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ABSTRACT

The field of systems engineering upholds that fundamental engineering principles exist and
are applicable across different domains and contexts. In this thesis, a state-of-the art decision and
design evaluation method developed for aerospace systems, Multi-Attribute Tradespace
Exploration (MATE) is complemented with Design of Experiments (DoE) and applied for the first
time to a bioprocess design problem. The implementation of DoE was necessary due to the high
complexity of bioprocess systems, where a design variable (or a reasonably small number of design
variables) cannot be easily identified to explain a given attribute of the product or process. DoE
not only allows the identification of design variables that most influence a given attribute, but also
allows the development of Single-Utility-Functions facilitating the incorporation of the Multi-
Utility component of the MATE method.

The proposed new MATE-DoE method was implemented in two case studies to assess its
applicability; namely bio-production of DHA and bio-production of a lipase enzyme. Based on
published DoE experimental results, utility functions and cost estimations were carried out to
develop a Tradespace. The resulting Tradespace demonstrates: (a) the possible implementation of
the proposed method, (b) that the use of Tradespace complements the traditional bioprocess
development practice by allowing decision makers to choose an architecture that optimizes for
more than one objective (multi-objective), (c) that the proposed method takes into consideration
the complex decision making process of customers (multi-attribute), and (d) that simultaneous
comparison analysis to competitors and market standards are possible using the method.

While the method was proven to be applicable, it is relatively complex and the number of
experiments and market data required might prevent its broad implementation. Also, potential
errors and misleading results might result from inaccurate input data. Special attention and effort
need to be put in accurate Single-Utility Function (SUF) weight designation to avoid this problem.
The importance of assessing the complete bioprocess, as opposed to individual unit operations, is
highlighted. Finally, further studies to develop “rules of thumb” in order to simplify the proposed
MATE-DoE method is suggested.

Thesis Supervisor: Andrey Zarur
Title: Senior Lecturer, Martin Trust Center for MIT Entrepreneurship, Sloan School of
Management
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1. INTRODUCTION

1.1. PROBLEM AND MOTIVATION

Industrial biotechnology encompasses the application of biotechnology-based tools to
traditional industrial processes (“bioprocessing™) and the manufacturing of bio-based products
(such as fuels, chemicals and plastics) from renewable feedstock (Erickson, Nelson, & Winters,
2012). The development of technologies and disciplines, such as second generation genome
sequencing, synthetic biology and fermentation process engineering has opened the door for the
development of new biochemical platforms. Process optimization is crucial for platforms based on
fermentation technologies. This is especially true for biotech startups focused on the development
of more sustainable, environmentally-friendly and cost-efficient commodity chemicals. However,
traditionally bioprocess optimization is highly focused on increasing productivity, while cost
analysis studies are often times performed later in the 'PDP (Product/Process Development
Process). In other words, it is a lineal process were production parameters are first defined and
then a cost estimation for the established parameter is performed. This lineal process misses the
opportunity of operating cost optimization. For example increasing the agitation rate (RPM) in a
bioreactor can increase aeration, resulting in increase of yield (biomass), but it also increases power
consumption and therefore cost (Gill, Appleton, Baganz, & Lye, 2008). Thus, the question
remains, what is the choice of conditions that optimizes both, yield and cost? Furthermore, how
can other attributes such as purity and stability be accounted for at the same time yield is maximize
and cost minimized? The following thesis proposes the use of Tradespace Analysis study as a
dynamic and visual tool that can support the decision of what the best production parameters are
that optimize overall performance and process cost simultaneously. Furthermore, the use of such
tool can help close the gap between engineering and management by articulating clearly the
magnitude of realized savings in the optimization of a given process and justify investment in
process development.

The present thesis explores the applicability of Tradespace Analysis by developing a
conceptual Tradespace process for the production of biocompounds. In order to partially illustrate
how the suggested Tradespace process could be applied, two case studies were analyzed, namely
the production of 1) a bacterial lipase enzyme and 2) an algal DHA. In the following subsections
the context in which this two biocompound are used, their economic importance, as well as a

general overview of bioprocess, fermentation and PDP in biochemical engineering is presented.

10



Finally, the applicability of Tradespace Analysis in assisting the PDP process and how it differs

from other bioprocess modelling tools is discussed.

1.2. INDUSTRIAL BIOTECHNOLOGY

Industrial biotechnology (also known as white biotechnology or green chemistry) refers to
the use of living systems, organisms or components of cells, such as enzymes, to develop and make
products in sectors such as chemical, food and feed, detergent, pulp and paper, textile and
bioenergy (such as biofuel and biogas). It is often referred to as the third wave of biotechnology
(The Economist , 2009). The first wave refers to biotech products in medicine; second wave refers
to agricultural biotechnology. Industrial biotechnology is one of the most promising approaches to
pollution prevention, resource conservation and lowering greenhouse gas emissions. By using
renewable raw materials bioprocesses are cleaner, more sustainable and contribute to moving away
from petrochemical-based economy to a biobased economy. “It offers businesses a way to reduce
cost and create new markets while protecting the environment. Also, since many of its products
do not require the lengthy review times that drug products must undergo, it’s quicker, easier
pathway to the market. Today, new industrial processes can be taken from the lab to the
commercial application in two to five years, compared to up to a decade for drugs™ (Simpson,
2005).

1.3. INDUSTRIAL BIOTECHNOLOGY IN FOOD AND FEED

The use of biological processes in food production existed long before the discovery of
microorganisms. It was perhaps the very first application of biotehcnology. The oldest biological
process in food production is the conversion of sugar to alcohol by yeasts to produce beer— a
fermentation process carried out as early as 7000 BC on small and individual scale by Chinese
villagers (McGovern, Zhang, & J.G, 2004). However, the process of fermentation was not fully
understood until it was described much later, by Louis Pasteur in 1857, who concluded that
fermentation was a living process of yeasts (Demain, 2010).

Humans have leveraged fermentation processes and used microorganisms such as yeast and
bacteria for the production and preparation of foods for thousands of years. Amongst the traditional
products produced through fermentation are bread, wine, beer, yogurt, cheese, sausage, soy sauce,

vinegar, amongst others. With the advent of molecular biology, microorganisms are today being
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genetically engineered and used as cell factories to produce a great variety of metabolites and

enzymes that are used as food, drink or food additives (Table 1) (Rahman, 2016).

Table 1 — Food and food ingredients produced by microorganisms in fermentation industries.
Source: Adapted from (Rahman, 2016)

HHC ____oducthpe . . . . . .
' Bioma's . Starter culture - Cultumd buttemulk cultured sour Lac.rococcus lactis or Strepmcoceru
cream cremoris and Leuconostoc citrovorum
or Leuconostoc dextranicum (mixed)
Bulga.rian milk Lactobacillus bulgaricus
Ac1d0ph1]us milk Lactobacillus acidophilus
Yogurt Streptococcus thermophiles .
Lactobacillus bulgaricus
: Baker’s yeast Saccharomyces cervisiae
Probiotics Fermented milk, yogurt, cheese, Lactobacillus casei Shirota
i dried powder, captuse i Lactobacillus johnsonii
Lactobacillus casei
Bifidobacterium animalis
Lactobacillus acidophilus NCFM
Streptococcus thermophilus,
Streptococcus thermophilus,
Enterococcus faecium
anary Alcoholic beverage | Beer, wine Saccharomyces cervisiae
. metabolite
: Preservative/ Lactic acid Lactococcus lactis
i acidulants !
_ Intermediate Nutritional L-tryptophan, L-phenylalanine, L- = Corynebacterium gh;tamicum
~ metabolite supplements/ tyrosine, L-threonine, L-isoleucine, = Lactic acid bacteria
. neutraceutical L-histidin_e, vitamins . Bacillus subtillis
" Flavor  enhancer/ Isoprenoids, Saccharomyces cervisieae
aroma compound diacetyl, Lactic acid bacteria
- acetaldehyde
i Sweetener nyitol L-alanine, = Mannitol, = Saccharomyces cervisieae
Sorbitol Lactic acid bacteria
Preservatwes/ | Citric acid, acetic acid lactic acid, = Lactic acid bacteria
. acidulants succinic acid, pyruvate Escherichia coli
Secondary Functional  food/ = Resveratol (flavonoid) - Saccharomyces cervisiae
metabolites (non- = neutraceuticals . o Escherichia coli
antibiotic) o - .
Food coloration Carotenoids Saccharomyces cervisiae
Escherichia coli
Prebiotics Exopolysaccharides Lactic acid bacteria
Secondary Preservatives Bacteriocins Bacillus subtillis
metabolite
(antibiotic)
Enzymes Lipases, _ :_Used in several food production
' Amylase, processes, See table 2.
Galactosidase
Etc.
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From the list above, production of enzymes for food processing are of special interest, as
they are used to improve a great variety of food manufacturing processes (Table 2). They can
improve texture, appearance, nutritional value and may generate desirable flavors and aromas.
Because they are used in such a wide variety of food and beverage production processes, the
food enzymes market is expected to reach US$ 2.7 billion by 2020, with a CAGR of 8.1% from
2015-2020 (Mordor Intelligence, 2015).

Table 2 — Enzymes used in food and beverage industry and their application.

Source: (Amore & Faraco, 2016)

Industry Enzyme Application

Starch Amylase Starch liquefaction and saccharification
Amyloglucosidase Saccharification
Pullulanase Saccharification
Glucose isomerase Glucose to fructose conversion
Cyclodextrin-glycosyltransferase Cyclodextrin production
Xylanase Viscosity reduction (starch)

Food {including dairy) Protease Milk clotting, infant formulas {low allergenic), flavour
Lipase Cheese flavour
Lactase Lactose removal (milk)
Pectin methyl esterase Firming fruit-based products
Pectinase Fruit-based products
Transglutaminase Modify visco-elastic properties

Baking Amylase Bread softness and volume, flour adjustment
Xylanase Dough conditioning
Lipase Dough stability and conditioning {in situ emulsifier)
Phospholipase Dough stability and conditioning (in situ emulsifier)
Glucose oxidase Dough strengthening
Lipoxygenase Dough strengthening, bread whitening
Protease Biscuits, cookies

Beverage Pectinase De-pectinization, mashing
Amylase Juice treatment, low-calorie beer
B-glucanase Mashing
Acetolactate decarboxylase Maturation (beer) .

Laccase

Clarification (juice), flavour {beer), cork stop

Food enzymes are typically derived from animal, vegetable and microbial sources.
However, both animal and vegetable enzymes present difficulty in the extraction process and other
products of cellular metabolism can interfere with the enzymatic activity. Also, vegetable enzyme
production depends on external factors such as climate, soil and seed. Furthermore, animal
enzymes are limited by ethical parameters, shortage and concerns related to health and origin of
the animals and organs (Vermelho, Cardoso, Pires Nascimento, Pinheiro, & Rodriguez, 2016). In
contrast, microbial enzymes production proceeds independently of external factors, has a simple
extraction process and does not have shortage or animal health concerns. The main sources of
microbial enzymes are bacteria, fungi and yeast. These are grown under controlled conditions in

bioreactors. At the end of the process, the broth in the bioreactor contains enzymes, nutrients and
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the corresponding microorganism, from which the desired enzyme is extracted and purified (for
more details please refer to section 1.4). Moreover, with the advance of synthetic biology, new
enzymes, with new functions and improved production are being introduced into the food industry.
However, despite the many advantages of microbial enzymes, their overall production cost is high
relative to those of vegetal and animal enzymes origin. This can significantly limit their
introduction into the market.

Yet another group of microorganisms used as cell factories, as well as raw materials for
food and feed products, are microalgae. Even though the use of microalgae by humans date back
2000 years to the Chinese, who used Nostoc to survive during famine (Spolaore, Joannis-Cassan,
Duran, & Isambert, 2006), it was not until the 1940s that microalgae became more and more
important as live feeds in aquaculture (Hallmann, 2007). And while macroalgae (seaweed), have
an old tradition in the use of biomass for the production of phycocolloids like aga-agar, alginates
or carrageenan (Pulz & Gross, 2004), the use of microalgae in biotechnology is significantly more
recent. As a matter of fact, from virtually none in 1990, the total number of publications on algal
biotechnology leapt to 153 by June 2011; of these, 103 were on microalgal biofuel (Darvasula,
Darvasula V., & Rao, 2013). The market size of products from microalgae was estimated by Pultz
and Gross in 2004 to have a retail value of US$ 5-6.5 billion (Table 3). From which the biggest
segment were biomass for health food and production of docosahexanoic acid (DHA), US$1.25-
2.5 billion and US$1.5 billion, respectively.

Table 3 —Market estimation for microalgal products

dource: sdpredrant (Ll & Gross, 204)

| Product g ~ Product Retail value in 2004 (USD
_Biomass (Healthfood 12502500
| Functional food : 800

Feed additive - 30
L Aquacultre 700
- Coloring substances Astaxanthin L <150
! Phycocyanin >10
pAntioxidants . (BCaeene 0 7280 L
Antioxidant extract 100-150
. Fatty acids ARA _ 20
DHA 1,500

Poly-unsaturated fatty acid extracts 10

Microalgae (as well as other types of algae and cyanobacteria) are mainly cultivated by
two approaches: a) Open ponds or tanks and b) closed bioreactors (Figurel). The first relies on the

use of solar energy to produce biomass; thus a photosynthetic process. The second requires the
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input of nutrients (carbon and nitrogen sources), heat and in some cases oxygen; thus a
fermentation process. Bioreactors provide better control of growth parameters, prevent
contamination and allow higher volumetric productivities, at the expense of higher cost and energy
requirements than open pond (Harun, Singh, Forde, & Danquah, 2010). Since both systems have
benefits and limitations, the choice will depend on the final product, targeted market, biomass

productivity and metabolic requirements of the specific microalgae strain used.

Raceway ponds ;
Chen pc;(nds > Shallow ponds girr:t:::lds
/ or tanks Circular tanks
Cuitivation
5 Photo-
Cell factories sloisactois Tubular .
- Macro-algae Horizontal Carotenoids
- Micro-algae Reactors Vertical Biomass
- Diatoms Helical, etc. goiysacchandes .
- Cyanobacteria mega-3 fatty acids
Fermenters Heterotrophic
Mixotrophic

Figure 1 — Marine microorganism as cell factories.
Source: Adapted from (Freitas, Rodrigues, Rocha-Santos, Gomez, & Duarte, 2012)

“There are two main categories of food market products obtained from microalgae. The
first category is dried algae (in particular the micro-algae species Chlorella and Spirulina) with
high nutrient content, especially of vitamin B12, C and D2. These micro-algal products can be
directly sold as dietary supplements and have the potential to be used in bulk commodities as
sources of protein and carbohydrates. The second type is specialty products isolated and extracted
from the micro-algae that can be added to food and feed to improve their nutritional value. These
high-value compounds are pigments (e.g. astaxanthin), anti-oxidants (e.g. B-carotene), protein (e.g.
phycocyanin) and fatty acids (e.g. docosahexaenoic acid -DHA and eicosapentaenoic acid -EPA)”

(Vigani, et al., 2015).

In this thesis, two food products produced through fermentation were used as case studies
for the analysis of Tradespace as a decision making tool in bioprocesses design. Both products
belong to the fat and oil segment. However, the first one is used as part of the process to obtain

higher value fats, namely lipases, and the second is a high value fatty acid (DHA). In the following
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subsections, both lipase and DHA importance, market size and application in food industry are

introduced.

1.3.1. LIPASE

Lipases (triacylglycerol acylhydrolases EC: 3.1.1.3) are some of the most useful enzymes
for food processing (Jacger & Eggert, 2002). Lipases catalyze the hydrolysis (cleavage of chemical
bond by addition of water) and synthesis of lipids (Figure 2). Lipases are ubiquitous enzymes
found in animals, plants, fungi and bacteria. However, microbial lipases are commercially
significant as they are of low production cost, greater stability and wider availability than plant
and animal lipases (Aravindan, Anbumathi, & Viruthagiri, 2007). Also, microbial lipases are of
great biotechnological interest because these enzymes are: (1) stable in organic solvents, (2) do
not require cofactors, (3) have great substrate specificity, (4) act over wide range of pH and

temperature and (5) have a high enantioselectivity' (Andualema & Gessesse, 2012)

Ho 0 .
i 1 HO-C-0-R
H-C-0-C~R, o HO~CH
I 0 ; ' !
" Lipase HO-C-0-R 4 I-R)—?H
H“C}- 0 —g— R, +3H0 SOURRRM .~ H0—CH
i
}-!—C‘- 0 ‘C" R' HO“C‘*{}"R
= i 1

H
Figure 2 — Lipase catalyzed reaction.
A triglyceride can be hydrolyzed to form glycerol and fatty acids, or the
reverse (synthesis) reaction can combine glycerol and fatty acids to form the
triglyceride. Source: (Andualema & Gessesse, 2012)
In terms of market size, “the market for lipase is projected to reach $590.5 Million by 2020,
at a CAGR of 6.5% between 2015 and 2020. The global lipase market is expected to grow in the
near future, owing to factors such as increasing health awareness among people across the globe,

changing dietary habits and growing technological advances in the food and beverage industry”

(Markets and Markets, 2015). Lipases are considered to be the third largest commercial enzyme

' According to Merriam Webster Medical Dictionary:

Enantioselectivity: the degree to which one enantiomer of a chiral product is preferentially produced in a chemical
reaction.

Enantiomer: either of a pair of chemical compound whose molecular structure have a mirror-image relationship to
each other — called also optical antipode

Chiral:a) having a structure that is nonsuperimposable on its mirror image <chiral molecule> b)relating to or
composed of chiral molecules
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group based on total sales volume, after proteases and carbohydrases (Andualema & Gessesse,
2012).

Within the food and beverage industry, lipases can be used as additives or as biocatalysts
to manufacture food ingredients. As additives, lipases can hydrolyze fats into short-chained, esters
fatty acids and alcohols, which are known flavor and fragrance compounds. This is a common
practice in the dairy industry, where lipases are used to hydrolyze milk fat to enhance cheese flavor,
accelerate cheese ripening, in the manufacturing of cheese-like products and the lipolysis of
butterfat. The addition of lipases in these processes allows the release of short chain fatty acids
(primarily C4 and C6) leading to the development of a sharp, tangy flavor and the digestion of
medium chain ( C12, C14) fatty acids, which tend to confer a soapy taste to the product (Ferreira-
Dias, Sandoval, Plou, & Valero, 2013).

As biocatalysts, lipases are important in the lipid industry because they can be exploited
for the retailoring of vegetable and animal oils. “Fats and oils are important constituents of food.
The nutritional and sensory value and the physical properties of a triglyceride are greatly
influenced by factors such as the position of the fatty acid in the glycerol backbone, the chain
length of the fatty acid, and the degree of unsaturation. Lipases allow us to modify the properties
of lipids by altering the location of fatty acid chains in the glyceride and replacing one or more of
the fatty acids with new ones. This way, a relatively inexpensive and less desirable lipid can be
modified to a higher value fat” (Sharma, Christi, & Banerjee, 2001). “For example, cocoa butter
fat required for chocolate production is often in short supply and the price fluctuates widely.
However, lipase-catalyzed trans-esterification of cheaper oils can be used, for example to produce
cocoa butter from palm mid-fraction” (Andualema & Gessesse, 2012). In this way, cheap oils
could be upgraded to synthesize nutritionally important structured triacylglycerol (like cocoa
butter substitutes), low calorie triacylglycerol, human milk fat substitutes and oils enriched with
specific fatty acids such as oleic, stearidonic, gamma-linoleic (GLA), conjugated linoleic (CLA)
or omega-3 polysaturated (@3 PUFA) fatty acid (Ferreira-Dias, Sandoval, Plou, & Valero, 2013).

The first case study in this thesis is a hyperthermostable lipase from Bukholderia cepacia
(Rathi, Saxena, & Gupta, 2001). The enzyme is already known to have a broad temperature range
of 25-100 °C and exhibits the novel phenomenon of thermal activation. High thermostability is
important, because in high temperatures substrate solubility increases, at the same time as the

viscosity decreases and thereby avoids environmental contamination (Andualema & Gessesse,
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2012). Also, the use of thermostable lipases is very important when these reactions occur in
solvent-free media, where at least one of the substrates has a high melting point (m.p.), such as
palm stearin (m.p. = 47-54°C). To carry out these reactions at near-room temperature, an organic
solvent to dissolve the solid fats is needed. This will increase the complexity of the system, as well
as the costs related with solvent and downstream processing. In the last decade, these facts,
together with the search for green processes, have drawn special attention to the search for lipases

produced by thermophilic microorganisms (Ferreira-Dias, Sandoval, Plou, & Valero, 2013)

1.3.2. DHA

Docosahexaenoic acid (DHA) is an omega-3 fatty acid that is a primary structural
component of the human brain, cerebral cortex, skin, sperm, testicles and retina. It can be
synthesized from alpha-linolenic acid or obtained directly from maternal milk (breast milk), fish
oil or algae oil (Guesnet & Alessandri, 2011). Traditionally DHA was produced from fish oil,
however, fish oil DHA has limited applications as an additive because of its smell, unfavorable
fishy flavor and weak oxidative stability. Moreover, the environmental implications due to
overfishing has promoted the effort to put more restrictive laws and fishing quotas in place,
limiting the amount of fish oil available for DHA (lacurci, 2014). Also, fish oil is unsuitable for
neonate formula because of the presence | of eicosapentanoic acid (EPA), which acts
antagonistically with arachidonic acid (ARA) (De Swaaf, De Rijk, Eggink, & Sijtsma, 1999).
Thus, algae is currently the major alternative source for production of omega-3, especially DHA.
According to Frost and Sullivan (2014), algac DHA market is valued at US$329 million in 2012
and is expected to grow at a 12.3% CAGR to US$1,175 million in 2023. The demand in 2012 was
estimated to be 4,614 metric tons, thus an average price of US$ 54.91 per kg of DHA. DHA is
predominantly used as additive in infant formula (Figure 3), accounting for 50% (US$165.23

million) of microalgae DHA revenue and 48.9% of its shipment (Figure 3).
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Figure 3 — Microalgae DHA Oil market segment
Conversion rate 1 euro = US$1.3. Source: (Frost and Sullivan, 2014)

Main species of microalgae used for DHA commercial production are Crypthecodinium
cohnii and Schizochytrium (Khosravi-Darani, Koohy-Kamaly, Nikoopour, & Zeinab Asadi, 2016).
DSM, became the market leader in algal production of DHA after acquiring Martek Biosciences
Corporation for US$1.087 million in 2010 (Heerlen, 2010). The estimated production capacity of
algae DHA by DSM was 5,000 metric tons in 2012.
The second case study in this thesis is DHA production of an algae strain, namely
Schizochytrium limacinum OUCS88. This is a heterotrophic microbe (non-photosynthetic), with
high content of DHA (Table 4)
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Table 4 —Fatty acid composition (% of total fatty acid) of Schizochytrium limacinum OUCS88
Source: (Song X. , Zhang, Guo, Zhu, & Kuang, 2007)

Fatty acids Content (%)
14:0 8.34
15:0 1.65
16:0 37.9
17:0 0.85
i8:0 1.90
i8:2 n-6 0.23
18:3 n-3 0.49
18:3 n-6 0.27
20:0 0.41
21:0 0.27
20:3 n—6 0.356
204 n—6 0.36
22:0 0.38
20:5 n-3 (EPA) 0.76
22:5 n—-6 (DPA) 8.22
22:6 n-3 (DHA) 37.5

All data are means of three replicates.

1.4. BIOPROCESSES

Bioprocess can be referred to as a method or operation that uses a living system or their
components to produce commercially useful products. The fundamental operational element in a
bioprocess is the enzyme, while the scope of the bioprocess ranges from reactions with single
enzymes, mixture of enzymes, singles cells to even animal and plant systems (Fig 4). Both case
studies researched in this thesis refers to cell cultivations, specifically a bacterial lipase and an
algal DHA. It is worth mentioning that the biocatalysts applications described for lipase in section
1.3.1, such as production of structured triacylglycerol is what figure 4 refers to with ‘enzymatic

process’.
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Adapted from (Heinzle, Biwer, & Cooney, 2006)

A bioprocess can be divided into 3 sections: Upstream processing, fermentation and
downstream processing. “As commonly done in process engineering, we consider unit operations
as basic steps in a production process. Typical unit operations in bioprocesses are for example:
sterilization, fermentation, enzymatic reaction, extraction, and filtration or crystallization. A unit
procedure we define, as a set of operations that take place sequentially in a piece of equipment,
e.g. charging of substrate to a fermenter, addition of acid to adjust pH, reaction, transfer of
fermentation broth to another vessel” (Heinzle, Biwer, & Cooney, Development of Sustainable
Bioprocesses- Modeling and Assessment, 2006). Upstream processing includes all the unit
operations that are necessary before the fermentation step. Typical upstream unit operations are:
(1) preparation and storage of solutions, (2) sterilization of raw material, (3) inoculum preparation.
Fermentation is the main unit operation in bioprocessing, of which the bioreactor is at the core.
Fermentation will be reviewed in more detail in the following subsection. Finally there are several
possible unit of operations for downstream processing. The selection among all the possible unit
operations, specific equipment and corresponding unit procedures is based on the desired
properties of the product, the impurities and the microorganism used. The following figure shows

typical unit operations for downstream processing and possible techniques for each of them.
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Figure 5 — General block diagram of downstream processing
Source: (Petrides, 2000)

While the author of the present thesis recognizes the importance of analyzing the whole
process when developing a Tradespace analysis, (or any cost, competitiveness or sustainability
analysis for that matter), due to time constrains, the preset thesis will focus on the fermentation
step rather than the full bioprocess of lipase and DHA production. The usefulness of such

Tradespace analysis should be then analyzed under such constrain, which will be further discussed

in section 5.
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Since the scope of this thesis will be the fermentation step of lipase and DHA bioproduction,

the following subsection will briefly introduce fermentation technology.

1.4.1. FERMENTATION TECHNOLOGY

Any fermentation is initiated by inoculating a cell culture into the appropriate growth
media, a complex mixture that contains the substrate that will be processed by the cell and
converted into the targeted product. The fermentation occurs under conditions that favors cell
growth and production of the desired compound. The media may contain little or no “free” water,
corresponding to a solid-state fermentation, or the substrate can be dissolved (e.g. sugar solution)
or suspended in a large amount of water to form a slurry or broth, known as submerged
fermentation (Chisti, 2010). Solid-state fermentation is mainly used for filamentous fungi. Thus,
the focus of this thesis and the fermentation used in both cases analyzed is submerged fermentation
using the most commonly used type of reactor, namely stirred tank bioreactor.

The stirred tank fermenter is one of the most commonly used type of reactors due it its
flexibility. It consists of a cylindrical vessel, with a central shaft that typically supports 3-4
impellers. The height-to-diameter ratio of the vessel can vary from 1 to 4. For aerated bioreactors
a higher ratio is preferred in order to prolong the contact time between rising bubbles that carry
oxigen and the liquid phase. The vessel is typically provided with four equally spaced vertical
baffles that extend from the wall into the vessel. The objective of these baffles is to increase the
mixing quality. The air, usually supplied by a compressor, enters the vessel at the bottom under
pressure. The mixing and bubble dispersion are accomplished by mechanical agitation. This
requires a relatively high energy input per unit volume. A jacket and/or internal coils allow heating
and cooling. Bellow a schematic diagram of a stirred tank fermenter is shown. (Chisti, 2010;

Heinzle, Biwer, & Cooney, 2006)

23



mgm\ P acidbase

S0 = E,) %ﬁifw ) pressure gusge
AUTERNT OF w-ie ”"Wé&w@? % 55 &a:..mz:::a;%fg
snoulant L g ==
= ' el s e Tiltored
sterde autnent WALTE Ga%eS
<. 3
inpelier weter outlet
oRygen e O PIODE
Loncentration te e
probe
cooling
jacket
coldavater —
indsy Sparges
— 4 air

A bioresttor
Figure 6 — Schematic diagram of a stirred tank fermenter with instrumentations and controllers
Source: (IGEM2010, n.d.)
Finally, fermentations can be carried out in batch, fed-batch or continuous cultures.
Figure 7 shows the difference between these three modalities. The two cases analyzed use the

most common process, which is the batch process.

Feed Feed
(a) (b) ,L (c) *
=4 — Final volume
Constant — Initial volume Constant
volume volume
Harvest

Figure 7 — Fermentation process.
(a) Batch (b) Fed-batch (¢) continuous culture. Source: (Chisti, 2010)

1.5. PRODUCT DEVELOPMENT PROCESS (PDP)

The goal of any bioprocess development is the optimization of process parameters to
manufacture a product. A product that has a market (or a potential market), satisfies a customer
need and has a market size that justifies the investment in the process development. Once the
desired product is clearly defined and specified (quality, purity, etc.) the technical aspects of the
process development project takes place, as it is the product specifications and cost that establish
the goal of the process development (Heinzle, Biwer, & Cooney, 2006). Similar to traditional
chemical industry, bioprocess development typically relies on a set of specialist teams, each
optimizing with respect to a small set of criteria, e.g. chemical/biochemical synthesis route with

respect to product quality and yield, process design with respect to selecting, designing and
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connecting suitable unit operations and process control structure, plant design with respect to
equipment and process control. The result is a sequential process design with only scarce

information transfer between steps (Figure 8.A) (Heinzle & Hungerbuhler, 1997).
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Figure 8 — Information flow in the design process.

Classical sequential process with few interactions between development steps and groups Source: (Heinzle &
Hungerbuhler, 1997)

The main issue with a sequential process design is that the cost and effort required to correct a
sub-optimal decision made at the beginning of the development process increase with time, as the
development freedom decreases considerably. However, our knowledge and understanding of a
given process is low at the beginning, thus the chances of making a mistake or taking a non-optimal

decision due to lack of information is high (Figure 9).
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Figure 9 — Process knowledge and freedom of decision in the process design.
Source: (Heinzle, Biwer, & Cooney, 2006)

Since the mid-1980s modeling and simulation software specific to biochemical processes

were developed to gain understanding of bioproduction process (More detail in section 2.3). The
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use of these software tools help the process design team fill the knowledge and data uncertainty
gap and provide a sound evaluation basis. Process simulation software tools also enable the
representation and analysis of integrated process. Heinzle et al (1997) defines integrated
development (IPD) as a process where:
1) In every development step, information of all other steps is considered, design is done
in parallel rather than sequentially (time dimension of IPD);
2) Design alternatives are simultaneously assessed interactively with increasing depth for
multiple criteria — economic, safety, and environmental protection (depth dimension of
IPD)
3) Impact on local and global environment are simultaneously considered (space
dimension of IPD);
4) People with various expertise work in a broad networked multi-disciplinary teamwork
(human resource dimension of [PD)
One of the most cited simulators in the literature is SuperPro Designer™ from Intelligen,
Inc (Heinzle, Biwer, & Cooney, 2006; Petrides, 2000; Shanklin, Roper, Yegneswaran, & Marten,
2001; Petrides, Carmichael, Siletti, & Koulouris, 2014). This, and other software tools, build the
simulation based on a process flow diagram (PFD), which is given as an input, together with
process parameters such as scale, operation conditions and performance. Then the simulator
performs material and energy balances, cost analysis and economic evaluation (Figure 10).
SuperPro Designer™ can also perform tasks such as scheduling and environmental impact
assessment, debottlenecking and throughput analysis. However, since operation parameters are
given as an input, and alternative process setups can be simulated by “experimenting” on the
computer in a trial and error fashion, the scenario analysis of these software is limited. Variations
of the process flow diagram, process scale, and operations conditions can be performed only one

at a time.
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Source: (Heinzle, Biwer, & Cooney, 2006)

As Heinzle et al. explained in chapter 3 of his book (Development of Sustainable

Bioprocesses- Modeling and Assessment, 2006), “especially in early process development, there

might be a need to compare alternative process flow sheet topologies. An extraction step might

replace a distillation column or the downstream steps might vary. For such changes the economic

and environmental impact can be derived in a scenario analysis. Furthermore, variation in size and

number of pieces of key equipment, namely the fermenter, can be studied with scenarios”.

However, current software tools perform this analysis by creating new files for each new scenario,

and comparing each scenario to the base model one by one, as shown in the example bellow.
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Table 5 —Scenario analyses of the cellulose production model.

Table 5 shows the result of two scenario analysis for the cellulose model. In the base model, the inoculum volume is
5% of the fermenter volume. This defines the necessary volume of the seed reactors. If the inoculum volume is
increased, the starting cell concentration is higher, and thus the time to reach the maximum biomass concentration and
product formation might be shorter. In this scenario we assume the fermentation time to be 10h shorter when the
inoculum volume is increased by 10%. This enables a higher annual production. However, it requires an increase in
the size of the seed reactors, which causes higher investment cost. This additional cost outweighs the higher annual
production and causes higher unit production cost.

The second scenario describes the situation when an additional ion-exhange adsorption step is necessary to remove
some interfering by-products. This additional step not only raises the investment cost but also reduces the annual
production (product loss).

Source: (Heinzle, Biwer, & Cooney, 2006)

Annual production Capital investment Unit production cost

Scenario (metric tons) (% million) ($/kg cellulase)
Base case 456 20.7 15.4
10% Inoculum 475 234 16.4
Additional chromatography 385 . 23 1 204

By setting a baseline “favorite™, or previously developed concepts, and performing scenario
analysis “one at a time” can lead to premature reduction of topologies or architectures. Premature
focusing can introduce artificial constrains on the design process and reduce potential value created
and delivered (Ross & Hasting, 2005). Other industries, such as aerospace, have addressed the
possibility of comparing several topologies/architectures using methodologies such as Tradespace

analysis.

1.6. TRADESPACE BASICS

Ross and Hasting (The Tradepace Exploration Paradigm, 2005) define Tradespace as “the
space spanned by the completely enumerated design variables, which means given a set of design
variables, the Tradespace is the space of possible design options”. In general, a Tradespace is a
representation of a set of architectures in a space defined by two or more metrics. It differs from
the method used in example shown in table 5, usually referred to as “Point-Based Design’
(Bernstain, 1998), in that Tradespace allows the designer (and other decision-makers) to explore
the design space taking into consideration a set of strongly interdependent variables, and optimize
for more than one metric/objective. The most common objectives are maximing performance and
minimizing cost. In figure 11 bellow, a schematic Tradespace plot is shown. For a given a cost and
performance threshold, the optimal area (in blue) and along the curve (“Pareto frontier™) are the
potential solution that balances cost, performance and schedule (known in project management as

the “Triple Constrain” or ‘Iron Triangle’).
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Figure 11 — Schematic representation of a typical Tradespace plot
Source: (Mackertich & Kraus, 2008)

1.7. SUMMARY AND THESIS DESIGN

In section 1 I have introduced the context of this thesis by establishing an overview of
industrial biotechnology, its importance and applications in food and feed, as well as the general
economic and application within food and feed for the two case studies chosen for further analysis.
Also, a description of bioprocesses, especially fermentation technology and biocompounds PDP,
was presented. Finally a general introduction to Tradespace and how it addresses the issue of
premature focusing by allowing an extensive architecture exploration, not possible with current
process simulation software, was introduced. Thus, the objective of this thesis is to explore the use
of Tradespace in the context of bioprocesses by developing a Tradespace focused in the
fermentation step using lipase and DHA production as case studies. Furthermore, how this
Tradespace fits into the larger context of a broader analysis involving the full bioprocess and a
conceptual design of such Tradespace is presented.

In order to build a Tradespace for the production of the selected biocompounds, the present
thesis combines methods commonly used in bioprocess optimization methods, such as Design of
Experiments (DoE) - particularly the use of Plackett—Burman designs and Response Surface
methodology- with an existing Tradespace exploration method known as Multi-Attribute
Tradespace Exploration (MATE). These concepts will be further reviewed in the next section,

‘literature review’.
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2. LITERATURE REVIEW
2.1. MATE- MULTI ATTRIBUTE TRADESPACE EXPLORATION

2.1.1. MATE HISTORY

The Multi-Attribute Tradespace Exploration (MATE) method was develop at the
Massachusetts Institute of Technology by Adam Ross, Nathan Diller, Dr. Dan Hasting, Dr. Joyce
Warmkessel, Dr. Hugh McManus, and others (Spaulding, Tools for Evolutionary Acquisition: A
Stuydy of Multi-Attribute Tradespace Exploration (MATE) Applied to the Space Based Rada
(SBR), 2003). MATE’s development began with system analysis work done in the MIT Space
System Lab, which was eventually embodied in a process called Generalized Information Network
Analysis (GINA). GINA’s goal was to model satellites as information networks, and it used
metrics (appropriate for information systems) to construct a Tradespace of possible designs. Over
the years GINA was applied in a series of aerospace related projects, and in each iteration new
methods were included, evolving eventually into the MATE method (Spaulding, 2003). MATE
combines two techniques used in technical design and decision making: Multi-Attribute Utility
Theory (Keeney & Raiffa, 1993) and Tradespace Exploration (Ross & Hasting, 2002).

The present thesis incorporates DoE within the MATE method in order to develop a
Tradespace process for bioproduct production. The reason to incorporate DoE will be discussed in
sections 4 and 5. An overview of the MATE process at a level of detail appropriate for general
understanding will be introduced in the next subsection. A parallel of how some of the
concepts/terms used in the MATE process can be translated into the context of a bio-compound
production will be discussed in the Tradespace model presented in section 4. Once the overall
MATE method is discuss, in the subsequent subsections, Muliti-Attribute Utility Theory (MAUT),
Tradespace Exploration, and DoE will be further introduced. Finally, an overview of existing

process simulators will be provided as a background for the discussion presented in section 5.

2.1.2. MATE PROCESS OVERVIEW

The MATE process consist of the following steps:

Identify stakeholders

Define a mission objective/concept

Create a list of attributes

Determine design variables and map them to the attributes

Ealb
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5. Create a model that gives rise to utility curves
6. Evaluate architecture
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Figure 12 — The MATE process.
Source: (Spaulding, 2003)

In order to better understand each of these steps, it is helpful to define the concepts/terms
used. Some of these terms are part of the general systems engineering lexicon, however others are
unique to MATE or have a more specific definition when applied to MATE. The following list is
adapted from (Ross & Hasting, 2005), (Spaulding, 2003) and (Crawley, Cameron, & Selva, 2016):
Mission Concept/Objective: the desired end state or outcome of the system.

System: a set of entities and their relationship whose functionality is greater than the sum of the
individual entities.

Attribute: a metric perceived by a decision-maker that measures or determines how well the
defined objective is met.

Utility: a dimensionless parameter that reflects the “perceived value under uncertainty’ of an
attribute. Typically ranging from zero (minimal acceptance) to one (most desirable). Utility is a

useful quantitative proxy for representing benefit.
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Multi-Attribute Utility: a dimensionless parameter, ranging from zero to one, that reflects the
value of an aggregation of single utility values.
Design Variable: a designer-controlled parameter.
Architecture: a potential system — a unique combination of design variables
Tradespace: the set of all architectures under consideration
With these definitions in mind, an interpretation to how each of these concepts/terms can

be applied in the context of a bioprocess is defined in section 4.

2.1.3. MULTI-ATTRIBUTE UTILITY THEORY

Multi-Attribute Decision Making (MCDM) is the most well-known branch of decision
making. It is a branch of a general class of Operations Research models. MCDM combines theories
from disciples such as philosophy, mathematics, and psychology that try to explain and formulate
the logic behind decision making (Nikou & Klotz, 2014). Decision theory is widely applied in
economic, mathematics and social sciences (Raiffa, 2002). MCDM is divided into: (a) Multi-
Objective Decision Making and (b) Multi-Attribute Decision Making. Multi-Objective Decision
Making studies decision problems in which the decision space is continuous. On the other hand,
Multi-Attribute Decision Making concentrates on problems with discrete decision spaces. In these
problems the set of decision alternatives has been predetermined (Triantaphyllou, Shu, Nieto
Sanchez, & Ray, 1998). Several methods exist for Multi-Attribute Decision Making, one of which
is MUAT (Multi-Attribute Utility theory).

MUAT was developed by von Neumann and Morgenstern (1944/1947/1953), and it was
referred to as the “Expected Utility Hypothesis”. MAUT makes possible the calculation of overall
utility (i.e. customer satisfaction or preference) of multiple attributes (i.e. product characteristic or
features) based on single utility functions. Single-Attribute Utility (SUF) is a dimensionless metric
representing the satisfaction derived from having a certain level of a single attribute X. Single-
Attribute Utility function can be used to express the relative desirability of having a specific value
of an attribute. In equation:

SUF;(xij) = wi(x;5)
Where SUF is single utility function for attribute i, x;; is the attribute rating (the raw score)
for alternative j of the attribute 7, u;(x;;) is the utility function that transforms the attribute rating

into a utility value between 0 and 1. Linear utility functions are used to model each attribute. More
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sophisticated approaches are available in the form of non-linear utility functions, but should be
used only if there is explicit need to include non-linear behavior (Ogle, Dee, & Cox, 2015).

To compare designs that have more than one attribute of interest, SUFs need to be
combined into a multi-attribute utility function U. One of the simplest forms of multi-attribute

functions is the weighted sum:

U(]) = Z Wi ui(xij)

Zwi;‘l

Where U(j) is the Multi-Attribute Utility Function (MUF) corresponding to the j*
alternative. Multi-Attribute Ultility is the joint utility level derived from multiple attributes.

As explained above, the MATE method combines MAUT with Tradespace analysis. While
the MUAT component of MATE allows for a systematic assessment of different multi-attribute
designs, Tradespace provides a visual tool to compare these designs.

Ross (2003) justifies the choice of MAUT in MATE to capture user preference in the
following way:

“It [MAUT] provides for a systematic technique for assessing customer “value”, in

the form of a preference for attribute. Additionally, it captures risk preferences for the

customer. It also has a mathematical representation that better captures the complex

trade-offs and interactions amongst the various attributes. In particular, the strength of

Multi-Attribute Utility Analysis lies in its ability to capture a decision maker’s

preference for simultaneous objectives”

2.1.4. THE PARETO FRONTIER AND TRADESPACE STRUCTURE

The Pareto frontier, is simply a set of architectures that form the ‘edge” of the Tradespace.
Because we have two or more metrics represented in a Tradespace, it is unlikely that any single
architecture is uniquely “the best”. Rather, the Pareto frontier or Pareto front, showcases the
architectures that are “good” and represent a good tradeoff between the metrics (Crawley,
Cameron, & Selva, 2016).

Pareto analysis in an important part of Tradespace analysis, but it is by no means sufficient.
A lot can be learned by analyzing the structure of the Tradespace as a whole. Often times a

Tradespace looks like a “cloud” of points. However, most Tradespaces have some structure. They
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have features such as “holes™, “subgroups™ and “fronts”. These are due to factors such as discrete
metrics, different dynamic ranges of metrics and physical laws limiting certain metrics. (Crawley,
Cameron, & Selva, 2016)

A common structure in Tradespace are “clusters”- that is, the accumulation of architectures
in relatively small regions in the objective space, leaving large open areas, Fig 13. Clusters suggest
the presence of families of architectures that achieve similar performance in one or more metrics.
It is useful to view clusters with similar architectural variables, which can simply be done by

highlighting the points that share the same decision choice.
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Figure 13 — Tradespace showing 3 clusters

The example shows a mass-reliability Tradespace for GNC system (Guidance, Navigation,
Control system, present in vehicles, such as cars, aircraft, robots, and spacecraft). Architectures
are highlighted with different markers depending on their numberof sensors (NS) and the number
of computers (NC). Where min(NS, NC) =1 (circles) means that the architectures there have either
one sensor or one computer. Min(NS,NC)= 2 (crosses) are architectures with at least a sensor and
a computer, two sensors or two computers. Similarly min (NS, NC) = 3 is the min number of
computer, sensors and/or their combinations. The number of nines (# of 9°s) in the realiability is
shown instead of the reliability value (for example 3 nines is equivalent to R=0.999 and R=0.993
is equivalent to 2.15 nines). Source: (Crawley, Cameron, & Selva, 2016)

Another common feature in Tradespace is stratification. Strata are groups of point for
which one of the metrics is constant while the other varies. In a two-dimensional Tradespace, strata

appear when points line up in a number of vertical or horizontal lines, which gaps in between them.
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Stratification appears when combinations of architectural options produce only few distinct values

of the metric.

2.2.  DESIGN OF EXPERIMENTS (DOE)

Statistical experimental planning, factorial design and Design of Experiments (DoE), are
more or less synonymous concepts for investigating the mathematical relationship between input
and output variables of a system. Even though the fundamentals of the methodology have been
known since the early 1900s, it was not until the late 1990s that is was widely applied in
biotechnology (Mandenius & Brundin, 2008). When used to optimize processes, DoE is a
systematic way of changing process inputs (e.g. temperature, pH, medium components, etc.) and
analyzing the resulting process outputs (e.g. yield, productivity, etc.) in order to quantify the cause
and effect relationship between them, as well as the random variability of the process while using
a minimum number of runs. The conventional approach to optimization investigates One Factor at
A Time (OFAT) while keeping the others constant. Unlike OFAT, DoE detects the interaction
between input parameters, requires less number of experiments and facilitates the prediction of the
response to values not yet tested in the experiment. By performing factorial design, a reliable result
can be achieved with relatively fewer experiments, after which the most favorable direction to
move forward in order to find a true optimum can be evaluated. For example, in figure 14, the
diagram to the left explains the OFAT approach to optimize/investigate in a three-dimensional
parameter space, where the parameters/factors X, Y and Z can be changed, one at a time, giving
different outputs. As represented in the figure, the OFAT approach does not cover the complete
three dimensional space. On the other hand, on the right, a full-factorial three-parameter DoE is
represented. By analyzing all the “corner points” and “mid point” of the three dimensional space,

the complete design space is studied.
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OFAT v. Dok Approaches
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OFAT Central composite
(One Factor Ata Time) DoE

Figure 14— OFAT v. DoE approaches
Source: (Owen, et al., 2001)

Furthermore, through DoE systematic and unsystematic variability is also studied. Thus,
DoE requires fewer resources for the amount of information obtained, especially as the number of
factors increases.

In DoE. the dependent variable (process output) is called response and the independent
variable (process inputs) are called factors. The simplest factorial experiment has two factors, with
two levels each. The annotation for factorial experiments is: X¥; where X= #levels and Y=
#factors. Thus, the simplest factorial experiment is a 2%, producing 4 factorial points. Figure 14,
represents a factorial design of 2°: 3 factors, 2 levels each factor and thus 8 tested conditions. When
all the possible combinations across of levels across the studied factors are tested, it is known as a
Full Factorial Design. However, as the number of factors studied increases, carrying out the
experimental design might become logistically unfeasible. In this case, a Fractional Factorial
Design can be performed. For a two level DoE, the reduced set of experiments can be described
mathematically as 2"*, where 7 is the number of factors and k the number of steps to be reduced.
If for example five variables are involved in the experiment, we will end up with 16 (2°") or 8 (2>
%) experiments, depending of the number of steps reduces. In practice, the number of steps reduced
and the set of combinations chosen to test (known as principal fraction), are described in statistical
reference books and “standard” factorial design exists and are chosen depending on the objective
of the study (Box, Hunter, & Hunter, 2005).

Generally speaking, there are usually 3 types of objectives for a DoE: (1) screening, (2)
optimizing and (3) robustness testing. Two experimental designs were used by the authors of the

papers used as resource for the case studies in this thesis. The first for screening, namely Plakett-
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Burman experimental design and the second Response Surface Methodology (RSM) for

optimization. Both designs are further discussed in the following subjections.

2.2.1. PLACKETT-BURMAN EXPERIMENTAL DESIGNS

Plackett-Burman (PB) designs (Plackett & Burman, 1946), is a fraction of a two-level
factorial design and allows the investigation of »-1 factors in at least » experiments. PB designs
are well suited to establish whether the outcome of an analytical procedure is affected by changes
in each relevant factor. They have become known for their ability to investigate a large number of
factors in a relatively low number of experimental runs. This becomes possible, because the
interactions between factors are neglected in PB designs, thus they are very efficient in screening
factors when only main effects are interested.

The number of runs » in a PB design are multiples of four. Plackett and Burman only
included designs with n < 100, and omitted the design where n = 92. In each case the maximum
number of factors that can be studied is n-1, so an 8-experiment PB design can study no more than
7 factors, a 12-experiment design will handle up to 11 factors, and so on. Note that the number of
runs must be a multiple of 4, therefore, if 4 factors are studied, that is n-1=4, n=3. But 3 is not a
multiple of 4, thus the number of runs needed to study 4 factors in a PB design is 8 experiments
and 7 factors. There are 4 factors of interest and 3 “dummy” factors. Dummy factors are those that
have no physical significance, but will nevertheless inform about random measurement errors.
Usually, three dummy variables will provide an adequate estimate of errors (Stowe & Mayer,
1966).

As mentioned above, PB designs use two levels for each factor. The higher level is denoted
as ‘+> and the lower ‘-’. A further feature of the PB method is that the + and — signs for the
individual run are assigned in a cyclical manner. For example, for a seven factor experiment

labelled A-G, the first experiment might be (Miller, 2013):

A

B

C

D

E

F

—+

+

+

G
_|_

The levels for the second experiment, again with four + and three —, are obtained by shifting

the sigs of the first experiment one place right and moving the last sign to the begging of the line,

giving:

A

D

+

G
+




This cyclical process is repeated for the first seven experiments. For the eighth experiment
all factors are set at the low (-) level, giving an overall design in which there are 28+ signs and 28-
signs, each factor having been studied four times at the high level and four times at the low level.
In practice, the sequence of + and — signs are provided by generating vectors and are widely
available in the literature and software packages. Some commercially available software packages
frequently used for experimental designs are Modde™ (Umetrics AB, Ume#, Sweden;
www.umetrics .com), MiniTab™ (Minitab Inc., State Collage, PA) and Design-Expert™

(www.statease.com), all of which are convenient for applying DoE (Mandenius & Brundin, 2008).

The effect of each factor is then determined from the expression:

_ ZMH B Z M;_
Yoo =N

Where E(y; is the main effect of the tested variable Xi. (M;+) is the response when factor Xi
is at its high level and (M..) response when a same factor Xi is at its low level. N is the total number
of experiments.

The significance of each factor is then calculated through analysis of variance (ANOVA)
related calculations. As an example, if we consider that the sum of the squares (SS) is given by

(Miller, 2013):
SS = N x (estimated effect)*/4

In the previous example, for each factor, the sum of squares only has one degree of
freedom, so their mean value (i.e. variance) is the same as their SS. For the dummy variables
however, the mean of sum squares is calculated depending on the number of dummy variables
used; in this example 3. Then each individual factor can be compared with the estimated random
error (mean sum square of dummy variables) using a one-tailed F-fest at p=0.05 (95% confidence
level). If we consider that each factor has one degree of freedom and the dummy variables have
three degrees of freedom (three dummy variables were used), F; ;3 at p=0.05 is 10.13 (Appendix
B). Thus, for each factor

mean square of factor

" mean square of dummy variable

F> 10.13 then factor under evaluation is significant

F <10.13 then factor under evaluation is NOT significant
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Once again, such calculations are in practice performed using suitable software.

2.2.2. RESPONSE SURFACE METHODOLOGY (RSM)

The result of a bioprocess screening experiment, using a factorial DoE such as PB designs,
is the identification of a subset of most influential factors. These factors can be used in a new
experimental design with the purpose of determining optimal factor values. The experimental
results of such DoE lead to the deduction of a function that can explain the response:

y=f(x1,x) +e¢
Where ¢ represents the noise or error observed in the response y. The surface represented
by f(x;1,x3), is called a response surface.
A response surface can be represented graphically, either in the three dimensional space or
as a contour plot that helps visualize its shape.
An experimental design commonly used in RSM is Central Composite Design (CCD)
(Montgomery, 1997). The CCD is a very effective design for fitting second order response surface,

where the behavior of the system can be explained by the following quadratic equation:

Y=58,+ Z Bixi + Z ﬁﬁx;'l + Z Bijxix;

Where Y is the predicted response; f3, the offset term, f3; the linear effect, f;; the squared
effect and B;; the interaction effect.

Central composite designs are factorial or fractional factorial designs with center points,
augmented with a group of axial points (also called star points, represented in blue in figure 15)

that allows the estimation of curvature. Figure 15 illustrates a three variable case of CCD.

Half-fractional Full factorial Central composite
factorial h o

(]
.
.
]

Figure 15 — Central Composite DoE
Source: (Lebed, Potvin, Lariviere, & Dai, 2014)

There are three types of CCD:
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)

2)

3)

Central Composite Circumscribed (CCC): in a three factor CCC design, the high (+1) and
low (-1) levels are represented at the corner of the cube. Star points are displaced outside
the space at the same distance from the center point as the distance from the center to the
corners. (Fig 16.A)

Central Composite Face-centered (CCF): In a three factor CCF design, star point are
located between the high and low level. Thus, between +1 and -1. (Fig 16.B)

Central Composite Inscribed (CC): in a three factor CCI design, the star points take the
values + 1 and -1, while the high and low levels lie inside the in the interior at the corners
of the cube. (Fig 16.C)

2 factors 3 factors

AT
CCC
o
CCF
]
¢
c 1
CCI

Figure 16 — Comparison of Three types of Central Composite DoE
Source: Modified from (NIST/SEMATECH, 2013)
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For the two case studies analyzed in this thesis different central composite designs were
used. The lipase case study uses a CCF design, whereas the DHA case study uses a CCC design.
In theory, the CCC design is somewhat better than the CF design since CCC covers a larger
volume. Also, in CCC atotal of 5 levels per factor are evaluated. This is because the star point are
displaced outside the space (usually coded as +2 and -2) and therefore represents two additional
levels. These two new levels plus the original 2 levels (+1 and -1) and the center point result in a
total of 5 levels. In contrast CCF only allows for 3 levels to be evaluated per factor (-1, 0, +1).

Thus, CCC can therefore better capture strong curvature and even cubic responses.

2.3. BIOPROCESS SIMULATION SOFTWARE

Process Simulators are software tools that enable the representation and analysis of integrated
processes. Process simulation tools were first implemented in chemical and petrochemical
industries in the early 1960s. Established simulators for the petrochemical industries include:

Aspen Plus (from Aspen Technology, Inc. https://www.aspentech.com/)), ChemCAD (from

Chemstations, Inc. http://www.chemstations.com/), HYSYS (developed by Hyprotech, Ltd,

acquired by Aspen Technology is 2002), and PRO/II (from Simulation Sciences, Inc., now

Schneider-electric http://software.schneider-electric.com/simsci/ ) (Petrides, Bioprocess Design,

2000). However, these simulators were designed to model steady-state (continuous) processes,
therefore they did not account for the sequential nature of batch processes, where a sequence of
time-dependent tasks may take place in a given unit operation. The first batch process simulator
was named BATCHES. This software was commercialized in the mid-1980s by Batch Process
Technologies, a Purdue University spin-off headquartered in West Lafayette, IN

(http://www.bptechs.com/). All its operation models are dynamic and simulation always involved

integration of differential equations over a period of time. In the mid-1990s, Aspen Technology

(Burlington, MA, USA, https://www.aspentech.com/) introduced Batch Plus (later renamed Aspen

Batch Process Developer), a recipe-driven simulator that targeted batch pharmaceutical processes.

Around the same time, Intelligen (Scotch Plains, NJ, USA, http://www.intelligen.com/) introduced

SuperPro Designer. SuperPro, originally BioPro Designer, was initially developed at the
Biotechnology Process Engineering Center (BPEC) at MIT. It was licensed to Intelligen, Inc., who
completed the development and commercialized it. SuperPro, is an extension of BioPro, and was

created to extend its scope to support modeling of fine chemicals, pharmaceuticals, food
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processing, consumer products and other types of batch/semi-continuous processes (Petrides,
Carmichael, Siletti, & Koulouris, 2014; Petrides, Bioprocess Design, 2000)

While it is beyond the scope and intention of this thesis to explain how process simulators such as
SuperPro work, a quick overview is provided in Appendix A. However, it is important to highlight
once again, that the purpose of a Tradespace analysis is very different to what these software can
provide. A Tradespace objective is to perform what in bioprocess simulations software is known
as scenario analysis. However, unlike scenario analysis, where each scenario is created by
changing one parameter at a time from the baseline design, a Tradespace analysis allows the
analysis of several scenarios at a time. In this way a potential premature focusing, where

introduction of artificial constrains on the design process could be avoided.
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3. RESEARCH METHOD AND APPROACH

3.1. RESEARCH SCOPE

As explained in section 1.4, while the author of this thesis recognizes and understands the
importance of analyzing the whole process, due to time constrains, the Tradespace developed in
this thesis only focuses in the fermentation step. However, how this Tradespace might fit into a
broader analysis taking into account all 3 steps (upstream process, fermentation and downstream
process) will be conceptually discussed.

Furthermore, it is also important to mention that the fermentation Tradespace process
suggested in this thesis was analyzed only under the context of submerged fermentation in batch
mode using a stirred tank bioreactor. While it theory, the proposed process should be applicable to
other types of fermentation (solid-state), it is beyond the scope of this thesis to analyze the

applicability of the proposed process under these other settings.

3.2. DATA GATHERING AND ASSUMPTIONS

Due to time constrains, laboratory experiments were not performed throughout this thesis.
Instead two published papers were used as basis for the Tradespace design developed. Also, since
bioreactor physical details are usually not presented as part of scientific journal articles, the
physical characteristics of a 14L. New Brunswick bioreactor were used to estimate the electric
power requirements. In the following subsections a summary of both papers used as case studies
are presented and the physical detail of 14L New Brunswick bioreactor is described.

On the other hand, utility and raw material cost information was collected from various

resources.

3.2.1. Lipase Case Study

Lipase fermentation statistical optimization data used in this thesis is based on the study
performed by Rathi et al (Statistical medium optimization and production of hyperthermostable
lipase from Bukholderia cepacia in bioreactor, 2002). Since an experimental design to determine
most relevant attributes/factors was not performed in this paper, the relevance of the factors used
in response surface methodology was corroborated through literature review from optimization
studies from other Burkolderia strains grown in similar conditions. The response surface
experimental design and experimental result were used as input for the cost model and the

regression equation reported was re-assessed and used as attribute model.
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3.2.2. DHA Case Study

Unlike lipase fermentation case study, DHA production parameters relevance were studied
through Plackett-Burman experimental design and reported by the author. The source of the data
used for the DHA statistical optimization is the study performed by Song et al (Optimization of
fermentation parameters for the biomass and DHA production of Schizotrium limacicum OUC88
usign resposnse surface methodology, 2007). The response surface experimental design and
experimental result were used as input for the cost model and the regression equation reported was

re-assessed and used as attribute model.

3.2.3. 14L New Brunswick bioreactor Characteristics

In order to estimate the electric power requirement in the DHA case study, it was assumed
that a 14L New Brunswick bioreactor was used. Also, some constants such as media density and
viscosity were also assumed. The physical parameters and constants assumed for this exercise are

shown in the figure and table below.

Zy

Ly

Figure 17 — Schematic diagram of a stirred tank bioreactor and impeller
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Table 6 — 14L New Brunswick bioreactor physical parameters and constants used for electric power
estimation
Physical Parameter ' : Value C - Value Case Study 2
. (DHA) {Lipase)
Tank Diameter i aml e iy .
Tank total volume

Volume of dish

| Media viscosity

Power number .

3.3. POWER DENSITY — EQUATIONS

The power density (P/V) was used to estimate electric power requirements in the cost model.
Electric power is expressed in terms of power per unit volume in Watts per cubic meter (W/m?).
The power consumption for an un-aerated reaction mixture in a stirred tank reactor is define by

the equation (Holland & Chapman, 1966)

) Where Po is the power number of the impeller, N,
P . PopN?DZ

S the impeller rotational speed (rps), Ds, the impeller
@ i diameter (m), D, the vessel diameter (m) and L the
V ; xD%Lh/4 height of the liquid in the reactor (m).
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3.4. COST MODEL AND INITIAL TRADESPACE

Cost models were built on Microsoft excel as well as the regression models re-assessment
and Tradespace plots. For the regression model re-assessment Solver add-in (included with excel
2010, 2013 and 2016) was used. Lipase and DHA experimental results were used as input to
perform a non-lineal model fitting in excel. The steps to perform a non-lineal model fitting in excel
are as follow (Figure 18):

Step 1- Create a table with the central composite rotatable design including the experimental
results

Step 2- Assign random values to the coefficients in the quadratic equation.

Step 3- Add a column for predicted results and introduce the corresponding quadratic equation
Step 4 — Calculate the squared error and sum of squared errors

Step 5- Use solver to determine the minimum sum of squared errors (objective function) by

changing the coefticients
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4. TRADESPACE MODEL FOR A BIOPROCESS FERMENTATION
4.1. INTRODUCTION TO TRADESPACE CASE STUDY

42. MATE APPLIED TO BIOPROCESS

The overall MATE process and terms were defined in section 2. The table below reflects how the
author of the present thesis has interpreted each of those terms in the context of a food ingredient

bioprocess:

Table 7 — MATE terms interpretation in bioprocess context

. A dimensionless parameter that reflects stakeholder satisfaction of an attribute. For
example, for a biocompound purity of 60%, a numeric value between zero and one
that reflects stakeholders overall satisfaction for a purity of 60%

S B o

El‘ihé}):r’ocess parame rs that can be modified in order o improve the outcome ofa (or
several) attribute(s). Design variables are parameters such as fermentation pH,
media, temperature, agitation, aeration, inoculum age, purification technique or
specific column, etc. '

id SRR
| The set of all architectures under consideration

As a reminder to the reader, MATE steps introduced in section 2 are as follow:

Identify stakeholders

Define a mission objective/concept

Create a list of attributes

Determine design variables and map them to the attributes
Create a model that gives rise to utility curves

Evaluate architecture

@5 R B =

48



In the following subsections each of these steps will be described in general terms for a bioprocess
applicable to both case studies. However, when appropriate, important differences between the

two case studies will be highlighted.

4.2.1. STAKEHOLDER AND STAKEHOLDER NEEDS

In order to define mission objective, first a stakeholder analysis was performed to identify
needs the system (bioprocess) should fulfill. It was assumed for this analysis that the project was
being carried out by a biotech startup developing a bioprocess to produce the food ingredient, in
this case Lipase and/or DHA. The following stakeholder map shows the relationship between

stakeholders. A full description of the stakeholders taken into consideration and their needs is

. .
presented in Appendix C.
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Figure 19 — Stakeholder map

For this analysis, it was assumed that the ‘biotech startup’ has a partnership agreement with
a bigger ingredient manufacture company, where ‘Partner 1’is the new product development and
manufacturing department ‘Partner 2.a’ is the sales department and ‘Partner 2.b’ is the finance
department. The characteristics of this partnership is as follow: a) biotech startup is in charge of
the process development, b) partner 1 is in charge of the scaling up c) both find investment for

each activity independently d) biotech startup does not pay the bigger company, as they are
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partners in this project e) biotech startup receives licensing payment and royalty on sales from
finance department. ‘

Amongst the stakeholders presented in figure 19, some of them will pose requirement based
on their need on process attributes and other on product attributes. For example, ‘partner 1°, and
‘regulators’ (EPA), would dictate process characteristics, while ‘consumers’, ‘regulators’ (FDA),
and ‘healthcare community’ will influence the product attributes. From this analysis it was
concluded that ‘consumer’ were the main drivers of product attributes in this system. Also, while
the consumer does not buy ingredients directly, they are the main drivers for the monetary flow
and influence other stakeholder’s needs.

In a real-world setting, consumer needs would be determined based on surveys or focus
groups. For this thesis, since the main objective is not to determine consumer needs, these were
identified by the author based on experience and general sense base on online articles promoting

DHA and lipase ingredients.

Table 8 — Ingredient market end-customer (consumer) needs

Determined by the bio-compound decision/choice from the biotech startup and
L food manufacturing company, and promoted by healthcare community.

Tasty Determined by the decision/choice from the biotech startup and food |
‘ . manufacturing formulation efforts.
- Accessible Provided by distribution channel, dependent on the ingredient and formulation
P stability developed by the biotech startup and the food manufacturing company.
- Safe Determined by the bioprocess developed by the biotech startup, ingredient
! manufactured by Partner 1, food product manufactured by Partner 2 and approval
. ____provided by regulator. W
. Affordable Among other factor this need is fulfilled by a cost competitive bioprocess
' | developed by the biotech startup.

4.2.2. MISSION OBJECTIVE STATED IN A TO-BY —USING FRAMEWORK

The To-By-Using framework was used to establish the system problem statement that
describes the goal of the bioprocess system under study. The To-By-Using framework has the

structure described below (Crawley, Cameron, & Selva, 2016):
To...[the statement of (solution-neutral functional) intent]

By verb-ing [statement (solution-specific) of function|
Using [the statement of form]
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Figure 20 shows a detail view of the To-By-Using framework and a schematic view using

Object Process Methodology (OPM)

* To (solution-netural transformation) Operand
— (Attributes of solution-neutral transform) Specific
- i i operand
The (beneficial attribute) from (A) to (B) of r—Y
(operand) attribute
— (Other attributes of the operand) Beneficial
£ . . ibut
* By (solution-specilic operating Solution-neutral MR
process) transforming
~ (Attributes of process) A
— The (beneficial state) of the (specific Attribute of Specific system
operand) transforming operating
— (Other attributes) Intent
i Attribute of Generic
* Using (specific-system from object) -y st Bk
- i ifi tem from object
{ Attributes of specific syste: ject) ¢
Specific
system form
Atnbute of
form
Form

Figure 20 — To-By-Using framework for formulating System Problem Statement and graphical representation
in OPM.

OPM was developed by Professor Dov Dori at Technion with the goal of unifying the object-and process- oriented
paradigms for describing systems in a single methodology. Rectangle represent object. Circles represent process. A
black triangle inside another represents a characterization link, a white triangle represents subclass (specification). An
extensive description of the OPL (Object Process Language) symbols and meaning is provided in Appendix D. Source:
(Crawley, Cameron, & Selva, 2016)

In systems engineering ‘form’ refers to what the system ‘is’, while *function’ refers to what
the system “does’. A solution neutral function is “the function of a system stated without reference
to how it is achieved™ (Crawley, Cameron, & Selva, 2016). Thus, the first step was to define the
intent without expressing how the system would achieve it. This is done by focusing on the value
delivered to the primary beneficiary needs. Then, “by” states the solution specific function. This
is, states how the intent will be achieved. Finally, “using” states the form or what will perform the
function. The system problem statement developed for the ‘Food Ingredient Bioprocess System’

is as follow:
To improve quality of food

By manufacturing healthy, tasty, safe, accessible and affordable food ingredients
Using cost efficient and environmentally friendly bioprocesses.
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The schematic view for this problem statement using OPM is presented below:

Healthy,
Safe,
Tasty,

Accesible,

Affordable

Industrial Biotechnology

3

Inexpensively, Bioprocess

enviromentaly :

Fermentation based

Inexpensively,
enviromentaly

Figure 21 — OPM representation of System Problem Statement for a ‘Food Ingredient Bioprocess System’

4.2.3. ATTRIBUTE-VARIABLE MAPPING USING DESIGN VALUE MATRIX (DVM)

I have so far identified the consumer as the primary beneficiary stakeholder, described its
relationship with other stakeholders through a stakeholder map, define its needs and stated a
system problem statement using the To-By-Using framework. The next step of MATE is to create
a list of attributes and map them to design variables.

As explained in section 2, *Attribute’ is traditionally defined as “a decision-maker perceived
metric that measures or determines how well the defined objective is met’. For example, in the
case of DHA, an attribute that might be perceived by the decision-maker that determines how well
the need of “tasty” is met is perhaps “no fishy flavor”. However, this attribute is very difficult to
measure. Specially at the begging of the design process, when the physical product is not available.
Thus, in this thesis, “attribute’ will be interpreted as measurable product or process characteristics
that would lead to the satisfaction of the primary stakeholder’s needs. Thus, the following table
describes how each need was interpreted and the chosen attribute(s) used for the rest of the

analysis.
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Table 9 — DHA attribute table

. DHA is perceived as healthy mainly due to the effective
. communication of its health benefits. However, rancid oil
_is unhealthy and also unsafe.

Low oxidation level

‘ Tast&.\_.._.. -

Off flavor in Omega-3 products can be produced by

. oxidation. It is usually prevented and or decreased by
. deodorizing
. microencapsulation and masking with flavoring systems
. during the formulation stage.

step during the purification process,

 Safe

In order to be considered safe, the new DHA ingredient

produced by specific strain of microorganisms should have

GRAS (Generally Recognized A Safe) status reviewed by
the FDA. Also, if its intended use is for infant formula, it
must be free of EPA. Finally, it has to be free of toxins and

heavy metals.

Accessible

 Affordable

¢ It order for it to be accessible, it must be casily stored and
transported. Thus it needs to be stable and not easily (or
less easily) oxidized. This is usually achieved by adding :
_antioxidants to the formulation.
In order for it to be affordable, the process needs to be cost
efficient. Thus, productivity and/or yield needs to be high. |

L oW GTaton ievelll Lol

nghpunty (low or absence of
heavy metals, toxins and EPA)

GRAS status

Stable oxidation lcvel in time and/or
at different temperatures |

High productivity and/or yield

Table 10 — Llpase attribute table

Helt'hy and :

tasty

Whlle llpase is sold also as a supplement in the food and |
. beverage segment its mainly used as a catalyst and not as a
- functional food ingredient. Thus, the perceived ‘healthy’
~ and ‘tasty’ qualities does not come from the lipase itself,
. but rather the food product of which manufacturing lipase
 take part of. ;

Safe

Not applicable

In order to be considered safe the enzyme preparation
- manufactured by a specific microorganisms should have |
. GRAS status reviewed by the FDA.

GRAS status

Accessible

In this case, as the enzyme is used in food preparation,

consumers does not have access to the enzyme, but rather

_the food product prepared using the enzyme.

Not applicable

Affordahl-g

In order for it to be affordable, enzyme manufacturers
need to have access to big quantities of highly active
. enzyme. Thus the enzyme preparation has to have high

activity, productivity and stability.

. Stable enzymatic activity through
. time and/or different temperatures

High productivity and or yield

High enzymatic activity

[t is important to point out that the objective of this thesis in centered on the use of DoE in

combination with the MATE method, which will be further explained in the next section. Thus,

this list of attributes is not by any means complete nor extensive. It was developed with the
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objective of illustrating and translating this method used in other industries into the development
of a bio-compound. A survey and deeper analysis using methods such as QFD (Quality Function
Deployment) would be required for a complete list of attributes, which is outside the scope of the
present thesis.

Once the attributes were selected, an attempt to map these attributes to design variables
was made. However, it was evident that unlike aerospace systems, biological systems are much
more complex, in that a given attribute cannot be mapped to one or to a group of design variables.
For example, for a Space Based Radar (SBR) used to take images of stationary ground targets, the
design variables ‘orbital altitude” and ‘radar aperture size’ would be mapped to the attribute ‘high
resolution image” (Spaulding, 2003). However, for a DHA produced through bioprocessing of an
algal strain, it is unclear what design variable has an effect on the attribute “low oxidation level”.
On the other hand, potentially all design variables can affect the attribute “High
productivity/yield”. The matrix bellow, usually referred to as DVM (Design-Value Matrix)

graphically shows this fact.
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Figure 22 — DHA DVM (Design-Value Matrix)
4.2.4. APPLICATION OF DOE TO MODEL UTILITY CURVES

Based on the fact that in bioprocess systems it is very difficult to determine/map a given
attribute to the corresponding design variable(s) (figure 22), the use of a tool to discriminate which
are the main design variables that have the most effect on a given attribute is necessary. Once the

main design variables are determined a mathematical model describing how the selected design
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variables affect the given attribute, referred in this thesis as “attribute-curve™ or “attribute-
function”, is required. The present thesis proposes the use of two DoE designs commonly used in
bioprocesses to accomplish this. Namely, Plackett-Burman (PB) designs (Plackett & Burman,
1946) to down select the design variables and Response Surface Methodology (RSM) to produce
attribute-curves. As explained in section 2.2, Design of experiments deals with quantifying how
process inputs affect process output using a minimum number of runs. Thus, it is useful to create
amodel between design variables and attribute. The resulting attribute-curve can then be converted
into SUFs using a linear function based on expert opinion of what the maximum (X4, ) and

minimum (X, ) acceptable values for attribute i should be. In this way,

SUF;(Ximax) = Wi(Ximax) = 1 and SUF;(Ximin) = Wi(Ximin) = 0.

The following figure schematically explains the proposed MATE incorporating PB design

and RSM to create utility curves.

=T
1
REL .
X FIFIE T -

Attribute and unit operation selection

Energy and Raw iy
+ material requirement s Cost model :
estimation -
DOE' PBdemgn identification of most : T'?‘E"?‘Paf‘?
influential design variables
Response surface Attribute

Methodology ™ model h_* nil '

Figure 23 — Single utility function -SUF- obtained through DoE
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The first step is to map attributes to unit operations instead of design variables, as the relevant
design variables will be revealed after a PB design experiment. The down selection of design
variables is performed per unit operation, per attribute. Once the relevant design variables are
identified, a RSM design is performed in order to develop attribute models. The attribute model or
function is then translated into single utility functions (SUF), which can be plotted in a trade space
showing single utility curves. Finally, single utility curves can be aggregated into a multi-utility

curve by giving it a weight-based on consumer preference, as shown in the schematic diagram

bellow:
i Attribute 1 ___,. Design variables
{DoE- PBdesign [ . ABC
\ T I
-4 material requirement --—-0] Cost mode|
= s : estimation ‘
5 i E ; Design variables | | "'”W'ﬁ;vmm
S “z oo ABGD | i Tradespace for |
i e ———rs Fermentation
< R ) .::.:;Z:;t: - suF1 e o
Resp — " | e %
- surface
' _ Methodology _
artribute 2 | Dsign variakias | | P il
Dot - PBdesign .  ABD | i model 2 "’Suf_z

Figure 24 — Multi-utility-function -MUF- obtained through DoE

In the example above (figure 24), unit operation ‘Fermentation” might have an effect on two
attributes: “attribute 1” and ‘attribute 2°. A PB design experiment is performed and design variables
‘A’, ‘B’ and ‘C’ were found to be relevant for ‘attribute 1°, whereas design variables ‘A’, ‘B” and
‘D’ were relevant for “attribute 2°. In the next step a RSM is performed taking into account all
design variables, including those that are relevant only for one attribute. As a result of the RSM,
single utility functions can be developed and plotted. Finally, a multi-attribute utility function is
developed based on the weight given for each attribute according to customer preference. As a
result, a multi-attribute Tradespace plot for unit operation ‘Fermentation’ can created as a decision
making tool.

In the following subsections, this process is exemplified in the two case studies mentioned earlier,

lipase and DHA production.
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4.3. CASE STUDY 1: ALGAL DHA PRODUCTION

DHA case study was based on Song et al. (2007) study on “Optimization of fermentation
parameters for the biomass and DHA production of Schizochytrium limacinum OUC88 using
response surface methodology”, published in the journal Process Biochemistry. While both
biomass productivity and DHA productivity were measured in the paper, only the product, DHA,
was considered in this analysis. As shown in table 9, the attribute ‘DHA productivity’ would be
correlated with customer need of ‘affordable’. Song et al. performs a PB design in his paper to
identify the factor (or ‘design variables’ as we will refer to them from now on) that has the greatest
effect on DHA production. This case study was chosen to exemplify how PB design and RSM can

potentially be integrated in the MATE method to obtain SUFs.

4.3.1. ATTRIBUTE MODEL

Song et al. analyzed 10 factors in their PB design: temperature (T, C°), aeration rate (Q,
volume of air per volume of medium per minute VVM), pH, agitation (R, rpm), inoculum volume
(I, %), fermentation volume (V, L), fermentation pressure (P, Mpa) inoculum age (IA), harvesting
time (HT, h), and Tween 80 concentration (Tw, mL). The table below was obtained from the

original paper and shows the high (+1) and low (-1) levels for each parameter.

Table 11 — Case Study 1: DHA PB design variables (factors) range
Source: (Song X. , Zhang, Kuang, Zhu, & Guo, 2007)

Range of different factors studied in the Plackett-Burman design

Variable Variable Low High
code level (—1) fevel (+1)
Temperatwre/T ([J) X, 23 26
Aeration rate/Q (L min™' L™") X 1.02 1.48
pH X 6 7
Agitation/R (rpm) X, 150 250
Inoculum volumef! (%) X5 7 10
Fermentation volume/V (L) Xs 6 8
Fermentation pressure/P (Mpa) X; 0.06 0.08
Inoculum age/lA Xy Mid- Stationary
exponential phase
phase
Harvesting time/HT (h) Xy 108 132
Tween 80 concentration/Tw (ml) X0 2 10

The following table summarizes the results Song et al obtained for the PB design, where

the variables with confidence level greater than 95%, thus influence DHA production are: 1)
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temperature (T, C°), 2) aeration rate (Q, volume of air per volume of medium per minute VVM)
and 3) agitation (R, rpm).

Table 12 — Case Study 1: DHA PB design results

Source: adapted from (Song X. , Zhang, Kuang, Zhu, & Guo, 2007)

Run#t X1 X2  x3 X4 X5 X6 X7 X8 X9 X10  DHA (g/L)|
1 -1 1 -1 -1 -1 1 1 1 -1 17
2 1 1 -1 1 -1 -1 1 1 1 1 3.1
3 -1 1 1 1 1 -1 -1 -1 1 1 3.9
4 L3 .. - M N . 1 L I -1 1 1 24
5 A o AN - NSO SRR S . . | W | A 28
6 1 1 1 -1 1 1 -1 1 -1 -1 2.5
7 -1 1 1 1 -1 1 1 -1 1 -1 4.7
8 -1 -1 1 1 1 1 1 1 -1 1 3.9
........ AU . VN, N, 1 1 - o 1 1 35
K. R, | OR. NN ... S 1 1 1 -1 1 1 2
1 -1 1 -1 -1 1 1 1 -1 1 3.5
12 1 -1 -1 -1 -1 1! -1 -1 3
-1.167 0807 0057 0810 0183 0160 0203 -0.260 -0.067 -0.053
0.057 0057 0057  0.057 057  0.057 0.057 0057  0.057
-20.588 14.235  1.000 14.294 3235 -2.824  3.588 -4.588 -1176 -0.941
0031 0045 0500 0044 0191 0217 0173 0137 0448 0519

These three design variables were used in the central composite RSM design. The RSM
design and DHA yield was obtained from Song et al. Based on this information, a second-order
polynomial equation was found to best describe the attribute DHA yield (g/L), as a function of the

design variables temperature, aeration and agitation.

DHA i
T ‘a R {DHA_Exp lPrediction  Squared error Equation |
1 Aind 16 163 0.001
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Figure 25 — Case Study 1: DHA attribute function
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The equation obtained was:
Ypra = 3.745 — 0.633T + 0.608Q + 0.417R + 0.025TQ — 0.088TR — 0.075QR — 0.186T>
—0.211Q% — 0.186R?

4.3.2. SUF MODEL

From literature, the maximum published productivity of DHA by Schizochytrium sp. found
was 10-12g/L*day (Martek patent, US7732170). This data was used as the maximum attribute
value (Xj,qx)- In a real-life scenario, the minimum acceptable value for the attribute productivity
would be established based on expert’s opinion. However, in this case study, for simplicity the
minimum acceptable value for this attribute (x;,,;,) was equated to the minimum experimental
yield obtained (1.49 g/L). On the other hand, through PB design, Song et al (2007), proved that
harvesting time, with 108 hrs in the low level (-1), has no effect on DHA yield. Therefore, it was
assumed that for the RSM experiment the harvesting time used was 108hrs (4.5 days). Thus, X;pnin
= (.33 g/L*day. Based on these information, the following two equations were used to develop a
Single-Utility Function (SUF) for the attribute ‘productivity’:

1=12m+b
0=033m+b»
The solution for this simple linear u; (x;;) system yields the utility function that transforms
the attribute rating into a utility value between 0 and 1:
SUFyroquctivity(Xproductivityj) = 0.086(Xproguctivityj) — 0.028
Where SUFproquctivity 18 single utility function for attribute productivity’, Xproauctivityj
is the attribute rating (the raw score) for alternative j of the attribute ‘productivity’.
In order to convert the previously obtained utility model to SUF model the predicted DHA
yield (g/L) was first translated into productivity (g/L*day) by dividing the yield by 4.5 hrs. Then

using the equation above the corresponding utility scores were obtained.
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Table 13 — Case Study 1: DHA SUF (Single utility function)

RUN# Predicted DHAyield Predicted DHA productivity  Utility score ' Utility function B ‘ :
g/l g/L*day SUF =m {predicted DHA productivity}+b

1 263 059 0022 | |
2 2.63 0.59 0.022 m 0.08569

3 379 | 0.84 004 b 00283
4 3.79 | 034 0044

5 395 i 0.88 0.047
6 3.95 : 0.88 0.047

7 4.81 | 107 0083

8 481 ; 1.07 0063

9 149 03 ~ 0.000

10 1.49 0.33 ! 0.000

11 2.30 0.51 0.016

12 2.30 0.51 0016

13 2.91 ; 0.65 0.027

14 291 | 0.65 : 0.027

15 . 342 0.76 0.037

16 342 0.76 ! 0.037

17 4.27 0.95 0053

18 1.73 | 039 0005

19 1.68 0.37 0.004

20 412 _ 0.92 0050

21 247 0.48 0.013

22 3.83 ; 0.85 0.045

23 3.74 0.83 0043

24 3.74 _ 0.83 0.043

25 3.74 0.83 0043

%6 a7a 0.83 0083

27 3.74 0.83 0.043

28 3.74 083 0.043

29 3.74 083 0043

30 3.74 0.83 0.043 :

31 274 083 o083

This utility score informs the decision maker about how far the attribute “productivity” is
from the ideal value (X4, ). Also, given that now it is a utility score, it can be added to other

attribute scores as will be exemplified in the second case study.

4.3.3. COST MODEL

The second variable in the Tradespace is cost. The objective is to be able to differentiate
what architecture has the highest cost. For this, a differential cost, rather than a total fermentation

process cost, is enough. Assuming all other design variables (besides from temperature, aeration
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and agitation) to be constant, the differential cost will be defined by the cost of heating up and
cooling down the bioreactor, the cost of injecting oxygen into the reactor and the cost of agitation.
From amongst these three variables, heating/cooling and agitation cost are more significant.
However, since the cost of heating and cooling depends on the ambient temperature (and therefore
on the season and the region where facility is located) the power consumption for stirring was used
as an approximation for cost.

The power density per impeller was calculated using the following formula:

P = PypN3D?

Where P is the power consumption per impeller, Py the power number (5.5) for a given
type of impeller, N rotation per second (rps) and Di is the diameter of the impeller (0.076m). The
resulting power consumption was multiplied by the number of impellers, in this case 3, and divided
by the volume (Vz), in this case 7L.

Based on this information, the power consumption per architecture was calculated and shown in

the following table:

Table 14 — Case Study 1: DHA Power density calculation

RUN# RPM N P P/Vz
1/min 1/seg w wW/L

1 150 2.500 0.658 0.09
2 150 2.500 0.658  0.09
3 250 4.167 3.046 043
a 250 4167  3.046 043
5 150 2.500 0.658 0.09
6 150 2500 0658 0.9
7 250 4167 3.046 0.43
8 250 4167  3.046 0.43
3 150 2.500 0.658 0.09
10 150 2.500 0.658 0.09
11 250 4.167 3.046 0.43
12 250 4167 3.046 0.43
13 150 2.500 0.658 0.09
14 150 *© 2.500 0.658 0.09
15 250 4.167 3.046 0.43
16 250 4.167 3046 = 043
17 200 3333 1560 0.2
18 200 3.333 1560 = 0.22
19 200 3.333 1560 = 022
20 200 3.333 1560 & 0.22
21 100 1.667 0195 003
22 300 5.000 5264 | 0.74

23 200 3333 1560 022
24 200 3.333 1560 = 0.22
25 200 3333 1560 @ 022
26 200 3.333 1560 022
27 200 3333 1560 0.22
28 200 3.333 1.560 0.22
23 200 3333 1560 022
30 200 3.333 1.560 0.22
31 200 3333 1560 0.22
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The average industrial electricity rate in Massachusetts is 12.57¢/kWh (Electricity Local,

2016). Assuming a production of 50m’ the estimated cost is:

Table 15 — Case Study 1: DHA power consumption cost calculation

RUN#

BEBRBEREREOCaN OO R BN K

b
W E N,

BRBNNY

26
27

25

31

w/L
0.09
0.09
0.43
0.43
0.09

003

0.43

bl L

0.09
0.0%

0.43
0.09
0.09

043

0.43
0.22
0.22
0.22
0.22
0.03
0.74
0.22
0.22

022

0.22
0.22
0.22
0.22
0.22

0.22

PIVz

n

.03
0.13

0.58
0.58
0.13

013

0.58

0.13

013

0.58
0.58

Lo

0.13

0.58
0.30
0.30
0.30
0.30
0.04
1.01
0.30
0.30
0.30
0.30
0.30
0.30
0.30

030

0.30

B i

98 | %

Harvest time (hr}
62.88 Electricity cost {5/kWh)
62.88  Electricity cost {$/Wh)

P A B |

’ 108

012571

- 0.000126
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4.3.4. TRADESPACE

With the information obtained in the previous sections, a SUF Tradespace for the attribute

‘productivity’ was plotted.
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Figure 26 — Case Study 1: DHA SUF Tradespace

The Pareto optimal in this case is the left upper corner, where utility score in the highest
and the differential cost is the lowest.

The benefit of having utility scores, as opposed to productivity, is that it allows the addition
of different attributes, with different units into one parameter. This will be exemplified in case
study 2. In this case study, however, since only one attribute is being analyzed, the following plot

of productivity v/s differential cost will facilitate the analysis.
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Figure 27 — Case Study 1: DHA Productivity Tradespace

In a traditional optimization process, where cost is not analyzed in parallel, the optimal
architecture would be represented by point (291.309, 1.068) in the plot. This architecture, with the
following design variables: 23°C, 1.48 L/min*L and 250 rpm results in an optimal productivity of
1.068g/L*day of DHA. This corresponds to a cost of $291.309 higher than the cheapest
architecture analyzed. However, if we follow the Pareto frontier, moving towards the Pareto
optimal, the following non-dominated architecture is represented by the point (149.119, 0.948).
This architecture has the following design variables: 21.5°C, 1.25 L/min*L and 200 rpm. While
the resulting productivity in this case is 11% lower (0.948g/L*day compared to 1.068g/L*day),
the differential cost is 49% lower ($149 compared to $291). Whether this architecture is a better
option or not will depend on the price of DHA. In other words, does the loss of profit associated
with selling an additional 0.12g/L*day of DHA justify saving $142 per run? The price of DHA
depends not only on the end market segment (food and beverage, infant formula, supplement,

animal feed, clinical nutrition, etc.), but also on other attributes, such as purity. Thus the detail
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analysis and construction of a scenario to thoroughly analyze what the best architecture is, falls
beyond the scope of the present thesis. However, what can be concluded is that taking into
consideration fermentation unit operation in isolation, the productivity optimal alone might not
yield enough information to make the best decision. Furthermore, Tradespace might be a tool that

can support decision making when several objectives needs to be met.

4.4. CASE STUDY 2: HYPERTHERMOSTABLE LIPASE FERMENTATION

The Lipase case study was based on Rathi et al (2002) paper “Statistical medium
optimization and production of a hyperthermostable lipase from Burkholderia cepia in a
bioreactor” published in Journal of Applied Microbiology. In this paper, design variables down-
selection was not done through a PB design, but rather a ‘one-factor-at-a-time” method published
in an earlier paper (Rathi, Saxena, & Gupta, 2001). However, two attributes (or output variables)
are measured in the RSM, namely yield and enzyme specific activity. Thus, this paper was chosen

to exemplify how a multi-attribute-utility can be obtained from two SUFs.

4.4.1. ATTRIBUTE MODEL

According to Rathi et al. (2001) ‘one-factor- at-a-time’ analysis, the relevant design
variables for lipase attributes ‘production yield” (U/mL) and specific activity (U/mg) are: glucose
concentration, palm oil concentration, incubation time, inoculum age and agitation. The range and

the codes for these 5 design variables are shown in the table below:

Table 16 — Case Study 2: Lipase design variables range
Source: (Rathi, Goswami, Sahai, & Gupta, 2002)

Range of levels

Variables Actual Coded Actual Coded Actual Coded
Glucose (mg ml™"): A 2 -] 8 0 14 +1
Palm oil (Po v/v): B 0 -1 1 0 2 +1
Incubation time (h)y: C 20 -1 40 0 60 +1
Inoculum density (%0): D 1 -1 2 0 3 +1
Agitation (rev min™'): E 100 -1 200 0 360 +1

These five design variables were used in a RSM central composite faced center design to develop
a attribute model for ‘yield’ and ‘specific activity’. The experimental design and the experiment
results were obtained from Rathi (2002). Similar to case study 1, these results were used to fit a

second-order polynomial equation.
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Table 17 — Case Study 2: Lipase yield attribute function
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Table 18 — Case Study 2: Lipase activity attribute function
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Information about the ‘yield” and *specific activity’ values, before purification for the

production of industrial hyperstable alkaline lipase, was not found. Thus, for this exercise, the

values reported by Bhosale et al (2016) were used as benchmark. The table below shows the results

obtained by Bhosale et al.
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Table 19 — Case Study 2: Lipase attribute benchmark
Source: (Bhosale, Shaheen, & Kadam, 2016)

Protein content Specific activity Purification

(mg/mL) Total activity (Uimg) fold Yield (%)
U Crude 0.290 153990 177 1 Wi
Ammaonium sulphate 0.252 13275 351 198 8.62

precipitation
Dialysis 0,143 59015 825 4.67 383
DEAE-cellulose

] 0,335 305596 252,08 12,15 1.98
column

On table 19, the line ‘crude’ refers to crude extract, which is centrifuged broth after 4 days
of incubation, thus cell-free supernatant. This is the same step in which Rathi et al (2001)
performed measurements of yield and specific activity. In both éases the microorganism were
grown in shake flasks. However, in Bhosale et al. microorganisms were harvested after 4 days,
whereas Rathi tested different incubation times. In order to account for this difference of
incubation time, productivity was calculated by multiplying specific activity (U/mg) by protein
content (mg/mL) and divided by 4 days (96 hours) , thus 177 U/mg * 0.290 mg/mL * 1/96 hours
= 0.53 U/mL*h. Since this is productivity in shake flask, it is expected that productivity in
bioreactor will improve, due to superior aeration conditions in fermenters. However, bioreactor
fermentation results was not reported for the complete set of architectures analyzed. Thus, shake
flask productivity was used as a proxy instead, assuming 0.53U/mL*h as an average acceptable
productivity (utility value of 0.5) and a maximum productivity set at twice this value. Therefore,

the corresponding equations are:

Xproductivity 0.5 = 0.53 —h = 0.5

X ivi = 1.06 =1
productivity_max ml * h

SU Fproductivity(xproductivityj) = 1-06(xproductivityj) —0.1236
Where SUFproquctivicy 1S the single utility function for attribute ‘productivity’,
Xproductivity;j 1S the attribute rating (the raw score) for alternative j of the attribute ‘productivity .
The “specific activity’ value used as benchmark was the value reported by Bhosale, 177 U/mg. In
this case, this value was used as minimum acceptable value. A lower specific productivity suggests
that from the total protein produced, a lower percentage corresponds to the lipase enzyme or that
the lipase activity is much lower. Rathi, should be able to produce at least as much lipase activity

per mg of total protein as Bhosale. The maximum value was set at 3 times the minimum value,
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thus 531U/mg. With this maximum value of specific activity in crude extract, a specific activity
of ~5,000 U/mg is expected for purified enzyme, which corresponds with the activity reported for
Novozymes ® CAL-B lipase. The corresponding equations are:

Xactivity_min = 177 m_g =0

Xactivity max = 531 m_g =1

SUFactivity(xactivityj) = 0'00282(xpr0ductivityj) — L5
Where SUF,ctivicy 1s the single utility function for attribute ‘specific activity’, X qctivityj 1S

the attribute rating (the raw score) for alternative j of the attribute “specific activity .

The following table shows the utility scores for the attributes “productivity’ and ‘specific activity’.

Table 20 — Case Study 2: Lipase SUF (Single-Utility Function)
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3 309 40.00 008 i 2338 -0.042 -0434 m 10600
4 0.44 60.00 0.01 76 -0.16 -0.480 b -0.1236
5 8.92 60.00 P 0.15 ! 50.16 0.034 -0.358
6 nes 40.00 030 60.27 0191 -0.330 Specific activity Utility function
7 6.57 2000 033 48.64 0.225 -0.363 SUF =m [predicted Lipase specific activitu)+b
8 nss 40.00 030 80.27 0,19 -0.330 m 000282
9 w»21 000 061 6038 0524 0389 b 05

0 582 60.00 0.0 2937 -0.021 -0.417
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21 754 20.00 0.38 55.27 0.276 -0.344
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24 861 5000 oM 437 0029 -0.376
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It is worth noticing that the specific activity utility scores are all negative. This is because
for all the architectures analyzed. the resulting specific activity falls below the minimum value

reported by a potential “competitor”.
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4.4.3. COST MODEL

Rathi et al (2002) validated the attribute model obtained through RSM by producing lipase

in a 14 liter fermenter with 10 liters of working volume using optimal conditions predicted by the

model. The results and implications of this will be discussed in the following subsection. In this

section, the result of the cost model developed assuming a 14L fermenter is presented.

So far, for the development of attribute and utility model, 5 design variables have been taken into

account, namely: Glucose concentration, Palm oil concentration, incubation time, inoculum

density and agitation. Incubation density was considered to have little effect on cost, thus

neglected. For agitation and incubation time, similar to case study 1. power density was estimated.

The table below shows the result of such calculation.

Table 21 — Case Study 2: Lipase power density and power consumption cost calculation
Average industrial electricity rate in Massachusetts is 12.57¢/kWh (Electricity Local, 2016).
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13468
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19468

64.89
194.63

38.11

33.11

Glucose concentration and palm oil concentration cost for a 50m’ reaction was also

estimated. Results are shown in the table below:
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Table 22 — Case Study 2: Lipase architectures cost calculation

T e I T T T T
2 mg/mL %V kgL kg/50M3  §/50M3 [L/50M3  kg/S0M3  $fsoM3 |$fsom3 |$/s0M3 | glucose
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5 3 3 of o000z a0 140 o o of 381| 17811 S03kg
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2 301 & O 00w, a0 38 0. 0 O DAL 29.68) 4
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4.4.4. TRADESPACE

With the information obtained in the previous sections. a Multi-attribute score was calculated

and plotted. For this, several scenarios were analyzed:

a)

b)

Both attributes ‘productivity’ and ‘activity’ having the same level of importance. Each
attribute has a weight of 0.5.

Assuming that “productivity’ is expected to be further improved in bioreactor, “activity’
was given more importance. “Productivity’ weight was 0.2 and ‘activity, weight was 0.8.
Assuming that specific activity of purified enzyme will be more than 1 times higher than
in crude extract, ‘productivity’ was given more importance than ‘activity’. ‘Productivity

weight was 0.8 and activity weight was 0.2.
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The following figures shows the Tradespace for each of the scenarios. The tables with the

calculation of each scenario are presented in appendix E.

Multi-attribute Tradespace Scenario 'a'
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Figure 28 — Case Study 2: Lipase Multi-Utility Tradespace scenario ‘a’

Multi-attribute Tradespace Scenario 'b'
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Figure 29 — Case Study 2: Lipase Multi-Utility Tradespace scenario ‘b’
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Multi-attribute Tradespace Scenario 'c'
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Figure 30 — Case Study 2: Lipae Multi-Utility Tradespace scenario ‘c’

The first thing we can notice is that as the weight changes, the shape of the Tradespace
changes slightly. However, the utility scores, and therefore the number of acceptable architectures,
varies greatly. Such that in scenario ‘b’ (‘Productivity’ weight = 0.2, ‘Activity’ weight = 0.8) none
of the architectures under analysis are acceptable. This is because utility is driven by the attribute
‘activity’ in this scenario and because lipase enzyme specific activity reported Rathi et al. (2002)
are relatively low in comparison to Bhosale et al. (2016) and market standard. Therefore, based on
this analysis Rathi et al (2002) would need to improve the specific activity of their enzyme by
either increasing the amount of lipase produced per mg of total protein, developing a very efficient
protein purification process, or both.

This case exemplifies the importance of correctly assigning weight to the different Single-
Utility Functions (SUF). As observed, the different weights can lead to drastically different results.
Scenario ‘a’ resulted in 7 acceptable architectures, scenario ‘b’ in none and finally scenario ‘c’ in

15.
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When comparing non-dominated architectures; in other words, architectures on the Pareto
frontier, two architectures stand out (shown in red circle in scenario ‘b’ and °‘c’). As the weights
of ‘productivity’ and ‘activity’ flip, these two architectures are responsible for the change in the
shape of the Pareto frontier. The utility score of these two architectures in comparison to the rest
of the architectures in the Pareto frontier drops significantly in scenario ‘b’, where the attribute
‘activity’ has more weight. This result suggests that these two architectures yields higher
productivity (U/mL*hr) based on the increase of total protein and not lipase enzyme alone. If the
increase of productivity observed was based on increase of lipase enzyme expression, then it is
expected the utility score for specific activity (U/mg) would not drop, thus change of shape in the
Pareto frontier would not occur. Therefore, this result highlights the importance of analyzing the
complete bioprocess, as these two architectures might require a more efficient downstream
processing.

Finally, similar to DHA case study, for scenario ‘c’ the architecture with the highest utility
score might not necessarily be the optimal architecture, as the following architecture towards the
left of the Pareto frontier costs 43% less, with only a 17% decrease in utility score. However, this
analysis does not take into account the downstream processing. As discussed in the above
paragraph, because the higher productivity of the architectures in red circle is apparently due to
increase of overall protein production (not lipase alone), the downstream processing would have
to compensate for this fact. Thus, if at the point of the analysis no downstream information is
available, a “safer” approach would be scenario ‘a’ (a weight of 0.5 for each attribute). In this
scenario, the conclusion derived in scenario ‘¢’ is no longer true. In this case, the difference in
cost between the highest utility architecture and the next architecture on the Pareto frontier towards
the left (closer to Pareto optimal) remains 43%, but the decrease in utility score is 54%. Once
again, this highlighting the importance of weight assignation and an analysis taking into

consideration the complete process.
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5. DISCUSSION AND CONCLUSION

It is to the author’s understanding that the use of Tradespace, particularly MATE in the context
of bioprocesses had not been proposed before, potentially due to the high complexity of
biochemical processes, as it was demonstrated in the development of a DVM. Unlike other
systems, in bioprocess systems it is non-trivial to link a given attribute to one (or a reduced number)
of design variables. In order to overcome this issue, the present thesis proposed the use of DoE,
specifically PB design, to identify most critical design variables followed by a RSM to develop
single-utility curves. This new MATE-DoE methodology was tested in two case studies, proving
the possibility of implementation.

These two case studies exemplified the benefit of an integrated development process, where
several architectural designs are simultaneously assessed for more than one criteria. Unlike the
traditional sequential process the “MATE-DoE” method proposed in this thesis avoids pre-mature
focusing. It also allows a multi-objective, multi- attribute optimization. As a result, MATE-DoE
method allows:

a) The exploration of several architectures (combination of process parameters) and
comparison based on differential cost. Thus, allowing the identification of architectures
with similar utility but different cost, giving rise to cost saving opportunities.

b) It allows a straightforward comparison to market standards and competitors. SUF (Single-
Utility Functions) facilitate the comparison to exiting products, while at the same time they
translate an attribute value into utility score. This last point allows the aggregation and
simultaneous analysis of several attributes.

c) Itassess a group of attributes, as opposed to an attribute in isolation. Customer decision to
buy a given product is a complex process, where several attributes of the product are taken
into account and trade-offs are made. The proposed MATE-DoE method takes this
complexity into account. The weighted sum method used to develop a MUF (Multi-Utility
Function) allows decision maker to score architectures based on how well they perform in
achieving a group of attributes according to customer preference (in terms of which
attributes and in order of importance). It allows the aggregation of several attributes into a
dimensionless parameter, referred to as utility.

It is important to point out that the aim of the MATE-DoE method is to complement existing

process simulation software. It combines and links bioprocess optimization practice with market
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research results. Thus, it promotes multi-disciplinary, cross-functional team work. Furthermore,

the main purpose of MATE-DoE, would be to analyze different scenarios at a time, comparing its

potential total, or differential cost. As shown in both case studies, this would potentially support

the identification of architectures with slightly lower utility but allowing considerable savings in

cost. Furthermore, if a specific market segment and price can be identified, a Tradespace of

profitability vs. utility would clearly show the tradeoffs between this two objectives.

While the proposed method was successfully used in two case studies, in the implementation

of MATE-DoE in both case studies some challenges where encountered:

1.

Incomplete experimental data. Due to time constrains, experimental data was obtained from
published papers. Thus, the analysis had to be adapted to the published information as opposed
to carrying out experiments to solve the question of what are the most important design
variables for the attributes identified. Therefore, experimental results measuring oxidation
levels of DHA was not found. Instead, in both cases the attribute ‘productivity’ was analyzed.
This is because the objective of process development is typically to increase productivity.
Furthermore, for case study 2, ideally, the experiments would have been carried out in small
fermenters, as opposed to flask experiments, as it is well known that due to superior aeration
conditions, productivity in bioreactors is higher.

Assumption in minimum, maximum utility value and utility weight. It is important to point
out that in a real-life scenario, surveys, interviews and deeper market analysis need to be
performed to identify reasonable maximum, minimum, utility values and weights. This process
might be long and would potentially require several discussion with the development team, as
a ‘right’ values does not exist; rather it is an agreement and an educated guess based on market
data. For both case studies, an effort was made to find commercial DHA and lipase data.
However, interviews with experts and continuous discussion with the development team were
beyond the scope of the present thesis.

Research stage of experimental data. Published data in scientific journals are typically in
research stage, often times conducted at a university laboratory. To be more accurate, and to
be able to compare to maximum and minimum attribute values, the experimental data should
be beyond the research stage and rather in process development stage. This might explain, for

example, the low ‘specific’ activity’ values reported by Rathi et al (2002) for lipase enzyme.
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The above challenges highlight the importance of three elements for the successful

implementation of the proposed “MATE-DoE” method:

a)

b)

Thorough market analysis to identify customer attribute preference. As proven in the
second case study, the weighted sum method used to derive a MUF (Multi-Utility
Function) score can yield different results when weights are assigned differently. For
example Multi-utility Tradespace scenario 2 of lipase enzyme case study, resulted in zero
acceptable architectures. This subjective scoring system can hugely misguide the analysis
if not performed appropriately.

Thorough market analysis to identify attribute maximum and minimums. In order for
the MATE-DoE Tradespace analysis to be significant, the appropriate identification of
attribute maximum and minimum acceptable values for each Single-Utility Function is
essential. Otherwise, what appears to be a high utility score architecture can in reality be a
low performing architecture.

Coordination, analysis and discussion with the process development team. The
identification of appropriate attribute maximum, minimum and weight, involves not only
the marketing team, but also the process development and management team. As
mentioned before, a “right/correct” value does not exist. But rather it is an agreement based
on market and existing process information.

Also, due to the number of experiments needed to be carried out in DoE (even though less
than one-at-a-time experiments, nonetheless still a considerable number of experiments is
required), a good coordination with the process development team is essential to avoid
unnecessary experiment repetition. Ideally, a good planning would result in a coordinated
effort to collect information for several attributes at once, and not repeat experiments (i.e.:

one set of experiments to measure productivity, oxidation level, purity, etc.)

Finally, due to the great number of experiments and market analysis involved, further studies

to simplify the method are recommended. Potential ways of simplifying the method are:

1)

MATE-DoE applied only on the fermentation and downstream steps. While upstream
processes are very important in the process development, they have little impact on cost.
MATE-DoE Tradespace is meant to help analyze the tradeoffs between attributes

(productivity, activity, oxidation level, purity, etc) and cost (total cost, differential cost,
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2)

3)

profitability, etc.). Thus, there seems to be no point on carrying out MATE-DoE
Tradespace in upstream process.

PB design as a go/ not go decision for MATE-DoE. After identifying critical design
parameters for a given attribute, a cost calculation assuming all the identifying parameters
in their high (+1) and low value (-1) can be carried out. The estimated cost in a scale up
scenario can be compared. If the difference (at scale) between an architecture with all the
design variables in +1 and an architecture with all the design variables in -1 is not
significant, then a MATE-DoE Tradespace analysis would not be recommended.

Coding to create more architectures. Once single-utility functions are developed, more
architectures (within the +1 and -1 values of each design variable) can be predicted using
software such as MATLAB ®. In this way more architectures can be identified along the
Pareto frontier without carrying out the required experiments. Also, this would avoid
“artificial clustering” due to DoE. For example, in case study 1 (DHA), the trade space

seems to suggest 5 clusters as shown in the figure bellow:
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What appears as 5 distinctive clusters is in reality the 5 levels analyzed in the Central
Composite Circumscribed DoE. Because in case study 1, a simplified analysis taking into
consideration only one utility (productivity in this case) and one cost driver (i.e. power density)
the architectures are clustered and correspond to the 5 levels of the DoE design. This
phenomenon was not observed in case study 2, as more than one utility and cost driver was
taken into account in the analysis. Computer simulations can further prevent this artifact. By
using the corresponding Single and Multiple Utility Functions, computer simulations can
populate the Tradespace, showing a greater number of possible architectures, avoiding this
“artificial clustering” created by experimental results.

Finally, further studies incorporating downstream process to further assess the applicability
of the proposed method are required to better understand its applicability. As it was shown in
case study 2, the analysis of the complete bioprocess is essential for an accurate assessment.

In conclusion, the proposed “MATE-DoE” could potentially contribute and complement
existing bioprocess simulator software by performing a more holistic, integrated analysis and
promote early discussion between marketing and process development team. However, this
method should be used with caution, as inaccurate input data could yield misguiding results.
Particularly, the weighted sum method to produce Multi-Utility Functions (MUFs) has to be
appropriately performed. Further studies to simplify the proposed method are recommended.
Also, case studies analyzing the complete bioprocess are required to further assess the

applicability of the “MATE-DoE” method proposed.
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APPENDIX A — SUPERPRO SOFTWARE OVERVIEW

To model an integrated process on the computer using a simulator, a flowsheet that represents the
overall process is first developed. The figure bellow for instance displays the floowsheet of a

hypothetical process in the main window of SuperPro Designer. The flowsheet is developed by

putting together the required unit operations and joining them with material flow streams.
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Next, the user initialize the flowsheet by registering (selecting from the component database) the
various materials that are used in the process and specifying operating conditions and performance
parameters for various operations.

In continuous operations, a piece of equipment performs the same action all the time. In batch
processing, on the other hand, a piece of equipment goes through a cycle of operations. For
instance, a typical chromatography cycle includes equilibration, loading, washing, elution and
regeneration. In SuperPro Designer, the set of operations that compromise a processing step is
called “unit procedure™ (as opposed to “unit operation™). Each unit procedure contains individual

tasks (e.g., equilibration, loading, etc,.) called operations.
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g Operation Sequence for Proc

For every operation within a unit procedure, SuperPro includes a mathematical model that
performs material and energy balance calculations. Before any simulation can be done, the user
must initialize the various operations by specifying operating conditions and performance
parameters, as shown below:

ELUTE-1 (Elution)

Source: (Petrides, Bioprocess Design, 2000)
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APPENDIX B — F- DISTRIBUTION
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APPENDIX C — STAKEHOLDERS NEED DESCRIPTION

The following table lists and describes the stakeholders taken into consideration in this

analysis:

- Project/biotech startup B:otech startup developing and owners of the bioprocess.
. Community Community provides qualified workforce for the startup
. Partner 1 Bigger ingredient company or a CMO (Contract Manufacturing organization) with
3  industrial capabilities to produce the food ingredient at scale.
- For example: a given new product development department within a bigger company,
i - such as DSM, BASF, Novozyme, or an external CMO.
~ Partner 2 Bigger mgred:ent company in charge of commercializing the muredlent If it is the
same company as Partner 1 and there is a licensing agreement in place, then the
difference between sales and finance department will be made, naming them Partner
2.a and Partner 2.b respectively.
Food manufacturing . Food manufacturing company that uses the food ingredient to manufacture their
company products.
For example: Nestle, P&G, others.

'Distributors, Wholesaler :
. and Retailer

- Consumer '

_Example of retailers: Costco, Target, Walmart, etc.
" The end user, who buys and consumes the food product.

In this analysis these three stakeholders have been aggreuated since they have similar

" needs. As a group, this distribution channel has the objective of selling food products

to the consumers.

. Private investors

_carried out.

“This could be venture capital, or angel investors of the biotech startup. But it could

also be a private company investing in a specific project. However, independent of
the type of investor, this is an entity that provides cash so that the project can be |

. Government investment

It can be investment in the form of grants, or other incentives such as tax incentives

or loans.

. Examples are federal agencies such as NIH (National Institute of Health), NSF (The

. National Science Foundation) and programs such as Small Business Innovation
_ Research (SBIR) and the Small Business Technology Transfer (STTR).

. Regulators - Governmental entities in charge of enforcing the law and ensuring the safety of the

: ingredient and food for the population and the environment.

For example: FDA, EPA
- NGOs Non-Governmental entlty that advocate for food safety and communicate their view

on healthy food and food ingredients. They creat: change by raising awareness about
certain topics. Some controversial topics NGOs might advocate for within food
industry might be: 1) traceability 2) labelling 3) health claims 4) environmental

friendly and susm:mablhtypmcess However, one of the most nmporta.nt topic m this

case might be transgenic. mgl‘edlents
Some examples of NGOs in the Umted States are: Center for food safety

| (http://www.centerforfoodsafety.org/), Food ~and Water watch
! (http://www.foodandwaterwatch.org/), Food Mythbusters (http:/foodmyths.org/),

etc.

" Healthcare community

Similar to NGOs they also advocate for food and food ingredient safefs;‘.wﬁowever, in
this case rather than an established organization we are referring to the physicians,
nurses and other healthcare personnel whose opinion on health safety of a given food .

. and/or food ingredient might pursue the customer to consume or not a given product. _
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- Raw material, utility and Here the suppliers were also aggregated, as their needs (mostly revenue) have little |
. consumable suppliers - influence in the analysis of food ingredient specification. Instead quality
. specifications are impose on these suppliers to meet food ingredient quality needs. |

. Also, difference between the types of suppliers was omitted for the same reason. |

It is worth noticing that stakeholders that has little influence in the ‘project/biotech start
up’ were not taken into account. Thus, farmers and other raw material providers for the food
manufacturer are beyond the scope of this analysis. Also, some stakeholders such as 1) other
ingredient companies that reflects the market share, or have a positive role in growing the market;
2) packing companies, important for the food manufacturing company, 3) academia, from which
technical knowledge and new ideas for ingredient bioprocess production may emerge, among
others stakeholder are not taken into account, as they have little influence in determining product
specification, which is the objective of the present stakeholder analysis.

It is also important to highlight that in this analysis only the food and beverage market
segment is taken into account. In other segments such as supplement or animal feed, the
stakeholders and the nature of their interaction might be different. For instance, for feed industry,
‘pellet manufacturer’ and ‘farmer’ would need to be considered and the distribution channels
would differs greatly.

Finally, the nature of the interaction might be different and case specific, depending on the
kind of agreement the biotech start-up is able to negotiate. For instance, for lipase enzyme, the
biotech company could choose to license the process to a big company such as Novozyme (who
then becomes ‘Partner 1 and *Partner 2°) or raise funds to produce it themselves and sell it to the
ingredient to a bigger company (in this case ‘Partner 1’ would be a CMO and ‘Partner2” the bigger
company buying the ingredient). Since the specific type of agreement cannot be defined
beforehand and since the objective is to identify product specifications, it is expected that the
characteristics of the agreement will not impact the underlying need of each stakeholder. Thus, it
was assumed for this stakeholder analysis that the biotech startup had a licensing and royalty

agreement with a bigger firm, even though the author recognizes that this is not always the case.
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The following step is to describe each stakeholder’s needs.

Project/biotech startup

Licensing fee

Royalty P e e

Community

| Partner 2.b

| Partner 2.b (however, only possible if sales is
| received form Food manufacturing company)

Investment

Private and government investment

Equipment and raw material

. Raw material suppliers

friendly product and process

manufacturer

‘ Regulato.ry approval " Granted by regulators
Partner 1 (process Well defined process parameters = Biotech startup
development department) Salary Partner 2.b
Partner 2.a Food ingredients Partner 1
(sales department) Payment Food manufacturing company
Salary Partner 2.b -
Partner 2.b ~Income ~ Partner 2.a
(finance department) i
- Food manufacturing Food ingredients | Partner 2.a
company . . s , i el il ]
- Distributors, Wholesaler ~ Food products ~ Food manufacturing company
andRetailer G Renemy (00 © 0 @ - Censmmer 0 |
Consumer - Food product Retailers B e
~ Recommendation Healthcare community and NGOs
tors RO Biotech Statup.
Government investment __ Project report Biotech Startup
- Regulators - Safe and environmentally Biotech Startup, Partner | and Food
: - friendly process manufacturer
- NGOs/local communities  Safe and environmentally Biotech Startup, Partner 1 and Food

" Healthcare commun ity

consumable suppliers

Safe and Healthy

Revenue

Biotech Startup, Partner | and Food
manufacturer

BlotechSp i
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APPENDIX D — OBJECT PROCESS LANGUAGE

Object A: A is physical (and Ais informatical and
A thing that exists environmental}. systemic by default.

g Process B:

@ A thing :hat transforms B is physical (and B is informatical and
{{)g:?:;’ :gz’tﬁn:; T:Z} environmental). systemic by default.
an object).

Alds sl
State: ) Always within an
A situation of an object. Acanhe S_l ks . object.
A can be s, 52, or 53,
Allowed Source- | Semantics/ Effect
Symbol Name OPL to-Destination on the system
connections flow/ Comments
' Aggregation- : Object-Object y
" Participation At orB, Process- Process File-Fert
Object-Object
Exhibition- s Object-Process
A | Characterization | A Shibits B. Process-Object
Process- Process
Generalization- B is an A. (objects) Object-Object
A Specialization B is A. (processes) Process- Process
Classification- - Object-Object
& Instantiation Bis aninstance of A. Process- Process
- Tagged . ol According to text Object-Object De, scnl hes
e links: Unidirectional | ;e by user Process- Process | > o
Bidirectional information.
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Name Symbol OPL Semantics
. . Process B consumes
Consumption Link A B consumes A. Obiject A.

State-Specified
Consumption Link

B consumes s1 A.

Process B consumes
Object Awhen it is at
State s1.

Process B creates

Result Link B yields A. Obi %
i Process B creates
State-Specified _ _
Result Link B yieids s1 A. Object A at State s1.
Process B changes
i the state of Object A
?;?t PARERK f;"a“g“ Afrom s110 | 6om State s1 to
' State s2.
i flect Process B changes
A kg = the state of Object A;

Informatical

Systemic

Process

o

-

Ed - .
¢ |nformatical

{ Emvironmental

> Process

~

-~ -

- -
o -

~

Physical Infornatical
Systemic Systemic
Process Ooject

JUEE T - R R
~ * . s 1 = L]
a ;/ _ Physical , Informatical
} « Envionmental & + Environmental .
2 ». Process : Opject 3

Informatical Systemic Process is an informatlical and systemic process.
Physical Systemic Process is a physical and systemic process.
Informatical Systemic Object is an informatical and systemic object.
Physical Systemic Object is a physical and systemic object.
Informatical Environmental Process is an informatical and environmental process.
Physical Environmental Process is a physical and environmental process.
Informatical Environmental Object is an informatical and environmental object.
Physical Environmental Object is a physical and environmental object.

Physical
Systemic

Object

1

1 Physical
! Emvironmental
' Cbject
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Name Semantics Sample OPD & OPL Source Destination
Food 2> Eating
Consumption Zg:szﬁgistie consumed | consuming
: object process
e object. Eating consumes Food.
Result plo prc;cez‘;ts‘ @ PLCoeeer creating created
es the .
link ggf:";a . . process object
jeCt. Mining yields Copper.
The process .
Effect affects the object E—P| Copper | | 4ffected object and
Hink by changing it affecting péc:icess are both
from one state to source and destination
another state. Purifying affects Copper.
Name Semantics Sample OPD & OPL Source Des;:’natl
Agent is a human or
a group of humans _
who enables the agent‘ e
Agent occurrence of the %genng enabled
link process to which it ’ process
is linked but is not ensbiing
transformed by that Welder handles Welding. object
process.
Instrument is an
inanimate object
that enables the instrument
Instrument | occymence of the ) ~the enabled
link process to which it | Manufacturing requires Machine. | enabling process
is linked but is not object
transformed by that
process.

Source: (Dori, 1995), (Dori, Object-Process Methodology - A Holistic System Paradigm, 2002)
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APPENDIX E —CASE STUDY 2 MULTI UTILITY SCORES

- Case Study 2: Lipase Multi-Utility Tradespace scenario ‘a’

1| RUNa  Yotal Productivity  Spedific activity Weighted  Weighted specific Productivity weight 0.5
2 . $/5om3 - utility score utility score Productivity activity Multi-utility score |Specific activity weight 0.5
3 1 90849 0.03 -0.38 0,016 0192 | -0.176 i ]
4 2 54330 | 053 025 0266 : 0.140 :
50 3 imar -0.08 -0.43 -0.238 :
5 4 25184 -0.12 -0.48 -0.298
? 5 umos 003 -0.36 o2
3 6 54330 0.19 0.33 -0.069
g 7 2731 0.2 -0.36 -0.069
10 8 543,30 0.19 -0.33 -0.069
3t 0,32 ; 0097, H
12 -0.02 : -0.219
13 -0.08 -0.273
14 022 -0.092
15 0.00 -0.167
i3 0.13 -0.114
17 0.15 : -0.203
18 oaa .. ! 0.068
19 0.19 i -0.069
20 0.19 -0.069
21 0.19 -0.069
22 0.43 0177 | 0.037
23! 0.28 0.172 -0.034
241 0.48 0.176 0.064
25 o0 0201 ¢ D184 e
26 0.03 -0.188 -0.174
27 026 -0.179 -0.001
28 0.06 5. 1,031 0,257
29 0.13 -0.38 0.067 -0.122
30 0.04 -0.38 o.0n 0171
31 0.51 -0.35 0.256 0474 o082
003 L 0as o016 0218 0.2
13 0.48 -0.25 0.242 0126 0.117
4! 0.19 0.33 0.09 -0.165. -0.069

- Case Study 2: Lipase Multi-Utility Tradespace scenario ‘b’

Cvotal  Productivity  Specific activity ] Productvity weight

2 $/50M3 utility score atility score. Productivity activity . Multi-utility score |Specific activily weight
3 1 908.49 .03: . 2 -0.307. -0.301
4 2 54330 : 0200 -0.094
s 3 men -0.347. -0.356
6 4 25194 0384 0%7
3 5 1170.06 0287 | 0280
8 6 | 54330 0264 -0.226
& ! 3433 - :
w0l 0264
1t o264
4 2420 T M A N u
3 un . 4 0375
4 T I L o S W © .| | S :
is 3 56235 -0.267
5 14 43830 -0.286
17 15 64830 0285
18 16 52435 0215
19 17 543.30 -0.264 i
20 18 54330 -0.264.
21 19 | 543.30 ) .33 0.264
2 0 97700 0.43 035 0.086 -0.284.
23 2 83028 0.28 o b3a 065 0.275.
24 2 30989 0.8 035 0.096 -0.281
25 23 509.82 0.03. -0.40 0.007 0322
26 4 0 77232 0.03 -0.38 2.006 -0.301
27 = 99.39 0.36 -0.36 0071 -0.287.
28 26 439.68 -0.06. -0.45 0.012 -0.361
20 27 63498 0.13 -0.38 0.027 -0.303:
E%) 28 960.06 0.04 -0.38 0.009 -0.308.
3n 23 s30.28 0.51 -0.35 0.103 -0.278.
32 30 229.68 -0.03 -0.44 0006 -0.3a8.
33 31 343.30 0.48 -0.25 0.097 03201
34 320 54330 0.19. -8.33 0.038 -0.264!
LY i i




- Case Study 2: Lipase Multi-Utility Tradespace scenario ‘¢’

(=R V- YRR S ]

| rune  votal Productivity  Specific activity weighted  Weighted specific
$/50M3_ utilityscore __utility score Productivity activity

12088 LT S RO, .. SR .| a0l

27 . 543.30 0.53] -0.25 0.425 -0.050 0.375

3 1781 -G.04 -0.43 -0.033 -0.087 -0.120
4 | 25194 -0.12 -0.48 -0.093 -0.096 -0.189
5 | 1170.06 0.03: -0.36 0.027 0072 | -0.044
6 54330 .13 033 0.153 0.066 0087

7 24731 0.22 -0.36 0.130 -0.073 0.107
B 54330 0.19 -0.33 0.153 -0.066 0.087
s 1040.28 0.52 -0.23 0.419 -0.066 0.353
¢ . 98232 -0.02 -0.42 -0.017 -0.083 -0.100
11 41.94 -0.08 -0.47 -0.061 -0.094 -0.155
12 37.31 : 0.175 -0.081 0.0%4
13 56235 0.000 -0.067 -0.067
14 43830 0104 -0.072 0.032
15 64830 0.119 0.071 0.048
16 52425 0324 -0,054 0.270
17 54330 0.153 -0.066 0.087
18 54330 0.153 -0.066 0.087
13 54330 0.153 -0.066 0.087
0 97770 0.43 0.343 -0.071 0.272
o = e B e O el
2 . S0 e a8 207 0313,
23 50982 03 0.027 -0.080 0.054
24 a2 0.03 -0.38 0.023 0.075 -0.052
25 99.89 0.26 -0.36. 0.285 -0.072 0.714
26 439.58 -0.06. 045 -0.050 -0.090 -0.140
27 63298 0.13 -0.38 0.108 -0.076 0.032
23 960.06 0.04 -0.38 0.034 -0.077 0.043
23 83028 0.35 0.410 -0.070 0.340
30 229.68 -0.44 - 0.026 -0.087 0.113
31 543.30 .25 0338 -0.050 0.337
32 54330 -0.33 0.153 0066 0.087

] Multi-utility score |Specific activity weight

U:B.A.

.0-25. »
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