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Massachusetts Institute of Technology, Cambridge, Massachusetts, USAb; Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE),
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ABSTRACT The members of the OM43 clade of Betaproteobacteria are abundant coastal methylotrophs with a range of carbon-
utilizing capabilities. However, their underlying transcriptional and metabolic responses to shifting conditions or different car-
bon substrates remain poorly understood. We examined the transcriptional dynamics of OM43 isolate NB0046 subjected to vari-
ous inorganic nutrient, vitamin, and carbon substrate regimes over different growth phases to (i) develop a quantitative model
of its mRNA content; (ii) identify transcriptional markers of physiological activity, nutritional state, and carbon and energy utili-
zation; and (iii) identify pathways involved in methanol or naturally occurring dissolved organic matter (DOM) metabolism.
Quantitative transcriptomics, achieved through addition of internal RNA standards, allowed for analyses on a transcripts-per-
cell scale. This streamlined bacterium exhibited substantial shifts in total mRNA content (ranging from 1,800 to 17 transcripts
cell�1 in the exponential and deep stationary phases, respectively) and gene-specific transcript abundances (>1,000-fold in-
creases in some cases), depending on the growth phase and nutrient conditions. Carbon metabolism genes exhibited substantial
dynamics, including those for ribulose monophosphate, tricarboxylic acid (TCA), and proteorhodopsin, as well as methanol
dehydrogenase (xoxF), which, while always the most abundant transcript, increased from 5 to 120 transcripts cell�1 when cul-
tures were nutrient and vitamin amended. In the DOM treatment, upregulation of TCA cycle, methylcitrate cycle, vitamin, and
organic phosphorus genes suggested a metabolic route for this complex mixture of carbon substrates. The genome-wide inven-
tory of transcript abundances produced here provides insight into a streamlined marine bacterium’s regulation of carbon me-
tabolism and energy flow, providing benchmarks for evaluating the activity of OM43 populations in situ.

IMPORTANCE Bacteria exert a substantial influence on marine organic matter flux, yet the carbon components targeted by spe-
cific bacterial groups, as well as how those groups’ metabolic activities change under different conditions, are not well under-
stood. Gene expression studies of model organisms can identify these responses under defined conditions, which can then be
compared to environmental transcriptomes to elucidate in situ activities. This integration, however, is limited by the data’s rela-
tive nature. Here, we report the fully quantitative transcriptome of a marine bacterium, providing a genome-wide survey of cel-
lular transcript abundances and how they change with different states of growth, nutrient conditions, and carbon substrates.
The results revealed the dynamic metabolic strategies this methylotroph has for processing both simple one-carbon compounds
and the complex multicarbon substrates of naturally derived marine organic matter and provide baseline quantitative data for
identifying their in situ activities and impact on the marine carbon cycle.

Received 17 July 2016 Accepted 17 October 2016 Published 22 November 2016

Citation Gifford SM, Becker JW, Sosa OA, Repeta DJ, DeLong EF. 2016. Quantitative transcriptomics reveals the growth- and nutrient-dependent response of a streamlined
marine methylotroph to methanol and naturally occurring dissolved organic matter. mBio 7(6):e01279-16. doi:10.1128/mBio.01279-16.

Invited Editor Frank Stewart, Georgia Institute of Technology Editor Colleen M. Cavanaugh, Harvard University

Copyright © 2016 Gifford et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to Scott M. Gifford, sgifford@email.unc.edu, or Edward F. DeLong, edelong@hawaii.edu.

Microbial activities are major drivers of nutrient cycles and
energy transfer in marine ecosystems, and the ability to

monitor these activities in situ has been enhanced by recently de-
veloped genome-enabled technologies. An important application
for these analyses is understanding how the numerous genes for
processing carbon compounds in bacterial genomes are regulated
in response to cell physiology and environmental conditions to
ultimately influence carbon flux through marine environments.
Focusing these omic analyses on model organisms that represent
groups with specific carbon-processing capabilities should enable

us to better predict how the diverse carbon pool in marine envi-
ronments is metabolized by bacterioplankton communities and
how those roles may change under different conditions.

One functional group of bacteria increasingly recognized as
having an impact on the marine carbon cycle is the methyl-
otrophs, microorganisms capable of metabolizing single-carbon
substrates (1, 2). The presence of methylotrophs in the marine
environment has been recognized for several decades owing to
their enrichment and cultivation from seawater samples (3) and
more recently in metagenomic surveys (4). Recent investigations
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have further expanded the potential role of methylotrophs in the
marine environment to include high-molecular-weight (HMW)
dissolved organic matter (DOM) cycling (5) and phytoplankton-
bacteria interactions (6). The sources of methanol supporting
these populations in the marine environment are not well under-
stood, but a recent study by Mincer and Aicher (7) showed that
several marine phytoplankton taxa can release micromolar con-
centrations of methanol. Additionally, analyses of methanol
standing stocks in seawater has revealed nanomolar concentra-
tions with short turnover times, suggesting that methylotrophs
may have a substantial role in the flux of marine carbon (8–10).

In coastal environments, members of the OM43 clade of Beta-
proteobacteria of the family Methylophilaceae have emerged as im-
portant marine methylotrophs. First identified by Rappé et al.
(11), these organisms are a common component of coastal bacte-
rial communities (12) and can substantially increase in relative
abundance during phytoplankton blooms (13). The first OM43
genome sequences indicated the presence of highly streamlined
genomes in this group (1.3 Mbp encoding 1,377 genes) and
suggested that members of the clade might be obligate methyl-
otrophs because of an incomplete tricarboxylic acid (TCA) cycle
(14, 15). Halsey et al. (16) demonstrated that OM43 strains are not
solely limited to methanol as a substrate, as they can metabolize a
range of C1 compounds, including dimethylsulfoniopropionate
and trimethylamine oxide. Furthermore, they found that the
availability of these substrates shifted the metabolic fate of meth-
anol toward either dissimilatory or assimilatory processes. OM43
isolates have recently been obtained from ultraoligotrophic envi-
ronments (17), and a closely related sister clade has been isolated
from freshwater environments (18), with both isolates also having
streamlined genomes and a metabolic range similar to that of pre-
viously described OM43 strains. Evidence of a further expanded
metabolic range in OM43 clade methylotrophs was recently dem-
onstrated for multiple OM43 strains that were isolated via growth
on naturally derived HMW DOM (19). Growth assays of these
isolates showed that they could reach substantial cell densities
(�106 ml�1) on either methanol or HMW DOM. However, the
genes enabling this expanded metabolic range, as well as their
regulation under different environmental conditions, remain un-
known.

Complementing these laboratory observations, environmental
surveys are revealing that members of the OM43 clade are active,
dynamic members of coastal communities. Metatranscriptomes
and metaproteomes revealed that OM43 xoxF-type methanol de-
hydrogenases are some of the most highly transcribed genes and
among the most abundant proteins in coastal systems (20, 21).
Furthermore, in situ observations suggest that these genes are dy-
namically regulated, exhibiting substantial shifts in their tran-
script profiles over both seasonal and diel time scales (22). For
example, OM43 xoxF-type methanol dehydrogenase transcripts
had higher seasonal abundances in the fall and winter but minimal
day-night differences, while in contrast, transcripts for ribosomal
proteins and elongation factors displayed some of the largest day-
night differences observed in the entire microbial community
(22). These results suggest that OM43 members may tightly tune
their transcriptome to the environmental conditions of coastal
ecosystems, including temporal shifts in nutrient availability and
primary production. However, it is not known which environ-
mental factors are responsible for driving OM43 transcription dy-
namics.

There is thus a need for experimentally validated, quantitative
transcriptional markers that can be used as reporters of the phys-
iological and metabolic state of OM43 clade cells under different
conditions, particularly those indicating growth phase, nutrient
stress, and carbon substrate utilization. In situ quantitative omic
techniques have recently been developed that allow for the calcu-
lation of absolute gene, transcript, or protein abundances in
marine samples on a per-environmental-unit basis (23–26).
However, as these environmental gene inventories increase, inter-
preting their biological or ecological meaning requires a knowl-
edge of how cellular transcript abundances map to the activity,
metabolism, and physiology of cell populations. Comparative
quantitative transcriptomics of model organisms grown under de-
fined conditions can identify transcriptional markers of physio-
logical or metabolic activity and provide an inventory of cellular
transcript abundances to aid in the interpretation of microbial
activities in situ via metatranscriptomic surveys.

In this study, we applied quantitative transcriptomics to an
analysis of OM43 clade strain NB0046 to (i) understand the quan-
titative nature of a transcriptome from a streamlined marine bac-
terium, including total mRNA content and genome-wide cellular
transcript abundances, and how they change with growth phase;
(ii) identify transcriptional benchmarks of physiological activity,
metabolism, and the nutritional state; and (iii) explore the meta-
bolic pathways and regulation involved in the metabolism of
methanol and naturally occurring HMW DOM.

RESULTS AND DISCUSSION
Growth response to nutrient amendments. OM43 strain NB0046
was originally isolated off the coast of Massachusetts in the United
States via dilution to extinction in a seawater medium enriched
with naturally occurring HMW DOM (19). For the experiments
described in this report, NB0046 was grown in a basal medium
consisting of Sargasso seawater sterilized by tangential-flow filtra-
tion (TFF) through a 1-kDa membrane and amended as follows.
For regime I, the inorganic-nutrient-deplete condition, no inor-
ganic nutrients or vitamins were added. For regime II, the
inorganic-nutrient-amended condition, 400 �M NH4

� and
30 �M PO4

3� were added. Regime III consisted of inorganic-
nutrient- and vitamin-amended conditions with 400 �M
NH4

�, 30 �M PO4
3�, and a vitamin mixture with shaking.

Regime IV consisted of inorganic-nutrient- and vitamin-
amended conditions with 400 �M NH4

�, 30 �M PO4
3�, and a

vitamin mixture without shaking. For a carbon source, the cul-
tures were amended with either 50 �M methanol or various con-
centrations of HMW DOM (see Materials and Methods).

Cultures amended with methanol reached a cell density (3 �
106 ml�1; Fig. 1) typical of growth in Sargasso seawater medium,
as previously described (19), which was lower than that observed
for other OM43 clade cultures grown in coastal seawater medium
(16). The lower cell density appears not to be the result of reduced
inorganic nutrient concentrations, since the addition of NH4

�

and PO4
3� did not significantly increase the cell yield (Fig. 1). The

addition of an AMS1 vitamin mixture (27), however, did increase
the concentrations to �107 cells ml�1. Shaking the nutrient- and
vitamin-enriched cultures at 60 rpm did not further increase the
cell yield (Fig. 1). The growth rates of the methanol-amended
cultures in exponential phase ranged from 0.06 to 0.09 h�1, sim-
ilar to previous observations of OM43 isolates (14, 16).

NB0046 growth on HMW DOM varied significantly, depend-
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ing on the experimental conditions. Robust growth of this strain
was consistently observed in high concentrations of HMW DOM
when it was grown in small-volume chambers (200-�l to 1-ml
wells). However, when the batch culture volume was increased
(from 8 to 250 ml), growth on HMW DOM was severely dimin-
ished (see Fig. S1 in the supplemental material) and often did not
significantly differ from that of the non-carbon-amended control,
although the HMW DOM treatments exhibited significantly
greater cell yields than the non-carbon-amended cultures later
into stationary phase under regimes I and III (t test, P � 0.05;
Fig. 1). We considered the possibility that ventilation may be one
reason for the observed difference between the multiwell plates
and the bottles; however, when the cells were shaken in 500-ml
bottles with vented lids in regime III, there was no substantial
increase in cell yields over regimes I and II for the HMW DOM
amendments. Given the low growth yields on HMW DOM in
large-volume cultures of regimes I, II, and III, we were unable to
capture these bacteria for transcriptome analysis. However, when
the seawater medium was UV oxidized (prior to nutrient or sub-
strate additions) to reduce the background concentration of en-
dogenous DOM, NB0046 exhibited significant growth only when
the medium was amended with HMW DOM and did not grow in
the non-carbon-amended control or methanol treatment (Fig. 1).
In order to gain more insight into OM43 HMW DOM metabo-
lism, we therefore grew and collected cells for transcriptional anal-

ysis in UV-oxidized seawater medium amended as follows. Re-
gime V consisted of UV-oxidized seawater with no inorganic
nutrient or vitamin amendment, and regime VI consisted of UV-
oxidized seawater amended with inorganic nutrients (400 �M
NH4

� and 30 �M PO4
3�).

The treatments again included methanol, HMW DOM, or a
non-carbon-amended control. In these experiments, inorganic
nutrients once again did not substantially increase maximum cell
yields and there was no detectable growth in the non-carbon-
amended control or methanol additions (Fig. 1).

Direct stimulation of growth by methanol and HMW DOM
amendments. Our cell yields under non-carbon-amended condi-
tions were consistent with previous reports that OM43 clade
members can reach substantial cell densities (�105 ml�1) when
grown in a naturally derived seawater medium that is not carbon
amended (14, 19). Recent in situ measurements of methanol in
seawater have revealed nanomolar standing stocks and a methanol
turnover time of 1 day (8), suggesting that ambient methanol
concentrations in seawater could support significant microbial
growth. To examine the extent to which the carbon amendments
in our experiments directly supported the observed cell yields, we
developed a simple, high-performance liquid chromatography
(HPLC)-based method to quantify methanol in our seawater me-
dium and the carbon-amended treatments.

The ambient methanol concentration in the basal seawater was

FIG 1 Growth of OM43 clade betaproteobacterial strain NB0046 in Sargasso seawater medium amended with different nutrient and carbon substrates. Error
bars represent the SD of triplicate samples for each treatment. For regime IV, the total length of the experiment was twice that of the others. Inorganic nutrients,
30 �M phosphate and 400 �M ammonium; vitamins, AMS1 vitamin mixture; vented and shaking, incubation bottles were shaken at 60 rpm and their caps loosed
to increase ventilation of the medium. Arrows indicate sampling points from which transcriptomes were generated.

Quantitative Transcriptome of a Marine Methylotroph
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248 � 100 nM (mean � standard deviation [SD], n � 6), compa-
rable to mass spectrometry measurements of methanol in seawa-
ter from similar Atlantic latitudes by Beale et al. (8). On the basis
of the bacterial growth efficiency of 22% reported by Halsey et al.
(16) for OM43 strain HTCC2181 grown on 10 �M methanol and
a bacterial carbon content of 10 fg of C cell�1 (28), this back-
ground methanol concentration could support a cell density of ca.
6 � 104 ml�1 but not the 3 � 105 to 5 � 105 ml�1 we observed in
the non-carbon-amended and HMW DOM treatments (Fig. 1).
For the methanol-amended samples in regime IV, NB0046 con-
sumed methanol at a rate inversely proportional to cell growth
(Fig. 2A), and assuming the aforementioned growth efficiencies,
the 46.6 �M methanol consumed could support the production of
1.2 � 107 cells, comparable to the observed maximum cell density
of 1.4 � 107 � 1.1 � 106 ml�1 (mean � SD, n � 3). A similar result
was obtain under the methanol amendment in regime III
(Fig. 2B), with a final observed methanol drawdown of 39 �M that
could theoretically support a density of 1 � 107 cells ml�1, closely
matching the observed maximum cell density of 1 � 107 � 1.3 �
106 ml�1 (mean � SD, n � 3). Unexpectedly, there was also a
small but significant abiotic loss of methanol in the noninoculated
controls in the methanol treatment in this experiment, potentially
due to the ventilation and shaking conditions of this regime (if this
loss was consistent, the total drawdown would be reduced to
29 �M and the theoretical yield would be 0.74 � 107 cells ml�1).

In the HMW DOM treatments, there were no significant in-

creases in methanol concentrations just after the HMW DOM
addition or at the final time point for the HMW DOM-amended,
noninoculated controls (Fig. 2B). In the UV-oxidized seawater
experiments in which we observed significant growth on HMW
DOM, the methanol concentration was initially 0.67 � 0.05 �M
(mean � SD, n � 3), 3.5 times as high as that of non-UV-treated
seawater medium (Fig. 2B). This increase may be due to the UV-
driven release of methanol from background HMW DOM poly-
saccharides naturally present in the seawater, which incorporate
methylated sugars (29, 30). However, under the aforementioned
assumptions, this would theoretically support only one-third of
the observed final cell yields. Furthermore, the cells did not grow
in either the non-carbon-amended control or methanol-amended
treatment in the UV-oxidized seawater (Fig. 1), even given the
medium’s higher background methanol concentrations. We did
observe a drawdown of 0.54 �M methanol from the background
medium at the end of the experiment for the inoculated HMW
DOM treatment in UV-oxidized seawater, which could support
1.4 � 105 cells ml�1 but not the observed final yield of 5.4 �
105 cells ml�1. These results suggest that the addition of HMW
DOM to the medium provided some growth factor or carbon
source to support the observed cell production. It is unlikely that
the growth of OM43 cultures on HMW DOM is due to abiotic
release of absorbed or covalently attached methyl compounds
from the DOM polymer, as we did not observe the presence of free
methanol, formaldehyde, or formic acid in solutions of HMW
DOM screened by 1H nuclear magnetic resonance (NMR) analy-
sis, and there was no significant increase in the methanol concen-
tration just after HMW DOM addition or at the final time point in
the HMW DOM-amended, noninoculated controls (Fig. 2B).
These results suggest that abiotic release of methanol from HMW
DOM is negligible and support the hypothesis that HMW DOM-
sustained growth is due to enzymatic cleavage of the carbon sub-
strate directly from HMW DOM by the methylotrophs.

Sequence composition and internal standard recovery. Trip-
licate biological samples for RNA analysis were collected at 11 time
points in the six cultivation experiments (Fig. 1) in order to iden-
tify transcriptional markers of growth, activity, and carbon me-
tabolism under the different nutrient regimes. Quantitative tran-
scriptomics was achieved by synthesizing 14 RNA standards that
were assembled into four groups and then individually added to a
sample just prior to RNA extraction (Fig. 3A; also see the supple-
mental material). The samples were rRNA depleted and se-
quenced with Illumina’s MiSeq platform. The sequencing yields
across the 33 transcriptomes ranged from 3 � 105 to 3 � 106 reads
per sample (see Table S1 in the supplemental material). Recovery
of the internal RNA standards in the sequence libraries was log
linear over 4 orders of magnitude, showing good replication be-
tween the standard sets and few indications of systematic or tech-
nical error (Fig. 3B; also see Fig. S2 in the supplemental material).
However, 3 of the 14 standards were not recovered at the expected
ratios (standards 2, 4, and 5; Fig. 3B; see Text S1 in the supplemen-
tal material) and therefore were not included in any downstream
calculations. The remaining 11 standards were used to convert the
number of reads per library to the number of transcripts per cell
(see Text S2).

Cellular mRNA content and transcript abundance as func-
tions of the growth phase. The average mRNA content per cell
varied by 3 orders of magnitude across the six experiments and
significantly correlated with the culture growth phase (Pearson’s

FIG 2 Methanol concentrations in Sargasso seawater medium with or with-
out strain NB0046 and with different nutrient regimes and carbon substrates.
(A) Time series of methanol drawdown in proportion to NB0046 growth in the
nutrient- and vitamin-amended regime (IV). Cell densities are black filled
circles, and methanol concentrations are open boxes. (B) Beginning and end-
point methanol concentrations for the nutrient- and vitamin-amended regime
(III) and the UV-oxidized medium experiment with HMW DOM plus nutri-
ent amendments (regime VI). The carbon substrate treatments are indicated
below the axis (Non Amd., not carbon amended), and above those are the time
points sampled (S.M., seawater medium before starting the experiment; T0,
inoculated and just after addition of the carbon substrate; TF, inoculated and at
the final time point sampled; CtrlF, noninoculated at the final time point sam-
pled). na, sample not available for analysis. Error bars for all plots are SDs of
biological triplicates.
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FIG 3 (A) Internal RNA standard statistics and groupings. ID, the standard identifier; length, total number of nucleotides in a standard; standards added,
the final number of standards added to each sample; symbol, the plotting symbol in the graph. (B) The recovery of internal standards in the sequence
libraries versus the number of standards added for samples collected over three different growth phases in the nutrient- and methanol-amended regime
(II). The grey line is the fitted linear regression. Plots of standard recovery for all 33 samples are provided in Fig. S2. (C) Relationship between the total
mRNA content per cell as estimated from internal standard recovery and the culture growth rate at the time of sampling. Points are colored as indicated
in the legend to panel D. The time points at which growth was zero or cell densities were decreasing were binned into “noGr.” Regime V (UV-oxidized
medium not nutrient amended plus HMW DOM) had relatively low temporal resolution of cell concentrations just before transcriptome sampling,
causing the sampling time points to have an overestimate of the growth rate and were therefore considered outliers (plotted as blue �s). (D) Total cellular
transcript abundances by experiment and sampling time point (t1 to t3), as shown by the arrows in Fig. 1. (E, F) Distribution of transcript abundances
in OM43 strain NB0046 during different phases of growth. The dashed line indicates the number of genes with one transcript cell�1. Exp., exponential
growth phase; late exp., late-exponential growth phase; Deep Stationary., cultures in the stationary phase for an extended period of time.
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r � �0.55, P � 0.01; Fig. 3C). The nutrient-amended regime (II)
plus methanol, for which transcriptome samples were collected at
three distinct points in the growth curve, had abundances of 1,859
(� 155), 720 (� 45), and 387 (� 50) transcripts cell�1 during the
exponential, late-exponential (i.e., transitioning from exponential
to stationary), and stationary growth phases, respectively (mean �
SD). The mRNA content of cultures in stationary phase for an
extended period of time was lower (�100 transcripts cell�1) and
reached a minimum of 17 � 7 transcripts cell�1 in the 600th hour
of the regime IV experiment (Fig. 3D).

Transcripts were detected for �99% of the genes in the
NB0046 genome, no matter the experiment or treatment condi-
tion (99.8% � 0.17% [mean � SD], n � 33). The genome-wide
distribution of gene-specific transcript abundances followed a
lognormal distribution (Fig. 3E and F). These results are compa-
rable to earlier RNA-Seq observations that showed that most, if
not all, genes are expressed in the bacterial genome, and these
expression levels follow a continuous distribution, with no dis-
crete division into low or high gene expression (31). The variance
in gene-specific transcript abundances was tightly constrained,
with the difference between the lowest and highest gene expres-
sion levels spanning 5 orders of magnitude for all of the samples
(4.6 � 0.4 [mean � SD], n � 33; Fig. 3E and F). In contrast, the
magnitude of individual transcript abundances showed clear
trends of shifting with the culture growth phase (Fig. 3E and F), as
expected given the total cellular mRNA content relationship to the
growth phase described above. The gene-specific transcript abun-
dance averaged 1.4 � 0.1 transcripts cell�1 during exponential
phase, a value similar to that obtained by Passalacqua et al. (31),
who used a modeling approach based on samples of Bacillus an-
thracis collected in exponential growth phase. The most highly
expressed gene in the NB0046 transcriptome during this growth
phase was the methanol dehydrogenase-encoding gene xoxF
(NB46_00364), with a mean abundance of 83 � 51 transcripts
cell�1, while in contrast, the least expressed genes were found at
only 1 transcript in every 215 cells (0.005 � 0.002 transcripts
cell�1). As the cultures entered stationary phase, the average gene
transcription level dropped by 62% to 0.55 � 0.03 transcripts
cell�1 and eventually to a low of 0.29 � 0.04 transcripts cell�1 in
stationary phase. On the extreme end, in the deep stationary phase
of regime IV, the average transcript abundance was 0.004 tran-
scripts cell�1 or approximately 1 in every 250 cells. For the cellular
transcript abundances of all of NB0046’s genes across the 33 dif-
ferent samples, see Table S2 in the supplemental material.

Interpretation of cellular transcript abundances is growth
phase dependent. An examination of genes commonly used as
metabolic state and growth phase markers revealed that the cellu-
lar transcript abundance of these genes closely tracks the growth
status of the cultures at the time of collection (Fig. 4A). Given that
the goal of most transcriptome experiments is a comparative
analysis of treatment-specific processes, these results suggest that
comparisons of different treatments on a transcripts-per-cell scale
should be conducted with sample populations in similar growth/
activity states, or else global transcript changes tied to the physio-
logical state may obscure any biologically meaningful difference
between the treatments. Therefore, in our study, to identify
treatment-specific differences in transcript abundances, we com-
pared only across time points when the cultures were in similar
growth phases, particularly focusing on the four experiments that
had samples near the end of exponential-phase growth, i.e., meth-

anol (MeOH)-amended medium without inorganic nutrients (N)
or vitamins (V) (regime I, �MeOH �N �V); methanol- and
inorganic-nutrient-amended medium (regime II, �MeOH �N
�V); methanol-, inorganic-nutrient-, and vitamin-amended me-
dium (regime III, �MeOH �N �V); and HMW DOM- and
inorganic-nutrient-amended, UV-oxidized medium (regime VI,
�DOM �N �V).

While cell concentrations differed greatly among these samples
(Fig. 1), a statistical analysis of growth- and activity-related genes
revealed significantly similar cellular transcript abundances
among these samples (Fig. 4B; analysis of variance [ANOVA],
Benjamini-Hochberg-corrected P � 0.05; log2-fold change, �1).

Central carbon metabolism. In order to identify regulatory
patterns of key metabolic processes, we explored the NB0046 tran-
script abundances of genes involved in C1 and central carbon
metabolism sampled from the same growth phase (the four late-
exponential-phase experiments listed above) but with various nu-
trient regimes and carbon substrates (Fig. 5). Genes that had a
significant difference across treatments were identified by

FIG 4 NB0046 transcription of genes indicative of growth, activity, or repli-
cation. (A) Gene-specific cellular transcript abundances at all sampling time
points. Red points represent samples originating from cultures in the late
exponential phase of growth. (B) Transcript abundances of only the late-
exponential-phase samples indicate that samples in similar growth phases
tended to have similar transcript abundances.
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FIG 5 Transcript abundances of NB0046 genes related to one-carbon and central metabolism under different nutrient regimes and carbon substrate additions.
At the top is a metabolic map of the substrates, genes (colored blocks), and their connections (arrows) in strain NB0046. Next to each gene is an identifier in italics
providing the location of that gene in the bottom panel, which shows the mean transcript abundances of triplicate samples collected from the late exponential
phase for the different nutrient regimes (regime designations are shown at the base of box 1E). The full names and IMG accession numbers of the genes are shown
in Table S3 in the supplemental material. Error bars are the SDs of biological triplicates.
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ANOVA, and if the Benjamini-Hochberg-corrected P value
was �0.05, a pairwise t test was used to identify significantly dif-
ferent treatment pairs with a minimum 2-fold difference in tran-
script abundance.

The initial step in C1 metabolism is methanol oxidation to
formaldehyde via an xoxF-type methanol dehydrogenase (32, 33),
and in our experiments, xoxF was often the most highly tran-
scribed gene, with tens to hundreds of transcripts cell�1 (Fig. 5,
box 1A). This is consistent with observations from coastal tran-
scriptomes that xoxF is often a dominant component of the ma-
rine transcript and protein pool (20, 22). In fact, under all of the
conditions tested in this study, xoxF was always present at �1 copy
cell�1, even in stationary phase. This was true of no other gene in
the genome, further highlighting xoxF’s likely vital function or
rapid cellular turnover. Interestingly, while methanol was present
at nanomolar or greater concentrations in all of our experiments
(Fig. 2), xoxF’s transcriptional dynamics seemed to be more nu-
trient regime dependent, with a 20-fold difference in xoxF tran-
script abundance between the nutrient-deplete (�MeOH �N
�V) and nutrient-amended (�MeOH �N �V) regimes (Fig. 5,
box 1A). Genes xoxJG are also part of the xox operon but
were transcribed at lower levels than xoxF and displayed more
muted expression dynamics, with xoxJ (methanol dehydrogenase-
associated protein) showing significantly lower expression only in
the nutrient-deplete experiment (�MeOH �N �V) and xoxG
(associated cytochrome) consistently expressed at 10 to 11 tran-
scripts cell�1 across all four experiments (Fig. 5, boxes 2A and 3A).

Formaldehyde produced from methanol oxidation is the cen-
tral intermediate in C1 metabolism, and OM43 strains possess two
different pathways for processing it: (i) oxidation of formaldehyde
to formate via the tetrahydrofolate pathway and (ii) the ribulose
monophosphate (RuMP) cycle for either assimilatory or dissimi-
latory processes. The first two enzymatic steps in the tetrahydro-
folate pathway are catalyzed by a bifunctional folD-encoded pro-
tein, which, in all of our late-exponential-phase experiments, was
consistently expressed at ca. 0.3 transcript cell�1 (Fig. 5, box 5A).
The methyl moiety is then oxidized to formate via a formate-
tetrahydrofolate ligase, which showed significantly lower expres-
sion in the nutrient-deplete regime (�MeOH �N �V) (Fig. 5,
box 6A). The final step in the tetrahydrofolate pathway is oxida-
tion of formate to CO2 via a multisubunit formate dehydrogenase,
which was relatively consistently transcribed across the various
nutrient regimes, although the transcript abundances of the indi-
vidual subunits were substantially different from one another (av-
erages of 0.05, 0.31, 1.16, and 2.94 transcripts cell�1 for the delta,
gamma, beta, and alpha subunits, respectively) (Fig. 5, boxes 7A
through 1B).

An alternative route for formaldehyde metabolism is the
RuMP cycle, which can operate in an assimilatory manner to pro-
duce intermediates of central carbon metabolism or in a dissimi-
latory manner for energy conservation. Entry into the RuMP cycle
begins with 3-hexulose-6-phosphate synthase (HPS), which con-
denses formaldehyde and ribulose 5-phosphate. We observed
that HPS had consistently high late-exponential-phase transcript
abundances under all of the nutrient regimes (8 to 12 transcripts
cell�1; Fig. 5, box 2B). After HPS, RuMP intermediates undergo a
series of isomerizations and dehydrations (Fig. 5, boxes 3B and
6B). Interestingly, the genes encoding dehydration steps were two
of the few genes in the genome we observed to have significantly
higher transcript abundances under nutrient-deplete conditions

(�MeOH �N �V) (Fig. 5, boxes 5B and 7B). These two dehy-
drogenases are important regulatory steps in the RuMP cycle (34),
with 6-phosphogluconate dehydrogenase in particular being di-
agnostic of the dissimilatory portion of the RuMP cycle, which
leads to the oxidation of phosphogluconate to CO2 and the regen-
eration of RuMP. The transcriptional enrichment of these dehy-
drogenases may indicate that the cells were routing more carbon
to the dissimilatory component of the RuMP cycle under
nutrient-deplete conditions, potentially due to a lack of key inor-
ganic nutrients for synthesizing biomass.

After the assimilatory C1 and RuMP pathways, carbon may
enter the TCA cycle, which, in all sequenced OM43 strains, is
missing the E1 subunit of �-ketoglutarate dehydrogenase (15, 17).
This enzymatic gap results in an incomplete TCA cycle, which is
widely used as a diagnostic marker of obligate methylotrophy
(35). In our experiments, the two TCA cycle branches displayed
distinctly different transcriptional patterns. The first branch con-
sists of the conversion of citrate to �-ketoglutarate, and the three
genes in this branch were consistently transcribed at ca. 1 tran-
script cell�1 across all of the regimes (Fig. 5, boxes 5D through
7D). The second TCA cycle branch is the conversion of oxaloac-
etate to succinate, and interestingly, it showed an expression pat-
tern that was very different from that of the citrate branch, ranging
from a low of 0.1 transcript cell�1 in the nutrient-deplete cultures
(�MeOH �N �V) to ca. 1.0 transcript cell�1 in the HMW DOM
treatment (�DOM �N �V) (Fig. 5, boxes 9D and 2E). The
NB0046 genome encodes a succinate dehydrogenase, and al-
though it was also significantly enriched in the HMW DOM treat-
ment, the effect size was much smaller than that of the other TCA
genes (Fig. 5, boxes 3E and 4E), potentially indicating a different
metabolic role, as it is unknown how the conversion of succinate
to succinyl-CoA would integrate into central metabolism in these
organisms (35). Similarly, many members of the family Methylo-
philaceae do not encode a canonical malate dehydrogenase, in-
stead encoding a malate quinone oxidoreductase (Fig. 5, box 8D;
see reference 35). Notably, in our experiments, the gene for this
enzyme did not follow the same transcription pattern as the other
genes, potentially suggesting a different role or an alternative en-
zyme in this location.

Several genes associated with methylcitrate metabolism had
transcription patterns similar to that of the oxaloacetate arm of
the TCA cycle. An examination of the NB0046 genome revealed
that these genes are likely part of a complete methylcitrate cycle
(MCC). In other organisms, the MCC has been shown to be in-
volved in the metabolism of short-chain fatty acids, particularly
propionyl coenzyme A (propionyl-CoA) (36). In NB0046, MCC
genes for propionyl-CoA metabolism are clustered together in a
prpBCD locus encoding 2-methylcitrate synthase (prpC; Fig. 5,
box 6E), 2-methylcitrate dehydratase (prpD; Fig. 5, box 7E), and
methylisocitrate lyase (prpB, a diagnostic marker of the MCC
pathway; Fig. 5, box 9E). Strain NB0046 does not appear to encode
a canonical 2-methylisocitrate dehydratase, though it does
contain an aconitate hydratase (acnB, Fig. 5, box 8E), which
may have similar activity. A survey of OM43 clade genomes in
the Integrated Microbial Genomes (IMG) database revealed
the prpBCD locus to be conserved among all four available
genomes (HTCC2281, HIMB624, NB0016, NB0046).

The MCC is completed by the oxaloacetate branch of the TCA
cycle, and the transcription patterns of these two cycles were
highly similar. Just as the oxaloacetate TCA branch transcripts
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were significantly enriched in the HMW DOM treatment
(�DOM �N �V), we also observed significantly higher MCC
transcript abundances in the HMW DOM samples (Fig. 5, boxes
6E, 7E, and 9E). The one exception was the aconitate hydratase
gene mentioned above (acnB, Fig. 5, box 6E), which may suggest
that NB0046 encodes the MCC-2 pathway variant that does not
require this enzyme.

The MCC has also been found in Methylotenera mobilis, a re-
lated member of the family Methylophilaceae from freshwater sed-
iments, suggesting that they have the capability for multicarbon
metabolism and challenging the notion that these organisms are
obligate methylotrophs (37). Expression of M. mobilis MCC genes
was enriched in situ, suggesting that 3C metabolism may be an
important component of their in situ activity. Our observations of
a complete MCC cycle in marine members of the OM43 clade
indicates that these organisms may have the ability to degrade
multicarbon substrates, and the upregulation of these genes in the
HMW DOM treatment suggests a potential route for metaboliz-
ing this complex carbon substrate.

Transcriptional responses to differing nutrient regimes. Be-
yond central carbon metabolism, NB0046 also had substantial
transcriptional shifts in other important physiological processes
under the different nutrient regimes, including those related to
inorganic nutrient processing and energy conservation (Table 1),
as well as translational and iron-related machinery (see Text S1 in
the supplemental material).

Nitrogen. Under the nutrient-deplete regime (�MeOH �N
�V), NB0046 substantially upregulated nitrogen-related tran-
scripts, particularly those involved in the PII-dependent response,
the glutamine oxoglutarate aminotransferase (GOGAT) system,
and nitrogen starvation stress (Table 1). This included genes such
as that for the PII nitrogen regulatory protein (�1,000-fold in-
crease in transcript abundance), that for glutamine synthase (6-
fold increase), and ntrB (5-fold increase). NB0046’s two ammo-
nium transporters also had higher cellular transcript
abundances in the nutrient-deplete experiment, although to a
markedly different extent, with amtB gene 1 (NB46_01065)
increasing 2-fold (0.4 � 0.1 transcript cell�1 [mean � SD]),
while amtB gene 2 (NB46_00249) increased over 250-fold to 4.9 �
1.4 transcripts cell�1. Other nitrogen-related transcripts enriched
in the nutrient-deplete condition included those for IMP dehy-
drogenase, GMP synthase, ornithine carbamyl transferase, and
carbamyl phosphate synthase (Table 1). The gene showing the
greatest change in cellular transcript abundance over all of the
experiments was that for hypothetical protein NB46_00251,
which is in a putative operon with the gene for the highly upregu-
lated ammonium transporter and nitrogen PII regulatory protein
(Glnk). For the majority of experiments, this gene’s transcripts
were typically found in only 1 out of every 100 cells; however,
under the nutrient-deplete regime (�MeOH �N �V), the abun-
dance of the transcript for NB46_00251 increased by 1,900-fold to
17 � 0.2 transcripts cell�1(Table 1).

Phosphorus. Changes in phosphorus-related transcript abun-
dances among the different nutrient conditions were more con-
strained than those for nitrogen-related transcripts (Table 1). The
nutrient-deplete regime (�MeOH �N �V) had a significantly
lower transcript abundance (2- to 5-fold) of the phosphate-
specific transport system gene (pst), while that of the gene for the
corresponding negative regulator protein, phoU, showed little dif-
ference among the experiments. The genes for the phosphate

regulon sensor protein and a phosphate-selective porin were also
significantly lower in the nutrient-deplete regime. While pst tran-
scripts increased upon phosphorus addition (�MeOH �N �V),
they reached their highest abundances in the vitamin (�MeOH
�N �V) and HMW DOM regimes (�DOM �N �V). Interest-
ingly, there was also significant enrichment in both the vitamin-
plus-methanol and HMW DOM regimes of a phnP gene that en-
codes the last step in methylphosphonate utilization (Table 1).
The NB0046 genome, however, does not appear to contain the
other genes in the canonical carbon-phosphonate lyase operon,
suggesting that this gene may have a different metabolic role in
NB0046. phnP is a phosphoribosyl 1,2-cyclic phosphate phospho-
diesterase that is able to cleave phosphodiesterase bonds. Cyano-
cobalamin (vitamin B12), which contains a phosphate group in a
cyclic phosphodiesterase bond, is part of the AMS1 vitamin mix-
ture used in our experiments and was present at a final concentra-
tion of 700 pM. In a similar fashion, chemical characterization
of HMW DOM by 31P NMR shows that up to 70% of the or-
ganic phosphorus in HMW DOM is contained within sugar
phosphodiester bonds (D. J. Repeta, unpublished data), such
that the HMW DOM regime was supplemented with ~1.3 �M
sugar phosphodiester-P. Thus, metabolism of cyanocobalamin
and HMW DOM may be linked by the substrate-induced tran-
scription of genes for breaking phosphodiesterase bonds (phnP)
and phosphate uptake (pst).

Rhodopsin. The NB0046 genome encodes a light-driven,
proton-pumping rhodopsin, and under the methanol- and
nutrient-amended (�MeOH �N �V), methanol- and vitamin-
amended (�MeOH �N �V), and HMW DOM (�DOM �N
�V) conditions, cellular abundances of rhodopsin transcripts
were high, with 16 to 36 transcripts cell�1 (Table 1). These find-
ings agree with metatranscriptomic surveys in which rhodopsin
genes are often found to be some of the most highly transcribed
genes in situ, not just for OM43 clade members but for many
abundant community members such as SAR11, SAR116, and fla-
vobacteria (21, 38). However, under nutrient-deplete conditions
(�MeOH �N �V), rhodopsin transcripts were significantly re-
duced by 18-fold to 1.5 � 0.1 transcripts cell�1 (mean � SD).
Rhodopsin-associated genes were also significantly reduced under
these nutrient-deplete conditions, including carotenoid biosyn-
thesis and �-carotene monooxygenase genes, which encode the
final step in retinal synthesis (Table 1). These results show that
rhodopsin is not simply constitutively transcribed in an OM43
clade representative and match recent metatranscriptomic and
quantitative PCR studies that show modulation of rhodopsin
transcription in situ, particularly on diel time scales (39, 40).
While the physiological drivers of these modulations in the envi-
ronment are not well understood, studies of several marine iso-
lates have shown that organisms may use proteorhodopsin-
derived energy to survive periods of starvation (41). Steindler et al.
(42) demonstrated for a streamlined bacterium of the SAR11 clade
that rhodopsin-driven ATP production was energetically advan-
tageous when it was carbon starved, but provided no detectable
advantage during active growth on organic carbon substrates.
This may explain NB0046’s downregulation of rhodopsin tran-
scripts under nutrient-deplete conditions (�MeOH �N �V), as
inorganic nutrients were likely limiting growth while simultane-
ously there was an abundant carbon source (methanol) for
energy conservation, thus negating the need for the supple-
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mental energy source that rhodopsin-driven proton pumping
can provide.

Global similarity between vitamin-amended and HMW
DOM treatments. While there were clear instances of transcrip-
tion differences between the vitamin-plus-methanol (�MeOH

�N �V) and HMW DOM (�DOM �N �V) regimes, the two
experiments often displayed similar expression patterns (Table 1),
including enrichment of genes for the nonmevalonate pathway for
terpenoid synthesis (which integrates with synthesis of vitamins
B1 and B6, carotenoids, and quinones), peptidases encoded by

TABLE 1 Cellular transcript abundances of selected genes significantly upregulated or downregulated under different nutrient regimesa

No. of transcripts per 1,000 cells

Gene description Locus SD; significanceDeplete Replete Vitamin DOM

17,897 10 10 8 Conserved hypothetical protein NB46_00251 166/3/3/2; ���, �nn, �nn, �nn
3,093 3 3 3 Nitrogen regulatory protein PII NB46_00250 86/1/1/1; ���, �nn, �nn, �nn
4,952 18 19 23 Ammonium transporter NB46_00249 1,402/3/4/2; ���, �nn, �nn, �nn
32 2 1 1 Hypothetical protein KB13_177 NB46_00540 19/2/1/1; ���, �nn, �nn, �nn
425 35 69 83 Ammonium transporter NB46_01065 119/2/14/8; ���, �nn, �nn, �nn
2,413 2,058 1,899 1,653 Glutamine synthetase, type I NB46_00305 651/287/315/162; ���, �nn, �nn, �nn
1,228 236 379 370 Glycosyltransferase involved in cell wall biogenesis NB46_00223 244/41/36/42; ���, �nn, �nn, �nn
869 177 184 173 Nitrogen regulation protein NtrB NB46_00304 70/20/27/30; ���, �nn, �nn, �nn
2,826 565 1,162 936 IMP dehydrogenase NB46_01283 792/108/135/90; ���, �nn, �nn, �nn
1,277 319 558 415 GMP synthase NB46_01284 152/16/20/38; ���, ��n, ��n, �nn
88 994 446 175 Chaperone protein DnaJ NB46_00532 6/473/30/3; �nn, �n�, nnn, n�n
69 889 363 165 Cochaperone GrpE NB46_00534 8/496/73/14; �nn, �n�, nnn, n�n
127 2,066 1,064 493 Chaperone protein HtpG NB46_00999 12/673/182/38; ��n, ���, ��n, n�n
372 4,704 2,003 944 Chaperone protein DnaK NB46_00533 29/829/313/71; —n, ���, ���, n��
563 2,833 946 547 Chaperonin GroS NB46_01193 43/543/208/15; �nn, ���, n�n, n�n
1,240 6,068 2,213 1,305 Chaperonin GroL NB46_01192 167/681/325/55; —n, ���, ���, n��
570 750 718 560 Phosphate transport system regulatory PhoU NB46_00097 75/34/32/50; —n, �n�, �n�, n��
76 109 163 183 Phosphate-selective porins O and P NB46_00625 28/34/22/32; n��, nnn, �nn, �nn
40 83 119 162 Phosphate ABC transporter, periplasmic P-binding NB46_00628 7/8/14/19; ���, ���, ���, ���
154 240 453 439 Phosphate ABC transporter, permease PstC NB46_00629 12/30/12/59; ���, ���, ��n, ��n
95 210 531 493 Phosphate ABC transporter, permease PstA NB46_00630 9/29/20/49; ���, ���, ��n, ��n
94 280 457 361 Phosphate ABC transporter, ATP-binding NB46_00631 20/52/32/16; ���, ���, ���, ���
78 183 202 176 Phosphate regulon sensor protein NB46_01228 8/99/6/10; nnn, nnn, nnn, nnn
134 264 1,213 989 PhnP protein NB46_00720 8/53/78/99; ���, ���, ���, ���
308 644 298 244 Fe-S protein assembly chaperone HscA NB46_00974 42/268/9/24; nnn, nn�, nnn, n�n
109 155 87 88 Fe-S protein assembly cochaperone HscB NB46_00975 15/45/13/7; nnn, nnn, nnn, nnn
170 350 163 230 Iron-sulfur cluster assembly protein IscA NB46_00976 16/26/27/30; �n�, ���, n��, ���
134 5,304 574 309 TonB-dependent siderophore receptor NB46_01062 8/1,302/38/44; �nn, ���, n�n, n�n
289 1,148 301 964 Putative TonB-dependent receptor NB46_00103 15/321/22/71; �n, ��n, n��, �n�
1,376 688 772 671 Ferritin and Dps NB46_00108 79/103/47/48; ���, �nn, �nn, �nn
1,455 16,208 36,814 27,421 Bacteriorhodopsin NB46_00176 121/1,449/4,097/3,176; ���, ���,

���, ���
39 72 95 76 �-Carotene 15,15=-monooxygenase NB46_00171 1/38/4/8; n�n, nnn, �nn, nnn
27 139 151 158 Lycopene cyclase protein NB46_00172 2/67/19/15; ���, �nn, �nn, �nn
22 106 93 113 Phytoene/squalene synthetase NB46_00173 4/36/13/16; ���, �nn, �nn, �nn
101 304 329 361 Phytoene desaturase NB46_00174 21/129/34/43; ���, �nn, �nn, �nn
147 522 630 673 Geranylgeranyl pyrophosphate synthase NB46_00175 27/154/152/92; ���, �nn, �nn, �nn
44 47 102 94 2-C-methyl-D-erythritol 2,4-cyclodiphosphate NB46_01067 12/8/2/6; n��, n��, ��n, ��n
50 35 114 103 2-C-methyl-D-erythritol 4-phosphate transferase NB46_01066 8/5/12/10; n��, n��, ��n, ��n
98 260 687 666 Peptidase PpqF NB46_00526 24/58/38/72; ���, ���, ��n, ��n
180 379 863 750 Putative Xaa-Pro aminopeptidase 3 NB46_00896 14/111/75/74; ���, ���, ��n, ��n
66 234 715 683 Trypsin domain protein NB46_01139 20/44/24/95; ���, ���, ��n, ��n
84 151 437 507 ABC-type dipeptide transport system, ATPase NB46_00835 3/35/23/94; n��, n��, ��n, ��n
85 239 553 385 Peptide ABC transporter, permease protein NB46_00784 10/127/21/34; ���, ���, ���, ���
92 314 706 757 Sigma E regulatory protein, MucB/RseB, putative NB46_00988 13/67/42/97; ���, ���, ��n, ��n
386 1,211 2,478 2,690 RNA polymerase sigma factor RpoE NB46_00986 103/196/256/333; ���, ���, ��n, ��n
66 51 139 113 Sulfatase NB46_00552 8/12/10/13; n��, n��, ���, ���
121 230 648 511 Extracellular solute-binding protein, family 5 NB46_00783 5/83/46/71; n��, n��, ���, ���
16 77 66 193 Hypothetical protein Neut_0862 NB46_00664 0/3/4/4; ���, ���, ���, ���
12 30 28 70 FKBP-type peptidyl-prolyl cis-trans isomerase NB46_01197 4/5/7/15; nn�, nn�, nn�, ���
101 269 420 1,055 Putative HpcH/HpaI aldolase/citrate lyase NB46_00665 12/33/16/47; ���, ���, ���, ���
104 341 487 1,045 Long-chain fatty acid–CoA ligase, putative NB46_00666 17/93/21/76; ���, ���, ���, ���
a Abundances are the mean values of triplicates with the SDs in the far right column. Deplete, �MeOH �N �V; replete, �MeOH �N �V; vitamin, �MeOH �N �V; DOM,
�DOM �N �V. Statistically significant upregulation (�) or downregulation (�) (ANOVA and t test; P � 0.05) by a treatment against the three other treatments is indicated in
the far right column for each of the conditions (n, no significant difference) in the following order: deplete, replete, vitamin, and DOM. Table S2 in the supplemental material
contains the cellular transcript abundances of all of the genes in NB0046.
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ppqF and pqqG (involved in the biosynthesis of pyrroloquinoline
quinone), several genes for the uptake and metabolism of proteins
(sulfatases, peptide ABC transport), and the phosphorus-related
phnP gene described above. Notably, many of these genes can be
linked to vitamin metabolism or to accessing functional groups on
vitamin molecules.

To quantify the extent of the transcriptional similarity between
the vitamin-plus-methanol and HMW DOM regimes further, we
used hierarchal clustering to examine how the late-exponential-
phase time points from each nutrient regime were related on a
global transcriptome scale (Fig. 6A). While the nutrient-deplete
(�MeOH �N �V) and nutrient-amended (�MeOH �N �V)
regimes formed separate, distinct clusters, the vitamin-amended
(�MeOH �N �V) and HMW DOM (�DOM �N �V) regimes
clustered together, with the three HMW DOM replicates nested
within the vitamin replicates (Fig. 6A). This strong similarity
in the global transcriptome indicates that the HMW DOM ad-
ditions provide vitamins or substituting nutrients that (at least
in part) stimulate growth in UV-oxidized seawater. To test this,
we conducted an experiment in which vitamins were added to
UV-oxidized seawater medium amended with nutrients and
looked for recovered growth in the methanol- and non-carbon-
amended treatments. In comparison to non-vitamin-amended
UV-oxidized seawater, the addition of vitamins stimulated
NB0046’s growth in UV-oxidized seawater for both the methanol-
and non-carbon-amended treatments (Fig. 6B). This was true for
cells grown either in cultivation plates at 1 ml well�1 (Fig. 6B) or in
8-ml cultures in test tubes (data not shown). However, in the test
tubes, we continued to see that methanol addition led to a substantial
increase in cell concentrations over the HMW DOM addition when
vitamins were added, in contrast to the cultivation plates in which the
addition of vitamins to the UV-oxidized seawater led to maximum
cell density for the HMW DOM amendments.

It is important to note that vitamin B12 (cobalamin) has a size
of �1 kDa and is potentially captured at ~98 to 99% efficiency in
the HMW DOM collection process (Repeta, unpublished). This
may provide a partial explanation for the complex growth pat-
terns we saw with HMW DOM. The purpose of UV oxidizing the
seawater used was to reduce the concentration of background car-
bon compounds present in natural seawater that sustain the ca.
5 � 105 cell ml�1 yields in non-carbon-amended experiments.

Vitamins and vitamin precursors are likely oxidized during this
process, and therefore, the fact that HMW DOM additions re-
cover the growth of NB0046 cultures in UV-oxidized medium
suggests that HMW DOM may contain some of these missing
growth factors. An alternative explanation is that NB0046 can use
the vitamins as a growth substrate, as evidenced by the small dif-
ference between the non-carbon-amended and methanol treat-
ments in UV-oxidized seawater (Fig. 6B).

Support for the hypothesis that restored growth in the DOM-
amended, UV-oxidized medium is related to some vitamin sup-
plementation thus includes the facts that (i) vitamin B12 (and
probably other B vitamins) is likely present in the HMW DOM
concentrate; (ii) most organic cofactors will likely have been de-
stroyed during the UV oxidation process; (iii) hierarchical cluster
analysis revealed a global similarity in the vitamin-amended
(�MeOH �N �V) and HMW DOM (�DOM �N �V) tran-
scriptomes (Fig. 6A), suggesting a common metabolic response
under these two conditions; and (iv) most importantly, addition
of vitamins to the UV-oxidized medium restored the methanol
growth response (Fig. 6B).

Summary. In this study, we produced a fully quantitative tran-
scriptome of a marine bacterium in order to characterize the global
transcript pool and shifts in cellular transcript abundances in re-
sponse to different growth phases, nutrient regimes, and carbon sub-
strates.

The mRNA content of this streamlined marine bacterium
closely matched both modeled and experimentally derived values
for other bacteria and was substantially influenced by the growth
phase of the cultures at the time of collection. In the exponential
phase of growth, NB0046 had 900 to 1,800 transcripts cell�1, a
value consistent with classical measurements of cell content based
on bulk macromolecular composition. For example, an average
Escherichia coli cell in exponential growth has been shown to con-
tain 1,380 transcripts cell�1 (based on measurements of RNA
mass [43]) to 1,800 transcripts cell�1 (based on single-cell analysis
[44]). NB0046’s cellular mRNA content during later phases of
growth was lower, averaging approximately 100 transcripts cell�1.
These NB0046 stationary growth phase values are similar to the
low values observed in the field, with several studies showing that
an average marine bacterial community member will contain ca.
100 to 300 transcripts cell�1 (23, 24, 45). However, it is not clear

FIG 6 OM43 strain NB0046 transcription patterns and cell growth assays reveal similar responses to the vitamin (�MeOH �N �V) and HMW DOM (�DOM
�N �V) regimes. (A) Hierarchical clustering (with Pearson correlation coefficients and complete linkage) of genome-wide transcript abundances. (B) Maxi-
mum NB0046 cell densities in UV-oxidized seawater medium with or without AMS1 vitamin mixture amendment after 72 h of incubation. Error bars are the SDs
of biological triplicates. No C Amd., non-carbon-amended control.
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how well the growth phases of batch cultures reflect the nature of
bacterioplankton growth in the environment. Caution in inter-
preting these values is thus urged, and more research is needed to
fully understand how representative batch cultures in stationary
phase may mirror the low but potentially steady-state growth of in
situ populations (46, 47).

The majority of genes were transcribed at �1 copy cell�1, re-
sults similar to previous models of bacterial transcription in which
few genes have transcripts in every cell of a population, even dur-
ing rapid growth (31, 48). We observed that cellular transcript
abundances of genes encoding basic cellular maintenance and
growth processes (ATP synthase, polymerases, elongation factors,
etc.) were highly correlated with the growth phase of the culture
and reflected a broader, system-wide trend of transcript abun-
dance being directly related to the growth phase. These results
suggest that inferences about differential transcription on a per-
cell basis between experimental conditions should be made from
cultures sampled in similar growth phases. By comparing only those
samples that were collected near the end of exponential growth, we
observed NB0046 to differentially regulate the transcript abundances
of individual genes in response to different environmental conditions
and substrates, including genes encoding carbon, nitrogen, phospho-
rus, iron, and energy conservation-related processes (Table 1; see Ta-
ble S2 in the supplemental material).

With their small genome and small cell size, OM43 clade mem-
bers are categorized as having a streamlined lifestyle, which is in-
creasingly recognized as a prominent ecological strategy in the
oceans (49). Similar to SAR11 clade organisms, representatives of
the OM43 clade have relatively few means of transcriptional reg-
ulation (49), suggesting a reduced ability to respond to environ-
mental dynamics, at least on the transcriptional level. However,
the large shifts in transcript abundance observed in this study
suggest that OM43 members are capable of inducing substantial
changes in their transcriptomes in response to differing environ-
mental conditions. For example, NB0046 increased the transcript
abundances of nitrogen-related genes such as those for the PII

response, GOGAT, and ammonium transporters by hundreds to
thousands of fold in the nutrient-deplete regime (�MeOH �N
�V). In contrast, a recent coupled transcriptome-proteome study
of SAR11 clade representative “Candidatus Pelagibacter ubique”
revealed that this organism had little transcriptional response to
nitrogen limitation, with many of its transcript changes limited
to �3-fold between nitrogen-deplete and nitrogen-replete cul-
tures (50). This difference between the transcriptional responses
of SAR11 and OM43 is likely partially due to a lack of a PII-

dependent regulon system in SAR11. Indeed, in Dehalococcoides
mccartyi, which, like NB0046, contains a PII regulon, a �50-fold
increase in PII-related gene transcription was observed under nitro-
gen limitation, suggestion that the PII regulon is inherently prone to
large transcriptional dynamics (51). These results suggest that even
though two types of organisms may have streamlined characteristics
in common, there can be significant differences in the extent of their
regulatory responses to changing environmental conditions.

A central goal of this study was to determine how an OM43
clade representative responds to different carbon substrate avail-
ability. Our measurements of methanol concentrations in seawa-
ter medium showed that methanol drawdown occurs at a rate
proportional to cell growth and closely follows a model of growth
efficiency similar to that described by Halsey et al. (16). However,
our transcription results suggest a relatively complex regulatory

scheme controlling methanol metabolism that depends on nutri-
ent conditions. For example, xoxF (methanol dehydrogenase), de-
spite always being the most highly transcribed gene, had signifi-
cantly higher transcript abundances in the nutrient-amended
regimes, suggesting that the cell may upregulate this crucial path-
way when nutrient supplies allow methanol to be used for both
energy generation and biosynthesis. Accordingly, key dissimilatory
RuMP cycle transcripts were upregulated in the nutrient-deplete re-
gime, suggesting that when inorganic nutrients are limiting, carbon is
routed more toward dissimilatory energy conservation processes. In
contrast, proteorhodopsin transcription was downregulated in the
nutrient-deplete regime (�MeOH –N �V), perhaps reflecting a de-
creased requirement for this alternative energy source when there is
ample carbon for respiration-driven energy conservation but growth
is limited by inorganic nutrient availability (42). Interestingly, for-
mate dehydrogenase and hexulose phosphate synthase gene tran-
scription remained relatively constant across the experiments, sug-
gesting that these genes, though both highly transcribed, might not be
the most sensitive transcriptional markers, at least not under the con-
ditions tested here.

Our transcription data also provided insights into an OM43
clade representative’s growth on HMW DOM. The significant en-
richment of transcripts for the oxaloacetate arm of the TCA cycle
in the HMW DOM treatment, together with the detection of com-
plete MCC in NB0046 that was also significantly upregulated in
the HMW DOM treatment, was suggestive of a potential route for
HMW DOM metabolism through three-carbon compounds. In
addition, the global similarity between the transcriptional re-
sponses to the vitamin-plus-methanol (�MeOH �N �V) and
HMW DOM (�DOM �N �V) treatments suggests that HMW
DOM might also provide some vitamin supplements missing
from the organic stripped UV-oxidized seawater that allow for the
production of important metabolites like quinones, vitamins,
carotenoids, and terpenoids. This supplementation might be the
result of enrichment of vitamins within the HMW DOM itself or,
alternatively, from both compounds serving directly as a growth
substrate, with a potential metabolic link due to the presence of
organic phosphorus contained within phosphodiesterase bonds.
Taken together, these results suggest several potential mecha-
nisms for an expanded metabolic range in OM43 strain NB0046.
Future tests of these hypotheses are needed to tease apart the com-
plex factors influencing OM43 carbon metabolism, including ex-
amine growth on three-carbon compounds and vitamins, and
their potential origin in the HMW DOM complex.

This study highlights the power of combining quantitative
transcriptomics with comparative growth experiments on a
model organism to identify transcriptional markers of physiolog-
ical and metabolic activities in order to build transcript invento-
ries under defined conditions. The development of coupled quan-
titative metagenomics and metatranscriptomics by Satinsky et al.
(24) now allows the calculation of transcript abundances on a
per-population level in the environment. The interpretation of
these new environmental data sets will be greatly clarified and
extended by the availability of baseline cellular transcript abun-
dance data from environmentally relevant model organisms. The
genome-wide inventories of transcript abundances produced here
under a range of growth phases, nutrient regimes, and carbon
substrates will better enable the physiological and metabolic inter-
pretation of individual populations of OM43 methylotrophs in
situ, as well as provide a knowledge base for predicting how the
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carbon-processing activities of these coastal methylotrophs may
shift in response to various environmental conditions.

MATERIALS AND METHODS
Cell cultivation. The basal growth medium consisted of Sargasso seawater
that was subjected to TFF to remove cells, viruses, and HMW DOM (see
reference 19). The nutrient regimes consisted of inorganic nutrients alone
(30 �M phosphate and 400 �M ammonium [final concentrations]) or
with an AMS1 vitamin mixture (see reference 27 for composition). To
ensure the sterility of the seawater medium, which had been sterilized by
TFF several months prior to these experiments, it (and nutrients and
vitamins if added) was passed through a 0.22-�m-pore-size filter tower
(polyethersulfone membrane; Falcon, Corning, NY). Subsamples of each
medium type were then aliquoted into either 1-liter borosilicate glass
bottles (regime I) or 500-ml polycarbonate bottles (regimes II to VI) and
amended with either 50 �M methanol or HMW DOM from the North
Subtropical Pacific (see below for HMW DOM description). The final
concentrations of HMW DOM (measured in units of carbon assuming
0.4 mg of C/mg of DOM) depended on the availability of the purified
product and varied from experiment to experiment as follows: regime I,
800 �M dissolved organic carbon (DOC), regime II, 2,200 �M DOC,
regime III, 800 �M DOC, regime IV, no HMW DOC treatment, regime V,
400 �M DOC, regime VI, 560 �M DOC. The bottles were inoculated with
an NB0046 starter culture to a final cell concentration between 500 and
2,000 ml�1, wrapped in aluminum foil, and placed in a dark incubator set
at 22°C. Regime III included shaking at 60 rpm and bottle lids loosely
screwed on to increase ventilation. Cell concentrations were monitored
via flow cytometry (see Text S1 in the supplemental material). Generation
time was calculated for each sampling point by dividing the time elapsed
by the log2-fold change in the cell abundance ratio between the current
and previous time points and then multiplying the result by 1.443 to get
the growth rate. Cells were collected for RNA processing by peristaltic
pumping onto 0.1-�m-pore-size filters (see Text S1). Assays comparing
growth in small- versus large-volume chambers were conducted with 48-
well microtiter plates with 1 ml of medium per well and in 10-ml polycar-
bonate test tubes containing 8 ml of medium.

Methanol quantification. An enzymatic method of determining the
concentration of methanol in a seawater background by HPLC was devel-
oped. Subsamples of 10 to 20 ml were taken at various time points during
the experiments and syringe filtered through a 0.22-�m Acrodisc filter
(Pall; both the syringe and Acrodisc filters were triple rinsed with ultra-
pure water prior to filtering) into combusted glass vials. Filtered samples
were stored at �20°C in the dark prior to quantification. Samples were
thawed, and 1 ml was transferred into triplicate combusted glass HPLC
vials. One hundred microliters of a freshly prepared alcohol oxidase solu-
tion (1.47 U/ml; Sigma Aldrich) was added to two out of three replicate
vials and mixed before incubation at room temperature in the dark for
14 h. Controls receiving no enzyme were given 100 �l of ultrapure water
prior to incubation to maintain consistent volumes. Methanol standards
were prepared by adding HPLC-grade methanol to sterilized seawater in
combusted glass volumetric flasks prior to the addition of alcohol oxidase.
A 12.6 mM solution of 2,4-dinitrophenylhydrazine (2,4-DNPH; Sigma
Aldrich) was prepared in a 1 N hydrochloric acid solution by heating the
mixture in a combusted glass volumetric flask at 90°C for 8 h with periodic
mixing. The alcohol oxidase enzyme activity was quenched by adding
40 �l of the 2,4-DNPH solution and incubating the mixture at room
temperature for 1 h after mixing it. Chromatographic analysis was per-
formed with an Agilent 1100 or 1200 series high-performance liquid chro-
matograph. Methanol standards and samples were injected (20 �l) and
separated on a ZORBAX SB-C18 column (Agilent; 3.5 �m, 4.6 by 150 mm)
by elution at 1 ml min�1 with a linear gradient (percent solvent A [ultra-
pure water], percent solvent B [HPLC-grade acetonitrile], time in min-
utes): 70, 30, and 0; 70, 30, and 2; 60, 40, and 4; 55, 45, and 16; 20, 80, and
18; 20, 80, and 22; 70, 30, and 24; and 70, 30, and 27. The derivatized
formaldehyde peak was detected at 354 nm with a retention time of ca.

12 min. We corrected for any background formaldehyde present in each
sample by subtracting the peak area (if detectable) of the control sample
containing no alcohol oxidase from the average peak area of the replicates
that received the alcohol oxidase enzyme. Methanol standards were used
to derive molar concentrations of methanol from background-corrected
peak areas. Using this approach, we could reliable quantify a range of
methanol concentrations (100 nM to 50 �M) in a seawater background.

HMW DOM. The HMW fraction of DOM (�1 kDa) was concen-
trated by ultrafiltration from ~18,000 liters of filtered (0.2-�m-pore-size
filter) surface seawater (15 m) pumped 2 km from the shore of the Island
of Hawaii, HI, at the National Energy Laboratory Hawaii Authority in
February 2013. The ultrafiltration system consisted of a stainless steel
membrane housing and a high-pressure pump fitted with two GE/
Osmonics 4- by 40-in. UF membranes (GE series) in parallel. Membranes
were cleaned with 0.1 N NaOH and HCl and rinsed with 100 liters of
seawater before use. Tubing and fittings were Kynar or polytetrafluoro-
ethylene Teflon. Each day, approximately 1,600 liters of seawater was
concentrated in a 200-liter high-density polyethylene barrel. At the end of
sampling, the 200 liters was concentrated to ~20 liters, filter (0.2 �m)
pumped into a 20-liter carboy, and stored at �20°C. The following day,
this sample was combined with a new sample, concentrated to 20 liters,
filtered, and stored. The sample did not freeze between collections but
remained cold. The process was repeated until ~6,000 liters was concen-
trated, after which the sample was frozen and returned to the lab for
further processing. The HMW DOM-concentrated seawater was then fil-
tered through a 30-kDa ultrafiltration membrane to remove cell debris
and viral particles, diafiltered to remove salts, and freeze-dried. A total of
10.6 g of freeze-dried HMW DOM was obtained that was 31% C
(�21.6‰) and 2.8% N (6.9‰) with a C/N ratio of 12.9, representing
20% of the DOC in the original raw seawater.

The polysaccharide fraction of HMW DOM was concentrated by
anion-exchange chromatography. A glass column (2.2-cm inside diame-
ter) was slurry packed with 16 g of Bio-Rex 5 (Bio-Rad Corp.) resin (chlo-
ride form) and washed three times with 30 ml of 0.5 NaOH to convert the
resin to hydroxide form. The column was then rinsed with water (80 ml)
to a pH of ~6. HMW DOM (0.5 g) dissolved in 5 ml of water was applied
to the column, and the carbohydrates were recovered by washing the
column with 80 ml of water. Cations were removed by stirring with 1 g of
Bio-Rex 50W-X8 resin for 1 h. The sample was filtered and freeze-dried
three times to yield a fluffy white material. 1H NMR analysis of a concen-
trate sample was done to ensure that no methanol (�3 nmol/10 mmol of
HMW DOC), formaldehyde, or formic acid was present in the sample.

Internal standard synthesis. Construction of the internal RNA stan-
dards was similar in approach to protocols described in references 23 and
52, with the exception that the DNA templates used for in vitro transcrip-
tion (IVT) were generated directly from genomic templates (in this case,
Sulfolobus solfataricus) via PCR amplification with T7 promoter incorpo-
ration. Regions of the S. solfataricus genome with little to no homology
with the NB0046 genome were identified. Primers targeting these regions
were synthesized and used for PCR amplification and T7 promoter incor-
poration (see Table S4 in the supplemental information for the primer
sequences used). The RNA internal standards were generated from the
template DNA amplicons via T7 RNA polymerase IVT with the
MEGAscript High Yield Transcription kit (Ambion). The standards were
quantified, pooled into groups, and added to the cell samples as shown in
Fig. 3A. See Text S1 in the supplemental material for detailed information
on standard construction, addition, and recovery.

RNA processing and sequencing. Total RNA was extracted via the
mirVana microRNA isolation kit (Ambion) with modifications to in-
crease reagent volumes (see Text S1 in the supplemental material), and
residual DNA was removed with TURBO DNase (Ambion). Custom
NB0046 antisense 16S and 23S rRNA probes were synthesized and used
for subtractive hybridization of rRNA as described by Stewart et al. (53).
rRNA subtracted samples were then prepared for sequencing with the
ScriptSeq v2 RNA-Seq library preparation kit (Illumina, San Diego, CA,
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USA) and sequenced on the MiSeq platform (Illumina). For a detailed
description of these procedures, see Text S1 in the supplemental material.

Bioinformatics. Sequencing statistics for each sample are summarized
in Table S1 in the supplemental material. Sequences were processed with
a local installation of the Galaxy bioinformatics platform (54). Several
samples were sequenced over two MiSeq runs, and the FASTQ files for
these samples were first concatenated with Galaxy’s “Concatenate Data-
sets” tool before any downstream processing. A custom Galaxy workflow
was used to process the forward read from each data set (only the forward
read was used to avoid counting errors and biases arising from poorly
joined paired reads). Low-quality sequences and adapters were trimmed
from the raw reads with Trimmomatic (trimmed to an aggregate score
of �30). Trimmed reads passing quality thresholds were then mapped
with Bowtie2 (parameters: end to end, sensitive, no trimming or skipping)
(55) to three data sets simultaneously: the NB0046 genome (IMG genome
2562617047), the enterobacterial phage phiX174 genome (NCBI GI
9626372) to identify Illumina quality control sequences, and the S. solfa-
taricus P2 genome (IMG genome ID 638154518) to identify internal stan-
dard reads. To obtain gene read counts, the Galaxy “Count Intervals” tool
was used to tally ready counts from the mapped data on the basis of a
genomic interval file containing coordinates of features of both NB0046
and S. solfataricus P2. Statistically significant differences in cellular tran-
script abundances among the four regimes’ late-exponential-phase time
points were determined by ANOVA with the ANOVA() function in R (56)
and correction of the resulting P values for multiple-hypothesis testing by
the Benjamini-and-Hochberg method with the p.adjust() function. If a
gene’s corrected ANOVA P value was �0.05, then a multiple pairwise
t test of that gene was conducted with the pairwise.t.test() function in R to
determine which treatments significantly differed, with t test P values
of �0.05 and a minimum 2-fold change in transcript abundance con-
sidered significantly different.

Accession number(s). The sequences obtained in this study have
been deposited in the NCBI sequence read archive under BioProject
no. PRJNA330549.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at http://mbio.asm.org/
lookup/suppl/doi:10.1128/mBio.01279-16/-/DCSupplemental.

Text S1, DOCX file, 0.02 MB.
Text S2, DOCX file, 0.02 MB.
Figure S1, PDF file, 0.3 MB.
Figure S2, PDF file, 0.04 MB.
Table S1, XLSX file, 0.02 MB.
Table S2, XLSX file, 0.5 MB.
Table S3, XLSX file, 0.01 MB.
Table S4, XLSX file, 0.01 MB.
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