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ABSTRACT

The field of systems engineering upholds that fundamental engineering principles exist and

are applicable across different domains and contexts. In this thesis, a state-of-the art decision and

design evaluation method developed for aerospace systems, Multi-Attribute Tradespace

Exploration (MATE) is complemented with Design of Experiments (DoE) and applied for the first

time to a bioprocess design problem. The implementation of DoE was necessary due to the high

complexity of bioprocess systems, where a design variable (or a reasonably small number of design

variables) cannot be easily identified to explain a given attribute of the product or process. DoE

not only allows the identification of design variables that most influence a given attribute, but also

allows the development of Single-Utility-Functions facilitating the incorporation of the Multi-

Utility component of the MATE method.

The proposed new MATE-DoE method was implemented in two case studies to assess its

applicability; namely bio-production of DHA and bio-production of a lipase enzyme. Based on

published DoE experimental results, utility functions and cost estimations were carried out to

develop a Tradespace. The resulting Tradespace demonstrates: (a) the possible implementation of

the proposed method, (b) that the use of Tradespace complements the traditional bioprocess

development practice by allowing decision makers to choose an architecture that optimizes for

more than one objective (multi-objective), (c) that the proposed method takes into consideration

the complex decision making process of customers (multi-attribute), and (d) that simultaneous

comparison analysis to competitors and market standards are possible using the method.

While the method was proven to be applicable, it is relatively complex and the number of

experiments and market data required might prevent its broad implementation. Also, potential

errors and misleading results might result from inaccurate input data. Special attention and effort

need to be put in accurate Single-Utility Function (SUF) weight designation to avoid this problem.

The importance of assessing the complete bioprocess, as opposed to individual unit operations, is

highlighted. Finally, further studies to develop "rules of thumb" in order to simplify the proposed

MATE-DoE method is suggested.

Thesis Supervisor: Andrey Zarur
Title: Senior Lecturer, Martin Trust Center for MIT Entrepreneurship, Sloan School of

Management
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1. INTRODUCTION

1.1. PROBLEM AND MOTIVATION

Industrial biotechnology encompasses the application of biotechnology-based tools to

traditional industrial processes ("bioprocessing") and the manufacturing of bio-based products

(such as fuels, chemicals and plastics) from renewable feedstock (Erickson, Nelson, & Winters,

2012). The development of technologies and disciplines, such as second generation genome

sequencing, synthetic biology and fermentation process engineering has opened the door for the

development of new biochemical platforms. Process optimization is crucial for platforms based on

fermentation technologies. This is especially true for biotech startups focused on the development

of more sustainable, environmentally-friendly and cost-efficient commodity chemicals. However,

traditionally bioprocess optimization is highly focused on increasing productivity, while cost

analysis studies are often times performed later in the PDP (Product/Process Development

Process). In other words, it is a lineal process were production parameters are first defined and

then a cost estimation for the established parameter is performed. This lineal process misses the

opportunity of operating cost optimization. For example increasing the agitation rate (RPM) in a

bioreactor can increase aeration, resulting in increase of yield (biomass), but it also increases power

consumption and therefore cost (Gill, Appleton, Baganz, & Lye, 2008). Thus, the question

remains, what is the choice of conditions that optimizes both, yield and cost? Furthermore, how

can other attributes such as purity and stability be accounted for at the same time yield is maximize

and cost minimized? The following thesis proposes the use of Tradespace Analysis study as a

dynamic and visual tool that can support the decision of what the best production parameters are

that optimize overall performance and process cost simultaneously. Furthermore, the use of such

tool can help close the gap between engineering and management by articulating clearly the

magnitude of realized savings in the optimization of a given process and justify investment in

process development.

The present thesis explores the applicability of Tradespace Analysis by developing a

conceptual Tradespace process for the production of biocompounds. In order to partially illustrate

how the suggested Tradespace process could be applied, two case studies were analyzed, namely

the production of 1) a bacterial lipase enzyme and 2) an algal DHA. In the following subsections

the context in which this two biocompound are used, their economic importance, as well as a

general overview of bioprocess, fermentation and PDP in biochemical engineering is presented.
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Finally, the applicability of Tradespace Analysis in assisting the PDP process and how it differs

from other bioprocess modelling tools is discussed.

1.2. INDUSTRIAL BIOTECHNOLOGY

Industrial biotechnology (also known as white biotechnology or green chemistry) refers to

the use of living systems, organisms or components of cells, such as enzymes, to develop and make

products in sectors such as chemical, food and feed, detergent, pulp and paper, textile and

bioenergy (such as biofuel and biogas). It is often referred to as the third wave of biotechnology

(The Economist, 2009). The first wave refers to biotech products in medicine; second wave refers

to agricultural biotechnology. Industrial biotechnology is one of the most promising approaches to

pollution prevention, resource conservation and lowering greenhouse gas emissions. By using

renewable raw materials bioprocesses are cleaner, more sustainable and contribute to moving away

from petrochemical-based economy to a biobased economy. "It offers businesses a way to reduce

cost and create new markets while protecting the environment. Also, since many of its products

do not require the lengthy review times that drug products must undergo, it's quicker, easier

pathway to the market. Today, new industrial processes can be taken from the lab to the

commercial application in two to five years, compared to up to a decade for drugs" (Simpson,

2005).

1.3. INDUSTRIAL BIOTECHNOLOGY IN FOOD AND FEED

The use of biological processes in food production existed long before the discovery of

microorganisms. It was perhaps the very first application of biotehcnology. The oldest biological

process in food production is the conversion of sugar to alcohol by yeasts to produce beer- a

fermentation process carried out as early as 7000 BC on small and individual scale by Chinese

villagers (McGovern, Zhang, & J.G, 2004). However, the process of fermentation was not filly

understood until it was described much later, by Louis Pasteur in 1857, who concluded that

fermentation was a living process of yeasts (Demain, 2010).

Humans have leveraged fermentation processes and used microorganisms such as yeast and

bacteria for the production and preparation of foods for thousands of years. Amongst the traditional

products produced through fermentation are bread, wine, beer, yogurt, cheese, sausage, soy sauce,

vinegar, amongst others. With the advent of molecular biology, microorganisms are today being

I1



genetically engineered and used as cell factories to produce a great variety of metabolites and

enzymes that are used as food, drink or food additives (Table 1) (Rahman, 2016).

Table 1 - Food and food ingredients produced by microorganisms in fermentation industries.
Source: Adapted from (Rahman. 20/6)

Starter culture

Probiotics

Alcoholic beverage

Preservative/

acidulants

Nutritional

supplements/

neutraceutical

Flavor enhancer!

aroma compound

Sweetener

Preservatives/
acidUlants

Functional food/
neutraceuticals

Food coloration

Prebiotics

Preservatives

Lipases,

Amylase,

Galactosidase

Etc.

Cultured buttermi k, cultured sour
cream

Bulgarian milk

Acidophilus milk

Yogurt

Baker's yeast

Fermented milk, yogurt, cheese,
dried powder, captuse

Beer, wine

Lactic acid

L-tryptophan, L-phenylalanine, L-

tvrosine, L-threonine, L-isoleucine,

L-histidine, vitamins

Isoprenoids,

diacetyl,
acetaldehyde

Xylitol, L-alanine, Mannitol,
Sorbitol

Citric acid, acetic acid lactic acid,
succinic acid, pyruvate

Resveratol (flavonoid)

Carotenoids

Exopolysaccharides

Bacteriocins

Used in several food production

processes. See table 2.

Lactococcus lct/is or Streptococcus

cremoris and Leuconostoc citrovorum
or Leuconostoc dextranicum (mixed)

Lactobacillus bulgaricus

Lactobacillus acidophilus

Streptococcus thermophiles

Laciobacillus buigaricus

Saccharomyces cervisiae

Lactobacil/us casei Shirota

Lactobacilusjohnsonii

Lactobacilus casei
Bifidobacteriun animalis

Lactobacillus acidophilus NCFM

Streptococcus thermophilus.

Strepiococcus thermophilus.

Enterococcus/fiecium

Saccbaromvces cervisiae

Lac/ococcus lactis

Corvnebac/erium glutamicutn

Lactic acid bacteria

Bacillus subtillis
Sacchuromyces cervisieae

Lactic acid bacteria

Saccharomeces cen'isieae

Lactic acid bacteria
Lactic acid bacteria
Escherichia coli

SaccharomYces cervisiae

Escherichia coli

Saccharomyces cervisiace

Escherichia coli

Lactic acid bacteria
Bacillus subtillis

12

Biomass

Primary
metabolite

Intermediate
metabolite

Secondary
metabolites
antibiotic)

(non)-

Secondary
metabolite
(antibiotic)

Enzymes



From the list above, production of enzymes for food processing are of special interest, as
they are used to improve a great variety of food manufacturing processes (Table 2). They can
improve texture, appearance, nutritional value and may generate desirable flavors and aromas.
Because they are used in such a wide variety of food and beverage production processes, the
food enzymes market is expected to reach US$ 2.7 billion by 2020, with a CAGR of 8.1% from
2015-2020 (Mordor Intelligence, 2015).

Table 2 - Enzymes used in food and beverage industry and their application.

Source: (Amore & Faraco, 2016)

Industry

Starch

Food (including dairy)

Baking

Beverage

Enzyme

Amylase
Amyloglucosidase
Pullulanase
Glucose isomerase
Cyclode xtrin-glycosyltransferase
Xylanase
Protease
Lipase
Lactase
Pectin methyl esterase
Pectinase
Transglutaminase
Amylase
Xylanase
Lipase
Phospholipase
Glucose oxidase
Lipoxygenase
Protease
Pectinase
Amylase
9-glucanase
Acetolactate decarboxylase
Laccase

Application

Starch liquefaction and saccharification
Saccharification
Saccharification
Glucose to fructose conversion
Cyclodextrin production
Viscosity reduction (starch)
Milk clotting, infant formulas (low allergenic), flavour
Cheese flavour
Lactose removal (milk)
Firming fruit-based products
Fruit-based products
Modify visco-elastic properties
Bread softness and volume, flour adjustment
Dough conditioning
Dough stability and conditioning (in situ emulsifier)
Dough stability and conditioning (in situ emulsifier)
Dough strengthening
Dough strengthening, bread whitening
Biscuits, cookies
De-pectinization, mashing
Juice treatment, low-calorie beer
Mashing
Maturation (beer)
Clarification (juice), flavour (beer), cork stop

Food enzymes are typically derived from animal, vegetable and microbial sources.

However, both animal and vegetable enzymes present difficulty in the extraction process and other

products of cellular metabolism can interfere with the enzymatic activity. Also, vegetable enzyme

production depends on external factors such as climate, soil and seed. Furthermore, animal

enzymes are limited by ethical parameters, shortage and concerns related to health and origin of

the animals and organs (Vermelho, Cardoso, Pires Nascimento, Pinheiro, & Rodriguez, 2016). In

contrast, microbial enzymes production proceeds independently of external factors, has a simple

extraction process and does not have shortage or animal health concerns. The main sources of

microbial enzymes are bacteria, fungi and yeast. These are grown under controlled conditions in

bioreactors. At the end of the process, the broth in the bioreactor contains enzymes, nutrients and

13



the corresponding microorganism, from which the desired enzyme is extracted and purified (for

more details please refer to section 1.4). Moreover, with the advance of synthetic biology, new

enzymes, with new functions and improved production are being introduced into the food industry.

However, despite the many advantages of microbial enzymes, their overall production cost is high

relative to those of vegetal and animal enzymes origin. This can significantly limit their

introduction into the market.

Yet another group of microorganisms used as cell factories, as well as raw materials for

food and feed products, are microalgae. Even though the use of microalgae by humans date back

2000 years to the Chinese, who used Nosloc to survive during famine (Spolaore, Joannis-Cassan,

Duran, & Isambert, 2006), it was not until the 1940s that microalgae became more and more

important as live feeds in aquacultUre (Hallmann, 2007). And while macroalgae (seaweed), have

an old tradition in the use of biomass for the production of phycocolloids like aga-agar, alginates

or carrageenan (Pulz & Gross, 2004), the use of microalgae in biotechnology is significantly more

recent. As a matter of fact, from virtually none in 1990, the total number of publications on algal

biotechnology leapt to 153 by June 2011; of these, 103 were on microalgal biofuel (Darvasula,

Darvasula V., & Rao, 2013). The market size of products from rnicroalgae was estimated by Pultz

and Gross in 2004 to have a retail value of US$ 5-6.5 billion (Table 3). From which the biggest

segment were biomass for health food and production of docosahexanoic acid (DHA), US$1.25-

2.5 billion and US$1.5 billion, respectively.

Table 3 -Market estimation for microalgal products

Source: Adapted from (Pulz & Gross, 2004)

Biomass Health food 1,250-2 500
Functional food 800
Feed additive 30
AqUaculture 700

Coloring substances Astaxanthin <1 50
Phycocyanin >10

Antioxidants B-Carotene >280
Antioxidant extract 100-150

Fatty acids ARA 20
DNA 1,500
Po ly-un saturated fatty acid extracts.1

Microalgae (as well as other types of algae and cyanobacteria) are mainly cultivated by

two approaches: a) Open ponds or tanks and b) closed bioreactors (Figure 1). The first relies on the

use of solar energy to produce biomass; thus a photosynthetic process. The second requires the

14
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input of nutrients (carbon and nitrogen sources), heat and in some cases oxygen; thus a

fermentation process. Bioreactors provide better control of growth parameters, prevent

contamination and allow higher volumetric productivities. at the expense of higher cost and energy

requirements than open pond (Harun, Singh, Forde, & Danquah, 2010). Since both systems have

benefits and limitations, the choice will depend on the final product, targeted market, biomass

productivity and metabolic requirements of the specific microalgae strain used.

Biotechnological Systems
processes

Open ponds Raceway ponds

or tanks Circular tanks

Cultivation PFlat

Cell factories bioreactors Tubular
- Macro-algae Reactors Horizontal
- Micro-algae R ::tors Vertical
J! mHelical, etc.
-Cyanobacteria

Fermenters Heterotrophic
Mixotrophic

Carotenoids
Biomass

Carotenoids
Biomass
Polysaccharides
Omega-3 fatty acids

Figure 1 - Marine microorganism as cell factories.

Source: Adaptedfrom (Freitas. Rodritgues, Rocha-Santos, Gornez, & Duarte, 2012)

"There are two main categories of food market products obtained from microalgae. The

first category is dried algae (in particular the micro-algae species Chlorella and Spirulina) with

high nutrient content, especially of vitamin B12, C and D2. These micro-algal products can be

directly sold as dietary supplements and have the potential to be used in bulk commodities as

sources of protein and carbohydrates. The second type is specialty products isolated and extracted

from the micro-algae that can be added to food and feed to improve their nutritional value. These

high-value compounds are pigments (e.g. astaxanthin), anti-oxidants (e.g. P-carotene), protein (e.g.

phycocyanin) and fatty acids (e.g. docosahexaenoic acid -DHA and eicosapentaenoic acid -EPA)"

(Vigani, et al., 2015).

In this thesis, two food products produced through fermentation were used as case studies

for the analysis of Tradespace as a decision making tool in bioprocesses design. Both products

belong to the fat and oil segment. However, the first one is used as part of the process to obtain

higher value fats, namely lipases, and the second is a high value fatty acid (DHA). In the following

15



subsections, both lipase and DHIA importance, market size and application in food industry are

introduced.

1.3.1. LIPASE

Lipases (triacylglycerol acylhydrolases EC: 3.1.1.3) are some of the most useful enzymes

Ior food processing (Jaeger & Eggert, 2002). Lipases catalyze the hydrolysis (cleavage of chemical

bond by addition of water) and synthesis of lipids (Figure 2). Lipases are ubiquitous enzymes

found in animals, plants, fungi and bacteria. However, microbial lipases are commercially

sionificant as they are of low production cost, greater stability arid wider availability than plant

and animal lipases (Aravindan, Anbumathi, & Viruthagiri, 2007). Also, microbial lipases are of

great biotechnological interest because these enzymes are: (1) stable in organic solvents, (2) do

not require cofactors, (3) have great substrate specificity, (4) act over wide range of pH and

temperature and (5) have a high enantioselectivity' (Andualema & Gessesse, 20 12)

H 0
1 4 <r -

H-_C-0 - C- R, HO-CH
H 0 1

i LipasC H(-C-0-R 4 H0j H
l-C- 0 -C- R +3H2 0 -

S0 HO-_C1

-C-O -C- it, HO-C -R

j mcyiglyceroi Fatty acids GIycroI

Figure 2 - Lipase catalyzed reaction.

A triglyceride can be hydrolyzed to form glycerol and fatty acids, or the
reverse (synthesis) reaction can combine glycerol and fatty acids to form the

triglyceride. SoUrce: (Andualema & Gessesse, 20 12)

In terms of market size, "the market for lipase is projected to reach $590.5 Million by 2020,

at a CAGR of 6.5% between 2015 and 2020. The global lipase market is expected to grow in the

near future, owing to factors such as increasing health awareness among people across the globe,

changing dietary habits and growing technological advances in the food and beverage industry"

(Markets and Markets, 2015). Lipases are considered to be the third largest commercial enzyme

According to Merriam Webster Medical Dictionary:
Enantioselectivity: the degree to which one enantiomer of a chiral product is preferentially produced in a chemical
reaction.
Enantiomier: either of a pair of chemical compound whose molecular structure have a mirror-image relationship to
each other - called also optical antipode
Chiral:a) having a structure that is nonsuperimposable on its mirror image <chiral molecule> b)rclating to or
composed of chiral molecules
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group based on total sales volume, after proteases and carbohydrases (Andualema & Gessesse,

2012).

Within the food and beverage industry, lipases can be used as additives or as biocatalysts

to manufacture food ingredients. As additives, lipases can hydrolyze fats into short-chained, esters

fatty acids and alcohols, which are known flavor and fragrance compounds. This is a common

practice in the dairy industry, where lipases are used to hydrolyze milk fat to enhance cheese flavor,

accelerate cheese ripening, in the manufacturing of cheese-like products and the lipolysis of

butterfat. The addition of lipases in these processes allows the release of short chain fatty acids

(primarily C4 and C6) leading to the development of a sharp, tangy flavor and the digestion of

medium chain ( C 12, C 14) fatty acids, which tend to confer a soapy taste to the product (Ferreira-

Dias, Sandoval, Plou, & Valero, 2013).

As biocatalysts, lipases are important in the lipid industry because they can be exploited

for the retailoring of vegetable and animal oils. "Fats and oils are important constituents of food.

The nutritional and sensory value and the physical properties of a triglyceride are greatly

influenced by factors such as the position of the fatty acid in the glycerol backbone, the chain

length of the fatty acid, and the degree of unsaturation. Lipases allow us to modify the properties

of lipids by altering the location of fatty acid chains in the glyceride and replacing one or more of

the fatty acids with new ones. This way, a relatively inexpensive and less desirable lipid can be

modified to a higher value fat" (Sharma, Christi, & Banerjee, 2001). "For example, cocoa butter

fat required for chocolate production is often in short supply and the price fluctuates widely.

However, lipase-catalyzed trans-esterification of cheaper oils can be used, for example to produce

cocoa butter from palm mid-fraction" (Andualema & Gessesse, 2012). In this way, cheap oils

could be upgraded to synthesize nutritionally important structured triacylglycerol (like cocoa

butter substitutes), low calorie triacylglycerol, human milk fat substitutes and oils enriched with

specific fatty acids such as oleic, stearidonic, gamma-linoleic (GLA), conjugated linoleic (CLA)

or omega-3 polysaturated (o3 PUFA) fatty acid (Ferreira-Dias, Sandoval, Plou, & Valero, 2013).

The first case study in this thesis is a hyperthermostable lipase from Bukholderia cepacia

(Rathi, Saxena, & Gupta, 2001). The enzyme is already known to have a broad temperature range

of 25-100 'C and exhibits the novel phenomenon of thermal activation. High thermostability is

important, because in high temperatures substrate solubility increases, at the same time as the

viscosity decreases and thereby avoids environmental contamination (Andualema & Gessesse,
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2012). Also, the use of thermostable lipases is very important when these reactions occur in

solvent-free media, where at least one of the substrates has a high melting point (m.p.), such as

palm stearin (m.p. = 47-54*C). To carry out these reactions at near-room temperature, an organic

solvent to dissolve the solid fats is needed. This will increase the complexity of the system, as well

as the costs related with solvent and downstream processing. In the last decade, these facts,

together with the search for green processes, have drawn special attention to the search for lipases

produced by thermophilic microorganisms (Ferreira-Dias, Sandoval, Plou, & Valero, 2013)

1.3.2. DHA

Docosahexaenoic acid (DHA) is an omega-3 fatty acid that is a primary structural

component of the human brain, cerebral cortex, skin, sperm, testicles and retina. It can be

synthesized from alpha-linolenic acid or obtained directly from maternal milk (breast milk), fish

oil or algae oil (Guesnet & Alessandri, 2011). Traditionally DHA was produced from fish oil,

however, fish oil DHA has limited applications as an additive because of its smell, unfavorable

fishy flavor and weak oxidative stability. Moreover, the environmental implications due to

overfishing has promoted the effort to put more restrictive laws and fishing quotas in place,

limiting the amount of fish oil available for DHA (lacurci, 2014). Also, fish oil is unsuitable for

neonate formula because of the presence of eicosapentanoic acid (EPA), which acts

antagonistically with arachidonic acid (ARA) (De Swaaf, De Rijk, Eggink, & Sijtsma, 1999).

Thus, algae is currently the major alternative source for production of omega-3, especially DHA.

According to Frost and Sullivan (2014), algae DHA market is valued at US$329 million in 2012

and is expected to grow at a 12.3% CAGR to US$1,175 million in 2023. The demand in 2012 was

estimated to be 4,614 metric tons, thus an average price of US$ 54.91 per kg of DHA. DHA is

predominantly used as additive in infant formula (Figure 3), accounting for 50% (US$165.23

million) of microalgae DHA revenue and 48.9% of its shipment (Figure 3).
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Figure 3 - Microalgae DHA Oil market segment
Conversion rate I euro = US$1.3. Source: (Frost and Sullivan, 2014)

Main species of microalgae used for DHA commercial production are C-pithecodinium

co/nil and Schbzochytrium (Khosravi-Darani, Koohy-Kamaly, N ikoopour, & Zeinab Asadi, 20 16).

DSM, became the market leader in algal production of DIA after acquiring Martek Biosciences

Corporation for US$1.087 million in 2010 ([leerlen, 2010). The estimated production capacity of

algae D[IA by DSM was 5,000 metric tons in 2012.

The second case study in this thesis is DIA production of an algae strain, namely

Schizochvirium limacinum OUC88. This is a heterotrophic microbe (non-photosynthetic), with

high content of DHA (Table 4)
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Table 4 -Fatty acid composition (% of total fatty acid) of Schizochytrium linacinuln OUC88
Source: (Song X. Zhang, Guo, Zhu, & Kuang, 2007)

Fatty acids Content (%)

14:0 8.34
15:0 1.65
16:0 37.9
17:0 0.85
18:0 1.90
18:2 n-6 0.23
18:3 n-3 0.49
18:3 n-6 0.27
20:0 0.41
21:0 0.27
20:3 n-6 0.35
20:4 n-6 0.36
22:0 0.38
20:5 n-3 (EPA) 0.76
22:5 n-6 (DPA) 8.22
22:6 n-3 (DHA) 37.5

All data are means of thrwe replicates.

1.4. BIOPROCESSES

Bioprocess can be referred to as a method or operation that uses a living system or their

components to produce commercially useful products. The fundamental operational element in a

bioprocess is the enzyme, while the scope of the bioprocess ranges from reactions with single

enzymes, mixture of enzymes, singles cells to even animal and plant systems (Fig 4). Both case

studies researched in this thesis refers to cell cultivations, specifically a bacterial lipase and an

algal DHA. It is worth mentioning that the biocatalysts applications described for lipase in section

1.3.1, such as production of structured triacylglycerol is what figure 4 refers to with 'enzymatic

process'.
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Figure 4 - General applicable process tree for different classes of bioprocess

Red arrows show the process path referred to in this thesis. Red circle highlight the process unit analyzed. Source:

Adapted from (Heinzle, Biwer, & Cooney, 2006)

A bioprocess can be divided into 3 sections: Upstream processing, fermentation and

downstream processing. "As commonly done in process engineering, we consider unit operations

as basic steps in a production process. Typical unit operations in bioprocesses are for example:

sterilization, fermentation, enzymatic reaction, extraction, and filtration or crystallization. A unit

procedure we define, as a set of operations that take place sequentially in a piece of equipment,

e.g. charging of substrate to a fermenter, addition of acid to adjust pH, reaction, transfer of

fermentation broth to another vessel" (Heinzle, Biwer, & Cooney, Development of Sustainable

Bioprocesses- Modeling and Assessment, 2006). Upstream processing includes all the unit

operations that are necessary before the fermentation step. Typical upstream unit operations are:

(1) preparation and storage of solutions, (2) sterilization of raw material, (3) inoculum preparation.

Fermentation is the main unit operation in bioprocessing, of which the bioreactor is at the core.

Fermentation will be reviewed in more detail in the following subsection. Finally there are several

possible unit of operations for downstream processing. The selection among all the possible unit

operations, specific equipment and corresponding unit procedures is based on the desired

properties of the product, the impurities and the microorganism used. The following figure shows

typical unit operations for downstream processing and possible techniques for each of them.
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Source: (Petrides, 2000)

While the author of the present thesis recognizes the importance of analyzing the whole

process when developing a Tradespace analysis, (or any cost, competitiveness or sustainability

analysis for that matter), due to time constrains, the preset thesis will focus on the fermentation

step rather than the full bioprocess of lipase and DHA production. The usefulness of such

Tradespace analysis should be then analyzed Under such constrain, which will be further discussed

in section 5.
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Since the scope of this thesis will be the fermentation step of lipase and DHA bioproduction,

the following subsection will briefly introduce fermentation technology.

1.4.1. FERMENTATION TECHNOLOGY

Any fennentation is initiated by inoculating a cell culture into the appropriate growth

media, a complex mixture that contains the substrate that will be processed by the cell and

converted into the targeted product. The fermentation occurs under conditions that favors cell

growth and production of the desired compound. The media may contain little or no "free" water,

corresponding to a solid-state fermentation, or the substrate can be dissolved (e.g. sugar solution)

or suspended in a large amount of water to form a slurry or broth, known as submerged

fermentation (Chisti, 2010). Solid-state fermentation is mainly used for filamentous fungi. Thus,

the focus of this thesis and the fermentation used in both cases analyzed is submerged fermentation

using the most commonly used type of reactor, namely stirred tank bioreactor.

The stirred tank fermenter is one of the most commonly used type of reactors due it its

flexibility. It consists of a cylindrical vessel, with a central shaft that typically supports 3-4

impellers. The height-to-diameter ratio of the vessel can vary from 1 to 4. For aerated bioreactors

a higher ratio is preferred in order to prolong the contact time between rising bubbles that carry

oxigen and the liquid phase. The vessel is typically provided with four equally spaced vertical

baffles that extend from the wall into the vessel. The objective of these baffles is to increase the

mixing quality. The air, usually supplied by a compressor, enters the vessel at the bottom under

pressure. The mixing and bubble dispersion are accomplished by mechanical agitation. This

requires a relatively high energy input per unit volume. A jacket and/or internal coils allow heating

and cooling. Bellow a schematic diagram of a stirred tank fermenter is shown. (Chisti, 2010;

Heinzle, Biwer, & Cooney, 2006)

23



AA

Figure 6 - Schematic diagram of a stirred tank fermenter with instrumentations and controllers

Source: (iGEM 2 010, n.d.)

Finally, fermentations can be carried out in batch, fed-batch or continuous cultures.

FigIure 7 shows the difference between these three modalities. The two cases analyzed use the

most common process, which is the batch process.

Feed Feed

a) (b (c)

Constant - Initial violume Cntn
vLttume tt voume

Harvest

Figure 7 - Fermentation process.

(a) Batch (b) Fed-batch (c) continuous culture. Source: (Chisti, 2010)

1.5. PRODUCT DEVELOPMENT PROCESS (PDP)

The goal of any bioprocess development is the optimization of process parameters to

manufacture a product. A product that has a market (or a potential market), satisfies a customer

need and has a market size that justifies the investment in the process development. Once the

desired product is clearly defined and specified (quality, purity, etc.) the technical aspects of the

process development project takes place, as it is the product specifications and cost that establish

the goal of the process development (Heinzle, Biwer, & Cooney, 2006). Similar to traditional

chemical industry, bioprocess development typically relies on a set of specialist teams, each

optimizing with respect to a small set of criteria, e.g. chemical/biochemical synthesis route with

respect to product quality and yield, process design with respect to selecting, designing and
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connecting suitable unit operations and process control structure, plant design with respect to

equipment and process control. The result is a sequential process design with only scarce

information transfer between steps (Figure 8.A) (Heinzle & Hungerbuhler, 1997).

I A

4 4 4

Figure 8 - Information flow in the design process.

Classical sequential process with few interactions between development steps and groups Source: (Heinzle &
Hungerbuhler, 1997)

The main issue with a sequential process design is that the cost and effort required to correct a

sub-optimal decision made at the beginning of the development process increase with time, as the

development freedom decreases considerably. However, our knowledge and understanding of a

given process is low at the beginning, thus the chances of making a mistake or taking a non-optimal

decision due to lack of information is high (Figure 9).

<D

Time
Basic Process Engineering Production
R&D design

Figure 9 - Process knowledge and freedom of decision in the process design.

Source: (Heinzle, Biwer, & Cooney, 2006)

Since the mid-1980s modeling and simulation software specific to biochemical processes

were developed to gain understanding of bioproduction process (More detail in section 2.3). The
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use of these software tools help the process design team fill the knowledge and data uncertainty

gap and provide a sound evaluation basis. Process simulation software tools also enable the

representation and analysis of integrated process. Heinzle et al (1997) defines integrated

development (IPD) as a process where:

1) In every development step, information of all other steps is considered, design is done

in parallel rather than sequentially (time dimension of IPD);

2) Design alternatives are simultaneously assessed interactively with increasing depth for

multiple criteria - economic, safety, and environmental protection (depth dimension of

IPD)

3) Impact on local and global environment are simultaneously considered (space

dimension of IPD);

4) People with various expertise work in a broad networked multi-disciplinary teamwork

(human resource dimension of IPD)

One of the most cited simulators in the literature is SuperPro Designer' from Intelligen,

Inc (Heinzle, Biwer, & Cooney, 2006; Petrides, 2000; Shanklin, Roper, Yegneswaran, & Marten,

2001; Petrides, Carmichael, Siletti, & Koulouris, 2014). This, and other software tools, build the

simulation based on a process flow diagram (PFD), which is given as an input, together with

process parameters such as scale, operation conditions and performance. Then the simulator

performs material and energy balances, cost analysis and economic evaluation (Figure 10).

SuperPro Designer' can also perform tasks such as scheduling and environmental impact

assessment, debottlenecking and throughput analysis. However, since operation parameters are

given as an input, and alternative process setups can be simulated by "experimenting" on the

computer in a trial and error fashion, the scenario analysis of these software is limited. Variations

of the process flow diagram, process scale, and operations conditions can be performed only one

at a time.
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Figure 10 - Steps to build a model in process simulation software.
Source: (Heinzle, Biwer, & Cooney, 2006)

As Heinzle et al. explained in chapter 3 of his book (Development of Sustainable

Bioprocesses- Modeling and Assessment, 2006), "especially in early process development, there

might be a need to compare alternative process flow sheet topologies. An extraction step might

replace a distillation column or the downstream steps might vary. For such changes the economic

and environmental impact can be derived in a scenario analysis. Furthermore, variation in size and

number of pieces of key equipment. namely the fermenter, can be studied with scenarios".

However, current software tools perform this analysis by creating new files for each new scenario,

and comparing each scenario to the base model one by one, as shown in the example bellow.
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Table 5 -Scenario analyses of the cellulose production model.
Table 5 shows the result of two scenario analysis for the cellulose model. In the base model, the inoculum voltime is
5% of the fermenter volume. This defines the necessary volume of the seed reactors. If the inoculum volume is
increased, the starting cell concentration is higher, and thus the time to reach the maximum biomass concentration and
product formation might be shorter. In this scenario we assume the fermentation time to be 10ih shorter when the
inoculum volume is increased by 10%. This enables a higher annual production. However, it requires an increase in
the size of the seed reactors, which causes higher investment cost. This additional cost outweighs the higher annual
production and causes higher unit production cost.
'The second scenario describes the situation when an additional ion-exhange adsorption step is necessary to remove
some interfering by-products. This additional step not only raises the investment cost but also reduces the annual
production (product loss).
Source: (I linzlc, 3iwCr, & CoonyC, 2006)
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By setting a baseline "favorite", or previously developed concepts, and performing scenario

analysis 'one at a time' can lead to premature reduction of topologies or architectures. Premature

focusing can introduce artificial constrains on the design process and reduce potential value created

and delivered (Ross & Hasting, 2005). Other industries, such as aerospace, have addressed the

possibility of comparing several topologies/architeCttres Using methodologies such as Tradespace

analysis.

1.6. TRADESPACE BASICS

Ross and Hasting (The Tradepace Exploration Paradigm, 2005) define Tradespace as "the

space spanned by the completely enumerated design variables, which means given a set of design

variables, the Tradespace is the space of possible design options". In general, a Tradespace is a

representation of a set of architectures in a space defined by two or more metrics. It differs from

the method used in example shown in table 5, usually referred to as 'Point-Based Design'

(Bernstain, 1998), in that Tradespace allows the designer (and other decision-makers) to explore

the design space taking into consideration a set of strongly interdependent variables, and optimize

for more than one metric/objective. The most common objectives are maximing performance and

minimizing cost. In figure I I bellow, a schematic Tradespace plot is shown. For a given a cost and

performance threshold, the optimal area (in blue) and along the curve ("Pareto frontier") are the

potential solution that balances cost, performance and schedule (known in project management as

the 'Triple Constrain' or 'Iron Triangle').
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Figure 11 - Schematic representation of a typical Tradespace plot
Source: (Mackertich & Kraus, 2008)

1.7. SUMMARY AND THESIS DESIGN

In section 1 I have introduced the context of this thesis by establishing an overview of

industrial biotechnology, its importance and applications in food and feed, as well as the general

economic and application within food and feed for the two case studies chosen for further analysis.

Also, a description of bioprocesses, especially fermentation technology and biocompounds PDP,

was presented. Finally a general introduction to Tradespace and how it addresses the issue of

premature focusing by allowing an extensive architecture exploration, not possible with current

process simulation software, was introduced. Thus, the objective of this thesis is to explore the use

of Tradespace in the context of bioprocesses by developing a Tradespace focused in the

fermentation step using lipase and DHA production as case studies. Furthermore, how this

Tradespace fits into the larger context of a broader analysis involving the full bioprocess and a

conceptual design of such Tradespace is presented.

In order to build a Tradespace for the production of the selected biocompounds, the present

thesis combines methods commonly used in bioprocess optimization methods, such as Design of

Experiments (DoE) - particularly the use of Plackett-Burman designs and Response Surface

methodology- with an existing Tradespace exploration method known as Multi-Attribute

Tradespace Exploration (MATE). These concepts will be further reviewed in the next section,

'literature review'.
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2. LITERATURE REVIEW

2.1. MATE- MULTI ATTRIBUTE TRADESPACE EXPLORATION

2.1.1. MATE HISTORY

The Multi-Attribute Tradespace Exploration (MATE) method was develop at the

Massachusetts Institute of Technology by Adam Ross, Nathan Diller, Dr. Dan Hasting, Dr. Joyce

Warmkessel, Dr. Hugh McManus, and others (Spaulding, Tools for Evolutionary Acquisition: A

Stuydy of Multi-Attribute Tradespace Exploration (MATE) Applied to the Space Based Rada

(SBR), 2003). MATE's development began with system analysis work done in the MIT Space

System Lab, which was eventually embodied in a process called Generalized Information Network

Analysis (GINA). GINA's goal was to model satellites as information networks, and it used

metrics (appropriate for information systems) to construct a Tradespace of possible designs. Over

the years GINA was applied in a series of aerospace related projects, and in each iteration new

methods were included, evolving eventually into the MATE method (Spaulding, 2003). MATE

combines two techniques used in technical design and decision making: Multi-Attribute Utility

Theory (Keeney & Raiffa, 1993) and Tradespace Exploration (Ross & Hasting, 2002).

The present thesis incorporates DoE within the MATE method in order to develop a

Tradespace process for bioproduct production. The reason to incorporate DoE will be discussed in

sections 4 and 5. An overview of the MATE process at a level of detail appropriate for general

understanding will be introduced in the next subsection. A parallel of how some of the

concepts/terms used in the MATE process can be translated into the context of a bio-compound

production will be discussed in the Tradespace model presented in section 4. Once the overall

MATE method is discuss, in the subsequent subsections, Multi-Attribute Utility Theory (MAUT),

Tradespace Exploration, and DoE will be further introduced. Finally, an overview of existing

process simulators will be provided as a background for the discussion presented in section 5.

2.1.2. MATE PROCESS OVERVIEW

The MATE process consist of the following steps:

1. Identify stakeholders

2. Define a mission objective/concept

3. Create a list of attributes

4. Determine design variables and map them to the attributes
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5. Create a model that glives rise to utility curves

6. Evaluate architecture

Mission The MATE Process
Concept

Customer
Feedback

Attributes
Trades

Design Model Utility 0t
Variables t 1

= ,300,90 )f(D

T, = 150, 200... l0
COST

Multi-Attribute Tradespace Exploration

Figure 12 - The MATE process.

Source: (Spaulding, 2003)

In order to better understand each of these steps, it is helpful to define the concepts/terms

used. Some of these terms are part of the general systems engineering lexicon, however others are

unique to MATE or have a more specific definition when applied to MATE. The following list is

adapted from (Ross & Hasting, 2005), (Spaulding, 2003) and (Crawley, Cameron, & Selva, 2016):

Mission Concept/Objective: the desired end state or outcome of the system.

System: a set of entities and their relationship whose functionality is greater than the sum of the

individual entities.

Attribute: a metric perceived by a decision-maker that measures or determines how well the

defined objective is met.

Utility: a dimensionless parameter that reflects the 'perceived value under uncertainty' of an

attribute. Typically ranging from zero (minimal acceptance) to one (most desirable). Utility is a

useful quantitative proxy for representing benefit.

I
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Multi-Attribute Utility: a dimensionless parameter, ranging from zero to one, that reflects the

value of an aggregation of single utility values.

Design Variable: a designer-controlled parameter.

Architecture: a potential system - a unique combination of design variables

Tradespace: the set of all architectures under consideration

With these definitions in mind, an interpretation to how each of these concepts/terms can

be applied in the context of a bioprocess is defined in section 4.

2.1.3. MULTI-ATTRIBUTE UTILITY THEORY

Multi-Attribute Decision Making (MCDM) is the most well-known branch of decision

making. It is a branch of a general class of Operations Research models. MCDM combines theories

from disciples such as philosophy, mathematics, and psychology that try to explain and formulate

the logic behind decision making (Nikou & Klotz, 2014). Decision theory is widely applied in

economic, mathematics and social sciences (Raiffa, 2002). MCDM is divided into: (a) Multi-

Objective Decision Making and (b) Multi-Attribute Decision Making. Multi-Objective Decision

Making studies decision problems in which the decision space is continuous. On the other hand,

Multi-Attribute Decision Making concentrates on problems with discrete decision spaces. In these

problems the set of decision alternatives has been predetermined (Triantaphyllou, Shu, Nieto

Sanchez, & Ray, 1998). Several methods exist for Multi-Attribute Decision Making, one of which

is MUAT (Multi-Attribute Utility theory).

MUAT was developed by von Neumann and Morgenstern (1944/1947/1953), and it was

referred to as the "Expected Utility Hypothesis". MAUT makes possible the calculation of overall

utility (i.e. customer satisfaction or preference) of multiple attributes (i.e. product characteristic or

features) based on single utility functions. Single-Attribute Utility (SUF) is a dimensionless metric

representing the satisfaction derived from having a certain level of a single attribute X. Single-

Attribute Utility function can be used to express the relative desirability of having a specific value

of an attribute. In equation:

SUFi(xij) = ui(xij)

Where SUF is single utility function for attribute i, xi1 is the attribute rating (the raw score)

for alternative] of the attribute i, ui (xij) is the utility ftnction that transforms the attribute rating

into a utility value between 0 and 1. Linear utility functions are used to model each attribute. More
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sophisticated approaches are available in the form of non-linear utility functions, but should be

used only if there is explicit need to include non-linear behavior (Ogle, Dee, & Cox, 2015).

To compare designs that have more than one attribute of interest, SUFs need to be

combined into a multi-attribute utility function U. One of the simplest forms of multi-attribute

functions is the weighted sum:

U(j) = w ui(xi)

wi = 1

Where U(j) is the Multi-Attribute Utility Function (MUF) corresponding to the fh

alternative. Multi-Attribute Utility is the joint utility level derived from multiple attributes.

As explained above, the MATE method combines MAUT with Tradespace analysis. While

the MUAT component of MATE allows for a systematic assessment of different multi-attribute

designs, Tradespace provides a visual tool to compare these designs.

Ross (2003) justifies the choice of MAUT in MATE to capture user preference in the

following way:

"It [MAUT] provides for a systematic technique for assessing customer "value", in

the form of a preference for attribute. Additionally, it captures risk preferences for the

customer. It also has a mathematical representation that better captures the complex

trade-offs and interactions amongst the various attributes. In particular, the strength of

Multi-Attribute Utility Analysis lies in its ability to capture a decision maker's

preference for simultaneous objectives"

2.1.4. THE PARETO FRONTIER AND TRADESPACE STRUCTURE

The Pareto frontier, is simply a set of architectures that form the 'edge' of the Tradespace.

Because we have two or more metrics represented in a Tradespace, it is unlikely that any single

architecture is uniquely "the best". Rather, the Pareto frontier or Pareto front, showcases the

architectures that are "good" and represent a good tradeoff between the metrics (Crawley,

Cameron, & Selva, 2016).

Pareto analysis in an important part of Tradespace analysis, but it is by no means sufficient.

A lot can be learned by analyzing the structure of the Tradespace as a whole. Often times a

Tradespace looks like a "cloud" of points. However, most Tradespaces have some structure. They
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have features such as "holes", "subgroups" and "fronts". These are due to tIactors such as discrete

metrics, different dynamic ranges of metrics and physical laws limiting certain metrics. (Crawley,

Cameron, & Selva, 2016)

A common structure in Tradespace are "clusters"- that is, the accumulation of architectures

in relatively small regions in the objective space, leaving large open areas, Fig 13. Clusters suggest

the presence of families of architectures that achieve similar performance in one or more metrics.

It is useful to view clusters with similar architectural variables, which can simply be done by

highlighting the points that share the same decision choice.

Mass (adimeisional) vs. of 9's in R

xxx

0 0 x

20

ofCc u er s. , ( a N

xEM30(NSNC)=

+ Min(NS, NC)M 3

Figure 13 - Tradespace showing 3 clusters
The example shows amass-rcliability Tradespace for GNC system Giac, aiain
Control system, present in vehicles, such as cars, aircraft, robots, and spacecraft). Architectures
are highlighted with different markers depending on their numberof sensors (NS) and the number

of cmputrs (C).Where min(NS, NC)=1l (circles) means that the architectures there have either
one sensor or one computer. Min(NS,NC)= 2 (crosses) are architectures with at least a sensor and
a computer, two sensors or two computers. Similarly min (NS, NC) =3 is the min number of
computer, sensors and/or their combinations. The number of nines (# of 9's) in the realiability is
shown instead of the reliability value (for example 3 nines is equivalent to R=O.999 and R=O.993
is equivalent to 2.15 nines). Source: (Crawley. Cameron, & Selva, 2Ol6)

Another common featture in Tradespace is stratification. Strata are groups of point for

which one of the metrics is constant while the other varies. In a two-dimensional Tradespace, strata

appear when points line up in a number of vertical or horizontal lines, which gaps in between them.
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Stratification appears when combinations of architectural options produce only few distinct values

of the metric.

2.2. DESIGN OF EXPERIMENTS (DoE)

Statistical experimental planning, factorial design and Design of Experiments (DoE), are

more or less synonymous concepts for investigating the mathematical relationship between input

and output variables of a system. Even though the fundamentals of the methodology have been

known since the early 1900s, it was not until the late 1990s that is was widely applied in

biotechnology (Mandenius & Brundin, 2008). When used to optimize processes, DoE is a

systematic way of changing process inputs (e.g. temperature, pH, medium components, etc.) and

analyzing the resulting process outputs (e.g. yield, productivity, etc.) in order to quantify the cause

and effect relationship between them, as well as the random variability of the process while using

a minimum number of runs. The conventional approach to optimization investigates One Factor at

A Time (OFAT) while keeping the others constant. Unlike OFAT, DoE detects the interaction

between input parameters, requires less number of experiments and facilitates the prediction of the

response to values not yet tested in the experiment. By performing factorial design, a reliable result

can be achieved with relatively fewer experiments, after which the most favorable direction to

move forward in order to find a true optimum can be evaluated. For example, in figure 14, the

diagram to the left explains the OFAT approach to optimize/investigate in a three-dimensional

parameter space, where the parameters/factors X, Y and Z can be changed, one at a time, giving

different outputs. As represented in the figure, the OFAT approach does not cover the complete

three dimensional space. On the other hand, on the right, a full-factorial three-parameter DoE is

represented. By analyzing all the "corner points" and "mid point" of the three dimensional space,

the complete design space is studied.
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OFAT v. DoE Approaches

Z//

OFAT Central composit e
(One Factor At a Tirne) DoE

Figure 14 - OFAT v. DoE approaches

Source: (Owen, ct al., 200 1)

Furthermore, through DoE systematic and unsystematic variability is also studied. Thus,

DoE requires fewer resources for the amount of information obtained, especially as the number of

factors increases.

In DoE, the dependent variable (process output) is called response and the independent

variable (process inputs) are called factors. The simplest factorial experiment has two factors, with

two levels each. The annotation for factorial experiments is: XY; where X= #levels and Y=

#factors. Thus, the simplest factorial experiment is a 22, producing 4 factorial points. Figure 14,

represents a factorial design of23 : 3 factors, 2 levels each factor and thus 8 tested conditions. When

all the possible combinations across of levels across the studied factors are tested, it is known as a

Full Factorial Design. However, as the number of factors studied increases, carrying out the

experimental design might become logistically unfeasible. In this case, a Fractional Factorial

Design can be performed. For a two level DoE, the reduced set of experiments can be described

mathematically as 2 n-k, where n is the number of factors and k the number of steps to be reduced.

If for example five variables are involved in the experiment, we will end up with 16 (2 ') or 8 (2

2) experiments, depending of the number of steps reduces. In practice, the number of steps reduced

and the set of combinations chosen to test (known as principal fraction), are described in statistical

reference books and "standard" factorial design exists and are chosen depending on the objective

of the study (Box, Hunter, & Hunter, 2005).

Generally speaking, there are usually 3 types of objectives for a DoE: (1) screening, (2)

optimizing and (3) robustness testing. Two experimental designs were used by the authors of the

papers used as resource for the case studies in this thesis. The first for screening, namely Plakett-
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Burman experimental design and the second Response Surface Methodology (RSM) for

optimization. Both designs are further discussed in the following subjections.

2.2.1. PLACKETT-BURMAN EXPERIMENTAL DESIGNS

Plackett-Burman (PB) designs (Plackett & Burman, 1946). is a fraction of a two-level

factorial design and allows the investigation of n-1 factors in at least n experiments. PB designs

are well suited to establish whether the outcome of an analytical procedure is affected by changes

in each relevant factor. They have become known for their ability to investigate a large number of

factors in a relatively low number of experimental runs. This becomes possible, because the

interactions between factors are neglected in PB designs, thus they are very efficient in screening

factors when only main effects are interested.

The number of runs n in a PB design are multiples of four. Plackett and Burman only

included designs with n < 100, and omitted the design where n = 92. In each case the maximum

number of factors that can be studied is n-1, so an 8-experiment PB design can study no more than

7 factors, a 12-experiment design will handle up to 11 factors, and so on. Note that the number of

runs must be a multiple of 4, therefore, if 4 factors are studied, that is n-1=4, n=3. But 3 is not a

multiple of 4, thus the number of runs needed to study 4 factors in a PB design is 8 experiments

and 7 factors. There are 4 factors of interest and 3 "dummy" factors. Dummy factors are those that

have no physical significance, but will nevertheless inform about random measurement errors.

Usually., three dummy variables will provide an adequate estimate of errors (Stowe & Mayer,

1966).

As mentioned above, PB designs use two levels for each factor. The higher level is denoted

as '+' and the lower '-'. A further feature of the PB method is that the + and - signs for the

individual run are assigned in a cyclical manner. For example, for a seven factor experiment

labelled A-G, the first experiment might be (Miller, 2013):

A B C D E F G
+ : - - + I + +

The levels for the second experiment, again with four + and three -, are obtained by shifting

the sigs of the first experiment one place right and moving the last sign to the begging of the line,

giving:

A B C D E F G
+ + -- + +
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This cyclical process is repeated for the first seven experiments. For the eighth experiment

all factors are set at the low (-) level, giving an overall design in which there are 28+ signs and 28-

signs, each factor having been studied four times at the high level and four times at the low level.

In practice, the sequence of + and - signs are provided by generating vectors and are widely

available in the literature and software packages. Some commercially available software packages

frequently used for experimental designs are ModdeTM (Umetrics AB, Umea, Sweden;

www.umetrics .com), MiniTabTM (Minitab Inc., State Collage, PA) and Design-Expert TM

(www.statease.com), all of which are convenient for applying DoE (Mandenius & Brundin, 2008).

The effect of each factor is then determined from the expression:

E(xi) Mi - E Mi
N/2

Where Ei) is the main effect of the tested variable Xi. (Mi+) is the response when factor Xi

is at its high level and (Mi) response when a same factorXi is at its low level. Nis the total number

of experiments.

The significance of each factor is then calculated through analysis of variance (ANOVA)

related calculations. As an example, if we consider that the sum of the squares (SS) is given by

(Miller, 2013):

SS = N x (estimated effect) 2/4

In the previous example, for each factor, the sum of squares only has one degree of

freedom, so their mean value (i.e. variance) is the same as their SS. For the dummy variables

however, the mean of sum squares is calculated depending on the number of dummy variables

used; in this example 3. Then each individual factor can be compared with the estimated random

error (mean sum square of dummy variables) using a one-tailed F-test at p=0.05 (95% confidence

level). If we consider that each factor has one degree of freedom and the dummy variables have

three degrees of freedom (three dummy variables were used), F1 at p=0.05 is 10.13 (Appendix

B). Thus, for each factor

mean square of factor
mean square of dummy variable

F> 10.13 then factor under evaluation is significant

F <10.13 then factor under evaluation is NOT significant
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Once again, such calculations are in practice performed using suitable software.

2.2.2. RESPONSE SURFACE METHODOLOGY (RSM)

The result of a bioprocess screening experiment, using a factorial DoE such as PB designs,
is the identification of a subset of most influential factors. These factors can be used in a new
experimental design with the purpose of determining optimal factor values. The experimental
results of such DoE lead to the deduction of a function that can explain the response:

y = f(x1 ,x 2) + E

Where E represents the noise or error observed in the response y. The surface represented

by f(x 1 , x 2 ), is called a response surface.

A response surface can be represented graphically, either in the three dimensional space or
as a contour plot that helps visualize its shape.

An experimental design commonly used in RSM is Central Composite Design (CCD)
(Montgomery, 1997). The CCD is a very effective design for fitting second order response surface,
where the behavior of the system can be explained by the following quadratic equation:

Y =xi - E /iiX,. 7 Bijxix1

Where Y is the predicted response; #0 the offset term, fi the linear effect, /i3 the squared
effect and fli the interaction effect.

Central composite designs are factorial or fractional factorial designs with center points,
augmented with a group of axial points (also called star points, represented in blue in figure 15)
that allows the estimation of curvature. Figure 15 illustrates a three variable case of CCD.

Half-fractional Full factorial Central composite
factorial

Figure 15 - Central Composite DoE
Source: (Lebed, Potvin, Lariviere, & Dai, 2014)

There are three types of CCD:
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1) Central Composite Circumscribed (CCC): in a three factor CCC design, the high (+1) and

low (-1) levels are represented at the corner of the cube. Star points are displaced outside

the space at the same distance from the center point as the distance from the center to the

corners. (Fig 16.A)

2) Central Composite Face-centered (CCF): In a three factor CCF design, star point are

located between the high and low level. Thus, between +1 and -i. (Fig 16.B)

3) Central Composite Inscribed (CCI): in a three factor CCI design, the star points take the

values + I and -1, while the high and low levels lie inside the in the interior at the corners

of the cube. (Fig 16.C)

2 factors 3 factors

A- +1 Circurcned

CCC *

-P* 9

0-

B +Faced

CCF
01

0
1 -1

C - ~ +1 Inscribed

CCI i~ 05**

01

Figure 16 - Comparison of Three types of Central Composite DoE
Source: Modified from (NIST/SEMATECH, 2013)
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For the two case studies analyzed in this thesis different central composite designs were

used. The lipase case study uses a CCF design, whereas the DHA case study uses a CCC design.

In theory, the CCC design is somewhat better than the CF design since CCC covers a larger

volume. Also, in CCC a total of 5 levels per factor are evaluated. This is because the star point are

displaced outside the space (usually coded as +2 and -2) and therefore represents two additional

levels. These two new levels plus the original 2 levels (+1 and -1) and the center point result in a

total of 5 levels. In contrast CCF only allows for 3 levels to be evaluated per factor (-1, 0, +1).

Thus, CCC can therefore better capture strong curvature and even cubic responses.

2.3. BIOPROCESS SIMULATION SOFTWARE

Process Simulators are software tools that enable the representation and analysis of integrated

processes. Process simulation tools were first implemented in chemical and petrochemical

industries in the early 1960s. Established simulators for the petrochemical industries include:

Aspen Plus (from Aspen Technology, Inc. https://wNww.aspentech.com/)), ChemCAD (from

Chemstations, Inc. http://www.chernstations.com/), HYSYS (developed by Hyprotech, Ltd,

acquired by Aspen Technology is 2002), and PRO/I (from Simulation Sciences, Inc., now

Schneider-electric http://software.schneider-electric.com/simsci/ ) (Petrides, Bioprocess Design,

2000). However, these simulators were designed to model steady-state (continuous) processes,

therefore they did not account for the sequential nature of batch processes, where a sequence of

time-dependent tasks may take place in a given unit operation. The first batch process simulator

was named BATCHES. This software was commercialized in the mid-1980s by Batch Process

Technologies, a Purdue University spin-off headquartered in West Lafayette, IN

(http://www.bptechs.com/). All its operation models are dynamic and simulation always involved

integration of differential equations over a period of time. In the mid-1990s, Aspen Technology

(Burlington, MA, USA, https://www.aspentech.com/) introduced Batch Plus (later renamed Aspen

Batch Process Developer), a recipe-driven simulator that targeted batch pharmaceutical processes.

Around the same time, Intelligen (Scotch Plains, NJ, USA, http://www.intellien.com/) introduced

SuperPro Designer. SuperPro, originally BioPro Designer, was initially developed at the

Biotechnology Process Engineering Center (BPEC) at MIT. It was licensed to Intelligen, Inc., who

completed the development and commercialized it. SuperPro, is an extension of BioPro, and was

created to extend its scope to support modeling of fine chemicals, pharmaceuticals, food
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processing, consumer products and other types of batch/semi-continuous processes (Petrides,

Carmichael, Siletti, & Koulouris, 2014; Petrides, Bioprocess Design, 2000)

While it is beyond the scope and intention of this thesis to explain how process simulators such as

SuperPro work, a quick overview is provided in Appendix A. However, it is important to highlight

once again, that the purpose of a Tradespace analysis is very different to what these software can

provide. A Tradespace objective is to perform what in bioprocess simulations software is known

as scenario analysis. However, unlike scenario analysis, where each scenario is created by

changing one parameter at a time from the baseline design, a Tradespace analysis allows the

analysis of several scenarios at a time. In this way a potential premature focusing, where

introduction of artificial constrains on the design process could be avoided.
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3. RESEARCH METHOD AND APPROACH

3.1. RESEARCH SCOPE

As explained in section 1.4, while the author of this thesis recognizes and understands the

importance of analyzing the whole process, due to time constrains, the Tradespace developed in

this thesis only focuses in the fermentation step. However, how this Tradespace might fit into a

broader analysis taking into account all 3 steps (upstream process, fermentation and downstream

process) will be conceptually discussed.

Furthermore, it is also important to mention that the fermentation Tradespace process

suggested in this thesis was analyzed only under the context of submerged fermentation in batch

mode using a stirred tank bioreactor. While it theory, the proposed process should be applicable to

other types of fermentation (solid-state), it is beyond the scope of this thesis to analyze the

applicability of the proposed process under these other settings.

3.2. DATA GATHERING AND ASSUMPTIONS

Due to time constrains, laboratory experiments were not performed throughout this thesis.

Instead two published papers were used as basis for the Tradespace design developed. Also, since

bioreactor physical details are usually not presented as part of scientific journal articles, the

physical characteristics of a 14L New Brunswick bioreactor were used to estimate the electric

power requirements. In the following subsections a summary of both papers used as case studies

are presented and the physical detail of 14L New Brunswick bioreactor is described.

On the other hand, utility and raw material cost information was collected from various

resources.

3.2.1. Lipase Case Study

Lipase fermentation statistical optimization data used in this thesis is based on the study

performed by Rathi et al (Statistical medium optimization and production of hyperthermostable

lipase from Bukholderia cepacia in bioreactor, 2002). Since an experimental design to determine

most relevant attributes/factors was not performed in this paper, the relevance of the factors used

in response surface methodology was corroborated through literature review from optimization

studies from other Burkolderia strains grown in similar conditions. The response surface

experimental design and experimental result were used as input for the cost model and the

regression equation reported was re-assessed and used as attribute model.
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3.2.2. DIA Case Study

Unlike lipase fermentation case study, DHA production parameters relevance were studied

through Plackett-Burman experimental design and reported by the author. The source of the data

used for the DHA statistical optimization is the study performed by Song et al (Optimization of

fermentation parameters for the biomass and DHA production of Schizotrium limacicum OUC88

usign resposnse surface methodology, 2007). The response surface experimental design and

experimental result were used as input for the cost model and the regression equation reported was

re-assessed and used as attribute model.

3.2.3. 14L New Brunswick bioreactor Characteristics

In order to estimate the electric power requirement in the DHA case study, it was assumed

that a 14L New Brunswick bioreactor was used. Also., some constants such as media density and

viscosity were also assumed. The physical parameters and constants assumed for this exercise are

shown in the fhgure and table below.

Motor Feed

C ooling jacket
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Figure 17 - Schematic diagram of a stirred tank bioreactor and impeller

44

4

H1 r



Table 6 - 14L New Brunswick bioreactor physical parameters and constants used for electric power
estim1atio n

3.3. POWER DENSITY - EQUATIONS

The power density (P/V) was used to estimate electric power requirements in the cost model.

Electric power is expressed in terms of power per unit volume in Watts per cubic meter (W/m 3 ).

The power consumption for an un-aerated reaction mixture in a stirred tank reactor is define by

the equation (Holland & Chapman, 1966)

_Po pND-'
V-"D 2 A

T N~ DV L 1

Where Po is the power number of the impeller, N,
the impeller rotational speed (rps), D,, the impeller
diameter (m), Ds, the vessel diameter (m) and Lh the
height of the liquid in the reactor (m).

P
V
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3.4. COST MODEL AND INITIAL TRADESPACE

Cost models were built on Microsoft excel as well as the regression models re-assessment

and Tradespace plots. For the regression model re-assessment Solver add-in (included with excel

2010, 2013 and 2016) was used. Lipase and DHA experimental results were used as input to

perform a non-lineal model fitting in excel. The steps to perform a non-lineal model fitting in excel

are as follow (Figure 18):

Step 1- Create a table with the central composite rotatable design including the experimental

results

Step 2- Assign random values to the coefficients in the quadratic equation.

Step 3- Add a column for predicted results and introduce the corresponding quadratic equation

Step 4 - Calculate the squared error and sum of squared errors

Step 5- Use solver to determine the minimum sum of squared errors (objective function) by

changing the coefficients
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2 RUN# T
3 1
4 2
5 3
c 4

7 5
8 6
9 7

10 8
11 9
12 10
13 11
14 12

15 13
1V 14
17 15
18 16
19 17
20 18
21 19
21 20

.1 21

DNA

Coefficients
bo
b1

b2
b3
b4

b5

6
b7

b8

b9

Q R DHAExp
-1 .1 2.6
-1 -1 2.2
-1 1 3.9
-1 1 3.8

1 -1 4.5
1 -1 3.9
1 1 4.9
1 1 4.7

-1 -1 1.6
-1 -1 1.4
-1 1 2.4
-1 1 1.7
1 -1 2.9
1 -1 2.8
1 1 3.6
1 1 3.7

0 0 4.2

0 0 1.8
-2 0 2.1
2 0 3.7
0 -2 2.2

J =SJ46+SJS73+SJ8*C3+JS9*D3+KJS10*B3*C3SJS11B3*D3+SJ$12*C3*D34SJ513*B3^24SJS14*C32+SJS15*D3^2

1 Quadratic equation as described in section 2.4.1
D E F

DNA
DHA_Exp Prediction

.1 2.

-1 2.2 4.00
1 3.9 2.00
1 3.8 2.00

-1 4.5 2.00
-1 3.9 2.00

1 4.9 4.00
1 4.7 4.00

-1 1.6 2.00
-1 1.4 2.00

1 2.4 4.00
1 1.7 4.00

-1 2.9 4.00
-1 2.8 4.00

1 3.6 10.00
1 3.7 10.00

0 4.2 3.00
0 1.8 7.00
0 2.1 3.00
0 3.7 7.00

-2 2.2 3.00
2 3.8 7.00

0 3.9 1.00
0 3 1.00

I i K t. M N I P 0 R

DNA Equation

DHAb+bl*T+b2*0+b3*R+b4*T*Q+b5*T*R+b60QR+b7*T^2+b8*0^2+b9R^2

Coefficients
bO I
bl 1
b2 1
b3 1
b4 2

66 1

67 1
b8 1
b9 1

Steps 3
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-41-
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Figure 18 - Steps to perform a non-lineal fitting in excel

47

I

Steps 1 & 2

8

No constrains in ch'3
this case 5

-- olve for non-linS~lc 04e GRG NW*dnee eftgme W Sok'e frobl-ls thtar mo ,nbwr S~le h LP Sim4leeg for t-nWa Sol,"r Proble"s and S64dt Nie %,Oalftar Ingm fo s N* ro, ea tha W.

30 -- ID.0-

X.

1
1
1
1
1
1
1
1
1
1

r

'S ox. A-,



4. TRADESPACE MODEL FOR A BIOPROCESS FERMENTATION

4.1. INTRODUCTION TO TRADESPACE CASE STUDY

4.2. MATE APPLIED TO BIOPROCESS

The overall MATE process and terms were defined in section 2. The table below reflects how the

author of the present thesis has interpreted each of those terms in the context of a food ingredient

bioprocess:

Table 7 - MATE terms interpretation in bioprocess context

Successful prodtic on of a biocompound. More specifically, ipase enzy me and

0D1A. In section 4.22 the mission obj ective will be properly stated as a sx stem

problem stateenlnt nn the TFo-By- sing ramework.
Lipase and DH A biopiocess

Physicochemical characteristics of the compounds and overall characteristics of the

bioprocess. For example. biocompound characteristics such as purity, stability,
enzymatc activity, etc. and bijoprocess characteristics such production Neld, C0)

emission, overall encrgy consumption, sustainability etc. it is important to point out
that because 'attribute' incLuides process characteristics. it is a wider concept than
prodtict specifications.

A dimensionless parameter that reflects stakeholder satisfaction of an attribute. For

example, for a biocompound purity of 60%, a numeric value between zero and one

that reflects stakeholders overall satisfaction for a purity of 60%.

A dimensionless parameter fning from zero to one that reflects the stakeholders

satisfaction of the agigregation of all the attributes under consideration.

Bioprocess parameters that can be modified in order to improve the outcome of a (or

several) attribute(s). Design variables are parameters such as ferientation pH,

media, temperature, agitation, aeration, inoculum age, purification technique or

specific column, etc.
A given combination of de'Ign variables. For example, one architecture can be
fermentatioi temperature 37C, pl6, 150rpm aid a second architecture can be

fermentation temperature 40 C p17, 200rpm.

Tihe set of all architectures under consideration

As a reminder to the reader, MATE steps introduced in section 2 are as follow:

1. Identify stakeholders

2. Define a mission objective/concept

3. Create a list of attributes

4. Determine design variables and map them to the attributes

5. Create a model that gives rise to utility curves

6. Evaluate architecture
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In the following subsections each of these steps will be described in general terms for a bioprocess
applicable to both case studies. However, when appropriate, important differences between the
two case studies will be highlighted.

4.2.1. STAKEHOLDER AND STAKEHOLDER NEEDS

In order to define mission objective, first a stakeholder analysis was performed to identify
needs the system (bioprocess) should fulfill. It was assumed for this analysis that the project was
being carried out by a biotech startup developing a bioprocess to produce the food ingredient, in
this case Lipase and/or DHA. The following stakeholder map shows the relationship between
stakeholders. A full description of the stakeholders taken into consideration and their needs is
presented in Appendix C.

Par ner 2 h Par tne 2 a -Food fgrednPnt -h Food - FOOd prOduct Dsto to.(Finance dept Food ngredient (Sales dept_ -- - Payment -- olaer +- Pa1m -- C

PartnerI

manulacturinq
depT

Licensing and Royally 'Pe

Corrnmunity 8,0yp-ocess

Equppmenlard -
Raw malenal. - raw maro - - - Safe productsand .acan por s -

acnd ble - Paym rst - c- Regulatory approvalconsumable Startupr - ---
supplrn - - - - - 1, 1

Sate prodci~xa rl~ poe ss005

Safe and healthy Investmen t
N-d I Invesnent

i ROI1

Hea.thcare 3 Good and Service
comunt,- l rie Govemr Re oos - - Technologynvesvs vmn- 

- - o Knowledge

---- -- -- -- -- Reonndabon- ------,
- - - - ------------------ Recomendaton--------------------

Figure 19 - Stakeholder map

For this analysis, it was assumed that the 'biotech startup' has a partnership agreement with
a bigger ingredient manufacture company, where 'Partner l'is the new product development and
manufacturing department 'Partner 2.a' is the sales department and 'Partner 2.b' is the finance
department. The characteristics of this partnership is as follow: a) biotech startup is in charge of
the process development, b) partner 1 is in charge of the scaling up c) both find investment for
each activity independently d) biotech startup does not pay the bigger company, as they are
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partners in this project e) biotech startup receives licensing payment and royalty on sales from

finance department.

Amongst the stakeholders presented in figure 19, some of them will pose requirement based

on their need on process attributes and other on product attributes. For example, 'partner 1', and

'regulators' (EPA), would dictate process characteristics, while 'consumers', 'regulators' (FDA),

and 'healthcare community' will influence the product attributes. From this analysis it was

concluded that 'consumer' were the main drivers of product attributes in this system. Also, while

the consumer does not buy ingredients directly, they are the main drivers for the monetary flow

and influence other stakeholder's needs.

In a real-world setting, consumer needs would be determined based on surveys or focus

groups. For this thesis, since the main objective is not to determine consumer needs, these were

identified by the author based on experience and general sense base on online articles promoting

DHA and lipase ingredients.

Table 8 - Ingredient market end-customer (consumer) needs

Healthy Determined by the bio-compound decision/choice from the biotech startup and
food manufacturing company, and promoted by healthcare community.

Tasty Determined by the decision/choice from the biotech startup and food
manufacturing formulation efforts.

Accessible Provided by distribution channel, dependent on the ingredient and formulation
stability developed by the biotech startup and the food manufacturing company.

Safe Determined by the bioprocess developed by the biotech startup, ingredient
manufactured by Partner 1, food product manufactured by Partner 2 and approval
provided by regulator.

Affordable Among other factor this need is fulfilled by a cost competitive bioprocess
developed by the biotech startup.

4.2.2. MISSION OBJECTIVE STATED IN A TO-BY -USING FRAMEWORK

The To-By-Using framework was used to establish the system problem statement that

describes the goal of the bioprocess system under study. The To-By-Using framework has the

structure described below (Crawley, Cameron, & Selva, 2016):

To...[the statement of (solution-neutral functional) intent]

By verb-ing [statement (solution-specific) of function]

Using [the statement of form]
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Fioure 20 shows a detail view of the To-By-Using framework and a schematic view using

Object Process Methodology (OPM)

" To (solution-netural transformatIo0) operand
- (Attributes of solution-neutral transform) specifc

- The (beneficial attribute) from (A) to (B) of Benefi r

(operand)
- (Other attributes of the operand) Benefcial

" By (solution-specifc operating attribute

process) tranforning ,
- (Attributes of process)

- The (beneficial state) of the (specific Attribute of Specifi System

operand) Lransfornn operatm

- (Other attributes) talt

* Using (specific-system from object) Generio
opertingconce form

(Attributes of specific system from object)
Function

Specific
system form

Attribute of
form

Form

Figure 20 - To-By-Using framework for formulating System Problem Statement and graphical representation

in OPM.
OPM was developed by Professor Dov Dori at Technion with the goal of unifying the object-and process- oriented
paradigms for describing systems in a single methodology. Rectangle represent object. Circles represent process. A
black triangle inside another represents a characterization link, a white triangle represents subclass (specification). An
extensive description of the OPL (Object Process Language) symbols and meaning is provided in Appendix D. Source:
(Crawley, Cameron, & Selva, 2016)

In systems engzineering 'forn' refers to what the system 'is', while "function' refers to what

the system 'does'. A solution neutral function is "the function of a system stated without reference

to how it is achieved" (Crawley, Cameron, & Selva, 2016). Thus, the first step was to define the

intent without expressing how the system would achieve it. This is done by focusing on the value

delivered to the primary beneficiary needs. Then, "by" states the solution specific function. This

is, states how the intent will be achieved. Finally, "using" states the form or what will perform the

function. The system problem statement developed for the 'Food Ingredient Bioprocess System'

is as follow:

To improve quality of food

By man u factu ring healthy, tasty, safe, accessible and affordable food ingredients

Using cost efficient and environmentally friendly bioprocesses.
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The schematic view for this problem statement using OPM is presented below:

Food

Food ingredie t

Quality

Healthy,
Safe,

Tasty,
Accesible,

Improving Affordable

Manufacturing pr Industrial Biotechnology

Inexpensively,

reltinshp ithotevro stahlder through ai staehode maprdefieisned n sae

envirromentaly |A

Fermentation based

Figure 21 - OPM representation of System Problem Statement for a 'Food Ingredient Bioprocess System'

4.2.3. ATTRI BUTE-VARI ABLE MAPPING USING DESIGN VALUE MATRIX (DVM)

I have so far identified the consumer as the primary beneficiary stakeholder, described its

relationship with other stakeholders through a stakeholder map, define its needs and stated a

system problem statement using the To-By-Using framework. The next step of MATE is to create

a list of attributes and map them to design variables.

As explained in section 2, 'Attribute' is traditionally defined as 'a decision-maker perceived

metric that measures or determines how well the defined objective is met'. For example, in the

case of DHA, an attribute that might be perceived by the decision-maker that determines how well

the need of "tasty" is met is perhaps "no fishy flavor". However, this attribute is very difficult to

measure. Specially at the begging of the design process, when the physical product is not available.

Thus, in this thesis, 'attribute' will be interpreted as measurable product or process characteristics

that would lead to the satisfaction of the primary stakeholder's needs. Thus, the following table

describes how each need was interpreted and the chosen attribute(s) used for the rest of the

analysis.
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Table 9 - DHA attribute table

Healthy DHA is perceived as healthy mainly due to the efiective

communication of its health benefits. However, rancid oil
is unhealthy and also unsafe.

Tasty Off flavor in Omega-3 products can be produced by
oxidation. It is usually prevented and or decreased by
deodorizing step during the purification process,
microencapsulation and masking with flavoring systems

during the formulation stage.

Safe In order to be considered safe, the new DHA ingredient
produced by specific strain of microorganisms should have
GRAS (Generally Recognized A Safe) status reviewed by
the FDA. Also, if its intended use is for infant formula, it
must be free of EPA. Finally, it has to be free of toxins and
heavy metals.

Accessible It order for it to be accessible, it must be easily stored and
transported. Thus it needs to be stable and not easily (or
less easily) oxidized. This is usually achieved by adding
antioxidants to the formulation.

Affordable In order for it to be affordable, the process needs to be cost
efficient. Thus, productivity and/or yield needs to be high.

Low oxidation level

Low oxidation level

High purity (low or absence of
heavy metals, toxins and EPA)

GRAS status

Stable oxidation level in time and/or
at different temperatures

High productivity and/or yield

Table 10 - Lipase attribute table

-g\.

Healthy and While lipase is sold also as a supplement, in the food and
tasty beverage segment its mainly used as a catalyst and not as a

functional food ingredient. Thus, the perceived 'healthy'
and 'tasty' qualities does not come from the lipase itself,
but rather the food product of which manufacturing lipase
take part of.

Safe In order to be considered safe the enzyme preparation
manufactured by a specific microorganisms should have
GRAS status reviewed by the FDA.

Accessible In this case, as the enzyme is used in food preparation,
consumers does not have access to the enzyme, but rather
the food product prepared using the enzyme.

Affordable In order for it to be affordable, enzyme manufacturers
need to have access to big quantities of highly active
enzyme. Thus the enzyme preparation has to have high
activity, productivity and stability.

Not applicable

GRAS status

Not applicable

High productivity and or yield

High enzymatic activity

Stable enzymatic activity through
time and/or different temperatures

It is important to point out that the objective of this thesis in centered on the use of DoE in

combination with the MATE method, which will be further explained in the next section. Thus,

this list of attributes is not by any means complete nor extensive. It was developed with the
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objective of illustrating and translating this method used in other industries into the development

of a bio-compound. A survey and deeper analysis using methods such as QFD (Quality Function

Deployment) would be required for a complete list of attributes, which is outside the scope of the

present thesis.

Once the attributes were selected, an attempt to map these attributes to design variables

was made. However, it was evident that unlike aerospace systems, biological systems are much

more complex, in that a given attribute cannot be mapped to one or to a group of design variables.

For example, for a Space Based Radar (SBR) used to take images of stationary ground targets, the

design variables 'orbital altitude' and 'radar aperture size' would be mapped to the attribute 'high

resolution image' (Spaulding, 2003). However, for a DHA produced through bioprocessing of an

algal strain, it is unclear what design variable has an effect on the attribute "low oxidation level".

On the other hand, potentially all design variables can affect the attribute "High

productivity/yield". The matrix bellow, usually referred to as DVM (Design-Value Matrix)

graphically shows this fact.

Process Steps Upstream Fermentation Downstream Formulatio and others
C 0

0

CL 0

4p)aton0wthnC

00

0 0 0

Actvities (unit 0 a- 0 ~ F
operation) within ?U? ? ?D0

each step 4 )4

F 0 g- M

C1 M C C a C

4..4 APLCT F DO E M D UTILIT CURVE

0 o 9~

.8 C 0 C a :a :0 C C: C C C C 0 000 04)0 C 4) 0

Baseduni 000e0a0 ht nbipocs sytm ati ey ifl todtrie/aie
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Design variables a EE e E r e a 2 C C 2 M a ab C a s e d
D CCCCC C C C
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____ ____ 0000000000000000

f Purodity /il I F.-. x x xxxxx x 00 00 0 00 0 000 0 0 0

GRAS statusx

Figure 22 - DHA DVM (Design-Value Matrix)

4.2.4. APPLICATION OF DOE TO MODEL UTILITY CURVES

Based on the fact that in bioprocess systems it is very difficult to determine/map a given

attribute to the corresponding design variable(s) (figure 22), the use of a tool to discriminate which

are the main design variables that have the most effect on a given attribute is necessary. Once the

main design variables are determined a mathematical model describing how the selected design
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variables affect the given attribute, referred in this thesis as "attribute-curve" or "attribute-

function", is required. The present thesis proposes the use of two DoE designs commonly used in

bioprocesses to accomplish this. Namely, Plackett-Burman (PB) designs (Plackett & Burman,

1946) to down select the design variables and Response Surface Methodology (RSM) to produce

attribute-curves. As explained in section 2.2, Design of experiments deals with quantifying how

process inputs affect process output using a minimum number of runs. Thus, it is useful to create

a model between design variables and attribute. The resulting attribute-curve can then be converted

into SUFs using a linear function based on expert opinion of what the maximum (Ximax ) and

minimum (ximin) acceptable values for attribute i should be. In this way,

SUFi(Ximax) = Ui (Ximax) = 1 and SUFi(Ximin) = Ui (Ximin) = 0.

The following figure schematically

and RSM to create utility curves.

,K

ki I

-- --------? ..... .. -- --- --- -

, WVt _ __~w F r - ,

~Attribute and unit operation selection

.. .. .. .Do -PSdeig

DoE PBdesin - Identification of most
influential design variables

L.

explains the proposed MATE incorporating PB design

nergy and Raw
erial requirement + Cost model
estimation

SLIF
Tradespace

onse surface Attribute
ethodology model

Figure 23 - Single utility function -SUF- obtained through DoE
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The first step is to map attributes to unit operations instead of design variables, as the relevant

design variables will be revealed after a PB design experiment. The down selection of design

variables is performed per unit operation, per attribute. Once the relevant design variables are

identified, a RSM design is performed in order to develop attribute models. The attribute model or

function is then translated into single utility ftnctions (SUF), which can be plotted in a trade space

showing single utility curves. Finally, single utility curves can be aggregated into a multi-utility

curve by giving it a weight-based on consumer preference, as shown in the schematic diagram

bellow:

.Attribute.1 iDesin variables
DoE - PB design A B C -

Energy and Raw
material requirement Cost model

estimation

Aesign variables-~ DsignMUF

DoE ~ ~ ~ ~ ~ A -, PB dein A , oe

LTradespace for

dttribute 2Fermentation

'D' ere eleant or attrbut 2'.In te nxt sep RSMis erfomed akig ino acoun al

Response a mol-
L surface

Methodology
Attgbute 2 Design variables Attribute

DoE Pa design A, B, D modelu2n.

Figure 24 -Multi-utilitv-ftinction -N'UF- obtained through DoE

In the example above (figure 24)., unit operation 'Fermnentation' might have an effect on two

attributes: 'attribute I' and 'attribUte 2'. A PB design experiment is performed and design variables

'A, 'B" and 'C' were found to be relevant for 'attribute 1', whereas design variables AW, "B' and

"D' were relevant for 'attribute 2' In the next step a RSM is performed taking into account all

design variables, including those that are relevant only for one attribute. As a result of the RSM,

single utility functions can be developed and plotted. Finally, a multi-attribute utility function is

developed based on the weight given for each attribute according to customer preference. As a

result, a niuIti -attribute Tradespace plot for unit operation 'Fermnentation' can created as a decision

making tool.

In the following subsections, this process is exemplified in the two case studies mentioned earlier,

lipase and DHA production.
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4.3. CASE STUDY 1: ALGAL DHA PRODUCTION

DHA case study was based on Song et al. (2007) study on "Optimization of fermentation

parameters for the biomass and DHA production of Schizochytriwn limacinmn OUC88 using

response surface methodology", published in the journal Process Biochemistry. While both

biomass productivity and DHA productivity were measured in the paper, only the product, DHA,

was considered in this analysis. As shown in table 9, the attribute 'DHA productivity' would be

correlated with customer need of 'affordable'. Song et al. performs a PB design in his paper to

identify the factor (or 'design variables' as we will refer to them from now on) that has the greatest

effect on DHA production. This case study was chosen to exemplify how PB design and RSM can

potentially be integrated in the MATE method to obtain SUFs.

4.3.1. ATTRIBUTE MODEL

Song et al. analyzed 10 factors in their PB design: temperature (T, C0 ), aeration rate (Q,

volume of air per volume of medium per minute VVM), pH, agitation (R, rpm), inoculum volume

(I, %), fermentation volume (V, L), fermentation pressure (P, Mpa) inoculum age (IA)., harvesting

time (HT, h), and Tween 80 concentration (Tw, mL). The table below was obtained from the

original paper and shows the high (+1) and low (-1) levels for each parameter.

Table II - Case Study 1: DHA PB design variables (factors) range

Source: (Song X. , Zhang, Kuang, Zhu, & Guo, 2007)

Range of different factors studied in the Plackett-Burman design

Variable Variable Low High
code level (-1) level (+ 1)

TemperaturefT (E]) X, 23 26
Aeration rate/Q (L min L ) X, .02 1.48
pH XK 6 7
Agitation/R (rpm) X 4  150 250
Inoculum volume/i (%) X5 7 10
Fermentation volume/V (L) X6 6 8
Fermentation pressure/P (Mpa) X7 0.06 0.08
Inoculum age/lA 14 Mid- Stationary

exponential phase
phase

Harvesting time/HT (h) X9 108 132
Tween 80 concentration/Tw (ml) X1 0  2 10

The following table summarizes the results Song et al obtained for the PB design, where

the variables with confidence level greater than 95%, thus infkuence DHA production are: 1)
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temperature (T, C0), 2) aeration rate (Q, volume of air per volume of medium per minute VVM)

and 3) agitation (R, rpm).

Table 12 - Case Study 1: DHA PB design results

Source: adapted from (Song X. , Zhang, Kuang, Zhu, & Guo, 2007)

Run# Xi X2 X3 X4 X5 X6 X7 X8 X9 X10 DHA (g/L)
1 1 -1 1 -1 -1 -1 1 1 1 -1 1.7

2 1 1 -1 1 -1 -1 -1 1 1 1 3.1

3 -1 1 1 -1 1 -1 -1 -1 1 1 3.9

4 1 -1 1 1 -1 1 -1 -1 -1 1 2.4

5 1 1 -1 1 1 -1 1 1 1 -1 3.8
6 1 1 1 -1 1 1 -1 1 -1 -1 2.5

7 -1 1 1 1 -1 1 1 -1 1 -1 4.7

8 -1 -1 1 1 1 -1 1 1 -1 1 3.9

9 -1 -1 -1 1 1 1 -1 1 11 -1 3.5

10 1 -1 -1 -1 1 1 1 -1 1 1. 2

11 -1 1 -1 -1 -1 1 1 1 -1 1 3.5
12 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3

Effect -1.167 0.807 0.057 0.810 0.183 -0.160 0.203 -0.260 -0.067: -0.053
S.E 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057.
t -20.588 14.235 1.000 14.294 3.235 -2.824 3.588 -4.588 -1.176 -0.941

Pr>ltl 0.031 0.045 0.500 0.044 0.191 0.217 0.173 0.137 0.448 0.519

These three design variables were used in the central composite RSM design. The RSM

design and DHA yield was obtained from Song et al. Based on this information, a second-order

polynomial equation was found to best describe the attribute DHA yield (g/L), as a function of the

design variables temperature, aeration and agitation.
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Figure 25 - Case Study 1: DHA attribute function
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The equation obtained was:

YDHA = 3.745 - 0.633T + 0.608Q + 0.417R + 0.025TQ - 0.088TR - 0.075QR - 0.186T 2

- 0.211Q 2 - 0.186R 2

4.3.2. SUF MODEL

From literature, the maximum published productivity of DHA by Schizochytriunm sp. found

was 10-12g/L*day (Martek patent, US7732170). This data was used as the maximum attribute

value (xtmax). In a real-life scenario, the minimum acceptable value for the attribute productivity

would be established based on expert's opinion. However, in this case study, for simplicity the

minimum acceptable value for this attribute (ximin) was equated to the minimum experimental

yield obtained (1.49 g/L). On the other hand, through PB design, Song et al (2007), proved that

harvesting time, with 108 hrs in the low level (-1), has no effect on DHA yield. Therefore, it was

assumed that for the RSM experiment the harvesting time used was 108hrs (4.5 days). Thus, ximin

= 0.33 g/L*day. Based on these information, the following two equations were used to develop a

Single-Utility Function (SUF) for the attribute 'productivity':

1 =12 m + b

0 = 0.33m + b

The solution for this simple linear ui (xij) system yields the utility function that transforms

the attribute rating into a utility value between 0 and 1:

SUFproauctivity(xproductivityj) = 0.086(Xproductivityj) - 0.028

Where SUFproductiity is single utility function for attribute 'productivity', Xproductivityj

is the attribute rating (the raw score) for alternativej of the attribute 'productivity'.

In order to convert the previously obtained utility model to SUF model the predicted DHA

yield (g/L) was first translated into productivity (g/L*day) by dividing the yield by 4.5 hrs. Then

using the equation above the corresponding utility scores were obtained.
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Table 13

RUN#

2

3
4

6
7

8
9
10
11

12

13
14

15
16
17
18
19

20

21

22

23
24
25
26
27

28
29

30
31

- Case Study 1: DHA SUF (Single utility function)

Predicted DHA yield Predicted DHA productivity Utility score
g/L g/L*day

2.63 0.59 0.022
2.63 0.59 0.022

3.79 0.84 0044

3.79 0.84 0.044
3.95 0.88 0.047
3.95 0.88 0.047
4.81 1.07 0.063
4.81 1.07 0.063
1.49 0.33 0,000
1.49 0.33 0.000
2.30 0.51 0 016
2.30 0.51 0.016
2.91 0.65 0,027
2.91 0.65 0.027
3.42 0.76 0,037
3.42 0.76 0.037
4.27 0.95 0.053
1.73 0.39 0.005
1.68 0.37 0.004
4.12 0.92 0.050
2.17 0.48 0.013
3.83 0.85 0.045
3.74 0.83 0.043
3.74 0.83 0.043
3.74 0.83 0.043
3.74 0.83 0.043
3.74 0.83 0.043
3.74 0.83 0.043
3.74 0.83 0.043
3.74 0.83 0.043
3.74 0.83 0,043

Utility function

SUF =m (predicted DHA productivi ty)+b

0.08569
b-0. 02 8

This utility score informs the decision maker about how far the attribute 'productivity' is

from the ideal value (xix,). Also, given that now it is a utility score, it can be added to other

attribute scores as will be exemplified in the second case study.

4.3.3. COST MODEL

The second variable in the Tradespace is cost. The objective is to be able to differentiate

what architecture has the highest cost. For this, a differential cost, rather than a total fermentation

process cost, is enough. Assuming all other design variables (besides from temperature, aeration
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and agitation) to be constant, the diffcrential cost will be defined by the cost of heating up and

cooling down the bioreactor, the cost of injecting oxygen into the reactor and the cost of agitation.

From amongst these three variables, heating/cooling and agitation cost are more significant.

However, since the cost of heating and cooling depends on the ambient temperature (and therefore

on the season and the region where facility is located) the power consumption for stirring was used

as an approximation for cost.

The power density per impeller was calculated using the following formula:

P = POpN 3 D'

Where P is the power consumption per impeller, Po the power number (5.5) for a given

type of impeller, N rotation per second (rps) and Di is the diameter of the impeller (0.076m). The

resulting power consLiIption was multiplied by the number of impellers, in this case 3, and divided

by the volume (Vz), in this case 7L.

Based on this information, the power consumption per architecture was calculated and shown in

the following table:

Table 14- Case Study 1:

RUN# RPM

1/min
1 150

2 150

3 250

4 250

5 150

6 150

7 250

8 250

9 150

10 150

11 250

12 250

13 150

14 150

15 250

16 250

17 200

18 200

19 200

20 200

21 100

22 300

23 200

24 200

25 200

26 200

27 200

28 200

29 200

30 200

31 200

DIH A

N

1/seg
2.500

2. 500

4.167

4.167

2.500

2.500

4.167

4.167

2.500

2500

4.167

4.167

2.500

2.500

4.167

4.167

3.333

3.333

3.333

3.333

1.667

5.000

3.333

3. 33

3.333

3.333

3.333

3.333

3333

3.333

3.333

Power density calculation

P P/Vz

W W/L
0.658 0.09

0.658 0.09

3.046 0.43

3.046 0.43

0.658 0.09

0.658 0,09

3.046 0.43

3.046 0.43

0.658 0.09

0.658 0.09

3.046 0.43

3.046 0.43

0.658 0.09

0.658 0.09
3.046 0.43
3.046 0.43

1.560 0.22

L560 0.22
1.560 0.22

1.560 0.22

0.195 0.03

5.264 0.74

1.560 0.22

1.560 0.22

1.560 0.22

1.560 0.22
1.560 0.22

1.360 0.22

1560 0.22

1.560 0.22
1.560 0.22
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The average industrial electricity rate in Massachusetts is 1 2.57/kWh (Electricity Local.

2016). Assuming a production of 50m9 the estimated cost is:

Table 15 - Case Study 1: DHA power consumption cost calculation

RUN# P/VZ

W/L

1 0.09
2 0.09
3 0.43

4 0.43

5 0.09
6 0.09

7 0.43

8 0.43

9 0.09

10 0.09

11 0.43

12 0.43

13 0.09

14 0.09

15 0.43

16 0.43

17 0.22

1 0.22

19 0.22

20 0.22

21 0.03

22 0.74

23 0.22

24 0.22

25 0.22

26 0.22

27 0.22

28 0.22

29 0.22

30 0.22

31 0.22

C/L $/5oM3

0.13

0.13
0.58

0.58

0.13

0.13

0.58

0.58

0.13
0.13

0.58

0.58

0.13

0.13

0.58

0.58

0.30

0.30

0.30

0.30

0.04

1.01

0.30

0.30

0.30

0.30

0.30

0.30

0.30

0.30

0.30

62.88

62.83

291.67

291.67

62.74

62.74

291.31

291.31

62.88

62.88

291.66

291.66
62.74

62.74

291.30

291.30

149.12

149.11

149.35

148.86

18.55

503.97

149.11

149.11

149.11

149.11

149.11

149.11

149.11

149.11

149.11

Harvest time (hr)

Electricity cost ($/kWh)
Electricity cost ($/Wh)

108

0.1257

0.000126
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4.3.4. TRADESPACE

With the information obtained in the previous sections, a SUF Tradespace for the attribute

'productivity' was plotted.

SUF tradespace
0,070

Pareto Optimal

0. 0E0

0.050

0.040

0.030

0.020

0.010

0.000
0000 10000 00.000 300.000 400 00900.000 600 000

Diferential cost ($)

Figure 26 - Case Study 1: DHA SUF Tradespace

The Pareto optimal in this case is the left upper corner, where utility score in the highest

and the differential cost is the lowest.

The benefit of having utility scores, as opposed to productivity, is that it allows the addition

of different attributes, with different units into one parameter. This will be exemplified in case

study 2. In this case study, however, since only one attribute is being analyzed, the following plot

of productivity v/s differential cost will facilitate the analysis.
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S149 119.0.948
' 148 863. 0.915

62,741, 0 878

C. 149.113,0.832

Productivity tradespace

29: 709, 1 209

291672, C.82 3

291.297, 0 759

C 62 737, 0.646

C 62.884 0.585

291664, 0,513
- 18 551. 0 d2 9

!-1 94 ' 74

3; FR1 3 1

Figure 27 - Case Study 1: DHA Productivity Tradespace

In a traditional optimization process, where cost is not analyzed in parallel, the optimal

architecture would be represented by point (291.309, 1.068) in the plot. This architecture, with the

following design variables: 23'C, 1.48 L/min*L and 250 rpm results in an optimal productivity of

1.068g/L*day of DHA. This corresponds to a cost of $291.309 higher than the cheapest

architecture analyzed. However, if we follow the Pareto frontier, moving towards the Pareto

optimal, the following non-dominated architecture is represented by the point (149.119, 0.948).

This architecture has the following design variables: 21.5'C, 1.25 L/min*L and 200 rpm. While

the resulting productivity in this case is 11% lower (0.948g/L*day compared to 1.068g/L*day),

the differential cost is 49% lower ($149 compared to $291). Whether this architecture is a better

option or not will depend on the price of DHA. In other words, does the loss of profit associated

with selling an additional 0.12g/L*day of DHA justify saving $142 per run? The price of DHA

depends not only on the end market segment (food and beverage, infant formula, supplement,

animal feed, clinical nutrition, etc.), but also on other attributes, such as purity. Thus the detail
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analysis and construction of a scenario to thoroughly analyze what the best architecture is, falls

beyond the scope of the present thesis. However, what can be concluded is that taking into

consideration fermentation unit operation in isolation, the productivity optimal alone might not

yield enough information to make the best decision. Furthermore, Tradespace might be a tool that

can support decision making when several objectives needs to be met.

4.4. CASE STUDY 2: HYPERTH ERMOSTABLE LIPASE FERMENTATION

The Lipase case study was based on Rathi et al (2002) paper "Statistical medium

optimization and production of a hyperthermostable lipase from Burkholderia cepia in a

bioreactor" published in Journal of Applied Microbiology. In this paper, design variables down-

selection was not done through a PB design, but rather a 'one-factor-at-a-time' method published

in an earlier paper (Rathi, Saxena, & Gupta, 2001). However, two attributes (or output variables)

are measured in the RSM, namely yield and enzyme specific activity. Thus, this paper was chosen

to exemplify how a multi-attribute-utility can be obtained from two SUFs.

4.4.1. ATTRIBUTE MODEL

According to Rathi et al. (2001) 'one-factor- at-a-time' analysis, the relevant design

variables for lipase attributes 'production yield' (U/mL) and specific activity (U/mg) are: glucose

concentration, palm oil concentration, incubation time, inoculum age and agitation. The range and

the codes for these 5 design variables are shown in the table below:

Table 16 - Case Study 2: Lipase design variables range

Source: (Rathi, Goswami, Sahai, & Gupta, 2002)

Range of levels

Variables Actual Coded Actual Coded Actual Coded

Glucose (mg i~': A 2 -1 8 0 14 +1
Palm oil (% v/V): B 0 -1 1 0 2 + I
Incubation time (h): C 20 -1 40 0 60 +1
Inoculum density (%): D 1 -1 2 0 3 +1
Agitation (rev min-): E 100 -1 200 f 300 +1

These five design variables were used in a RSM central composite faced center design to develop

a attribute model for 'yield' and 'specific activity'. The experimental design and the experiment

results were obtained from Rathi (2002). Similar to case study 1, these results were used to fit a

second-order polynomial equation.
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density Agitation Observed Prediction Squared errorRUN# Glu

2

3
4

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

21

22

23
24

25
26
27
28

29
30
31

Sum

Palm oi time

-1
-1

1

0
-1
0

-1
-1

0
0

0

0

1

-1

0

-1

-1

-1

0

Coefficients
bo
bi
b2
b3
b4
b5
b6
b7
b8

b9
b1G
bil
b12

b14
b15
b16
bl7
b18

big
b20

60.27

0.31
8.85

-11.49
0.15
4.17

-0.65
-2. 10
0.52
1.31
4.35
1.48

-1.06
302
0,81
1.18

-9.54
-28.04
10.21
27.96

-21.54

4.4.2. SUF MODE L

Information about the 'yield' and 'specific activity' values, before purification for the

production of industrial hyperstable alkaline lipase, was not found. Thus, for this exercise, the

values reported by Bhosale et al (2016) were used as benchmark. The table below shows the results

obtained by Bhosale et al.
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0

51
96
20
13
48

57
53
55
58
34
14
34

54.5
67
41
93
57
55
56
53
54
50
15
44
46

18
69
37
47

19
87

55.5

Table 18 - Case Study 2: Lipase activity attribute function

lipase specitic activty U/mg
Incubation Inoculum

41 08
88.38

23.38
7.16

50.16
6027
4864
60.27
60.38
29.37
11.03
34.06
58.99'
50.42
51.05
81.97
60.27
60.27
60,27
51.39
55.27
52.44
34.56
43.78
50.04
17.41
42.90

40.77
53.79
22.83
88.08
60.27

98.335
58.090
11.413
34.127

4.672
10.726
18.970
27.826

5.656
21.468
8.801
0.004

20.157
274.992
100.906
121.602

10.726
27.826
18.276

2.578
1.612
5.951

382.519
0.047

16.361
0.346

681.002
14.191

46171
14.656

1.174
22.801

2063.977



Table 19 - Case Study 2: Lipase attribute benchmark

Source: (Bhosale, Shaheen, & Kadam, 2016)

(mg/L) Ttal activity yield M)l

Crude 0.29i 153990 1 100
Arnr um lpht0e-252 13275 351 .98 8.

Dialysis 0.143 590L5 825 4.67 3.83

D ce ulse0.355 3055.96 2152,08 12.1 .98Column

On table 19, the line 'crude' refers to crude extract, which is centrifuged broth after 4 days

of incubation, thus cell-free supernatant. This is the same step in which Rathi et al (2001)

performed measurements of yield and specific activity. In both cases the microorganism were

grown in shake flasks. However, in Bhosale et al. microorganisms were harvested after 4 days,

whereas Rathi tested different incubation times. In order to account for this difference of

incubation time, productivity was calculated by multiplying specific activity (U/mg) by protein

content (mg/rnL) and divided by 4 days (96 hours) , thus 177 U/mg * 0.290 mg/mL * 1/96 hours

= 0.53 U/mL*h. Since this is productivity in shake flask, it is expected that productivity in

bioreactor will improve, due to superior aeration conditions in fermenters. However, bioreactor

fermentation results was not reported for the complete set of architectures analyzed. Thus, shake

flask productivity was used as a proxy instead, assuming 0.53U/mL*h as an average acceptable

productivity (utility value of 0.5) and a maximum productivity set at twice this value. Therefore,

the corresponding equations are:

U
XproductivityO.5 0.53 *= 0.5

U
Xproductivity-max = 1.06 mL * h =1

SUFproductivity(xproauctivityj) = 1.06(Xproductivityj) - 0.1236

Where SUFproductivity is the single utility function for attribute 'productivity',

Xproductivityj is the attribute rating (the raw score) for alternativej of the attribute 'productivity'.

The 'specific activity' value used as benchmark was the value reported by Bhosale, 177 U/mg. In

this case, this value was used as minimum acceptable value. A lower specific productivity suggests

that from the total protein produced, a lower percentage corresponds to the lipase enzyme or that

the lipase activity is much lower. Rathi, should be able to produce at least as much lipase activity

per mg of total protein as Bhosale. The maximum value was set at 3 times the minimum value,
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thus 531 U/mg. With this maximum value of specific activity in crude extract, a specific activity

of-5,000 U/mg is expected for purified enzyme, which corresponds with the activity reported for

Novozymes @ CAL-B lipase. The corresponding equations are:

U
Xactivitymin = 177 - 0

mg

U
Xactivity-max = 531 -

mng
1

SUFactivity (Xactivityj) = 0.00282(Xproductivityj) - 0.5

Where SUFctivity is the single utility function for attribute specific activiy ', xactivityj IS

the attribute rating (the raw score) for alternativej of the attribute 'specific activiltv'.

The following table shows the utility scores for the attributes 'productivity' and 'specific activity'.

Table 20 - Case Study 2: Lipase SU F (Single-Utility Function)

Productivity
utility scor u

0 1 1
-fi.A42

-0 41c it
411130 0 0 SIF = preicte Lipce poduci i34.1

A 22444

Gill1_ '1"]j I] .5

IJ 1310
ID 14

4111 ~~ ~C [11m 3 148

HI~~~ IIII 6

3111141]1U 413

-01 Le35

0 134

4 ii III ll 11 14

4111 411 -

0 4414

111-.3

11111 -0.35

411111- -0.40

hi 11111 -1.37

111111 -0141

411111- -0337

114 1113 -1 34

Incubation

40 AA
4 1-1 -11-
4111:11:
4r0 Fir
GO 110

Z20 Ol I

41J 0LI

410 00

40 00
61: Ari
211- 11 -
NA 1:11
41- Oki
1-1 00
20 OF
611 Xi
41- 00
4111-11-

It is worth noticing that the specific activity utility scores are all negative. This is because

for all the architectures analyzed, the resulting specific activity falls below the minimum value

reported by a potential "competitor".

Productivity
ILUImL'hI

0.15
8.62
0.08
0.01
0.15
0.30
0.33
0 30
0.61
il 10
0.04
0.32
0.12
0.24
0 26
0.50
0.30
0.30
0 30
0.52
0.38
0.57
0.15
0.14
0.45
0.06
0.24
0.16
0.60
0.09
0.57
0.30

Specific
activity
IU~mqI

23.30
716

50.16
60.27
48.64
60.27
60.38
29.37
11.03
34.06
58.99

50.42
5105

8197
60.27
60.27
61I.27
5139

55.27
52.44
34.56
43.78
51104
17.41
42. 90
40.77
53.79
22.83

8808
60.27

I
69

AUNI Yield
[IUmLI

1 5.88
2 24.71
3 3.09
4 0.44

8.92
6 11.88

6.57
11.88

3 12.21
10 5.82
11 2.67
12. 6.46
13 7.00
14 9.58
15 10.29
16 9 916
17 11.88
18 11.88
19 11.88
20 10.41
21 7.54
22 11.37
23 5.92
24 8.61
25 9.06
26 3.48
27 9.74
28 9.41
29 12.00
30 5 17
31 22.95
32 11.88

Specific

utilit Sore

-0.3q4
-0.250
-0. 434

-0. 158
-0.330
-0 3Q3

-0.330

-4417
-0.469
4 404
-0.333

-0.356
-0, 2P.2

-0.330
-0.3-1
-0.330
-0.355
-O.344
-0. 352
-0.402
-0.376
-15q

-0.451
-0.379
-0.305
-0.348
-0.436
-FI 251
-0.330

Productivity Utility function
SUL-F =m I(predir-ted Lipase produdi vih-1+b
m 10600
bD -0 1236

Specific activity Utility function
SUF =m 1predicted Lipase specifi c vty+

rn 0 OID282
b -0.5



4.4.3. COST MODEL

Rathi et al (2002) validated the attribute model obtained through RSM by producing lipase

in a 14 liter fermenter with 10 liters of working volume Using optimal conditions predicted by the

model. The results and implications of this will be discussed in the following subsection. In this

section. the result of the cost model developed assuming a 14L fermenter is presented.

So far, for the development of attribute and utility model, 5 design variables have been taken into

account, namely: Glucose concentration. Palm oil concentration, incubation time, inocuLuim

density and agitation. Incubation density was considered to have little effect on cost, thus

neglected. For agitation and incubation time, similar to case study 1, power density was estimated.

The table below shows the result of such calculation.

Table 21 - Case Study 2: Lipase power density and power consumption cost calculation

Average industrial electricity rate in Massachusetts is 12.57#/kWh (Electricity Local. 2016).

RUN# RPM

1/min

1 200

2 .20

3 200

4 100

5 300

6 200

7 100

8 200

9 300

10 100

11 100

12 100

13 200

14 200

15 200

16 200
17 200

18 200

19 200

20 100

21 300

22 300

23 100
24 100

25 300

26 300
27 300

28 300

29 300

30 300

31 200

32 200

N

1/seg
3. 33
3.33

3.33

1.67

5.00

3.33

L67

3.33

5.00

1.67

1.67

1.67

3.33

3.33

3.33

3.33

3,33

3.33

3.33

1.67

5.00

5.00

1.67

1.67

5.00

5.00

5.00

5.00

5.00

5.00,

3.33

3.33

P

W

1.56

1.56

1.56

0.19

5.26

1 56

0.19
1.56

5.26

0,19
0.19
0.19

1.56

1.56

1.56

1.56

1.56

1.56

156

0.19

5.26
5.26

0.19
0.19

5.26

5.26

5.26

5.26.

5.26

5.26

1.56

1.56

P/V

w/L

0.155

0.155
0.155
0.019
0.524

0.155
0.019
0.155

0.524

0.019

0.019

0.019

0.155

0.155

0.155
0.155
0.155
0.155
0.155
0.019

0.524

0.524

0.019

0.019

0.524

0.524

0.524

0.524

0.524
0.524

0.155
0.155

C/L Incubation time $/50M3

0.076

0.075

0.075

0.014

0.389
0.076

0.005

0.076
0.130

0,014
0.014

0.005

0.114

0.076

0.076

0.038

0.075

0.076

0,076
0.005

0.130

0.130

0.009
0.014

0.130

0.389

0.260

0.389

0.130

0.389

0.076

0.076

hours
40.00

40.00
40.00

60.00
60.00

40.00

20.00

40.00

20.00

60.00

60.00

20.00

60.00

40.00

40.00

20.00

40.00

40.00

40.00

20.00
2000

20.00

40.00

60.00

20.00

60.00

40.00

60.00

20.00

60.00

40.00

40.00

38.11

38.11

38.11

6.94

194.68

38.11

2.31

38.11

64.89

6.4

6.94

2.31

57.16

38.11

35.11

1.05
33.11

38.11

38.11

2.31

64.89

64.89

4.63

6.94

64.89

194.68

129.78

194.&3

64.89

194.63

38.11

38.11

Glucose concentration and palm oil concentration cost for a 50m 3 reaction was also

estimated. Results are shown in the table below:
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Table 22 - Case Study 2: Lipase architectures cost calculation

1 RUN# Giu Palm oil

rmg/mi %V/V kg/L
Glucose

kg/5WM3

0.003

0.003

0003S

0.014

0,014

0.003

0.014
0.003

0.014
0.014
0.002

0.002
0.003
0.%12

0.014
0.003

0.003

0.003

0.M"3

0.014
0.002

0.014

0.3
0.002

0.002

0.014
0.008
0.002
0.002

0.002

0.008
0.003

$/50M3 tI/OM3I
400

400

400

700
700
400

700

400

700
700

100
100
400

100
700
400

400

400

700

100
700

400

100

100
700
400

100
100
100

400
400

It

500
0

0
1000

500
0

500

1000

1000

0

0

500
500

500

500

500

500

500

1000

1000

0

500

0

500

10

1000

0

500.

500

Palm oil

kg/50M3

912.98

456.49

0

912.93
456.49

0
456.49

912,93

912.93
0
0

456.49

456.49

456.49

456.49

456.49

456.49

456.49

912.93
912.93

0
456.49

912.93

0

0

456.49

912.93
912.98

0

456.49
456.49

$/5OMI

730.384

365.192
0

0

730.334

365.192
0

365.192
730,384
730.334

0
0

365.192

365.192
365.192
365.192
365.192
365.192
365.192
730.334
730.384

C
365.192
730.334

C
C

365.192

730.384

730.384
C

365.192
365.192

stiring Total

$/!oM3 S/0M3
33.11
33.11
38.11

6.94
194. 68

38.11
2.1

33.11
64.89

6.94
6.94
2.31

57.16
38.11
33.11
19.05

33.11
38.11
33.11

2.31
64.39

64.39

4.63

6.94
64.39

194.63
129.78

194.68
64,39

194.68
33.11
38.11

03.A9
543.30

178.11
251.94

1170.06
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4.4.4. TRADESPACE

With the information obtained in the previous sections, a Multi-attribute score was calculated

and plotted. For this, several scenarios were analyzed:

a) Both attributes 'productivity' and 'activity' having the same level of importance. Each

attribute has a weight of 0.5.

b) Assuming that 'productivity' is expected to be further improved in bioreactor, 'activity'

was given more importance. 'Productivity' weight was 0.2 and 'activity, weight was 0.8.

c) Assuming that specific activity of purified enzyme will be more than 1 times higher than

in crude extract, 'productivity' was given more importance than 'activity". 'Productivity

weight was 0.8 and activity weight was 0.2.
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The following figures shows the Tradespace for each of the scenarios. The tables with the
calculation of each scenario are presented in appendix E.

Multi-attribute Tradespace Scenario 'a'

43% decrease in Highest utility score
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Figure 28 - Case Study 2: Lipase Multi-Utility Tradespace scenario 'a'
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Figure 29 - Case Study 2: Lipase Multi-Utility Tradespace scenario 'b'
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Multi-attribute Tradespace Scenario 'c'
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Figure 30 - Case Study 2: Lipae Multi-Utility Tradespace scenario 'c'

The first thing we can notice is that as the weight changes, the shape of the Tradespace

changes slightly. However, the utility scores, and therefore the number of acceptable architectures,

varies greatly. Such that in scenario 'b' ('Productivity' weight = 0.2, 'Activity' weight = 0.8) none

of the architectures under analysis are acceptable. This is because utility is driven by the attribute
'activity' in this scenario and because lipase enzyme specific activity reported Rathi et al. (2002)

are relatively low in comparison to Bhosale et al. (2016) and market standard. Therefore, based on

this analysis Rathi et al (2002) would need to improve the specific activity of their enzyme by

either increasing the amount of lipase produced per mg of total protein, developing a very efficient

protein purification process, or both.

This case exemplifies the importance of correctly assigning weight to the different Single-

Utility Functions (SUF). As observed, the different weights can lead to drastically different results.

Scenario 'a' resulted in 7 acceptable architectures, scenario 'b' in none and finally scenario c in

15.
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When comparing non-dominated architectures; in other words, architectures on the Pareto

frontier, two architectures stand out (shown in red circle in scenario 'b' and 'c'). As the weights

of 'productivity' and 'activity' flip, these two architectures are responsible for the change in the

shape of the Pareto frontier. The utility score of these two architectures in comparison to the rest

of the architectures in the Pareto frontier drops significantly in scenario 'b', where the attribute

'activity' has more weight. This result suggests that these two architectures yields higher

productivity (U/mL*hr) based on the increase of total protein and not lipase enzyme alone. If the

increase of productivity observed was based on increase of lipase enzyme expression, then it is

expected the utility score for specific activity (U/mg) would not drop, thus change of shape in the

Pareto frontier would not occur. Therefore, this result highlights the importance of analyzing the

complete bioprocess, as these two architectures might require a more efficient downstream

processing.

Finally, similar to DHA case study, for scenario 'c' the architecture with the highest utility

score might not necessarily be the optimal architecture, as the following architecture towards the

left of the Pareto frontier costs 43% less, with only a 17% decrease in utility score. However, this

analysis does not take into account the downstream processing. As discussed in the above

paragraph, because the higher productivity of the architectures in red circle is apparently due to

increase of overall protein production (not lipase alone), the downstream processing would have

to compensate for this fact. Thus, if at the point of the analysis no downstream information is

available, a "safer" approach would be scenario 'a' (a weight of 0.5 for each attribute). In this

scenario, the conclusion derived in scenario 'c' is no longer true. In this case, the difference in

cost between the highest utility architecture and the next architecture on the Pareto frontier towards

the left (closer to Pareto optimal) remains 43%, but the decrease in utility score is 54%. Once

again, this highlighting the importance of weight assignation and an analysis taking into

consideration the complete process.
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5. DISCUSSION AND CONCLUSION

It is to the author's understanding that the use of Tradespace, particularly MATE in the context

of bioprocesses had not been proposed before, potentially due to the high complexity of

biochemical processes, as it was demonstrated in the development of a DVM. Unlike other

systems, in bioprocess systems it is non-trivial to link a given attribute to one (or a reduced number)

of design variables. In order to overcome this issue, the present thesis proposed the use of DoE,

specifically PB design, to identify most critical design variables followed by a RSM to develop

single-utility curves. This new MATE-DoE methodology was tested in two case studies, proving

the possibility of implementation.

These two case studies exemplified the benefit of an integrated development process, where

several architectural designs are simultaneously assessed for more than one criteria. Unlike the

traditional sequential process the "MATE-DoE" method proposed in this thesis avoids pre-mature

focusing. It also allows a multi-objective, multi- attribute optimization. As a result, MATE-DoE

method allows:

a) The exploration of several architectures (combination of process parameters) and

comparison based on differential cost. Thus, allowing the identification of architectures

with similar utility but different cost, giving rise to cost saving opportunities.

b) It allows a straightforward comparison to market standards and competitors. SUF (Single-

Utility Functions) facilitate the comparison to exiting products, while at the same time they

translate an attribute value into utility score. This last point allows the aggregation and

simultaneous analysis of several attributes.

c) It assess a group of attributes, as opposed to an attribute in isolation. Customer decision to

buy a given product is a complex process, where several attributes of the product are taken

into account and trade-offs are made. The proposed MATE-DoE method takes this

complexity into account. The weighted sum method used to develop a MUF (Multi-Utility

Function) allows decision maker to score architectures based on how well they perform in

achieving a group of attributes according to customer preference (in terms of which

attributes and in order of importance). It allows the aggregation of several attributes into a

dimensionless parameter, referred to as utility.

It is important to point out that the aim of the MATE-DoE method is to complement existing

process simulation software. It combines and links bioprocess optimization practice with market
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research results. Thus, it promotes multi-disciplinary, cross-functional team work. Furthermore,

the main purpose of MATE-DoE, would be to analyze different scenarios at a time, comparing its

potential total, or differential cost. As shown in both case studies, this would potentially support

the identification of architectures with slightly lower utility but allowing considerable savings in

cost. Furthermore, if a specific market segment and price can be identified, a Tradespace of

profitability vs. utility would clearly show the tradeoffs between this two objectives.

While the proposed method was successfully used in two case studies, in the implementation

of MATE-DoE in both case studies some challenges where encountered:

1. Incomplete experimental data. Due to time constrains, experimental data was obtained from

published papers. Thus, the analysis had to be adapted to the published information as opposed

to carrying out experiments to solve the question of what are the most important design

variables for the attributes identified. Therefore, experimental results measuring oxidation

levels of DHA was not found. Instead, in both cases the attribute 'productivity' was analyzed.

This is because the objective of process development is typically to increase productivity.

Furthermore, for case study 2, ideally, the experiments would have been carried out in small

fermenters, as opposed to flask experiments, as it is well known that due to superior aeration

conditions, productivity in bioreactors is higher.

2. Assumption in minimum, maximum utility value and utility weight. It is important to point

out that in a real-life scenario, surveys, interviews and deeper market analysis need to be

performed to identify reasonable maximum, minimum, utility values and weights. This process

might be long and would potentially require several discussion with the development team, as

a 'right' values does not exist; rather it is an agreement and an educated guess based on market

data. For both case studies, an effort was made to find commercial DHA and lipase data.

However, interviews with experts and continuous discussion with the development team were

beyond the scope of the present thesis.

3. Research stage of experimental data. Published data in scientific journals are typically in

research stage, often times conducted at a university laboratory. To be more accurate, and to

be able to compare to maximum and minimum attribute values, the experimental data should

be beyond the research stage and rather in process development stage. This might explain, for

example, the low 'specific' activity' values reported by Rathi et al (2002) for lipase enzyme.

76



The above challenges highlight the importance of three elements for the successful

implementation of the proposed "MATE-DoE" method:

a) Thorough market analysis to identify customer attribute preference. As proven in the

second case study, the weighted sum method used to derive a MUF (Multi-Utility

Function) score can yield different results when weights are assigned differently. For

example Multi-utility Tradespace scenario 2 of lipase enzyme case study, resulted in zero

acceptable architectures. This subjective scoring system can hugely misguide the analysis

if not performed appropriately.

b) Thorough market analysis to identify attribute maximum and minimums. In order for

the MATE-DoE Tradespace analysis to be significant, the appropriate identification of

attribute maximum and minimum acceptable values for each Single-Utility Function is

essential. Otherwise, what appears to be a high utility score architecture can in reality be a

low performing architecture.

c) Coordination, analysis and discussion with the process development team. The

identification of appropriate attribute maximum, minimum and weight, involves not only

the marketing team, but also the process development and management team. As

mentioned before, a "right/correct" value does not exist. But rather it is an agreement based

on market and existing process information.

Also, due to the number of experiments needed to be carried out in DoE (even though less

than one-at-a-time experiments, nonetheless still a considerable number of experiments is

required), a good coordination with the process development team is essential to avoid

unnecessary experiment repetition. Ideally, a good planning would result in a coordinated

effort to collect information for several attributes at once, and not repeat experiments (i.e.:

one set of experiments to measure productivity, oxidation level, purity, etc.)

Finally, due to the great number of experiments and market analysis involved, further studies

to simplify the method are recommended. Potential ways of simplifying the method are:

1) MATE-DoE applied only on the fermentation and downstream steps. While upstream

processes are very important in the process development, they have little impact on cost.

MATE-DoE Tradespace is meant to help analyze the tradeoffs between attributes

(productivity, activity, oxidation level, purity, etc) and cost (total cost, differential cost,
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profitability, etc.). Thus, there seems to be no point on carrying out MATE-DoE

Tradespace in Upstream process.

2) PB design as a go/ not go decision for MATE-DoE. After identifying critical design

parameters for a given attribute, a cost calculation assuming all the identifying parameters

in their high (+1) and low value (-1) can be carried out. The estimated cost in a scale up

scenario can be compared. If the difference (at scale) between an architecture with all the

design variables in +1 and an architecture with all the design variables in -1 is not

significant, then a MATE-DoE Tradespace analysis would not be recommended.

3) Coding to create more architectures. Once single-utility functions are developed, more

architectures (within the +1 and -l values of each design variable) can be predicted using

software such as MATLAB @. In this way more architectures can be identified along the

Pareto frontier without carrying out the required experiments. Also, this would avoid

"artificial clustering" due to DoE. For example, in case study 1 (DHA), the trade space

seems to suggest 5 clusters as shown in the figure bellow:

Productivity tiadespace
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Figure 31 - "Artificial clustering" in Tradespace.
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What appears as 5 distinctive clusters is in reality the 5 levels analyzed in the Central

Composite Circumscribed DoE. Because in case study 1, a simplified analysis taking into

consideration only one utility (productivity in this case) and one cost driver (i.e. power density)

the architectures are clustered and correspond to the 5 levels of the DoE design. This

phenomenon was not observed in case study 2, as more than one utility and cost driver was

taken into account in the analysis. Computer simulations can further prevent this artifact. By

using the corresponding Single and Multiple Utility Functions, computer simulations can

populate the Tradespace, showing a greater number of possible architectures, avoiding this

"artificial clustering" created by experimental results.

Finally, further studies incorporating downstream process to further assess the applicability

of the proposed method are required to better understand its applicability. As it was shown in

case study 2, the analysis of the complete bioprocess is essential for an accurate assessment.

In conclusion, the proposed "MATE-DoE" could potentially contribute and complement

existing bioprocess simulator software by performing a more holistic, integrated analysis and

promote early discussion between marketing and process development team. However, this

method should be used with caution, as inaccurate input data could yield misguiding results.

Particularly, the weighted sum method to produce Multi-Utility Functions (MUFs) has to be

appropriately performed. Further studies to simplify the proposed method are recommended.

Also, case studies analyzing the complete bioprocess are required to further assess the

applicability of the "MATE-DoE" method proposed.
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APPENDIx A - SUPERPRO SOFTWARE OVERVIEW

TYo model an integrated process on the conmpLIter LisingA a simulator, a tlowsheet that represents the

overall process is first developed. The figure bellow for instance displays the floowsheet of a

hypothetical process in the main window of SuperPro Designer. The flowsheet is developed by

putting together the required unit operations and joining them with material flow streams.
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Next, the user initialize the flowsheet by registering (selecting from the component database) the

various materials that are used in the process and specifying operating conditions and performance

parameters for various operations.

In continuous operations, a piece of equipment performs the same action all the time. In batch

processing, on the other hand, a piece of equipment goes through a cycle of operations. For

instance, a typical chromatography cycle includes equilibration, loading, washing, elution and

regeneration. In SuperPro Designer, the set of operations that compromise a processing step is

called "unit procedure" (as opposed to "unit operation"). Each unit procedure contains individual

tasks (e.g., equilibration, loading, etc,.) called operations.
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For every operation within a unit procedure, SuperPro includes a mathematical model that

performs material and energy balance calculations. Before any simulation can be done, the user
must initialize the various operations by specifying operating conditions and performance
parameters, as shown below:

vA Ti -

SS pr P!

u diaC 5

r epe

Source: (Petrides, Bioprocess Design, 2000)
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APPENDIX C - STAKEHOLDERS NEED DESCRIPTION

The following table lists and describes the stakeholders taken into consideration in this

analysis:

ech startup Biotech startup developing and owners of the bioprocess.

Community provides qualified workforce for the startup

Bigger ingredient company or a CMO (Contract Manufacturing organization) with
industrial capabilities to produce the food ingredient at scale.
For example: a given new product development department within a bigger company,
such as DSM, BASF, Novozyme, or an external CMO.
Bigger ingredient company in charge of commercializing the ingredient. If it is the
same company as Partner I and there is a licensing agreement in place, then the
difference between sales and finance department will be made, naming them Partner
2.a and Partner 2b respectively.

manufacturing Food manufacturing company that uses the food ingredient to manufacture their
products.
For example: Nestle, P&G, others.

s, Wholesaler In this analysis these three stakeholders have been aggregated, since they have similar
r needs. As a group, this distribution channel has the objective of selling food products

to the consumers.
Example of retailers: Costco, Target, Walmart, etc.
The end user, who buys and consumes the food product.

Private investors

Government investment

Regulators

NGOs

Healthcare community

This could be venture capital, or angel investors of the biotech startup. But it could
also be a private company investing in a specific project. However, independent of
the type of investor, this is an entity that provides cash so that the project can be
carried out.
It can be investment in the form of grants, or other incentives such as tax incentives
or loans.
Examples are federal agencies such as NIH (National Institute of Health), NSF (The
National Science Foundation) and programs such as Small Business Innovation
Research (SBlR) and the Small Business Technology Transfer (STTR).
Governmental entities in charge of enforcing the law and ensuring the safety of the
ingredient and food for the population and the environment.
For example: FDA, EPA
Non-Governmental entity that advocate for food safety and communicate their view
on healthy food and food ingredients. They create change by raising awareness about
certain topics. Some controversial topics NGOs might advocate for within food
industry might be: 1) traceability 2) labelling 3) health claims 4) environmental
friendly and sustainabilityprocess. However, one of the most important topic in this
case might be transgenic ingredients.
Some examples of NGOs in the United States are: Center for food safety
(http 'wcenterforfndsafey.crgj), Food and Water watch
(http:/ ~wwfoodandwerwa tch.or ), Food Mythbusters (http foodmyths.org/),

etc.
Similar to NGOs they also advocate for food and food ingredient safety. However, in
this case rather than an established organization we are referring to the physicians,
nurses and other healthcare personnel whose opinion on health safety of a given food
and/or food ingredient might pursue the customer to consume or not a given product.
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Community

Partner I

Partner 2

Food
company

Distributor
and Retaile

Consumer
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Raw material, utility and Here the suppliers were also aggregated, as their needs (mostly revenue) have little
consumable suppliers influence in the analysis of food ingredient specification. Instead quality

specifications are impose on these suppliers to meet food ingredient quality needs.
Also, difference between the types of suppliers was omitted for the same reason.

It is worth noticing that stakeholders that has little influence in the 'project/biotech start

up' were not taken into account. Thus, farmers and other raw material providers for the food

manufacturer are beyond the scope of this analysis. Also, some stakeholders such as 1) other

ingredient companies that reflects the market share, or have a positive role in growing the market;

2) packing companies, important for the food manufacturing company, 3) academia, from which

technical knowledge and new ideas for ingredient bioprocess production may emerge, among

others stakeholder are not taken into account, as they have little influence in determining product

specification, which is the objective of the present stakeholder analysis.

It is also important to highlight that in this analysis only the food and beverage market

segment is taken into account. In other segments such as supplement or animal feed, the

stakeholders and the nature of their interaction might be different. For instance, for feed industry.,

'pellet manufacturer' and 'farmer' would need to be considered and the distribution channels

would differs greatly.

Finally, the nature of the interaction might be different and case specific, depending on the

kind of agreement the biotech start-up is able to negotiate. For instance, for lipase enzyme, the

biotech company could choose to license the process to a big company such as Novozyme (who

then becomes 'Partner I' and 'Partner 2') or raise funds to produce it themselves and sell it to the

ingredient to a bigger company (in this case 'Partner I' would be a CMO and 'Partner2' the bigger

company buying the ingredient). Since the specific type of agreement cannot be defined

beforehand and since the objective is to identify product specifications, it is expected that the

characteristics of the agreement will not impact the underlying need of each stakeholder. Thus, it

was assumed for this stakeholder analysis that the biotech startup had a licensing and royalty

agreement with a bigger firm, even though the author recognizes that this is not always the case.

88



The following step is to describe each stakeholder's needs.

Projectibiotech startup Workforce

*Licensing fee.

Royalty on les

Investment

Equipment and raw material

Partner 1 (process
development department)

Partner 2.a
(sales department)

Partner 2.b
(finance department)
Food manufacturing
company
Distributors, Wholesaler
and Retailer
Consumer

Private investors
Government investment
Regulators

NGOs/local communities

Healthcare community

Raw material and
consumable suppliers

Regulatory approval

Well defined process parameters

Salary

Food ingredients

Payment

Salary

Income

Food ingredients

Food products

Payment

Food product

Recommendation

ROI
Project report

Safe and environmentally
friendly process

Safe and environmentally
friendly product and process

Safe and Healthy

Revenue

Community

Partner 2.b

Partner 2.b (however, only possible if sales is
received form Food manufacturing company)
Private and government investment

Raw material suppliers

Granted by regulators

Biotech startup

Partner 2.b

Partner I

Food manufacturing company

Partner 2.b

Partner 2.a

Partner 2.a

Food manufacturing company

Consumer

Retailers

Healthcare community and NGOs
Biotech Statup.

Biotech Startup

Biotech Startup Partner I and Food
manufacturer

Biotech Startup, Partner I and Food
manufacturer

Biotech Startup, Partner I and Food
manufacturer

Biotech Startup
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APPENDIX D - OBJECT PROCESS LANGUAGE

ymbd rPi.KL commnts

Object A: A is physical (and A is informatical and
A thing that exists environmental). systemic by default.

Process B:
A thing that transforms B is physical (and B is informatical and
(generates, consumes,
or changes the state of environmental). systemic by default.

an object).

A is K1.
A State: AAlways within anState:A can be sior obec

A situation of an object. A object.can be _i 2,rs.

Allowed Source- Semantics! Effect
Symbol Name OPL to-Destination on the system

connections flow/ Comments

A Aggregation- A consist of B. Object-ObjectParticipation Process- Process

Object-Object
Exhibition- A exhibits B Object-Process

A, Characterization Process-Object
Process- Process

Generalization- B is an A. (objects) Object-Object
Specialization B is A. (processes) Process- Process

A Classification- 8 is an instance of A. Object-Object
Instantiation Process- Process

- Tagged structural According to text Object-Object Describes
links: Unidirectional added by user Process- Process structural
Bidirectional information.

I
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Name Symbol OPL Semantics

Process B consumes
Consumption Link A B consumes A'

--- ---- --------------------- O b i!e c t A .
Process B consumes

State-Specified..
C s t LiB consumes sI A. Object A when it is at

Consumption Link
State s1.

Result Link C B yields A Process B creates
_ Object A.

Process B createsState-Specified A AaS L dB yields sI A. Object A at State s1
Result Link '

..Process B changes
A the state of Object A

Input-Output Link B changes A from si to the State of tAfrom State si to
Pair s2State s2

Process B changes
Effect Link A B affects A. thess B Objes

the state of Object A;

Informatical Physical Intor-natical Physical
Systemic Syemic Systemc systemic
Process Process 0 Wect Object

-----------------------------
Informatica Physical Informatical P -sical

Environmental I Envnonmertal Environmental Environmental 01
Process , Process Oaject Cbject

-II' -.% _7 , , - I S- - - - - --------

Informatical Systemic Process is an informatical and systemic process.

Physical Systemic Process is a physical and systemic process.

Informatical Systemic Object is an informatical and systemic object.
Physical Systemic Object is a physical and systemic object.

Informatical Environmental Process is an informatical and environmental process.

Physical Environmental Process is a physical and environmental process.

Informatical Environmental Object is an informatical and environmen
t
al object.

Physical Environmental Object is a physical and environmental object.
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Name

Consumption

link

Result

link

Semantics

The process
consumes the
object.

The process
generates the
object.

Sample OPD & OPL Source Destination

Eating consumes Food

Mining yields Copper.

Eating
consumed consuming
object process

creating
process

created
object

The process
Effect affects the object Cp affected object and

by changing i affecting process are bothlink from one state to source and destination
another state. Purifying affects Copper.

anothDestintei

Name Semantics Sample OPD & OPL Source Destinati
on

Agent is a human or
a group of humans
who enables the Welder We dirg tgeng

Agent occurrence of the enabledandlink process to which it process
is linked but is not enabling
transformed by That Welder handles Welding. object
process.

Instrument is an
inanimate object
that enables the instrumentInstrument occurrence of the -the enabled

fink process to which it Manufacturing requires Machine enabling process
is linked but is not object
transformed by that
process,

Source: (Dori, 1995), (Dori, Object-Process Methodology - A Holistic System Paradigm, 2002)
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APPENDIX E - CASE STUDY 2 MULTI UTILITY SCORES

Case Study 2: Lipase Multi-Utility Tradespace scenario 'a'

Productivily specific activity

3 utility score

0.03

U.53

-0.04

-0,12

0,03
0.03

0.22

0.19

0.52

-0.02

0.22

0.00

0,13

0.15
0.40
0.19
0.19

10.39,

0.13
0.28
0.411
0.03

0.03

0.36

-0.06

0.3
0.04
0.51
-0.03

0.48
0.19

utility score

()0 .

-0.25

-0-A3
-0.38

036

-0.33

-0.36

-033

-0.361

-0.42

-0.47

-0.40

-0.33

-0.36

-0.36

-0.27

-. 33 3

-0.33

-033
035

-0.34

-0.358

-0.15

-0.40

-038

-036

-0.425

-0.38
-0.31

-0.35

-0.44

-0.25

-0.33

Weighted weig

Prodeutivity

01016

0.266

-0.021

-0.058

0.096
0.112
0.096
0.262
-0.010

-0.038
0.109
0.010

0.065

0.074

0.702
0096
0.096
0.096
C.214

0.138

0.240

0.017
0,014

0.178

-0.031

0.067

0.021

0.256

0.016

0.242

0.096

hted specific Prar3dictivity weight

activity Multi-utility score Spe1ic activity weight
-0104 0.1
(1.19-1

-0.125

-0.217

-0.240

-0. 179

0 1695

-0.181

-0.165

-0.165
-0.209

-0.234

0,202
-0.167

-0.179

-0.178
-0.134

-0.165

10.165

0.16,5

-0.177

-0.172

-0.176

-0.201

-0.108

-0179

-0.225
-0.184J

-0.192

-0.174

-0.213

-0.126

-0.165

0.(40

-0.23

-0.298

-0.362

0. 069

-0.1145

-0.069

0.068

0,097
-0.219
-0.273

-0.092
-0.167

0. 114

-0103
0.068
-0.069

-0.069

-0.069
0.037

-0.04

-0.174

-0.003
-0.257

-0.122

-0.371

0.082

0.234
0.117

0.069

- Case Study 2: Lipase Multi-Utility Tradespace scenario 'b'

Productivity Specific activity
utility score utility score

0.03

0.3
-0.04

-0.12

0.03
0.19
0,22
0.19
0.52,

-0.02

-0.03

0.22

0.00
0.13
0.15

0.40

0.19
0.19.
0.19
0.A3

0.28

0.41

0.03
0.03
0.36
-0.06

0.13
0.04

0.51
-0.03
0AB

0.19

Weighted Weighted specifk

-0.33
-9A35

-0.48

-0.36

-033
-0.36
-0.33

-0.42

-0.47

-0.40

-0.33
-0.36
-0.36
-0.27

-0.33
-0.33

-0.33
-0.35
-0.34

-0.35

-0.40

-0.38
-0.36

-0.45

-0.36
-0.38

G 35
-0.44

-0.25
-0.33

Productivity
0.026
(1106

-0.008

-0,023

0,033
I-ckts

0,038
0.105
0,004

0015
0.044

0.026
0.030
0.0811
0.038

0.038

0.030
0.036
8.055

0.098

0.007
0.006

0.071

-0.012

0.027
0.009
0.103
-0.W26
0.097
0.038

activity
-0.307

-0.200

-0.347

-0.3S4

-0.287

-0.264
-0.790

-0.264

-0.264

0.334
-0.375
-0.323
-0.267

-0.286
-0.285
-0.215
-0.264

-0.264

-0.264

-0.284

-0.275

-0.281
-0.322
-0.301

-0.287:
-0361

-0.303

-0.308

-0.279
-0.34Q,

-0.201

-0.254

Prod ( cvIty weight

Multi -utilit score ISpeciic activity weight

-0.30

-0.094

-0.156

-0.487

-. 280

-0.226
-1.245

-0.226
-0.259
-0.338
-0.30
-0.279
-0.267

-0.18
-0.22f-0.226

-0.2 26

-0.198

-0.186
-0.315.
-0.215

-0.216

-0.373

-0.176

-0.355

-0.104
-0.226

RUN# Total
0.5:

1 908.49

2 543.30

3 178.11

4 251.54
5 1170.06

6 543.30

7 247.31

8 543.30

31 140.23
910 82.32

11 4L'4

12 37.31

13 562.35

14 438 30
-1 648.80
16 524.25

17 543.30

18 543.30

19 543.30

20 977.70

21 830.28
22 309.1 9
23 509.02

6 24 772,32

25 99.89

26 439.88
,9 27 634.98

s28 93.06
29 830.23
30 229.69

33 31 543.30

32 543.30

0.2

0.8
RUNIf cotal

$/taM3

S 1 708.49

2 543.30
3 78.11

4 251.94

5 1170.06
6 543 30
7 247.31

549.30
9 1040.28

10 982.32

1. 41.94

12 37.31
13 562.35

15 14 438.30

15 648.30
16 524.25

17 543.30

s18 543.30
19 43E.30

20 977.70

21 830.28
24 22 309.8

23 009.32
26 24 772.32

25 99.9

26 439.68

27 634.98

23 960.06
3 29 330.28
3 30 225.8

3 31 543.30
34 32 54330
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- Case Study 2: Lipase Muti-Utility Tradespace scenario 'c'

RUN# otA I

1 50M34

2 543.30

1 173.1
4 251.4

5 11-70.16

6 543.30

7 247.31

3 541.30

9 t10.28

10 982.312

11 41.94

12 37,31

13 562.35

14 438.30
7 15 648.30

P 16 524.25

17 543.30

18 543.30

59 543.30

20 977.73

23 21 830.28
22 309.89

23 509.82

24 772.32

25 99.9

2B 26 439.68

27 634.98

23 a 60.06
29 830.28
337 229.63

33 31 543.30

34 32 .543.30

Productivity
utility score

0.03
0.53
-0.04

-0.12
0.03

0.19

0.22

0.19
0.52

-0,02

-0.0F,

0.22
0.00

0.13

0.15
0.40

0.19.

0.19

0.19

0.43

0.23
0A..

0.03

0.03

0.16
-0.03

0.13

0.0

0.51

0.03

OA.S
0.19

Specific activity
utility score

-0.33

-0.25

-0.43

-0.43

-0.36

-0.33

0,36

-033

-0.33

-0.32

-0.33

-0.40

-0.38

-0.36

-0,27

-0.38

-0.33

-0.33

-0.35

-0.3
-0.35

-0.38
-0. 3 5

-0.25

Weighted Weighted specific
Productivity activity

0.026 -0./77

0.425 -0,050

-0,033 -0.087

-0093 -0.096

O.X27 -0.072

(Y153 -0,066

0.1-0.03
0,153 -0.066

0.419 -0.066

-0.017 -0.031

-0.061 -0.094

0,175 -0.081

0.000 -0.067

0,104 -0.072

0.119 -0.071

0.324 -0,054

0,153 -. 066

0.153 -0.066

0.153 -0.066

0.343 -0,071

0.221 -0.069

0.333 -0.070

0.027 -0.080

0,023 -0,075

0.235 -0.072

-0.050 -0.090

0.158 -0,076

0.034 -0.07/

0,410 -0.070

-0.026 -0.087

0,388 -0.050

-0.33 0.153 -0.066

Productvy weight

Multi-utility score Specifc activity weight
-0.051

0.375
-0.120

-0.189

-0,044

0,087
0,107

0.087

0.353

-0,100

-0.155

0.0.4
-0.067

0,033

0.048

0.087
0.03-/
0,272

0.152

U.313

-0.054

-0.052

0,214

-0 140

0.032
-0.0A3

0.340
-0.113

0,337
0.037

'.3

0.2
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