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Abstract

In this work we present a detailed quantitative study of the effects of angular
misalignment in gravitational wave detectors. To analyze complex optical configurations
we have developed a mathematical formalism which is powerful enough to accurately
predict the effects of misalignment in coupled cavity systems, such as the LIGO (Laser
Interferometric Gravitational-wave Observatory) interferometer. This formalism describes
misaligned mirrors and free space propagation as operators acting on the eigenmodes of
the perfectly aligned system and treats distortion effects as perturbations. Operators
representing complicated optical systems are recursively built upon simpler ones, allowing
a straightforward generalization to arbitrarily complex optical configurations. This model
has been pivotal in detcrmining the sensitivity to misalignment of the LIGO detector and
for designing an automatic alignment system for an interferometer with ten angular
degrees of freedom. Phase modulated light circulating in the interferometer is used to
discriminate different angular degrees of freedom and to accurately measure misaligriment
angles. This wavefront sensing technique enables sensing of the angular misalignment of
the interferometer mirrors relative to the incoming laser beam by spatial sampling of the
optical wavefront, thus providing robust error signals for an angular servo system. The
wavefront sensing system was successfully implemented on a table-top scale fixed mirror
interferometer (FMI) featuring an optical configuration very similar to LIGO: a power
recycled Michelson interferometer with Fabry-Perot cavities in the arms. In the FMI
experiment four longitudinal degrees of freedom were controlled to maintain resonance
and the measured wavefront sensing signals were also used to feedback to the angle
actuators of the interferometer mirrors, making this the first interferometer with a LIGO
configuration to accomplish closed loop servo control of all ten angular degrees of
freedom. Good agreement was found between the model predictions and the measured
wavefront sensing signals, with typical experimental errors of order £20%. Quantitative
understanding of the alignment sensitivity and implementation of an automatic alignment
system using the wavefront sensing technique marks significant progress towards

achieving the sensitivity goals of LIGO.
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Chapter 1

Introduction

1.1 Laser interferometric gravitational wave detectors

Einstein’s theory of general relativity predicts the existence of gravitational waves {1].
Radiated by all accelerating aspherical mass distributions, gravitational waves are a ripple
in the curvature of spacetime, propagating at the speed of light. They are essential for
preserving causality since a gravitational field cannot change instantaneously 2]. The
impetus to detect gravitational radiation is great: a direct detection of gravitational waves
would unequivocally prove their existence and would be the first measure of their
propagation characteristics; more importantly, since astrophysical sources are believed to
be the most likely emitters of detectable gravitational radiation and since all known forms
of matter are extremely transparent to gravitational waves, it would provide a new and
hitherto unexplored window into the universe. Also of profound interest is the physics of

strong gravitational fields at the source.

Gravitational radiation produces a strain in space transverse to the direction of
propagation. In the weak field limit, using the transverse-traceless gauge, the

gravitational-wave strain,

AL
h = 2T (H

is a measure of the fractional change, AL, in a length of space, L, caused by a passing
gravitational wave. The amplitude of the gravitational radiation from even the most
promising astrophysical sources is tiny; for neutron star binaries in the nearby Virgo
cluster it is typically h = 10" in the dimensionless units of strain [2]. Since
gravitational waves are quadrupolar, the strain has opposite signs along two transverse
orthogonal axes, causing a differential displacement of free masses placed on these axes.

Variants of a Michelson interferometer have been proposed to measure the gravitational



wave strain by detecting differential changes in the arm lengths, as shown in Fig. 1.1 [3],

[4]. For a path length change, AL, the light power detected at the antisymmetric port is

Pann‘ = PinSinz(zkAL) 2

L-AL

P in |
L z L+AL

*¢=0 Panu'v ¢=Ad

Figure 1.1: A gravitational wave incident normal to the plane
interacts with the “freely” suspended mirrors of a Michelson
interferometer with arm length L, alternately stretching and
shrinking the orthogonal arms by AL each half-cycle.

For gravitational waves with periods much greater than the round-trip time of light in
the arm of a Michelson interferometer the optical path length change is
AL(t) = h(t)L/2, so the relative change of phase between two interfering beams is
Ad(t) = 4mh(t)L/ A, where A is the wavelength of the light. If the Michelson arms are
made longer, the phase sensitivity increases until the round-trip time becomes comparable
to the gravitational wave period. A maximum is reached when the arm length is equal to
one quarter of the wavelength of the gravitational wave.

From an astrophysical standpoint it is desirable to detect gravitational waves at very
low frequencies, which would require very long Michelson arms. But practical
considerations limit the arm lengths to a few kilometers, and a high phase sensitivity is
obtained by using “multiple-bounce” techniques in the interferometer arms [4], [S].

The Laser Interferometric Gravitational-wave Observatory (LIGO) comprises of two

long baseline interferometric detectors, currently under construction in Hanford, WA, and



Livingston, LA [6]). For a strain 6h = 1072 / JHz and antenna arm length L = 4 km, the
path length change is 8L = 8h L= 10" m/ J/Hz , which corresponds to an optical phase
8¢ = 4nbLdh/c = 107" rad/ JHz!. To achieve this sensitivity, required to measure
strains of astrophysical interest, the LIGO interferometers, along with their international
counterparts, are up to 4 km long and comprise of optical configurations which are
significantly more complex than a simple Michelson interferometer. A typical
interferometer configuration, currently planned for the LIGO interferometer, is comprised
of a Michelson interferometer with Fabry-Perot optical cavities in each arm and a partially
transmitting “power recycling” mirror between the input laser and the beamsplitter (see
Fig. 1.2).

FABRY-PEROT
ARM CAVITY

MICHELSON 1
INTERFEROMETER]

LASER

) S ’

RECYCLING Y
MIRROR ANTISYMMETRIC PORT

Figure 1.2: Optical components of a realistic gravitational
wave antenna.

The sensitivity of the detector is limited by displacement noise, due to mirror motions
caused by stimuli other than gravitational waves and phase noise, due to quantum
mechanical shot noise in the detection of photons [7]. These noise sources dominate the

detector noise budget in different frequency bands: seismic noise, for example, is a

1. Here b ~ 100 is the bounce number, that is, the mean number of times the photons traverse
each arm of the Michelson interferometer. This is explained in Section 2.1.



dominant noise source at frequencies below 70 Hz, while shot noise limits the detector

sensitivity at frequencies above 200 Hz.

1.2 Sensitivity to alignment

Since angular misalignment of the interferometer mirrors can both decrease the power
built up in the arm cavities and increase the shot noise load at the gravitational wave signal
extraction port, the sensitivity of the interferometer to gravitational wave strain depends
on good angular alignment of the interferometer with respect to the incoming laser beam.
To set the scale of the alignment precision required for the LIGO interferometer, we
observe that directing the laser beam down the 4 km arms and having it return to within
one spot diameter (typically ~10 cm) requires a pointing precision of ~107 radian. For the
purposes of interferometry, however, the beam overlap must be correct to within a tiny
fraction of the beam diameter. In fact, to ensure that mirror misalignment does not degrade
the gravitational wave sensitivity in LIGO by more than 0.5% of the maximum for a
perfectly aligned interferometer requires the absolute alignment of each mirror relative to
the incoming laser beam to be better than 108 rad [8), []. Furthermore, static or low
frequency misalignment of the interferometer mirrors couples input beam jitter (direction
fluctuations) into differential phase shifts which lead to spurious signals in the
gravitational wave readout. To prevent this effect from degrading the gravitational wave
sensitivity by more than 0.5%, the fluctuations of the input beam direction at 100 Hz must
be less than 107" rad/ J/Hz, assuming an rms alignment of 108 rad per mirror [10].

Moreover, it is not sufficient to align the mirror angles individually relative to a local
frame by using, for instance, optical levers. For typical environmental noise inputs to the
interferometer, and after attenuation by passive isolation stacks and local damping, the
LIGO suspended optics are expected to drift by ~107 rad over a 100 sec timescale [11].
Since these drifts are an order of magnitude larger than the required alignment tolerance
(per degree of freedom), there is no viable local fiducial point, and interferometric
alignment of the detector is imperative. More importantly, for maximum sensitivity, the
incident laser beam is intrinsically the best reference frame to which the interferometer
must be aligned. To this end, we use the light already circulating in the interferometer to

sense angular misalignments, a technique we call wavefront sensing.

10



1.3 Purpose of this work

In this work we present a detailed quantitative study of the effects of angular
misalignment in gravitational wave detectors. Prior to this, an analytical treatment was
used to develop an alignment system for a two mirror resonator [12], but this formulation
was not readily extensible to other optical systems. To analyze more complex optical
configurations we have developed a mathematical formalism which is powerful enough to
accurately predict the effects of misalignment in coupled cavity systems, such as the
LIGO interferometer [13]. This formalism describes misaligned mirrors and free space
propagation as operators acting on the eigenmodes of the perfectly aligned system and
treats distortion effects as perturbations. Operators representing complicated optical
systems are recursively built upon simpler ones, allowing a straightforward generalization
to arbitrarily complex optical configurations. This model has been pivotal in determining
the sensitivity to misalignment of the LIGO detector (highlighted in Section 1.2) and for
designing an automatic alignment system for an interferometer with ten angular degrees of
freedom. Phase modulated light circulating in the interferometer is used to discriminate
different angular degrees of freedom and to accurately measure misalignment angles. This
wavefront sensing technique enables sensing of the angular misalignment of the
interferometer mirrors relative to the incoming laser beam by spatial sampling of the
optical wavefront, thus providing robust error signals for an angular servo system. The
wavefront sensing system was successfully implemented on a table-top scale fixed mirror
interferometer (FMI) featuring an optical configuration very similar to LIGO: a power
recycled Michelson interferometer with Fabry-Perot cavities in the arms. In the FMI
experiment four longitudinal degrees of freedom were controlled to maintain resonance
and the measured wavefront sensing signals were also used to feedback to the angle
actuators of the interferometer mirrors, making this the first interferometer with a LIGO
configuration to accomplish closed loop servo control of all ten angular degrees of
freedom. Good agreement was found between the model predictions and the measured
wavefront sensing signals, with typical experimental errors of order £20%. Quantitative
understanding of the alignment sensitivity and implementation of an automatic alignment
system using the wavefront sensing technique marks significant progress towards

achieving the sensitivity goals of LIGO.
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Chapter 2

Optical configuration of the interferometer

2.1 Optical layout of the interferometer

The principle of interferometric detection of gravitational waves is based on
measuring optical phase shifts due to changes in the path length caused by a passing
gravitational wave. The goal then is to convert gravitational wave strain into optical phase
shifts as efficiently as possible. This leads to the optical layout of a LIGO-like
gravitational wave detector shown in Fig. 1.2. The laser light enters the interferometer
through the partially transmitting “power recycling” mirror, gets amplified by the Fabry-
Perot cavities in the arms of the Michelson interferometer and the gravitational wave
signal is detected at the antisymmetric port, which is often called the signal extraction port

or dark port.

2.1.1 Michelson interferometer

Before discussing the full LIGO configuration we first consider a simple Michelson
interferometer [14). It is formed by the beamsplitter, the in-line (collinear with the incident
laser beam) and perpendicular arm input mirrors. The phase shift per length change in
each arm is given by d¢/dl = 4n/A (here A is the wavelength of light) or

27c

do() = h(DT, 5

(3)

where t,, = 2L/c is the round-trip travel time for photons leaving and returning to the
beamsplitter. Eqn. (3) is only valid if t,, « T,,, . For longer arms A(t) cannot be considered
constant over the length of the antenna. This leads to the interferometer response for
arbitrary T,,:

do(r) = h(t)t,,z-fsinc(nf awTr)exp(inf,,t,,) (4)

From eqn. (4) the phase sensitivity has a maximum at 1, = T,,/2. A gravitational wave
with f,, = 100 Hz cormesponds to a maximum phase sensitivity for 7,, = 5 msec or

L = 750 km. This is an impractical length for interferometer arms which must span the

13



curved surface of the earth in a vacuum. To make the arm lengths shorter but retain
maximal phase sensitivity at 100 Hz, optical “folding™ schemes to increase the time the
photons spend in the arms have been proposed [4], [5]. In the simplest case (delay line)
photons bounce b times in the arms, that is, the light makes b round trips, then the round-
trip time, T,,, in eqn. (4) can be replaced by the storage time T, = bT,, = 2bL . In this
case, the photons traverse the gravitational wave strain induced length changecl; times. If
the arms are 4 km long, for example, b = 200 would give T, = 5 msec, the storage time
for optimal detection of a gravitational wave at 100 Hz. Thus “folding the arms of the
interferometer allows for shorter arm lengths while retaining maximum phase sensitivity
by “storing” the photons. Two examples of light storage schemes are illustrated in Fig. 2.1.
In the optical delay line the light strikes the mirror at a different spot on each traversal of
the arm. In the resonant Fabry-Perot cavity light in a single spot constructively interferes

at each traversal, effectively averaging the field in the cavity over several traversals.

-—

Delay line interferometer Fabry Perot interferometer

Figure 2.1: Two kinds of light “storage” schemes.

2.1.2 Fabry-Perot arm cavities

In LIGO the light storage scheme of choice is Fabry-Perot cavities in the arms of the

Michelson interferometer. The interferometer response for such a scheme is given by

= h(')B;CJl (4]f
+(4n

©)

2
gwts)
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which is the response of a simple pole at f = 1/(4nt,).For f, t,» |,dd=2ch/Af,,,
that is, the phase sensitivity is inversely proportional to the signal frequency and
independent of the storage time. The choice of storage time — or equivalently, the cavity
pole — is dictated by noise considerations. Since there is no point in increasing sensitivity
at low frequencies which are dominated by seismic noise, the cavity pole is chosen just
below the practical limits of the LIGO seismic wall (100 Hz or 1, = 1 msec ). This choicc
simultaneously maximizes the gravitational wave sensitivity in the frequency band of
interest and minimizes the loss in the Fabry-Perot arm cavities. This, in turn, allows the
light returning to the laser to be reflected back into the laser using a “power recycling”

scheme, further enhancing the detector sensitivity.

2.1.3 Power recycling

Strain sensitivity is increased when more light power is incident on the beamsplitter.
This is due to photon counting statistics or shot noise. Phase fluctuations due to the
quantum mechanical uncertainty in the number of photons detected at the antisymmetric

port of the detector can be expressed as

e 2hv
¢= e ©

where hv is the energy of each photon, € is the detection efficiency of and P is the power
incident on the photodetector. To be maximally sensitive to fluctuations about a null point,
the interferometer is operated at a dark fringe, that is, at AL = n(A/4), where n is an
integer, such that P,,,; in eqn. (2) is at a minimum [4]. Now most — not all, since a
realistic interferometer has losses and contrast defect — of the power reflected from the
arm cavities exits through the symmetric port of the beamsplitter, i.e almost all of the light
is returned to the laser. This light is “recycled” back into the interferometer upon reflection
from a partially transmitting recycling mirror placed between the laser and the
beamsplitter [S], [15]. This increases the light incident on the beamsplitter by a recycling
gain factor, G,,.. From eqn. (2), the gravitational wave induced signal at the
antisymmetric port scales as the power and is enhanced by G,, ., but the shot noise grows
as the square root of the power, or J(Tu The overall strain sensitivity is increased by
,,/CT“. The typical power recycling gain expected for the LIGO detector is between 30
and 50.

15



2.2 The length sensing scheme

The necessity for a length sensing scheme is a consequence of the technical difficulties
of building an interferometer which is mechanically and thermally stable enough to hold
the mirrors at positions where the conditions for perfect interference are satisfied.
Moreover, dark fringe operation at the antisymmetric port leads to a quadratic dependence
of P,,, to gravitational wave strain, so a more sensitive signal extraction technique must
be used. A sensing scheme which measures deviation from resonance conditions is
imperative for the gravitational wave detector. These “error signals” are then used to
feedback to the mirror positions and maintain the resonance and dark fringe conditions in
the interferometer. In this chapter we develop the design of a length sensing scheme based
on RF modulation techniques and then extend it to design an alignment sensing scheme,

with general applicability to the FMI and the LIGO detector.

2.2.1 The reflection locking technique

Reflection locking is a powerful heterodyne phase detection technique for holding
optical cavities on resonance [16), [17]. Since maintaining resonance conditions in Fabry-
Perot cavities is central to the development of this work, it is worth discussing some of the
physics behind it here. A typical LIGO-like Fabry-Perot cavity consists of a partially
transmitting input mirror and a highly reflective end mirror, separated by a distance, / (see
Fig. 2.2).

. —_ —_—
Einc Eins Etrans
- >
. l
Emﬁ
ry. ty r, b

Figure 2.2: A Fabry-Perot cavity of length, . r; and f; are the
amplitude reflection and transmission coefficients of the i-th
mirrors, respectively.

For an input field, E,,., the fields, as defined in Fig. 2.2, are:

_ h
Eins = | - ryryexp(=2ikl)

Einc (7)

16



1 tyexp(--ikl)
1 —ryryexp(-2ikl

E, s =

E; 8
) inc (8)

ry—ryexp(-2ikl)
1 —r ryexp(=2ikl)

E,eﬂ = (9)

where k = 2nf/c and cavity loss coefficients are combined with transmission losses.
Resonance occurs when the round-trip phase 2ik! = 21t. The complex phase in the above
expressions immediately implies that the fields have a frequency dependence (spectrum)

when the cavity has fixed length, ..

When phase modulated light is incident on an optical cavity, then deviation from the
resonance length causes amplitude modulation of the light reflected from the cavity. Close
to the resonant state, the magnitude of the amplitude modulation is proportional to the
deviation from resonance, while the sign of the phase gives the direction of deviation from

the resonant length and can be used as an error signal to hold the cavity on resonance.

When light from the laser is phase modulated at an angular frequency, Q, the field

incident on the cavity is

E;.. = Eyexp(il"cos(€2t))

= Egexp(iwgt)[Jo(1") + J (T exp(iQt) + J_,(T) exp(-iQ2t)) (19)

for I'« 1. The first term is the carrier, while the second and third terms are phase
modulation sidebands at frequencies (@, + ) and (w, — Q), respectively. The J,(T") are
Bessel functions, where the amplitude of the carrier is Jo(I') = 1 and for the first-order
sidebands J,,(I') =+I'/2 for modulation depth, I'< 1. The field reflected from the
cavity is also made up of three components, the carrier and the two sidebands, but the
cavity with fixed length has a different reflection coefficient for each frequency, denoted
by the complex quantities E™” in eqn. (11). Alternatively, each frequency becomes

resonant for a different length of cavity. The total reflected field is
refl refl . refl . .
E o=I[Ey" +E, "exp(iQt)+ E™" exp(-iQt)]exp(iwyt) (1)
which corresponds to a photocurrent (a photodiode being a square-law detector):

i = [|E|*+|E,)* +|E)"1 + (12)
[(Eo*E, + EyE *)exp(iQt) + CC] +
[E,E.*exp(2iQt) + CC]

17



The superscript refl is omitted for tractability. The first line in egn. (12) is the DC
photocurrent, the second and third lines give the photocurrent at angular frequencies Q
and 2Q, respectively. Multiplying the terms in Q by cos(Qt) and averaging over one

cycle leads to the in-phase demodulated signal

v; = Re{E,*E, + E,E *} (13)
and the quadrature phase signal is given by demodulating with sin(Qt)

vo = Im{Ey*E, + E(E *} (14)

The demodulator signal at Q is due to the beating of the carrier with each modulation
sideband. Only the carrier is within the resonance linewidth of the cavity and the
sidebands are promptly reflected from the input mirror. The carrier, which is stored in the
cavity, experiences a phase shift as the cavity length drifts away from resonance. The
sidebands, of course, do not. The relative phase between the carrier and the sidebands
changes, giving ris;: to a beat signal. The sidebands, then, can be treated as a constant

phase reference for the carrier to beat against.

The DC photocurrent and in-phase demodulator signal for the field reflected from a
Fabry-Perot cavity as a function of cavity length are shown in Fig. 2.3. Near resonance, at
! = 0, the demodulator signal is linearly proportional to / and serves as the error signal
for feedback to the cavity mirrors, adjusting their separation to maintain resonance. Null
servos such as this are highly desirable since they provide an unambiguous “locking” or
zero point.

The optical configuration of the initial LIGO detector consists of a power recycled
Michelson interferometer with Fabry-Perot cavities in each arm, as shown in Fig. 2.4. RM
refers to the recycling mirror, ITMs and ETMs refer to input and end test masses,
respectively, and BS refers to the beamsplitter. The laser light enters the interferometer
through the partially transmitting recycling mirror and the gravitational wave signal is
detected at the antisymmetric or signal extraction port. The recycling cavity is the optical
resonator made up of the RM as an input mirror and the symmetric port of the beamsplitter
which can be thought of as a complex rear mirror. The resonance conditions for the
recycling and arm cavities are maintained using servo control, as is the dark port condition
which requires that no light exit the antisymmetric port. Four lengths are controlled to

maintain resonance for the arm cavities and to hold the Michelson on the dark fringe at the
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Figure 2.3: The squared amplitude of the reflected field (upper)
and the demodulated signal (lower) as a function of the cavity
length (in units of wavelength) for a Fabry-Perot cavity with
incident phase modulated light. The cavity parameters are those
of a typical LIGO cavity (see Section 2.3).

antisymmetric port. These are the arm cavity lengths, L, and L,, and the lengths of the
Michelson arms, /; and /,. The arm cavity lengths, L; and L,, are nominally 4 km, while
the nominal recycling cavity length (/,+1,)/2 is 6 to 15m and the asymmetry
(l,-1,)/2 is about 17 cm. The design considerations motivating the vastly different
length scales for the various interferometer lengths, intimately related to the longitudinal

sensing scheme used, are explained in Section 2.3.

A number of length sensing techniques based on the heterodyne phase detection

scheme discussed above can be used to control all four longitudinal degrees of freedom
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BS

Figure 2.4: Schematic representation of a typical
interferometric gravitational wave detector

[18], [19], [20]. Regehr’s work [18], [19] details a single carrier frontal modulation
scheme where the carrier and a pair of phase modulation sidebands are used to probe all
four lengths of an interferometer with asymmetry readout [21]. Giaime [20] uses a
multiple carrier frontal modulation scheme with external modulation (or Mach-Zehnder)
readout [22). In the FMI experiment we use the multiple carrier frontal modulation
scheme with asymmetry readout, which is a synthesis of the above two schemes. It is a
modulation scheme with multiple modulation frequencies carefully chosen to ensure that
the different frequencies are resonant in some parts of the interferometer but not in others.
Frequencies which do not resonate at certain interferometric lengths serve as a constant
phase reference to probe those lengths.

The maltiple carrier modulation scheme is used in the FMI experiment Since the
design of an alignment sensing scheme for LIGO using single carrier modulation requires
some extension of the scheme in Regehr et al. [18], a modified single carrier scheme is
described briefly in Section 2.2.2. The configuration of an interferometer using the

multiple carrier modulation scheme is the subject of the rest of this chapter.
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2.2.2 Single carrier modulation scheme

The phase modulated light incident on the interferometer comprises of a carrier (C)
with two pairs of phase modulation sidebands, one pair is resonant in the recycling cavity
(CSB) and other is not (CNR), as shown in Fig. 2.5. The non-resonant sidebands are
included to extract distinguishable signals for common misalignment of the ITMs and RM
misalignment. This effect is a consequence of the highly degenerate recycling cavity in
LIGO and is discussed later.

C

CNR

@

RM IT™ ETM

@®

Figure 2.5: Schematic representation of the modified single
carrier modulation scheme. Thicker lines represent
resonance in a particular interferometer length. The inset on
the top left is the spectrum of the input light.

The C resonates in the arm cavities and the recycling cavity, the CSB resonate in the
recycling cavity only and the CNR do not couple to the interferometer. Insofar as the
length sensing scheme is concerned, the non-resonant sidebands are not used and length
sensing signals are extracted following the method of Regehr et al. [18]. In Table 2.1 we
list the fields that interfere, where in the interferometer the interfering fields are sensed

and the longitudinal degrees of freedom to which they are sensitive. Note that we express
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the length degrees of freedom as linear combinations of the lengths shown in Fig. 2.4,

defined as
L,-L Ly+L
LD = ! ) 2 and LC - ! ) 2
I -1 L+l ()
- +
I = 1 - 2 and I = 2 . 2

INTERFERING FIELDS DEGREES OF
(RF PHASE) DETECTION PORT FREEDOM
LS1: Cand CSB (I) reflection Lo+gl,
LS2: Cand CSB (1) recycling Lo+g,l,
LS3: Cand CSB (Q) antisymmetric Lp+¢€4lp
LS4: C and CSB (Q) recycling gLy +1p

Table 2.1: Signal sensitivity to longitudinal degrees of freedom for
the single carrier scheme. LSi refers to the length sensor probing
the i-th field (see Fig. 2.5).

The €, are small coefficients and we see that the signals LS3 and LS4 can be used to probe
L, and [, respectively. However, both LS1 and LS2 are most sensitive to L. and
relatively insensitive (by a factor €) to I-. Regehr et al. circumvent this degeneracy by
operating the LS1 servo loop feeding back to L with a much higher gain than the others,
which drives the L. deviations to zero and the dominant term in the LS2 signal becomes
proportional to /.

The multiple carrier modulation scheme is an alternative which does not encounter this

degeneracy and is discussed below.

2.2.3 Multiple carrier modulation scheme

For the multiple carrier modulation scheme, the spectrum of the input light is
comprised of three families of frequencies (see Fig. 2.6). These are the carrier (C) and its
sidebands (CSB) and the frequency-shifted subcarrier (SC) and two sets of sidebands
(SCSB and SCNR). For the FMI the carrier is 514.5 nm light from a CW Art gas laser; for
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Figure 2.6: Schematic representation of the multiple frequency
modulation scheme using a frequency-shifted subcarrier. Thicker
lines represent resonance in a particular interferometer length. The
inset on the top left is the spectrum of the input light.

LIGO it will be the 1.06 pm transition in a Nd:YAG solid state laser. In the multiple
carrier scheme, each family of frequencies is sensitive to a particular degree of freedom at
a given position in the interferometer. In Table 2.2 we list the fields that interfere, where in
the interferometer the interfering fields are sensed and the longitudinal degrees of freedom
to which they are sensitive.

Maximum sensitivity to a given degree of freedom is achieved when the sideband field
is independent of that degree of freedom, so that it acts as a constant reference for
interference with the carrier field (which changes proportionally with changes in length).
For example, if the carrier resonates in the arm cavity, its sidebands must be sufficiently
outside of the cavity resonance, so that only the carrier phase is sensitive to changes in
cavity length. Further, the field at each frequency that propagates in the interferometer

must be resonant in the recycling cavity for maximum coupling.
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INTERFERING FIELDS DETECTION PORT | oo OF
Q) LS1: SC and SCNR reflection I,
©) LS2: SC and SCSB antisymmetric I,
® LS3: C and CSB antisymmetric L,
® LS4: C and CSB reflection L.

Takle 2.2: Signals most sensitive to longitudinal degrees of freedom
for the multiple carrier scheme. See Fig. 2.6 for corresponding fields.

With this in mind, we analyze the fields listed in Table 2.1. Sensitivity to multiple
degrees of freedom necessitates multiple detectors. The fields to be detected and the

resonant states of the various frequencies are schematically represented in Fig. 2.6.

We define the length sensing matrix L such that

Si(8,81) = 2Jy(T)J (T)P, Y L;;8!;cos(Q + ¢;;) (16)
J

where S; is the demodulator signal on the i-th sensor; 8/; is the change in length
(normalized per unit wavelength) for the j-th degree of freedom; Lj is the length
sensitivity matrix; ¢; is the intrinsic RF phase; P; is the power on the detector; and Q and
I" are the RF modulation frequency and depth, respectively. To ensure that the sensor
signal, §;, is sensitive to a single length degree of freedom and independent of any other
length changes, L must be as diagonal as possible. This is a motivating concern for the

interferometer design and is discussed in the following section.

2.3 Optical design using the multiple carrier modulation
scheme

This section addresses the detailed optical design considerations for the Fixed Mirror
Interferometer demonstration of the wavefront sensing system. The length control system
uses the same baseline configuration as the initial LIGO interferometer, and is a synthesis
of the earlier fixed mirror tests [19], [20]. In addition to being the experimental testbed for
implementation of a complete alignment sensing and control scheme, the present FMI is

also the first to employ this particular length control system, and many of the design
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considerations are directly relevant to a full-scale LIGO design.

The optimal interferometer design, given our choice of basic configuration, involves a
detailed study of several parameters. These include five mirror radii of curvature and
mirror reflectivities, four lengths, and three families of frequency modulated light and
their relative frequency shifts. The optimization of the cavity lengths, mirror curvatures,
modulation frequencies and mirror reflectivities is a many-dimensional study. The choice
of each of these parameters is subject to constraints, and each can impact one or more of
the other parameters. The constraints can be a physical limitation, such as the finite
dimensions of the optical layout, or a technical barrier, such as the maximum frequency at
which Pockels cells can be modulated before beam distortion is intolerable, or of a
scientific nature, such as the maximum asymmetry that can be tolerated before higher
order modes due to phasefront curvature mismatch of the arm cavities degrades the
detector performance. For the purposes of the FMI study, often the constraints are soft and
the choice of an upper bound is informed but arbitrary.

In the following sections we describe the various parameters, constraints on those
parameters, and the criteria used in the choice of each parameter vis-a-vis the coraplete
interferometer. We list the physical and technical factors taken into consideration in the
design of the optimal interferometer configuration, optimal being the configuration where

L is most diagonal and sensitivity to the gravitational wave signal is maximum.

2.3.1 Modulation frequencies
For maximum coupling efficiency, the recycling cavity must be resonant for all
frequencies that propagate in the interferometer.

The C and CSB are used to probe the arm cavity lengths, so the carrier is resonant in
the arm cavity, while the CSB are outside the cavity resonance. Of course, both must
resonate in the recycling cavity. '

The SC and its sideband are used to detect deviations in the near Michelson lengths.
To ensure that the SC frequency family is ‘nsensitive to the arm cavity lengths, we choose

the frequency of the SC to be exactly antiresonant in the arm cavity, that is,

Sse = ("*%)f"“" = ("*%)2%, a7
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where n is an integer. Typically, the modulation indices are small (I" < 1), so we neglect
higher harmonics of the modulated fields. In the case of the SC which is anti-resonant in
the arm cavities, however, if the input light has a significant second harmonic frequency
component, the frequency of the SC must be detuned from perfect anti-resonance in the

arm cavities to avoid a double resonance for its second harmonic.

The C, CSB, SC and SCSB must resonate in the recycling cavity. Upon reflection from
the resonant arm cavity, the C acquires a phase shift of &t relative to the CSB, which are
outside the arm cavity resonance. The round trip phase that satisfies the resonance

condition for the C is
2%21“ = (2n+ 1) (18)

where [ is the length of the recycling cavity. If the free spectral range of the recycling

cavity is 2 f,, where

c
= —— 19

fO 4IRC ( )

then the resonances of fields which resonate in the recycling cavity only occur at
frequency intervals of 2 f,. If all other frequencies are referenced to the carrier double
resonance at n = 0, then the CSB resonate at frequency intervals of 2 f, but shifted by

fo relative to the carrier resonance, that is,

Avesg=fese = for 300 Sforee- (20)

The SC is chosen to be exactly antiresonant in the arm cavity, so we expect a relative
phase shift of &t between C and SC. The SC, however, experiences a phase shift of  due to
the asymmetry. At the symmetric port of the Michelson, the field

ry o< cos(z%fZa) 2n

where the asymmetry (added in one arm, subtracted in the other) is a = (I, -/,)/2. The
reflection of the Michelson, ry,, varies sinusoidally as a function of frequency for a fixed
asymmetry, a. Light at the frequency where r,, = -1 undergoes a phase shift of . In
effect, the carrier has a phase shift of « due to the arm cavity resonance, while the SC has

a phase shift of nt due to the asymmetry, hence there is no relative phase shift between
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them. In the recycling cavity, for light at frequencies sufficiently far from the carrier,

resonance occurs at intervals of 2f,, just as it does for the CSB. Consequently, the

frequency of the SC relative to the carrier is given by

Avsc=fsc = nfo

Isragm
Sfsrge

neven, n>

and the frequency of the SCSB relative to the SC is

AVgesp= fscsp = 200 4f 0 6 S 0s--- (23)

The second pair of sidebands on the SC, the SCNR, do not couple into the

(22)

interferometer at all and are often referred to as the non-resonant sidebands. They are

chosen to have a minimal overlap with both longitudinal and transverse modes of the

recycling cavity to ensure low coupling into the interferometer.

The above results, including the factors that constrain the choice of frequencies, are

summarized in Table 2.3:
PHYSICAL OR TECHNICAL
FREQUENCY CONSTRAINTS SELECTION CRITERIA
Carrierat Av = 0 | None (i) Must resonate in both
recycling and arm cavities
(i1) Minimum carrier light
must exit the antisymmetric
port
Half free spectral (i) Should not exceed 20 (i) Depends only on the
range of recycling | MHZ, since carrier sideband | length of the recycling cavity,
cavity, f, could be at 3 f, given by fo = c¢/4lgc.
(ii) Avoid modulation
frequencies greater than 60
MH:z

Table 2.3: Modulation frequencies.
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FREQUENCY

subcarrier at
Avge = nf,

PHYSICAL OR TECHNICAL
CONSTRAINTS

SELECTION CRITERIA

Frequency shifted | Constrained by center

frequency of commercially
available acousto-optic
modulators®

(i) Must resonate in recycling
cavity, i.e., Av = nf,, where
n = fsropm/ fSrpc and n
even

(ii) Must be anti-resonant in
the arm cavities

(iii)Minimum subcarrier light
must exit the antisymmetric
port

Carrier sideband at
Avesg = fo or

3fo

(i) Modulate at frequencies
greater than 5 MHz, else the
laser is not shot noise limited
(ii) Avoid exceeding 60 MHz
modulation frequencies
(iii)Avoid us ¢ f, since the
J, modulation term coincides
with the subcarrier sideband at

2fo

(i) Must resonate in recycling
cavity while experiencing a Tt
phase shift relative to the
carrier due to the arm cavity
resonance, i.e.,

Avesg = for 3f0r SSor-

Subcarrier (i) Choose frequencies (i) Must resonate in recycling
resonant sideband between 5 and 60 MHz cavity, i.e.

at Avgesp = 2fo AVscss = 2f0, 4 S0
Subcarrier non- (i) Choose frequencies (i) Avoid overlap with
resonant sideband | between 5 and 60 MHz. longitudinal resonances and
at Avgenr lower-order transverse modes

of the recycling cavity to
minimize coupling into the
interferometer.

Table 2.3: Modulation frequencies.

a, This is only true for the FMI experiment. For LIGO, the subcarrier frequency shift can be
arbitrarily large, since it is generated by frequency locking an auxiliary laser to the master

oscillator.

2.3.2 Interferometer lengths

All the modulation frequencies depend on f, which, in turn, depends only on lg¢. The

frequency shift of the SC relative to the carrier depends on L; (see eqn. (17)). Thus, lgc

and L, are chosen to give a useful set of modulation frequencies. Furthermore, once the

mirror radii of curvature are fixed, the lengths of the cavities must be determined

simultaneously so that the fundamental modes of the cavities are matched.
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The asymmetry is determined by the requirement that the antisymmetric port is dark
for the subcarrier. To minimize phase noise on the photodetectors, we reduce carrier
losses, which imposes the requirement that no carrier light exit the antisymmetric port.
The same argument applies to the SC, so we minimize both the C and SC power at the
antisymmetric port. If the Michelson is held on the dark fringe for C, then the
antisymmetric port is dark for the SC provided the Michelson has an asymmetry such that
the difference in the lengths of the inline and perpendicular Michelson arms is given by

-1, = —— (24)
' 2fsc
where c is the speed of light and fg- is the subcarrier frequency shift relative to the

carrier. Criteria for selection of interferometer lengths are summarized in Table 2.4:

PHYSICAL OR TECHNICAL

LENGTH CONSTRAINTS SELECTION CRITERIA
; —— = : =
Recycling cavity (i) Cannot exceed 6.0 melse | (i) Determined along with
length, lgc will not fit on optical table arm cavity length, L, , by the
without a third fold. mirror radii of curvature and

constraints on f,.

Arm cavity length, | (i) Cannot be shorter than (i) Determined simultaneous-
L 0.15 m nor longer than 1 m ly with Iz once mirror radii
due to spatial considerations. | of curvature are chosen.
Asymmetry, a (i) Tolerance to mismatch (i) Dark port condition for SC
under 1%. with frequency of a few
100 MHz (for LIGO,

optimized for maximum
gravitational wave sensitivity.

Table 2.4: Interferometer lengths.

2.3.3 Mirror radii of curvature

The mirror radii of curvature, along with the cavity lengths, influence the
characteristics of the fundamental gaussian mode of the cavity, the transverse mode
spacing and the condition for a stable resonator. For a cavity of length / and one flat mirror
and one curved mirror with radius of curvature R, the waist of the TEMy gaussian mode

is given by
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alrx

(R-N1 (25)

£
S
]

the transverse mode spacing for the cavity is

AV, 0ps = %cos"( /l —%) (26)

and the condition for the resonator to be stable is

l

To ensure that the modulation frequencies that resonate in the recycling cavity do not
excite higher order transverse modes of the cavity, we require that there be minimal
geometric overlap between the higher-order transverse modes (up to fifth order, since we
aperture larger modes) and any of the modulation fields. In other words, we avoid
coincidences in the frequencies of the higher-order modes with the modulation sidebands.
Since the lengths of the cavities directly impact the modulation frequencies (whose values
are constrained, as listed in Table 2.3), it is by varying the mirror radii of curvature that we
achieve optimum spacing for the higher-order transverse modes. Table 2.5 summarizes the

selection criteria for the mirror radii of curvature.
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MIRROR RADIUS
OF CURVATURE

Arm cavity end
mirror, Radgry,

PHYSICAL OR TECHNICAL
CONSTRAINTS

SELECTION CRITERIA

(i) Super-polished mirrors,
subject to availability of
tooling at LIGO vendor

(i) Effects transverse mode
spacing, i.e., chosen so
transverse modes do not
coincide with longitudinal
resonances of the cavity

(ii) must be greater than the
length of the cavity to satisfy
the stable resonator condition

Arm cavity input
mirror, Rad 1y,

(i) Also super-polished
mirrors (see above)

(i) Chosen to be flat, but
could be curved, in which case
the curvature of the ITMs
could compensate mode
mismatch due to asymmetry

Recycling mirror,
RadRM

(i) Commercial mirror (e.g.,
CVI Corp.), so we try to use
stock curvatures, typically
available in integral
increments of 1 m

(i) Simultaneously match the
fundamental mode of the arm
cavity and keep /g <6.0 m
(ii) satisfy the stable resonator
condition

(iii)avoid overlap of transverse
modes of both cavities

(iv)to avoid diffraction losses
due to finite aperture on
mirrors, the spot size on the
recycling mirror,

Wy < 1.5 mm

Table 2.5: Mirror radii of curvature.

2.3.4 Mirror reflectivities

The storage time and, therefore, the frequency response of a Fabry-Perot cavity

depends on its finesse. The cavity has finesse

and storage time

F n,’rlrz

l—rlrz
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c(T=rry) 29)

T, =

The amplitude of the transfer function of the gravity wave strain, h, to the phase of the

reflected light is

d¢’| = _4;%

(30)
dh| [1+20,r,

where @y and ©, are the frequencies of the laser light and the gravitational wave,
respectively. The cavity pole occurs at f, = 1/4nt,, and for LIGO we choose
rf = 0.97 and r§ =1-10"to give storage time 1, = 0.9 msec or f, = 90 Hz and,
accordingly, a finesse of F =200. The rear mirror reflectivity, r,, is chosen to be as close
to unity as possible to minimize losses. For the FMI, this choice of r,, r, and length
[ = 0.575 m corresponds to a much shorter storage time, T, = 125 nsec, but a LIGO-
like finesse of 200.

The reflectivity of the recycling mirror is chosen so that the carrier light reflected from
the interferometer is minimized, which leads to maximum build up of power in the
recycling cavity. This is achieved by returning all the carrier light coming back at the laser
from the symmetric side of the beamsplitter to the interferometer. From eqn. (9), the

amplitude reflectivity for a resonant cavity is

_n-n
Feav = i—rir, 30

When r, = r,,then r_,, = 0.If we treat the arm cavity as a compound rear mirror, with
r}?,“ = rfc = J0.97, we find that rfc = rfc = J0.97 is the recycling mirror
reflectivity that critically matches the carrier losses due to the arm cavity resonance. Since
mirror reflectivities degrade with time, and since r,, increases more rapidly for r, > r_,;,

than for r,<r.,,, we choose R,,c-s(r',":)2 = 0.95. These results are summarized in
Table 2.6:
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MIRROR
REFLECTIVITIES

Arm cavity end
mirror, Rery

PHYSICAL OR TECHNICAL
CONSTRAINTS

SELECTION CRITERIA

(i) Super-polished mirrors,

specially coated at REO
(LIGO vendor), subject to
availability from LIGO
standard inventory

(i) High reflection, T = 10~ |
(ii) Low loss, A = 107

Arm cavity input
mirror, R,y

(i) Same as above

(i) Chose T = 0.0028 and
A = 107 to give ~3%
reflection loss from the arm
cavity on resonance

Recycling mirror,
Rem

(i) Commercial mirror (e.g.,
CVICorp.), typically available
in stock reflectivities of
integral increments of 5%

(i) In principle, critically
couple the carrier, i.e.,
transmission of the RM is
equal to the reflection losses
from the arm cavity on
resonance. In actuality,
choose a commercial
reflectivity such that
Trym>T,,, to allow for
mirror degradation.

Table 2.6: Mirror reflectivities.

2.3.5 Proposed configuration for the FMI

Based on the selection criteria and the constraints discussed in the previous section,
the design parameters listed in Table 2.7 yield an optimal design for the FMI. For
comparison, the experimentally measured values of the parameters are also shown. They
are fairly close to the design specifications with one significant difference: a pellicle pick-
off plate is inserted between the recycling mirror and beamsplitter to probe the field in the

recycling cavity, which we treat as 5.5% loss on the RM.
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PARAMETER DESIGN EXPERIMENT
MODULATION Ac = 5145 nm Ac = 5145 nm
FREQUENCIES fess = 58.5 MHz fesp. = 58.71 MHz
fsc = 391 MHz fsc = 391.6 MHz
fSCSB = 39.0 MHZ fscsa = 39.‘6 MHZ
fSCNR = 32.0 MHz fSCNR = 32.33 MHz
INTERFEROMETER lec = 3.84m lec =383 m
LENGTHS Lygy = 0.575m Lygy = 0575 m
a=038m a=038m
MIRROR RADH OF RadRM = 6.0 m RadRM = 6.0 m
CURVAT Radry = o Rad;ry = o
RadETM = lS.Om RadETM = |5.0 m
MIRROR Rey = 0.90 Rey = 093
REFI‘ECPIVHIES RITM = 0.97 R’TM = 0.97
RETM = l - 10-6 RETM = l - 10—6
MIRROR LOSSES Lgy = 0.001 Lgy = 0.055
Ly, = 100x 107 Ly, = 671x107°
Lyry, = 100x 107 Lipyn = 37x107
LETM] = IOOXIO_6 LETMI = lOOX 10_6
Lery, = 100% 107 Lera, = 100% 107

Table 2.7: Design parameters for the FMI and their experimental

realization.

2.3.6 Length sensitivity matrix

For the configuration described above, the length sensing matrix, L (see eqn. (16)), is
highlighted in Table 2.8 below:
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DETECTION PORT RF PHASE lc I L. L,
—_——

Reflection, SCNR I -770 10'! -6 102

Dark port, SCSB Q 107 -132 107 -1

Reflection, CSB I -247 -7 -27500 -10"!

Dark port, CSB Q 10710 -100 109 ~13250

Table 2.8: Length sensitivity matrix (in units of wavelength) for the FMI,
using design parameters.

It is remarkably diagonal with the largest off-diagonal terms a comfortable factor of 100
smaller than the diagonal terms.

In Fig. 2.7 we plot the amplitude of the fields inside the recycling cavity and the arm
cavity, the field at the antisymmetric port and the field reflected from the whole
interferometer as a function of frequency. The horizontal axis is in terms of the
dimensionless quantity m = f/ f,. The carrier is located at m = 0, the CSB could be at
m = £1,%3,15,the SCis at m = 20, and the SCSB are at m = 20+ 2,20+ 4. The
SCNR are ideally in the valleys, at m = 20+ 1, 20 £ 3, so that they do no couple into the

interferometer.
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FIELD AMPLITUDES
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Figure 2.7: Amplitude of the fields in the recycling cavity (upper)
and at the antisymmetric port (lower) for 1 W of input power as a
function of frequency (in units of fj, the half free spectral range of
the cavity) when the interferometer in resonant for the carrier. The
carrier double resonance occurs at f = 0.
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2.4 The alignment sensing scheme

The general concept of using the transverse (off-axis) modes of an optical resonator to
detect misalignment and mismatch was proposed by Anderson [23]. Variations of this idea
in conjunction with phase sensitive detection have been proposed and experimentally
demonstrated for simple two mirror resonators [24], [12]. Specifically, Morrison et al. [12]
use a variant of the Pound-Drever-Hall reflection-locking technique (see Section 2.2) for
alignment sensing. This is particularly advantageous since light which is already
circulating in the interferometer is used to sense both longitudinal and transverse degrees
of freedom, which also ensures that the interferometer is aligned relative to the input light
beam. Morrison er al. investigated a flat-curved Fabry-Perot cavity, where they showed
that for an infinitely long cavity an angular misalignment of the flat input cavity mirror
produces an alignment signal in the near field of the light reflected from the input mirror.

Similarly, a misalignment of the rear curved mirror produces a signal in the far field.

In this section we present an intuitive, geometrical picture of misalignment in optical
cavities and a detection scheme based on the reflection-locking technique of Section 2.2.
A mathematical formalism for applying this technique to a general distorted or misaligned

optical system is developed in Chapter 3.

2.4.1 Misalignment and higher-order modes

In this section we consider two kinds of misalignment of optical beams: first, beams
whose optical axes are laterally shifted with respect to each other, and, second, beams with
tilted axes. We show that in both cases misalignment excites higher-order modes of the

propagating beam, as presented by Morrison et al. [12].

In the paraxial approximation, the solutions to the scalar wave equation in one
dimension can be expressed as a superposition of Hermite-Gaussian modes [25]. The field

distribution is given by:

o= () () )

n 2"m'w(z) w(z)

exp(_x2 (w(lz)z + 21;—’((2))) exp(i(m + %)n(z))exp(—ikz)
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where the z-axis points in the beam propagation direction and where 1\(z), w(z) and R(z)
are the mode-dependent Guoy phase shift, the spot size and the curvature of the phase
front at position z, respectively,

2
n) = m"'(zio), w(z) = w, ,1+(z£o)2 and R(z) = z+z;° (33)

and the Rayleigh length, z,, is given by z, = uwg/ A with w, the waist size. H,,(x) is the
Hermite polynomial of order m. At the plane z = 0, the spatial distributions of the
fundamental and first two higher-order modes are

oio = (3 (&) oo()
oo = (3 (0 @)

o= (@A) )

These relations will be useful in deriving the spatial distributions of interfering beams
which are misaligned with respect to each other.
Consider two perfectly interfering Hermite-Gaussian beams propagating in the

positive z-direction with electric fields given by:

(_x2
E, = A exp| —; |exp(-ikz)
\ Wo / 37
(_xzw 37
Ez = Azexp _2 exp(“ikZ)
\ Wo )

When E, is laterally displaced in the positive x-direction by a small amount, x,, we get

2
E, = Azexp(—(x-_—zxo))exp(—ikz) (38)
Wo

which can be expanded to second-order in x, to give
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Similarly, if E, is tilted by a small angle 8 with respect to E, , then we get
E, = Azexp(—z)exp(—Zika)exp(—ikz) (40)
Wo
which, to second-order in x; , gives
2
- Y x\) 1(0) x)?
E, = Ayexp| =% (l-i(—)(—)+ ( )( ))ex _ikz
2 2 p(w(z)) eD W 2 90 P( ) (41)

“{(1-(o) (-7l 1) )

where 0, = A/(mtw,) is the divergence or Rayleigh angle of the Hermite-gaussian beam.
In both eqns. (39) and (41) we see that the amplitude of the TEM o mode (the U, terms)
is proportional to the normalized shift or tilt. The next higher-order term in the expansion
of U, is (xy/ wo)3 or (6/ OD)3 . A significant distinction between the shift and tilt is the
quadrature phase associated with the U, term in eqn. (41).

2.4.2 A heterodyne technique for alignment sensing

The heterodyne detection technique of Section 2.2.1 can be extended to spatial sensing
of the wavefront [12] (see Fig. 2.8). If one of the mirrors of a resonant optical system is
misaligned, higher-order transverse modes are excited. As shown in eqns. (37) and (39), a
small misalignment about the y-axis excites TEM;q mode to first order in the
misalignment angle. In the suppressed carrier technique of Section 2.2.1, the beat between
the carrier leaking out of the interferometer due to deviation from resonance and the
promptly reflected RF sidebands is used to detect purely longitudinal deviations. In the
presence of angular misalignments, the carrier field leaking out of the interferometer has a
TEM, spatial component (which is not necessarily resonant in the interferometer). The
magnitude of the TEM;y mode can be measured by detecting the spatial gradients in the
interfering carrier and sideband fields. A segmented photodetector which is split along the
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Figure 2.8: Wavefront sensing for a simple Fabry-Perot
interferometer. To first order, the spatial mode in the
presence of misalignment (solid curve) is a linear
superposition of the TEMy and TEM, o modes of the cavity
(dashed curves).

y-axis and where the signals from the two half-planes are subtracted from each other, is
most sensitive to this spatial interference and at the same time rejects any signal coming

from longitudinal deviations.

This method of hetercdyne sensing of misalignment is called wavefroni sensing, since
it is spatial distortion of the wavefront which is used to probe angular misalignment. In an
optical cavity, to first order, a misalignment of the optic axis of the cavity with respect to
the phase modulated incident beam will excite higher-order modes of the cavity. Since the

wavefront is sensed by differencing the signals on opposite segments of a split
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Figure 2.9: Spectrum of the field on the photodetector in
the presence of misalignment. The carrier (solid) and the
phase modulation sidebands (dashed) are shown for both the
TEMgg and TEM o modes, respectively.

photodetector, the TEMg, (even) will have a non-zero overlap with the TEM,, (odd)
mode. Further, only terms with a frequency difference of 2 will be down-converted by the

demodulator. As a result, the demodulated wavefront sensor signal is due to the beat

between the TEMy, component of the field at the carrier frequency and the TEM,,

component at the RF frequency superposed with the TEM,;o component at the carrier

frequency beating against the TEM, component at the sideband frequency.

Following the notation in Fig. 2.9, the signal on the split photodetector is

i = (EX*EL + E®*E" + E**E'%) + CC) +
((EX*EYN + E**E}’ + EYEY* + EQE'™ )exp(iQ1 +1) + CC] +
(EYE!™ + EX*E")exp(2iQ1 +71) + CC]

and the in- and quadrature-phase demodulator signals, respectively, are

10%

v; = Re{(EXE + E®*E) + EPE}* + EQE!**)exp(in)}

vp = Im{(Eq "EY + EX*E) + EXEY” + Eq E!™ )exp(in)}

(42)

(43)

(44)

Note that the above expressions are completely analogous to eqns. (12), (13) and (14).

From eqn. (32), we see that each higher-order mode, TEMy, ;, has a different Guoy phase
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shift, ¢,, , = (m+n+1)n(z), which implies that each higher-order mode picks up a
different phase shift as it propagates through a distance, z. This phase shift is crucial for
distinguishing signals due to misalignments of longitudinally separated optical

components and is discussed in the following section.

2.4.3 Distinguishing misalignment of various optical components

Since the different order modes propagate with different Guoy phases, the detected
modulation depth also depends on the distance between the photodetector and the cavity
or interferometer output. Higher-order modes generated by tilted optical elements which
have a longitudinal separation — the input and rear mirrors of a cavity, for examp'e —
have to travel different distances to the photodetector and can thus be distinguished by
using two segmented photodetectors at two different locations. For a non-degenerate
cavity of length /, it turns out that two detectors in reflection separated by a phase shift
Nn(l) will each be maximally sensitive to the rear or input mirror, respectively.
Consequently, the amplitude of the misalignment signals depends on the Guoy phase
difference of the interfering TEMy, and TEM, o modes; the Guoy phase telescopes play an
important role in the wavefront sensing scheme to determine the origin of the

misalignment.

Guoy phase telescopes get their name from conventional telescopes, namely, a set of
lenses that transforms the geometric characteristics of a light beam, or, equivalently,
projects the beam at a different plane. We have two constraints on the Gaussian beam at
the detection plane, first, that its Guoy phase be optimized for maximum detection of the
primary degree of freedom, and second, that the spot size be about 1 mm. A smaller spot
size implies greater sensitivity to centering errors, whereas a larger spot size is apertured
by the photodiode. Guoy phase accumulation goes as ran—'(z/ Zy)» SO, in principle, we
could simply propagate a beam with given z, to different distances to accumulate
different Guoy phase shifts. This is, however, impractical. For the FMI z, = 2.88 m, so to
acquire 90° of phase shift the beam must propagate to a distance z, = oo. Furthermore,
mere propagation allows little control of the spot size at the detector position. Since a
TEM,, Hermite-Gaussian mode acquires 180° of phase shift as it goes through the focal
plane of a lens, and lenses can, of course, be vsed to adjust the magnification of the spot,

telescopes are used to set the Guoy phase and spot size at the detector.
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The Gaussian beam at the output port of the interferometer is specified by a state

vector

R(z,0r1)

W(Zporr) 45)

N(Zporr)
where R(z,0/1), W(Zporr) and Ti(2p,,,) are the phasefront curvature, the spot size and the
accumulated Guoy phase shift, respectively. This state vector is then propagated through a
a series of lenses and propagation distances to give the desired state vector at the

wavefront detector position. The transformation through a lens of focal length f'is

Rz)| RO [Res(r-k)
w(iz)| — — w (46)
n(2) n

and for free space propagation through a distance d-

R(2) propagation

distance d ' 2
w(z) —— wo /I+ Z;,") @7)
0
-1 Z

n(z)

where

wg = AwR
AR + n'w?

is the beam waist of a Gaussian beam which has curvature R, spot size w and Guoy phase

(48)

1 at position, z, of the initial state vector, and

4
7 = Tw R
- 2 2

AR + nPw’

is the position of the beam waist from z and z,' = nwo'z/ A. In our convention, z' >0 if

(49)

the beam waist is to the left (decreasing z) of z. Operating on the state vector at the
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interferometer port with a cascaded series of transformations, we find the focal lengths and

positions of the lenses which give the required state vector at the detector.

2.4.4 A complete wavefront sensing scheme

Having developed the wavefront sensing scheme for a Fabry-Perot interferometer, we
now extend this detection technique to the full interferometer, much the same as the
extension of the longitudinal sensing scheme in Section 2.2. Analogous to eqn. (16), we

define the alignment sensitivity matrix such that

WFS(1,1,0) = 2Jo(D)J,(D)P,Y A;0,cos(n - 1) cos(Q1 +¢;)) (50)
J

where WFS; is the wavefront sensor signal at the i-th port; ©; is the (normalized per
divergence angle) misalignment angle for the j-th degree of freedom; A;; is the alignment
sensitivity matrix; 1 is the Guoy phase shift to the detector; 1;; and ¢; are the intrinsic
Guoy and RF phases, respectively; P; is the power on the detector; and €2 and I" are the RF

modulation frequency and depth, respectively.

INTERFERING FIELDS DETECTION PORT | MISALIGNED OPTIC(S)
WFSI1: SC and SCNR reflection (0,) RM
WFS2: SC and SCNR reflection (N,) common ITMs
WFS3: SC and SCSB antisymmetric differential ITMs
WFS4: C and CSB antisymmetric differential ETMs
WFESS: C and CSB reflection common mode ETMs

Table 2.9: Signals most sensitive to angular degrees of freedom.

In Table 2.9, we list the interfering fields, the detection port and the primary angular
degree of freedom to which they are sensitive. We detect the subcarrier non-resonant
sideband signal at two different Guoy phase shifts to distinguish the common ITM
misalignment from RM misalignment.

A very important aspect of the multi-dimensional heterodyne alignment sensing
technique described here is that it uses the same phase modulated light as the longitudinal
sensing system. In fact they share common features: predictably, differential

misalignments and length deviations are detected at the antisymmetric port in the Q-phase,



while common degrees of freedom appear in the I-phase at the symmetric port; the

subcarrier is anti-resonant in the arm cavities and therefore

Referring back to Fig. 2.6, this is summarized in Table 2.10.

oblivious to the ETM:s.

DETECTOR @ @ ® @ ® ®
==— —

Length d.o.f. I I L, L.

Angular d.of. RM ITM: | ITM, | ETM, ETM .

Table 2.10: Summary of signals for longitudinal and angular degrees of
freedom (d.o.f.) using the multiple frequency modulation scheme.

Developing a mathematical algorithm to calculate the matrix elements of A and to

design an optimal detection scheme for arbitrarily complex optical interferometers is the

central focus of Chapter 3.
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Chapter 3

Theory of mode decomposition

In this chapter, we present a formalism which can be used to study the problem of
misalignment in the LIGO interferometer, with the goal of characterizing the sensitivity of
the interferometer to angular misalignment and designing a dynamic scheme for
maintaining alignment [13].

The general concept of using the transverse (off-axis) modes of an optical resonator to
detect misalignment is explained in Section 2.4. Here we extend this concept by
developing a formalism to analyze more complex optical systems comprised of arbitrarily
complicated arrangements of optical elements. In particular, it can be applied to systems
consisting of cavities placed inside other cavities. The field circulating in the misaligned
or distorted optical system is decomposed into a superposition of the eigenmodes of the
unperturbed system; the scale of the imperfections or misalignments determines the
number of eigenmodes needed for an accurate description. Misaligned or distorting optical
components are represented as operators in the basis of these eigenmodes. This approach
relies on analytical methods, which gives it tremendous advantage over currently used
numerical methods, e.g., Fast Fourier Transform [26], [27], which are computationally
demanding. The analytic methods were developed before the FFT codes and most of the
conceptualization of mirror perturbations and misalignments was done analytically. For
simplicity and tractability, we first apply our model to the ubiquitous Fabry-Perot cavity,
and then build up more complex optical configurations by cascading additional optical
elements. We thereby emphasize the generality of the model as an analytical tool for
calculating field distortions in any complex optical system.

The formalism for calculating misalignment and distortion operators in the modal
space is presented in the next section. In Section 3.3 we apply this formalism to derive the
fields in a Fabry-Perot cavity and in more complex optical systems such as coupled

cavities and a recycled Michelson interferometer configuration.
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3.1 Formalism for mode decomposition

The x- and y- axes of the coordinate system are chosen to be transverse to the beam
propagation (and optical axis) of the perfectly aligned and undistorted system (z-axis).
Using the paraxial approximation [25] one can quite generally expand the electromagnetic

field of a light beam as a superposition of orthonormal Gaussian modes in the form
E(x,5,2) = X 8nUna(% ¥, 2) (S1)

where a,,, can be represented as a vector in the modal space. The U,,,(x,y,z) are Gaussian
modes, which may be Hermite-Gaussian functions (see examples in Section 3.3 and
defiritions in Appendix A). Our goal is to compute the eigenfunctions U,,,(x,y,z) only
once for the perfectly aligned and undistorted system and then treat any angular
misalignment or distortion as a perturbation which transfers energy between transverse
modes only. In other words, the perturbation can be expressed as a matrix operator acting
on a complex vector space (the modal space), and the solutions to the paraxial wave
equation of the misaligned or distorted system can be calculated through a perturbation
series approach from the solutions of the unperturbed system.

If M(x,y.z5,z;) is an operator which transforms the electromagnetic field of a

misaligned or distorted optical system at position z; into a field at position z,, that is
E'(x,y,25) = M(x,5,25,2/) ® E(x, y, ) (52)

its representation M,,,,, ;/(z2,z;) in the modal space can be written as

Mo (22 21) = [ [ Utma(x, 3, 2)M(x, 3, 20, 2)Us(x. ¥, 2, )dx dy (53)

where the functions U,,,(x,y,z) are the eigenmodes of the unperturbed system.

An important simplification in calculating the modal space representation of these
operators for a real physical system can be obtained by entirely separating the longitudinal
propagation from misalignment and distortion effects caused by lenses and mirrors, which
affect the wavefront at a fixed longitudinal position only.

Since the U,,,(x, y, z) are the vacuum eigenmodes, the modal space representation of
the propagation operator must be diagonal. In the Hermite-Gaussian basis, e.g., the

propagator simplifies to
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Pmn,u('ﬂ) = 8mk8nl e_ik(zr:')ei(m“lﬂ)n (54)

where N = 1(z,) -n(z,) is the Guoy phase shift between position z and z; (see
Appendix A). We have included all the rapid longitudinal (z-coordinate) variation in the
propagator of the Gaussian beam. The propagator is the only operator which retains a

significant z-dependence. Hence, for lenses and mirrors eqn. (53) reduces to
Mun 1 = (mnlM(x, y)Jkl) (55)

where the bra-ket product is defined as the integration over the transverse degrees of

freedom and where {mn| and [kl) are the Gaussian eigenmodes with all z-dependence due
to propagation removed.

By calculating the modal space representation of both the propagation and the effects
of misalignment, it is possible to calculate the eigenmodes of any misaligned or distorted
configuration of the optical system by means of linear algebra only, without repeatedly
solving the paraxial wave equatioi.

————
~ .
-

Figure 3.1: Refiection on an imperfect and misaligned mirror
surface. @ direction of incoming laser beam, @ reflected
beam, @ undistorted wavefront, @ ideal miiror surface,
® physical mirror surface and Z(x,y) deviation from ideal
mirror surface.

Consider a slightly imperfect and slightly misaligned mirror' (see Fig. 3.1). Spatial
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variations over the mirror surface cause each part of the wavefront which is incident at a
lateral offset (x,y) to acquire an additional phase shift due to a local displacement in the z-
direction. The parameters of the unperturbed Gaussian beam are matched to the ideal
mirror surface and all deviations from the ideal surface are contained in the function

Z(x,y). The mirror distortion operator can then be written as!

M(x,y) = 2" (56)

If Z(x, y) is a real function, this operator is unitary and, thus, conserves energyz. The

modal space representation then becomes [28]:

M, g = (mnle ™2k = (mnlexp(-z"" > Iop>zo,..qr<qu)lkl> (57)

op.qr

Since the transverse size of the Gaussian beam is fully described by the spot size, w(z),
which is simply a transverse scaling factor, the z-dependence of Z,, . in eqn. (57) can be
removed by the variable substitutions x” = J2x/w(z) and y* = J2y/w(z). Expanding

Z(x,y) in a series of orthonormal polynomials H; (such as the Hermite or Laguerre

polynomials) of the form
—2kZ(x, y) = Y c;H(xVH(Y) (58a)
ij
one obtains:
—ZkZop.qr = 2ZcijTgp. qr = Zcij<0p'Hi(x)Hj(y)lqr)|: =0 (58b)
iJ ij
ij - . .
The T,,, are Hermitian operators which serve as generators for the unitary

transformation that describes the wavefront distortion. A detailed calculation of these
generators in the Hermite-Gaussian basis is presented in Appendix A.

The physical meaning of the individual terms in the expansion of eqn. (58a) — using
Hermite polynomials in the expansion — can be understood as follows: the constant term,

Cog» corresponds to longitudinal displacements of the mirror; terms proportional in H (x)

1. The validity of this approximation is clarified later on.

1. Generally, one has to multiply the right hand side of eqn. (56) by the retlection coefficient to obtain
the true reflected field of the mirror.

2. The distortion operator which describes reflection from the rear surface of the mirror is given by
M(x,y) = exp(2ikZ(x,y)) = M¥(x,y).
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or H(y) and, hence, linear in x or y correspond to yaw and pitch, respectively, where the
coefficients cjg and cy; are proportional to the rotation angle; the term proportional to
Hy(x) + H,(y) corresponds to a deviation in the curvature of the spherical phase front; a
term proportional to H,(x) — H,(y) depicts astigmatism; and so on.

For a small rotation about the y-axis Z(x,y) can be written as Z(x,y) = 0,x. By
substituting ©, = 6,mtw(z)/A, which is the normalized rotation angle, the operator

becomes:

—2kZ(x,y) = -ﬁe,% = -J20,H,(x") (59)

In the Hermite-Gaussian basis, the recursion relationship for the Hermite polynomials

simplifies the generator T'° to
1
1,12,,,, = 728,,,(,\/6 85 g1+ 08, ) (60)

The Hermite-Gaussian basis is particularly well-suited to describe small misalignments, as
indicated by the simple form of eqn. (€0). Notably, if the generator in eqn. (60) is applied
to the fundamental TEM, mode, the TEM is the only resulting mode. Any other higher-
order mode which can be excited by a misaligned mirror is introduced by the matrix
exponential of eqn. (57) only; in other words, they are not significant, if the normalized
rotation angle is small compared to unity.

A similar problem is the distortion of the wavefront when it passes through an optical
element such as a partially transmitting mirror or a lens. If the deviation in thickness of the
optical element from its ideal shape is denoted by d(x,y), then the phase distortion operator

can be written as

M(x,y) = ¢ """k 61)

where n is the refractive index of the optical medium. This operator is of the same form as
the distortion operator in reflection with one exception: the linear term in d(x,y) does not
account for an angular tilt, but instead describes a wedge. In fact, an angularly misaligned
optical element shifts the beam laterally. For a small tilt 8, about the y-axis, the shift in the

x-direction can be calculated using Snell’s law:
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A(x) = e,(l - ;—ll)d (62)

where n and d are the index of refraction and the thickness of the optical element,
respectively. A detailed calculation of the lateral shift operator is presented in
Appendix A.2. '

With regard to optical cavities, tilting the partially transmitting input mirror of the
cavity has two effects: first, the wavefront of the field inside the cavity is distorted by the
tilt of the reflecting surface, and second, the incident beam is shifted laterally upon
transmission through the input coupler. Comparing eqn. (62) with eqn. (59), the effect of
lateral shift turns out to be much smaller, roughly by a factor of d/z,, which is negligible

for most practical cavity configurations.

3.2 Wavefront sensing in the modal space

In this section an expression for the demodulated signal is derived for a misaligned
optical system in the modal space. If O(w) is an operator which depicts an entire optical
system and if the incoming laser beam consists of a carrier and a pair of phase modulation
sidebands, for small modulation depths the field at the output of the system can be written

as

E,, = E,+E,+E. (63)

E, = O(0,)E,, and E = fIZ:O(cooiAm)E. (64)

inp inp

where @ corresponds to the frequency of the carrier, A® is the modulation frequency, I' is
the modulation depth and E;,, is the incident field in the modal space (usually the

fundamental mode). The carrier and the modulated fields can have spatial components.

The total light power on the photodetector which is placed at a distance 1 in Guoy

phase away from the output of the optical system is

§ = [P(M)E,.J' D*[P(M)E, ] (65)

where D® is an operator that accounts for the physical dimensions of the photodetector

and P(7m) is the propagator defined in eqn. (54). If § is demodulated with the modulation
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frequency A, then only terms which have an e-4©®’ dependence on the modulation

frequency remain in the down-converted signal:
€oC
S = (E)'P(m)DP(M)E. + %(EJ*P’(H)DQP(TI)Eo (66)

Here we adopt the convention that the real part of the down-converted signal denotes the I-
phase while the imaginary part denotes the Q-phase.

In Appendix A.4, we calculate the demodulation operator D® in the modal space for
arbitrarily shaped detectors. From the form of the propagator (see egn. {54)), it can be seen

that the 1} dependence in S can be expressed in terms of a sine and cosine series:

5= ’Eod,cos(sn) + ’;oe,sin(sn) (67)

where the coefficients d; and e, are complicated functions of the detector shape and the
output fields. They are completely independent of the detector position if the ratio of the
beam spot size over the detector diameter is held constant.

The above expansion is helpful in understanding the Guoy phase dependence of the
demodulated signal. For instance, a single photodetector which covers the full cross-
section of the beam has only one non-zero coefficient, dy. Similarly, d, and e are the only
significant coefficients for small angular misalignments measured by a half-plane detector

which is split along one axis.

3.3 Application to various interferometer configurations

In this section we develop the modal expressions for the fields in the various optical

configurations shown in Fig. 3.2.

3.3.1 Fabry-Perot cavity

The mode decomposition technique is applied to calculate the alignment signals of a
Fabry-Perot cavity (see Fig. 3.2(a)). The cavity round-trip propagation in matrix form
reads:

P, = (-r))(-r,)M\PM,P (68)
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Figure 3.2: Setup of (a) a Fabry-Perot interferometer, (b) a coupled
pair of cavities, (c) a recycled Michelson interferometer and (d) a

recycled Michelson interferometer with arm cavities.

where M, and M, are the misalignment matrices of the input and the rear mirror,

respectively, P denotes the propagator between the two mirrors! and ry and ry are the

amplitude reflection coefficients of the two mirrors®. The steady-state equation for the

field inside the cavity, E;,,, can then be written as

1. Note that both the plane wavc phase factor and the Guoy phase shift are exactly the same for both

beam directions.

2. We follow the convention that if the light is reflected from the coated surface of a mirror (drawn as
bold curve in Fig. 3.2), an additional factor of (~1) has to be taken into account.




Eiu: = PnEin:"'tlEo = ‘I(I-Pn)-lEO (69)

and the reflected field becomes:
i .
E.n = nn\M'Eq—t,r,PM,PE;,, = r\M,' I-——P,|I-P,) Eq=ME, (70)
r
1

where ¢, is the amplitude transmission coefficient of the input mirror, Ej is the input field
and / is the identity matrix.

For small misalignments the only important modes are the fundamental TEMy, mode
and the lowest order transverse (Hermite-Gaussian) modes, TEM o and TEM,. Using the
notation where all three modes are the components of a single vector, an electromagnetic
field in modal space can be written as:

E = |ay 1)

Making use of eqns. (54) and (60) and including terms to first order in ©, and O, only!,

the propagator and the mirror misalignment mauices become

u()ﬂo 0 1 -2i0, -2i0,

—-ik(Zy -2

P(zpz)=e ' | 2" o | and M(6,0))=|-2i0, I 0 (72)
0 0 &M —21'9). 0 I

Assuming that the incoming light E is a pure phase modulated TEMyq mode with a
carrier which is resonant in the Fabry-Perot cavity and sidebands which are exactly anti-
resonant, then the alignment signal S measured with a half-plane detector — as defined in
eqns. (A.14) and (A.16) — can be obtained from eqns. (66), (67) and (70). To first order in
©, S is given by

S = SoTEq[8,,cos(no + ) + ©,,cos(ng + 1+ )] (73)

1. Note that the eigenvalues of M(G,.By) can exceed unity, if just first order terms are included. Terms
of at least second order in ©; must be included, if M is to be used in eqn. (70).
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where 1 is the Guoy phase shift that the TEM(y mode of the reflected beam acquires
between the input mirror and the photodetector. For a Fabry-Perot cavity Sy and m, are
complicated functions of r, t}, rp and M. An attractive feature of eqn. (73) is that if
additional higher-order modes are included in its derivation, they contribute to the order of
@ or higher only. This is illustrated in Fig. 3.3, where the angular error signal S and the
electromagnetic field strength of the modes inside the cavity are plotted against the
misalignment angle of the front mirror ©,,. The calculations were made with one
transverse degree of freedom only. It can be seen that the first order approximation
(2 modes) is in good agreement with the ‘exact’ solution (22 modes) up to normalized
angles of 0.3. Cavity parameters of a typical LIGO arm cavity were used, with a cavity
length of 4 km, radii of curvature for the input and rear mirror of —14500 km and 7400 km,
respectively, a perfectly reflecting rear mirror and an input mirror with a power

transmission of 3%.

The Guoy phase M is pivotal to the mode decomposition technique. Each non-
degenerate mode of the field has a different propagation phase associated with it, and it is
precisely this property that allows us to infer which optical component in the optical train
is misaligned. From eqn. (73) it can be seen that the Guoy phase difference of the
misalignment signal, generated by the input and rear mirrors of a Fabry-Perot cavity, is the
Guoy phase shift acquired by the fundamental mode when propagating from one mirror to
the other. This has unfortunate implications for a highly degenerate cavity, for which the

misalignment signals from the input and rear mirrors become indistinguishable.
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Figure 3.3: Angular error signal (top) and mode decomposition
(bottom) as a function of the misalignment angle of the front mirror in a
resonant Fabry-Perot interferometer. The calculations were made with
one transverse degree of freedom only, using 2 modes (dashed line), 4
modes (dash-dotted line) and 22 modes (solid line), respectively. The
cavity fields are given in units of the input field, whereas the error
signal is given relative to the input power and the modulation depth,
calculated for the Guoy phase of the detector which gives the maximum
signal at small angles. The cavity parameters are given in the text.
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3.3.2 Coupled cavities

The single cavity equations can be used to calculate the fields propagating in a pair of
coupled cavities. Referring to Fig. 3.2(b), one can calculate the field reflected from mirror
3 by replacing M, and M, and their corresponding mirror reflectivities in eqns. (68) and
(69) with M5 and M', given in eqn. (70), that is

2 2
E,q = 1M, (1+ 525 M,P M P )(l+r3M3P M'P)"'E, (74)

where M; and 15 are the mirror matrix and amplitude transmission coefficient for mirror 3,
respectively, and P, and P, are the free space propagators corresponding to the length of

each cavity.

3.3.3 Recycled Michelson

Similarly, for a Michelson interferometer with a partially transmitting mirror at the
input, as shown in Fig. 3.2(c), all the complexity of the Michelson interferometer can be
contained in a matrix operator M" . The field reflected from the input mirror is then given
by

2 2
E,p = rM, (1+ 3M3P0M"Po)(1+r3M3P0M 'Po) "' E, (75a)
r3
with M" = —tisr|P|M|P| —risrzpzszz (75b)

and the field at the antisymmetric output of the interferometer becomes
Eoniisym = 13rgstps(=r\P\M Py + ryP,MyPo)(1 + rsM;PoM"Py)'E, (76)

where rgs and tgg are the amplitude reflection and transmission coefficients of the

beamsplitter.

3.3.4 Complete interferometer

In this manner we can piece together any optical system and extract the spatially
varying fields at any transverse plane along the direction of propagation of the wavevector.
Fig. 3.2(d) shows the optical layout for the complete LIGO interferometer. Fields for this
system can be calculated by replacing (-r;M,) and (-r,M,) in the equations for the
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simple Michelson interferometer with matrices M,' and M, which are similar to the
cavity operator M' of Fig. 3.2(b) and eqn. (70). For the complete interferometer, then, the
fields just inside the recycling mirror, in reflection from the recycling mirror and at the

antisymmetric port, respectively, are:

ERC = tRM(, +’RMMRM’TPIOMCPIO)_IE0 (77)

2 2
E,p= reuMey 1+ 24 R4 p P McP, (I !
ref = TemMpp | 1+ rmP i McP; (I +rgyMpyP McP) E,  (78)

TRM
Eontisym = tryMpP; (1 + rgyyMpy P M P 10)_150 (79)
where
M: = _(tiSPhMl'Pl, +r§SPl1M2'Plz) (80)
Mp = rystys(-P, M\'P) + P M,P,) 81

M. and M, are the common (reflection from symmetric port of the beamsplitter) and
differential (transmission out the antisymmetric port) Michelson operators, respectively;

and

2 2
r +1!
Ml' = r,TMlM,Tle(I'i‘ ’Th:,;TM:TMlrETMlMITMlPL|METM|P’-|) (82)

-1
(I + 1y ers M PLMermi PL)

2 2
r +1!
v + M2t itm2
My = riraMiru2 (1 + BT rerm2M irmaP o, M g2 P L,) (83)

-1
(I +rirmar ermaM irmaPLM eru2Pr)

are the operators for reflection from the arm cavities. Here we revert to the standard

naming convention of Fig. 2.4 (or see Fig. 3.4 below).
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3.4 Resonance and dark port conditions

3.4.1 Resonance condition

The resonance condition of a cavity (both arm cavities and the recycling cavity) can be

expressed as a condition on the round-trip operator M,
M, = ¢ ""M\'PM,'P, (84)

When the phase of an eigenmode is an exact multiple of 2n, the mode resonates. The
resonance condition is usually different for each eigenmode: higher order modes are not
resonant, when the fundamental mode is.

The round-trip operator M,, has an eigenmode E with eigenvalue c. If a cavity must
be resonant for the eigenmode E, then the length of the cavity has to be adjusted by a
length AL such that

—-2kAL +arg(c) = 2rn with ne Z (85)

Similarly, a condition for an eigenmode to be anti-resonant can be written as

—2kAL + arg(c) = 21t(n+%) with ne Z (86)

3.4.2 Dark port condition

For dark port operation no carrier light leaves the interferometer through the
antisymmetric port and all the power is reflected towards the recycling mirror. It is this
condition which gives the recycling cavity a high finesse. Again, if E is the resonant
eigenmode of the recycling cavity, then the power at the antisymmetric port can be written

as

1
Pdark = EEta""‘ Ean“'c’c EtPICfMDfMDPl(_E (87)

where I and /,, are defined in eqn. (15). Using the definitions of M, and M,' above, the

derivative can then be approximated by

A p. o sin(-4kly+ arg(E)) + ... (88)
dl,
with & = E'P,'M,"P,'P, M\'P,E (89)
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where we neglect the terms due to resonant built-up in the recycling cavity. (These terms
are zero at the exact dark port condition, that is, the dependence of the power in the
recycling cavity on the differential Michelson length I, is second order only.) The dark

port condition can then be formulated as
—-4kly+arg(E) = 2nn  with ne Z (90)

If both the resonance condition of the recycling cavity and the dark port condition of
the Michelson are to be adjusted, it must be done iteratively. First, the resonance is set and
the resonant eigenmode is used to calculate the differential Michelson length correction
for the dark port condition. This will slightly change the resonant mode, so the resonance
condition has to be applied again. This is repeated until both the common and the

differential Michelson lengths have converged.

3.5 Calculated alignment sensitivity matrix

The modal model is a versatile tool and is used, for example, to calculate the
alignment sensitivity matrix for various interferometer configurations and to determine

sensitivity of the gravitational wave signal to angular misalignments.

3.5.1 The bimodal implementation

In this section we describe the modal model representation of the interferometer using
the TEMy, and TEM,, modes only. In Fig. 3.4 we set up the coordinate system and
naming conventions. Ten angular degrees of freedom completely describe the
interferometer in Fig. 3.4, since misalignment of the beamsplitter is equivalent to tilts of
the arm cavities. With the z-axis always pointing along the direction of the beam
propagation vector and the y-axis always pointing upward, the x-axis is horizontal and
perpendicular to the beam propagation direction: Since the beamsplitter mirrors the image
in the horizontal but not the vertical direction, the coordinate system for the off-line arm is
left-handed for the incident beam. Essentially, with each reflection in the interferometer,
the coordinate system flips, that is, a right-handed coordinate system becomes left-handed.
A positive misalignment angle corresponds to a right-handed rotation about the axis
defined by the rotation vector (Fig. 3.4). Similarly, the convention for mirror reflectivity is

that the amplitude reflection coefficients are negative for reflections from the coated
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Figure 3.4: Sign convention of the misalignment angles. The rotation
axes (vectors) for both horizontal and vertical misalignments are
shown. The coated mirror surfaces are drawn in bold.

surface and positive for reflections from the substrate side. Mirror radii of curvature are
positive when the concave surface faces the incident beam. In accordance with these

conventions, the input field in the one-dimensional modal space is a vector:
[i_.2_.2
Einc = EO[ I-x —a] (9l)
x—io

where Ej is the input field; x and o are the beam shift and tilt in units of beam radius and
divergence angle, respectively. Similarly, propagation through a distance (z,-z,;), and
mirrors with misalignment angle © in units of divergence angle are represented by

matrices:

i _ in ’ 2 .
P(zz' ZI) = e ik(z, ZI)[C ?] and M = l —46 —216 (92)
0 &M —2i0 A1-40’

The above expression for M is similar to that in eqn. (72), with one important difference:

the diagonal terms must be expanded to order ©? to ensure that the eigenvalues of M do
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not exceed unity. The same argument holds for TEM, component of the input field

vector.

Using the fields in eqns. (77) through (83) and the above operators, we calculate the
amplitudes of the RF photocurrents' on half-plane detectors placed at the output ports of
the misaligned interferometer. Misalignment of the interferometer mirrors causes
deviations from resonant lengths and longitudinal resonance is recovered by a “resonance
finder”. The resonance finder is a four-dimensional root finding routine which sets the
microscopic interferometer lengths to null the signals on the length sensors (see
Table 2.1), which is equivalent to the algorithm in Section 3.4. For each misalignment
angle the Guoy phase shift from the appropriate port is adjusted to maximize the signal on
the wavefront sensor which is primarily sensitive to that degree of freedom (see Table 2.9).
The RF amplitudes on each wavefront sensor are scaled by the input power, the
modulation depths of the phase modulated input fields and the normalized misalignment

angle to deduce the alignment sensitivity matrix (see eqn. (50) in Chapter 2).

3.5.2 The alignment sensitivity matrix for the FMI

With the design parameters in Table 2.7 on page 34, we use the modal model to
calculate alignment sensitivity matrix for the interferometer configuration studied in the
FMI experiment, described in Chapter 4. The alignment sensitivity matrix for the FMI is
given in the highlighted bottom right corner of Table 3.1. Also included are the Guoy
phase shifts from the detection ports for maximum detection of the highlighted degree of
freedom. The misalignment angles used for the calculations are linear combinations of the

individual mirror angles 6, :

ETM,) 0 101 0][e)]
ITMp| -1 0 1008, |
ETMC=720 101 0]fe, (93)
ITM 1 010 offe,
| RM | [0 0 0 0 ./2]]95

1. The RF amplitudes are a factor of 2 larger than the down-converted demodulator signals given in
eqns. (13) and (14) in Chapter 2 (due to time averaging over one cycle). All numerical results
presented in this work are given as RF amplitudes of the field.
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where 8, and 0, are the misalignment angle of the ITM and ETM mirrors of the on-line

arm, respectively, 0; and 6, are the misalignment angle of the ITM and ETM mirrors of

the off-line arm, respectively, and O is the misalignment angle of the recycling mirror.

PHASES ANGULAR DEGREES OF FREEDOM
PORT RF |[Guoy | RM | ITM; | ITMp | ETMp | ETM,
1 reflection, SCNR 1 152° -5.49 0.73 0.88 0 0
2 reflection, SCNR I 92° =3.00 1.65 1.61 0 0
3 dark port, SC Q 168° -197 -8.00 8.59 0 0
4 dark port, C Q 80° -2.48 352 -28.7 36.9 -30.1
5 reflection, C I 87° -2.06 4.16 427 4.66 4.69
6 recycling, C I 140° —46.9 72.2 73.0 67.8 68.5

Table 3.1: Alignment sensitivity matrix for the FMI with design (ideal)
parameters. The RF and Guoy phases of each detector (row) are optimized.
Off-diagonal matrix elements which are less than 1072 of the diagonal
elements are rounded to zero.

The signals on WFS6 are redundant with those on WFS5, but we include them here as

an optional detector. Experimental determination of the elements of the above matrix is

the crux of the FMI experiment and is discussed in the next chapter.



Chapter 4

Experimental technique

In this chapter we describe the Fixed Mirror Interferometer experiment. The primary
objectives of the experiment are to demonstrate the wavefront sensing scheme proposed in
the preceding chapters and to characterize the performance of the wavefront sensors,
which are designed to meet LIGO alignment requirements. Since the instrument response
and control actuation of the fixed mirror system is vastly different from that of a
LIGO-like suspended interferometer, issues of frequency response to noise inputs and
actuator noise will not be addressed. Sensor noise will be dealt with insofar as is necessary
to characterize the wavefront sensors. The main objective of the current FMI experiment
is, then, to experimentally determine the alignment sensitivity matrix, to compare the
experimental result and the matrix elements calculated using the modal model (see
Section 3.5) and to demonstrate that wavefront sensing signals can be used to dynamically

control all ten angular degrees of freedom simultaneously.

4.1 Overview of experimental layout

The optical layout of the FMI experiment is similar to that of the LIGO interferometer
and reflects some of the complexity of the long baseline detector. There are four
longitudinal and ten angular degrees of freedom to be controlled. The environmental
excitations are significant since the experiment is neither in vacuum, nor particularly well
isolated seismically. Two aspects of the experiment have required most of our efforts: first,
since this was the first experimental test of the multiple frequency modulation scheme
using this particular optical configuration, the lock acquisition and continuous operation
have been a challenge, and, second, since we wish to make a quantitative comparison
between theory and experiment, the absolute calibration procedures have been crucial.
Main features of the experiment include wavefront sensors and demodulators, a
VME-based data acquisition computer to read in 128 channels of data and to implement
digital closed loop control, fast PZT actuators which allow for a 20 kHz bandwidth on the

length control servos and an auxiliary pointing system for absolute angular calibration.
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Figure 4.1: Schematic overview of the FMI experiment.



In Fig. 4.1 the optical layout of the FMI experiment is shown, along with the three
sensing systems, namely, the length sensors, the wavefront sensors with Guoy phase
telescopes and the pointing system. The interferometer layout differs somewhat from the
typical LIGO layout; most of these differences pose no disadvantage to the experimental
objectives, in fact, they are often beneficial. As a consequence of the limited space on the
optical table and the constraints imposed on the interferometer lengths (see Table 2.4), the
arm cavities are parallel and lie adjacent to each other and the recycling cavity has a fold
in it. This provides a topology where there are two mirrors, and thus two actuators, per
length degree of freedom. We take advantage of this by using one “fast” (large bandwidth
but small dynamic range) and one “slow”(small bandwidth but large dynamic range) PZT

actuator to control each length.

The interferometer parameters realized in the FMI experiment were quite similar to
the design parameters. Both are listed in Table 2.7. The model predictions which are

compared with the measurement use the experimentally determined parameters.

4.2 Description of the alignment sensing measurement

Using eqn. (50), the signal on the j-th wavefront sensor signal is converted into an

ADC voltage by the expression:

ViP€(1,m, ©) = 2ePJo(T)J\(DkppGapcZ;A,B;cos(n 1) cos(Qe +0,)  (94)

Iy

where ¢ is the quantum efficiency of the photodiode; 6; is the misalignment angle for the
i-th degree of freedom; A;; is the alignment sensitivity matrix; 1 is the Guoy phase shift to
the detector (see Section 4.3.2); m;; and ¢;; are the intrinsic Guoy and RF phases,
respectively; P; is the TEMgg power on the detector; 2 and I' are the RF modulation
frequency and depth, respectively; G5pc is the ADC gain; Z; is the transimpedance gain of
the wavefront sensor; and kpp, is a constant factor which scales the infinite half-plane
photodiode used in calculations to a finite apertured diode. All the optical properties of the
interferometer and the fields propagating in it are contained in the alignment sensitivity

matrix, A;, and these are, in fact, the coefficients we wish to compare with the modal

ij‘l
model predictions.

The measurement of the alignment sensitivity matrix is carried out by dithering each
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of the ten angular degrees of freedom simultaneously — but at different frequencies —
and writing the measured wavefront sensor signals to disk. Capturing a data set entails
acquiring longitudinal and angular lock of all degrees of freedom (detailed in
Section 4.4.3). At this point the interferometer is resonant and aligned and all degrees of
freedom are under closed loop control. The angular degrees of freedom are then
modulated at frequencies outside the bandwidth of the angle servos, typically 40 to
100 Hz. Power spectral densities for the pointing system and wavefront sensor signals are
computed off-line and the alignment sensitivity matrix elements are inferred using the
amplitudes of the signals at each dither frequency and scaling appropriately by the
measured optical and electronics gains. The signal on a given wavefront sensor at each
dither frequency corresponds to the sensitivity of the detector to that particular degree of
freedom. In this manner, by measuring the signal amplitudes at all the dither frequencies
present in the Fourier spectrum for each wavefront sensor, we construct the alignment

sensitivity matrix.

4.3 Experimental apparatus

4.3.1 Wavefront sensor

Since our alignment sensing scheme is predicated on detection of spatial asymmetries
of the light where the combination of the TEM, component of the carrier beating against
the TEM ;o component at the RF sideband frequency and the TEM,, component of the
carrier beating against the TEM, component at the RF sideband frequency is measured,
the wavefront detector is a quadrant photodiode (see Fig. 4.2). The wavefront sensor
consists of two parts: the “head” is a module containing the quadrant photodiode with a
tuned circuit, an RF preamplifier and a DC diode current sensing stage following each
diode segment; each detector head is followed by a demodulator board, where the
photocurrent signal for each quadrant is down-converted separately [30]. The outputs of
this board are the demodulated signals and the average photocurrent for each segment of
the photodiode. The five demodulator boards are hosted in a VME chassis.

The photodiode is an Advanced Photonix, Inc. quadrant photodetector,
SD-197-23-21-041. Each segment has area 5.4 mm?Z. The absolute responsivity for argon
light at 515 nm is about 0.22 A/W. The photodiode operates in a linear regime up to
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Figure 4.2: Wavefront Sensor.

0.1 mW/mm? and goes into saturation about an order of magnitude above this level.
Typical DC photocurrents during normal operation are about 0.5 mA, the RF signal
current is about 0.8 HA rms. At RF frequencies the photodiode capacitance becomes
important; it is about 10 pF with a 50 V bias. The bias is applied through an LC filter to
decouple the bias supply from the RF signal. The RF photocurrent is converted to voltage
with an inductive load in parallel with the diode capacitance (a tuned circuit which is
resonant at the modulation frequency), after which it is amplified using a low-noise
CLC425 amplifier. The shot noise limited photocurrent is about 20 HA per segment. Since
the angular misalignment signal is given by the differences between two opposite
segments of the quadrant photodiode, the four quadrants have to be well balanced, that is,
their gains and intrinsic time delays should be equal within the required measuring
precision.

The demodulator board has an RF part and a low frequency part. The RF part, which

performs the actual demodulation of the detected light intensity, comprises of a local

oscillator which provides the demodulation clock signals and a mixer which performs the
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down conversion. Down-conversion is done into both the In-phase and the
Quadrature-phase. The local oscillator is running at double the modulation frequency and
is synchronized to an external clock signal using a phase-locked loop (PLL). The
demodulation signals for I-phase and Q-phase down-conversion are obtained using two
divide-by-two counters — cne triggering on the positive edge and one on the negative
edge of the local oscillator. The PLL has an additional advantage that its reference input
can be used as a global RF phase adjuster with a constant voltage-per-radian conversion

ratio. The down-converted signals are filtered and amplified to give a 10 kHz bandwidth.

The calibration of the wavefront sensor RF transimpedance gain, Z; in eqn. (94), is
performed in two ways: one method is to use the shot noise equivalent photocurrent to
infer the transimpedance and the other method is to shine amplitude modulated light of
known modulation depth on the photodiode and directly measure the RF transimpedance.
Gain calibrations using these two methods are consistent to within a few percent. The
uncertainty in the absolute gain is about + 5% for the 32 and 39 MHz wavefront sensors
and + 10% for the 58 MHz modules.

4.3.2 Guoy phase telescopes

The Guoy phase at a given detector is chosen to maximize the signal due to
misalignment of the primary degree of freedom for which it is responsible, as highlighted
in Section 2.4.3. For each detector, the magnitude of the off-diagonal terms in the
sensitivity matrix have sinusoidal dependence on the Guoy phase shift, but unlike the
diagonal terms, they are usually closer to the zero of the sinusoidal variation. The
off-c.agonal terms of the alignment sensitivity matrix are thus first-order sensitive to the
Guoy phase shift, while the diagonal terms are only second-order sensitive. Consequently,

some care must be taken in the design and implementation of the Guoy phase telescopes.

Given the uncertainties in the focal lengths and positions of the lenses, an optimization
algorithm based on a simulated annealing technique [31] is used to minimize errors in the
Guoy phase and spot size and at the same time make the telescopes as insensitive as
possible to uncertainties in their physical layout. We use a two lens solution for the
telescopes, which greatly simplifies the algorithm for optimizing the design constraints.
The resulting Guoy phase telescopes for the wavefront detectors are listed in Table 4.1.

The detector and demodulation frequency are given in column 1. The angle in column 2 is
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WFS | Ogyuey |f1(m) [zy(m) |f,(m) |z (m) |zg4,(m) | ERROR

1(32) 152° | +0.500 | 5.661 -0.025 | 6.212 6.458 18°
2(32) 92° +0.500 | 5.661 -0.025 | 6.185 6.629 +6°
3(39) 168° | +0.500 | 1.845 -0.100 | 2.460 2.746 17°
4 (59) 80° +0.500 | 1.845 -0.050 | 2.305 2.682 +7°
5(59) 87° +0.500 | 5.661 -0.025 | 6.184 6.622 +6°
6 (59) 140° | +0.500 | 1.525 -0.050 | 2.055 2.388 *+16°

Table 4.1: Data for the Guoy phase telescopes. The Guoy phase shift is
given from the port.

the Guoy pnase which maximizes the diagonal degree of freedom of the alignment
sensitivity matrix. It is the propagation needed from the port in question: for example, for
wavefront sensor 1, which detects misalignment of the recycling mirror primarily, the
Guoy phase which maximizes the signal is 152° from the recycling mirror, or 205° from
the waist (nominally at the flat arm cavity input mirrors). f; and z; are the focal length and
position from the waist of the first lens, respectively; f, and z, are the focal length and
position of the second lens, respectively; and zg,, is the position of the wavefront sensor
(see Fig. 4.3). The errors listed are primarily due to uncertainty in the position of the
second lens, z,, which is not intrinsically difficult to measure, but makes the greatest
contribution to the error budget because of the particular optimization process we use. We
eliminate the uncertainty in the beam up to z, (the greatest error comes from the
uncertainty in f;) by a sequence of steps which we call the infinity adjustment. We move
the second lens to a position z_, so the spot is focussed at infinity, which is equivalent of
minimizing the divergence of the beam. We then move it by a distance Az = z_ -z,
which is known from calculation and easily measured since it is typically a centimeter.
The remaining errors come from our ability to deterinine z.., and hence z,. Since we use
the properties of the telescope to minimize the errors, it is no coincidence that the signals
on the wavefront sensors with the greatest uncertainty in the Guoy phase are also the most

insensitive to Guoy phase shift.

The typical two-lens design of Guoy phase telescopes uses the first lens to focus the
beam, more gently for longer focal length lenses. As the beam goes through a waist (near

the focal plane), it acquires an additional 180° of Guoy phase. The second lens is placed
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Figure 4.3: Beam profile and Guoy phase shift for a Guoy phase
telescope. The spot size and guoy phase shift are plotted as a
function of position from the port. z,,,, refers to the position of
the port (recycling mirror in this case), z; and z, to the positions
of the first (converging) and second (diverging) lenses,
respectively, and z,,, to the position of the detector.

near the focal plane of the first lens, at a distance such that it picks up the required Guoy
phase. Since the spot size near the focus is very small (typically 100 um), the second lens
is usually a strong negative lens which also expands the beam (shown in Fig. 4.3), This is
a particularly robust scheme since the distances which are practically most difficult to
control are least critical. Specifically, there are three advantages to this design: first,
insensitivity to the position of the first lens, which is usually a few meters from the output
port and can have a large uncertainty; second, the spacing between the two lenses is
crucial, but this is typically a few centimeters and, therefore, easily determined; and, third,
the detector position is not critical, again a desirable effect. In fact, with this telescope
design, the detector can be *1 cm from the design position and contribute less than 0.1%

to the Guoy phase error.

4.3.3 Input optics train

The input optics train consists of three optical paths: light from the laser is split into
the frequency stabilization path, the carrier path and the frequency-shifted subcarrier path.
After shifting the SC frequency and adding the phase modulation sidebands, light from the

C and SC paths is recombined and launched into a fiber, which serves as a mode cleaner
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(see Fig. 4.4).
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Figure 4.4: Input optics train. The subcarrier generation scheme
is detailed in Fig. 4.5. QWP refers to a quarter-wave plate; PBS to
a polarizing beamsplitter; RFPD to an RF photodiode; and LO to
the local oscillator.

Frequency stabilized laser

The light source for the FMI experiment is frequency-stabilized light from a Spectra
Physics 2020 Ar*t CW laser operated single-mode at 515 nm. Typical output power during
operation is 250 mW. The frequency of the laser is stabilized by locking the laser
frequency to a reference Fabry-Perot cavity using the ubiquitous heterodyne reflection
locking technique outlined in Section 2.2.1. The fluctuations of the resonant frequency of
the reference cavity are significantly lower than those of an unstabilized Ar* laser and we
achieve typical frequency noise levels of 0.4 Hz/ JHz . About 10% of the laser light is
used for frequency stabilization and is phase modulated at 12.33 MHz with a Pockels cell.
The light reflected from the cavity is measured with an RF photodiode and demodulated to
obtain the error signal which is used to control the laser frequency. The RF photodiode
(RFPD) in this case is a monolithic EG&G SGD-200 silicon diode reverse biased at 170 V.

Again the RF photocurrent is converted into a voltage using a resonant circuit comprised
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of the diode capacitance in parallel with an inductor, followed by two stages of
amplification. The RF signal is down converted using a double-balanced mixer. Control
signals at low frequencies (DC to 300 Hz) are applied to the “slow” PZT actuator at the
output coupler of the laser resonator, at intermediate frequencies (DC to 100 kHz) to the
“fast” PZT at the cavity rear mirror and at high frequencies (DC to 1 MHz) to two Pockels

cells in series, which are external to the laser cavity.

Carrier and subcarrier generation

The carrier light is phase modulated at 58.5 MHz using a Pockels cell. The subcarrier
light is double-passed through an acousto-optic modulator (AOM) at 195.5 MHz to give a
frequency shift of 391 MHz relative to the carrier (detailed in Fig. 4.5), after which it
passes through two Pockels cells at 39 and 32 MHz, respectively.

From laser
Pockels cells To fib
Polarizin V4 (—/ A »0 -
beamsplitgter L/ [ /
39 MHz 32 MHz
Acousto-optic modulator QWP Mirror

Mirror k k; k;/

- ~
_r/ \\
- I S
Tk-’

\__*'ransducer
V(1) = Vycos(w,t)

Figure 4.5: Subcarrier generation using a double-passed
acousto-optic modulator.

The principle behind the double-passed AOM is simple: an acoustic wave induces a
spatial modulation of the refractive index of the acousto-optic medium, which diffracts the
passing optical wave, Using the notation in Fig. 4.5, from conservation of momentum the

wavevectors for the incident, diffracted and acoustic waves — k;, k; and k,, respectively

74



— follow the relationship

k;+k, =k, (95)
and from conservation of energy

0 +0, = O, (96)

The diffracted wave is both deflected and frequency-shifted relative to the input wave.
Upon reflection from a curved mirror, the wave returning to the AOM is

cki = —(0; + (n,)lfd, and exiting the AOM we get
ck; = —(o; + 20,)k; 97

which is a wave travelling in the opposite direction to the input light and shifted in
frequency by 2®,. The curved mirror has the advantage of retroreflecting the
single-passed light beam when its deflection angle changes due to small adjustments in
frequency. The incoming laser light is well polarized and is maximally transmitted
through the beamsplitter, its polarization is rotated by 90° upon double-passing the
quarter-wave plate, so the light returning from the AOM is maximally reflected towards
the Pockels cells and fiber.

The Isomet 1250C AOM used in the FMI experiment has a maximum diffraction
efficiency of 90% per pass with 800 mW of RF power at about 200 MHz. The
double-passed diffraction efficiency of 80% was seen to gradually degrade to about 50%
over a year.

After passing through two modematching lenses each, the carrier and subcarrier beams
are recombined on a beamsplitter and launched into a fiber which transports light from the
input optics table to the interferometer table. The fiber functions as a mode cleaner and
ensures collinearity of the carrier and subcarrier light which is incident on the
interferometer. Intensity drifts at the output of ihe fiber are measured to be about + 5%

over minutes.

Modulation depths are measured using the intensity spectrum of a scanning
Fabry-Perot cavity. The modulation depths in most of the FMI data runs are typically:
Iy, =0423+3%, Ty = 0253+7% and TI';, = 0.205+8%. Since the sideband

2 . .. T
power scales as I'", the low modulation depths limit our measurement sensitivity.
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4.3.4 Mirror actuators

Longitudinal and angular positions of the FMI mirrors are controlled by piezoelectric
transducers (PZTs). Three varieties of actuators are used in the FMIL Angular degrees of
freedom are controlled using Physik Instrumente P-286 disk translators with a maximum
expansion range of 100 um at 1000 V and a resonant frequency of 2.5 kHz. These are
bimorph piezo actuators where a thin ceramic disk which contracts radially is attached to a
metal sheet of similar size. This bending effect causes the center of the disk to arch up
when a voltage is applied. Two disk PZTs, one for each angular degree of freedom, are
attached to the mic heads of a gimbal mount (Burleigh SG-201). For longitudinal
actuation we use two types of PZT actuators. The “slow” PZTs are commercially available
Burleigh PZ-81 3-element models with a typical range of 2 pm at 1000 V. These PZTs
have resonances at about 300 Hz. The three PZT elements are balanced to give pure axial
translations of the mirrors which are centered on the actuation axis. The “fast” PZTs were
developed in-house to satisfy the specific needs of the FMI experiment. Since the seismic,
acoustic and mechanical excitations are rather significant in the FMI environment,
particularly from DC to a couple of kilohertz, the bandwidth of the length control servos
should exceed 10 kHz to ensure sufficient gain in the kilohertz band. PZT and mounting
structure resonances pose a severe limitation to the bandwidth and we found it necessary
to design an actuator with a flat frequency response out to tens of kilohertz. A schematic

representation of the fast PZT actuator is shown in Fig. 4.6.

constrained layer

1" mirror
annular disk PZT

metal washer
EAR elastomer

reaction mass
constrained layer

Figure 4.6: Fast PZT actuator: the reaction mass and clamp
plate have a constrained layer of epoxy; the EAR elastomer is
used for compliance; electric fields are applied using metal
washers.
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The notable features of the actuator design are the use of constrained layer damping to
suppress low-frequency shear modes; a relatively massive bottom piece to provide
sufficient reaction force; clamping with a radial arrangement of screws, which allows for
the absence of adhesives — an alleged cause of contamination of mirror coatings; the use
of an elastomer as a compliance layer to ensure that the mirrors don’t crack; and
maintaining a 1/2" clear aperture. Two PZTs are used in a push-pull arrangement, one
forward- and one reverse-biassed. The annular disk PZTs (Piezo Kinetics Inc. PKI-550)
are specified for maximum voltage of 400 V forward or 200 V reverse, which limits the
operating range to £200 V. The motion sensitivity is about 450 x 10> m/V which limits
the maximum range of the fast actuator to approximately one-half of a fringe. Though the
first resonance occurs at about 60 kHz, there is an in-line resonance at about 40 kHz which
can be suppressed by careful tightening of the screws (we find 5 in-lbs to work best).

Typical actuator characteristics are summarized in Table 4.2.

Actuator Sensitivity tl‘:-::(:::::::;

Angle actuator 100 x 10™° m/V @ 2.5kHz
“Fast” length actuator 0.45 x 10°° m/V 60 kHz
“Slow"” length actuator 2.0 x 10° m/V 0.5 kHz

Table 4.2: Characteristics of the PZT actuators.

a. For our particular mounting geometry this corresponds to about
3 prad/V.

4.3.5 Pointing system

The pointing system is a standard optical lever. A 3 mW intensity stabilized diode
laser (Power Technology, Inc. LPM-03) is reflected from an auxiliary mirror affixed to the
gimbal plate on which the interferometer mirror is mounted. The reflected beam is
incident on a quadrant photodiode. Each quadrant is followed by two amplifier stages
where sum and difference signals are processed and output through a 1 kHz single pole

filter.

The absolute angle sensitivity of the pointing system is calibrated by using a plane

glass plate of known thickness placed between the laser and the photodetector at a known
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angle which deflects the beam on the photodetector. For a plate of thickness T at an angle

6, the deflection, d, is given by

dx = T(sinﬂ— MJ (98)
2 .2
n" —sin"0
We use a 1.06 mm thick BK7 plate with refractive index n = 1.514 at a fixed angle of
10.3° to get a deflection of 0.065 mm. Over a 1 m lever arm this corresponds to angles of
about 0.07 mrad or 1.4V for a typical pointing system sensitivity of 20 V/mrad. This
in-situ calibration plate is itself calibrated using a micrometer stage and is accurate to
13%. The pointing system calibration is observed to drift by +15% due to changes in beam

shape and size and due to pointing fluctuations.

4.3.6 VME-based data acquisition and control system

The real-time data acquisition system used in the FMI experiment consists of a
Motorola 68040 based embedded controller, four 32-channel (single-ended) 12-bit
analog-to-digital converters (ADCs) and a 16-channel 12-bit digital-to-analog converter
(DAC) residing on a VME bus. To ensure a rapid data transfer rate the VME processor
stores data locally to a SCSI disk. A maximum sampling rate of 1 kHz can be achieved.

The front end CPU runs an EPICs database on top of the VxWorks real-time operating
system. The EPICs system on a Sun workstation is then used to connect the EPICs
database via an ethernet link and to provide a graphical user interface (GUI). The network
connection and the EPICs database are too slow to keep up with the 1 kHz sample rate, so
a C-program is run on the front end to link to the database kernel performing the fast /O
tasks and the digital servo control. Consequently, the database is used only for status and

operator control channels, all other functions are performed by the lower-level sequencer.

4.4 Servo systems

4.4.1 Length control

There are four longitudinal degrees of freedom to be held on resonance in the
interferometer: the two arm cavity lengths, the recycling cavity length and the differential

Michelson. In Fig. 4.7 one of the four length sensing and control systems is shown.
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Figure 4.7: Length sensing and control.

Referring to the notation in Fig. 4.1, the sum of the two arm lengths is measured with LS4
which detects the beating of the reflected light between the carrier and its sidebands. The
difference of the two arm cavity lengths is measured by LS3 at the dark port. The two
measured RF signals are separately down-converted. The resulting error signals are added
and subtracted to obtain the error signals for each arm cavity. The error signals are fed into
a compensation network which produces the needed control signals for the ITMs and
ETMs. The near mirrors are mounted on the slow large dynamic range PZTs, while the
back mirrors are mounted on fast PZTs. The common length of the near Michelson
interferometer — equivalently the recycling cavity length — is measured with the
subcarrier and its 32 MHz non-resonant sideband at the symmetric port (LS1), whereas its
differential length is measured with the subcarrier and its 39 MHz resonant sideband at the
dark port (LS2). No adding or subtracting is required here, because the recycling mirror
and the recycling cavity folding mirror both adjust the common length, whereas the
differential length is adjusted by the beamsplitter and the off-line arm folding mirror. High
voltage drivers are used to generate the required signals for the PZTs. The amplitude
modulated light is detected using the same type of RF photodiode circuit described in
Section 4.3.1, but reverse biased at 170 V.

Several design considerations and constraints are important for the PZT compensation
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network. To counter the mechanically noisy environment of the FMI, we require the
bandwidth of the length servos to be above 10 kHz, but we also need a large dynamic
range at DC. To this end we divide the control signal into a low frequency range and a high
frequency range to drive both the slow and the fast PZTs. The control signal of the fast
PZT is used as the error signal of the slow PZT compensation. The fast PZTs have a sharp
resonance (Q = 10) at about 60kHz, which is notched out. To facilitate acquisition of the
resonant state in the interferometer, it would be desirable to have an unconditionally stable
servo controller, but this imposes gain limitations which would not allow long locking
periods. For this reason we implement a single pole at 1 Hz with a lag compensation (a
pole/zero pair at 10 Hz / 5 kHz). The latter is engaged once initial lock is acquired. Salient

features of the PZT compensation network are listed in Table 4.3.

DESCRIPTION VALUE

Pole 10 Hz

Notch for compensating the PZT resonance | 57 kHz (Q=10)
Double poles 48 kHz (Q=1)

Additional lag compensation (pole/zero) 10Hz /5 kHz

Additional pole for slow PZT compensation | 1 Hz
Unity gain (fast PZT) 25 kHz
Unity gain (slow PZT) ~100 Hz

Table 4.3: Length control compensation network

The control signals are input to low-noise high voltage amplifiers which drive the
PZTs. The slow PZTs use a 0 - 800 V high voltage amplifier, while the fast PZTs use a
1200 V power supply.

4.4.2 Angular control

The alignment degrees of freedom are controlled by a digital servo system
implemented via the VME computer described in Section 4.3.6. The closed loop control
sequencer performs the following functions: the error signals are generated by
differencing the down-converted signals from opposite quadrants of the wavefront sensor,

which are read into the ADCs; they are then multiplied by the inverse of the alignment
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sensitivity matrix and passed through a low-pass digital filter (single pole at 0.1 Hz) to
yield the feedback signals. The digital filter is given by [32]:

T -2xf,T,

U, = U, +K,(1-¢e )E, _, (99)

where U, is the control signal of the present time sample, U, _, is the control signal of
the previous time sample, E; _, is the error signal from the previous sample period, f, is
the pole frequency, T is the reciprocal of the sample rate and X is the DC gain, defined
as K, = (fBW/fp_ 1).

The control signals are written to the DAC channels which drive the inputs to the high
voltage angle PZT drivers after additional analog low-pass filtering to remove digitization

noise.

4.4.3 Lock acquisition

A lock acquisition sequence for the interferometer is outlined below:

e align the ITMs by optimizing the overlap of the spot from each arm at the
antisymmetric port (minimize contrast defect);

e engage the differential Michelson length servo (LS2);

e align the recycling cavity by scanning the RM and minimizing the TEM ;4 mode in

the spectrum;
e engage the recycling cavity servo (LS1);
e the recycled Michelson is now locked using the subcarrier loops';

e adjust beam centering on the wavefront sensors using the differential DC

photocurrents;
e engage the recycled Michelson subset of the angle servos;
e adjust ETM alignment for best spot overlap on the transmission cameras;

e adjust arm cavity length offset to make both arms flash through resonance?, taking

care not to let the subcarrier come into resonance in either arm;

e simultaneously ramp up the gain in LS3 and LS4 servos;

1. Both the LS1 and LS2 servos have enough phase margin to acquire lock with the high gain
“slow” controllers engaged.

2. The partial state when the carrier is resonant in just one of the arm cavities does not disturb the
Michelson loops, but causes a sign flip (due to a bright fringe at the antisymmetric port) in the arm
servos. Therefore, both arms must be near resonance to engage the arm cavity loops.



e the arm cavities lock;
e ramp up the gain to the “slow” controllers;
e engage all angle servos;

e at this point all four longitudinal and all ten angular degrees of freedom are under

closed loop control.

4.5 Data Analysis

A typical data run is about 30 seconds long and data from the wavefront sensors and
the pointing system along with auxiliary channels are gathered at a sampling rate of 1 kHz
(or 500 Hz), yielding a total of about 8 MB of data on disk. Before analysis the data is
binned (usually 2 or 4 samples) and truncated to 2'* data points to optimize for the

following Fourier transforms.

4.5.1 Fourier analysis

Each angular degree of freedom is dithered using a sine function at a frequency
between 40 and 100 Hz and is demodulated using the same frequency. The upper plot in
Fig. 4.8 shows the amplitude spectral density of the pointing system measuring the
horizontal misalignment of the RM. Clearly present is the peak at 40 Hz, the dither
frequency for horizontal misalignment. The smaller peak at 44 Hz is due to the vertical
dither and is a measure of the alignment of the pointing system with respect to the rotation
axis of the mirror. We note that this effect is only a few percent. To obtain the physical
amplitude of the angular dither, the time series data is multiplied by a sine function at the
dither frequency. The resulting time series is then summed over all data points, thus
averaging out signals at all frequencies other than the one at the dither frequency. This
down-conversion is repeated for each angular degree of freedom using the corresponding
pointing system spectrum with its dither frequency. Scaling by the calibration of the
individual pointing systems we calculate the true physical alignment dither amplitudes,

8, , for each angular degree of freedom, j.

Since each angular degree of freedom has a different dither frequency, the wavefront
sensor signals corresponding to a given degree of freedom appear at that particular dither

frequency. The lower plot in Fig. 4.8 shows the amplitude spectral density of the

82



1.0
g o
(7]
P
" (7]
L 2 o0l
-a E
§ o
E S 0.001
Q
Q
(="
7]
3 10
2 8
| & |
E 2 o1 ' |
=
o
&
2 o0l
3
3
0.001 |

20 40 60 80 100 120
frequency (Hz)

Figure 4.8: Fourier spectrum of pointing system signal for
horizontal misalignments of the RM and the corresponding
signal on WFSI1. The peak at 40 Hz is due to horizontal
misalignment of the recycling mirror, RM,; RM, appears at
44 Hz; ITM1, at 48 Hz; ITM1, at 52 Hz; ETMI at 56 Hz;
ETM2, at 59 Hz; ETM1, at 63 Hz; ITM2, at 67 Hz; ITM2, at
72 Hz; and ETM2, at 76 Hz.

horizental signals on WFS1 at the reflection port. The Guoy phase shift is adjusted for
greatest sensitivity to RM misalignments. Indeed, the strongest signal appears at 40 Hz,
the frequency of the horizontal dither on the RM. As is to be expected, signals at the
horizontal dither frequencies of ITM1 and ITM2 — 52 Hz and 67 Hz, respectively — are
also pronounced. We note that the vertical dither of the RM at 44 Hz appears stronger than
the pointing system readout indicates. This effect is too large to be explained solely by the
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uncertainty in the orientation of the wavefront sensor heads with respect to the rotation
axes of the mirror mounts. In two of the wavefront sensors (WFS1 and WFS2) a rather
large asymmetry between horizontal and vertical signals is observed, that is, one of the
signals is too large and the orthogonal signals are too small. This is also believed to be due
to mode contamination. In fact, we measure the beam shape on these two detectors to be
fairly elliptical (~20%), which would lead to corrections with opposite signs to horizontal
and vertical signals. Furthermore, the signs of the effect are well correlated with the
orientation of the eliiptical beam. To decrease the uncertainty induced by this effect, we
average over the horizontal and vertical signals when comparing the measured results with
the predicted ones. We find that only 85% of the total input power actually couples into the
interferometer (this effect is included in Table 4.4). The power reflection coefficient for the,
recycling cavity on resonance is expected to be near zero for the subcarrier, that is, the SC
is almost critically matched. Instead, we measure a power reflection coefficient of 0.15,
which implies that effective input power is 15% iess than we expect. Coupling losses due
to the measured 20% ellipticity of the input beam (~4%), coupling losses due to imperfect
modematching (~3%) and the non-TEM, component of the fiber output (~7%) account
for this effect. We emphasize that this effect is not an intrinsic limitation of the wavefront
sensing technique, but rather, an artifact of the quality of the optical components used in
the FMI.

. . D . .
The signal amplitude V,."j € on the i-th wavefront sensor due to the J-th degree of
freedom is determined from the measured time series using the same down-conversion
technique as for the pointing system. We then inveri eqn. (94) to obtain the alignment
sensitivity matrix:
C
yADC

- _ ; 100)
J 2ekPDP,-I0(r1)J|(Fl)Zle.’ (

A

The RF and Guoy phase dependences are now included in the alignment sensitivity matrix

elements A, that is,

A, = Ajcos(n —-n;)cos(Q +0;) (101)

where we choose the RF phase of each detector to yield maximum signal for the diagonal
terms, that is, cos(2t + ¢;;) = 1 after the down-conversion. Similarly, the Guoy phase at

each ‘etector is chosen to give maximum signal for the on-diagonal elements and to thus

84



minimize the uncertainty associated with the Guoy phase telescopes, that is,
cosm+n;) =1

The factor kpp is a constant and depends only on the photodiode shape. The ADC
gains are between 2 and 10 with negligible uncertainty of 0.1% (inferred from endor
specifications) and the photodetector quantum efficiency is measured to be
€ = 020+£0.01. Typical pointing system angles are found to be
0;=a;Xx 107 rad +10%, where 0.5< a;<3.0 for the different angular degrees of
freedom.

Since the laser light at each port is split among the different sensors, the power, P,, is
the input power multiplied by the fraction of power which is dedicated to the

corresponding detector. The power levels at each detector are listed in Table 4.4:

DETECTOR WFSI WES2 WES3 WFS4 WESS5 WES6
P; ( 10 W) 399 342 486 967 727 208
cp/P; +0.06 +0.06 10.06 10.06 +0.06 10.08

Table 4.4: Power levels at each detector and associated fractional
uncertainties,

The transimpedance gains of the wavefront sensors, Z;, are calibrated off-line and are
listed in Table 4.5:

DETECTOR WESI1 WEFS2 WES3 WFS4 WES5 WFS6
Z, (10 Ohm) 2389 2329 1681 1036 1037 1134
C6,/Z; +0.05 10.05 +0.05 10.10 10.10 +0.10

Table 4.5: Transimpedance gain and fractional uncertainty for each
wavefront sensor (the transimpedance gain for each wavefront sensor is
averaged over all four quadrants).

The modulation depths are measured using a separate analyzer cavity and are listed in
Table 4.6:
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MODULATION FREQUENCY (MHZ) 32 39 59

0.423 0.253 0.205

c,/x 10.05 10.05 10.10

Table 4.6: Modulation depth and fractional uncertainty for each
modulation frequency.

4.5.2 Statistical errors

Both angular fluctuations due to acoustic excitations of the mirror mounts and the
quantization noise of the ADCs are treated as statistical errors. Fluctuations are averaged
out by the duration of the measurement (30 seconds) and quantization noise is suppressed
by oversampling of the data. Statistical errors are determined from the power spectrum by
estimating the noise level with data to the left and right of the Fourier peaks. The statistical
uncertainty is typically under +3%. Most of the measurement errors, then, are believed to

be systematic.

4.5.3 Systematic errors

The measurement of the alignment sensitivity matrix elements is directly proportional
to the parameters in eqn. (94) with the exception of the Guoy and RF phase deviations
from the maximum, which have a cosinusoidal dependence. The matrix elements are also
found to be insensitive to small changes in the geometric (g-) parameters of the beam: this
is to be expected for a reasonably collimated beam as in the FMI where the divergence
angle is small. On the other hand, the matrix elements are strongly influenced by changes
in the optical fields and, therefore, rather sensitive to mirror reflectivities and losses,
denoted by /. The dependence of the matrix elements on the interferometer losses is not
straightforward — the losses effect the fields detected at the different ports differently —
so we use the modal model to calculate the derivative of each matrix element with respect
to optical losses in the interferometer. We find that loss in the recycling cavity, which
reduces the recycling gain, is the most significant effect. The uncertainty in the
measurement of the A, also depends on the fractional uncertainties in the quantum

efficiency, €; the input power, P,y ; ihe absolute angle, 8;; the fraction of the light
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detected on each wavefront sensor, f;; the modulation depths, I'; the transimpedance
gains, Z;; and the Guoy phase shift 1 ij- The fractional uncertainty in each matrix element,

A, is given by

Oa,; _ 1 [04;;
A JZ’[/T- ox

ij n ij n

o,"]z (102)

where A;(x,) = A(g, Py, 0, fi,T;,Z, M, 1), assuming that each of the x, are

independent of each other. Gy, ,the uncertainty in the value of each A;;, depends only on

ij
the uncertainties, o, , in the parameters, x,, . From eqn. (94),

yAPC
A. = L g(h) (103)
Y eP®;IZ,cos(n-ny)
where g(1) is a non-analytical function of the losses. Eqn. (103) implies that
1 |0A;;

and

1 aA,.,. _

Aijﬁ = tan(m -"N;;) (105)

while (1/A;;)(dA;;/dl) are calculated using the modal model. The x, can be divided into
three categories based on how they contribute to the uncertainty in A: the uncertainties in
€, P; ,and 0; are the same for all matrix elements and are summarized in Table 4.4 and
the preceding text; uncertainties in Z; and I'; are different for the three modulation
frequencies and are listed in Table 4.5 and Table 4.6, respectively; uncertainties in
(n—-m;;) and [/ are different for each matrix element and are given in corresponding

matrix form in Table 4.7 and Table 4.8, respectively.
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DETECTOR Gy, RM ITM1 ITM2 ETM1 ETM2
WES|1 8° -0.01 10.22 10.22 0 0
WES2 6° 10.16 -0.01 -0.01 0 0
WEFS3 16° 10.13 -0.04 -0.04 0 0
WFS4 6° 10.05 10.01 10.01 -0.01 -0.01
WES5 6° 10.06 10.01 10.01 -0.01 -0.01
WEFS6 6° 10.04 10.04 10.04 10.03 10.03

Table 4.7: Uncertainty in each matrix element due to the uncertainty in the
Guoy phase shift of each telescope. For the on-diagonal terms we include

second-order corrections.

DETECTOR RM ITM1 ITM2 ETM1 ETM2

WFSI -0.11 -0.11 -0.11 0 0
+0.13 +0.14 +0.13

WEFS2 -0.10 -0.11 -0.10 0 0
+0.13 +0.14 +0.13

WES3 -0.18 -0.18 -0.18 0 0
+0.24 +0.23 +0.23

WEFS4 -0.15 -0.15 -0.15 -0.15 -0.15
+0.20 +0.19 +0.19 +0.19 +0.19

WEFS5 -0.06 -0.06 -0.06 -0.07 -0.06
+0.06 +0.07 +0.08 +0.08 +0.08

WEFS6 -0.11 -0.11 -0.11 -0.11 -0.11
+0.18 +0.17 +0.17 +0.17 +0.17

Table 4.8: Uncertainty in each matrix element due to a £0.01 uncertainty in
the loss of the recycling cavity.
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In Table 4.9 we list the measurement error associated with each matrix element.

DETECTOR RM ITM1 ITM2 ETM1 ETM2

WEFS1 -0.17 -0.28 -0.27 0 0
+0.19 +0.29 +0.28

WES2 -0.24 -0.17 -0.17 0 0
+0.25 +0.19 +0.19

WES3 -0.28 -0.24 -0.24 0 0
+0.29 +0.28 +0.28

WFS4 -0.23 -0.22 -0.22 -0.22 -0.22
+0.26 +0.25 +0.25 +0.25 +0.25

WEFS5 -0.18 -0.17 -0.17 -0.18 -0.18
+0.18 +0.18 +0.18 +0.18 +0.18

WFS6 -0.21 -0.22 -0.22 -0.21 -0.21
+0.24 +0.24 +0.24 +0.24 +0.24

Table 4.9: Total fractional error associated with each matrix element.

In the above analysis only the diagonal terms of the Jacobian matrix are considered.

This is a valid approach given that we expect our errors to be independent, to first order.
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Chapter S

Results and Discussion

5.1 Measured alignment sensitivity matrix

The measured elements of the alignment sensitivity matrix are presented in Table 5.1;
each one is averaged over the horizontal and vertical degrees of freedom. Also included
are the modal model predictions based on the experimental conditions present during the
measurement (see Table 2.7). The subcarrier signals (WFS1, WFS2 and WFS3) are
insensitive to the ETM alignment degrees of freedom and both the predicted and measured

signals are <0.01, which are rounded to zero in Table 5.1.

PHASES ANGULAR DEGREES OF FREEDOM
PORT RF |Guoy| RM | ITM1 | ITM2 | ETM1 | ETM2
@refl, SCNR| 1 | 152° ] -2.59 0.34 0.43 0 0
-3.50 0.40 0.45 0 0
@refl, SCNR | I 92° | -1.42 0.76 0.78 0 0
-2.04 0.67 0.75 0 0
@ dark, SC Q | 168° | -0.67 -2.77 2.98 0 0
030 | -2.89 3.14 0 0
@ dark, CR Q | 80 | -101 14.8 -12.1 15.5 -12.6
074 | 114 -11.8 13.6 -11.1
® refl, CR I 87° | -2.05 3.65 3.67 3.74 3.77
-3.28 3.28 3.62 3.37 4.01
® rec, CR I | 140° | -207 324 32.8 304 30.8
-25.0 220 27.3 214 2.3

Table S5.1: The calculated and measured (shaded rows) alignment
sensitivity matrix elements.
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Fig. 5.1 shows the significant elements of the alignment sensitivity matrix with their
associated errors. The quantitative agreement between the modal model predictions and

the measurement, evinced in Fig. 5.1, is an unequivocal validation of the model.
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Figure 5.1: Non-zero matrix elements of the measured alignment
sensitivity matrix. The measurements are scaled to the predicted
values, which are normalized to 1.0.

The only (small) matrix element which is measured with the “wrong” sign is the RM
signal on WFS3 at the dark port. Generally, RM signals are strongly suppressed at the dark
port since they are not differential signals. However, any imperfection of the
interferometer at the beamsplitter will appear at the dark port, which implies that this
matrix element is expected to have an intrinsically larger uncertainty than the other
(larger) elements of the alignment sensitivity matrix and does not represent a robust data
point in the measurement. It should also be noted that this element does not carry
important alignment information and is completely irrelevant for the servo design.

It is clear from Table 5.1 that the measured wavefront sensing signals give good
discriminants for the individual angular degrees of freedom, that is, the alignment
sensitivity matrix is clearly non-singular. By inverting the matrix and multiplying by the

measured wavefront sensor signals, robust error signals for each individual mirror angle
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are obtained. Fig. 5.2 shows the time evolution of two angular error signals with the power

level in the recycling cavity when the angular servo system is switched on.
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Figure 5.2: Closed loop control demonstration. The power in the
recycling cavity is maximized when the alignment loops are
engaged.

We see that the angular servo drives the error signals to zero and at the same time the
power in the recycling cavity increases, indicative of improved alignment. During our
dither measurements, the angular servo system for all degrees of freedom is used to keep
the interferometer aligned. The bandwidth of this servo loop is just a few Hertz so that it

does not interfere with the angular dither frequencies at 40 Hz or higher.

5.2 Applications to LIGO

In the following sections we use the modal model as a simulation tool to study the
effects of small misalignments in the long baseline LIGO detector and to design a
wavefront sensing scheme for it.

First we highlight some features of the LIGO optical design, in particular where it
differs from the FMI, which we have studied in detail in the preceding chapters. The most
significant difference is, of course, the change in the macroscopic interferometer lengths.
In LIGO each arm cavity is 4 km long, while the recycling cavity is typically between 6

and 12 m long (to be decided). The interferometer lengths are bounded by the vacuum
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envelope. This is also true for the input mode cleaner, a Fabry-Perot cavity between the
laser and the recycling mirror, which acts as a spatial filter for the light incident on the
interferometer. Since all modulation frequencies must pass through the mode cleaner (that
is, they must be resonant in the mode cleaner) and most of them must resonate in the
recycling cavity, the mode cleaner and the recycling cavity lengths are chosen to satisfy
these multiple resonance conditions. The asymmetry is chosen to optimally couple the

resonant sidebands out the antisymmetric port.

The disparity in the lengths of the recycling and the arm cavities results in a nearly
degenerate recycling cavity (where all higher-order spatial modes occur at the same
frequency as the fundamental or are degenerate with it). This could be circumvented by
introducing a strongly focussing element in the recycling cavity, but is not currently
planned for in LIGO. An unfortunate consequence of the degeneracy of the recycling
cavity is that it does not have good filtering properties for the light circulating in the
interferometer, except for the carrier, which has a double resonance in both the recycling
and the arm cavities. Furthermore, from our discussion in Section 2.4.3, we recall that the
wavefront sensing technique cannot ordinarily be used to distinguish misalignment of the
input and rear mirrors of a degenerate cavity (since the Guoy phase shift
N =tan"'(z/2,) ~0 when z«z,). In Section5.2.2 below, we see that the double
resonance of carrier is a special case and can be used to obtain distinct wavefront signals
for RM and ITM - misalignments.

We also note that the laser source planned for LIGO is a solid state Nd:YAG laser at
1.064 pm.

5.2.1 Effects of misalignment

There are a number of reasons why misalignment is detrimental to the performance of
the interferometer. The gravitational wave sensitivity can be degraded by static
misalignment. Misalignment of the optical components of the interferometer with respect
to the incident TEMg, laser light causes light in the fundamental mode of the
interferometer to be coupled into higher-order modes. This reduces the amount of power
circulating in the arm cavities due to diminished coupling of light into them, resulting in
reduced phase sensitivity. Higher-order modes leaking out the signal extraction port of the

interferometer result in increased photocurrent and shot-noise, and effectively lower the
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contrast of the interferometer, which, in turn, lowers the light power incident on the arm
cavities. In both cases the signal-to-noise ratio of the gravitational wave signal readout is
compromised. Furthermore, since misalignments can affect the two arms independently,
there is less common mode rejection of fluctuations in the laser power, laser frequency and
input beam jitter for differential misalignments. Beam jitter coupling can be a significant
source of phase noise. The modal model is used to study the effects of misalignment in the
long baseline LIGO interferometer and the results presented in this chapter draw heavily
upon the work of Daniel Sigg [9], [33], [34] and Peter Fritschel [35].

For the calculations involving the LIGO interferometer, the interferometer and
modulation parameters used are listed in Table 5.2 and Table 5.3, respectively. Since the
subcarrier is not used to probe the gravitational wave signal (L), most of the results
presented here use the modified single carrier modulation scheme discussed in

Section 2.2.2. Parameters for the subcarrier in Table 5.3 are not fully optimized.

PARAMETER UNIT | ARM (ITM) | ARM (ETM) | REC (RM)
m m 3999.01 9.38

ASYMMETRY m 0.21

POWER TRANSMISSION o 3.0 0.0015 2.44

LOSSES ppm 50 50 60

RADII OF CURVATURE m -14571 7400 -9999

WAVELENGTH pm 1.06
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MODULATION PARAMETER FREQ. SHIFT (MHZ) DEPTH (I)
"CARRIER 0.000 1L0W
CARRIER RESONANT SB (CSB) 23.971 0.45
CARRIER NON-RESONANT SB (CNR) 35.956 0.045
SUBCARRIER 727.121 1.OW
SUBCARRIER RESONANT SB (SCSB) 15.980 045
SUBCARRIER NON-RESONANT SB (SCNR) 43.946 0.045

Table 5.3: Modulation parameters.

Degradation of gravitational wave sensitivity

If S(AL) is the down-converted signal at the dark port as a function of the differential

arm cavity length AL, the gravitational wave sensitivity can be written as:

Suns = dALS(AL) (106)

If S,,,, is a also function of 8, the S-component vector of the horizontal (vertical)

misalignment angles, then S,,,,,(é) can be Taylor expanded to give:

:en:(é) SICIII(O) +Zae .N'MS zzae ae SEIlIelej+ (l07)

This sensitivity has a maximum if the interferometer is perfectly aligned and is hence only
second-order sensitive to misalignment. For a misaligned system, it can be approximated
by:

S,...(8) = ,,,,,(0)[1 + ‘GHG] (108)

where the Hessian matrix, H, given by

aZ
Hij = aT‘__aejSun:(é) (109)

is (upto a constant) the inverse of the covariance matrix C:
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C = 2H" (110)

Diagonalizing the covariance matrix gives the eigenvectors u; which are the axes of
the variance-ellipsoid (in the 5 dimensional angular space) and the corresponding
eigenvalues ¢? which are the square of the axes lengths (variances). Using the new basis
u; to express the misalignment angles y, the relative loss of sensitivity 8 can be easily

calculated by:

3 = -2;(%)2 (111)

where the factor of 2 comes from the fact that we have so-far neglected the vertical
misalignment angles. If the rms misalignment angles, A6,,, , are equal for all degree of

freedoms, one obtains

-5
{
N %

The signal-to-noise ratio of the gravitational-wave detection at the dark port is written

AB,,, =

rms

(112)

by replacing the signal sensitivity S, in equation (106) with the signal-to-noise

sensitivity:

4 _saL) ..

(g) _ dAL
L
Pcr+§P3b

where P, and P, are the average light intensities of the carrier and the sidebands

(113)

leaking out of the dark port (predominantly stored in the sidebands). The factor of 3/2
comes from the formulation for non-stationary shot noise [36].

The misalignment angles used for the calculations are linear combinations of the
individual mirror angles 6,, as indicated in eqn. (93) (see Section 3.5.1 for the sign
convention of the misalignment angles).

The modal model is used to calculate the covariance matrix, which is diagonalized for
the signal-to-noise ratio of the gravitational wave readout. The directions of the ellipsoid
axes u,; and the variances 6} are given in Table 5.4. The eigenvalues are a measure of the

degree of misalignment which degrades the gravitational wave sensitivity by 100%
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EIGENVALUE EIGENVECTOR (ELLIPSOID AXIS)
o2 (6}) RM ITM, IT™ ), ETM, ETM,
-6.39 -0.537 ~0.747 0.000 0.393 0.000
~0.834 0.231 0.317 0.000 0.920 0.000
-0.116 0.000 0.000 0.909 0.000 -0.421
—~0.0006 0.811 ~0.584 ~0.002 ~0.002 ~0.005
~0.0005 0.005 ~0.004 0.417 0.000 0.909

Table 5.4: Eigenvalues (variances) and eigenvectors (direction of the axes

of the variance ellipsoid) of the covariance matrix describing the

degradation of the gravitational wave sensitivity due to misalignment. The

o, are measured in units of the beam divergence angle in the arm cavities

6p = wo/29=9.65x10° rad.
(& = 1), while the eigenvectors represent the combination of individual mirror angles
which lead to that degree of misalignment. Larger values of o} indicate greater
insensitivity to that degree of freedom. The most sensitive degree of freedom, then, is a
differential misalignment of the ETMs with a differential tilt of the ITMs in the opposite
direction, as shown in Fig. 5.3(b). This happens because all the TEM 3 mode produced
differentially in each arm efficiently exits the antisymmetric port and gravitational wave
sensitivity is reduced due to shot noise production. The next most sensitive misalignment
degree of freedom is a common rotation of the ITMs with an opposite rotation of the RM
(see Fig. 5.3(c)). In the degenerate recycling cavity, the build-up of the resonant sideband
is rapidly reduced by misalignment, so the sideband power exiting the antisymmetric port
decreases. This lead to loss of gravitational wave sensitivity due to signal reduction. The
least sensitive misalignment is the one where all mirrors are rotated in the same direction,
which simply reduces the coupling of light power into the interferometer. In Fig. 5.3 the
dominant mirror misalignments represented by each eigenvector in Table 5.4 are
illustrated. We also note that the alignment of the ETM mirrors is as critical as the
alignment of the ITM and RM mirrors. If the alignment can done equally well for all
angular degrees of freedom and if the loss of sensitivity to gravitational waves must not
exceed 0.5%, for example, then eqn. (112) implies that each rms misalignment angle
should be smaller than A®, . = 8.0x10™ rad.

rms

A negative sign of the eigenvalue indicates a maximum, whereas a positive sign would
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Figure 5.3: Combinations of mirror miszlignment which degrade the

gravitational =~ wave  sensitivity: (a)  perfectl aligned;
(b) o’ = -0.0005 (most sensitive); (c) 6° = -0.0006;
(d) o’ = -0.116; (e)o’ = -0834; (Do’ =-639 (least
sensitive).

indicate a minimum. For the signal-to-noise ratio all eigenvalues are negative, implying
that the perfectly aligned case is a true maximum of gravitational wave sensitivity. For the
shot noise alone this is not true, that is, for some misalignments the power at the dark port

increases and for others it decreases.
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Input beam jitter

So far we have neglected the effects of a misaligned beamsplitter or tilted and shifted
input laser beam, since both the misalignment of the beamsplitter and the input beam can

be expressed as linear combinations of misalignments of the interferometer mirrors.

Input beam jitter can, however, couple directly into the gravitational wave readout if
the interferometer mirrors have a static misalignment [35]. For a perfectly aligned
interferometer this is a second-order effect, but when the interferometer mirrors are
misaligned, the length error signals become first-order sensitive to the direction of the
input beam. It is a very small effect for common misalignment of the test masses and the
recycling mirror and significantly more pronounced for the differential misalignment of
the test masses. The reason for this can be understood in the modal picture. All the power
in the TEM, o mode excited by differential misalignments of the interferometer mirrors is
coupled directly out the antisymmetric port. The TEM, component of the sideband of the
input beam also exits the dark port since the recycling cavity is highly degenerate. The
photocurrent on the length detector at the dark port is due the superposition of the carrier

beating against the sidebands for each TEM, ; mode, that is,

ig Y [(Eg ™ EY" + Eg "E™ ™) exp(iQt +1,,,) + CC] (114)
m,n

An important concern, then, is the effect of input beam direction fluctuations in the
gravitational wave detection band, at 150 Hz!, for example. This question is addressed by
expressing the TEM;, component of the input beam (due to jitter) as audio frequency
sidebands imposed on the carrier and RF sidebands in the modal model. We find that the
transfer function between thc gravitational wave demodulation signal at audio frequencies
and the input beam tilt or shift is remarkably flat out to 1 kHz [35]. This is perfectly
plausible given that the TEM,;, mode does not resonate in the arm cavities and is,

therefore, not affected by the double cavity pole.

Since the beam jitter coupling to the gravitational wave readout does not have a strong
frequency dependence in the signal band, we use the DC modal analysis to determine the
sensitivity to input beam misalignment. The gravitational wave induced signal at the dark

port can be written as:

1. Near the best gravitational wave sensitivity for LIGO.
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GWS;1e,(0 %0, ©) = 33, O,(B ot + Cyxo) (115)
i

where x,, is the lateral shift of the input beam (in units of the beam waist size) and o is the
input beam tilt (in units of the beam divergence angle). Table 5.5 lists the equivalent

differential arm length change for the constants B; and C;.

ANGULAR DEGREE OF FREEDOM
INPUT BEAM ETM;, IT™,, ETM_ ITM RM
"Tur (B;in m/rafr ~20.60 -9.34 <103 | <107 <1072
SHIFT (C;in/rad) | -10.9x10~* | -5.16x107* <107’ <107’ <107

Table 5.5: Gravitational wave sensitivity to beam jitter and misalignment.
The values are in units of meters of differential arm length change per
square radian for B; and per radian per meter for C;.

If we require that the gravitational wave signal at about 150 Hz due to beam jitter is
smaller than 107 m/JH—z and if we assume that the alignment servo system controls the
angular degrees of freedom to within 107 rad rms at low frequencies (<10Hz), then the
beam jitter at 150 Hz has to be smaller than 6 X 107" rad/ JH—z for both tilt directions and
smaller than 10~ m//Hz for the shifts in x and y.

5.2.2 Implementation of an automatic alignment system

In this section we propose a practical implementation of the wavefront sensing scheme
for a long baseline LIGO interferometer. The alignment sensitivity matrices for two
modulation configurations are presented along with a discussion of the relevant signals

and estimated shot noise limits.

Alignment sensitivity matrix

Using the parameters in Table 5.2 the calculated alignment sensitivity matrix is given
in Table 5.6. The ij-th matrix element denotes the RF amplitude of the signal on the i-th
wavefront sensor due to misalignment of the j-th degree of freedom. The values of A;; are

scaled by the corresponding RF modulation depths and are given in units of divergence
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angle.

PHASES ANGULAR DEGREES OF FREEDOM

PORT RF | Guoy | RM ITM¢ | ITMp | ETMp | ETM
CARRIER SIGNALS
1 reflection, CNR I =0; -1.84 0 0 0 0
2 reflection, CSB 1 90° -9.60 6.21 0 0 -0.5
3 reflection, CSB Q 145° ] 0 -1.37 0.05 0
4 dark port, CSB Q 90° 0 0 -11.4 ~25.0 0
5 reflection, CNR I 90° 0 —0.92 0 0 -2.01
SUBCARRIER SIGNALS
1 reflection, SCNR I 0° -136 96.5 0.1 0 0
2 reflection, SCNR I 0° 136 -96.5 0 0 0
3 dark port, SCSB Q 0° 1.05 -0.66 -10.4 0 0

Table 5.6: Possible alignment sensitivity matrix for LIGO.

An interesting feature of this matrix is that the two wavefront sensors, WFS2 and
WFS4, measure approximately the same linear combination of misalignment angles which
most dramatically reduce the signal-to-noise ratio of the gravitational wave readout
(lowest rows in Table 5.4). Due to the high degeneracy of the recycling cavity, the non-
resonant sidebands are absolutely essential to distinguish misalignment of the recycling
mirror from a common ITM misalignment. It also a better way to detect the common ETM
misalignment which is usually a rather small effect when measured with other wavefront
sensors. The use of the non-resonant sideband to distinguish RM and common ITM tilts
relies on a subtle coupled cavity effect. Ordinarily, a highly degenerate single cavity
produces similar signals for input and the rear mirror misalignments and prospects for
fully decomposing the misalignment signals in the LIGO recycling cavity may look bleak.
A coupled cavity, however, has the unique property that a tilt of the middle mirror changes
the resonant eigenmode in the rear cavity, so the light reflected from the middle mirror
(rear cavity) is laterally shifted with respect to the incident beam. From eqns. (39) and
(41), we recall that there is an additional © phase shift for a tilted beam relative to a
laterally displaced beam, which then separates the signals from the RM and the ITMs in
Guoy phase.
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Estimated shot noise limited sensitivity

LIGHT INPUT DARK | R EFL ’ REC ARM
PORT PORT Caviry | caviry
CARRIER 5.42 0 0.17 306 20000
RESONANT SIDEBAND 0.577 0.497 0.056 11.4 0.04
NR SIDEEAND 0.0061 <1075 0.0061 <104 < 10*5“1

Table 5.7: Light Intensities. A numbers are in Watts for a60w
input beam, assuming perfect contrast.

Having determined the dominant light intensities at the extraction ports, we calculate
the shot noise which limits the wavefront sensing. The rms photocurrent due to shot noise

in the detector, assuming Stationarity, is

isw = J2q€P.f o (116)

where q is the elementary charge, ¢ the photodetector efficiency, P; the light level at the
extraction port and Saw is the bandwidth of the detector. Multiplying the signal in eqn.
(50) by the quantum efficiency, we get the photocurrent due to misalignment on the i-th

detector:

lwes = 2£j0(r)Jl(F)PIZAijejcos(n =-MNy) (117)
i
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Assuming that the ©; have an rms value ©,,,, and that they are independent, equating igy

to iyrs leads to the shot noise limited detection angles:

oV 1 q(Pi/P) 1

i = 118
Jo(T)J,(T) N2€PS i |A| (118)

where |A] is the absolute value of the signal amplitude for the corresponding wavefront

SENsor:

2

|al = JZAijcosz(n—nij)’ (119)
i

The shot noise limited detection angles are listed in Table 5.8. We assume that the

contrast of the interferometer is perfect, that the fraction of light split-off for each

wavefront sensor is fy; = 107 at each extraction port, that the input laser intensity is

P = 60W and that the photodetector efficiency for Nd:YAG laser light is
e = 039 A/W.

WAVEFRONT SENSORS
1 2 3 4 5
37 x 10713 0.7x 10713 6.1 x 10713 044 x 10712 61.6x 10713

Table 5.8: Shot noise limited detection angles. The values are given in

rad/ ,,/'I-Ti

It can be seen from Table 5.8 that the shot noise limited detection angles are tiny compared

to the 10~ rad rms misalignment tolerance determined above.

5.3 Final remarks

To summarize, a table-top scale fixed mirror interferometer using the optical
configuration planned for LIGO was used to experimentally determine the discriminants
for misalignment of the interferometer mirrors and to use these discriminants for closed
loop control of the mirror angles. The wavefront sensing discriminants were extracted
using a heterodyne phase modulation technique. A model based on mode decomposition
of the field was developed and implemented to calculate the coefficients of the sensitivity

matrix for all ten angular degrees of freedom. Agreement between the predicted values
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and the measured discriminants was good, with an average measurement error of +20%.

The modal model presented here has played a pivotal role in our understanding of the
effects of misalignment in gravitational wave detectors, the mechanisms by which the
gravitational wave sensitivity of the detector is compromised and methods of extracting
alignment signals which are sensitive to particular degrees of freedom at the various ports
of the interferometer. Specifically, the modal model was used to study the effects of
misalignment in a long baseline LiGO interferometer and to design an automatic
alignment system for LIGO. This study resulted in the imposition of stringent
requirements on the degree of misalignment which can be tolerated in LIGO: ~ 107 rad
rms per mirror angle and ~ 10" rad//Hz for input beam jitter at 150 Hz. A robust set of
wavefront sensor discriminants which distinguish all angular degrees of freedom were

also calculated for the LIGO interferometer.

With an eye to the future, there is much potential in the modal model to study
misalignments and more general optical distortions in interferometers. The modal model
implementation in this work utilized only the first higher-order modes of the field (TEM,g
and TEMy,), which is adequate for small misalignments. To study the effects of larger
misalignments, higher-order modes must be included in the mode expansion [37]. Effects
such as mode matching and astigmatism excite — to first order — the second higher-order
modes and can be studied with the TEM,, TEMg, and TEM;, modes [38]. Another
limitation of the present model is that only steady-state optical fields are analyzed. If the
dynamics of the system are to be understood, the temporal dependence of the fields must
be included [39]. Implementation of these extensions of the modal model are underway
and will be useful for the study of the dynamic behavior of near-resonant and non-resonant
interferometer fields. In addition, advanced detector configurations, such as a dual-

recycled interferometer [40], can also be studied using the modal model.

We conclude that the wavefront sensing technique is well understood, both
theoretically and experimentally, and that this technique is feasible for closed loop servo

control of complex interferometers.
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Appendix A Formulae for mode decomposition theory

In the following appendix the detailed equations of the modal model formalism are

worked out using the Hermite-Gaussian representation.

A.1 Formulae

In the paraxial approximation, thc solutions to the scalar wave equation in one

dimension can be expressed as a superposition of Hermite-Gaussian modes [25]:

Uy (x.2) = (3)'/4(+)WH,,(££) (A1)

r) \2"miw(z) w(z)
exp(- (w(lz)z *57i0) #{i(m+ 3 @)

where the z-axis points in the beam propagation direction and where 1\(z), w(z) and R(z)

are the mode-dependent Guoy phase shift, the spot size and the curvature of the phase
front at position z, respectively,

2 2
nG) = mn"(f;), w(z) = w, H(zio) and R(z) = 242 (A2)

and the Rayleigh length, z, is given by z, = nwf,/ A with w, the waist size. H, (x) is the
Hermite polynomial of order m. The following relations are used repeatedly in the

calculations which follow:

T Ut (x,2) Uy(x,2)dx = §,, (A.3a)
2xH, (x) = H,,(x)+2mH,, _,(x) (A.3b)
4 H (x) = 2mH,_,(x) (A.3¢)

dx m m-1 .

I H(J2x/w,) 2!
U (x,0) ————"2U,(x,0)dx = |==5, A.3d
1 5 O ey i O ’2*1:! (A3d)



Eqn. (A.3a) is the orthonormality condition; eqns. (A.3b) and (A.3c) are recursion

relations to be used to derive Hermite polynomials of any order, beginning with Hy(x) = 1.

In two dimensions the Hermite-Gaussian modes are given by
Upn = Um(xv 2)U,(y, Z)e-ikl ' (A4)
with the plane wave phase shift factor included for completeness [25].

A.2 The wavefront distortion operator

The generator for the wavefront distortion operator is given in eqn. (58b). Multiplying
the operator which is given between the bra-ket by H (X)H (y)/H ,(x)H (y) and

expanding the numerator as a series of Hermite polynomials, one obtains

H (x)H (y)H ,(x)H,(y) = Zh,, oHOH () (AS)

Subsuwting eqn. (A.5) back into eqn. (58b) and using (A.3d) finally gives
h

ij 0
i ’2 012° p!
= —opar P A.6
hAT 2 N2ig12T (A9

In particular, for a simple tilt around the y-axis one gets eqn. (59).

A.3 The lateral shift operator

If a beam is laterally shifted with respect to the direction of propagation, the shift
operator O(Ax,Ay) is defined as

E(x+Ax,y+Ay, z) = O(Ax,Ay) ® E(x, y, 7) (A7)

Expanding the left hand side in a Taylor series about x and y gives

O(Ax, Ay) = exp(i(Ax 1% + Ay : ;y )) (A.8)

In the modal basis, this unitary operator can be written as

O 1A%, 89) = (mnexpi );lom(f Acpe A28y .o far k) (A9a)

op.qr w@)
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w(z) d

i2 dx

with T jdxv*(. D=z

op,qr

U, (x,2) (A.9b)

where the straightforward integration over y is already done. 7:,’,, qr can be deduced from

the right hand side of eqn. (A.9b) by replacing x with y and by interchanging the indices
o,p with g,r. Once again, the recursion relations of eqn. (A.3) are used to solve the

integration:

() i e = e (5 e () vt

where :=i-“’(2)" i-% (A.10b)

2R(2) 2y
The generator of shifts in x is obtained by using eqn. (A.3d):

Tar = f 8,/ (No18, ..\ +gt*s, ,_)) (A.11)

A4 The demodulation operator
If Q denotes the area of the photodetector, the demodulated signal is given by:
S = [[dxdy p(x, IP(M, x ET (x, ) [P, x, )E™ (x, )] (A.12)
Q
+ [[dx dy p(x, TP, x, ME* (x, NI TP(, %, 1) ET(x, )
Q
where p(x,y) is a pupil weighting function and where ECR(x,y) and ESB*(x,y) are the field
amplitudes at the output of an optical system for the carrier and sidebands of the

modulated light, respectively. P(m,x,y) is the propagator between the output and the

photodetector. In the modal space coordinates the first term in eqn. (A.12) becomes

Z (ECR) l(m+n+l)nJJ'dxdy p(x, y)U "(x’ Y, 2) U“(.x, Y, 2) en(k+l rl)nESB— (A.13)

mn, ki

Comparing this expression with the definition of the demodulation operator in the modal

space in eqn. (65) gives
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Dipn,xt = [[dxdy p(x, »)Ulu(x, 7, 2)Upi(x, 3, 2) (A.14)

Q

When the photodetector size is constant relative to the beam spot size, the demodulation
operator is independent of the position of the photodetector. For a full-plane detector the
pupil weighting function becomes p(x,y) = 1 and eqn. (A.14) reduces to the

orthonormality condition of eqn. (A.3a), i.e.
ull - pl
Din,klp " = 8mksnl (AIS)

For a half-plane detector which is split along the y-axis and where the signals from the two
half-planes are subtracted from each other the pupil weighting function is p(x, y) = 1 for

x20 and p(x,y) = -1 for x <0. The integration can then be written as:

0
Idx} (A.16)

dexdy p(x,y) > j dy {jdx—
Q o 0
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