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Abstract For a finite group G and nonnegative integer n > 0, one may consider
the associated tower G S, := S, X G™ of wreath product groups. Zelevinsky
associated to such a tower the structure of a positive self-adjoint Hopf algebra
(PSH-algebra) R(G) on the direct sum over integers n > 0 of the Grothendieck
groups Ko(Rep — G 1 Sy,). In this paper, we study the interaction via induction
and restriction of the PSH-algebras R(G) and R(H) associated to finite groups
H C G. A class of Hopf modules over PSH-algebras with a compatibility between
the comultiplication and multiplication involving the Hopf k" -power map arise
naturally and are studied independently. We also give an explicit formula for the
natural PSH-algebra morphisms R(H) — R(G) and R(G) — R(H) arising from
induction and restriction. In an appendix, we consider a family of subgroups of
wreath product groups analogous to the subgroups G(m, p,n) of the wreath prod-
uct cyclotomic complex reflection groups G(m,1,n).
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1 Introduction

In [15] Zelevinsky introduced positive self-adjoint Hopf algebras (PSH-algebras),
a certain class of Hopf algebras with additional structure. He showed that the
axioms defining these objects are sufficiently rigid to permit a simple classification
theorem, and this classification was subsequently used to study the complex rep-
resentations of symmetric groups, finite wreath product groups G1Sy, := S, x G,
and finite general linear groups. In each of these cases, an associated PSH-algebra
is constructed as an infinite direct sum of the relevant Grothendieck groups. The
multiplication is related to induction of representations, and the comultiplication
is related to restriction. For instance, for the symmetric groups the product of a
class [0] of a representation of Sy with a class [7] of a representation of S; is given
by taking the class in the Grothendieck group Ko of the induced representation
Indgz;’ s,(0®7). The construction for finite wreath products is entirely analogous,
and for the finite general linear groups the multiplication is given by parabolic
induction. The PSH-algebra axioms then encode a collection of essential proper-
ties of the representations, including Frobenius reciprocity and Mackey’s theorem
on the composition of the induction and restriction functors. In the case of the
symmetric groups, the PSH-algebra arising will be denoted R, and is isomorphic
as a PSH-algebra to the Hopf algebra of integral symmetric functions.

In addition to considering PSH-algebras themselves, it is equally natural to
consider their modules, and this perspective is made abundantly clear in van
Leeuwen’s study [14] of finite symplectic and orthogonal groups. In the case of
the finite general linear groups, the Levi decomposition of parabolic subgroups
gives rise naturally to a certain induction functor, parabolic induction, which as-
sociates to a pair of representations o and 7 of the groups GL, (Fy) and GL,(Fq),
respectively, a representation of the group GLyp+m(Fq). Dual to this process one
can construct parabolic restriction functors, and these functors underly the multi-
plication and comultiplication in the PSH-algebra associated to these finite general
linear groups. By contrast, the Levi decomposition for parabolic subgroups of the
finite symplectic groups, for example, gives rise not to an algebra structure on the
direct sum of Grothendieck groups but rather to a module/comodule structure
over the PSH-algebra associated again to the finite general linear groups. This
Hopf module carries a strong compatibility between the action and coaction map
which should be seen as a twisted version of the usual Hopf axiom for modules.

At the level of the Weyl groups, van Leeuwen’s construction suggests that there
should be a corresponding structure of twisted Hopf module over the PSH-algebra
associated to the symmetric groups Sy, the Weyl groups of the finite general linear
groups, on the direct sum of the Grothendieck groups of the type B/C Weyl groups
7 /2 7Sr. More generally, following Zelevinsky, one may consider arbitrary finite
wreath products. Specifically, if G is a finite group, one may consider the tower
of wreath products G 1S, := S, X G" for nonnegative integers n. Associated
to this tower is a PSH-algebra R(G), as shown in [15, §7]. When H C G is a
subgroup, we will give R(G) the natural structure of a Hopf module over the
corresponding PSH-algebra R(H). Under certain conditions on H and G, we will
see that this Hopf module has a strong compatibility between the multiplication
and comultiplication, in which the Hopf [G : H]*"-power map on R(H) plays a
key role.



We axiomatize the properties of these modules by defining “k-PSH modules”
over any PSH-algebra, where k > 0 is an integer. For example, in the setting just
mentioned, we will show that R(G) is a [G : H]-PSH module over R(H). We will
prove a direct sum decomposition theorem for k-PSH modules in analogy with
the tensor product decomposition theorem of Zelevinsky for PSH-algebras [15, §2]
and with the direct sum decomposition theorem of van Leeuwen for twisted Hopf
modules [14]. In the case of the |G|-PSH module R(G) over the primitive PSH-
algebra R = R(1), we will give an explicit tensor product decomposition of R(G)
in analogy with the Wedderburn decomposition of CG.

The structure of these modules essentially comes from the natural PSH-algebra
morphisms R(H) — R(G) and R(G) — R(H) arising from induction and restric-
tion, respectively. For certain subgroups H C G, these morphisms have particularly
nice structure, which is seen at the level of the Hopf modules in the form of the
k-PSH property. However, we are still able to obtain an interesting and explicit
formula for these morphisms for arbitrary finite groups H C G. This formula is
given in terms of a “matrix of Hopf powers” corresponding to the matrix describ-
ing the induction and restriction of representations between the groups G and H.
This formula generalizes in a natural way the formula for these maps given by
Zelevinsky in the special case that G is abelian and H is trivial, in which case
they are realized as iterated multiplication or comultiplication.

In an appendix, we extend this approach to certain subgroups G, (G, H) C
G Sy, where here H C G are finite abelian groups and n > 0 is a nonnegative
integer. The motivation to consider these subgroups comes from the theory of com-
plex reflection groups. Recall that a complex reflection is a linear automorphism s
of a finite-dimensional complex vector space V of finite order whose fixed space is
a hyperplane, and a complez reflection group is a finite subgroup of some complex
general linear group GL(V') generated by complex reflections. The complex reflec-
tion groups include all real reflection groups, and in particular all Weyl groups, via
complexification. The fundamental importance of these groups is vividly reflected
in the well-known Chevalley-Shephard-Todd theorem [7], [13], which states that
the complex reflection groups in GL(V) are precisely those subgroups W such that
the algebra of invariants (C[V]W is a polynomial algebra, or, equivalently, so that
the categorical quotient V//W is a smooth C-variety. In more recent years, deep
connections between these groups and other objects in mathematics have been
demonstrated, for instance by providing natural generalizations of braid groups
[3] and Hecke algebras [4], in the theory of rational Cherednik algebras [2], [8],
[10], and in the theory of integrable systems [6] and quasi-invariants [1]. In [13],
Shephard and Todd gave a complete classification of complex reflection groups,
proving that every complex reflection group decomposes as a product of irreducible
complex reflection groups and that these irreducible complex reflection groups are
given by the infinite family of groups G(m,p,n) and 34 exceptional groups. The
groups G, (G, H) we consider here are natural generalizations of the infinite family
G(m,p,n), as we have in particular G(m,p,n) = Gn(Z /nZ,pZ /mZ). The goal
of this appendix is to extend the approach used in this paper to the representation
theory of these groups when p # 1, and in particular in Theorem 4 and Corol-
lary 3 we demonstrate a relationship between the representations of the groups
Gn(G,H) and G»(G/H,1) which specializes in the case H = G to Zelevinsky’s
decomposition of the PSH-algebra associated to the wreath products G .S,,.



While the approach we apply here is classical, wreath product groups continue
to appear widely in mathematics, and the results obtained in this paper have
ramifications in these other contexts. Categories O of representations of cyclotomic
rational Cherednik algebras provide a particularly important example which has
been recently studied in great detail. In particular, the wreath product Z /m Z Sy
can be identified with the cyclotomic reflection group G(m,1,n), and as in [8]
one may associate to such a group a family H.(G(m,1,n),C"), depending on a
parameter ¢, of infinite-dimensional associative algebras called cyclotomic rational
Cherednik algebras. In [9], a particular category of representations, category O,
was introduced for the rational Cherednik algebras in analogy with the BGG
category O associated with a semisimple Lie algebra. These cyclotomic categories
O, have been the subject of much recent investigation, for example in [2], [11],
[12]. For generic values of the parameter c, this category O, is equivalent to the
category of representations of the underlying group G(m, 1, n), but, for exceptional
¢, O¢ is no longer semisimple and is much more complex. However, as in [9], for
any ¢ and any finite-dimensional representation A of G(m,1,n), one can associate
a standard or Verma module A.(X) in O, such that the mapping [A\] — [Ac(A)]
induces an identification of the the Grothendieck groups of the category of finite-
dimensional complex representations of G(m, 1,n) and of Q.. Furthermore, in [2]
parabolic induction and restriction functors were introduced for rational Cherednik
algebras and have proved, as in [12], to be fundamentally important to the study
of the categories O.. The definition of these functors is highly technical, but in
[2] it is shown that the associated maps on the Grothendieck groups coincides
(under the identification of the Grothendieck groups mentioned above) with the
maps associated to the the usual induction and restriction functors for the groups
G(m,1,n) considered in this paper. In particular, taking G = Z /mZ and H = 1
in the results in this paper, one obtains information about the interaction of the
type A rational Cherednik algebras and the cyclotomic type rational Cherednik
algebras H.(G(m,1,n),C") via parabolic induction and restriction.

2 PSH-algebra Review: Definitions and the Decomposition Theorem

Let A be a commutative ring, and let (H, pu, u*,e,e*,T) be a Hopf algebra over
A with multiplication p : H ® H — H, comultiplication p* : H — H ® H, unit
e: A — H, counit e* : H — A, and antipode T : H — H. We will refer to
the Hopf algebra axiom that p* is a morphism of algebras as the Hopf aziom.
We will use sumless Sweedler notation to express the the comultiplication, writing
p*(h) = h(1y ® h(zy with a sum of several simple tensors implied.

We will say the Hopf algebra H is graded if H has an Z-grading H = @, ., H»
as an A-module and if the maps p, u*, e, e*, T are graded, where we give H @ H
a grading by (H ® H)n = @y 4;—,, Hr ® H;) and where we view A as a graded
A-module concentrated in degree 0.

We say a graded Hopf algebra is connected if e: A — Hp and e*: Ho — A are
mutually inverse isomorphisms, where Hy is the degree 0 component of H.

A trivialized group (T-group) is a free abelian group M with a specified Z-basis
2= 0(M) C M. The elements of {2 are called the irreducible elements of M. This
structure induces a positive-definite symmetric bilinear form (-,}: M x M — Z
by declaring {2 an orthonormal basis. We may then define the positive elements of



M to be the elements € M with (z,w) > 0 for all w € §2; these are the elements
with all nonnegative coefficients when expressed as a sum of elements of (2. If
(w,z) > 0 then w is called an irreducible constituent of x, and sometimes we say
z “contains” w - this is written as w < z. Direct sums of T-groups are given the
structure of T-groups by taking as the irreducible elements the disjoint unions of
the irreducible elements of the direct summands. A T-group is said to be graded if
it is graded as an A-module and if the irreducible elements are homogeneous with
respect to that grading. Tensor products of T-groups are given the structure of
T-groups in which the irreducible elements are the tensor products of irreducible
elements of the tensor factors. A positive map of T-groups sends positive elements
to positive elements. If M and N are T-groups and f: M — N, g: N — M are
abelian group morphisms, then we say f and g are adjoint (also say f is adjoint
to g) if {(f(m),n)n = (m,g(n))s for all m € M and n € N. As usual, we say [ is
self-adjoint is f is adjoint to itself. We will take Z to have the canonical T-group
structure with distinguished generator 1.

Definition 1 A positive self-adjoint Hopf algebra (PSH-algebra) is a connected
Hopf algebra (H, u,p*,e,e*,T) over Z which is also a graded T-group such that
the maps u, u*, e, e* are positive and graded, and such that the pairs (u, u*) and
(e, e™) are pairs of adjoint maps.

The most fundamental example of a PSH-algebra is the PSH-algebra R men-
tioned in the introduction constructed from representations of the symmetric
group. Let Rop = Z and, for n > 0, let R, := Ko(Rep — Sy) be the Grothendieck
group of the category of finite-dimensional complex representations of Sy, and let
R be the graded direct sum:

R= P Rn.

n>0

Give R the graded T-group structure in which 2(Ro) = {1} and, for n > 0,
£2(Ry) consists of the isomorphism classes of the irreducible representations of
Sn. In view of the natural embedding of Sy x S; in Siy; and the identification
of irreducible representations of Sy x S; with tensor products of irreducible rep-
resentations of Sg and S, the multiplication p: R ® R — R is defined on positive
simple tensors [0 @ 7] € Ry x Ry by p([o®7]) = [IndE:J;ZSZ o ® 7] and extended by
linearity to R® R. The comultiplication p*: R — R® R is defined on R,, similarly
by setting p*([o]) = > 1 1—p Res?:xsl [o] for representations o of Sp. The unit
e: Z — Ro = Z is the identity, and the counit is the graded projection to Rp.
That R is a PSH-algebra then encodes several facts about representations - the
T-group structure differentiates the classes of honest representations from those
of virtual representations, and positivity properties reflect that induction and re-
striction send representations to representations, self-adjointness reflects Frobenius
reciprocity, and the Hopf axiom reflects Mackey’s theorem on the composition of
induction and restriction (see, for example, [5, §32]).

R is the fundamental, or “universal,” PSH-algebra from which all others can
be constructed. Recall that an element h of a Hopf algebra H is called primitive
if p*(h) = h® 1+ 1® h. Suppose H is any PSH-algebra. Let I = P, ., Hn be
the augmentation ideal in H, and set I? = u(I ® I). By adjointness, the prim-
itive elements of H then have an alternative description as the elements of the



subgroup P of I orthogonal to I2, [15, Lemma 1.7]. Given any two irreducible el-
ements w,w’ € I (so of positive degree), we may “generate” additional irreducible
elements by considering the irreducible constituents of the product ww’. The prim-
itive irreducible elements are then precisely the irreducible elements that are not
generated in this fashion, and are the minimal collection of irreducibles from which
all others can be obtaied. For instance, for the PSH-algebra associated with the
complex representation theory of the finite general linear groups, the primitive irre-
ducible representations (the cuspidal representations) are those which do not occur
as irreducible constituents of representations which can be obtained by nontrivial
parabolic induction. As another example, the class of the trivial representation
of S; is the unique primitive irreducible element of the PSH-algebra R. We are
now in a position to recall Zelevinsky’s decomposition and classification theorems
for PSH-algebras. The tensor product of PSH-algebras is given the structure of a
PSH-algebra in the obvious manner.

Proposition 1 (Zelevinsky, [15, Theorem 8.1]) If H is a PSH-algebra with a
single primitive irreducible element p, then for every w € 2(H) there exists n > 0
such that w < p™, so deg(p)| deg(w). After a rescaling the grading so that deg(p) =
1, and H is isomorphic as a PSH-algebra to the PSH-algebra R introduced above.

Proposition 2 (Zelevinsky, [15, §2.2]) Let H be a PSH-algebra and let C # 0 be
the primitive irreducible elements. For any p € C, the T-subgroup H(p) generated
by the irreducible constituents of the p™ for n > 0 is a PSH-subalgebra with the
unique primitive irreducible element p, and the multiplication map

p: QH(p) = H

peC

is an isomorphism of PSH-algebras.

In fact, R is isomorphic as a PSH-algebra to the Hopf algebra of symmet-
ric functions on countably many indeterminates. A tremendous amount is known
about symmetric functions, which in combination with the above theorems pro-
vides a very satisfactory description of PSH-algebras.

3 The k-Hopf axiom and k-PSH Modules: Definitions

This section introduces and establishes the basic properties of the objects of pri-
mary interest in this paper, positive self-adjoint k-Hopf modules (k-PSH modules).
These are a natural notion of module for PSH-algebras which involve the positivity
and self-adjointness structure, the only unexpected aspect is the replacement of
the Hopf axiom for Hopf algebras with a new compatibility relation, the “k-Hopf”
axiom, in which the Hopf k*"-power map (iterated comultiplication to the kth
tensor power followed by iterated multiplication) of the underlying PSH-algebra
enters in an essential way.

Let (H, p, ", e,e*,T) be a Hopf algebra over the commutative ring A. A Hopf
module over H is an A-module M along with A-linear maps a: H @ M — M
(action), a*: M — H ® M (coaction) with the axioms of associativity, coasso-
ciativity, unit, and counit. As for Hopf algebras, we will often use juxtaposition



to represent the action and sumless Sweedler notation to represent the coaction.
Associativity thus states a(bm) = (ab)m for all a,b € H and m € M (equivalently
ao(p®l) = ao(l®a)), while coassociativity states (1" ®1)oa* = (1@ a™)oa™.
The unit axiom states that for a € A,m € M we have e(a)m = am, while the
counit axiom gives e*(m))m(2) = m.

We say M is graded if M has a grading M = @,,~., Mn as an A-module, if H
is a graded Hopf algebra, and if the action and coaction are graded with respect
to the grading (H ® M)n = @} ;—,, Hx ® M;. We say M is positive if A =7 and
if both M and H are T-groups so that the action and coaction maps are positive,
i.e. distinguished elements of the T-group structure are mapped to nonnegative
integer combinations of distinguished elements. If M is both graded and positive
we will always assume further that these are compatible in the sense that the
irreducible elements are homogeneous. We say M is self-adjoint if M and H are
T-groups so that the action and coaction maps are mutually adjoint.

For £k > 0, let u(k): ®kH — H be iteration of multiplication k times -
by associativity this is unambiguous. Similarly, we have p**): H — ®k H by
iterating comultiplication. For example, note that ,u(l) = ,u*(l) = idy and p =
N(Q)‘ The composition ¥F: = u(k) o M*(k): H — H will be called the Hopf k*"-
power map. Note W' = idy. For the case k = 0, set u(o) = e and ,u*(o) = ¢e" and
set W0 = e o e*. We then have:

Proposition 3 vk s a morphism of algebras when H is commutative, and a
morphism of coalgebras when H is cocommutative. If H is a PSH-algebra, W*
is self-adjoint and a PSH-algebra morphism, i.e. ¥* is a self-adjoint, positive,
graded Hopf algebra morphism. For k > 1, W% commutes with every Hopf algebra
endomorphism of H.

Proof Recall W° = eoe* = po(1®&T)ou™ where T is the antipode. The map p* is an
algebra morphism by the Hopf axiom, similarly u is a coalgebra morphism, and T'
is an antihomomorphism of both algebras and coalgebras. Thus T is a morphism
of algebras when H is commutative and a morphism of coalgebras when H is
cocommutative. Note that p is a morphism of algebras when H is commutative
and that p* is a morphism of coalgebras when H is cocommutative. Thus ¥* is
a morphism of algebras when H is commutative and a morphism of coalgebras
when H is cocommutative. When H is a PSH-algebra, ¥* is therefore a Hopf
algebra morphism because PSH-algebras are commutative and cocommutative,
and is positive and self-adjoint because u(k) and ,u(*k) are positive and mutually
adjoint. That ¥* commutes with every Hopf algebra endomorphism f: H — H
is checked by the computation f o gk = fo ,u(k) o u*(k) = ‘u(k) o f®k o ,u*(k) =
pF o B o f=wko f.

Proposition 4 If H is commutative and cocommutative, vk ow! = ok gnd o
(!I/k ® wl) 0/1'* — lka-{—l‘

Proof By Proposition 3, Wk is a Hopf algebra morphism. For k,l > 0, the identity
Tk ow! = Wk follows immediately from either commutativity or cocommutativity
and the second identity follows from associativity and coassociativity. Also by
Proposition 3, we have ¥* oW? = w0ow* and w*ow® = ¥° because for any algebra
morphism f: H — H we have f(¥°(x)) = f(e(e*(z))) = f(e*(z)1) = e*(z) f(1) =
0(x). By commutativity both sides of the second identity are symmetric in k and



1, so we need only treat k = 0. The counit axiom gives po (¥° ® 1) o pu* = id, so
we have o (W0 @¥ ) opu* = po (Wl @Wou* =po(W@1)ou* ow! = v

Let M be a Hopf module over H, and let 7: H ® H — H denote the A-linear
transposition map 7(z ® y) = y ® x. Let k > 0 be an integer. We say that M is a
k-Hopf module if it satisfies the k-Hopf ariom, meaning that the following diagram
commutes:

* * k
HoM " ® S geoHoHeoM XL yeoHoHe M

;o

M HeM

In sumless Sweedler notation, this means for all h € H and m € M we have
a*(hm) = !Pk(h(l))m(l) ® h2yma). Observe that if k =1, M = H, o = p, and
o = p* then the k-Hopf axiom is precisely the Hopf axiom.

Definition 2 If H is a PSH-algebra, a k-PSH module over H is a graded, positive,
self-adjoint, k-Hopf module over H.

4 Primitive Elements and Constructions

Throughout this section, let H be a PSH-algebra. For a Hopf module (M, a, ™)
over H, we say an element m € M is module primitive (or just primitive if the
context is clear) if @ (m) = 1 ®m. This should not be confused with the notion of
primitive elements in a Hopf algebra, where recall r is called primitive if m*(r) =
r® 1+ 1® r. The primitive elements of H as a Hopf algebra and of H as a
Hopf module over itself do not coincide. The (module) primitive elements form a
subgroup, which will be denoted Q. If I = @n>0 H,, is the augmentation ideal
as in Section 2, the grading and connectivity of H along with the grading, unit,
and counit for M imply that for any m € M, a*(m) = 1 ® m + a7 (m) for
ai(m) € I ® M. Thus, m is primitive <= a7 (m) = 0. This definition of
primitivity is then justified by the following proposition:

Proposition 5 Let H be a PSH-algebra and let M be a k-PSH module over H.
Let IM C M be the submodule a(I @ M). Then Q is the orthogonal complement
of IM.

Proof The expression a*(m) = 1@ m+ «a (m) along with the self-adjointness and
grading gives (m, a(z)) = (o (m),z) for m € M and = € I ® M, from which the
proposition follows.

Thus, the primitive irreducible elements of a k-PSH module are those that
cannot be “generated” as an irreducible constituent of a nontrivial product of
other irreducibles. From Proposition 5, we obtain:

Proposition 6 Associativity and coassociativity follow from the other axioms defin-
ing k-PSH modules.



Proof By self-adjointness, coassociativity follows from associativity, for then we
have (z @ y @ m, (a* ® 1)a*n) = ((zy)m,n) = (z(ym),n) = Ry m,(1®
a™)a*n) for all z,y € H and m,n € M. For associativity, it suffices to show
z(ym) — (xy)m = 0 for x € Hq, y € Hp, and m € M. by linearity. By the unit
axiom certainly this is true if either a = 0 or b = 0, so we may do the proof by
induction on a + b + ¢ and suppose a + b > 0. Then z(ym) — (xy)m € IM, so by
Proposition 5 it suffices to show z(ym) — (xy)m is primitive. By the k-Hopf axiom
for M, the Hopf axiom for H and that ¥* is a morphism of algebras, we have

o (z(ym) — (zy)m)
= U*(z ) (ym) (1) @ 2(2) (ym) 2) — ¥ ((y) (1)) M) ® (2y) 2)m(2)
= UH@ym)ma © 2@ W me) =¥ @0 yn)mae) @ (@eye)me)-
The first tensor factors in each term of the sum agree, so and the second tensor
factors agree by the inductive hypothesis when the degree is less than a + b + ¢,
and these terms cancel. By the counit axiom and the fact that ¥*(1) = 1 the
remaining terms give 1 ® (z(ym) — (zy)m), so indeed x(ym) — (zy)m is primitive.

Next we will discuss constructions involving k-Hopf modules. These construc-
tions will give a convenient language to describe the structure of the k&-PSH mod-
ules associated with finite wreath products. Let H be a commutative, cocommu-
tative Hopf algebra over the commutative ring A, and let (M, «a,a”), (N, 3, 8)
be k-Hopf and I-Hopf modules (respectively) over H. Define the A-linear maps
YvHQMQEN - M®N and v*: M @ N - H® M ® N by the formulas
Y(h®m®n) = haym® hizyn and v*(m ® n) = myna)y @ m(2) ® nezy. Then we
have:

Proposition 7 (M ® N,v,~v*) is a (k+1)-Hopf module over H. If all objects are
of the PSH type, then M ® N is a (k + 1)-PSH module. The usual isomorphisms
MINZNQOM and ( MRN)Q P =2 M ® (N ® P) respect all the various
structures.

Proof 1t is immediate that v and v* are graded and that the unit and counit
axioms hold. Associativity follows from associativity of M and N and the Hopf
axiom for H, and coassociativity follows similarly. We need only check the (k+1)-
compatibility axiom. Recall that this amounts to checking the equality

Yor=(uey)e @ erel)o(n ®y).

This follows from the second identity in Proposition 4 and the respective axioms
for M and N. The statement in the PSH case is clear when we write

7y=(a®B)o(1®T®1)o (k" ®11®1)

Y=wpe1el)o(ler®1)o(a* @ F%),
from which positivity and self-adjointness readily follow. The final statement is
obvious.

Let K also be a (graded) commutative, cocommutative Hopf algebra over the
commutative ring A with multiplication v and comultiplication v*, and let 6: K —
H and 0*: H — K be (graded) Hopf algebra morphisms such that 6" o 6 =
w': K — K for some | > 0. Then for a k-Hopf module (M, o, o*) over H there are
the A-linear maps ax =ao(d®1): KM — M and o = (6*®1)oa™: M —
K ® M. Then we have:
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Proposition 8 (M, ak,ak) is a Hopf module over K with the kl-Hopf property.
If all objects are of the PSH type and the maps 8,8" are mutually adjoint PSH-
algebra morphisms (i.e. positive, mutually adjoint Hopf algebra morphisms), then
(M, ak,ak) is a kl-PSH module over K.

Proof The kl-Hopf axiom follows from the first identity in Proposition 4, and
the remaining axioms are immediate. In the PSH-case, the grading, positivity,
and adjointness follow from corresponding assumptions and the symmetry of the
formulas defining ax and af.

Proposition 9 direct-sum-structure The direct sum of k-Hopf modules (or k-PSH
modules) is again a k-Hopf module (k-PSH module).

Proof Clear, as the diagram defining the k-Hopf property for a Hopf module M
respects direct sum decompositions of M as a Hopf module.

5 Decomposition of k-PSH Modules

In this section we establish a direct sum decomposition for k-PSH modules into
summands with exactly one module-primitive irreducible element, analogous to
van Leeuwen’s direct sum decomposition for twisted PSH-modules. Throughout
this section let (H,u,p™) be a PSH-algebra (not necessarily with unique primi-
tive irreducible element) and let (M, «,a”) be a k-PSH module over H. In [15]
Zelevinsky considered the linear maps =*: H — H adjoint to left-multiplication
by x € H. These maps were central in his study of PSH-algebras. Following this
approach, we introduce analogous maps for M.

Proposition 10 For x € H there exists a unique linear map : M — M adjoint
to the left-multiplication map M — M, m — xm, and for m € M there exists a
unique linear map m: M — H adjoint to right-muliplication by m. X is given by
the composition

M-S HeoM % 700~ M

and m is given by

M-S HoM2"Y goz~H

These maps satisfy (setting Hp, = My, =0 forn <0):

(1) x€ H, = T(Mq) C Mg—p, me M, = m(My) C Mqg—p
(2)z,ye H = Toy=yr=xy=9yox
rEHmMEM = zm=2"om=mozT

(3) Z(ym) = " ()] ()72 (m)
(4) 7iv(zn) = " [m{y) (2)]m(z) (n)

—~

(5) m(zn) = T* (2 1))z (z) (m) ().
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Proof Non-degeneracy of the pairings on M and H imply the uniqueness of  and
m, and for existence we need only check that the compositions in the proposition
are the appropriate adjoints. Note that the adjoint to the map H — Z, h — (x, h),
where Z is given its canonical T-group structure, is given by the map Z — H,
n +— nx, as ((h,x),n) = (h,nx). As o™ is adjoint to o by assumption, the first
composition above is adjoint to the composition m — 1@ m — zQ@m — a(z ®
m) = xm, which is precisely the left-multiplication by z. Similarly, the second
composition above is adjoint to the right multiplication by m, as needed.

Property (1) holds because the T-group pairings are graded, so the adjoint of a
degree p operator is degree —p. The first implication in property (2) holds because
taking adjoints is an antihomomorphism with respect to composition of operators
and because H is commutative, so xy = yx. The second implication in property
(2) holds similarly, because left-multiplication by = and right-multiplication by m
commute.

For property (3), not that for z,y € H and m,n € M we have

(@(ym),n) = (y@m, (a" 0 a)(z @n)) = (y @ m, (T (zq)) @ 2(2))a” (n))

= (@((F*(z(1)) @ 2(2))"(y ®@ m)), ) = ([P (20))]" (9)2(2) (), n)

from which property (3) follows by the non-degeneracy of (-, -). Similarly, property
(4) follows from the calculation

(m(zn), h) = {xn, hm) = (z@n, (" oa)(h@m)) = <x®n,Wk(h(l))m(1)®h(2)m(2)>

= (m{1)(x) ® M(2)(n), ¥*(h(1)) @ hez)) = (" (m{1)(z)) @ (2 (n), b1y @ hyay,)

= (0" (m{1)(2)) @ miz) (n),m" (b)) = (F* (m{y)(2))m(z)(n), ).

Finally, using property (3) we have

(M(wn), h) = (@n,hm) = (n, F(hm)) = (0, ¥* (z(1))" ()2 (2)(m))

—~

— (#0) (m)(n), W (1)) (B)) = (F* (21)) 7 a) () (), h)

which gives property (5).

Proposition 11 As before, let P C Hand Q C M be the subgroups of primitive

elements. Let (pi)i—1 and (p})3=1 be tuples of pairwise equal or orthogonal elements

of P, let m,n € Q be equal or orthogonal primitive elements of M, and let m =
/ / / /

p1--prm and ™ = py---pyn. Then (m,7') = 0 unless m = n, r = s, and the p;

and p;- are equal up to rearrangement, in which case we have

<7T77TI> = krnl! o 'Tlv!<p1,p1> e <pT7pT><m7 m>7

where n; is the number of appearances of the it" distinct element in the list
Pi,---,0r- (The case M = H with its canonical 1-PSH module structure is treated
in [15, Proposition 2.3].)
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Proof For p € P we have p*(p) = 1®p+ p® 1, so by (3) of the Proposition 10
we have p(em) = (% (9))" () 1(m) + (" (1)) (2)5(m) = kp* (z)m +ap(m) for any
x € H and m € M. By [15, Proposition 1.9f], that p is primitive implies that p* is
a derivation of H. Therefore, we calculate

(m,7") = ((ILi<rpi)m, (IIj<pj)n)
= ((ITa<i<rpi)m, p1((ITj<spj)n))
- <(H2§i§rpi)m, k(Pl)*(ngspg')” + (ngsp;)pvl (n)>

> k{(ITa<i<rpi)m, (ITj<s j2105)pP1 (p1)0)
1<I<s
H(ITz<i<rpi)m, (ITj<sp;)p1(n)).

By the definition of primitivity and the orthogonality hypotheses, we have p}(p;])
is 0if p1 # p; and {p1,p1) otherwise, while pi (n) = 0. The proposition then follows
by induction.

Let C = 2(H) N P be the set of primitive irreducible elements of H and let
D = 2(M) N Q be the set of (module) primitive irreducible elements of M. As in
[15, §2.5], let S(C,Z=°) denote the additive monoid of functions C — Z= of finite
support. For d € D and ¢ € S(C,Z=°), define

Ty = HC¢(C)EH, 7Td’¢=7r¢d€M.
ceC

Let 2(¢) be the set of irreducible elements w € H such that w < 7y, and similarly
let £2(d, ¢) be the set of irreducible constituents of w4 4 in M. Finally, set

H¢)= P zZw, Md¢)= P Zw, Md= & M)

weR(e) weN(d,p) $€S(C,220)

Theorem 1 For d,d" € D and ¢,¢' € S(C,22°), 2(d,¢) and 2(d',¢') are dis-
joint unless (d,¢) = (d',¢'). M has the T-group decomposition

M = &y M (d, ¢)

deD,peS(C,Z2°)
and is graded with respect to S(C,Z=°) in the sense

a(H(¢') @ M(d,¢")) C M(d, ¢+ ")

a"(M(d,¢)c P H(¢)eM(d,¢").
&' +¢"=0

M(d) is a k-PSH submodule of M, and we have the following canonical direct sum
decomposition of M as a k-PSH module:

M = P M(d).

deD
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Proof The disjointness of 2(d, ) and 2(d’,¢’) for (d,¢) # (d',¢") follows from
Proposition 11. Let w € 2(M). For the T-group decomposition we need w € 4,4
for some (d, ¢). This is trivial if w € D, so since My C @ it suffices to consider
w € My, not primitive and with n > 0. Thus w is not in the orthogonal complement
of IM by Proposition 5, so there exists x € I,m € M with w < xm. By positivity
we may assume x € 2(H), m € 2(M), and = # 1. From [15, Proposition 2.5a] we
have z < 7r;) for some ¢’ € S(C,Z=°), and by induction on degw we can assume
m < mq,4. But then by positivity we have w < 7T;57Td’¢// = Td,¢'+¢/-

That « is a positive map implies that it respects the S(C, Zzo)—grading. Indeed,
by linearity it suffices to show that for ' € 2(¢’) and w” € £2(d, ¢"") we have
Ww'w” € M(d, ¢’ + ¢"). By positivity, every irreducible constituent of w’'w” is an
irreducible constituent of my/ g ¢ = T4, ¢+, and the statement follows.

That o respects the S(C,Z=°)-grading now follows from adjointness. Indeed,
again by linearity we need only consider w € §2(d, ¢) irreducible. Let w’ € 2(¢’)
and W' € 2(d',¢") be such that (a*w,w’ ® w’) # 0. Then as « is adjoint to
o™ it follows that w is an irreducible constituent of w’w”, which by the previous
paragraph implies that w € £2(d’, ¢’ + ¢"). As we have seen that the sets £2(d”, )
are disjoint when they are not equal, it follows that d = d and ¢’ + ¢” = ¢,
as needed. In particular, M(d) is a k-PSH submodule of M, and M admits the

desired direct sum decomposition.

6 k-PSH Modules and Representations of Wreath Products

In this section we show that k-PSH modules appear naturally in the complex
representation theory of finite wreath products and we describe the structure of
these modules. First, we recall the PSH-algebra associated with the complex rep-
resentations of finite wreath products and apply the PSH-algebra decomposition
theorem. For a finite group G and n > 0, the wreath product G S, = Sp, x G"
is the semi-direct product associated to the natural action of S, on G™ by per-
mutation. Set R(G) = ,,~ Rn(G) with Ro(G) = Z and, for n > 0, R,(G) the
Grothendieck group of the category of finite-dimensional complex representations
of G Sn. Zelevinsky showed that then R(G) has the structure of a PSH-algebra
with multiplication and comultiplication given by identical formulas to the ones
defining the corresponding structures on R = R(1) with G1.Sy, in place of S,. The
irreducible elements are the isomorphism classes of irreducible representations, and
the irreducible primitive elements are the classes of the irreducible representations
of G=G851.

Let G be a finite group, and let H C G be a subgroup. Let a: R(H)® R(G) —
R(G) be the graded linear map on the Grothendieck groups induced by the exact
functor Indfliif;ﬁ G5, where here we make the obvious identification of H.Sk x GlS;
as a subgroup of G ! Sk4;. Similarly, let o : R(G) — R(H) ® R(G) be the graded
linear map induced by the exact functor B, ,_,, Resglzsﬁ;szSl . In the case H =
G, we recover multiplication and comultiplication in the PSH-algebra R(G). These
maps are graded, positive, and respect the unit and counit, and they are mutually
adjoint by Frobenius reciprocity, so R(G) is a positive self-adjoint Hopf module
over R(H). Using Mackey’s double coset formula, we will show, under an additional
hypothesis on H, that R(G) is a [G : H]-PSH module over R(H). We then give
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an explicit description of the module R(G) over R(H) in terms of only the PSH-
algebra structures on these objects and the multiplication and comultiplication in
the universal PSH-algebra.

To simplify the notation, given a sequence of integers (n1,...,n;) let Wng,..n)
denote the direct product G1Sp, X -+ X G1Sp, and similarly let V(,,, . ,,) denote
HSn, x---x H{Snh,. For a convenient description of wreath products, consider
G Sy as the group of monomial invertible matrices with entries in Z[G] and with
all nonzero entries in GG, and let I,, denote the n x n identity matrix.

Proposition 12 Let H < G be a normal subgroup. Let t = [G: H], and let
{g1,...,9¢} be a complete set of representatives for the elements of the quotient
group G/H. Suppose p+q = r + s = n. Then the double-coset space (Vp X
WO\Wn/ (Ve x Ws) has a complete set of representatives parametrized by tuples
(a1,...,as,b,c,d) of nonnegative integers satisfying the conditions

a1+---+a+b=r,c+d=s,a1+---+ar+c=pb+d=q,

where the tuple (a1,...,at,b,c,d) corresponds to the representative
(9110, O 0 00 0]
0 ga2lg, - 0 000
: .0 000
0 0 0 gile, 000
0 0 0 0 01,0
0 0 0 0 L,O0O
L O 0 0 0 00 Ig]

Proof Consider the action of V), x Wy on Wy, by left-multiplication and the action
of Vi, x W, on Wy, by right-multiplication. The subgroups S, x Sq C Vp, x W4 and
SrxSs C Ve x Wy act by permuting the top p and bottom g rows and the left  and
right s columns, respectively, and therefor every double coset has a representative
whose nonzero entries are arranged as in the above matrix. The matrix can then
be put in the above form using the diagonal subgroups H? x G? and H" x G® and
using the permutation action to group the diagonal elements by elements of G/H.

Theorem 2 If H < G is a normal subgroup with the property that every inner
automorphism of G restricts to an inner automorphism of H, then (R(G), o, a™)
is a |G : H]-PSH module over R(H).

Proof Again set t = [G : H]. By the linearity of the maps involved, it suffices to
verify the t-Hopf property on m ® o, where 7 is a representation of V;. and o is a
representation of Ws. Suppose r + s = n. First we compute o (a(7 ® o)) using
Mackey’s Theorem. Recall that the definitions give

a*(a(r®o)) = @ Res“/,‘:"X w, (Ind&i"X w. (T ® o))
p+q=n

where the brackets indicate taking the class in the Grothendieck group.
Let N be the representative of the double-coset (Vp, x W) \W, /(Vr x W) as in
Proposition 12 parameterized by the tuple (a1, ...,as,b,¢,d) subject to the same
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constraints. Since H is normal, for h € H we have gihgj_1 € H < i=j, from
which it follows that

(N(Ve x Wo)N™) 0 (Vo X Wo) = Viay,ar.en) X Wa

(note the transposition of b and c).

Let p be the representation of the group V{4, ... a;.c,py X Wa given by p(z) =
(r®0)(N~1zN). With the hypothesis that conjugation of g € G on H is an inner
automorphism, we may choose the representatives g; of G/H as in Proposition
12 so that g; centralizes H, and thus by Mackey o™ (a(m ® o)) is the class in the
Grothendieck group associated to

VX W, Vi
Z Indvz(jal,...(,lat,c,b)XWd((1®T®1)(ReSV(a1
ay1+--ar+b=r,ct+d=s

ag.b) (m) ®Res\v}§x Wy (@)

where 7 is the transposition map exchanging the V;, and V. factors. In view of the
identity

v =| @ Idy

..... at)
ai1+---+ar=a

for representations « of V,, we obtain
foa=(pp®a)o( W @T®1)o (uf ®a®)

(where pp is the multiplication and u3 the comultiplication in R(H) as a PSH-
algebra) as needed.

Note that Theorem 2 reaffirms the Hopf axiom for R(G) in the case H = G.

Proposition 13 Let §: R(H) — R(G) be the map induced by induction of repre-
sentations from HU1Sy to GUSy, and let §*: R(G) — R(H) be the map induced by
restriction. Then § and 6* are mutually adjoint PSH-algebra morphisms, i.e. mu-
tually adjoint, positive Hopf algebra morphisms. (Here H C G can be an arbitrary
subgroup. The case H = 1 is [15, Proposition 7.10a].)

Proof Adjointness follows from Frobenius reciprocity, and positivity reflects that
§ and ¢* are derived from functors. By adjointness, therefore, it suffices to show
that 6" is a Hopf algebra morphism, as then the same will follow for §. The
associativity of restriction implies §* is a coalgebra morphism. As the double coset
space H 1 Sp\G 1 Sn/(G1Sp x G1Sy) is trivial, Mackey’s formula gives precisely
that 6* is an morphism of algebras.

Observe that § is given by right-multiplication by 1 € R(G). As §* is adjoint
to §, it is therefore given by the composition

R(G) °> R(H)® R(G) 2“Y R(H)®Z =~ R(H).

Proposition 14 §*0d = plG:H] for any normal subgroup H G with the property
that every inner automorphism of G restricts to an inner automorphism of H.

Proof This follows immediately from the diagram defining the [G : H]-Hopf axiom
and from the grading.
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By the associativity of induction and restriction, the action and coaction maps
a and o have the descriptions @ = pg o (§ ® 1) and o = (6* ® 1) o uf, where
G, ey are the multiplication and comultiplication in R(G). Therefore, the module
structure of R(G) over R(H) is determined by the PSH-algebra structures on these
objects as well as the maps § and §* between them.

We next give an explicit description of the PSH-algebra morphisms §: R(H) —
R(G) and §*: R(G) — R(H) for a finite group G and any finite subgroup H C G.
Recalling that the irreducible primitive elements of R(G) are the classes of the
irreducible representations of G = G S1, Zelevinsky’s decomposition theorem
(Proposition 2) states that there is a PSH-algebra isomorphism @: RO (&) _,
R(G). In [15, Proposition 7.3], this isomorphism and its inverse are given explicitly,
as follows. Let (p,V) € Irr(G) be an irreducible representation, and let R(p) C
R(G) be the PSH-subalgebra defined in the statement of Proposition 2. For a
representation (mw, W) of Sy, define the representation ®@,(m) of G Sy, in the space
W ® V®™ such that

8,(m)(0) (0 D1 © - © v) = 7(0) () O Vy1(1) B -+ B V1)
for o € S, and
Dp(m) g1y gn)(WRVI R - QUn) =WRGIV1 R+ ® gnUn

for (g1,...,9n) € G™. This construction induces a linear map ¢,: R — R(G)
which is a PSH-algebra isomorphism onto its image R(p) C R(G). The adjoint map
&7 : R(G) — R is orthogonal projection onto R(p) and is given on representations
7 of G Sy by the formula @} (7) = homgn (p®™, 7), where the S,-action on this
hom-space is given by (0.4)(z) = 0.(A(c~'.z)) and the Sp-action on p®" is by
permutation of the tensor factors. Therefore, the maps

dq = M(CLI”(G)D ) ® D, R®ITT Gl _y R(G)
pE€lrr(G)

L = ® D, O/,LZ(‘IH(G)DS R(G) — RO Gl
p€lrr(G)

are mutually adjoint PSH-algebra isomorphisms. Of course, there is a very similar
description of R(H). It is in terms of these descriptions that we will give formulas
for the maps 0: R(H) — R(G) and §*: R(G) — R(H).

We now introduce the PSH-algebra morphism ¥™: R®% — R®! for M =
(mij) a | x k matrix with entries in Z=°, very analogous to the way in which
linear transformations of vector spaces are described by matrices. Let p be the
multiplication on R®¥, similarly for R®! and for comultiplication. Then /LZ(D maps
R®" into (R®*)®!. In a sort of “vertical” Sweedler notation, consider writing the
kl tensor factors in a [ X k matrix read from left to right, row by row, top to bottom.
As the comultiplication in R®* is component-wise, this amounts to comultiplying
each component “down.” The map ¥™ is then obtained by comultiplying R®"
[-times, applying Y% to the ij-tensor entry, then multiplying the rows to obtain
an element of R®'. For instance, if we have

=3

456
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then ¥ : R®3 — R®? is the map given on simple tensors by
M@ @y®z) =0 (20)P (Y1) P’ (20) @ ¥ (22)7° (y2)¥° (2(2))-

Proposition 15 wM. REk 5 RO s q PSH-algebra morphism. We have the
relations .
(1) @) =M

2) vMowh = gM¥
3) m™ o @M - @ut) o = wx M
(4) v = ,u,(cn) o uz(n) =0y

where MT denotes the transpose, N is any k X m matriz and Ma, ..., My are any
I x k matrices with entries in Z=°, nl is n > 0 times the identity matriz, and Vi
is the nth-Hopf power map on RF.

Proof ™ is a composition of PSH-algebra morphisms so is a PSH-algebra mor-
phism itself. Property (1) follows from the adjointness axiom for PSH-algebras,
and Properties (2), (3), and (4) follow from Proposition 4.

Given a finite group G and any subgroup H, let My,c = (Mxp)rctir(H),peln(G)
be the | Irr(H)| x | Irr(G)| matrix with 7p-entry mnr, = (r, Res$ p), the multiplicity
of m in the restriction of p to H. Clearly m., € ZZ°. Then with the earlier
identifications R(G) = RO (A R(H) = R®IT(H)I e have the following

Theorem 3 The PSH-algebra morphisms 0: R(H) — R(G) and §*: R(G) —
R(H) are given by
§* = wMne 5 — gMic,

Proof In view of Propositions 13 and 15(1) we need only verify the identity for §*.
Since ¢* is an algebra morphism, we then need only check that for p € Irr(G) the
composition

R(H) P p®|lre(H)|
is the map
® wi{m.87p) Ou*(\lrr(H)l)'
welrr(H)

But 0" and @, are coalgebra morphisms, so

P08 od, = ®W€Irr(H) @;) OM*H(llrr(H)D 05" 0,
= ®7T€Irr(H)(¢:r 0d* o @p)) o /.L*(l Irr(H)‘).

FEach of these maps are algebra morphisms, so it suffice to check that they agree
on a set of algebra generators of R, and for which we may choose the classes x,
of the trivial representations of Sj,, so we need only check

@2 0" O@p(l‘n) _ u—,(ﬂ',é*p) (xn)
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We have

(5*()@)0(1'11) = @ <H mﬂ'ip) T1&: Q.

Ty, €Irr(H) \1=1
By the definition of @ and Schur’s lemma, it follows that

Bk 08" 0 Py(xn) = hompn (7€, (Mrpm)®™) 22 (CT 70 )®"

where S,, acts naturally by permuting the tensor factors.

We now need only check that this representation is isomorphic to W™ (zy,),
and for that it suffices to compare the characters. Let o € S;,. The standard basis
of simple tensors of (C™)®" is permuted under the action of S,, and therefore the
character value at o is the number of sequences of indices (i1,...,%n), 1 < i; <
m, such that (o(i1),...,0(in)) = (i1,...,in). Clearly this is m'*()  where
cycles(o) is the number of cycles of .

By Proposition 14, we have U™ (xy,) = Res?ﬂzs" (Indgjs" Zn) for any group K
of order m. The standard formula for induced characters therefore gives that the
value of this character at o € S, is equal to

> s, (dod™t)

de K"

where 1g, is the indicator function of S, C K1S,. We have dod™ ! = (0~ *dod ™)
with o 'dod™! € K™, sodod™ ! € S, <= dod~ ! = o. But the d which centralize
o are precisely the d with all coordinates indexed by the same cycle of o equal.
There are m®°'**(?) guch d € K", as needed.

Combining the results of Theorem 2, Proposition 15, and Theorem 3, we have
the following corollary which reflects, in the case H = 1, the standard fact that the
sum of the squares of the dimensions of the irreducible complex representations of
a finite group G is |G/

Corollary 1 If G is a finite group and H I G is a normal subgroup so that the
natural map G — Aut(H) induced by conjugation factors through the inclusion
Inn(H) — Aut(H), then with My ¢ as defined earlier we have the following matriz
equality:

Mp.cMp o =[G : HI
where I is the identity matriz of size | Irr(H)|. Note the case H = 1 is precisely
the standard result mentioned above.

Proof All that is left is the observation that if M # M’ then W™ £ wM',

Finally, further paraphrasing these results in the case H = 1, we describe the
|G|-PSH module R(G) over R = R(1) in terms of the constructions of Propositions
7 and 8. For d > 0, we have ¥: R — R is a self-adjoint PSH-algebra morphism
and ¥? o wd = &T/d2, so setting § = 6* = ¥? in Proposition 8 R can be given
the structure of a d>-PSH module over itself. Let R denote R with this module
structure. Then as a corollary of Theorem 3 we have:

Corollary 2 For any finite group G, we have, as |G|-PSH modules over R,

RG)= & RO
welrr(G)
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7 Appendix: Subgroups of Wreath Products

Let G be a finite abelian group. The wreath product G S, := S, X G"™ may be
realized as the group of monomial matrices with all nonzero entries in G, i.e. those
matrices which have exactly one nonzero entry in each row and column, with these
nonzero entries lying in the group G. For abelian G there is a surjection GUS, — G
given by taking the sum of the elements in G appearing in a matrix. For a subgroup
H C G let Gn(G, H) denote the kernel of the composition G1 S, - G — G/H,
so that G»(G,G) = G Sy and G, (G, H) is the group of monomial matrices with
entries in G whose entries sum to an element of H.

Let Ro(G,H) =Z and for n > 0 let R, (G, H) = Ko(Rep — G (G, H)) denote
the Grothendieck group of the category of finite dimensional complex representa-
tions of G (G, H). We then construct the graded abelian group

R(G,H) = P Rn(G, H)
n>0

which has a T-group structure with the distinguished graded basis given by the
isomorphism classes of irreducible representations (along with 1 € Z in degree
0) along with a graded nondegenerate symmetric bilinear form given by the usual
pairing of representations. This form will be denoted (-, -). Note that the irreducible
elements form a graded orthonormal basis for R(G, H).

Using induction and restriction, one can place graded product and coproduct
structures on R(G, H). In particular, we have an embedding of groups G (G, H) x
G1(G,H) C Gk+:1(G, H) by the block-diagonal embedding of matrices, so we have
an induction functor

Ind : Rep(Gi(G, H) x Gi(G,H)) — Rep(Gi+:(G, H))
and a restriction functor
Res : Rep(Gi+1(G, H)) — Rep(Gr(G, H) x Gi(G, H)).
These are exact functors, so we obtain maps at the level of Grothendieck groups:
mi: Re(G,H) ® R(G,H) = Rr41(G, H)
mp : Revi(G,H) — Ri(G,H) ® R)(G, H)
in view of the natural isomorphism
Ry(G,H)® R;(G,H) =2 Ko(Rep(Gk(G, H) x Gi(G, H))).

For k =0orl =0, let my ; and mzjl be the maps given by the natural isomorphism
Ry, ®Z=27ZRRi =2 Ri. Set

m:=man = » mki:R(G, H)®R(G,H) - R(G, H)
k,1>0

and
m*i=mé g = Z mi,: R(G,H) — R(G,H) ® R(G, H).
k,1>0
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It is immediate that mq,m gives R(G, H) the structure of a graded commutative
algebra with unit and that ma 7 gives R(G, H) the structure of a graded cocom-
mutative coalgebra with counit. Furthermore, by Frobenius reciprocity mg,z and
m¢ g are adjoint operators with respect to the inner product on R(G, H) and the
induced graded inner product on R(G, H)®QR(G, H). As for usual wreath products,
mg,n and mg p are positive maps with respect to the T-group structure.

Next, we will construct a natural positive injective map of algebras

@: (X R(G/H,1) < R(G, H)
leH*

where H™ is the group of linear characters of H, and we will see a weak form
of surjectivity in the sense that every irreducible element in R(G, H) occurs as a
constituent of some element of the image of this map. For H = G, the case of usual
wreath products, R(G/G,1) = R(1,1) is the Hopf algebra of integral symmetric
functions and the injection above is the usual decomposition isomorphism of PSH-
algebras known in that case from Proposition 2.

Let ¢: Gn(G,H) — Gn(G/H,1) be the map given by reducing the matrix
entries mod H. This gives rise to an exact sequence

0— H" - Gn(G,H) = Gn,(G/H,1) = 0

where the first map is the diagonal embedding. We obtain an additive functor
¢* : Rep(Gn(G/H,1)) — Rep(Gn(G, H)) by pullback, which gives rise to a
graded operator ¢*: R(G/H,1) — R(G,H). As ¢ is surjective this map sends
distinct irreducibles to distinct irreducibles, and in particular is an embedding of
graded T-groups.

For | € H*, let I, be the linear character of Gy (G, H) obtained by pulling
back the linear character | of H by the homomorphism G, (G, H) — H. We have
the exact functor 7;,,,: Rep(Gn(G, H)) — Rep(Gn(G, H)) by tensoring with I,
giving rise to a positive graded automorphism 7 := @, ~, 71,n of R(G, H). These
operators have several nice properties. We see 7; o 7 = 7. In view of the inner
product on R(G, H) in terms of characters, we see 7" = 77 = ;-1 = Tl_l, so 7 is
an orthogonal operator. It is clear that 7; is a map of coalgebras, but then 7" = 77
is also a map of coalgebras, so since the form on R(G, H) is nondegenerate and
mg,zg and mg g are mutually adjoint we conclude 7; is also a map of algebras.
In summary, the rule ! — 7; gives an action of H* on R(G, H) by positive graded
orthogonal algebra/coalgebra automorphisms.

Forl e H*, set &, =1, 0¢": R(G/H,1) — R(G, H). We then have

Proposition 16 @, is an injective algebra and coalgebra morphism sending irre-
ducibles to irreducibles.

Proof In view of the preceding comments about 7; and ¢* we need only check that
@™ respects multiplication and comultiplication. It is obvious that ¢* is a map of
coalgebras, and to establish that it is a map of algebras we need to check that the
diagram

R(G/H,1)® R(G/H,1) 2% R(G, H) ® R(G, H)

mG/H,l\L mG,H\L

R(G/H,1) R(G, H)
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commutes. For this just note that ¢ induces a bijection on the coset spaces
Gr+1(G, H) /(G (G, H)XGi(G, H)) and G+ (G/H,1)/(Gr(G/H, 1)xGi(G/H, 1)),
and the commutativity of the diagram then follows immediately from the Frobe-
nius formula for induced characters.

Proposition 17 The sub-(co)algebra &;(R(G/H, 1)) of R(G, H) has a graded ba-
sis whose degree n part consists of the isomorphism classes of those irreducible
representations ™ of Gn(G, H) whose restriction to H™ contains the irreducible
constituent 1°™.

Proof From the construction and Proposition 16, we need only check that any such
[7] is in the image of ®;. Note that the {®™-isotypic piece of 7|gn is actually a
submodule for Gy, (G, H), so 7; ' is an irreducible representation of G (G, H)
with trivial H™-action, so has the structure of an irreducible G, (G/H,1) =
Gn(G, H)/H"-representation 7’. But then 7, 'm = ¢*7’ so m = &;(r), as needed.

Proposition 18 The sub-(co)algebras ®;(R(G/H,1)) are pairwise orthogonal.
Proof If  and ¢ are irreducible representations of G, (G, H) which are [®™-isotypic
and "®™-isotypic upon restriction to H™, respectively, for some distinct linear
characters | # I’ of H, then we have

<7T7 O->Gn(G,H) S <7T7 U)H” = deg(ﬂ-) deg(0)<l®na l/®n>H" =0
so (m,o) = 0, and in view of Proposition 17 and its proof, our claim follows.

Now for [ € H™ define the graded operator ¥;: R(G,H) — R(G/H,1) on the
degree n part by the operator associated to the exact functor ¥;: Rep(Gn (G, H)) —
Rep(Gn(G/H,1)) defined by ¥;(7w) = hompgn (In, 7). The Gn(G/H,1)-action is
given by g.A — GAG~* for A € hompgn(l,,w) and § € Gn(G, H) any lift of
g € Gn(G/H,1). This map ¢g.A does not depend on the choice of lifting of g be-
cause A commutes with the action of H". Clearly g.A € homg» (12", 1) so ¥ (r)
is indeed a Gn(G/H, 1)-representation, and clearly ¥, is an additive functor.

Proposition 19 The functor ¥; is left adjoint to ®;, and in particular the op-
erators W; and &, are adjoints on the level of the Grothendieck groups. W, is a
homomorphism of (co)algebras.

Proof The first statement follows from tensor-hom adjunction. The second state-
ment follows by nondegeneracy of the forms on the Grothendieck groups, adjoint-
ness, and the fact that @; is a homomorphism of (co)algebras.

It is clear that ¥; o @; is naturally isomorphic to the identity functor and
that &; o ¥; is naturally isomorphic to the functor I; on Rep(Gn,(G, H)) given
by projection to the I®"-isotypic piece for the H™-action (recall this is always a
Gn (G, H)-subrepresentation). At the level of Grothendieck groups, we obtain:

Proposition 20 ¥; o ®;: R(G/H,1) — R(G/H,1) is the identity, and
®,0¥;: R(G,H) — R(G,H)

is orthogonal projection onto the sub-(co)algebra ;(R(G/H,1)).
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We now define the map mentioned at the start of this section

@: (X) R(G/H,1) — R(G, H)
leH*

as the product of the maps @;. Given an |H*|-tuple A = (A\;);em- of nonnega-
tive integers, let /() denote the number of nonzero parts. Write G»(G/H, 1) :=
R e - G, (G/H, 1). Given irreducible representations 7, of G, (G/H, 1), let 7y :=
Ric - ™ € Rep—GiA(G/H, 1) and also identify it with its class in @), ;. R(G/H, 1).
Let pt = (w1)1en+ be another such tuple, with the same sum of parts n:= 3,y =
> At as . Let also o7 be an irreducible representation of G, (G/H,1) for each

l € H*. Then we have:

Theorem 4 & is a graded, positive, injective map of algebras, and we have
<¢(7TA),¢(U“)> = 577Ay0'u [G : H}I(A)_l.

& is weakly surjective in the sense that every irreducible element of R(G, H) occurs
as a constituent of some element of the image of ®.

Proof Tt follows from previous results that & is a positive graded map of algebras.
By positivity, showing the given inner product formula will imply injectivity, so
we start there, which is just an application of Mackey’s double coset formula. In
particular, we have

@(Wé\)’(gg)“» G (G H)
= (Ind&’ () Qe+ Pi(m), Inde” (&) Qe - Pi(01)) (1)

= ZWEGA\G,,I,/GH <®l6H* T, (®l6H* 01)7>vaGw*1

Noting H™ C Gx NyG 7y~ !, we have the bound

~
leH* leH* GANYG oyt

< ( H deg(m)deg(ol)> <® 19 <® l®”’> >

leH* leH* leH*

As G™ centralizes H", twisting by ~ amounts to just twisting by some element
of Sy, permuting the tensor factors, and hence the final inner product is 0 unless
both A = p and 5 € S, stabilizes the blocks of G(G/H,1). In this case we
can clearly take the double coset representative v to be diagonal, so to compute
the original inner product we need only sum over a collection of diagonal double
coset representatives. From the definition of &;, we see that any diagonal element
of Gy, (G,Q) centralizes @;(0;), and we conclude that each term of the above
Mackey sum involving a diagonal representative yields a contribution of 1 to the
sum, as in that case G\ N 'yG,J'yfl = (G and it is just an inner product of an
irreducible representation of G with itself. The number of classes of the double
coset space which have a diagonal representative is clearly [G : H ]Z(A)_l - indeed
they are formed by a choice of element of G/H for each nonzero \; x A; block such
that the entire sum is 1 € G/H.
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For our weak form of surjectivity, let 7 € Rep(Gn(G, H)) be an irreducible
representation. The action of S, on 7w induces an action of S, on the set of H"-
isotypic pieces by permuting the tensor factors, so we conclude some there is a
nonzero H"-isotypic piece of m|gn of type l?p‘l K- ® l%};\lm' where l1,..., [z is
an ordering of the linear characters of H. Then, 7|, contains some irreducible
representation 71 ®- - -®@7| | whose restriction 7;| ;7a, contains l;@)‘i. By Proposition
17, we then have m; = @, (;) for some ;. But then by Frobenius reciprocity 7 is
an irreducible constituent of ®(m)), as needed.

Writing

o =md" o & &+ X R(G/H,1) = R(G, H)

leH* leH*

we also have the adjoint map

=& womily " RG H)~ K RG/H,1)

leH* leH*

where mgfg‘) and mg(lg*‘) denote iterated multiplication/comultiplication. The
first part of Theorem 4 can then be recast as the statement that ¥ is a positive,
graded, surjective map of coalgebras with no positive element in its kernel.

Note that in the case of usual wreath products, i.e. G = H, we have [G : H] = 1,
so by the inner product formula in Theorem 4 we have that @ sends irreducibles
to irreducibles, and the weak surjectivity condition becomes usual surjectivity, so
& is surjective and hence is a bijective isometry, so ! = ¢* = ¥. But ¥ is a map
of coalgebras, so ® = ¥~ ! is as well, and we obtain

Corollary 3 For the case of usual wreath products, i.e. G = H, we have that ®
and ¥ are mutually inverse and adjoint, positive (irreducible-to-irreducible), graded
isomorphisms respecting both the algebra and coalgebra structures.

This case recovers the usual identification of R(G, G) with the |G|-fold tensor
power of the Hopf algebra of integral symmetric functions.
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