so that PS does not involve any diagonal elements of

the covariance matrices, which are not randomly perturbed in our smoothed analysis

framework.

Now FS is a randomly perturbed rectangular matrix, whose smallest singular value

can be lower bounded using Lemma 3.32, and we conclude that with probability at

least 1 - (CE)0.25,

9kJliI(PS) > Epv'n.

El

Next, we bound the smallest singular value of B5S.

Claim 3.6. With high probability UkIl!(Bs) > Q(pvji).

Proof. We make use of the special structure of the three blocks of Bs to lower bound

its smallest singular value.
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First, we prove that the block diagonal matrix h5') has large singular values, even

after projecting to the orthogonal subspace of the column span of F(2 ) and F3). This

idea appeared several times in our proof and is abstracted in Lemma 3.29. Apply the

lemma and we have:

OkJW (BS)

> mil {Uk(2tNI/3)B[i3-(2)( 3)), ck(Proj Qb(2), (3) ( () (])) : j (

> min {Jk(2NI/3)(2) )

Uk(Proj([T( 2),h(3)] {jIX-H(
2
) I Pro (2)N(3)) : j (3.17)

where the j-th block of [h(2 ), b(3)] has dimension (I7W/3)2 x 2k17 /3. Since

(IRI/3)2 - k - 2k1W/3 = Q(n/9 - k - 2kn'-1 /3) > Q(n),

this means for each block, even after projection it has more than 3k rows. Note

that by definition the three blocks F30), _(2) and j(3) are independent and do not

involve any diagonal elements of the covariance matrices, so each block after the two

projections is again a rectangular random matrix. We can apply Lemma 3.31, for any

j, for some absolute constant C1, C2, C3 (not fixed throughout the discussion), with

probability at least 1 - (Cic)C2 over the randomness of W(2)H(3), we have:

Ok(Proj[F(2) b(3)] p L (2)G) > Ep C3 n- (3-18)
{jlx-H(21)xw(3) gro L~ (2),H(3.)

Now we can take a union bound over the blocks and conclude that with high

probability, the smallest singular value of each block is large.

In order to bound Ok(2NIu/3) [b-(2), B( 3)1), we use the same strategy. Note that b(2)

also has a block structure that corresponds to the RM x ?(3) faces (see Figure 3-3).

Again check the condition on dimension (1I|H/3) 2 - k - kIR1/3 > Q(n) > 3k, we can

apply Lemma 3.29 again to show that for any j, with probability at least 1 - (CE)C2'
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over the randomness of Zw() (3 ), we have:

Ok(2RIH/3) ([B .f(3)]) min k(IH|/3)

Uk(ProjQj-(3)]'(, p j K3)LProjrL (1),-()) : W(2E )

(3.19)

Again by Lemma 3.31, for any j, with probability at least 1 - (CIE)c2" over the

randomness of Z )(l ), we have:

Uk (Proj ([(3)1,(, ) Projp-i ( ep/C3n. (3.20)
)xjjxW(3))L W(1),W(3)

Finally, for 35() it is a block diagonal structure with blocks correspond to 7() x

W(2) faces (see Figure 3-3). Each block is a perturbed rectangular matrix, therefore

we apply Lemma 3.31 to have that with high probability over the randomness of

Uk(IR.I/3)() E~~~~ piVfi. (3.21)

Now plug in the lower bounds in (3.18) (3.20) (3.21) into the inequalities in (3.17)

and (3.19). By union bound we conclude that with high probability:

Uk|J(|S) >p CEpV3n.

Finally, the diagonal matrix in the middle is given by the Kronecker product

of IlIR and DC. Recall that D- is the diagonal matrix with the mixing weights

's on its diagonal. By property of Kronecker product and the assumption on the

mixing weights, the smallest diagonal element of Dj 0 k, IlI| is at least wo. Therefore

IkiMj(Daj 0kr IIWI) > WO.

We have shown that the smallest singular value of all the three factor matrices

are large with high probability. Therefore, apply union bound, we conclude that with
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probability at least 1 - exp(-Q(n)),

Uk|jI|(QS) > Ork|,I(P|s)UkII(D3 ®kr I1')Uk 1W(Bs) > O(wop 2n).

Step 1 (b). Finding Us, the span of Z(O's with columns projected to S'.

Algorithm 6: FindProjectedSigmaSpan

Input: 4-th order moments 114 , set of indices 'W, subspace S c R"
Output: span{vec(Projs1iE()) i [k]}, represented by an orthonormal

matrix Us E Rn2x

Let Q be a matrix whose columns are vec(Projs1M4 (e, ej, 1, 1)) for all

ijE '7-, i /i.
Compute the SVD of Q: Q = UDVT.

Return: The first k left singular vectors Us = [U[:,,., L[:,k].

In Step 1 (b), given the subset of indices 'H and the subspace S obtained in Step

1 (a), we want to show that the projected two-dimensional slices of Al 4 span the

subspace Us defined in (3.5), which is the span of the covariance matrices with the

columns projected the subspace S':

Us = span {vcc(ProjsiZ()) : i E [k]} c R

Recall that in Claim 3.2, we characterized the two dimensional slices of the 4-th

moments AM 4 of mixture of zero-mean Gaussians as below:

k

A 4 (eg , e2, II) = + 1I (E 21)T + E J(21 )) , Vji,j2 E [n].

(3.22)

For notational convenience, we let 3 denote the set 3 = {(j1 ,j 2 ) : Ji < j2, J1 , 2 E

'}, and note that the cardinality is 3= (1'1) = (n + V5--.)/2. First, we define the

matrix Qu E R 2 VI whose columns are the vectorized two-dimensional slices of Al 4
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with the columns projected to the subspace S':

Us =vec(ProjsiM~4 (ej,, ej, I, I)) : (ji,i 2 ) E . (3.23)

Similarly we define uE E Rr2 x 7 with the slices without the projection:

Quo = vec(M4 (ej,, ej , 1,I)): (ji, J2)EJ.

Observe the structure in (3.22) and we see the columns of Quo is "almost" in the

span of covariance matrices, except for some additive rank one terms. Note that all

the rank one terms lie in the subspace S obtained from Step 1 (a), and they vanish if

we project the slice to the orthogonal subspace S'. In particular, Projs 5 = 0 for

all j E S. Let the columns of the matrix Pus E R "xk be the vectorized and projected

covariance matrices as below:

PUS = [vec(Projs L(i) : i E [k]] . (3.24)

In the following claim, we show that the columns of QLTs indeed lie in the column

span of Ps:

Claim 3.7. Given S obtained in Step 1(a), the span of D') for j c N and for all i,

then for j1, 12 E N, we have:

k

ProjsiM 4(e1 , eh, I, I) = S 1 ?i 2Projs I, VJ1 , j 2 E [n].
i=1

Similar as in Step 1(a), in the next lemma we show that the columns of Qus indeed

span the entire column span of Pus. Since the dimension of the column span of AUS

is no larger than k, it is enough to the k-th singular value of QuS:

Lemma 3.10 (Lemma 3.4 restated). Given A14 , the exact 4-th order moment of the

p-smooth mixture of Gaussians , define the matrix Qus as in (3.23) with the two-

dimensional slices of A/ 4 . For any E > 0, and for some absolute constant C1, C2, 03 >
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0, with probability at least 1 - 2(C1e)c2"', the k-th singular value of QLTS is bounded

below by:

gk(QUs) > C3 W(eP)2 n1.5.

Similar as before, we first examine the structure of the matrix Qyt:

Claim 3.8 (Structural). Under the same assumption as Lemma 3.10, we can write

Qr, in the following matrix product form:

Qrus Pus Dzj j (3.25)

The columns of the matrix Pus E R2xk are the vectorized and projected covariance

matrices as defined in (3.24); D- is the diagonal matrix with the mixing weights ji

on its diagonal; and the matrix Zj is defined as:

EJ = lvec[ (t :1 (i 2) E J] : i E [k]E RIJI xk

Proof. This claim follows from Claim 3.7, and the rule of matrix product. The coeffi-

cients for the linear combinations of vec(Projs Z')) are given by the columns

of the product D , J. The coefficients are then multiplied by Pus to select the correct

columns.

To prove Lemma 3.10, similar to the proof ideas of Lemma 3.8, we lower bound

the k-th singular value of all the three factors.

Proof of Lemma 3.10 By the structural Claim 3.8, we know the matrix Qu, can

be written as a product of the three matrices as Qu3 = PusDjZEj.

We lower bound the k-th singular value of each of the three factors. It is easy for

the last two matrices. Note that by assumption uk(Da) > w,, and since J is just a

perturbed rectangular matrix, we can apply Lemma 3.31 and with high probability

we have Uk(5J) > Q(,p\/).
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The first matrix Pu, is more subtle. Let us define the projection DS = Projsi 0 kr

I, E RX2
*2. This is just a way of saying "apply the projection Projs to all columns"

and then vectorize the matrix. In particular, for any matrix A we have Dsivec(A) =

vec(Projs- A), therefore by definition of PUS we can write Pus = Ds-.

However, we cannot apply the same trick to directly bound the smallest singular

value of DS- and ProjD I E separately. The problem here is that DS and E are not

independent, as the subspace S obtained in Step 1(a) also depends on the perturbation

on E, therefore ProjD SI is not simply a projected perturbed matrix. Instead, we

show that even conditioned on the part of randomness that is common in S and Z,

S still has sufficient randomness due to the high dimensions, and we can still extract

a tall random matrix out of it. This is elaborated in the following claim:

Claim 3.9. Under the assumptions of Lemma 3.10, with high probability the matrix

Pus = Ds1  has smallest singular value at least Q(pn).

Let L be the set of the (ji, j2 )-th entries of DO for all i and one of jI, j2 is in the

set X. By Step 1(a), the subspace S' = span(S, ej : j E 7t) is only dependent on the

entries in L. Here we need to include the span of es's for j E W because the diagonal

entries can depend on the other random perturbations. By adding the span of the

vector ej's for j E W the subspace remains invariant no matter how the diagonal

entries change.

Let Z = span(E, S'k, I,,), and recall that the columns of E are the factorization

of the unperturbed covariance matrices. The subspace Z has dimension no larger

than JIJ(k + 1)n + k < n2 /10, and depends on the randomness of L.

Let = E + E where E is the random perturbation matrix. Now we condition on

the randomness in C. By definition the subspace Z is deterministic conditional on E.

However, even if we only consider entries of E\2 there are still at least (" I) ; n2 /4

independent random variables. We shall show the randomness is enough to guarantee

that the smallest singular value of ProjD.-L is lower bounded with high probability
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conditioned on L:

Uk( PUs) 0k(DSDZ)

> gk(Projiz)

Ck(ProjzI E + Proj- E)

= 0k(ProjzIE).

Here we used the fact that projection to a subspace cannot increase the singular

values (Lemma 3.28).

Conditioned on the randomness of entries in 4, E\L still has at least n2 /4 random

directions, while the dimension of the deterministic subspace Z is at most n2 /10.

Therefore we can apply Lemma 3.31 again to argue that conditionally, for every

E > 0, with probability at least 1 - (Cc)C2n2 we have:

Urk(PU5 ) EP CGn2 .

In summary, apply union bound and we can conclude that with probability at

least 1 - (CIe)C2n,

c-k(QU 5T) = Ouk(Pus)u'k(DEj)o'k(FZJ) ! 0 3w 0o(EP) 2 n'5

Next, we again use matrix perturbation bounds to prove the robustness of this

step, which depends on the singular value decomposition of the matrix QUs.

Lemma 3.11 (Lemma 3.7 restated). Given the empirical 4-th order moments A 4 =

Al + E4., and given the output Proj 1 from Step 1 (a). Suppose that ||ProiJ -

Proj 1 || 5 61, and suppose that the absolute value of entries of E4 are at most 62 for

62 ! I|Qus F/V . Conditioned on the high probability event 0k(QUs) > 0, we have:

n 2-5 (1 + 26,1/62)
||Projl, - Projosll < n ( 5 62. (3.26)

k(QfUs)
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Proof of Lemma 3.11 Note that the columns of Us are the leading left singular

vectors of Qu,. We want to apply the perturbation bound of singular vectors.

Similar to the proof of Lemma 3.9, we first need to bound the spectral distance

between Qus and QUs. In fact we will even bound the Frobenius norm difference:

||Qus - QUsIIF = ISIQu0 - DS QUoIIF

11 IDs-L(Quo - Quo) + (DS-L - DS-L)QUO (D5-L - DSL) (Quo - QUo)IIF

<lDs1 IIFIIQUo - QUo F + 21IDS- - DS IIFIQUoIIF

<v4T|bsI1 2 1Quo - QUOIIF + 2y IjlProj , - Proj - lIFI Uo lIF

n n2|J|62 + 2v\i rt2 l||J|Proj i - Proj , |IF

< n2 (1 + 211Projg - Projg112/62)32 ,

where we used the assumption |1(i) 1 to bound |lQuJ F, used the upperbound

on I|Quo - Qu 0 lIF to bound the term |l(D5  - Ds )(Quo - _Uo)IIF ls -

DsI)l|F2 V 2 iJI Il(DS-L - D)IIFI UoIIF, and used the fact that Frobenius

norm is sub-multiplicative. Apply Wedin's Theorem (in particular the corollary

Lemma 1.5), we can conclude (3.26). l

Step 1 (c). Finding U by Merging the Two Projected Span

Algorithm 7: MergeProjections

input: two subspaces S1, S2 E Rnxks, two subspaces U1 , U2 E Rf "x (the span
of covariance matrices projected to the corresponding S', S#).
Output: span{ E : i E [k] }, represented by an orthonormal matrix
U E Rn2xk.

Let A be the first 2ks left singular vectors of [SI, 5S2.
Let S3 be the first (n - 2ks) left singular vectors of I - AAT.
Let Q = [In2, Proj(s3 O®,rI)Proj U1

T U2 , compute the SVD of Q.

Return: matrix U, whose columns are the first k left singular vectors Q.

Pick two disjoint sets of indices 11, 72, and repeat Step 1 (a) and Step 1 (b) on

each of them to get Sfr and Uj for j = 1, 2. In Step 1 (c), we merge the two span U1
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Figure 3-4: Step 1(c): Merging two subspaces.

and U to get U.

If we are given two projections Projy; U and Proj -U of a matrix U, and if the

union of the two subspaces Sf and "] have full rank, namely din( Si u S9 ) = n, then

wTe can recover U by:

t --

ProjS-1 Proj, -I UU 1
Proj5i Proj i U

However, it is slightly different if we are given two projections of a subspace U, since a

subspace can be equivalently represented by different orthonorinal basis up to linear

transformation.

In particllar, in our setting for j = 1, 2, we can write U; = (Proji t- v, IY

for some fixed but unknown full rank matrix W;r' (which makes the columns of matrix

SW;11r an orthonormal basis of U). Recall that we define ' _ [vec(Z1') : i E [A]], and

TProjqi Kr I for j 1, 2.

The following Lenna shows that we can still robustly recover the subspacc U if

the two projections have sufficiently large overlapping. The basic idea is to use the

overlapping part to align the two basis of the subspace which the two projections act

Oil.

Lemma 3.12 (Robustly merging two projections of anl unknown subspace). This is

the detailed statement of Conditiort 3.10.

Let the columns of two fixed but unkown natri ces i R x K and V R"E A" form

two basis (not ecessaril Oft/hnoral) of the sanmue k - dirm cnsio ttaI fixed but unknown
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subspace U in R'.

For two s-dimensional known subspaces S1 and S2 , Let the columns of A be the

first 2s singular vectors of [SI, S21, and let the columns of S3 correspond to the first

(n - 2s) singular vectors of (In - ProjA), therefore S3 C (S1 U S2)'. Suppose that

9k-(Projs3 U) > 0 and that 0-2 8 ([,S 2]) > 0. Define matrices U1 = ProjsV1 and

U2 = Projs V2 and we know that U1U1 = UIU 2 = Ik.

We are given 1, S2 and U1 ,U 2 , and suppose that forj = 1, 2, we have |ISj-SIIF

6s and I0 - U|IF 6u, for Es < 1 6u < I-

Let the columns of A be the first 2s singular vectors of [Si, S 2], and let the columns

of S3 be the first (n - 2s) singular vectors of (I - ProjA). Define matrix U E Rnx 2 k

to be:

= [U2 U 1 (3rU1 )t(3U2 )] (3.27)

If crk(Projs3 U) > 0 and o2S([S1, S21) > 0, then for some absolute constant C we have:

||Pro - Proj|| <6s/2S1, S2]))I k - I (ProjS3 U)
22([S1, 52])3

Proof. The proof will proceed in two steps, we first show that if we are given the exact

inputs, namely 6, = J, = 0, then the column span of U defined in (3.27) is identical

to the desired subspace U. Then we give a stability result using matrix perturbation

bounds.

1. Solving the problem using exact inputs.

Given the exact inputs S1, S2 , U1 , U2 , first we show that under the conditions

-2(SU1, S2 ]) > 0 and Uk(ProjsU) > 0, then we show that the column span of the

matrix [U2, U1 (S3U1 )t(S3U2 )] is indeed identical to U = span( V1) = span(V2 ).

Claim 3.10. Under the same assumptions of Lemma 3.12, given a matrix V E R kxk

such that V = VNV2 , let Proja, be the projection to the column span of U0 = [U2 , U1V],

then we have Proju. = Proju.

Proof. Given V = VtV2 , then U1 V = ProjsV1 V = ProjsV2 . Recall that by def-

154



inition U2 = ProjsjV, then the problem is now reduced to the simple problem of

merging two projections (U2 = Projs-V2 and U1V = Projs V2 ) of the same matrix

(V2 ). Therefore, to show that the columns of UO = [U2 , U1V] indeed span V and thus

the desired subspace U, we only need to show that [Proj gi, Projs ] has full column

span. We show this by bounding the smallest singular value of it:

o,([Projs , ProjsiL) >a 23 ([Projsg , Projs [ S2

=C~~s([ S2S2

s -1

=o2 8([Si, S2S
- 2 1 ,

=(72s( S,, S2, S1, -S2

-2

=62s( S1, S2 Si, -S2 S1, -- S2)

=0::2s ([SI1, S21))'

>0,

where the last inequality is by the assumption that 02,([S1, S 2]) > 0.

(3.28)

El

Next, we show that in the exact case, the matrix V = V 2 can be computed

by V = (S3TU 1)t (S3TU 2 ). The basic idea is to use the overlapping part of the two

projections U1 and U2 to align the two basis V and V2. Recall that by its construction,

5 = (Si US 2 ) = Si S4, and Projs3 = Proj sins. Then forj 1 and 2, we have:

S3T U = S3TProjsVj = S3T(ProjsiProjsj + ProjsProjs)V = 3(O + Projs3 )V = S3Vj

Moreover, since Uj = Projsi Vj is an orthonormal matrix, we have that all singular
j

values of V are equal or greater than 1. Also note that U is an orthonormal matrix,

so we have that Uk(Projs,,V) > Uk(ProjsU) > 0. In other words, STV has full
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column rank k. Therefore,

V = (S3 U1 )'(5T U2)

(S3 V1)t(3 2 )

= (VTS3S3 1 ) T 3(51V 2)

= (V1
T S3 S 1)T V1

T
3 S3 1ViVV2

= VitV2

where the third equality is the Moore-Penrose definition, the fourth equality is because

V and V2 are basis of the same subspace, there exists some full rank matrix X E Rkxk

such that V2 = V1X, so we have V1VV2 = V1VtVIX = V1X = V2 .

2. Stability result.

Given S 1 , S2 and U1, U2 which are close to the exact S1, S2 , U and U2 , we then

need to bound the distance IlProjo - Proj 11. This follows the standard perturbation

analysis. In order to apply Lemma 1.5 we need to bound the distance between

I|U - UO F, and lower bound the smallest singular value of Uo, namely Uk(U). Recall

that we define Uo same as in (3.27) for the exact case with =6, = 0.

First, we bound IIU - UoIlF. Note that we can write UOT as UOT = U2 B, where

B = [I, U1(S3T U1 )tS3]T.

Recall that S3 = (S1 U S2)', apply Lemma 1.5 and we have:

|IS3 - S311 IlProjsius2 - Projss2 I I < 11[S1,S21 - [S1, S2 1I1F -
0'2,q([S1, 21) 02s ([I, S21)

Next, note that IJS3 - S311 < 1 and |1U1 - U111 < J, < 1, apply Lemma 1.6 we have:

|iTiU1 - SU1 | 2(1153 - S311 + 1U 1 - U11).

Next, note that Ok(S3TU1) = ok(Projs,V) > 0 by assumption. Apply Lemma 1.7, we
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have:

| 12- (vI 1)fI T 1 - SU 2U -1k(Pro S,1) 2

Next, apply Lemma 1.6 again we can bound the perturbation of matrix product:

||0 - Uo1 = |U2B - U2B||

< 2(J|U2 - U211 + ||B - B|1)

2(1U2 - U2 || + Il 1( 3TU 1)'S3 - U1(S3TU1)S 3I)

2(flU 2 - U211 + 4(IUi - U111 + |1(3 ) - (S3VU1)fhI+ |S3 - S3I|))-

C(u + 6s/U2s([S1, S2]))
- k(Projsli)

2

where C is some absolute constant, and the last inequality summarizes the previous

three inequalities, and used the fact that uk(ProjsV) < 1. Note that ||U - UoIIF <

\/KII0 - U0||.

We are left to bound ak(Uo). Recall that Ok(V2) ak(U2) = 1, and we have shown

that in the exact case Uo = [ProjSiV2, Projsi V2]. Then we can bound the smallest

singular value of Uo following the inequality in (3.28):

Uk(UO) o ([Projsi, Projs 1) > U2(2, 1, S 2]) 3.

Finally we can apply Lemma 1.5 to bound the distance between the projections

by:

.ilProi, - ProjC~JI < V-iU| - Uo||F < Cv'4(6" + 6s/2s([S1, S2]))
J (U) - k(Projs,V) 2 T 2 ([S, S2])3

In Step 1 (c), we are given the output U1 and U2 from Step 1 (b), as well as the

output 1 and S from Step 1 (a). Recall that U = span{vec(ZD) : i E [k]}, and for

j 1, 2, the matrix Uj given by Step 1 (b) corresponds to the subspace U projected
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to the subspace Bj = S Okr In.

Let matrix 3 = ' n Sn- ( 1 U 52)' (obtained by taking the singular vectors of

(I, - AAT), where A corresponds to the first 2k]HI singular vectors of [S 1 , 2 ]), and

denote b33 = S 3 ®kr I.. Define the matrix QU to be:

S= [U 2 , U 1(B3 U 1)tb3U 2 ) , (3.29)

and similarly define the perturbed version Qu to be:

QU = [2, U1(B 3 U1 )tB 3U2 ) -

Now we want to apply Lemma 3.12 to show that Proj = Projg and bound

the distance ||Projg, - Projg||. In order to use the lemma, we first use smoothed

analysis to show (in Lemma 3.13 and Lemma 3.14 )that the conditions required by the

lemma are all satisfied with high probability over the p-perturbation of the covariance

matrices, then conclude the robustness of Step 1 (c) in Lemma 3.15.

Lemma 3.13. With high probability, for some constant C

Uk(Projg Z) Cepn.

Proof. This is in fact exactly the same as Claim 3.9.

Given = E + E, by the definition of S 3 and 133 we know that 13 only depends

on the randomness of P E for i = 1, 2, where

J={(jIj 2 ) : ji E N 1 U W 2, or ji E W1 U R 2},

and Pj denotes the mapping that only keeps the coordinates corresponding to the set

J. Therefore, we have:

Uk(Proj 3 ck(Proj(bT7)LProj E).
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Note that the rank of b' is 2nkIHI) and 131 = 2nHL, thus n 2 - 31 - 2nk'ht -

k = Q(n 2 ) > 2k. So we can apply Lenmna 3.31 to conclude that for some absolute

constants C1, C2, C3, with probability at least I-(C) 2 n2 , k(T ) > Cpv/ 3n2 . El

Lemma 3.14. With high probability, for some constant C,

J 2 k|W| ([1, S 2 1) CWo(p)2 .n
2 5

Proof. For i = 1, 2, recall that Si is the singular vectors of Qs,, where Qs, is defined

with the set 1i as in (3.12). We can write the singular value decomposition of Qs,

as Qs= SiDiV7 for some diagonal matrix Di and orthonormal matrix 1i, and

VIDI 0
[Si, 52] = QsQ s2l ~QS ~ -

0 VD2

Note that we can write [Qs 1, Qs2l = [Psi, Ps2] (diag(B 1 , B 2 ))T, and following almost

exactly with the proof of Lemma 3.8, we can argue that, with probability at least

1 - (CE)C2n,

U2k f([QS1 , QS2) Cw(EP)2n.

Moreover, by the structure of A14 and the bounds on DO . -I, we can bound

|QUss| < 3/n(INI/3)3, and thus:

I-% > Qn -1. 25

rnax(Qs ) 3 n(IN|7-/3) 3

Therefore, we can conclude that, for some absolute constant C, we have:

I2kH t x ,1, p21) > CWow(tp) t pb-2

In the next lemma, we apply Lemnma 3.12 to show that under perturbation, with

159



high probability the column span of Proj = Projp and this step is robust.

Lemma 3.15. Given the output S1, S2 and U 1, U2 from Step 1 (a) and (b) based on

the empirical moments M4 . Suppose that for i = 1, 2, ItSi-SiIF < Es, 1i - UiF < Su

for S, 6, < 1. Let the columns of U E Rn2
xk be the k leading singular vectors of Qu

defined in (3.29). Then for some absolute constants C, with high probability,

CN-( u + Jn0 -7 5 /(WO6 2 p 2 ))IProjo - ProjI I W~ 8p8n1.25  . (3.30)

Note that -2kin ([B1, B 2]) = 0-2k 1 jH([S1, S2]), and for i = 1,2, we have ||$4 -

BillF VIllSi - SilIF s-6 Therefore, with the above two smoothed analysis

Lemmas showing polynomial bound of r2 koj-([S1,S 2 ]) and ok(Projb3 (E)), the proof

of Lemma 3.15 follows by applying Lemma 3.12.

3.4.2 Step 2 of Zero-Mean Case. Moments Unfolding

Algorithm 8: EstimateY4 Y

Input: 4-th order moments M 4 E R"4, 6-th order moments M6 E R"6, the
span of (vectorized with distinct entries) covariance matrices U E Rn2xk

Output: Unfolded moments in the coordinate system of U:
y~Jkxk y6 ~jkxkxk

Y4 Ez R , Y E Rsyrn

Let Y4 be the solution to minyE kxk |v.F 4 (UY4 UT) - M411}.
YEsym F

Let Y6 be the solution to minl k' xkxk _IX/76 Y6(UT, UT, UT) - M6F.

Return: Y4,Y6 .

In the second step of the algorithm, we solve two systems of linear equations to

recover the unfolded moments.

Unfolding the 4-th Order Moments

Recall the first system of linear equations is

M 4 = V-3.4 o X 4U(Y4 ).
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In the equation, Y4 E R"" is the unknown variable which can be viewed as a k x

k symmetric matrix. Given U c R 2 xk , the column span of 5 that we learned

in 'Step 1, the first linear transformation X-T is simply X(Y 4 ) = UY 4 UT. It is

supposed to transform Y4 into the unfolded moments X4 E R n2, which is defined

to be Ek1 wivec(Z(i))vec(Z(i))T. The next transformation v/IF4 maps the unfolded

moments X4 to the folded moments M4 E Rn4 . As we showed in Lemma 3.1, the

mapping Y4 is a projection.

Since U is the column span matrix of 5, there must exist a Y4 such that X4

, ET = UY4UT (recall that D, is the diagonal matrix with entries EJ), so the

system must have at least one solution.

Rewrite the system of linear equations M4 /v/5 74 o X(Y 4 ) in the canonical

form: T, 4 V/3 = H4vec(Y4 ) where the variable vec(Y4 ) E Rk2, and the coefficient

matrix H4 E R4 x k2 is a function of U and therefore also a function of the parameter

E (recall n4 = (") and k2 = (k+1)). The system has a unique solution if the smallest

singular value of the coefficient matrix H4 is greater than zero.

The main theorem of this section shows that with high probability over the p-

perturbation the system has a unique solution:

Theorem 3.12. With high probability over the p-perturbation of Z, the smallest sin-

gular value of the coefficient matrix H 4 is lower bounded by >in(H4) ; Q(p 2 n/k).

As a corollary, the system has a unique solution.

In order to prove this theorem, we first need the following structural lemma:

Lemma 3.16. The coefficient matrix H 4 is equal to A 4 B4 . The first matrix A 4 G

Rn4 xk2 has columns indexed by pair {(i, j) : 1 < i < j k}, and the (i,j)-th column

is equal to CjF 4 (vec(D()) 0 vec(ZU))). Here Cj = 1 if iz= and C = 2 if i < j.

The second matrix b 4 c Rk2 xk2 transforms a k x k symmetric matrices Y4 into:

B 4vec(Y 4) = vec((DtU)Y4(2tU)T ).

Next we need to prove the bounds on the smallest singular values for A 4 and B 4 .

The first matrix A 4 is essentially a projection of the Kronecker product (E Ok, E).
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In particular, this projection satisfy the "symmetric off-diagonal" property defined

below:

Definition 3.3 (symmetric off-diagonal). Let the columns of matrix P E R 2

form an (arbitrary) basis of the subspace P, and index the rows of P by pair (i, j) E

[n2l x [n2]. The subspace P and the matrix P is called symmetric off-diagonal, if (i, i)-

th row of P is 0 ("off-diagonal"), and the (i, j)-th row and (j, i)-th row are identical

("symmetric").

Remark 3.13. Since symmetric off-diagonal is a property on the structure of rows

of the basis P. If one basis of the subspace P is symmetric off-diagonal, then any

basis is too. Moreover, any orthogonal basis of the subspace P will still be symmetric

off-diagonal.

Consider a Kronecker product of the same matrix E E Rn2 xk The columns of

E Ok, E are indexed by pair (i, j) E [k] x [k]. Consider applying a symmetric off-

diagonal projection pT to the Kronecker product. By the property of symmetry the

projection will map two columns E[:,i 0 E[:,j] and E[:,j] 0 E[:,i] to the same vector.

Therefore the projected Kronecker product PT(E Ok, E) will not have full column

rank k2 . However, we will show that the k2 "unique" columns after the projection

are linearly independent.

To formalize this, we define the matrix (E ®kr E)ungiqE Rxk 2 with the "unique"

columns of E Ok, E labeled by pairs {(i, j) : 1 < i < j k}. In particular,

[(E Okr E)uniq][:,(ij)] = E[:,iJ 0 E[:,j].

In the following main lemma, we show even after projection to any symmetric off-

diagonal space with sufficiently many dimensions, the "unique" columns of a Kro-

necker product of random matrices still has good condition number.

Lemma 3.17. Let E c Rn2xk be a Gaussian random matrix (each entry distributed

as IV(0, 1)). Let P E Rngxd 2 be a symmetric off-diagonal subspace of dimension
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d2 = Q(n2). Then for any constant C > 0, when n 2 > k2+C we have with high

probability Uni-n(PT(E ®kr E i',tuviq) Q(n 2 ).

Let us first see how Theorem 3.12 follows from the two lemmas (Lemma 3.16 and

Lemma 3.17 ).

Proof. (of Theorem 3.12) Using the structural Lemma 3.16, we know we only need to

bound the smallest singular value of 1 4 and B4 separately. The following two claims

directly imply the theorem.

Claim 3.11. oJmin(A4 ) 2 (p2 12 ).

Claim 3.12. >min(B4 ) 1/(411 11 2) > 1/(4nk).

Next we prove the above two claims.

We apply Lemma 3.17 to prove Claim 3.11. Note that the p-perturbed covariances

N is not a random Gaussian matrix, yet it is equal to the unperturbed matrix E plus

a random Gaussian matrix Er = pE. Since we consider arbitrary E, the columns of

as well as the columns A 4 may not be incoherent.

Instead, we project A 4 to a subspace to strip away the terms involving the original

matrix E. Let S be the range space corresponding to the projection F4. Recall that

ISI = n4 = Q(n'), and by the definition of T 4, S is symmetric off-diagonal. Define

the subspace S' span(S', E 0k, -112, 11-2 &kr E). Let P = (S')'. By construction

JP > ISI - 2kn 2 = Q(n'). Also, since P = (S')' is a subspace of S, it must also be

symmetric off-diagonal (see Remark 3.13). After projecting A 4 to P, we know that

the (i, j)-th column (1 < i < j < k) of PTA 4 is given by:

PT [A 4] [.,(i,)]= Cj, PT ([:,i] ) E:, + pE[:,i] ] E[., l + pE[:,i 0 E[:,j] + p2E[:,i] 0 E[:,j])

= Ci,j p 2pT E[.,i] 0 E[:,j].

7 Note that the diagonal entries are then arbitrarily perturbed, but we will project on a symmetric
off-diagonal subspace so changes on diagonal entries do not change the result.
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Thus in PTZ4 all the terms involving E disappears. Therefore

O-min(A4) comin(P TA 4 ) = Umin(P ( 0 kr Y)uniq)

=p2 .mil(PT(E 0kr E)uni) Q(p2n2),

where the first inequality is because the smallest singular value cannot become larger

after projection, the first equality is by definition, the second equality is by the prop-

erty of P, and the final step uses Lemma 3.178.

For Claim 3.12. Pick any Y4 E Rkx , we have

11B4 (Y4)11 IIvec((EIU)Y 4(5tU)T)I| = 11(ZtU)y 4 (5tU)Tl F

||Y4 I|FUmin(ZtU)2 = IIY4 IFIJ 112

where the inequality is because IIABIIF > Jmin(A)IIBIIF if A E Rn" and m > n.

Since I|vec(Y4 )JI is within a factor of V/2 to IIY4 IIF, and by the assumption (O -<1

we can bound Ii I < Q(v/nk), we have the desired bound for -min(b4 ). l

Structure of the Coefficient Matrix Next we prove the structural Lemma 3.16.

Proof. (of Lemma 3.16) First, assume we know the true Z matrix, then in order to get

the unfolded moments X4 , we only need to solve the equation 7 4 (D4 ZT) = M 4 with

the k x k symmetric variable D4 , and the solution should be equal to the diagonal

matrix Dz.

However, we only know U which is the column span of 53, so we can only use

UY4 UT and let UY 4UT = ZD4 IT. Note that there is a one-to-one correspondence

between Y4 and D4 . In particular we know D4 = (ZtU)Y4 (ZtU)T , this is exactly the

second part B4.

Now the first matrix A4 should map vec(D 4 ) to M4 . By construction, the (i, j)-th

column (i < j) of A 4 is equal to 74( () ® ) + D) i(D)) = 274 (S() 0 D(i)), since

74 is symmetric off-diagonal we know 74 (v1 0 v2 ) = 7 4 (v2 G V1 ) for any two vectors

8 Note that although diagonal entries are not perturbed, we also have Pgg = 0 so we can still
apply the lemma.
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v1 , 'v2 . For the (i, i)-th column, by construction they are equal to T(Z(0 D(i)) as

we wanted.

Main Lemma on Projection of Kronecker Product In this part we prove

Lemma 3.17.

The singular values of Kronecker Product between two matrices are well-understood:

they are just the products of the singular values of the two matrices. Therefore, the

Kronecker product of two rank k matrices will have rank k 2 . However, in our case

the problem becomes more complicated because we only look at a projection of the

resulting matrix. The projected Kronecker product may no longer have rank k 2 be-

cause of symmetry. Here we are able to show that even with projection to a low

dimensional space, the rank of the new matrix is still as large as (+ 1)
The basic idea of the proof is to consider the inner-products between columns,

and show that the columns are incoherent even after projection.

Proof. (of Lemma 3.17) Consider the matrix (Ekr, E) T qPPT (E Ok, E)niq, we shall

show the matrix is diagonally dominant and hence its smallest singular value must

be large. In order to do that we need to prove the following two claims:

Claim 3.13. For any i, j k, i < j, with high probability IIPT(E[:,j 0 E[:,j)112

(22).

Claim 3.14. For any i, j < k, i < j, with high probability

(PT (El:,i] 0 E[ J]), PT (E:,II 0 E[:,ll)) < K o(n2).
1<i'<j' k,(i,.j)$(i',j')

With this two claims, we can apply Gershgorin's Disk Theorem 1.6 to conclude

that oi1rin((E Ok, E),T iqPPT (E Ok, E)miq) Q(n2). Therefore Uisin(PT(E Dkr

E)uniq) > Q( 2 ).

Now we prove the two claims. For Claim 3.13, it essentially says the projec-

tion of a random vector to a fixed subspace should have large norm. If the vec-

tor has independent entries, this is first shown in [113]. Recently [124] general-
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ized the result to K-concentrated vectors, see Lemma 3.33. By Lemma 3.34 we

know conditioned on IIE[:,i]j,|IIE[:,j 11 2 3, (E[:,i] 0 E[:,j])p,q(P 7 q) is 0 (,fI-2)-

concentrated. By assumption P ignores all the (E[:,ij 0 E[:,j])p,p entries. Therefore

Pr[IIIPT(E[:,ij] 0 E[:Jj) 2 - d2 > 2tvQ + t2 ] < Ce-(t 2 /n2) + e-(n2). We then pick

t = Vd/5 ;> f(n2 ), which implies Pr[IIP(E[:,i] 0 E[:,j) 11 2 < d2/2] Ce- (n2). This is

what we need for Claim 3.13.

We need to bound terms of the form (PT (E[:,i) 0 E[:,J]), PT (E[:,q 0D E[:,yj)) in order

to show Claim 3.14. These are degree-4 Gaussian chaoses and are well-studied in [74].

We break the terms according to how many of i', j' appears in i, j.

Case 1: i', j' {i, j}. In this case we first randomly pick E[:,i], E[:,j], and condi-

tion on the high probability event that IIE[:,ilI, IIE[:,jIj < 2,/ii-. In this case the

inner-product can be rewritten as (ppT (E[:,j] 0 E[:,j]), (E[:,i'] 0 E[:,jI])), and we know

IIPPT(E[:,i] 0 E[.,:J) 4n2 . Also, since P is symmetric off-diagonal we know in this

degree-2 Gaussian chaos (only E[:,i'] and E[:,j'] are random now) there are no "diago-

nal" terms. Therefore the Decoupling Theorem 3.20 shows without loss of generality

we can assume i' # j'. Apply Theorem 3.19 we know this term is bounded by O(n+E)

with high probability for any c > 0.

Case 2: One of i',j' is in {i,j}. Without loss of generality assume i' E {i,j}

(the other case is symmetric). Again we first randomly pick E[:,i], E[:,jA and condi-

tion on the high probability event that IIE[:,i] |, IIE[:,jI| 2/ni (but this will also

determine E[:,i']). After the conditioning, only E[:,j'] is still random, and the inner-

product can be rewritten as Kmat(PPT(E[:,i] 0 E[:,J])E[:,i, , E[:,j']) where the fixed vec-

tor mat(PPT (E[:,i] D E[:,j]))E[:,i'] has norm bounded by IIPPT (E[:,I O E[:JI)IIIE[.,iII <

8n 2 . By property of Gaussian with high probability the inner-product is bounded

by 0(n 2 +E) for any E > 0.

Case 3: i', j' E {i, j}. Since i', j' cannot be equal to i, j, there is only one possibility:

i', j' are both equal to one of i, j and i # j. Without loss of generality assume

'=' = i # j. We can swap i, j with i', j' and this actually becomes Case 2. By the

same argument we know this term is bounded by 0(n3/2 +6) for any e > 0.

There are 0(k2 ) terms in Case 1, 0(k) terms in Case 2 and 0(1) terms in Case 3.
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Therefore by union bound we know the sum is bounded by O(kn3/2  + k 2ng+E) with

high probability. Recall we are assuming n2 2 k2+C (which only requires n > kI+C/ 2 )

Choose e to be a small enough constant depending on C gives the result.

Unfolding 6-th Order Moments

Recall the second system of linear equations is

' 6 / /1= (F x Y6 ).

In the equation, Yo E Rkxkxk is the unknown variable which can be viewed

as a k x k x k symmetric tensro. The first linear transformation X6 transforms

Y into the unfolded moments X6 ER S,2xrn2, which is supposed to be equal to

Z_> ibivec(E%))0 3 . The transformation is simply X6 = (Y) Y4 (UT, U, UT)

where U C R'fl2 xk is the column span of Z that we learned in the previous section.

The next transformation T6 maps the unfolded moments X6 to the folded moments

M 6 E R", which as we showed in Lemma 3.1 is a projection. Recall that n 6 = (.

Rewrite the system of linear equations M 6 /vY5 = 76 o XV(Y) in the canonical

form: M6 /v/15 H6vec(Y) where the coefficient matrix H6 E R 6,k3 is a function

of U and therefore is a function of Z (recall k3 = ( 3k+2)

The second system of linear equations tries to unfold the 6-th order moment M6

to get Y. Similar to Theorem 3.12 the following theorem guarantees that with high

probability over the perturbation the system has a unique solution.

Theorem 3.14. With high probability over the perturbation, the coefficient matrix

H6 has smallest singular value o,,si(H6) > Q(p 3 (n/k)1 5 ). As a corollary, the system

has a unique solution.

The proof of this theorem is very similar to the proof of Theorem 3.12. Here we

list the important steps and highlight the differences.

As before the theorem relies on a structural lemma (Lemma 3.18), and a main

lemma about the symmetric off-diagonal projection of a Kronecker product of three

identical matrices (Lemma 3.19).
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Lemma 3.18. The coefficient matrix .I 6 is equal to A 6 b6 . The first matrix A 6 E

R' 6 x1 3 has columns indexed by triples (i1 ,i2 ,i ) for 1 < i1  i2  i3  k, and are

given by:

[A6] [:,(i1,i2,i3)] - i~~-C6VC i) 0 Vec(Z(i2)) 0 Vec(S](i3))),

where Cih is a constant depending only on multiplicity of the indices (i1 ,i 2 ,i3 ).

The second matrix b6 EE R1 k1k3 transforms a k x k x k symmetric tensor Y6 into:

1 6(Y 6 ) = Y6((S7iU) T , ( tU)T, (ZtU) T ).

Before stating the main lemma, we update the definition of symmetric off-diagonal

subspace.

Definition 3.4. Let the columns of matrix P E Rn x3 form a basis of a subspace P.

Index the rows of P by triples (i1 , i2 , i3 ) E [n2] x [n2] x [n2]. The matrix P and the

subspace P are called symmetric off-diagonal if: whenever i1 , i2 , i3 are not distinct the

corresponding row is 0 ("off-diagonal"); and for any permutation 7r over {1, 2, 3}, the

rows corresponding to (ii, i2 , i3) and (itr(1), i(2), i i(3)) are identical ("symmetric").

It is easy to verify that since the moments in M6 all have indices corresponding to

distinct variables, the projection 6 is indeed symmetric off-diagonal. The constraints

in this definition is closely related to the decoupling Theorem 3.20 of Gaussian chaoses.

Similarly, we define the "unique" columns in the 3-way Kronecker product to

be the matrix (E Okr E Okr E)uniq E R2Lxk3 whose columns are labeled by triples

(i 1, i2 , i3) : 1 K i1 K i2 K i3 K k, and (E Okr E Okr E)uniq)[:,(i1,i2 , 3 )] = E[:,i,] 0 E[:,42 0

E[:,i3 .

Lemma 3.19. Let E c Rn2 xk be a Gaussian random matrix. Let P E R 2xd3 be a

symmetric off-diagonal subspace of dimension d3 > Q(n ). For any constant C > 0,

if n2 > k2+C, with high probability Jrnin(PT (E ®kr E ®kr E)uniq) Q(n 3/2

The proofs of Theorem 3.14 are based on the above two lemmas. The proof of
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Lemma 3.18 is essentially the same as Lemma 3.16. The proof of Lemma 3.19 is very

similar to that of Lemma 3.17, and we highlight the only different case below:

Proof. (of Lemma 3.19)

As before we try to prove that the columns of PT (E~kE~kr E)uniq are incoherent.

Recall we needed the following two claims:

Claim 3.15. For any 1 < i1 i2 K i3 K k, with high probability 11PT(E[:,ii] 0 E[:,i,] 0

Claim 3.16. For any 1 < i1 < '2 < i3 < k, with high probability

IPT (E:,4'] 0 E[ 10 E[:,i3]), PT(E[:,iji 0 E[,i] 0 E[:,i'])) I o(n3 ).
1 -5'2- '3,(1,i2,i3)0(i1X'2,X')

The first claim can still be proved by the projection Lemma 3.33, except the

vector E[:,i,] 0 Et.,:h 0 E[:,i3l is now O(n 2 )-concentrated (the proof is an immediate

generalization of Lemma 3.34).

The second claim can be proved using similar ideas, however there is one new

case. We again separate the terms according to the number of i4, i',i' that do not

appear in {ii, i2, i3}.

Case 1: At least one of ', i', Z' does not appear in {i1, i2 , i3}. Suppose there are t of

, i', Z' that do not appear in {ii, Z2, i 3}, similar to before we first sample E 1 , E-, Ei3

and condition on the event that they all have norm at most 2fi-. The inner-product

then becomes an order t Gaussian chaos with Frobenius norm no-t/2. By Theo-

rem 3.20 and Theorem 3.19 we know with high probability all these terms are bounded

b -t/2+c for any constant c > 0.

Case 2: All of i4, i', '4 appear in {i, i2, i 3}. In the previous proof (of Lemma 3.17),

there was only one possibility and it reduces to Case 1. However for 6-th moment we

have a new case: =i1 = 4 K'2 = i' = i3 = j (and the symmetric case i1 = i =

'2 < i 2 = i 3 = i'3). For this we will treat T = ppT as a 6-th order tensor with Frobe-

nius norm at most n3/2 (as a matrix it has spectral norm 1, and rank at most ni). The

tensor is applied to the vectors E[:,i] and E[:,j] as T(E[:,i], E[:,i], E[:,j], E[:,i], E[:,J] E[:,j]).
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First we sample E[:,i], by Lemma 3.36 we know with high probability what remains

will be a 3-rd order tensor T(E[:,i, E[:,i], I, E[:,i], I, I) with Frobenius norm bounded

by O(n +E). Notice that here it is important that Lemma 3.36 can handle diagonal

entries, because E[:,i] appears on the 1, 2, 4-th coordinate (instead of the first three).

We the apply Lemma 3.36 again on T(E[:,i, E[:,ij, I, E[:,i], I, I)(E[:,j], E[:,J], E[:,j]) , and

conclude that with high probability the term is bounded by O(n2 +2) which is still

much smaller than ni.

Finally we take the sum over all terms and choose E to be small enough (depending

on C), then when k2+c < n2 the sum is a lower-order term. l

Stability Bounds

For the two linear equation systems in (3.7), we can write them in canonical form with

coefficient matrices H4 , H1 and the unknown variable vec(Y4 ), vec(Y), corresponding

to the k2 , k3 distinct elements in symmetric Y4 , Y6 , namely:

H4vec(Y4) = M4/vi, H6vec(Y) = / 6/V15.

When M 4 , M 6 , the empirical moment estimations for A14 , A 6 , are used throughout

the algorithm, both the coefficient matrices H4 , H6 and the constant terms M 4 , M 6

are affected by the noise from empirical estimation. In practice, instead of solving

systems of linear equations, we solve the least square problem:

mi IkX/kh(UY 4 UT ) - M 4 |I2 , min x| k Y 6(U
T, UT, UT) - M6112

Y4E Rsym Y mRxkx

(3.31)

and the solution to the least square problems are given by: vec(Y4) - M 4 and

vec(IY) = HtM-

9 The notation might be confusing here: T(E[:,i], E[:,j], I, E[:,j], I, I) is a 3rd order ten-
sor, and we are applying it to E[:,jl, E[:,j], E[:,J]. The whole expression is equal to

T(E[:,i] , E[:,il , E[.,] , E[:,i] , Ef:.,5 , E[:,j]).
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Lemma 3.20. Given the empirical 4-th and 6-th order moments Ah =l 4 + E4,

A16 = R 6 + E6, and suppose that the absolute value of entries in E4 and E 6 are at

most 61. Let U be the output of Step 1 for the span of the covariance matrices, and

suppose that I\U - UJ| < 62. Suppose that J1 < min{II 4 |I/V| , IIM6F/nV6J, and

62 < min{1, ak2 (H4 )/2, aU,(H6)/2}. Then, conditioned on the high probability event

that both ak2 (4), Uk 3 (6) are bounded below, we have:

62
||Y4 - Y411F ((61 + 0k2 (H4)2 n4).

62
||Y6 - 6||F 0 (( 61+ 2

Uk ( H6)2

Proof. We write the proof for 4, the proof for Y6 is exactly the same except changing

the subscripts.

Recall that the coefficient matrix H 4 corresponds to the composition of two linear

mappings F4(UY4 U T ) on the variable Y4. Since we have showed that T4 is a projection

determined by the Isserlis' Theorem and independent of the empirical estimation of

the moments, we can bound the perturbation on the coefficient matrices by:

11H 4 - H411 < iiU C2 - 0T2 |D 2|IU - UII||UI + |1U - U112 32 5 ||H4-1

Similarly, we have ||H 6 - f1611 < JIU o- - g I < 762 < IIH6|.

Therefore we can analyze the stability of the solution to the least square problems

in (3.31) as follows:

Ilvec(Y4) - vec(Y4)1 = 4M 4 - k 4 M 4

0(01M | 4 -M 411 + IIHN - | | |I|41)

<_ M(|4 - i'4 11 + 11fl4 - -fit|II Vn,)

0 n4(61 +1 II I 11141152))

< 0 Vn((61 + )2))
C%2(H4)2
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where the first inequality is by applying Lemma 1.6 and note that 1 (M 4 - M 4 ) IF

61V/n < IIM4 1IF, the second inequality is because IIM411F O(Vni), the third

inequality is by applying the perturbation bound of pseudo-inverse in Theorem 1.5,

the fourth inequality is by the assumption that 62 is sufficiently small compared to

the smallest singular value of H4 thus 0 k2 (H4 ) = O(-k2 (H 4 )).

3.4.3 Step 3 of Zero-Mean Case: Tensor Decomposition

Algorithm 9: TensorDecomp

Input: the span of covariance matrices U E R'1 2xk (vectorized with distinct

entries), the unfolded 4-th and 6-th moments Y4 E IRkxk and Y6 E IR xkxk in

the coordinate system of U.
Output: Parameters ! = {(wi, E(0) : i E [k]}.

Compute the SVD of Y4 : Y4 = V2A 2 V2T.
Let G = Y(V2 A 1 12 , V2 A 1 12 , V2 A2y1 2)
Find the (unique) first k orthogonal eigenvectors vi and the corresponding

eigenvalues Ai of G, denoted by {(vi, Ai) : i E [k]}

For all i E [k], let vec(E(C)) = A;UV2Af'2 vi, let wj = (A)-2_

Return: G = {(r, @() : i [k]}.

Given the estimations of the unfolded moments Y4 and Y6 from Step 2, and given

the span of covariance matrices U from Step 1, Step 3 use tensor decomposition to

robustly find the parameters of the mixture of zero-mean Gaussians.

Recall that in the coordinate system with basis U, the covariance matrices (vector-

ized with distinct entries) are given by O = ( for all i. The unfolded moments

in the same coordinate system are:

k k

y 4  & 2 ' 6  (i) &3
i=1 i=1

We will apply tensor decomposition algorithm to find the a(')'s. We restate the

theorem for orthogonal symmetric tensor decomposition in Anandkumar et al. [7]

below:
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Theorem 3.15 (Theorem 5.1 in [7]). Consider k orthonormal vector v 1,... vk E

R 's and k positive weights A 1,...Ak. Define the tensor T = Ek Aivi03 . Given

T = T + E and assume that ||Ell < C1 min{Ai}/k, then there is an algorithm that

finds Ai's and vi's in polynomial running time with the following guarantee: with

probability at least 1 - e-', for some permutation w over [k] and for all i - [k], we

have:

lvi - ilfl < O(HjEhh/Ai), jAi - Ail < O(IIEII)-

In order to reduce our problem to the orthogonal tensor decomposition so that

the tensor power method (Algorithm 1, page 21 in [7]) can be applied, we use the

same "whitening" technique as in [7]. We first compute the SVD of the unfolded 4-th

moments Y 4 = V2 A 2 2T, then use the singular vectors to transform the unfolded 6-th

moments Y6 into an orthogonal symmetric tensor (V I2 / 1 / 2  2521/2)

Next we complete the stability analysis for the two-step procedure, i.e. whitening

and orthogonal tensor decomposition, which was not analyzed in [7].

Theorem 3.16. Consider k linearly independent vectors a1 ,...,ak E R', and k

positive weights wi, ... , Wk. Define G2 =E wsas0ai C Rr and G3 = 1 wiag 0

ai 0 ai E R'' xfmx' Let 7mrnir, = min{Omin(G2), 11, YmaX = .rnax(G2), and let w =

min{wi}. Given 02, G 3 and assume that:

255

|G2 - G2|11|F :!- J2 <i0 )3 3- G3 |1F J3 0. .11G2-G2IIF 62

There exists an algorithm that finds 'i and ji in polynomial (in all the variables

(n, k, 1/nin(G2 ))) running time with the following guarantee: with probability at least

1 - e-', for some permutation ir over [k] and for all i E [k] we have:

I3aW(i) - a-.(i)ll < poly(|jG3||, 1/om.(G2), 1/wo)62 + poly(JIG 3 ||, 1/ormi(G2), 1/Wo)63,

I wi- Will poly(JIG3||, 1/m.i.r(G 2))6 2 + poly(JIG3 ||,1/Umir(G2 ))6 3 .
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Proof. (to Theorem 3.16)

1. Algorithm

We first apply the whitening technique in [7]: Let G2 = 2A2VT be the singular

value decomposition of 02, and note that the matrix 2As" 2 whitens G2 in the sense

that G2(V2As1 /2  -1/2) =I. Similarly we can whiten 03 with the matrix p1/2

and obtain the following symmetric 3-rd order tensor G E IPYx-.

$= $392A1/2 p 1/2 g 1/2yG-=G 3(V2A2  V2A2  VA 2 )

Note th at in the exact case with G2 and G3 , we have that:

k

G =EAivi
3

i=1

where Ai = w-'/2, and the vectors vi= A71V2TA21/ 2ai and they are orthonormal.

Also note that Amin > 1 and Ama K w, 2 . We can then apply orthogonal tensor

decomposition (Algorithm 1 in [7]) to G to robustly obtain estimations of vi's and

Ai's. After obtaining the estimation v5i and Ai's, we can further obtain the estimation

of ai's and wi's as:

=i V 2 A 2 DAj, w7 = (A) 2  (3.32)

2. Stability analysis

The estimation of the vectors and weights are given in (3.32). In order to bound

the distance ftai - aill and 11' - will, we show the stability of the estimation 12, A2 ,

and 'V, Ai separately.

First, note that by assumption 1102 - G211F < 62, we can apply Lemma 1.2 and

Lemma 1.3 to bound the singular values and the singular vectors of G2 by:

ii 2 - V211 V/262/7-min, |A2 - A 211 <6 2.

Define X = V2 A2 1 / 2 and define Ax = X - X. By the assumption that J2 O(7mi.),
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we have |12 - V2|1 < 1 and |Al - A <2 12 A/ 2I 2. Therefore we can

apply Lemma 1.6 to bound flAxI:

llAxII 0([V2 -- V2lIIA212 1 + IiV2 IIA-1/ 2 - A2 1/2 )

< 0 62 2 + -1/2)2
71'Yrnin. ,n6

Moreover, since 62 <_( Omi(n), we also have l|Axll < IIXI =

Next, we bound the distance JIG - Gil. Recall that G = G3 (X, X, X). Using the

fact that tensor is a multi-linear operator, and by the assumption that l 3-G 311 _ 63,

we have:

J=G|- G|" ||O3(XX,X)- G3(XXX)|IF

< IIG 3(X,XX)- G3(X,XX)II + 113(, ) ,)- G3(X, X,X)1

< 3IIG3(Ax, X, X)I + 3IIG3(Ax,Ax,X)II + IIG 3(Ax, Ax, Ax) + 6311|

71IG3I11IXII2 IAx1 + (IIXII + lAxI)3J3

JIG2.1 62+ 1 63) -
( Ji~n Yrnin

Note that by the assumption 62 _ 0( 4"), 63 K o(2 ), we have E < o(1).

Therefore we can apply Theorem 3.16 to conclude that with probability at least

1 - e~" (over the randomness of the randomized algorithm itself), the tensor power

algorithm runs in time poly(nk,1/Amnirt) and for some permutation 7r over [k] it

returns:

8E
IIVr(i) - itlo(i)l I , li -Ail < 5c, Vj E [k].

Finally, since we also have 5E < 1/2 < Amin/2 we can bound the estimation error
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of 'a and J' as defined in (3.32) by:

1 8c 1
||'a,(i) - aill -< 3(jjAxj0Amax + -Amax + 05 5E)

ymTrin Amin 2 rin

< poly(1G 311, 1/Umin(G 2 ), 1/w,)62 + poly(1G311, 1/am.in(G2 ), 1/wo)63 ,

|IA - wi1l < poly(1G311, 1/ormin(G2 ))62 + poly(JIG 3 1, 1/Omiv(G2))3 3 .

Now we can apply Theorem 3.16 to our case.

Lemma 3.21. Given Y4, Y6 , U and suppose that |IY4 -Y4IIF, 6 - 6IF as well as

||0-N|| are bounded by some inverse poly(n, k, 1/wo, l/p)6. There exists an algorithm

that with high probability, returns D(O's and W'i's such that for some permutation 7r

over [k], we have the distance ||(I) - D'()|| and ||Wi - iII are bounded by 6. Moreover,

the running time of the algorithm is upperbounded by poly(n, k, 1/wo, 1/p).

Proof. (to Lemma 3.21 )

We apply Theorem 3.16, and pick G 2 = Y 4 , G3 = Y 6. We only need to verify that

IIY611 and 1/amin(Y4 ) are polynomials of the relevant parameters. This is easy to see,

since Omin(f4) WoUmin(E) 2 , and the matrix Z is a perturbed rectangular matrix

which by Lemma 3.31 has o-min(Z) Q(pfni2) with high probability.

Finally, given 6(0, and given the output of Step 2, i.e. U, with inverse polynomial

accuracy, we can recover D( - U-(i) up to accuracy polynomial in the relevant

parameters.

3.4.4 Proof of Theorem 3.5

The results in all previous sections showed the correctness and robustness of each indi-

vidual step for the algorithm for zero-mean case, In this section, we summarize those

results to prove that the overall algorithm has polynomial time/sample complexity.

Lemma 3.22 (Concentration of empirical moments). Given N samples x1 ,. .. ,XN

drawn i.i.d. from the n-dimensional mixture of k Gaussians, if N > n7 /6 2 , then with
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Algorithm 10: MainAlgorithm (Zero-mean case)

Input: Samples xi from the mixture of Gaussians , number of components k.
Output: Set of parameters g = {(wi, z-) : i E [k]J}.

Estimate M4 , Al6 using the samples.

N N

/ H4 = ZXi, M 6 =xi (D .
i=1i=

Let s = 9[vf/n~
(Step 1 (a) Algorithm 5)

S1 = FindColumnSpan(M 4, {1, ..., s
S2 = FindColumnSpan(M 4 , {s + 1, ... , 2s}).

(Step 1 (b) Algorithm 6)
U1 = FindProjectedSigmaSpan(MA 4 , {1, ... , S1),
U2 = FindProjectedSigmaSpan(M 4, {s + 1, ..., 2s}, S2).

(Step 1 (c) Algorithm 7)
U = MergeProjections(S 1 , U1 , S2, U2 ).

(Step 2 Algorithm 8)
(Y4, Y6) = EstimateY4Y6 (M4, M6 , U).

(Step 3 Algorithm 9)
g = TensorDecomp(Y4 , Y, U)

Return: g.

high probability, we have that for all j1, ... , J [,]:

- [A14j1, 3J4 [A1'6] 1 ,J3J3,J4,J5J6 - A6] 1 J3J3J4 ,J5 6

Proof. Let x denote the random vector of this mixture of Gaussians. We first truncate

its tail probabilities to make all the entries ([x]j for j E [n]) in the vector x be in the

range [- , V/]. Apply union bound, we know that with high probability (at least

1 - O(e-")), for all indices ji, .... j E [n], we have [x] 1 . .. [xD6 < n 3. Then we can

apply Hoeffding's inequality to bound the empirical moments by:

Pr [IE[xj, .. .xj] - E[xgj ... xj]I > 6] < exp( N(2N3)2) + O(e-') < O(e-").

Proof. (of Theorem 3.5)
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We show that, to achieve e accuracy in the output of Step 3 in the algorithm for the

zero-mean case, the number of samples we need to estimate the moments M4 and M6

is bounded by a polynomial of relevant parameters, namely poly(n, k, 1/w0, 1/e, 1/p),

and each step of the algorithm can be done in polynomial time.

We backtrack the input-output relations from Step 3 to Step 2 and to Step 1, and

we show that the estimation error in the empirical moments and the inputs / outputs

only polynomially propagate throughout the steps.

First note that we have shown that every steps fails with negligible probability

(O(e-nc) for any absolute constant C). Then apply union bound, we have that the

entire algorithm works correctly with high probability.

1. By Lemma 3.21, in order to achieve E accuracy in the final estimation of the

mixing weights and the covariance matrices, we need to drive the input accuracy

of Step 3 (also the output accuracy of Step 2) to be bounded by some inverse

polynomial in (n, 1/E, 1/p, 11w,), Also recall that this step has running time

poly(n, k, 1/p, 1/wo).

2. Theorem 3.12 and Theorem 3.14 guarantee that with smoothed analysis U"in(H4)

and 0-min (N) are lower bounded polynomially. Then by Lemma 3.20, in order to

have the output accuracy of Step 2 be bounded by inverse poly(n, 1/E, 1/p, 1/w"),

we need to drive the input accuracy of Step 2 (U, A1 4 ) to be bounded by some

other inverse polynomial. Step 2 involves solving linear systems of dimension

n 4 k 2 and n6 k3 , thus it running time is polynomial.

3. Lemma 3.13 and 3.14 guarantees that with smoothed analysis uk(Qu) is lower

bounded polynomially. Then by Lemma 3.15, in order to have the output

accuracy of Step 1 (c) (U) be bounded by inverse polynomial, we need to drive

the input accuracy (output Si of Step 1 (a) and output UJ of Step 1 (b) ) to be

bounded by some other inverse polynomial. Step 1 (c) involves multiplications

and factorization of matrices of polynomial size, and thus the running time is

also polynomial.
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4. Lemma 3.10 guarantees that with smoothed analysis Jk(QU) is lower bounded

polynomially. Then by Lemma 3.11, in order to have the output accuracy

of Step 1 (b) (Us) be bounded by inverse polynomial, we need to drive the

input accuracy (output Si of Step 1 (a) ) to be bounded by some other inverse

polynomial. Step 1 (b) involves multiplications and factorization of matrices of

polynomial size, and thus the running time is also polynomial.

5. Lemma 3.8 guarantees that with smoothed analysis Ok(Qs) is lower bounded by

inverse polynomial. Then by Lemma 3.9, in order to have the output accuracy

of Step 1 (a) (S) be bounded by inverse polynomial, we need to drive the input

accuracy (the moment estimation A14 ) to be bounded by some other inverse

polynomial. Step 1 (a) involves multiplications and factorization of matrices of

polynomial size, and thus the running time is also polynomial.

6. Finally, by Lemma 3.22, in order to have the accuracy of moment estimation

(A 4 , A16 ) be bounded by inverse polynomial, we need the number of samples N

polynomial in all the relevant parameters, including k.

3.4.5 Proofs for the General Case

In this section, we present the algorithm for learning mixture of Gaussians with

general means. The algorithm generalizes the insights obtained from the algorithm for

the zero-mean case. The steps are very similar, and we will highlight the differences.

Step 1. Span finding In this step, we find the following two subspaces:

Z = span{p : i E [k]}, Z0 = span{Proj 21Z(D)Proj2-,.

This is very similar to Step 1 in the algorithm for the zero-mean case, and can be

achieved in three small steps:
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Algorithm 11: MainAlgorithm (General Case)

Input: Samples {xi E Rn : i = 1, ... , N} from the mixture of Gaussians,
number of components k.
Output: Set of parameters g {(wi, p(i), E(0) : i E [k]}.

Estimate M 3 M4 , M, using the samples

A3 =N KZx , M4 = xi4,M6=F x6N X
i=1 i=1 i=1

Step 1. (a) This can be accomplished similar to Algorithm 5 FindColumnSpan

Let - 1 = {1, ... , 12 V'}, find S1 = span{p('), :f() i E [k],j E ' 1}.

Let W 2 = {12Vi + 1, ... , 24 V5}, find S2 = span{(, ( :) i C [k], j E 72}.

(b) This can be accomplished similar to Algorithm 6 FindProjectedSigmaSpan

Find U1 = span{Projs L() : i E [k]}.

Find U2 = span{Projs2t(') : i E [k]}.

(c) This can be accomplished similar to Algorithm 7 MergeProjections

Merge U1 and U2 to get Z = span{p() : i E [k]},
U' = span{vec(Projzi-()) : i E [k]}, and U = span{Projz-j(i)Projz- : i E [k]}.

Step 2. Project the samples to the subspace Z': Projzix = {Projzixi, ... , ProjziXN}.

Apply the algorithm for zero mean case to the projected samples, let g0 =
{(wi, Projz-j()Projzi) : i E [k]} = MainAlgorithm (Zero-mean case)(Projzix).

Step 3. Let T = [vec(Projz-L(i)Projz-) i E [k]tT E R 2 xk, and let T) for i E [k]
denote the columns of T.

Let M 3 (i) E Rnx 2 be the matricization of M3 along the first dimension.

Let pi@) =AX 3 (1)T(2)/wi for i E [k] and let y = [y() : i E [ki].

Step 4. Let M = A/ 4 + 2 E wi/(00 4.

Find the span S = span{vec(Z()) + g() ® () i c [k]}.

This can be achieved by treating M as the 4-th moments of a mixture of
zero-mean Gaussians, and apply Step 1 in the algorithm for zero-mean case to
find the span of the covariance matrices, and let S denote the result.

Let E = [vec(E(')) : i E [k]] = (ProjSU' - p 0 [).

Return: g {(wi, p(i), E(): i E [k]}.
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1. Step 1 (a). For a subset N of size 12V/-, find the span S of the mean vectors

and a subset of columns of the covariance matrices:

S = span{7(), {j : i E [k],j E N}.

2. Step 1 (b). Find the span of covariance matrices projected to the subspace S':

Us = span{Projs Z() : i E [k]}.

3. Step 1 (c). Run 1(a) and 1(b) on two disjoint subsets N 1 and N 2 . Merge the

two spans U1 and U2 to get Z and span{Proj21 0(i) : i E [k]}.

Next, we discuss each small step and compare it with the similar analysis of the

algorithm for the zero-mean case.

Step 1 (a). Find the span S of the means and a subset of the columns of

the covariance matrices Similar to Step 1 (a) for the zero-mean case, in this step

we want to find a subspace S which contains the span of a subset of columns of Z)'s.

However, with the mean vector t(j) 's appearing in the moments, the subspace we find

also contains the span of all the mean vectors. In particular, for a subset N E [n]

with IN1 = r, we aim to find the following subspace:

S = span{Gi), : i E [k], j E N}. (3.33)

Similar to Claim 3.1 for the zero-mean case, the key observation for finding the

subspace is the structure of the one-dimensional slices of the 4-th order moments for

the general case:

Claim 3.17. For any indices Ji, J2,J3 E [n], the one-dimensional slices of A14 are
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given by:

M4(ej, 2, ej3,) (3.34)

IZu2 ( -j t3t' (i)jj,~ ~7ri2 -t + /17r2 743]+ ,7r2 W3riP
i=1(1,23)

7rE (j23,d),

(i3,i1 ,2)

Note that if we pick the indices j1, J2, j E W, all such one-dimensional slice of M4

lie in the subspace S. We again evenly partition the set R into three disjoint subset

70) and take ji E W(') for i = 1, 2,3. Define the matrix Qs E Rnx(I74I/3)3 as in (3.12)

whose columns are the one-dimensional slices of 114 :

Qs [[1 4 (eii, eh, eh3, I) : 3  E j2 E () Ji E 0 1  E Rnx([I'I/3)3  (3.35)

The proof of this step is similar to the Lemmas 3.8 (for smoothed analysis) and

3.9 (for stability analysis). The main difference is that in the matrix B defined in the

structural Claim 3.4, there is now another block h(') with k columns that corresponds

to the P) directions, which we can again handle with Lemma 3.29.

Lemma 3.23 shows the deterministic conditions for Step 1 (a) to correctly identify

the subspace S from the columns of Qs, and uses smoothed analysis to show that the

conditions hold with high probability.

Lemma 3.23 (Correctness). Given A114 of a general mixture of Gaussians , for any

subset W E [n] and |I| = c2 k with the constant c 2 > 9, let Qs be the matrix defined

as in (3.35). The columns of Qs give the desired span S defined in (3.33) if the

matrix Qs achieves the maximal column rank k + k|71|. With probability (over the

p-perturbation) at least 1 - CO" for some constant C, the k(1 + [W)-th singular

value of Qs is bounded below by:

Uk(1+Ihl)(QS) > PEV/.

The proof idea is similar to that of Lemma 3.8. We construct a basis Ps E
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Rnx(k+klIlI) for the subspace S as follows.

PS = : i E [[D:0 i C [k]] j E -(): = 1, 2,3

Note that the dimension of the subspace S is at most k(INI + 1) < n/3. Then we

show by the Claim about the moment structure that the matrix Qs can be written

as a product of Ps and some coefficient matrix Bs. Then we bound the smallest

singular value of the two matrices Ps and Bs via smoothed analysis separately. The

coefficient matrix Bs is slightly different than that in the zero-mean case, but has

similar block-diagonal structure properties.

The detailed proof is provided below.

Proof. (of Proposition 3.23 )

Similar to structural property in Claim 3.4 for the zero-mean case, we can write

the matrix Qs in a product form:

Qs = Ps (Da, (kr IIWI) (3s) .

We will bound the smallest singular value for each of the factor, and apply union

bound to conclude the lower bound of o-k(1+jlj)(Qs).

The matrix Ps e R nx(k+kltI) is defined in (3.36). Restricting to the rows cor-

responding to [n]\R, we can use Lemma 3.32 to argue that Uk(1+-I) EpV/n with

probability at least 1 - (CC)o.25n.

In order to lower bound omin(B3s), we first analyze the structure of this coefficient

matrix. The matrix Bs has the following block structure:

Bs - [h(0) 7 F(1)1 h(2) 1 Af(3)]

The first block 5(o) E R( UI/3)3 xk is a summation of four matrices h~o) for i = 0, 1, 2, 3,

where B 0
o' =Hpy3) 0 Ttn(2) 0 > and h o) = SH3>,7t2>0 FIRpl). With some fixed and
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known row permutation r2) and 7r the other two matrix blocks F32 and 3 are

equal to ZFt>3 ),Wl 0 Ii and .-(2)-,H(1) 0 t>(3), separately.

The block h(l) E R(jjl/3)3 xkj1L/3 is block diagonal with the identical block EH 3)'( 2 ) +

/IW(3) 0 [t?(2). Similarly, with the row permutation r2), 7r), the other two matrix

blocks b(, 3 3 are equal to the block diagonal matrices with the identical block

(ZW(3),W(l) + 0(3) O M ) and (Zfl2)(y + julH(2) 0 respectively.

Note that we can write the block 13'M as:

F3(O) =-U (3) 0 LU(2) + 5]Wp3) 7 -H(2)) 0 TtR(1 + (7r(')) 1i( 3 ) 0) jL.(1) + Ef(3),u(1)) 0 2)

+ (7r( 3))-l (Tt-( 2 ) Ow-H1 Z-H2,.l)) 0 j (3 - 2 7 Wj3) 0 /-H(2) 0 /I(1),

where it is easy to see the first summand (RH 3 ) 0 [.(2) + W(,3)w2)) 0 t- is a

linear combination of the columns of the block diagonal matrix 1), and similarly

the second and third summands are linear combinations of the columns of F(2 ) and

3(3), and the last summand is simply -2 0 ). Therefore for some absolute constant

C (the smallest singular value corresponding to the linear transformation) we have

that:

Ormin(i3s) 2! CO'min( 0 7 ,5 ,

Note that B0  = 03( flp2) 0 piR only depends on the randomness over

the mean vectors. Note that the Khatri-Rao product is a submatrix of the Kro-

necker product, therefore for tall matrices Q, and Q2, we have that Umin(Qi 0 Q2) <

Omin(Qi ®kr Q2) = Omin(Q1)Omin(Q2). In particular, we can bound the smallest

singular value of B with high probability (at least 1 - CE05n) as follows:

OUk (Bk0 )) ! uk( ?J(3 )'k (ji( 2) )'okQ 7-H~) > (pev'-

Then condition on the value of the means, we further exploit the randomness over

the covariance matrices to lower bound OkINI (Proj(o) [b(1), (2), b(3)]. It is almost

the same as the argument of the proof for Proposition 3.8. For example, compared
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to (3.18) we have the following inequality instead:

Uk(ProjQ([()J3B( 2 ), F(3)]t~i I j()- Proj (~~2~ i-I'( /LH( 3))' ( W(2) ,(3) + [t (2) (D P1L(3))

and note that any block in b(0 ) is independent of the randomness of covariance

matrices, and we have (IHI/3) 2 - k - 2k1 -1/3 > 2k. Similar modifications apply to

the inequalities in (3.20),(3.21).

Finally by the argument of Lemma 3.29 we can bound mni.n(B5 s) with probability

at least 1 - Ce.5" (over the randomness of both the perturbed means and covariance

matrices):

Qmi. (Bs) > min{I(pc v n), cpv } -v/

as we assume p to be small perturbation and pEci- < 1.

l

Step 1 (b). Find the projected span of covariance matrices Given the

subspace S = span{ (, ) : i C [k]} obtained from Step 1 (a), Step 1(b) finds the

span of the covariance matrices with the columns projected to S', namely:

Us = span{Projs L(i) : i E [k]}.

This is in parallel with Step 1 (b) for the zero-mean case, and we rely on the struc-

ture of the two-dimensional slices of M 4 to find the span of the projected covariance

matrices. Similar to Claim 3.7 for the zero-mean case, the following claim shows how-

the structure of the two-dimensional slices is related to the desired span.

Claim 3.18. For a mixture of general Gaussians, the two-dimensional slices of A14
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are given by:

k

A'14 (e 1 ,e 3 ,II)= ( + (I) )(Z+) (,)1)

S ~()({ )]T W[,]/) + )~.()~i)T 0 it~)T

+ T + L32([:,a) Vj1, j 2 E [n].

Note that given the set of indices W we chose in Step 1 (a) and the subspace S, if

we pick the indices Ji, j2 E W, project the two-dimensional slice to S', all the rank

one terms in the sum are eliminated and the projected slice lies in the desired span

us:

k

Projs 1_4(e, ei2 , 1, 1) = (i( +)ProjsD, Vjil, i2E .i1 31932 + i ((i Tpoj 1 j) V 1, 2h7f

Applying the same argument as in Lemma 3.10 for the zero-mean case, we can

show that with high probability over the perturbation, all the projected slices span

the subspace Us.

Step 1 (c). Merge the two projections of covariance matrices Pick two

disjoint index set 7H1 and W2 and repeat the previous two steps 1 (a) and 1 (b), we

can obtain the two spans U1 and U2 , corresponding to the subspace of the covariance

matrices projected to S1 and S2, respectively.

In this step, we apply similar techniques as in Step 1 (c) for the zero-mean case

to merge the two spans U1 and U2 : we first use the overlapping part of the two

projections ProjS_ and Projs- to align the basis of U1 and U2 , then merge the two

spans using the same basis.

Note that for the general case, by definition the span of the mean vectors Z lie in

both subspaces S1 and S2, therefore we have Sl c Z and S2 c Z'. We can show

that S1' U S2 = Z' by lower bounding Uak([Projs8 , Projsi]) with high probability,

similar to that in (3.28). This gives us the span of the mean vectors Z.

Moreover, in the general case, from merging U1 and U2 we are only able to find
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the span of covariance matrices projected to the subspace Z. In particular, we can

follow Lemma 3.12 and Lemma 3.15 in Step 1 (c) for the zero-mean case to show that

for the general case, we can merge U1 and U2 to obtain the span span{ProjZ(')

i E [k]. By further projecting the span to Z' from the right side, we can also obtain

0 span{Proj2 ,Z(01Proj2 : i e [k]}.

Step 2. Find the covariance matrices in the subspace orthogonal to the

means Given the subspace Z and E-O - span{Proj2E(')Projz1 : i E [k]} obtained

from Step 1, Step 2 applies the zero-mean case algorithm to find the covariance

matrices projected to the subspace Z', i.e., ProjZ (')Proj21 's, as well as find the

mixing weights J's.

This follows the same arguments as in Step 2 and Step 3 for the zero mean case.

Consider projecting all the samples to Z, the subspace orthogonal to all the means.

In this subspace, the samples are like from a mixture of zero-mean Gaussians with

the projected covariance matrices, and the 4-th and 6-th order moment are given by

M 4(Projz1 , Proj21 , Projz1 , Projzi) and , 6(Proj21 , Proj21 , Proj21 , Proj21 , Proj2 1 , Proj71 ).

Since Z is of dimension k, the dimension of the zero-mean Gaussian in the projected

space is at least n - k = O(n).

Note that the subspace Z only depends on the randomness of the means, and

random perturbation on the covariance matrices is independent of that of i. The

smoothed analysis for the moment unfolding in Step 2 and tensor decomposition in

Step 3 for the zero-mean case, which only depend on the randomness of the covariance

matrices, still go through in the projected space.

Step 3. Find the means This step finds the mean vectors based on the outputs

of the previous steps. The key observation for this step is about the structure of the

3-rd order moments in the following claim:

Claim 3.19. Let the matrix R 3 (,) c Rx"2 be the matricization of Rl 3 along the first
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dimension. The j-th row of M 3(1) is given by:

[A3(1)[I,: = [[E[xjx1xj,] :i E [n]] : j2 E [n]]
k T

- J- Y vc w + oW- 0 -0) + ® i)+ 0

(3.37)

The following lemma shows how to extract the means g(i)'s from M3 (1) using the

information of the covariance matrices projected to the subspace orthogonal to the

means, i.e. ZO, and the mixing weights Ji's.

Lemma 3.24. Given the mixing weights JDi's and the projected covariances '

define the matrix T c Rn 2 xk to be the pseudo-inverse of Z0 :

= vec( $,i)) i E [k] ].

The mean j(i) of the i-th component can be obtained by:

This step correctly finds the means if the bo is full rank with good condition number,

and this holds with high probability over the perturbation.

Proof. (of Lemma 3.24)

The basic idea is that since S, lies in the span of P = Proj2 Ok, Proj2 , and the

last three summands in the parenthesis in (3.37) all lie in span{I,0kProj2, Proj2 &kr

I,} = span{P}. Therefore hitting the matrix 1 3(1) with Et from the right will

eliminate those summands and pull out only the mean vectors.

Recall that the columns of the matrix Z, are vec(Proj 1Z-()Proj2 ) = Pvec(ZY())'s,

and the columns of Z are vec(ZD))'s.

Note that T = (PX)tT - #jtT, and the columns of T lie in span{P}. Also note

that for all i, j E [k] the vectors () 0 (), (0 j and () 0 ( all lie in the

subspace span{In Ok, Proj2, Proj2 O k, In} = span{IP'}. Therefore these terms will
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be eliminated if we multiply the columns of T to the right of M 3(1). For the first term

(N),since vec(ZW)Ti (PVeC(=))TT[:,i= 1 [i=jI. Therefore, we have

The smoothed analysis for the correctness of this step is easy. We only need to

show that both 5, and Z robustly have full column rank with high probability over

perturbation of the covariance matrices, and thus the pseudo-inverse T is well defined.

This follows from Lemma 3.31.

Finally, the stability analysis for this step is also straightforward using the per-

turbation bound for pseudo-inverse in Theorem 1.5.

Step 4. Find the unprojected covariance matrices Note that by definition

Z = span{RN ) i E [k]}, the projected covariance Proj21 (D()) we obtained in Step 2

is also equal to Proj2 (i( +p(pi)T). In Step 4 we try to recover the missing part

of the covariance matrices in the subspace Z. Note that since we have also obtained

the means in Step 3, it is equivalent to finding (](i) + 1(i) (R(i))T) for all i. We will

show that if we can find the span{(() + R((i)T) : i E [k]}, the projected vector

Proj21 (D() + p(i) ( (i))T) can be used as anchor to pin down the unprojected vector.

They key observation for finding the span of span {( +( ) : i E [k]} is

to first construct a 4-th order tensor H4 which corresponds to the 4-th moment of a

mixture of zero-mean Gaussians with covariance matrices ( (i) + Ft(i) (pj(i) T), and then

follow Step 1 in the algorithm for zero-mean case to find the span of the covariance

matrices for this new mixture of Gaussians.

The next lemma shows how to construct such 4-th order tensor:

Lemma 3.25. Given the 4-th moment Tl 4 for a mixture of Gaussians with parameters

{G, j, Zi)}, define the 4-th order tensor A14 to be:

k

A1- A/14 + 2Z 'ii(i)D 4 7

i=1

then Mi is equal to the 4-th moment of a mixture Gaussians with parameters {G, 0, Z N+
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sp >n{Projk}

{Proj] O Proj 1

Figure 3-5: Flow of the algorithm for the genierafl case(

The proof follows directly fromn Isserlis' Theorem. Therefore we can repeat Step t

in the zero-miean case here to find the spain of the space {(vcc(,V,)+R40 i (E [k]}

Since we also know the projection of 5'sin a large subspace (in the subspace

Pro 52 Pro * 7-) 1 isl recove

j Prj_ obtaned from Step 2), we can es

Lemmia 3.26. For a-y Frx w C Rof t nd gony sbspac P, genra (Und I

spn S lof colons ofdir thl fatrix U can be corem.pted as

U, = S(pT S) f (p TtU ).

FUrther. this procedure its stable if theniP1 ) sis n,(e: beded.

Proof. This is a special case of the Step s (c) lher we nerge to projections of an

unknown subspace.

The span S is equal to UV for sone unknowni matrix V. We can compute V=

(P'UPFS, alld ihence U = SV- 1 
- S(P TS)t(PTU). The stability analysis is

similar (and simpler than) Lemma 3.12. E

We will apply this lelnma to where the subspace P is Proj2 ir Proj2 . Since

the perturbation of the means and the covariance matrices are independent, we can

lower bound the smallest singular value of PTS.

Proof Sketch of the Main Theorem 3.4 The proof follows the samlc strategy as

Theorem 3.5. First we apply the union bound to all the snoothed analysis lemmas,

this will ensure the matrices we are inverting all have good condition number, and

the whole algorithm is robust to noise.
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Then in order to get the desired accuracy e, we need to guarantee inverse polyno-

mial accuracy in different steps (through the stability lemmas). The flow of the algo-

rithm is illustrated in Figure 3-5. In the end all the requirements becomes a inverse

polynomial accuracy requirement on N/ 4 and A16 , which we obtain by Lemma 3.22.

3.4.6 Proofs for Moment Structures

In this section we characterize the structure of the 3-rd, 4-th and 6-th moments of

Gaussians mixtures.

As described in Section 3.2, the m-th order moments of the Gaussian mixture

model are given by the following m-th order symmetric tensor M (E R""n*Xf

k

i=1

where y(') corresponds to the n-dimensional Gaussian distribution A(p), E0)).

Gaussian distribution is a highly symmetric distribution, and in the zero-mean

case the higher moments are well-understood by Isserlis' Theorem:

Theorem 3.17 (Isserlis). Let y =(y, ... , Y2t) be a multivariate Gaussian random

vector with mean zero and covariance E, then

E[y1 .. . y2t] = E ri EU,,

E[yl.. . Y2t-11 = 0,

where the summation is taken over all distinct ways of partitioning Y1,..., Y2t into t

pairs, which correspond to all the perfect matchings in a complete graph. Thus there

are (2t - 1)!! terms in the sum, and each summand is a product of t terms.

The non-zero mean case is a direct corollary using Isserlis' Theorem and linearity

of expectation.

Corollary 3.1. Let y = (y1,... , yt) be a multivariate Gaussian random vector with
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mean p and covariance E, then

E[y1 ... yt] =( E ] Eu,, r pw.

where the summation is taken over all distinct ways of partitioning yi,... , yt into p

pairs of (u, v) and s singletons of (w), where p > 0, s > 0 and 2p + s = t.

As an example, E[yIy2y3 ] = [i/ 2[13 + P1E2 ,3 + P2E1 ,3 + /p3E1,2.

Proof of Lemma 3.1

We shall first prove Lemma 3.1 in Section 3.2. Recall that this lemma shows that for

mixture of zero-mean Gaussians, the 4-th moments M4 and the 6-th moments M6

with distinct indices can be viewed as a linear projection of the unfolded moment X4

and X6 defined in (3.1).

Proof. (of Lemma 3.1)

By Isserlis Theorem 3.6, the mapping v/5T4 is characterized by: (V1 < ji < J2 <

i3 < j4 < n)

k
Zi( W V(i) W Z i)

[M(4j1J2J4 =32 ,34 + 1,33 32J,4 + )2,3

= [X4(h,2 ),(h3,4 ) + [X4](ilJ),(,h4 ) + fX41(h,4),(U2,J)-

Therefore, with the normalization constant v/, the (i, J2, 3, j 4)-th mapping of F4 is

a projection of the three elements in X4. Similarly, we have for V1i5,F6 : (V1 < Ji <

j2 < -.. < j6 < n)

=[X6](Jl 2),( 3,J 4),(U5J6) + [X6](JJ3,(2,J4),(J5 J6) + [X61(J, 4),(2,J3),(J 5J6) + [X6](JJ5),(hJ,),(J4,J)

+ [X6](J1, 2),(j5J3),(4J6) + [X6]( 1J3),(2,J5),(4J6) + [X6](iJ2),(i 4,J5),( 3,J6 ) + [X6](i1 J4 ),( 2,J5),(J3 J6 )

+ [X] ( IJ),(i2J4),(3,J6) + [X] (i1 3),(i4,5),(j2,6) + [X6](i1J4),(j3J5),(2,6) + [X](i1J5),(j3J2),(2J6)

+ [XG](J 2,J3 ),( 4,J5 ),(i1 J6 ) + [X6]( 2,J4 ),(J3 ,J5 ),( 1,J6 ) + [X61(i2,J5 ),(3J4),(iJ6)'
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Thus with the normalization constant V15, the mapping F is a linear projection. 1

Slices of Moments

Next we shall characterize the slices of the moments of mixture of Gaussians.

For mixture of zero-mean Gaussians, a one-dimensional slice of the 4th moment

tensor is a vector in the span of corresponding columns of the covariance matrices:

Claim 3.20 (Claim 3.1 restated). For a mixture of zero-mean Gaussians, the one-

dimensional slices of the 4-th moments M4 are given by:

k

M4(ej1 , ei2 , e3 , I) = w (r+ V -VW+ N) [,WV ' Vji,j2,j3  [nj.i= 1 2 - i1 3'[J2

Proof. By the definition of multilinear map, M 4 (eg1 , ei2, eh , I) is a vector whose p-th

entry is equal to A14 (ej, ej2 , eh, ep). We can compute this entry by Isserlis' Theorem:

k

-AM4(ejl, ei2, eJ3, eP) = wi lJ [P~ i~'P2 iJ'Pi]

this directly implies the claim. l

For mixture of zero-mean Gaussians, a two-dimensional slice of the 4th moment

114 is a matrix, and it is a linear combination of the covariance matrices with some

additive rank one matrices:

Claim 3.21 (Claim 3.2 restated). For a mixture of zero-mean Gaussians, the two-

dimensional slices of the 4-th moment A14 are given by:

k

A/1 4(ej , e3 ,I,I) = Zwi (ET) Z + ( ) + (E)) , Vj, j 2 E [n].

Proof. Again this follows from Isserlis' theorem. By definition of multilinear map this

is a matrix whose (p, q)-th entry is equal to

k

-A/,I(ej1 e.2, ep, eq) W EOV 0VW +Y
Zl~'p,q] i,P'[q~J~] i2,P'[~]
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and this directly implies the claim.

IEl

Similarly, for mixture of general Gaussians, we prove the following claims:

Claim 3.22 (Claim 3.17 restated). For a mixture of general Gaussians, the (ji, J2, j3)-

th one-dimensional slice of M4 is given by:

114(ej1, ej2 , e33 , I)
n

( ) ( ) (i) (i) + (
2 [ + 

EiW W irOVitir t))W

i=U1 (42, 3),
7rE (j2J,3 j 1),

1(3J12)

Proof. This is very similar to Claim 3.1 and follows from the corollary of Isserlis's

theorem (Corollary 3.1). There are 10 ways to partition the indices {Ji, j2, J3, ja} into

pairs and singletons: ((j), (j2), (j), (J4)), ((j1, j2), (h3), (j4)), ((ji, j3 ), ( 2 ), (J4)),

((ji, j4), (h2), (jA) ((h2, h), (j1), (14)), ((j2,J4), (i), (hs)), ((ha,14), (i), (h2)),

((j, j2), (j, j4)), ((01,.jA), (j2,j4)), ((j 1, j 4 ), (j 2 ,j3 )). From this enumeration, we

can specify each element in the vector of the one-dimensional slice. El

Claim 3.23 (Claim 3.19 restated). For a mixture of general Gaussians, let the matrix

M13(1) E R' f,
2 be the matricization of M3 along the first dimension. The j-th row of

M13(1) is given by:

k

[M3(1) j,:] = Aj vec(E()) + p ) 0 p + E + k 0 .
i=1

Proof. Note that [M3()],:] = [vec(E[xjxxT])] = vec(E[xjzx x]). Again following the

corollary of Isserlis's theorem (Corollary 3.1, there are 4 ways to partition the indices

{ji,j2,J3} into pairs and singletons: ((ji),(j 2,j3 )), ((j 1 ),(j2 ),(jh)), ((j,j2),(3)),

((j2 ), (j1 , j3), and they correspond to the four terms in the summation.) El

194



Two mixtures with same -A but different X 4

Since A14 gives linear observations on the symmetric low rank matrix X4 , it is natural

to wonder whether we can use matrix completion techniques to recover X4 from -A 4 .

Here we show this is impossible by giving a counter example: there are two mixture

of Gaussians that generates the same 4th moment M4 , but has different X4 (even the

span of E0's are different).

By ((a, b), (c, d)) we denote a 5 x 5 matrix A which has 2's on diagonals, and the

only nonzero off-diagonal entries are Aa,b = Ab,a Ac,d Ad,, = 1. For example,

((1, 2), (4, 5)) will be the following matrix:

2 1

1 2

2

2 1

1 2

where all the missing entries are O's. Now we construct two mixtures of 3 Gaussians,

all with mean 0 and weight 1/3. The covariance matrices are ((1, 2), (4, 5)), ((1, 3), (2, 5)),

((1, 4), (3, 5)) for the first mixture and ((1, 2), (3, 5)), ((1, 3), (4, 5)), ((1, 4), (2, 5)) for

the second mixture. These are clearly different mixtures with different span of E()'s:

in the first mixture, E(') = for all matrices, but this is not true for the second

mixture.

These two mixture of Gaussians have the same 4th moment M4. This can be

checked by using Isserlis' theorem to compute the moments. Intuitively, this is true

because all the pairs (1, i) and (i, 5) appeared exactly twice in the covariance ma-

trices for both mixtures; also, every 4-tuple (1, i, j, 5) appeared exactly once in the

covariance matrices for both mixtures.
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3.4.7 Auxiliary Lemmas

In general, matrix perturbation bounds are the key for the perturbation lemmas, and

concentration bounds are crucial for the smoothed analysis lemmas. We also prove

some corollaries of known results that are very useful in our settings.

Lowerbounding the Smallest Singular Value

Sometimes, it is easier to consider the projection of a matrix. Lowerbounding the

smallest singular value of a projection will imply the same lowerbound on the original

matrix:

Lemma 3.27. Suppose A E R"m n, let P E Rmxd be a subspace, then gk(PTA) <

Uk(A).

Proof. Observe that (PTA)T(PTA) - AT(PPT)A - A T A (because P is a subspace).

Therefore the eigenvalues of (PTA)T(PT A) must be dominated by the eigenvalues of

ATA. Then the lemma follows from the definition of singular values. El

As a corollary we have the following lemma:

Lemma 3.28. Let A E Rx and suppose that m > n. For any projection Projs, we

have that the singular values are non-increasing after the projection:

a-(Projs(A)) < o-(A), fori = 1, ... , n.

In several places of this work we want to bound the singular value of a matrix,

where part of the matrix has a block structure.

Lemma 3.29. For given matrices B() E R"x" and C(') E R" x' for i = 1,...,d.

Suppose md > (n + n'd), Define the tall matrix A E R mdx(n+dn'):

B C 0 --- 0

A =0 (2) = [B, diag(C('))]

B(d) 0 0 --- C(d)
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The smallest singular value is bounded by:

a-(n+dn')(A) > min{-,(B), o-,,(Pro(Bi))C(') : i = 1, . . . , (}.

Proof. The idea is to break the matrix into two parts A = ProjBA + ProjBI A.Since

these two spaces are orthogonal we know o-(n+dn')(A) min{-,,(ProjBA), oad'(ProjI A) 1}.

For the first part, clearly an(ProjBA) > o.,(B), as B is a submatrix of ProjBA.

For the second part, we actually do the projection to a smaller subspace: for each

block we project to the orthogonal subspace of BO. Under this projection, the block

structure is preserved. The dn'-th singular value must be at least the minimum of

the n'-th singular value of the blocks. In summary we have:

-(n+dn') (A) > min{a-,(B), -dn'(ProjB1 diag(C')))}

" minIo-T(B), co-,, (Projiaig((B0i))-L)diag(C('))}I

" minfao-,(B), o-dAsdiag(Proj(B0)>-1C(i))}1

" min{Un(B), o-aL(Proj(BO())IC(i)) : i = 1, ... ,d}.

Smallest singular value of random matrices In our analysis, we often also

want to bound the smallest singular value of a matrix whose entries are Gaussian

random variables. Our analysis mostly builds on the following results in random

matrix theory.

For a random rectangular matrix, [101] gives the following nice result:

Lemma 3.30 (Theorem 1.1 in [101]). Let A E R'"-" and suppose that m > n.

Assume that the entries of A are independent standard Gaussian variable, then for

every E > 0, with probability at least 1 - (CE)rn-l+l + e-', where C, C' are two

absolute constants, we have:

a,(lA) > c(Vni- n-1).
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We will mostly use an immediate corollary of the above lemma with slightly sim-

pler form:

Corollary 3.2. Let A E R"n and suppose that m > 2n. Assume that the entries

of A are independent standard Gaussian variable, then for every E > 0, and for some

absolute constant C, with probability at least 1 - (CE)o0.5 ", we have:

This lemma can also be applied to a projection of a Gaussian matrix:

Lemma 3.31. Given a Gaussian random matrix E E R"Xn, for some set 3 E [m|

define Ej = [EU,:] : j E 3] and Eje = [Ej,:] : j E [m/J]. Define matrix S E Rnxr

whose columns are orthonormal. Suppose that the matrix S is an arbitrary function

of Ej and is independent of E j. Assume that

m - IJI - r > 2n (3.38)

Then for any c > 0, we have that with probability at least 1 - (CE)0.5 (n-AJI-r), for

some absolute constant C, the smallest singular value of the projected random matrix

is bounded by:

Un(Projs E) e Vm - 131 - r. (3.39)

Proof. For a matrix A E R"'x", define the fixed matrix Pjc E RC("-Jj)x' such that:

[[PJI[:j] : j E 3] = 0, [[PcI[:,j] : j E [n]/J] = I(rn-IjI)x(rn-IJI),

which only keeps the coordinates that correspond to [mn]/3 of any vector in R"m. Note
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that

o,.(ProjstE) a?(Pjc(Projs-LE))

a c(Proj(pjs)iFJeProjsIE)

o,, (Proj (p, S)' - E).

We justify the last equality below. Note that

Projs 1 E = E - ProjsE,

and note that the columns of (PjcProjsE) lie in the column span of PjcS, therefore,

Proj(p ,s)' PjcProjs1E = Proj(pSy PjcE - Proj(pjS)I (PjcProjsE)

= Proj(pjs) PJcE.

Finally, note that PjcS, with column rank no more than r, is independent of PjcE,

which is a random Gaussian matrix of size (mn - IJI) x n, therefore we have that

Proj(pJs)IPjcE is equivalent to a ('m - IJI - r) x n random Gaussian matrix. Since

(3.38) is satisfied, we can apply Lemma 3.30 and conclude (3.39) with high probability.

However, in the smoothed analysis setting, the matrix we are interested in are

often not random Gaussian matrices. Instead they are fixed matrices perturbed by

Gaussian variables. We call these "perturbed rectangular matrices", their singular

values can be bounded as follows:

Lemma 3.32 (Perturbed rectangular matrices). Let A E R"n'r and suppose that

m > 3n. If all the entries of A are independently p-perturbed to yield A, then for

any e > 0, with probability at least 1 - (Ce) 2 5"'-, for some absolute constant C, the

smallest singular value of A is bounded below by:

-z(A) cpv'n.
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Proof. The idea is to use the previous lemma and project to the orthogonal subspace

of A. We have that A= A + E, where E E R"' is a random Gaussian matrix.

g-n(A) > J-(ProjAJA) = o-(ProjA_ E).

Since m - n > 2n, we can apply Lemma 3.31 to conclude that for any e > 0,

fn(ProjAIE) > ep'im,

with probability at least 1 - (CE)0 5 (-') < 1 - (C) 0 .25,. [I

Projection of random vectors

In Step 2, we need to bound the norm of a random vector of the form u 0D v after a

projection, where u and v are two Gaussian vectors. In order to show this, we apply

the result in [124] which provides a concentration bound of projection of well-behaved

(K-concentrated) random vectors.

First we cite the definition of "K-concentrated" below:

Definition 3.5. A random vector X = ( , 62,..., 6,) is K-concentrated (where K may

depend on n) if there are, constants C,C' > 0 such that for any convex, 1-Lipschitz

function f : Cn -+ R and for any t > 0, we have:

Pr[\F(X) - med(F(X))| > t] Cexp C' ,
(_K2

where med(.) denotes the median of a random variable (choose an arbitrary one if

there are many).

Lemma 3.33 (Concentration for Random Projections (Lemma 1.2 in [124])). Let v

be a K-concentrated random vector in C". The entries of v has expected norm 1.

Then there are constants C, C' > 0 such that the following holds. Let Projs be a

200



projection to a d-dirnensional subspace in C".

P (IVT Projsv - dl > 2tVd + t2 Cep(-C' 2 ).

In order to apply this lemma in our setting, we need to prove the vectors that we

are interested in is K-concentrated:

Lemma 3.34. Conditioned on the high probability event that ||E[:,i] /, ,El 11 <

the vector [[E[:,ij G E[:,j]]s,S : s < s'] is 2Vn2/)-concentrated.

Proof. For any 1-Lipschitz function F on [[E[:,i] 0 E[:,j]],,S : s < s'], we can define a

function G(E[:,j], Ej:,j]) = F([[E[:,i] 0 E0:,5] S,, s < s']) (if i j then the function G

only takes E[:,i] as the variable). Under the assumption that IIE[:iI I, II|Li]E < 2Vn2 ,

this new function G is 2 /n-Lipschitz.

Now we extend G to G* when the input 11E[:,i]11, 1IE[:,j11 > 2/n-2. Define the trun-

cation function trunc(v) = v for ||vII < 2,/n-, and trunc(v) = 2V'/-v/|IvI for |Iv|| >

2 V5~. Define the extended function G*(E[:,i], E[:,j]) = G(trunc(E:,ij), trunc(E[:,j])),

which is still 2/ni-Lipschitz since the truncation function is 1-Lipschitz.

Note that for the two Gaussian random vectors E[:,i], E[:,j] ~ N(0, I), we can apply

Gaussian concentration bound in Theorem 3.18 on G*, which implies

P[IG*(E[:,ij, Ej:,j]) - med(G*(E[:,ij, E[:,j]))I > t] C exp(-C't 2 /4n 2 ).

Since the probability of the event ||E[:,i 11, | E.,5j > 2,/-n~ is very small (~ exp(-Q(n 2))),

we have 6 = Imed(G(E[:,ij], E[:,j])) - med(G*(E[:,j, E[,j))I in the order of o(,/-n).

Therefore, for t ~ Q(Vii2), we have

IP[IG*(E[:,i], E[:,J]) - med(G(E[:,j], E[:,j))I > t]

<P[jG*(E[:,i, E[:,j]) - med(G(E[:,j], E:,jj))I > t - 6]

C exp(-C't2 /4n 2 ).
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Finally,

P G(E[.,i], E[:,) - med(G(E[:,i, E[:,j))j > t ||E[:,i]II, ILE[:,J]II 2V'TI]

P[IG*(E[.,1 El.,ji) - med(G(E[:,i, E1:,JI))I > t]
P[IIE[:,iiI > 2V/-2or IIE[:,i]II > 2V/n2]

C cxp(-C't 2 /4n 2 ).

Therefore the random vector [[E[:,iI 0 E[:,J]]s,s : s < s'] is 2\/ni -concentrated. l

Theorem 3.18 (Gaussian concentration bound). Let f : R" -+ R be a function which

is Lipschitz with constant 1. Consider a random vector X ~ .J(O, IJ). For any s > 0

we have

P (If(X) - E[f(X)I > s) < 2eCs

for all s > 0 and some absolute constant C > 0.

Gaussian Chaoses

In Step 2, we want to show that the inner product of two random vectors of the form

< Proj(u 0 v), Proj(u G v) > is small, where u, u' and v, v' are Gaussian vectors. In

order to show this, we treat the inner product as a (homogeneous) Gaussian chaos,

which is defined to be a homogeneous polynomial over Gaussian random variables10 .

Our analysis builds on the results of many works studying the concentration bound

of Gaussian chaoses.

For decoupled Gaussian chaoses, we mostly use the following theorem, which is a

simple corollary of Lemma 3.35.

Theorem 3.19. Suppose a = (a ,...Zd)1<,...,;d7 is a d-indexed array, and ||a||F

denotes its Frobenius norm. Let (X )1<i<nJ=1,...,d be independent copies of X ~

loin fact, the squared norm of projected random vectors considered previously is a special case of
Gaussian chaos, and we treat it separately.
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K(0, I,). For any fixed e > 0, with probability at least 1 - C exp (-C'n2 /d),

ail (,)...,--- X(i <3 jj|a||Fn'-
.... i. , =

Lemma 3.35 (Gaussian chaoses concentration (Corollary 1 in [74])). Suppose a =

(a 1 . .,d)1 l,.., is a d-indexed array. Consider a decoupled Gaussian chaos G =

.il X) - where X are independent copies of the standard normal

random variable for all i E [n], k E [d].

P (| G > t) :! C,, exp -I m in min 2kP C 1<k<d (11,..,)ES(k,d) ||a||1 ,. ., J

where Cd E (0, oo) depends only on d, and S(k, d) denotes a set of all partitions of

{1,..., d} into k nonempty disjoint sets I,..., Ik, and the norm || -||1.1 is given

by:

Ijjj, ..I a= sup ~ ( 1) . k) : (XMl)2 1< . ,(X(k))2 <1E ail1. ' supdij 1%L..s1 2
k Ijl -- - Ik

11, ... ,d iI k

Proof. (of Theorem 3.19) Apply the inequality:

IlajjIjip.., {d} < 11 i . 4 < IiaIjjii IjaIF, V(11,.., IA.) c S(k, d).

For a fixed order d and for any e > 0, apply Lemma 3.35 and set t = nEhlajiF. We

have that P (I01 ; t) < Cexp (-C'n2 ,/d), for some constant C, C'. El

For coupled Gaussian chaoses, namely when X('s are identical copies of the same

X, we first cite the following decoupling theorem in [40].

Theorem 3.20. (Decoupling) Let (as1 . ,)1 I.id<? be a symmetric d-indexed array

such that ai ,. . .,id = 0 whenever there exists k # 1 such that ik = il. Let X1, ... ,

be independent random variables and (X ) si<, for j = 1, dots, d, be independent
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copies of the sequence (Xi)1<ig<, then for all t > 0,

L ' Pr ail XMd... Xid L t

.il,...id=l .

1,SPr 1: ail..,,i - --,di .- Xi > Ldt

! LdPr [ aiX -- X. d > L-i1t1
.il,...,d=1

where Ld E (0, oo) depends only on d.

Essentially this theorem shows for a symmetric tensor with no "diagonal" terms,

i.e., ail,, 0 whenever there exists k 4 1 such that ik - it), there is only a constant

factor difference between the coupled and decoupled Gaussian chaos distribution.

In most of our applications, we do have symmetric tensors with no "diagonal"

terms. However there is one case where we do have diagonal terms, for which we need

the following lemma.

Lemma 3.36. Let (ail,,3,)1i,,.... i3, be a symmetric 3-indexed array and let ||aliF

denote its Frobenius norm. Let X - .I(0, J,), then for any e > 0, with probability at

least 1 - Cnexp(-C'n2E/ 3

E aili2,i3Xil Xi2Xi3,5& 4||a||Fn'.5+-
i1,i2,43=1

Proof. The sum of the "diagonal" terms is equal to 3 Eio aijXiXj +1/ 2 Ei aii,iX,.

Since Xi are independent standard Gaussian random variables, with probability at

least 1 - Cnexp(-C'n2E/ 3 ) (union bound), lXi < n,/ 3 for all i E [n]. Conditioned on
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this high probability event, the absolute value of the sum is bounded by:

3 Z aj,, X X- + 1 ajj < 3
i 7 4 i,j~1

< 3 'j(ajjj )1Kj ,js'||Fn

_ 31alIFn E0.5+E

By Theorem 3.19, we know that with probability at least 1 - Cexp (-C'n2e/ 3),

the absolute value of the sum of the "non-diagonal" terms is bounded by I|aIIFnE.

Therefore we can conclude the proof by applying the union bound. D
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Chapter 4

Realization Problems of Hidden

Markov Models

4.1 Problem Statement

Preliminaries on HMMs An HMM determines the joint probability distribution

over sequences of hidden states {xt : t E Z} and observations {yt : t E Z}. For sim-

plicity, we call each output yt as a "letter" taking value from some discrete alphabet

[d], and a sequence of n letters is referred to as a "string", taking value from the

Cartesian product [d]". We use [dN] d N} to denote the vectorized indices

in [d]".

The joint distribution of {xt, yt : t E Z} from a stationary HMM is parameterized

by a pair of matrices: the state transition matrix Q E Rxk~k and the observation

matrix 0 E Rc , , which satisfy eTO = eT and eTQ = eT, where e is the all ones

vector. The hidden state xt evolves following a Markov process:

P(xtei = JAxt = i ) = Qji.

Let 7r denote the stationary state distribution, i.e., 7ri = P i] and Q7r = 7r.

Without loss of generality, we assume that ri > 0 for all i E [k]. We also define the
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backward transition matrix Q c Rkxk:

IP(Xt-I = jxt = i)= j'i

Observe that the matrix Q is related to Q as: Q = Diag(7r)QT Diag(7r)-1 . Condi-

tioned on the hidden state taking value i, the probability of observing letter j is:

P(Yt = jIxt = i) = Ogg.

We call two HMMs equivalent if the output processes are statistically indistinguish-

able.

The order of the HMM is defined to be the number of hidden states, denoted by

k. We will denote the class of all HMMs with output alphabet size d and order k by

E)h
(d,k)

Realization problems Hidden Markov Models (HMMs) are widely used for de-

scribing discrete random processes, especially in the applications involving temporal

pattern recognition such as speech and gesture recognition, part-of-speech tagging and

parsing, and bioinformatics. The Markovian property of the hidden state evolution

potentially leads to a low complexity representation of the output random process.

In this work, we consider the long-standing HMM realization problem: given some

partial knowledge about the output process of an unknown HMM, can we generalize

it to a full description of the random process?

Consider a discrete random process {yt : t E Z}, which assumes values in a finite

alphabet [d] = {1,. , d}. Assume that yt is the output process of a stationary HMM

of finite order. Let the random vector yN = (y1,--- , YN) denote an string of length

N, which assumes values in the N-ary Cartesian product [d}N. The process yt is

fully characterized by the joint probabilities of strings of any length in the countably

infinite table (denoted by PO )):

{P(y 1 = 11, ,YN = 1N IN z- [d]N,VN E Z
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There are three main concerns in the realization problem:

1. (Informational complexity) Suppose that the underlying HMM is of order k,

and we are given the joint probabilities of all the length N strings, namely:

p(N) _P(y _ =1, -- YN Y N) :VIN [diN

how large does N need to be so that we can compute p(') based on p(N)?

2. (Computational complexity) Can we solve the realization problem with run-

time polynomial in the dimensions (alphabet size d and order of the underlying

HMM k)?

3. (Statistical complexity) When p(N) is estimated from sample sequences and has

some estimation error, are the realization algorithms robust to the input errors?

These are long standing questions, and there are several lines of work within

different communities at tempting to address these questions. It has long been known

that, in the information theoretic sense, there exist hard cases of HMMs that are not

efficiently PAC learnable [66] [891. However, a more practical question is, can we

efficiently solve the realization / learning problem for most HMMs? In this work,

we focus on generic analysis and show that, for almost all HMMs, i.e., excluding

those whose parameters are in a measure zero set 1, the realization problems can be

efficiently solved with poly time algorithms.

Minimal realization problems The realization problem takes as inputs the prob-

abilities of finite length strings for a fixed window size N (p(N)), and finds a finite

state model of the minimal order to describe the entire output process (p(00)). We

aim to find the most succinct description of the process, namely the minimal order

realization, where the "order" refers to the number of states of the underlying finite

1 In our setting, algebraic genericity coincides with the measure theoretic notion of generic.

Throughout the discussion, for fixed alphabet size d and order k, we call an HMM in general

position if its transition and observation matrix are in general position, which is equivalent to
"ahnost everywhere in the parameter space of {Q E Rkxk, 0 E R d;k : eTQ = eT,eT O = eT".
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state model. Without loss of generality, we assume that the process has a minimal

realization of order k and examine under what conditions the algorithms can recover

an equivalent minimal order realization.

Next, we introduce two classes of finite state models, both of which can realize an

HMM output process.

Definition 4.1 (Quasi-HMM realization [123]). Let 0 be a tuple: 90 = (k, u, v E

Rk A(s) E Rkxk : Vj E [d]). We call 00 a quasi-HMM realization of order k for a

stationary process {yt : t C Z} if the three conditions hold: (Vl E [d]N, VN E Z)

P(y = 1= ) = uT A)A(1
2) ... A(1N)V, (4.1)

d
uT (ZA() =uT, (4.2)

j=1
d

(E A(j))v = v. (4.3)
j=1

Definition 4.2 (Equivalent quasi-HMM realizations). Two quasi-HMM realizations

90 = (k,u,v, AO) : j E [d]) and 90 = (k,, i, () : j c [d]) are called equivalent, if

there is a full rank matrix T E Rkxk such that:

ii = T Tu, i= T v, X(j) = T-'A(j)T, Vj E [d.

Definition 4.3 (HMM realization). Let Oh be a tuple: Oh = (k, 0 E Rdxk, Q E R kxk)

We call Oh an HMM realization of order k for a stationary random process {yt : t E Z},

if the matrices Q and 0 are column stochastic, and the output process of the HMM

defined by the transition matrix Q and observation matrix 0 has the same distribution

as yt.

HMM realizations are in a subset of the model class of quasi-HMM realizations.

Given an HMM realization Oh = (k, 0, Q), one can construct the following quasi-
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HMM realization 60 = (k,u,v, AU) : j E [d]):

u =e, (4.4)

V = 7r, (4.5)

A4j) = QDiag(Oj,q), Vj c [d]. (4.6)

The minimal (quasi-)HMM realization problem is formally stated below: Assume

that the random process is the output of an HMM of order k. How large does the

window size N need to be, so that given the joint probabilities p(N) we can efficiently

construct a minimal (quasi-)HMM realization for the process?

4.2 Main results

To study the HMM realization problems, we focus on algorithms based on the spec-

tral method. The basic idea is to exploit the recursive structural properties of the

underlying finite state model, and write the joint probabilities in p(N) into a specific

form which admits rank decomposition, where the rank reveals the minimal order of

the realization and the model parameters can be extracted from the factors.

In the first part (Section 4.2.1), we consider the problem of finding the minimal

quasi-HMM realization. Quasi-HMMs are associated with different names in different

communities, for example finite state regular automata [17, 18], regular quasi realiza-

tion [123, 89], and operator models [89, 58]. We mostly follow the terminologies in

[123]. Algorithm 12 is the well-known algorithm for finding the minimal order quasi-

HMM realization (to be rigorously defined later). However, in general the window

size N can not be specified a priori and thus the complexity of the algorithm cannot

be explicitly determined. In Theorem 4.2, we show that, if the output process is

generated by an general position HMM with order k, we only need the window size

N in the order of O(log(k)) for pinning down P(') based on p(N), where d is the

output alphabet size. Moreover, we show that Algorithm 12 has runtime and sample

complexity both polynomial in the relevant parameters.
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In the second part (Section 4.2.2), we consider the problem of finding the minimal

HMM realization, using tensor decomposition methods, which rely on the uniqueness

of tensor decomposition to recover the minimal order HMM that is unique up to hid-

den states permutation. Tensor decomposition based algorithms for learning HMMs

are studied in [7, 5, 26]. In these works, the transition matrix is always assumed to

be of full rank. Similar to that in the quasi-HMM realization problem, in general the

required window size N and also the complexity of the algorithm cannot be deter-

mined a priori. In [5], the authors examined the generic identifiability conditions of

HMM, and showed that generically it suffices to pick the window size N = 2n + 1 for

some positive integer , such that (nd 1) > k. In the case where d is much smaller

than k, n needs to be in the order of 0(k /d). Another bound on the window size N

is given in [26], which is in the order of O(k/d). However, the size of the tensor in the

decomposition is exponential in n, thus all these bound lead to runtime exponential

in k.

In Section 4.2.2, we propose a two-step realization approach, and analyze the

identifiability issue of the two steps. Then, we show that for the processes generated

by almost all HMMs, the window size N only needs to be in the order of O(logd(k))

for finding the minimal HMM realization. This means that for most HMMs, finding

minimal quasi-HMM and minimal HMM realizations are actually of equal difficulty.

4.2.1 Minimal Quasi-HMM Realization

In this section, we address the minimal quasi-HMM realization problem. We first

review the widely used algorithm[11, 18]; then we show for HMMs in general position,

the window size N only needs to be in the order of O(logd(k)) to guarantee the

correctness of the algorithm; we also give an example of hard case (degenerate) which

needs N to be as large as k; finally we examine the stability of the algorithm.

Algorithm For notational convenience, we define the bijective mapping L : [d]" -+

[d'] which maps the multi-index IN = (11,.-- , l,) C [d]' to the index L(l") = (l -

1)dn- 1 + (12 - 1)d"-2 + - + in E [dr].
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Algorithm 12: Minimal quasi-HMM realization

Input: H(O), HU) E Rd" xd' for all j E [d]

Output: 60 = (k, ,ii, A( ) : j E [d])

1. Compute the SVD of H(0): Hj(0) = UHDH V. Set U = UHD H V VHDH2

2. Let k be the rank of HO), and let ii U'e, T= V'e.

3. Let Ut and Vt be the pseudo inverse of U and V. Set

AU) = UtH(i)(Vt)', Vj E [d].

Given the length N joint probabilities 'p(N), where N = 2n + 1 for some positive

number n, we form two matrices H(0), HU) (E Rdnxdn for all j E [d] as below:

1H(0)]L(lfl) L(U ) = i1 1  1),

[H(j)=L n -n -- , i; Y (4.8)

where lI = (1i, ... l) and 1I-= (L_ 1 , - 2 ,... l-,n) c [d] denotes the length n string

corresponding to the future and the past n time slots, respectively. Note that the

"future" observations and the "past" observations are independent conditioned on

the "current" state, which is the Markovian property that Algorithm 12 relies on.

The core idea of Algorithm 12 was discussed in [601, and it has been rediscovered

numerous times in the literature in slightly different forms [11, 18]. We summarize

the main idea below.

Remark 4.1 (Minimal order). Let 00 = (k, u, v, AU) : j E [d]) be a minimal quasi-

HMM realization of order k for the process considered. Since the joint probabilities

can be factorized in terms of the AW's as in (4.1), one can factorize H(0 ) and H's

as below:

H(O) = EFT, H(i) = EA(j)FT,

where the matrices E, F E R d" Ik are functions of 0". In particular, the L(l")-th row
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of E and F are given by:

E[L(1Y),:= uT(A('-) ... A("), (4.9)

F[L(1 VT v(A (in) .. ()).(4.10)

Note that if both E and F have full column rank k, then H(0 ) has rank k, according to

Sylvester's inequality. Any rank factorization leads to an equivalent minimal quasi-

HMM realization of order k. The minimal order condition, though not explicitly

enforced, is reflected in the rank factorization, as any quasi-HMM realization of lower

order results in a matrix H 0 ) of lower rank, which leads to a contradiction.

The correctness of the algorithm crucially relies on matrix H(0 ) achieving its max-

imal rank k, which equals the order of the minimal realization. A necessary condition

for the correctness of the algorithm is stated below.

Lemma 4.1 (Correctness of Algorithm 12). Assume the process has a minimal quasi-

realization 0' of order k. Algorithm 12 returns a minimal quasi-HMM realization 9"

that is equivalent to 00, if the matrices E, F defined in (4.9) and (4.10) have full

column rank k.

Increasing the window size N can potentially boost the rank of H 0), in the hope

that the H 0) reaches its maximal rank and Algorithm 12 can correctly finds the

minimal realization. However, for a given random process, the study of [106] showed

that it is undecidable to verify whether it has a finite order quasi-HMM realization.

Even under our assumption that the process indeed has an order k minimal quasi-

HMM realization, it is still not clear how large the size of matrix H(0 ) (d" x d")

needs to be so that it achieves the maximal rank k. In previous works, it was usually

implicitly assumed that N is large enough so that H(0) achieves its maximal rank

[18]. Yet without a bound on n or N the computational complexity of the algorithm

is ambiguous.

Generic Analysis of Information Complexity We desire a small window size

N while guaranteeing the full column rank of the matrices E and F defined in (4.9)
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and (4.10). The following theorem shows that if the random process is generated by an

order k HMM in general position, then we only need window size N > 4 [logd(k)] + 1

to guarantee the correctness of Algorithm 12.

Theorem 4.2 (Window size N for quasi-HMM). (1) Consider E), the class of all

HMMs with output alphabet size d and order k. There exists a measure zero set

SE O ehk, such that for all the output process generated by HMMs in ,Al-

gorithm 12 returns a minimal quasi-HMM realization, if window size N 2n + 1

for some n such that:

n > 8[Flogd(k)]. (4.11)

(2) For any pair of (d, k), randomly pick an instance from the class E). If for a

given window size N = 2n + 1, the matrix H(0 ) achieves its maximal rank k, then

for all HMMs in E h excluding a measure zero set, N is sufficiently large for

the correctness of Algorithm 12.

Since the elements of matrices E and F are polynomials of the parameters Q and

0, in order to show E has full column rank for Q and 0 in general position, it suffices

to construct an instance of HMM for which the matrix E has full column rank. In

particular, we fix the transition matrix Q and randomize the observation matrix 0

and bound the singular values of E in probability. The detailed proof is provided in

Appendix 4.3.

For all (d, k) pairs in the set {2 < d < k < 3000}, we implemented the test in

Theorem 4.2 (2), and found that for all these cases n = [logd(k)] is sufficient. We

conjecture that in general, n ;> logd(k) is enough.

In the worst case [1231, the "Hankel rank" of the matrix H(0 ) with infinite window

size can be larger than the rank of any finite size block of the infinite matrix. Instead

of the worst case analysis, our generic analysis examines the average cases, and it has

the following implications: if the process is generated by some average case HMM of

order k, then the Hankel rank equals k; moreover, the window size n only needs to be
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in the order of O(logd(k)) so that the rank of finite matrix H(0 ) achieves the Hankel

rank.

Existence of Hard Cases We showed that for generic HMM output processes,

Algorithm 12 is has polynomial runtime. There exists a long line of hardness results

for learning HMMs [66, 89, 114], showing that in the worst case (lie in the mea-

sure zero set in the parameter space) learning the distribution of an HMM can be

computationally hard under cryptographic assumptions.

In Fig. 4-1, we adapt the hardness results to our setting and give an example to

lower bound the worst case computational complexity. The state diagram describes

the transition and observation probabilities. In the state transition diagram, for

stage t = 1, - - - , T - 1, the emission state Et is uniformly distributed over {0, 1} and

is observed. For stage t = 2, - -. , T - 1, the parity state St computes Et- 1 ( St-1,

except for at one unknown stage s, St = St-1. At stage T, with probability 'q, the

correct parity state ST-1 is revealed, and with probability 1 - q, the complement is

observed. (T+ 1) is a reset stage, with probability p it stays in the reset stage. Solving

the realization problem is equivalent to learning the joint distribution of the process.

One can verify that the window size N needs to be at least as large as T, which

is proportional to the order of the underlying HMM, and therefore the computation

complexity is exponential in the order of the HMM.

State = (Emission, Parity sum, Stage)
Skip stage for parit sum

(002) (003) (005-1) (00s) (OOT-1)
uniform 0.5 1

(001) (102) (103) (10s-1) (10s) (10T-1) (OxT) -

-0(01) (012) .(013) (01s-1) (01s) (01T-1) (1 xT) -

(112) (113) (1is I) 
0

is) (11-1)

- - (rO,T+1) --
1 Reset stage

Figure 4-1: Reduction of HMM to noisy parity

We point out that not all HMMs in the measure zero set are information theo-
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retically hard to learn. For instance, consider the degenerate HMM in [5] with the

transition matrix Q = Ikxk and with general position observation matrix 0. Suppose

that d < k, it was shown that the window size N needs to be in the order of kd so

that matrices E and F attain full column rank. However the distribution of this i.i.d.

process is not fundamentally difficult to learn. It remains an open problem to find

realization algorithm that can handle more cases.

Stability Analysis In practice, the joint probabilities in p(N) are estimated based

on finite sample sequences of the process. In the next theorem, we show that in order

to achieve E-accuracy in the parameters of the minimal quasi-HMM realization, the

number of sample sequences we need to estimate p(N) is polynomial in all relevant

parameters, including the order k.

Theorem 4.3. Given T independent sample sequences of the output process of an

HMM of order k and with alphabet size d. Construct (0) and H(s)'s as in (4.7)

and (4.8) with the empirical probabilities. Let N = 2n + 1, and n = 2Flogd(k)].

Let 00 = (k, , i Z AU) : j E [d]) and WO = (k, (, ZU) : j c [d]) be the output of

Algorithm 12 with the empirical probabilities and the exact probabilities for the input,

respectively. Then, in order to achieve E-accuracy in the output with probability at

least 1 - q, namely:

Iti <- 6 e - il :5 f, ii ) - AU 11< , Vj,

the number of independent sample sequences we need is given by:

T = Ck6 d4 log 2k4 d2 )

where Uk is the k-th singular value of H(0 ) and C is some absolute constant.

Since the core of the algorithm is singular value decomposition of the matrix HO),

the stability analysis mostly uses the standard matrix perturbation results. The

detailed proof is provided in [59].
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Remark 4.4. Note that Theorem 4.2 shows that for window size N large enough

(O(logd(k))), the exact realization problem (no estimation noise) can be solved with

poly time algorithm. When empirical probabilities are used, Theorem 4.3 shows that

the required number of independent samples is polynomial in k, d, and 1/ak. crk

depends on the HMM that generates the process. In the proof of Theorem 4.2, it is

showed that there exist cases for which 0 k is lower bounded by constant, for which

case the sample complexity is indeed polynomial; however there also exists hard cases

for which ak is arbitrarily small. We defer the analysis of sample complexity, which

relies on understanding the relation between window size, HMM parameter, and 'k,

to future work.

4.2.2 Minimal HMM Realization Problem

Recall that an HMM can be easily converted to a quasi-HMM of the same order as

shown in (4.4)-(4.6), yet given a quasi-HMM realization it is difficult to construct an

HMM [11]. In this section, we apply tensor decomposition techniques to study the

minimal HMM realization problem and discuss its connection to the previous section.

In particular, we show that for processes generated by general position HMMs, the

two realization problems have similar computational complexity.

Formulation For a fixed window size N = 2n+1, given the exact joint probabilities

in 'p(N), similar to the construction of H(0) in (4.7), one can construct a 3rd order

tensor M E Rdxd1"xd as below:

M lo1y)LV, = y = i"), v" n E [d]N (4.12)

Suppose that the process has a minimal HMM realization 6 = (k, Q, 0) of order k.

We can write M as a tensor product:

M = A ® B ® C, (4.13)
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where the matrices A, B E R dxk and C E Rdxk correspond to the conditional prob-

abilities:

AL(1-),rn = P(y" = 17 Xo = T), (4.14)

BLQn =PYb I ' O = M , (4.15)

C 1,71P(y1= = , X = m). (4.16)

Moreover, observe that A anh B are recursive linear functions of the model parameters

Q and 0 as below:

A (n) = Pyn x. = mn) = (0 CdQ,(.7
-IPJY x0 ( ( )Q, (4.17)

B(n) n(y" X0 = 7) = (0 0 B( 1n-)Q, (4.18)

and AM1 = OQ and B(1) = OQ. In particular, for the given window size N = 2n + 1,

we have:

A =A(n), B=B(n), C = ODiag(7r). (4.19)

The basic idea of recovering the minimal HMM realization 0 h (up to hidden state

relabeling) is to first recover the factors A, B and C via tensor decomposition, and

then extract the transition and observation probabilities from the factors. The

minimal order condition is again reflected in the tensor rank factorization, as any

HMM realization of lower order results in a tensor M of lower tensor rank, which is

a contradiction.

Identifiability The identifiability of the minimal HMM relies on the fact that

the tensor rank decomposition indeed recovers the factor A, B, C defined in (4.14)-

(4.16). Note that by definition, the column stochastic observation matrix 0 must

have Kruskal rank greater than 2, otherwise there exist two identical columns in 0,

and the corresponding two hidden states can be merged to give an equivalent HMM
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realization of smaller order.

Lemma 4.2 (Uniqueness of tensor decomposition). Given window size N, if the

matrices A, B E Rdnx" defined in (4.17)-(4.19) have full column rank k, then M can

be uniquely decomposed into column stochastic matrices A, B, C as in (4.13) (up to

common column permutation).

In parallel with Theorem 4.2, the next theorem shows that the condition above is

satisfied for a general position HMM process with sufficiently large window size N.

Theorem 4.5 (Choice of N for HMM realization). Consider 0, the class of all

HMMs with output alphabet size d and order k. There exists a measure zero set

E ek) such that for all output processes generated by HMMs in the set ()h,

the minimal quasi-HMM realization can be computed based on the joint probabilities

in p(N) if window size N = 2n + 1 for some n such that:

n > 8[logd(k)~l. (4.20)

Algorithms The matrices A, B and C, defined in (4.17)-(4.19), are polynomial

functions of the parameters Q and 0 of the minimal HMM realization. The fol-

lowing theorem exploits the recursive structure of these polynomials to recover the

parameters Q and 0 if the factors A, B, C are given.

Theorem 4.6 (Recovering Q and 0 from A, B, C). Given the matrix C, one can

obtain the observation matrix by:

=[:,] = C[:,i]/(eTC[:,i), Vi E [k]. (4.21)

Given the matrix A E Rdnxk, we first scale each of the column similar to (4.21) so that

each column is stochastic, and corresponds to the conditional probabilities P(y'|xo) as

shown in (4.14). We marginalize the conditional distribution to get AM1 ) - P (yilxo) E

Rdxk and -1) = P (y"-1xo) c Rd" xk.
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(1) If A has full column rank k ([51):

Q = (o o A-1))A. (4.22)

(2) If C has full column rank k:

Q - OtA(l). (4.23)

where (X)t = (XTX)-lXT denotes the pseudo-inverse of a matrix X.

In the proof of Theorem 4.5, we show that for general position HMMs with suffi-

ciently large window size, the matrices A and B achieve full column rank k. When

this holds, Algorithm 1 computes the unique tensor decomposition to recover the

factors A, B, C. Theorem 4.6 (1) applies to recover Q and 0 from the factors.

However, if the transition matrix Q of the minimal HMM realization does not have

full rank, and no matter how large the window size is, the matrix A never achieves

full rank. Note that these HMMs are degenerate cases belonging to the measure zero

set in Theorem 4.5, and Algorithm 1 is not applicable for decomposing the tensor M.

However, it is still possible to apply Algorithm 2. Note that a necessary condition for

it to work is that d > k and the observation matrix is of full column rank.

Let Oh denote the model class of HMMs with output alphabet d and order(d ,k,T)

k, for d > k and the transition matrix Q has rank r < k. Note that Eh is a(d,k,'r)

subset of the measure zero set E in Theorem 4.5. The following theorem shows that

if Algorithm 2 runs correctly for a random instance in this subset, then the algorithm

works for almost all HMMs in this subset.

Theorem 4.7 (Correctness of Algorithm 2). Given d, k and r and consider the set

EOdr),. Let A, B, C be defined as in (4.17)- (4.19) for n = 1, and let M = A® BO C.

If Algorithm 13 returns "yes", then there exists a measure zero set & E eh such(d ,k,r)'IS~

that Algorithm 2 returns the tensor decomposition M = A 0 B 0 C for all HMA'Is

in the set 8Eik,,\C. Moreover, if the latter is true, Algorithm 13 returns "yes" with

probability 1.
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For this class of degenerate HMMs, Theorem 4.6 (2) applies to recover Q and 0.

Note that for both the general position case and this degenerate case, the com-

putation complexity to recover the parameters of the minimal HMM realization are

polynomial in both d and k, and this is an immediate result of the log upper bound

of the window size.

Algorithm 13: Check Condition

1. Randomly choose an HMM from 0h E ed,kr)-

2. Construct matrices A, B, C with (Q, 0) as defined in (4.17)-(4.19) for n 1,
namely A = OQ, B = OQ, and C = ODiag(r).

3. Let M = A 0 B 0 C. Run Algorithm 2 with the input M.

4. Return "yes" if the algorithm returns A, B, C uniquely up to a common
column permutation, and "no" otherwise.

4.3 Proofs for Chapter 4

4.3.1 Proofs

Assume that the observed process has a minimal HMM realization 0h of order k,

i.e., 6 h E 0 ,k), and let 0 denote the equivalent order k quasi-HMM as shown in

(4.4)-(4.6). For window size N = 2n + 1, define the matrices E and F for 90 as in

(4.9) and (4.10) and note that:

ELtly),i

= [uT(A('-) ... A. ))jj

= eTP(x,,y, 1 =jx_) = - P(x1, yo =lXo = i)

= P(y"- = I n = ,
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and similarly,

IL(1),i = [A(") -4. r]= y = 17, xo = i .

Lemma 4.1 shows that a sufficient condition for the correctness of Algorithm 12

is that both E and F have full column rank k. In this proof, we show that when Q

and 0 of the HMM 0 h E E)h are in general position, this rank condition is satisfied

if the window size N = 2n + 1 satisfies (4.11).

Note that the minors of E and F are polynomials in the elements of Q and 0, thus

it defines a algebraic set in the parameter space by setting all the minors to zero to

make E and F to be rank deficient. By basic algebraic geometry [511, the algebraic set

either occupies the entire Zariski closure or is a low-dimensional manifold of Lebesgue

measure zero. In particular, the Zariski closure of Oh defined to be the smallest(d ,k)'I

algebraic set containing O/k,, is given by (dk) ={Q Rdx, Q E Rkxk - eTO

e T, eTQ = eT} (note that the element-wise non-negativity constraints can be omitted

when considering the Zariski closure). Therefore, it is enough to show that for some

specific choice of Q and O in (dk), the matrices E and F achieve full column rank k.

Moreover to construct an instance, we can further ignore the stochastic constraints,

as scaling does not the independence property of the columns in E and F.

We fix the transition matrix Q to be the state shifting matrix as below:

Qi_ 1, for2 <i <k, and Qk,1 1, (4.24)

Note that with this choice of Q, 7r = e, and Q = QT. Due to the symmetry of the

forward and backward transitions, we can focus on showing that E has full column

rank and the same argument applies to F.

We randomize the observation matrix 0 and let the columns be independent

random variables uniformly distributed on the d-dimensional sphere. In order to

show that there exists a construction of (Q, 0) such that E has full column rank, it

suffices to show that E achieves full column rank with positive probability over the

randomness of 0. We apply Gershgorin's theorem to prove that the columns of E
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are incoherent.

Note that for the shifting matrix Q, we have:

E[:,i] = 0[:i 0 .. - [:,i+Tt_1].

Since we have d > 2 and n < k, for notational convenience, we slightly abuse notation

to write the j-th column of 0 as O[:,j], while for k < j < 2k, it actually refer to the

(j - k)-th column of 0.

Define matrix X E Rkxk to be:

71-i

Xij = E TE[:,j] = fj(Oli+mj]O[:gm) zi I [17J (O: rn],j+n]) Vi'j 'E [k].
M=O

By the assumption that the columns of 0 are uniformly distributed on the d-dimensional

sphere, we have Xj,j = 1, for all i E [k].

Fix some 3, -y = 32 E (0, 1). Suppose that, for any i # j,

P (Xi'| < 0)> - /. (4.25)

Then apply union bound on j, we have for any i:

kk
P Y Xi'g <O # >P(Vj E[k], j i, IXjj I <

Again apply union bound on i, we have:

P Vi E [k], jXj,jj - E XjIg ;> 1 - >1 - k = 1 - 7> 1i k ~ = - y

Apply Gershgorin's theorem, we have that with probability at least -y, the matrix

X = ETE is of full rank k, and the smallest singular value is at least 1 - /. There

must exist some instance of 0 such that this statement holds.
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Next, we verify the statement in (4.25). Equivalently, we want to show that for

1 - IT< P IO~i.n Ol:,j+m)l <k

n-I

=P log(IO 30[: log( )

(r -1 1 k
= n-1o > log( )

=P log I)> log(k))

where vm are i.i.d. random variables with the distribution as the projection of a

uniform unit-norm vector in Rd onto the first dimension. The last equality is due to

the independence of the columns of 0.

Define the indicator random variable sm for m c [n]:

sm = 1 [log( ) < - log(d)= 1 Vm| > I ,

where we pick constant c = 4. Assume that d > 2 + (8e)2 (as we really only care

about the scaling), apply Johnson Lindenstrauss lemma, setting u1 to be v,,, and t to

be 1/di, we have:

4 d-2 1 d-2

p=P(S =1) < e 207 < -e 2d
27'

v/d=-=2 2e

Note that by definition:

log >> log(d)(1 - sm).
I= it mi I=1
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Therefore it suffices to show that

1 - < P log(d)(1

or equivalently,

-y > P SU

SP sm

> n - log(k// )

log(k/#)
> ac log(d) '

where we set n = (1 + a)c logd(k/ 3 ) for some a > 1.

Apply the multiplicative Chernoff bound, by setting Xm = sm for m 1,---

and set 6np = ac log(k/,3) and = g = e < e-V/-/2 < 1, we havelog(d) CClogd

IP s > ac log(k/3)
log(d) )

I-g(k/fl)
1 + a "a log(d)

<e

We want to show that the RHS is less than -y/k 2 . Taking log, this is equivalent to:

logd((1 + a)ep )
log(k2/7)

log(d)

Recal tht w hav 7 ,32,I+,d- 2

Recall that we have y = #2 e-d2 , c = 4 the above inequality holds if

we pick a = 4/c = 1, as

ac lod( ) >
(1 + a)ep -

log(e 2)4 >
log(d) ~~

2 > 2.
log(d) -

Now we can conclude that (4.25) holds.

nl

4.3.2 Other proofs

(Proof of Theorem 4.3)
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Recall that the output of Algorithm 12 is given by:

i =b-1/2_Tfi(i)Pb1/2

S U T -1/ 2 -T

where UH and VH are the first k left and right singular vectors of H('), and the

diagonal matrix D has the first k singular values of () on its main diagonal. In

order to bound the distance between Z() and A(J), U and i, ) and ', we analyze the

perturbation bound for each of the factor separately and apply Lemma 1.6 to bound

the overall perturbation of the product form.

First, denote E. =HU) - HU) for j = 0, 1,..., d. For any element in Ej we can

be bound its norm using Hoeffding's inequality (Lemma 1.8 ): with probability at

least 1 - 2e-2TI, the (iii 2 )-th element of Ej is bounded by: II[Ej]jj2II < 56 < 1.

Moreover, apply union bound to j and all elements in each Ej, with probability at

least 1 - 2k4d3e-2T 2 , for all j = 0,1, ... , d, we have

|IEJF <. 5kd.6 < k15 0 56

where the last inequality is due to d' < k 2 d.

Second, we apply the matrix perturbation bound (Lemma ??) to bound the dis-

tance of the singular vectors:

V2||E011F V21E011F
||UH - UH II OI H - HHIo))

-k ( ((() I))

And we can apply Mirsky's theorem (Lemma ?? ) to bound the distance of the

singular values:

|D - D|1 IIEoIIF-

Denote A_ = j (H(0)) - ai(H(0)) and let (H =(H(0)). Note that if ||Eol| < ah/2, we
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have that for any i = 1,... k, IAji < IIEoII j-/2, then

1 12

/o-a + Ai

1
1 Vj/1 +Ai/oi _1) 2

Ori + Ai
2

-(Ai/oi + 2
O-i

- 2V/ +A/o-)

2
<-2(31,Ail/oj)

6

ak

where the first inequality is due to IAj I5 6/2, and the second inequality is due to

1 + Aj/-i ;> 1 - |Ai/o-iI. Therefore we have that

||D- 1/ 2 - D 1/ 211 < 6 zA1 IAi
a6v k|| - D I

U-k

Finally, we apply Lemma 1.6 to bound the output perturbation. Note that

IID- 1/ 2 1 = / IIUHII = 1,_1I17H1= 1. Moreover note that the probabilities in

each row of H(j) sum up to less than 1, therefore by Perron-Frobenius theorem we

have IIH()|II < 1. Therefore we have

I|I - (j) _ P ~)II

S2 4 2,,/6k
1/ 21IEoIIF

52~ (2v6ko .
75dO.25 3.5

k 0.5
ak

2 2_1 Eo F +H 2
ak

2v/2kd0-56
+ 2

where the first inequality is due to ||Ejj| < ||EIIIF, and the second inequality is due

to 6 < 1 and ak a1 1.

Similarly we can bound ||' - if| and ||U - i7'l by:

- 2 |D-1/2UT - D112UTIllVx < 4k. d605.
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In summary, if we want to achieve E accuracy in the output. we need 6 to be no

larger than c2 uj/(144k3 d2 ). Set the failure probability to be rj = 2k4d3e-2 2 , then

number of sample sequences needed to estimate the empirical probabilities is given

by:

1442 k 6d 4  2k4 d3 \
T = 2 48 log

(Proof of Theorem 4.5)

With exactly the same argument and constructional proof as for Theorem 4.2,

we can show that for the window size N = 2n + 1 satisfies (4.20), the matrices A

and B have full column rank. By Lemma 4.2 we have that the tensor decomposition

of M is unique. Moreover, by the argument in Theorem 4.6 (1), we have that the

model parameters Q, 0 can be uniquely recovered from the factors A, B, C. Thus in

conclusion 'p(N) is sufficient for finding the minimal HMM realization.

L

(Proof of Theorem 4.6)

By the uniqueness of tensor decomposition (up to column permutation and scal-

ing) the columns of C are proportional to the columns of 0 (up to some hidden

state permutation), and each column of 0 must satisfy the normalization constraint:

eTO[:, = 1, Vi E [k]. The normalization in (4.21) recovers 0 from C.

Recall that

A = A(l) = (o 0 A(-1) )Q.

Since the matrix A has full column rank k, the matrices Q E V"x and (O OA(-1)) E

Rxd"x both have full column rank k, as well as the pseudo-inverse of (OOA), therefore

Q = (0 0 A(1-1))tA.

By definition we have A(1 ) = OQ, thus if 0 is of full column rank k, we can obtain

Q = OfA(1).

l
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(Proof of Theorem 4.7)

Denote the minimal order HMM realization by 0 ' - (k, Q, 0), and since n = 1,

the matrices are given by:

A = OQ, B = OQ, C = ODiag(7r).

Define two linear operators Idxd : Rd 2 -+ R 2 and Pd2 x : Rd2 -+4 R2 , such that

for any matrix X E Rdxd: I&xd2vec(X) = vec(X) and Prxgvec(X) vec(XT ).

Moreover, define matrix R E Rd2 xd2 and Q E Rd
4 xd 2 to be:

R = Iax - Pd2xd2, G=zR®R.

Note that the kernel of (I& xd2 - Pd2Xd) is the space of symmetric matrices, thus R

is of rank d2 - d(d + 1)/2 = d(d - 1)/2, and G is of rank d2 (d - 1)2/4. Define matrix

G- E Rd4 (d ~ 2 (d 1)2) such that its columns are orthogonal to the columns of G.

According to [41, 42, 63], there are two deterministic conditions for Algorithm 2

to correctly recover the factors A, B, C from the rank k tensor M:

1. Both A G B and C have full column rank k.

2. Define T E Rd4 x(r+(k-1)k/2) to be:

1<i<d
4 -d2(d - 1)2

1: 4 -

A[:,ki] 0 A[:,k 2] 0 B[:,ki] 0 B[:,k2] : 1 < ki < k2  k].

The columns of T are linear independent.

Parameterize the rank r transition matrix by Q = UVT for some matrices U, V E

Rk ". Define the parameter space Q:

Q ={Q C Rkxk: Q = UVT, U, V C Rkxr, TQ eT}

Note that by construction, the minors of A 0 B and T are nonzero polynomials in
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the elements of the parameters U, V and 0, in order to show that the two deterministic

rank conditions are satisfied for almost all instances in the class E , it is enough(d k,'r)'

to construct an instance in the model class that satisfies the two conditions (by the

random check in Algorithm 13). Moreover, if it is true, then with probability one,

the two conditions are satisfied for a randomly chosen instance in the model class.

(Proof of Lemma 4.1)

If both E and F have full column rank k, by Sylvester inequality the rank of the

matrix H(0) is also equal to k, the order of minimal quasi-HMM realization. Therefore,

for the two matrices U and V obtained in Step 2 in Algorithm 1, there exists some

full rank matrix W E RkXk such that:

U = EW, VT = WlFT .

Therefore, Step 3 returns

-) = WlEtEA()FT (FT )tW = W'A()W.

By the normalization constraint in Definition 4.1, we have

d d

uTW = >E A(j) W = uT W Z A
j= 1 j=1

Moreover, since

UT (A) .. A('))

uT (4() ... A ())
WV = uT W

A(d) ... Z(d)

in Step 2 we obtain iT = uT W, and similarly, we cani

conclude that the output O" = (k, i, -i, i(j) : j E [d])

argue that T = W-v. Thus we

is a valid minimal quasi-HMM
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realization of order k, and is equivalent to 00 up to a linear transformation.

El
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Chapter 5

Super-resolution

5.1 Problem Statement

5.1.1 Formulation

We follow the standard mathematical abstraction of this problem (Candes & Fernandez-

Granda [31, 30]): consider a d-dimensional signal x(t) modeled as a weighted sum of

k Dirac measures in Rd:

k

x(t) = ZW5p0>,

J=1

(5.1)

where the point sources, the p>) 's, are in R'. Assume that the weights wj are complex

valued, whose absolute values are lower and upper bounded by some positive constant.

IAssume that we are given k, the number of point sources .

Define the measurement function f(s) : R' -+ C to be the convolution of the point

source x(t) with a low-pass point spread function ei""<'t> as below:

f(s) = Jd

k

eir<t"s>x(dt) = Ewje",4 U>

j=1

In the noisy setting, the measurements are corrupted by uniformly bounded pertur-

'An upper bound of the number of point sources suffices.
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bation z:

f(s) = f(s) + z(s), Iz(s) K ez,Vs. (5.3)

Suppose that we are only allowed to measure the signal x(t) by evaluating the

measurement function f(s) at any s E Rd, and we want to recover the parameters of

the point source signal, i.e., {wj, P(7) : j E [k]}. We follow the standard normalization

to assume that:

pI(j) E [-1, +1]d, jWj I E [0, 1] Vj E [k].

Let wtin = mini Jwj denote the minimal weight, and let A be the minimal separation

of the point sources defined as follows:

A = min |p(I ) P 0)|112, (5.4)

where we use the Euclidean distance between the point sources for ease of exposition2 .

These quantities are key parameters in our algorithm and analysis. Intuitively, the

recovery problem is harder if the minimal separation A is small and the minimal

weight wmi,, is small.

The first question is that, given exact measurements, namely e, = 0, where and

how many measurements should we take so that the original signal x(t) can be exactly

recovered.

Definition 5.1 (Exact recovery). In the exact case, i.e. Ec = 0, we say that an

algorithm achieves exact recovery with m measurements of the signal x(t) if, upon

input of these m measurements, the algorithm returns the exact set of parameters

{w.i, p(j) : j E [k]}.

Moreover, we want the algorithm to be measurement noise tolerant, in the sense

that in the presence of measurement noise we can still recover good estimates of the

point sources.

2Our claims hold withut using the "wrap around metric", as in [31, 30], due to our random
sampling. Also, it is possible to extend these results for the f,-norm case.

234



Definition 5.2 (Stable recovery). In the noisy case, i.e., e2 > 0, we say that an

algorithm achieves stable recovery with m measurements of the signal x(t) if, upon

input of these m measurements, the algorithm returns estimates {i5ij, p) : J [k]}

such that

min max {||j) - A(r(j)) : 2 E [k] <_ poly(d, k) z,

where the min is over permutations -/ on [k] and poly(d,k) is a polynomial function

in d and k.

By definition, if an algorithm achieves stable recovery with m measurements, it

also achieves exact recovery with these m measurements.

The terminology of "super-resolution" is appropriate due to the following remark-

able result (in the noiseless case) of Donoho [43]: suppose we want to accurately

recover the point sources to an error of -y, where -y < A. Naively, we may expect to

require measurements whose frequency depends inversely on the desired the accuracy

y. Donoho [43] showed that it suffices to obtain a finite number of measurements,

whose frequencies are bounded by 0(1/A), in order to achieve exact recovery; thus

resolving the point sources far more accurately than that which is naively implied by

using frequencies of O(1/A). Furthermore, the work of Candes & Fernandez-Granda

[31, 30] showed that stable recovery, in the univariate case (d = 1), is achievable with

a cutoff frequency of 0(1/A) using a convex program and a number of measurements

whose size is polynomial in the relevant quantities.

5.1.2 Related Work

We are interested in stable recovery procedures with the following desirable statistical

and computational properties: we seek to use coarse (low frequency) measurements;

we hope to take a (quantifiably) small number of measurements; we desire our algo-

rithm run quickly. Informally, our main result is as follows:

Theorem 5.1 (Informal statement of Theorem 5.3). For a fixed probability of error,

the proposed algorithm achieves stable recovery with a number of measurements and
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d= 1 d>1

cutoff freq measurements runtime cutoff freq measurements runtime

SDP 1 k log(k) log(. ) poly(I, k) Cd (-)d poly(( 1)d , k)

MP 1 1 - -

Ours (k log(k)) 2  (k log(k)) 2  loA (k log(k) + d) 2  (k log(k) + d) 2

Table 5.1: See Section 5.1.2 for description. See Lemma 5.1 for details about the
cutoff frequency. Here, we are implicitly using 0(.) notation.

with computational runtime that are both on the order of 0((k log(k) + d) 2 ). Further-

more, the algorithm makes measurements which are bounded in frequency by 0(1/A)

(ignoring log factors).

Notably, our algorithm and analysis directly deal with the multivariate case, with

the univariate case as a special case. Importantly, the number of measurements and

the computational runtime do not depend on the minimal separation of the point

sources. This may be important even in certain low dimensional imaging applications

where taking physical measurements are costly (indeed, super-resolution is important

in settings where A is small). Furthermore, our technical contribution of how to

decompose a certain tensor constructed with Fourier measurements may be of broader

interest to related questions in statistics, signal processing, and machine learning..

Table 5.1 summarizes the comparisons between our algorithm and the existing

results. The multi-dimensional cutoff frequency we refer to in the table is the maximal

coordinate-wise entry of any measurement frequency s (i.e. I1slico). "SDP" refers

to the semidefinite programming (SDP) based algorithms of Candes & Fernandez-

Granda [30, 31]; in the univariate case, the number of measurements can be reduced

by the method in Tang et. al. [112] (this is reflected in the table). "MP" refers to the

matrix pencil type of methods, studied in [80] and [84] for the univariate case. Here,

we are defining the infinity norm separation as A.. = minjoj, |A - pU') 1j,, which

is understood as the wrap around distance on the unit circle. Cd > 1 is a problem

dependent constant (discussed below).
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Observe the following differences between our algorithm and prior work:

1) Our minimal separation is measured under the e2 -norm instead of the infinity

norm, as in the SDP based algorithm. Note that A, depends on the coordinate

system; in the worst case, it can underestimate the separation by a 1/V'd factor,

namely A, ~ A/4.

2) The computation complexity and number of measurements are polynomial in di-

mension d and the number of point sources k, and surprisingly do riot depend on

the minimal separation of the point sources! Intuitively, when the minimal sep-

aration between the point sources is small, the problem should be harder, this is

only reflected in the sampling range and the cutoff frequency of the measurements

in our algorithm.

3) Furthermore, one could project the multivariate signal to the coordinates and

solve multiple univariate problems (such as in [96, 91], which provided only exact

recovery results). Naive random projections would lead to a cutoff frequency of

O(4/A).

SDP approaches: The work in [30, 31, 46] formulates the recovery problem

as a total-variation minimization problem; they then show the dual problem can be

formulated as an SDP. They focused on the analysis of d = 1 and only explicitly

extend the proofs for d = 2. For d > 1, lngham-type theorems (see [102, 71]) suggest

that C = O(Td).

The number of measurements can be reduced by the method in [112] for the

d = 1 case, which is noted in the table. Their method uses sampling "off the grid";

technically, their sampling scheme is actually sampling random points from the grid,

though with far fewer measurements.

Matrix pencil approaches: The matrix pencil method, MUSIC and Prony's

method are essentially the same underlying idea, executed in different ways. The

original Prony's method directly attempts to find roots of a high degree polynomial,

where the root stability has few guarantees. Other methods aim to robustify the

algorithm.
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Recently, for the univariate matrix pencil method, Liao & Fannjiang [80] and

Moitra [84] provide a stability analysis of the MUSIC algorithm. Moitra [84] studied

the optimal relationship between the cutoff frequency and A, showing that if the

cutoff frequency is less than 1/A, then stable recovery is not possible with matrix

pencil method (with high probability).

5.2 Main Results

5.2.1 Warm-up

1-D case: revisiting the matrix pencil method Let us first review the matrix

pencil method for the univariate case, which stability was recently rigorously analyzed

in Liao & Fannjiang [80] and Moitra [84].

A square matrix H is called a Hankel matrix if its skew-diagonals are constants,

namely Hij = Hi-1,,+ 1 . For some positive constants m E Z, sample to get the

measurements f(s) evaluated at the sampling set S3 = {0, 1,... , 2m}, and construct

two Hankel matrices Ho, H E Cmx:

... f(m - 1)

.. . f(rn)

f(2m - 1)

f(1)

f(2)

f(m)

f(2)

f(3)

f(m + 1)

. .. f(m)

f(m + 1)

. . . f(2m)

(5.5)

Define D, E C to be the diagonal matrix with the weights on the main diago-

nal: [D.]jj = wj. Define D, E Ckk to be [Dl]jj = e "Pm.
dAag

A matrix V is called a Varzdermonde matrix if each column is a geometric pro-

238

f(0)

f(1)

f(m-1)

f(1)
f(2)

f(m)

, H, =



gression. defined the Vandermonde matrix " E as below:

1 ... 1

(7en - () .7. . ( k) (5.6)L = C(5.6)

The two Hankel matrices HO and 1 admit the following simultaneous diagonal-

ization:

Ho = ID4 , 1,', H1 = VnD,D vT. (5.7)

As long as Vrr is of full rank, this simultaneous diagonalization can be computed by

solving the generalized eigenvalue problem, and the parameters of the point source

can thus be obtained from the factor V,, and Do,.

The univariate matrix pencil method only needs m > k to achieve exact recovery.

In the noisy case, the stability of generalized cigenvalue problem depends on the

condition number of the Vandermonde matrix V, and the minimal weight Wtarin.

Since all the nodes (ei '9's) of this Vandermonde matrix lie on the unit circle in

the complex plane, it is straightforward to see that asymptotically lim-r, cond2 (Vn) =

1. Furthermore, for m > 1/A, [80, 84] showed that cond2 (Vn) is upper bounded by a

constant that does not depend on k and m. This bound on condition number is also

implicitly discussed in [96].

Another way to view the matrix pencil method is that it corresponds to the

low rank 3rd order tensor decomposition (see for example [8]). This view will help

us generalize matrix pencil method to higher dimension d in a direct way, without

projecting the signal on each coordinate and apply the univariate algorithm multiple

times. For m > k, construct a 3rd order tensor F E Cr,1xmx2 with elements of Ho

and H1 defined in (5.5) as:

Figi= [Hib, Vj E [2], i, i' E [m].
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Note that the two slices along the 3rd dimension of F are Ho and H1 . Namely

F(I, I, el) = H0 , and F(I, I, e2 ) = H1 . Recall the matrix decomposition of Ho and

H1 in (5.7). Since m > k and the pG)'s are distinct, we know that F has the unique

rank k tensor decomposition:

F =Vm0 V0 (V2Dw).

Given the tensor F, the basic idea of the well-known Jennrich's algorithm ([55,

77]) for finding the unique low rank tensor decomposition is to consider two random

projections v1 , V2 E Rm , and then with high probability the two matrices F(I, I, vi)

and F(I, I, v2 ) admit simultaneous diagonalization. Therefore, the matrix pencil

method is indeed a special case of Jennrich's algorithm by setting v1 = el and v2 = e2

The multivariate case: a toy example One could naively extend the matrix

pencil method to higher dimensions by using taking measurements from a hyper-

grid, which is of size exponential in the dimension d. We now examine a toy problem

which suggests that the high dimensional case may not be inherently more difficult

than the univariate case.

The key ideas is that an appropriately sampled set can significantly reduce the

number of measurements (as compared to using all the grid points). Tang et al [112]

made a similar observation for the univariate case. They used a small random subset

of measurements (actually still from the grid points) and showed that this contains

enough information to recover all the measurement on the grid; the full measurements

were then used for stably recovering the point sources.

Consider the case where the dimension d > k. Assume that Wj 's are real valued,

and for all j E [k] and n E [d], the parameters pn are i.i.d. and uniformly dis-

tributed over [-1, +1]. This essentially corresponds to the standard (L 2 ) incoherence

conditions (for the p&)'s). 3 The following simple algorithm achieves stability with

3 This setting is different from the 2-norm separation condition. To see the difference, note that
the toy algorithm does not work for constant shift pN = P( + A. This issue is resolved in the
general algorithm, when the condition is stated in terms of 2-norm separation.
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polynomial complexity.

First, take d3 number of measurements by evaluating f(s) in the set 83 = {s =

e" 1 + e 2 + e, 3 : In,, n2 , n 3] E [d] x [d] x [d]}, noting that 83 contains only a subset of

d3 points from the grid of [3 ]d. Then, construct a 3rd order tensor F E Cdxdxd with

the measurements in the following way:

F-i,2, = f(s) ,=el+e-2+e-3 ' n2 , n3 E [d].

Note that we have the measurement

k k

f (el + C2 + e3) E wje 'C 1 +A -tZ E 'wje r I irp2 CeLrt3

j=1 j=1

It is straightforward to verify that F has a rank-k tensor factorization F V 0 Y 0

(VdD,,), where the factor V E Rdxk is given by:

i~j(1) i~L(k)
e/1 ... e w/1

- r (1) . (k)

Vd= (5.8)

*r .(1I) i il(k)
ez d e d

i~pU)Under the distribution assumption of the point sources, the entries e n are i.i.d.

and uniformly distributed over the unit circle on the complex plane. Therefore almost

surely the factor Vd has full column rank, and thus the tensor decomposition is unique.

Moreover here Wj's are real and each element of Vs has unit norm, we have a rescaling

constraint with the tensor decomposition, with which we can uniquely obtain the

factor Vs and the weights in D,,. By taking element-wise log of Vs we can read off the

parameters of the point sources from Vs directly. Moreover, with high probability, we

have that cond 2 (V) concentrates around 1, thus the simple algorithm achieves stable

recovery.
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Algorithm 14: General algorithm

Input: R, m, noisy measurement function f(-).

Output: Estimates {i, () j E [k]}.

1. Take measurements:

Let S = {s),... , s(')} be m i.i.d. samples from the Gaussian distribution
K(O, R 2 IdXd). Set s(m+n) = e_ for all n E [d] and s(Tn+n+l) = 0. Denote
M' = m + d + 1.

Take another random samples v from the unit sphere, and set 0) - v and
= 2v. Construct a tensor F c Cn''x3 ,n2,n = f(s) s=8(nj)+.(n2)+V(n3)'

2. Tensor Decomposition: Set (Vs', D,) = TensorDecomp(F).

For j = 1,... , k, set [Vs']j [ VS']j/[VS']m',j

3. Read of estimates: For j= 1,... , k, set (i) = Rea1(log([Vs][m+1:m+dj])ilr).

4. Set W = argminweCk 1F - Vs' 0 Vs' 0 VdDwIIF-

5.2.2 Our Algorithm

We briefly describe the steps of Algorithm 14 below:

(Take measurements) Given positive numbers m and R, randomly draw a sam-

pling set S = {s(), ... s(M)} of m i.i.d. samples of the Gaussian distribution

.A(0, R2 Idxd). Form the set S' = S U {s(m+1) = el,... , (m+d) = ed, (m+d+1) .

0} c Rd. Denote m' = m + d + 1. Take another independent random sample v

from the unit sphere, and define 0) = V, V(2) = 2v. Construct the 3rd order tensor

P E m'x'x3 with noise corrupted measurements f(s) evaluated at the points in

S' D S' E {v( 1 ), v(2)}, arranged in the following way:

Fnir 2 ,n3 = f(s)j + + Vn1 , 2 E [m'], 713 E [2]. (5.9)
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(Tensor decomposition) Define the characteristic matrix VS to be:

e x<p (k) "S(1)>

. i. e

and define matrix V' E C'In'xk to be

vs' = V1

where Vd E CdXk is defined in (5.8). Define

V2 1

... ei1<tI(k),(1)>

e i.r<t'()'t (2)>

Note that in the exact case (Ec = 0) the tensor F constructed in (5.9) admits a

rank-k decomposition:

F =Vs, 0 Vs, 0 (V2Dw), (5.12)

Assume that Vs' has full column rank, then this tensor decomposition is unique up

to column permutation and rescaling with very high probability over the randomness

of the random unit vector v. Since each element of Vs' has unit norm, and we know

that the last row of Vs' and the last row of V2 are all ones, there exists a proper

scaling so that we can uniquely recover wj's and columns of Vs, up to common

permutation.

Here we adopt Jennrich's algorithm (see Algorithm 15) for tensor decomposition.

Other algorithms, for example tensor power method ([8]) and recursive projection
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Algorithm 15: TensorDecomp

Input: Tensor ? E Cmxmx3, rank k.

output: Factor V E Cmxk.

1. Compute the truncated SVD of F(I, I, ei) = P pT with the k leading singular
values.

2. Set E = F(P, P, I). Set E1 = E(I, I, el) and E2 = E(I, I, e 2).

3. Let the columns of U be the eigenvectors of E1E2- corresponding to the k
cigenvalues with the largest absolute value.

4. Set V = V/MPU.

([1221), which are possibly more stable than Jennrich's algorithm, can also be applied

here.

(Read off estimates) Let log(V) denote the element-wise logarithm of Vd. The

estimates of the point sources are given by:

[(1) (2) -k 109g(Vd)

Ur

Remark 5.2. In the toy example, the simple algorithm corresponds to using the

sampling set S' = {e1,... , ed}. The conventional univariate matrix pencil method

corresponds to using the sampling set S' = {0, 1,.. . , m} and the set of measurements

S' D S' E S' corresponds to the grid [m] 3 .

5.2.3 Performance Guarantees

In this section, we discuss how to pick the two parameters ?n and R and prove that the

proposed algorithm indeed achieves stable recovery in the presence of measurement

noise.

Theorem 5.3 (Stable recovery). There exists a universal constant C such that the

following holds.
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Fix ex, 6,6" E ,

pick m such that m> max { k 8log +, d

for d = 1, pick R > ;2og(1 2/Ec); ford 2, pickR> 2log(k/e.)
- rA 7rA

Assume the bounded measurement noise model as in (5.3) and that e' < n1-2 2.

With probability at least (1 - 6,) over the random sampling of S, and with prob-

ability at least (1 - 6.,) over the random projections in Algorithm 15, the proposed

Algorithm 14 returns- an estimation of the point source signal -(t) = -_ iWj6j(j)

with accuracy:

ma (1dk 5 + 2ex 2.5

mm m { A- 112 j E [k] C A6 W2  - 2ex

where the min is over permutations w on [k]. Moreover, the proposed algorithm has

time complexity in the order of O((m')3 ).

The next lemma shows that essentially, with overwhelming probability, all the

frequencies taken concentrate within the hyper-cube with cutoff frequency R' on each

coordinate, where R' is comparable to R,

Lemma 5.1 (The cutoff frequency). For d > 1, with high probability, all of the 2(m') 2

sampling frequencies in S' (D S' ( {v( 1), v(2)} satisfy that ||sU") + s(j2) + v(j3)IO <

R', Vi, j 2 E [Mi], j3 E [2], where the per-coordinate cutoff frequency is given by

R' = O(R Vlog nd).

For d = 1 case, the cutoff frequency R' can be made to be in the order of R'

0(1/A).

Remark 5.4 (Failure probability). Overall, the failure probability consists of two

pieces: 6, for random projection of v, and 6. for random sampling to ensure the

bounded condition number of Vs. This may be boosed to arbitrarily high probability

through repetition.

5.2.4 Key Lemmas

Stability of tensor decomposition: In this paragraph, we give a brief description
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and the stability guarantee of the well-known Jennrich's algorithm ([55, 77]) for low

rank 3rd order tensor decomposition. We only state it for the symmetric tensors as

appeared in the proposed algorithm.

Consider a tensor F = V & V 0 (V2D.) E Cmxmx 3 where the factor V has

full column rank k. Then the decomposition is unique up to column permutation

and rescaling, and Algorithm 15 finds the factors efficiently. Moreover, the eigen-

decomposition is stable if the factor V is well-conditioned and the eigenvalues of

FaFl are well separated.

Lemma 5.2 (Stability of Jennrich's algorithm). Consider the 3rd order tensor F

V 0 V & ( 2Dw) E Cmxmx3 of rank k < m, constructed as in Step 1 in Algorithm 1.

Given a tensor F that is element-wise close to F, namely for all n 1, n2 , n3 E [m],

, - Frt1 ,n2 ,n3 l < Ez , and assume that the noise is small e.z < KWn

Use F as the input to Algorithm 15. With probability at least (1- 6,) over the random

projections 0) and V(2), we can bound the distance between columns of the output V

and that of V by:

min max j - [k)]2 CJE [k) 2 ax (5.13)
7r E min

where C is a universal constant.

Condition number of Vs,: The following lemma is helpful:

Lemma 5.3. Let Vs, E C(m++1)xk be the factor as defined in (5.11). Recall that

Vs' = [Vs; Vd; 11, where Vd is defined in (5.8), and Vs is the characteristic matrix

defined in (5.10).

We can bound the condition number of Vs, by

cond2 (Vs') 1 + y kcond2 (Vs). (5.14)

Condition number of the characteristic matrix Vs: Therefore, the stability

analysis of the proposed algorithm boils down to understanding the relation between
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the random sampling set S and the condition number of the characteristic matrix Vs.

This is analyzed in Lemma 5.5 (main technical lemma).

Lemma 5.4. For any fixed numberex E (0, 1/2). Consider a Gaussian vector s with

distribution .A(0, R 2Idxd), where R> 2 log(k/c3 .) ford> 2, andR for

d 1. Define the Hermitian random matrix X, E C, to be

-%7r<jtl I~ ),>

XS = e iCr"p'(1) , e iC"<'A .. . e i k . (5.15)

We can bound the spectrum of Es[XS by:

(1 - ex)Ixk - E[Xs] d (1 + Ex)Ikxk. (5.16)

Lemma 5.5 (Main technical lemma). In the same setting of Lemma 5.4, Let S =

{s(),. .. , s(0)} berm independent samples of the Gaussian vector s. Form> k 8log ,

with probability at least 1 -6, over the random sampling, the condition number of the

factor Vs is bounded by:

1 + 2e~
cond2 (Vs) <; 1 .2e (5.17)

1 - 2cx

5.3 Discussions

5.3.1 Numerical results

We empirically demonstrate the performance of the proposed super-resolution algo-

rithm in this section.

First, we look at a simple instance with dimension d = 2 and the minimal separa-

tion A = 0.05. Our perturbation analysis of the stability result limits to small noise,

i.e. e is inverse polynomially small in the dimensions, and the number of measure-
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Inents /u needs to be polynoiially large in the dimensions. However. we believe these

are only the artifact of the crude analysis, instead of being Intrinsic to the approach.

III the following numerical example, we examiine a typical instance of 8 ral.lomlly

gorerated 2-D point sources. The minimal separation A is set to be 0.01, and the

weights are uniformly distribiited in [0.1, 1.1] The measurement noise level F- is set to

be 0.1, and we take only 2178 noisy measurenients (< .1/A). Figure 5-1 shows the

recovery result. The xy plane shows the coordinates of the poit sources: true point

sources (cyan), the two closest points (blue), and the estimated points (red); the z

axis shows the corresponding mixing weights.

1.5

05

0 L
0

1 -1

Figure 5-1: Simulation result for 2-D slip(r-rsoltition

Next, we examine the ph1s1 transition propertics Implied by the main theorem.

Figure 5-2 shows the dependency between the cutoff frequency and the mininal

separation. For each fixed pair of the ninimal separation and the cutoff frequency

(A, R), we randomly generate k = 8 point sources in 4-dimensional space while

maintaining the same minimal separation. The weights are uniformly distributed in

[0.1, 1.11. The recovery is considered successful if the error Z1 [k f -- A 2i K
0.1 (on average it tolerates around 4% error per coordinate per point source). This

process is repeated 50 times and the rate of success was recorded. Figure 5-2 plots

the success rate in gray-scale, where 0 is black and 1 is white.

We observe that there is a sharp phase transition characterized by a linear relation

between the cutoff frequency and the inverse of minimal separation, which is implied

by Theorem 5.3.
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Figure 5-2: Cutoff frequency versus the required minimal separation

In a similar setup, we examine the success rate while varying the ninimal sepa-

ration A and the number of niecasurement in.

Fix dimension (I = 4 number of point sources k = 8, and the measurement noise

level F- = 0.03. We vary the minimal separation such that A ranges from 0.01 to 0.2,

and we use the corresponding cutoff frequency R = 02 . We also vary the number of

measurements m front 4 to 641. Hor each pair of (A, im) we randomnly generate k point

sources and run the proposed algoritiln to recover the point sources. The recovery

is considered successful if the error J[k - pH < 0.1. This process is

repeated 50 times and the rate of success was recorded.

In Figure 5-3, we observe that there is a threshold of m. below which the number of

measurements is too small to achieve stable recovery; when 'in is above the threshold,

the success rate increases with the lniumber of ineasurements as the algorithm becomes

more stable. However, note that given the approprilately chosen cutoff frequency R,

the number of measurenments required does not depend on the minimal separation,

and thus the computation complexity does not depend on the mininial separation

nmcither.
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Figure 5-3: N umber of moasurements versrs the required mininmal separation

5.3.2 Connection with learning GMMs

One reason we are interested in the scaling of the algorithm with respect to the

dimension d is that it naturally leads to an algorithm for learning Gaussian rmixture

models (GM Ms).

Recall the problem of learning GMMs: given a number of N i.i.d. samples coni-

ing fron a randol onli1 out of A Gaussian distributions in d dimensional space, the

learning problem asks to estimate the means and the covariance matrices of these

Gaussian components, as well as the mixing weights. We denote the para.illeters by

{(iw, pu). E-j)};ej where the mean vectors p1 ) E L-1,+1]1, the covariance matrices

E E R' and the ixing weights ic E R+.

In this brief discussion, we only consider the case where the components are spher-

ical Gaussians with conmmon covariance matrices, namely E ) =d-, j for all j.

Moreover, we define the separation A by:

miny1 I|,) - pj'||2

and we will focus oii the well-separated case where /A is sufficiently large. This class

of well-separated GMMs is often used in data clustering.

By the law of large niuminbers, for large d, the probability mass of a (-dimliensiollal
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Gaussian distribution tightly concentrates within a thin shell with a VdH distance

from the mean vector. This concentration of distance leads to a line of works of

provably learning GMMs in the well-separated case, started by the seminal work of

Dasgupta[37] (spherical and identical E, AG > Q(d 1 /2 ), complexity poly(d, k)) and

followed by works of Dasgupta & Schulman [39] (spherical and identical ., d > log(k),

AG Q(d'/"), complexity poly(d, k)), Arora & Kannan [103] (general and identical

E, A G  Q(d1 /4 ) complexity O(kd)).

Instead of relying on the concentration of distance and use distance based cluster-

ing to learn the GMM, we observe that in the well-separated case the characteristic

function of the GMM has nice properties, and one can exploit the concentration of

the characteristic function to learn the parameters. Note that we do not impose any

other assumption on the dimensions k and d.

Next, we sketch the basic idea of applying the proposed super-resolution algorithm

to learn well-separated GMMs, guaranteeing that N the required number of samples

from the GMM, as well as the computation complexity both are in the order of

poly(d, k). Since o is a bounded scalar parameter, we can simply apply grid-search

to find the best match. In the following we assume that the o is given and focus on

learning the mean vectors and the mixing weights.

Evaluate the characteristic function of a d dimensional Gaussian mixture X, with

identical and spherical covariance matrix E = U2Idxd, at s C ]Rd:

qOx(s) = ]E[ei 2S> 2

jE[k]

Also we let Ox(s) denote the empirical characteristic function evaluated at s based

on N i.i.d. samples {x, ... XN} drawn from this GMM:

OX(s) = e

IE[N]

Note that Iei<XL's>I = 1 for all samples, thus we can apply Bernstein concentration

inequality to the characteristic function and argue that Ix(s) - #x(s)v <; O(g) for
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all s.

In order to apply the proposed super-resolution algorithm, define

f(s) = ela72 Is Ox(7rs) = wje"< ,>, and f(s) = e2,2

jE[k]

In the context of learning GMM, taking measurements of f(s) corresponding to eval-

uating the empirical characteristic function at different s, for |Is II R, where R is

the cutoff frequency. Note that this implies 1s1 81 < dR2 . Therefore, we have that

with high probability the noise level E; can be bounded by

dR 2\
ez = max If(s) - f(s)= 0I.

=|IsI|co<;R

In order to achieve stable recovery of the mean vector (i) 's using the proposed algo-

rithm, on one hand, we need the cutoff frequency R = Q(1/o-Aa); on the other hand,

we need the noise level E, = o(1). It suffices to require o.2dR2 = o(1), namely having

large enough separation AG > Q(di/ 2 ). In summary, when the separation condition is

satisfied, to achieve target accuracy in estimating the parameters, we need the noise

level c2 to be upper bounded by some inverse polynomial in the dimensions, and this

is equivalent to requiring the number of samples from the GMM to be lower bounded

by poly(k, d).

Although this algorithm does not outperform the scaling result in Dasgupta[37],

it still sheds light on a different approach of learning GMMs. We leave it as future

work to apply super-resolution algorithms to learn more general cases of GMMs or

even learning mixtures of log-concave densities.

5.3.3 Open problems

In a recent work, Chen & Chi [35] showed that via structured matrix completion,

the sample complexity for stable recovery can be reduced to O(k log4 d). However,

the computation complexity is still in the order of O(kd) as the Hankel matrix is
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of dimension 0(k) and a semidefinite program is used to complete the matrix. It

remains an open problem to reduce the sample complexity of our algorithm from

0(k 2 ) to the information theoretical bound O(k), while retaining the polynomial

scaling of the computation complexity.

Recently, Schiebinger et al [104] studied the problem of learning a mixture of

shifted and re-scaled point spread functions f(s) = E wy(s, p(j)). This model has

the Gaussian mixture as a special case, with the point spread function being Gaussian

point spread p(s, pu(i)) = -). We have discussed the connection

between super-resolution and learning GMM. Another interesting open problem is

to generalize the proposed algorithm to learn mixture of broader classes of nonlinear

functions.

5.4 Proofs for Chapter 5

Proof. (of Theorem 5.3) The algorithm is correct if the tensor decomposition in Step

2 is unique, and achieves stable recovery if the tensor decomposition is stable. By the

stability Lemma of tensor decomposition (Lemma 5.2), this is guaranteed if we can

bound the condition number of Vs,. It follows from Lemma 5.3 that the condition

number of V, is at most 1 + vk times of cond2 (Vs). By the main technical lemma

(Lemma 5.5) we know that with the random sampling set S of size m, the condition

number cond2 (Vs) is upper bounded by a constant. Thus we can bound the distance

between Vs, and the estimation VS, according to (5.13).

Since we adopt Jennrich's algorithm for the low rank tensor decomposition, the

overall computation complexity is roughly the complexity of SVD of a matrix of size

m' xm', namely in the order of 0((m') 3).

Proof. For d > 1 case, with straightforward union bound over the m' = O(k2 ) samples

each of which has d coordinates, one can show that the cutoff frequency is in the order

of R log(kd), where R is in the order of A as shown in Theorem 5.3.

For d = 1 case, we bound the cutoff frequency with slightly more careful analysis.

Instead of Gaussian random samples, consider uniform samples from the interval
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[-R', R']. We can modify the proof of Lemma 5.4 and show that if R' > 1/(A(1+c)):

1 

| f rz/-1j)S sin(7I,,U ) -YW )R')
>IY,.i I = 2R JE'R = irlpt') - j)R

- (lirAR') - 1 - sin(7rAR')/(7rAR') -

where the second last inequality uses the inequality that sin(a b) < sin(a)sia+b - a b

Proof. (of Lemma 5.2) The proof is mostly based on the arguments in [89, 9], we still

show the clean arguments here for our case.

We first introduce some notations for the exact case. Define Di = diag([V21 ,:Dw)

and D2 = diag([V2 2 ,:D). Recall that the symmetric matrix F = F(I, I, ei) =

VD1 VT. Consider its SVD F1 = PAPT. Denote U = PTV E Cx'. Define the

whitened rank-k tensor,

E = F(P, P, I) = (PTV) 0 (PTV) D (V2 Dw) = U o U o (V2Dw) E CAkxkx3.

Denote the two slices of the tensor E by E1 = E(I, I, el) = UD1 UT and E2 =

E(I, I, e2 ) = UD 2 UT. Define M = E1E 1 , and its eigen decomposition is given by

M = UDU- 1, where D = D1 D2 1 . Note that in the exact case, D is given by:

D = diag(e ix <)V()V( 2 )> : j E [k])

Note that IDjjl = 1 for all j. Define the minimal separation of the diagonal entries

in D to be:

sep(D) = min{min Djj - Dji}

1. We first apply perturbation bounds to show that the noise in F propagates the

estimates P and E in a mild way when the condition number of V is bounded by a

constant.
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Proof. Apply Wedin's matrix perturbation bound, we have:

1JjI - F 1 11 2
|p - P||2 <)

< Ez yfi

-Wmninom?-in (V)2

And then for the two slices of E = F(P, P, I), namely Ej = Ej + Zi for i =1, 2, we

can bound the distance between estimates and the exact case, namely Z, = PTiP, -

PTFiP, by:

IZi || < 8||FIIl||P|lliP - P| +4|PII 2 |IFi - Fiji K 16 ""(cond2 (V) /

2. Then, recall that M =E 1 = UDU- 1 . Note that

M = (E1 + Z1 )(E2 + Z2 )' = E1Eg1 (I - Z2(I + E2 Z2) 1 E 1) + Z1E2-

Let H and G denote the perturbation matrices:

H = -Z 2(I + Eg1 Z2 ) Egp, G = Z1 E2 -

In the following claim, we show that given M = E1E2= M(I + H) + G for sone

small perturbation matrix H and G, if the perturbation |IHII and uIGIH are small

enough and that sep(D) is large enough, the eigen decomposition M = UDU- 1 is

close to that of M.

Claim 5.1. If |IMH+ Gil < 2 0e,() then the eigenvalues of M are distinct and

we can bound the columns of U and U by:

min max I j - U,(j) 11 2 < 3  ax(H)0-max(D) + -max(G) ujl1211 112.
Pr o o-dct in(U)sep(D)

Proof. Let Aj and Uj for J' E [k] denote the cigenvalue and corresponding eigenvectors
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of M. If |IMH + GI sep(D) we can bound
2v'k-cond2 (U)'

|IM - M|| = ||U (M + (MH + G))U - D1I =| |U 1(MH + G)UI| < sep(D)/2/K,

thus apply Gershgorin's disk theorem, we have IAj - Aj| II[U-1(MH + G)U]jj|1

VkI[U-(MH+G)U]j| 2 < sep(D)/2. Therefore, the eigenvalues are distinct and we

have

1IA - |j'I > |jA - Ayj - IAj - \v> Jj - A| > -sep(D). (5.18)

Note that {Ujg} and {UJ} define two sets of basis vectors, thus we can write

Uj = E, cjUy (with the correct permutation for columns of Uj and Uj) for some

coefficients Ej, c), = 1. Apply first order Taylor expansion of eigenvector definition

we have:

AIU3 = MU = (M + (MH + G)) 1 ciUpt = A bcj Uj + (MH + G)U3 .
3,/ 3,I

Since we also have AUj = E, AcyUji, we can write Ej,(Aj - Ay)cyUy= (MH +

G)Uj, and we can solve for the coefficients cj's from the linear system as [(A -A)cy

3' C [k]] = U-1(MH + G)U. Finally plug in the inequality in (5.18) we have that for

any j:

2 UC2- U11| 'j c ,,112+ (Cj -1)211Uj 112

II~j U I 2 2 ,|2|

<8|U ( M H + G)U-||
< 8 sep(D)2

(O-max(D)omax(H) + -max(G))2 ^jj 11211V

c-min (U) 2sep(D)2
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3. Note that in the above bound for IUj - Ujjj, we can bound the perturbation

matrices H and G by:

< 1IZ2 ||
Ornin(E 2 ) - 11Z211

|IZ2 ||
(1 - O-max(E2 Z2 ))Ornin(E 2 )

Q-max (Z1 )
Umin(E2 )

Note that o-.rin(D2) > wm7, and Oiax(D) = 1 by definition. In the following claim, we

apply anti-concentration bound to show that with high probability sep(D) is large.

Claim 5.2. For any &n E (0, 1), with probability at least 1 -6V, we can bound sep(D)

by:

sep(D) > A.
v/"k2*

Proof. Denote v = V(1) - (2) and note that |lvii < V2. In the regime we concern,

for any pair j # j', we have le*"<'> - e iI' <>- I < A - vf'), > 1. Apply

Lemma 5.8, we have that for 6 E (0, 1),

111t Uj) 11 j ) <' ) 6.

Take a union bound over all pairs of j # j', we have that

P (for somej i ', 1< p(j) - A '), V >1 6 -J
- k 2

Recall that A = minji ||p) - pw( ').

4. Recall that U = PTV. Note that since P has orthonormal columns, we have

alnin(U) = -mijn(V) and |IUil| I11.1 = v/n'.

Finally we apply perturbation bound to the estimates K = PUj and conclude
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with the above inequalities:

||Vi - Vi|l 2(||P - P11 IUi + IIPII l - ill)

< 2 i V )
- Wmin-min (V )2

+ 3 "max(Homax(D)+ Omax(G)

+rnin(U)sep(D)

< 2 EzVM + 6 |Z2||||Vi||

~ 2(Win-in (V+)2 (Ui (V) 2Urnin(D2 ) - liZ2 |l)oTmin (V)sep(D) W

C( vdk2m Wmacond2(V)
2

AS ,2 W, min(V)3 z,

for some universal constant C. Note that the last inequality used the assumption

that c2 is small enough. El

Proof. (of Lemma 5.3) By definition, there exist some constants A and A' such that

cond 2 (Vs) = A'/A, and for all w E p72, we have A < llVswll < A'. Note that each

element of the factor Vs, lies on the unit circle in the complex plane, then we have:

A2 < WeV <wldh d IIVSWan b<n t d()2 + Vbyd.

We can bound the condition number of VS, by:

cond2 (Vs') (A') 2 + vid 
A2 = 1 + cond 2(Vs) <- \1 + V7cond2(Vs),

where the last inequality is because that max l|VswI12 > |IVsei112 = d, we have

(A') 2 > d.

El1

Proof. (of Lemma 5.4) Denote Y = E,[X,]. Note that Y = 1 for all diagonal

entries. For d = 1 case, the point sources all lie on the interval [-1, 1], we can bound
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the summation of the off diagonal entries in the matrix Y by:

>E I , = E., [e <P(')-P'J)S>]
j,#j

j,#j

K 2(e_ 7R) 2 + e (7(2 )R) 2  / )2

< 2e- 2  -2 /(R)
2 )

For d > 2 case, we simply bound each off-diagonal entries by:

Y =e_ 2 _ 2 <na xk

Apply Lemma 5.7 (Gershgorin's Disk Theorem) and we know that all the eigenvalues

of Y are bounded by 1 E.

Proof. (of Lemma 5.5) Let {X(1),... , X(I)} denote the i.i.d. samples of the random

matrix X, defined in (5.15), with s evaluated at the i.i.d. random samples in S. Note

that we have

SW||2 = IjjVs*Vs = (M N w

By definition of condition number, to show that cond2 (Vs) < ,it suffices to

show that

(1 - 2cx)Ikxk - X(i) (1 + 2 ex)Ikxk.

By Lemma 5.4, the spectrum of E,[X,] lies in (1 - Ex, 1 + Ex). Here we only need

to show that the spectrum of the sample mean ( 1 , X()) is close to the spectrum

of the expectation E,[X,]. Since each element of the random matrix X, E Cxk lies

on the unit circle in the complex plane, we have X2 
< k2I almost surely. Therefore

we can apply Lemma 5.6 (Matrix Hoeffding) to show that for m > 8log , with
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probability at least 1 - J,, it holds that I I X(E - Es[Xs] 112 < Ex. l

Auxiliary lemmas

Lemma 5.6 (Matrix Hoeffding). Consider a set {X('),.. ,X(m)} of independent,

random, Hermitian matrices of dimension k x k, with identical distribution X. As-

sume that IE[X] is finite, and X 2 _ Or2 I for some positive constant a- almost surely,

then, for all E > 0,

Pr ( X(') - E[X] 2 E <kei .
i=1 2

Lemma 5.7 (Gershgorin's Disk Theorem). The eigenvalues of a matrix Y E Ckxk

are all contained in the following union of disks in the complex plane: U 1D(Yj, Rj),

where disk D(a, b) = {x E Ck : lx - all < b} and Rj = E |YjjI|.

Lemma 5.8 (Vector Random Projection). Let a G R' be a random vector distributed

uniformly over 'Pm , and fix a vector v E Cm. For 6 E (0,1), we have:

Pr |<a,v>l<< 6

Proof. This follows the argument of Lemma 2.2 from Dasgupta & Gupta [38]. Ex-

tension to complex number is straightforward as we can bound the real part and the

imaginary part separately. El
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