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Abstract Light transport has been analyzed extensively, in
both the primal domain and the frequency domain. Frequency
analyses often provide intuition regarding effects introduced
by light propagation and interaction with optical elements;
such analyses encourage optimal designs of computational
cameras that efficiently capture tailored visual information.
However, previous analyses have relied on instantaneous
propagation of light, so that the measurement of the time
dynamics of light–scene interaction, and any resulting infor-
mation transfer, is precluded. In this paper, we relax the com-
mon assumption that the speed of light is infinite. We analyze
free space light propagation in the frequency domain consid-
ering spatial, temporal, and angular light variation. Using
this analysis, we derive analytic expressions for information
transfer between these dimensions and show how this transfer
can be exploited for designing a new lensless imaging system.
With our frequency analysis, we also derive performance
bounds for the proposed computational camera architecture

Electronic supplementary material The online version of this
article (doi:10.1007/s11263-013-0686-0) contains supplementary
material, which is available to authorized users.

D. Wu · G. Wetzstein (B) · C. Barsi · R. Raskar
MIT Media Lab, Cambridge, MA, USA
e-mail: gordonw@media.mit.edu

D. Wu · Q. Dai
Department of Automation, Tsinghua University,
Beijing, China

T. Willwacher
Department of Mathematics, Harvard University,
Cambridge, MA, USA

D. Wu
Graduate School at Shenzhen, Tsinghua University,
Beijing, China

and provide a mathematical framework that will also be use-
ful for future ultra-fast computational imaging systems.

Keywords Computational photography · Light transport ·
Frequency analysis · Lensless imaging

1 Introduction

With the invention of the electronic stroboscope, Harold
“Doc” Edgerton captured the first photograph of a bullet
piercing an apple about half a century ago. Today, ultra-fast
sensors (e.g., Hamamatsu 2012) can produce visual informa-
tion at effectively one trillion frames per second, roughly one
million times faster than Edgerton’s electronic strobes. This
technology allows for the capture of light as it propagates
through space and facilitates a wide variety of applications
in computer vision. Indeed, the common assumption that the
speed of light is infinite becomes deprecated. Imaging sys-
tems with such high time resolution provide a new degree of
freedom available to computer vision applications, namely,
time-resolved ultra-fast imaging.

Whereas ultra-fast imaging techniques, such as time-of-
flight capture or light detection and ranging (LiDAR), have
been successful in measuring the travel time of short light
pulses for applications in depth estimation, measuring the
full time profile of sensor pixels over an extended period of
time has started only recently to be explored in the computer
vision community. The key insight of this paper is to treat
light propagation among emitters, the scene, and receivers
in five dimensions, with space, angle, and time all coupled.
This leads to joint re-examination of fundamental inverse
problems and solutions in computational imaging. Our paper
explores ultrafast computational imaging in four aspects: the-
ory, capture, analysis, and applications.
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Fig. 1 Overview of operators for forward and inverse light field trans-
port. While conventional analysis (e.g., Durand et al. 2005) con-
sider only time-independent transport (left column), we analyze time-
resolved forward and inverse light transport in this paper (center

and right columns) and show that the operations required to inverse-
propagate a light field in space, time, and angle correspond to computed
tomographic reconstructions. Based on these insights, a new lensless
computational imaging system is proposed

In particular, we analyze light propagation in free space in
both the primal and frequency domains, considering space,
angle, and time for a finite speed of light. We discuss cross-
dimensional information transfer and derive upper bounds
for ultra-fast streak sensors, which record only subsets of
the high-dimensional space. Facilitated by this analysis,
we propose a new computational camera architecture that
requires no optical elements besides a time-resolved sen-
sor and a pulsed light source. Relevant scene information is
recovered via computed tomographic reconstruction in post-
processing. Summarized in Fig. 1, our contributions are as
follows:

– We analyze free space light propagation in the frequency
domain considering spatial, temporal, and angular light
variation. We show that the propagation in frequency space
can be modeled analytically as a combination of a shear
in the light field and a convolution along the angular fre-
quencies.

– We show that propagation in free space has unique in-
formation-preserving properties by coupling information
among different dimensions. We derive upper bounds for
how much of the information contained in one dimension
is transferred to those that are measured.

– Based on this analysis, we introduce a novel, lensless cam-
era. This approach exploits ultra-fast imaging combined
with iterative reconstruction, while removing the need for
optical elements, such as lenses or masks.

– Using the proposed frequency analysis, we derive upper
bounds on the depth of field of the proposed camera and
verify them with simulations.

– With synthetic scenes and an experimental prototype cam-
era, we demonstrate and evaluate the proposed computa-
tional imaging approach.

1.1 Overview

This work is organized as follows. In Sect. 2, we review
relevant literature. Section 3 introduces a detailed analysis

of transient light propagation in free space in both primal
and frequency domains. This analysis is used in Sect. 4 to
derive upper bounds for the amount of spatial image infor-
mation that is preserved after propagation. We introduce a
new approach to lensless computational imaging in Sect. 5.
The proposed technique captures spatial and temporal image
information using a bare sensor and uses computed tomog-
raphy for reconstruction. We evaluate the performance of
the CT-based reconstruction algorithm with resolution charts
in Sect. 6 and with simulated and physical experiments in
Sect. 7. Section 8 discusses features of the technique and
suggests future work.

2 Related Work

Frequency analyses of light transport (Durand et al. 2005)
have been of critical importance in computer vision and
graphics for evaluating the performance of imaging systems
and identifying novel computational camera designs (Edward
et al. 1995; Levin 2009; Veeraraghavan et al. 2007) or imple-
menting faster (Ng 2005) and better (Levin and Durand 2010)
computational processing schemes. Time-resolved forward
and inverse light transport, however, has begun to be studied
only recently (Raskar and Davis 2008).

Lensless imagers have been studied and include designs
that employ attenuating layers with control of transmittance
in space and time (Zomet and Nayar 2006), template-based
approaches using micro sensors (Koppal et al. 2011), Fres-
nel zone plates or photon sieves for imaging using diffractive
optics (Andersen 2005), angle-sensitive pixels that require no
off-chip optics (Gill et al. 2011), and dynamic LED illumi-
nation combined with computed tomographic image recon-
struction (Isikman et al. 2011). We introduce a new com-
putational camera design that requires only a single image
captured by a time-resolved ultra-fast sensor and does not
require additional refractive, attenuating, or diffractive opti-
cal elements.

Ultra-fast sensors with the ability to measure tempo-
ral impulse responses provide a rich source of imaging
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information in seismology, sonology, and optics. Reflection
seismology and medical ultrasound use such measurements
for performing non-invasive volumetric imaging, whereas
sonar, radar, and LiDAR technologies determine an object’s
range, among other properties, from the echos of sound, radio
waves, and light pulses reflecting from a target object (Saleh
2011). Unlike LiDAR, which measures the time of arrival of
direct reflections of light, the proposed computational cam-
era employs an ultra-fast sensor that exploits the full time-
resolved profile, measuring photons as they arrive at the sen-
sor over an extended period of time, for imaging both albedo
and depth.

Imaging at speeds fast enough to observe radiometric
changes over time has recently unveiled new applications
for scene analysis that cannot be performed with standard
cameras. These ultra-fast imaging methods have the ability
to reconstruct geometry (though not its albedo) of occluded
objects “around a corner” (Velten et al. 2012), acquire in-the-
wild BRDFs without using encircling equipment for scenes
with known geometry (Naik et al. 2011), recover an occluded
target’s motion using multipath analysis (Pandharkar et al.
2011), and decompose global light transport (Wu et al. 2012).
In this paper, we present a 5D frequency analysis of time-
resolved light transport in free space that produces an intu-
itive explanation of forward light transport within all of the
above works. We hope to provide the fundamental math-
ematical tools for developing and understanding emerging
ultra-fast computational camera designs and new applica-
tions enabled by this technology.

3 Frequency Analysis of Transient Light Transport

In this section, we analyze time-resolved light transport in
free space. While an analysis of steady-state light transport
is intuitive in revealing where information is localized in the
frequency domain (Durand et al. 2005; Levin 2009), consid-
ering the time-resolved case, to the best knowledge of the
authors, has not been discussed in the literature. We analyze
first the flatland, three-dimensional case and then generalize
the analysis to five dimensions.

3.1 3D Frequency Analysis

Starting from first principles, space–angle light transport is
commonly denoted as (Isaksen et al. 2000; Chai et al. 2000)

l(S)(x, ν) = l(S)
0 (x − νd, ν), (1)

where l(S)(x, ν) is the steady-state light field after transport
by a distance d, x is the spatial variable, and ν is the rela-
tive coordinate on a plane at unit distance (Chai et al. 2000)
(Fig. 2, left). Including the speed of light, we recognize that
different ray paths arrive at different times. In order to accu-

Fig. 2 Ray diagram illustrating the two-plane parameterization of light
fields. Rays arrive at a plane a distance d from the source at times that
depend on their propagation angle. The left is object space, and the
right (shaded blue) is the corresponding space–time image (Color figure
online)

rately model such systems, the time-resolved forward light
transport must consider the temporal dimension t , incorpo-
rating the finite speed of light c as

l(x, ν, t) = l0(x − νd, ν, t − d

c

√
1 + ν2). (2)

Physically, rays propagating at large angles arrive later
than low-angled ones. The delay can be calculated geo-
metrically (Fig. 2). Note that for a pulsed point source,
the light field l0(x, ν, t) = δ(x)δ(t) becomes l(x, ν, t) =
δ(x − νd)δ(t − d

c

√
1 + ν2) ∼ δ( x

d − ν)δ(t − d
c

√
1 + ( x

d )2)

after a propagation distance d. From the second δ-factor,
we see that time-resolved propagation produces a hyperbolic
space–time curve (Fig. 2, right). The curvature and vertex of
the hyperbola vary with the origin of the pulse. For example,
a 3 mm change in path length results in a time shift of 10 ps.
A summary of space–time propagation is shown in Fig. 3.

In the Fourier domain, propagation in free space for
the steady-state case is a shear along the angular frequen-
cies (Durand et al. 2005):

l̃(S)( fx , fν) = l̃(S)
0 ( fx , fν + fx d), (3)

where ∼ denotes the Fourier transform of a quantity and
fx and fν are the frequency variables of space and angle,
respectively. For this case, the space–angle shear in the pri-
mal domain (Eq. 1) intuitively translates to a shear along the
opposite dimension in the frequency domain. As illustrated in
Fig. 4, the time-resolved light field spectrum remains sheared
in the fx - fν dimension, but is now blurred in the ft dimen-
sion, mainly along two branches that form an ×-shape. To
quantify this result, we calculate the Fourier transform of the
time-resolved light field after propagation in free space (both
Eqs. 4 and 5 are derived in the Supplement):

l̃( fx , fν, ft ) =
∫∫∫

e−2iπ fx x−2iπ fνν−2iπ ft t

× l0

(
x − νd, ν, t − d

c

√
1 + ν2

)
dx dν dt

= l̃0( fx , fν + fx d, ft ) ∗
fν

F ft d
c

( fν), (4)
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Fig. 3 Without time resolution, free space propagation shears the light
field in both the primal and frequency domains (left). Due to relative
time delays of different rays, a pulsed point source produces a space–
time hyperbola, which acts as a convolution kernel on time-resolved
light fields (center). In frequency space, this hyperbolic convolution is

transformed to multiplication with its spectrum. Importantly, without
a time-resolved source, only the DC component is propagated (right).
Please note that the space–angle shear is maintained, though not shown,
in the time-resolved case

Fig. 4 Visualization of light field propagation. Top row: primal domain
propagation of light pulse (l0(x, ν t) = δ(x)δ(t)). As the propagation
distance d increases, the x-t hyperbola increases in curvature, and the x-
ν shear becomes steeper. Bottom row: corresponding frequency domain

representations. The steady state ( ft = 0) cross section is the standard
Fourier shear, which splits into an ×-shape off-plane. (Left): cross sec-
tion of spectrum at various off-axis positions. The time range of this
figure is 0–50 ps

where

Fκ( fν) :=
∫

dνe−2iπ fνν−2iπκ
√

1+ν2

=
⎧
⎨

⎩

− πκ√
κ2− f 2

ν

H (2)
1 (2π

√
κ2 − f 2

ν ) for κ2 > f 2
ν

2iκ√
f 2
ν −κ2

K1(2π
√

f 2
ν − κ2) for κ2 < f 2

ν

. (5)

Here, H (2)
1 is a Hankel function of the second kind, K1 is

a modified Bessel function of second kind, and κ = ft d/c.
Cross sections of this function are plotted in Fig. 4. Equa-
tion 4 mathematically expresses the effects of propagation
on the light field spectrum through (1) shearing the space–
angle dimension, then (2) convolving the result with F ft d

c
( fν)

along the fν dimension. Defining the bandwidth of Fκ( fν)
as the separation distance between the two delta functions,
we see that the spectral width is 2κ and therefore increases
linearly with the temporal frequency and the propagation dis-
tance. At a time resolution of 10 ps and a total propagation
distance of 3 mm, for example, the angular bandwidth is
2 rad−1. A non-dimensional value of κ = 2 corresponds to
ft d = 6 mm/ps.

Further, note that in particular that as κ → 0, the ker-
nel approaches the delta function for all fν , so that the final
propagated light field approaches the time-independent case.
This simplification occurs for either d or ft vanishing (corre-
sponding to no propagation or considering only the steady-
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Fig. 5 Three-dimensional visualization of the frequency propagation
kernel Fκ (also see Fig. 4, lower left). This kernel models the convolution
along the angular light field dimension induced by propagation of a time-
resolved light field in free space. The kernel depends on the propagation
distance, the speed of light, and the temporal frequency, as modeled by
the parameter κ = ft d/c. The time range of this figure is 0 - 50ps

state component ft = 0, respectively), or for the speed of
light c going to infinity (corresponding to neglect of time-
resolution). With any of these assumptions, the system (Eq. 4)
reduces to the commonly used steady-state Fourier propaga-
tor (Eq. 3) (derived in the Supplement).

The convolution operation for the time-resolved case,
however, generally “blurs” information in the convolved
dimension. We analyze this behavior in more detail in Sect. 4
and demonstrate in Sect. 5 that this effect can be directly
exploited to design a novel, lensless computational imaging
system. Here, however, the kernel profile depends on not only
the convolved dimension, but also the parameter ft d/c. As
shown from Eq. 5 and Fig. 5, there are two regimes to con-
sider. Whereas the decay of Fκ is exponential for |κ| < | fν |
(so that information located there cannot be detected to first
order), the falloff is much slower for |κ| > | fν | (where infor-
mation can be detected). At the boundary, κ = fν , and Fκ

becomes singular. We call this boundary the “light cone1” and
use it to distinguish between these two regimes. Light prop-
agation of a point light source in the primal and frequency
domain is illustrated in Fig. 4.

3.2 5D Frequency Analysis

Consider now a fully five-dimensional light field, with lat-
eral variables x and y, respective angular variables νx

and νy , and time t . Free-space propagation is generalized
straightforwardly:

1 The concept of light cones is commonly used in space–time physics;
see e.g. www.phy.syr.edu/courses/modules/LIGHTCONE/minkowski.
html.

l(r⊥, ν⊥, t) = l0(r⊥ − ν⊥d, ν⊥, t − d
c

√
1 + ν2), (6)

where ν⊥ = (νx , νy), r⊥ = (x, y), and ν2 = ν2
x + ν2

y . Here,

we will use the same notation, l and l̃, for the light field and
its spectrum as we did in the 3D case, distinguishing them
by their arguments. The 5D Fourier transform is calculated
in the same way (see the Supplement).

l̃(fx , fν, ft ) =
∫

. . .

∫
dr⊥dν⊥dte−2π i(fx ·r⊥+fν ·r⊥+ ft t)

× l0(r⊥ − ν⊥d, ν⊥, t − d

c

√
1 + ν2)

= l̃0(fx , fν + fx d, ft ) ∗
fνx , fνy

F (2)
ft d
c

(|fν |), (7)

where the convolution is two-dimensional, over both angular
frequency dimensions, with fν = ( fνx , fνy ). Here, F (2)

ft d
c

(|fν |)
is defined as (derived in the Supplement)

F (2)
κ (|fν |)

=

⎧
⎪⎪⎨

⎪⎪⎩

(2π i + 1√
κ2−|fν |2 ) κe−2π i

√
κ2−|fν |2

2π(κ2−|fν |2) , for κ2 > |fν |2

(2π + 1√
|fν |2−κ2

) iκe−2π i
√

|fν |2−κ2

2π(|fν |2−κ2)
, for κ2 < |fν |2

.

(8)

Note here that F (2)
κ (|fν |) is axially symmetric; however,

the convolution in Eq. 7 cannot be reduced to a single, axial
integral for a general light field unless it is radially sym-
metric. Further, the 5D kernel is structurally similar to the
3D version: two regions, one decaying exponentially and
one algebraically, separated by a singularity along κ2 =
|fν |2. However, because the 5D function is axially symmet-
ric, this singularity is a ring of radius κ in the ( fνx , fνy )

plane.
Thus, time-resolved imaging can be placed naturally in the

frequency analysis of light transport. Similar to steady state
analysis (Durand et al. 2005), transient frequency analysis
can be built upon the results here so as to include, e.g. dif-
fuse reflections and shading, occlusions and interactions with
BRDFs.

4 Cross-dimensional Information Transfer
and Space–Time–Angle Bandwidth Analysis

The Fourier analysis in the previous section shows that there
is a transfer of information between the different dimensions;
space, time, and angle are all coupled. In this section, we
explore the details of this process. Because current ultra-
fast cameras in the picosecond range have only one spatial
dimension, we focus on the 3D subspace of the 5D kernel.
We exploit this information transfer by proposing an ultra-
fast lensless sensor that captures only space and time. The
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Fig. 6 Time-resolved bandwidth analysis of a Lambertian scene of
single spatial frequency f0. Top: planar impulse illumination. Immedi-
ately after interaction, the spectrum copies the incident spectrum at ± f0.
After propagation, the signal is attenuated along the fx direction, but is
preserved in time. The green line indicates the space–time bandwidth
of the sensor, and the pink line represents the propagation MTF light
cone (slopes are ±c). Here, spatial resolution must be greater than f0

for detection. Bottom row: point pulse illumination. After propagation,
significant information is located along the ft direction, so that spatial
bandwidth can be relaxed, for instance information can be detected even
if the spatial sensor bandwidth f max

x is low. (Please note that we use
the side view of the cosine patten just to show a perspective view of
the scene plane, and looks like the light is going through it for better
understanding of the scene.)

recorded data, called a streak image s(x, t), contains angu-
lar information that can be used to infer image and depth of
the scene. Such streak sensors are currently commercially
available (e.g., Hamamatsu 2012).

We demonstrate and evaluate the proposed computational
camera architecture in Sect. 5 and derive its limits in Sect. 6.
We also analyze the bandwidth and reconstruction limits of
any streak imaging system in this section. In particular, we
write s(x, t) (Fig. 2, right) as:

s(x, t) =
∫

l(x, ν, t) dν

=
∫

l0(x − νd, ν, t − d

c

√
1 + ν2) dν. (9)

Equivalently, the streak spectrum is found by setting the
DC component ( fν) to zero.

To simplify the analysis, we consider a Lambertian scene,
so that the light field becomes l0(x, ν, t) = l L

0 (x, t), i.e. it is
angle-independent. Using Eq. 4, we can write the measured
streak image as (derived in the supplement):

s̃( fx , ft ) = l̃ L
0 ( fx , ft )F ft d

c
( fx d). (10)

Physically, the final spectrum is the original light field
spectrum multiplied by a space–time-dependent weighting
factor, whose characteristic width is determined by the prop-
agation distance d. Thus, the kernel Fκ acts as an optical
transfer function (OTF). This equation allows us to derive an

upper bound on the spatial frequencies fx of a Lambertian
plane at distance d that can be recovered from a streak image
s(x, t). As an illustration of Eq. 10, we see in Fig. 6 (bottom)
the initial transient point light source l̃ L

0 ( fx , ft ) propagat-
ing a distance ds in the frequency domain under Lambertian
assumptions. The effects of different time scales could be
understood simply by varying window height in the ft

axis.
To gain some intuition, consider the simplest case of a

cosine albedo (of spatial frequency f0) that is illuminated
by a planar impulse: l L

0 (x, t) = cos(2π f0x)δ(t), as shown
in Fig. 6. (Experimentally, this setup could be effected by
illuminating the object with a pulsed point source whose
origin is far from the object so that the object sees an
approximately planar wavefront.) Note that here, and in the
theory below, we assume the scene to be planar, but this
is not a necessary condition and can be relaxed. Imme-
diately after the mask, the Fourier transform is a pair of
vertical delta functions, centered at ± f0. After propaga-
tion, the spectrum is multiplied by the OTF above. For
c| fx | > | ft |, F ft d

c
( fx d) decays exponentially, so that, to first

order, information in these regions is lost. For c| fx | < | ft |,
the information is preserved. This behavior is shown in Fig. 6
(top right).

In order to detect the signal, its space–time bandwidth
must lie within that of the camera. Because there is no cross-
dimensional information transfer, i.e. spatial frequencies are
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not sheared into time, the resolution criteria is the same as for
conventional imaging: the detector’s spatial bandwidth f max

x
must exceed the signal frequency: f0 < f max

x , regardless of
the time bandwidth.

In contrast, consider the same scene illuminated by a
spherical wavefront pulse. For simplicity, we assume the
point source is located on the z-axis a distance ds from the
scene (Fig. 6). The initial light field becomes l L

0 (x, t) =
cos(2π f0x)δ(t−(ds/c)

√
1 + (x/ds)2). Now, the light field’s

Fourier transform is the convolution of the transforms of the
factors. After propagating a distance dr , the resulting streak
spectrum (derived in the supplement) is

s̃( fx , ft )= F ft Z
c

(Z( fx + ds f0/Z))

+F ft Z
c

(Z( fx − ds f0/Z)), (11)

where Z ≡ ds + dr . When plotted in the fx - ft plane (see
Fig. 6, bottom), we see a strong signal in the time domain (i.e.
along the vertical axis), as we would expect from a spherical
pulse, which illuminates different scene points at different
times. In this case, the scene frequency is recovered if f max

t
is large enough (roughly f max

t > ds c
Z f0), regardless of the

spatial bandwidth. Thus, a sufficiently fast camera can super-
resolve object features.

Note that in the limiting case of f max
t → 0, the detector

no longer detects time-resolution. In this case, one will mea-
sure a signal only if its space bandwidth is greater than the
signal’s bandwidth and if the propagation distance is suffi-
ciently small so as to have the signal fall within ∼ Z−1 of
the propagator singularity. For f max

t ∼ 0, the argument of
the propagator in Eq. 11 is Z( fx − ds f0/Z), so that spatial
frequencies beyond (1 + f0ds)/Z cannot be resolved. For
spatial features of 1 mm, a total propagation distance of 1
cm, and a ds value of 0.5 cm, this cutoff is approximately
0.6 mm−1. Essentially, this is the configuration for con-
ventional (steady state) white light imaging of out-of-focus
images. With the sensor placed a short distance away, the
features of an image are blurred into the noise.

Using these considerations, we expect that time-resolved
measurements can be used to extract scene information oth-
erwise unavailable. In particular, using only a single pixel,
which corresponds to the fx = 0 axis in Fig. 6, we still see
information as a function of time, so we could potentially
recover the (spatial) scene texture, though a first principles
calculation has not yet been.

5 Lensless Computational Imaging Using Inverse
Time-Resolved Light Transport

While the previous sections analyzed time-resolved for-
ward light propagation and its cross-dimensional correla-
tions, including upper bounds on preserved information, we

now proceed with the inverse problem. The frequency analy-
sis and bandwidth will help us define a modulation transfer
function with which to compare our reconstruction results
to ground truth values. Given a streak image, that is space–
time scene information, captured by a bare sensor with no
additional optical elements, such as lenses or attenuators,
we aim at reconstructing image and depth of the scene.
This is an ambitious goal; conventional cameras can only
resolve a two-dimensional image without any depth infor-
mation. A light field camera, recording space and angle x-ν,
provides sufficient information to refocus the photograph in
post-processing (Isaksen et al. 2000); unfortunately, this usu-
ally comes at the cost of a significant drop in spatial image
resolution due to the employed lenslet arrays. As derived in
the previous section, even a low-resolution bare sensor is
theoretically capable of resolving image information with
a higher spatial resolution, i.e. with super-resolution. For
this application, we make the following assumptions for the
remainder of this section: a Lambertian scene (the scene is
not necessarily planar), exhibiting no significant global illu-
mination effects or occlusions, is illuminated with a pulsed
point light source and recorded with a bare sensor that pro-
vides a temporal resolving power in the lower picosecond
range.

Under these conditions, the time-resolved rendering equa-
tion (Kajiya 1986; Smith et al. 2008) can be written
as

s(x, t)=I0

∫
1

(rs rl)
2 ρ

(
x′) cosθs cosθl δ

(
t − rs + rl

c

)
dx′,

(12)

where the recorded streak image s is restricted in space x =
(xx , xy, xz)

T to the plane (xx , xy, 0)T and ρ (x) describes
the diffuse albedo of a point.

As illustrated in Fig. 7, the distances between a scene point
and a pixel, as well as between the source and a scene point,
are, respectively, rs and rl , both of which depend implicitly on
x. The cosine terms model the angle between surface point
normal and incoming or outgoing light direction, whereas
the δ function describes the time-dependency of the system
introduced by the pulsed point light source.

Equation 12 is a tomographic reconstruction problem (Kak
and Slaney 2001), as each pixel in the streak image measures
a weighted integral over the unknown surface albedos in the
scene. As opposed to conventional line tomography, the inte-
gration surfaces in this application are elliptical surfaces as
illustrated by the dashed red line in Fig. 7. This is similar
to range tomography in seismic imaging (Saleh 2011) with
the significant difference that no phase information is cap-
tured in our application, making the inversion problem more
difficult.
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Fig. 7 One-dimensional illustration of tomographic scene reconstruc-
tion. A lensless streak sensor (center) records the time of arrival of pho-
tons emitted by a pulsed point light source (left). The captured streak
image for two white patches in the scene is illustrated on the right. For an
unknown scene, however, the contribution at each sensor pixel (x, t) is

ambiguous as it may contain contributions from any point in the scene
that is located along an ellipse whose locus of points have identical
path lengths from source to detector, illustrated by the dashed red line
(left)

While filtered backprojection is one of the most popular
techniques for computed tomography, the algorithm requires
projections that vary over the full hemisphere. Our applica-
tion is more similar in spirit to limited baseline tomography,
where projections over only a limited set (in our case the
finite area of the sensor) are available. For these problems,
algebraic reconstructions techniques are commonly applied.
Follow (Herman 1995), we employ iterative algebraic recon-
struction methods.

For this purpose, we model the scene containing an
unknown geometry and surface albedos as a basis expansion:

ρ (x) =
N∑

k=1

ρkφk(x), (13)

where ρk are the coefficients and the basis functions are
φk(x), k ∈ 1 . . . N , i.e. the basis functions are discrete voxels.
This notation allows us to write Eq. 12 as

s(x, t) = I0

N∑

k=1

ρk

∫
1

(rs rl)
2 φk

(
x′) cos θs cos θl

× δ

(
t − rs + rl

c

)
dx′. (14)

In practice, this formulation is discretized into a linear
system s = Pρ, where each element of s is,

sxt =
N∑

k=1

ρk P(k)
xt , (15)

and we approximate the elements of matrix P as

P(k)
xt = I0

(rxk rlk)
2 dAk cos θxk cos θlk ζt

(
rxk + rlk

c

)
. (16)

Inspired by surflets (Chandrasekaran et al. 2004), we
model the unknown scene geometry as a collection of pla-
nar patches of size dAk , facing the bare sensor. The distance
from patch k to sensor pixel x is rxk , rlk is the distance from
patch k to the light source, and ζt (·) maps the travel time of a
photon to the nearest time slot in the streak image. Using this
formulation, the final optimization problem is formulated as

minimize
ρ

‖s − Pρ‖2
2, subject to 0 ≤ ρ ≤ 1, (17)

which can be solved with standard approaches of constrained
linear optimization as discussed in Sect. 7.1.

6 Depth of Field Analysis

In this section, we derive the upper bounds of the proposed
optical acquisition system and evaluate the performance of
the combined optical and computational camera design.

In conventional optical systems, the performance of a lens
or image quality measured by a sensor through some opti-
cal assembly is mostly derived as the modulation transfer
function (MTF). The MTF is defined as the magnitude of
the optical transfer function and provides a measure for con-
trast and resolution of an imaging system. Intuitively, the
MTF gives the relative loss of energy of a diffuse target for a
specific spatial frequency. The desired bound of any optical
system is the diffraction limit; in practice, however, this is
not always achieved, and oftentimes energy is optically lost
for higher spatial frequencies, resulting in a decreased image
contrast.

The proposed optical setup consists of a bare sensor with-
out any refractive optical elements. Intuitively, we expect
a planar target to be perfectly reconstructed when located
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directly on the sensor. As the target moves away from the
sensor, the image information is computationally extracted
from the measurements, but possibly at a lower quality. The
final image quality depends on both the optical system and
the reconstruction algorithm—we proceed by evaluating the
upper bounds provided by the proposed optical system using
a modified MTF, followed by an evaluation of the recon-
structed image quality.

Motivated by modulation transfer functions in conven-
tional imaging systems, we define an MTF for the proposed
lensless imager as

MTFd, f0 =
∫ ∣

∣
∣
∣
∣

s̃ ( f0, ft )

l̃ L
0 ( f0, ft )

∣
∣
∣
∣
∣
d ft =

∫ ∣
∣
∣F ft d

c
( f0d)

∣
∣
∣ d ft , (18)

where the limits of integration correspond to the temporal
bandwidth of the sensor, 1/(20 ps). Following Eq. 10, this
formulation measures the relative loss of energy for a diffuse
plane textured with a pattern that exhibits a single spatial
frequency f0. The Fourier transform (FT) of the light field
emitted by the plane is l̃ L

0 , whereas s̃ is the FT of the streak
sensor image measuring spatial and temporal light variation
of l̃ L

0 after a propagation distance d. As discussed in Sect. 4,
the special case of a planar object imaged at a distance to
the sensor reduces the convolution, in the frequency domain,
with the propagation kernel Fκ to a multiplication. This sim-
plification allows us to write the MTF in Eq. 18 (right) as
the integral over the magnitudes of the kernel’s temporal fre-
quencies.

For finite limits, Eq. 18 cannot be calculated in closed
form. Figure 8 plots the MTF for an optical setup with dimen-
sions described in Sect. 7. We observe that, similar to conven-
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Fig. 8 Modulation transfer function (MTF). Numerically evaluating
Eq. 18 allows for an upper bound on the expected reconstruction qual-
ity to be placed. The MTF measures the relative preserved energy of a
diffuse plane at a distance d to a bare image sensor. The plane is textured
with a pattern that exhibits a single spatial frequency f0. The lower the
MTF magnitudes, the more energy is optically lost, making a compu-
tational reconstruction increasingly difficult and sensitive to noise. We
observe that the MTF magnitudes for a fixed spatial frequency decrease
with increasing distance to the sensor. A similar decrease is observed
for increasing spatial frequencies at a fixed distance to the sensor

tional optical systems, higher spatial frequencies of a plane
at a fixed distance d exhibit a stronger loss of energy than
low frequencies. Similarly, as the distance between the sen-
sor and the plane increases, the MTF decreases, indicating
that the expected reconstruction quality of objects at larger
distances would decrease. In particular, for a time bandwidth
lower than the spatial frequency under investigation, the MTF
falls off strongly, because the integral in Eq. 18 includes only
the exponentially small region of Fκ . Furthermore, the MTF
does not take into account the finite sensor size, which would
act as a low pass filter, or the reconstruction algorithm. Each
point in the scene generates a curved wavefront, but due to
the finite sensor size, only a portion of it is detected. For
smaller sensors, the tails of the hyperbolas are lost, so that it
becomes challenging to separate different hyperbolas.

We evaluate the quality of the proposed computational
camera design, including optical acquisition and tomo-
graphic reconstruction, in Fig. 9. For this purpose, we sim-
ulate a resolution chart of size 96 × 96 pixels at various
distances d, ranging from 0 to 100 cm, to the bare sensor.
Reconstruction is performed by solving Eq. 17 as described
in Sect. 7.1. For this experiment, the same dimensions are
used as for the MTF in Fig. 8 and for the simulations in Sect. 7.
As predicted by the MTF, reconstruction quality measured
in peak-signal-to-noise ratio (PSNR) drops with an increas-
ing distance d but also for increasing spatial frequencies at a
fixed depth.

We conclude that the proposed computational imaging
systems exhibits a finite depth of field, similar to conventional
cameras, with the focal plane being located directly on the
sensor. We continue in the following section to evaluate the
performance of the proposed system using more complex
scenes composed of textured objects at varying distances to
the sensor. We also show initial results of a prototypical ultra-
fast computational camera.

7 Experimental Results

In this section, we show four different experiments of the
proposed lensless imaging system. The results in Figs. 10
and 11 simulate a streak sensor that captures a three-
dimensional volume containing two spatial dimensions as
well as temporal light variation. The experiments show
reconstructions of only the diffuse albedos for a single
plane at a distance to the sensor in Fig. 10 and for
two planes at different distances in Fig. 11. In the lat-
ter case, the depth is estimated along with the diffuse
albedos. In the experiments shown in Figs. 10 and 11,
the laser is simulated to be located in the center of
the optical axis, whereas the laser is aimed at the cen-
ter of the diffuser for the real experiment (Fig. 12, left).
Figures 12 and 13 show reconstructions of simple two-
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Fig. 9 Depth of field (DOF).
This plot evaluates the
combined quality of optical
acquisition and tomographic
computational reconstruction. A
synthetic planar resolution chart
(center row, left) is acquired at
different distances to a bare
sensor and subsequently
reconstructed at the known
depth. As predicted by the MTF
(Fig. 8), reconstruction quality
drops with an increasing
distance between resolution
chart and sensor

Fig. 10 Simulated reconstructions of a textured plane at a distance to
the sensor. A bare sensor placed at a distance to the scene (left) cap-
tures a streak image, which is a series of 2D images (bottom row). The
scene is reconstructed using computed tomography for varying levels

of additive sensor noise (top row). The point source wavefront, colored
from blue to green to yellow, represents increasing time (Color figure
online)

dimensional scene patches from a streak sensor that only
measures one spatial dimension along with temporal varia-
tion.

The results illustrated in Fig. 10 are captured with a sim-
ulated streak sensor that has a spatial resolution of 64 × 64
pixels and a size of 80 × 80 mm. This sensor records 32
time slots, each integrating over 10 ps (Fig. 10, bottom row).
The scene is a diffuse plane located 60 mm away from the
sensor and has the same size as the sensor, but a spatial
resolution of 128 × 128 pixels. The top row shows recon-

structions with varying levels of additive Gaussian sensor
noise.

Figure 11 shows simulated results for a scene with a vary-
ing depth. As discussed in Sect. 5, this requires the tomo-
graphic reconstruction to estimate both diffuse albedo and
scene depth simultaneously. In this experiment, the spatial
resolution of each of the two depth planes is 96 × 96 pix-
els, and the number of time slots recorded is increased to 38
(with the same exposure time of 10 ps). The reduced quality
of these results can be entirely attributed to the occlusion
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Fig. 11 Simulated results for reconstructing image and depth of an
unknown scene captured with a bare sensor. Several time slices and
a volumetric rendering of the recorded streak images are shown in the
bottom row. While the scene depth can be reconstructed relatively accu-

rately (center row), even small amounts of occlusion in the scene, as
exhibited by the two playing cards, result in global noise in the recon-
structed diffuse albedos (top row). The point source wavefront, colored
from blue to green to yellow, represents increasing time

Fig. 12 The prototype camera setup shows the streak camera and the
laser (left) and the scene (center left). Due to physical constraints, we
model a bare sensor in space by imaging the light scattered onto an opti-
cal diffuser. A schematic illustration of the setup (center right). Exper-

imental and simulated streak images agree (right). Successful recon-
struction of a simple, white 2D patch from a 1D sensor is shown on the
right

between the cards in the scene. Even a small amount of
occlusion, as exhibited in this experiment, results in a global
increase in reconstruction noise. As stated in Eq. 12, the
goal of the proposed reconstruction algorithm is to recover a
three-dimensional volume with albedos. For scenes contain-
ing opaque objects, this directly results in the depth of the
scene, with the upper limit being the MTF above.

Real results captured with a one-dimensional streak cam-
era (see Sect. 7.2) are shown in Fig. 12. The intricate design of
this camera prevents us from placing the bare sensor directly
in the scene; we emulate this setup by recording a scene
patch behind an optical diffuser instead. Challenges in this

experiment are manifold: intensity variations and temporal
jittering of the laser along with vignetting and non-linear
temporal distortions in the streak camera result in slight vari-
ations of the recorded signal as compared to the predicted
data using known scene geometry and albedo for this sim-
ple scene. Furthermore, a two-dimensional scene at a cal-
ibrated distance is measured with a one-dimensional sen-
sor, which makes the reconstruction particularly difficult.
Nevertheless, we show successful reconstruction of a simple
scene—a diffuse white patch—in Fig. 12. The white patch
is a two-dimensional object imaged with a one-dimensional
streak sensor. Although not immediately obvious, this time-
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Fig. 13 Experimental results. A one-dimensional barcode consisting
of five patches with different albedos (lower left) is placed at a distance
behind a diffuser and recorded with the streak camera prototype (upper
right). The tomographic reconstruction of the albedos (lower right)
exhibits slight errors in the darker patches, which are due to imperfect
calibration of the prototype (difference between simulated and captured
streak images, top row)

resolved 1D image captures sufficient information for the
simple 2D scene to be recovered. This is possible because of
the cross-dimensional information transfer, from spatial to
space–time domains, introduced by light propagation in free
space.

Figure 13 shows another result captured with the pro-
totype ultra-fast camera. For this experiment, we placed a
1D barcode at a distance behind the diffuser (see setup in
Fig. 12). The barcode consists of five patches with varying
albedos (Fig. 13, lower left). Again, we observe slight differ-
ences between the simulated streak image rendered from the
known scene geometry and reflectance (Fig. 13, upper left)
and the data recorded with our prototype camera (Fig. 13,
upper right). The albedos of the five patches are successfully
reconstructed from the captured data (Fig. 13, lower right),
yet with some errors in the two darker patches that are due
to the mismatch of expected and recorded streak image.

7.1 Software Implementation

We solve Eq. 17 using the simultaneous algebraic recon-
struction technique (SART) (Kak and Slaney 2001). This is
an iterative approach to solve computed tomography prob-
lems. In our Matlab-based implementation, we run 10,000
iterations for each of the reconstructions in Figs. 10, 11, 12,
and 13. The large number of iterations is required due to the
slow convergence rate of SART. The computations are per-
formed with a sparse representation of matrix P in Eq. 17.
Computing times are approximately one to two hours for all
three color channels of each of the results. The computation

time is approximately 3 min for 5,000 iterations for the real
experimental data.

7.2 Hardware Setup

For the captured result shown in Fig. 12, the illumination
source is a femtosecond (fs) Titanium:Sapphire laser, which
produced 50 fs long pulses, centered at 795 nm at a repetition
rate of 75 MHz. The beam is focused onto the diffuser wall
(ground glass). The streak camera is a Hamamatsu C5680,
which is used to detect one spatial dimension of the diffuser
with a time resolution of 15 ps and quantum efficiency of
about 10%. The camera position and viewing direction are
fixed.

8 Discussion

In summary, we have presented a frequency analysis and
a rigorous derivation of analytical expressions for the most
fundamental process in light transport—propagation in free
space, considering space, time, and angle. While prior models
for the steady-state case intuitively describe light field prop-
agation as a localized shear in both the primal and frequency
domain, the hyperbolic curvature in space–time, introduced
by differences in travel distances for different angles, de-
localizes signal energy in the frequency domain. However,
we demonstrate that it can be intuitively expressed as a com-
bination of the well known shear in the light field and a convo-
lution along the angular frequencies. This convolution opti-
cally blurs information between the different dimensions;
we demonstrate that this information transfer can be com-
putationally exploited using a novel, lensless computational
imaging technique which has potential applications in bio-
medical imaging, thin mobile devices, remote sensing, and
surveillance.

While the forward analysis presented is most general in
considering space, time, and angle for arbitrary scenes, the
inverse problem including bandwidth analysis and tomo-
graphic scene reconstruction restrict the imaged scene to be
diffuse and to exhibit negligible amounts of global illumina-
tion effects and occlusions. The proposed sensing technique
requires an ultra-short pulsed illumination, as for instance
provided by a laser, and a streak camera capable of resolv-
ing time variations in the lower picosecond range. Currently
available hardware achieving the required temporal resolu-
tion is restricted to sensing one spatial scanline per recorded
image. The exposure time of the proposed system is signif-
icantly shorter than conventional imaging system; this fact
in combination with the removed lens reduces the overall
amount of light measured at each sensor pixel. Note that,
for the spatial and temporal scales considered here, the geo-
metric model is sufficient for modeling and reconstruction,
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as shown previously (Velten et al. 2012; Wu et al. 2012).
For features that approach the wavelength of light, however,
diffraction must be incorporated through, e.g. transient gen-
eralizations of phase space and wave optics. Furthermore, it
is unnecessary to resort to the particle (quantum) nature of
light at this time scale. (Indeed picosecond optics is treated
classically in e.g. fiber optic communications.) The quantum
nature of light would come into play in low light conditions,
for which photon statistics plays a role.

The main challenges of high-quality image reconstruc-
tion are currently dictated by the employed hardware setup.
The streak camera is difficult to calibrate as nonlinear
effects in laser intensity and image projection, are observed.
These challenges limit experimental reconstructions to sim-
ple scenes consisting of textured planar patches.

Nevertheless, the work presented in this paper provides the
fundamental analytic platform on which to re-examine many
computer vision applications in light of a new degree of free-
dom: time-resolved image information. Further, it provides a
method for building a consistent theory of time-resolved light
field propagation. Future work will examine effects of opti-
cal elements other than propagation in free space, including
lenses, diffusers, diffractive elements, and scattering media.
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