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Abstract

This paper considers global optimization with a black-box unknown objective function
that can be non-convex and non-differentiable. Such a difficult optimization problem arises
in many real-world applications, such as parameter tuning in machine learning, engineering
design problem, and planning with a complex physics simulator. This paper proposes a new
global optimization algorithm, called Locally Oriented Global Optimization (LOGO), to aim
for both fast convergence in practice and finite-time error bound in theory. The advantage
and usage of the new algorithm are illustrated via theoretical analysis and an experiment
conducted with 11 benchmark test functions. Further, we modify the LOGO algorithm
to specifically solve a planning problem via policy search with continuous state/action
space and long time horizon while maintaining its finite-time error bound. We apply the
proposed planning method to accident management of a nuclear power plant. The result
of the application study demonstrates the practical utility of our method.

1. Introduction

Optimization problems are prevalent and have held great importance throughout history
in engineering applications and scientific endeavors. For instance, many problems in the
field of artificial intelligence (AI) can be viewed as optimization problems. Accordingly,
generic local optimization methods, such as hill climbing and the gradient method, have
been successfully adopted to solve AI problems since early research on the topic (Kirk, 1970;
Gullapalli, Franklin, & Benbrahim, 1994; Deisenroth & Rasmussen, 2011). On the other
hand, the application of global optimization to AI problems has been studied much less
despite its practical importance. This is mainly due to the lack of necessary computational
power in the past and the absence of a practical global optimization method with a strong
theoretical basis. Of these two obstacles, the former is becoming less serious today, as
evidenced by a number of studies on global optimization in the past two decades (Horst
& Tuy, 1990; Ryoo & Sahinidis, 1996; He, Verstak, Watson, Stinson, et al., 2004; Rios &
Sahinidis, 2013). The aim of this paper is to partially address the latter obstacle.
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The inherent difficulty of the global optimization problem has led to two distinct research
directions: development of heuristics without theoretically guaranteed performance and
advancement of theoretically supported methods regardless of its difficulty. A degree of
practical success has resulted from heuristic approaches such as simulated annealing, genetic
algorithms (for a brief introduction on the context of AI, see Russell & Norvig, 2009), and
swarm-based optimization (for an interesting example of a recent study, see Daly & Shen,
2009). Although these methods are heuristics without strong theoretical supports, they
became very popular partly because their optimization mechanisms aesthetically mimic
nature’s physical or biological optimization mechanism.

On the other hand, the Lipschitzian approach to global optimization aims to accom-
plish the global optimization task in a theoretically supported manner. Despite its early
successes in theoretical viewpoints (Shubert, 1972; Mladineo, 1986; Pinter, 1986; Hansen,
Jaumard, & Lu, 1991), the early studies were based on an assumption that is impractical in
most applications: the Lipschitz constant, which is the bound of the slope on the objective
function, is known. The relaxation of this crucial assumption resulted in the well-known
DIRECT algorithm (Jones, Perttunen, & Stuckman, 1993) that has worked well in practice,
yet guarantees only consistency property. Recently, the Simultaneous Optimistic Optimiza-
tion (SOO) algorithm (Munos, 2011) achieved the guarantee of a finite-time error bound
without knowledge of the Lipschitz constant. However, the practical performance of the
algorithm is unclear.

In this paper, we propose a generic global optimization algorithm that is aimed to achieve
both a satisfactory performance in practice and a finite-loss bound as the theoretical basis
without strong additional assumption1 (Section 2), and apply it to an AI planning problem
(Section 6). For AI planning problem, we aim at solving real-world engineering problem
with a long planning horizon and with continuous state/action space. As an illustration of
the advantage of our method, we present the preliminary results of an application study
conducted on accident management of a nuclear power plant as well. Note that the opti-
mization problems discussed in this paper are practically relevant yet inherently difficult to
scale up for higher dimensions, i.e., NP-complete (Murty & Kabadi, 1987). Accordingly,
we discuss possible extensions of our algorithm for higher dimensional problems, with an
experimental illustration with a 1000-dimensional problem.

2. Global Optimization on Black-Box Function

The goal of global optimization is to solve the following very general problem:

maxxf(x)

subject to x ∈ Ω

where f is the objective function defined on the domain Ω ⊆ RD. Since the performance of
our proposed algorithm is independent of the scale of Ω, we consider the problem with the
rescaled domain Ω′ = [0, 1]D. Further, in this paper, we focus on a deterministic function f .

1. In this paper, we use the term “strong additional assumption” to indicate the assumption that the tight
Lipschitz constant is known and/or the main assumption of many Bayesian optimization methods that
the objective function is a sample from Gaussian process with some known kernel and hyperparameters.
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For global optimization, the performance of an algorithm can be assessed by the loss rn,
which is given by

rn = max
x∈Ω′

f(x)− f(x+(n)).

Here, x+(n) is the best input vector found by the algorithm after n trials (more precisely,
we define n to denote the total number of divisions in the next section).

A minimal assumption that allows us to solve this problem is that the objective func-
tion f can be evaluated at all points of Ω′ in an arbitrary order. In most applications, this
assumption is easily satisfied, for example, by having a simulator of the world dynamics
or an experimental procedure that defines f itself. In the former case, x corresponds to
the input vector for a simulator f , and only the ability to arbitrarily change the input
and run the simulator satisfies the assumption. A possible additional assumption is that
the gradient of function f can be evaluated. Although this assumption may produce some
effective methods, it limits the applicability in terms of real-world applications. Therefore,
we assume the existence of a simulator or a method to evaluate f , but not an access to
the gradient of f . The methods in this scope are often said to be derivative-free and the
objective function is said to be a black-box function.

However, if no further assumption is made, this very general problem is proven to be
intractable. More specifically, any number of function evaluations cannot guarantee getting
close to the optimal (maximum) value of f (Dixon, 1978). This is because the solution may
exist in an arbitrary high and narrow peak, which makes it impossible to relate the optimal
solution to the evaluations of f at any other points.

One of the simplest additional assumptions to restore the tractability would be that the
slope of f is bounded. The form of this assumption studied the most is Lipschitz continuity
for f :

|f(x1)− f(x2)| ≤ b‖x1 − x2‖, ∀x1, x2 ∈ Ω′, (1)

where b > 0 is a constant, called the Lipschitz constant, and ‖ · ‖ denotes the Euclidean
norm. The global optimization with this assumption is referred to as Lipschitz optimiza-
tion, and has been studied for a long time. The best-known algorithm in the early days of
its history was the Shubert algorithm (Shubert, 1972), or equivalently the Piyavskii algo-
rithm (Piyavskii, 1967) as the same algorithm was independently developed. Based on the
assumption that the Lipschitz constant is known, it creates an upper bound function over
the objective function and then chooses a point of Ω′ that has the highest upper bound at
each iteration. For problems with higher dimension D ≥ 2, finding the point with the high-
est upper bound becomes difficult and many algorithms have been proposed to tackle the
problem (Mayne & Polak, 1984; Mladineo, 1986). These algorithms successfully provided
finite-loss bounds.

However appealing from a theoretical point of view, a practical concern was soon raised
regarding the assumption that the Lipschitz constant is known. In many applications, such
as with a complex physics simulator as an objective function f , the Lipschitz constant is
indeed unknown. Some researchers aimed to relax this somewhat impractical assumption
by proposing procedures to estimate the Lipschitz constant during the optimization process
(Strongin, 1973; Kvasov, Pizzuti, & Sergeyev, 2003). Similarly, the Bayesian optimization
method with upper confidence bounds (Brochu, Cora, & de Freitas, 2009) estimates the ob-
jective function and its upper confidence bounds with a certain model assumption, avoiding
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the prior knowledge on the Lipschitz constant. Unfortunately, this approach, including
the Bayesian optimization method, results in mere heuristics unless the several additional
assumptions hold. The most notable of these assumptions are that an algorithm can main-
tain the overestimate of the upper bound and that finding the point with the highest upper
bound can be done in a timely manner. As noted by Hansen and Jaumard (1995), it is
unclear if this approach provides any advantage, considering that other successful heuristics
are already available. This argument still applies to this day to relatively recent algorithms
such as those by Kvasov et al. (2003) and Bubeck, Stoltz, and Yu (2011).

Instead of trying to estimate the unknown Lipschitz constant, the well-known DIRECT
algorithm (Jones et al., 1993) deals with the unknowns by simultaneously considering all
the possible Lipschitz constants, b: 0 < b <∞. Over the past decade, there have been many
successful applications of the DIRECT algorithm, even in large-scale engineering problems
(Carter, Gablonsky, Patrick, Kelly, & Eslinger, 2001; He et al., 2004; Zwolak, Tyson, &
Watson, 2005). Although it works well in many practical problems, the DIRECT algorithm
only guarantees consistency property, limn→∞ rn = 0 (Jones et al., 1993; Munos, 2013).

The SOO algorithm (Munos, 2011) expands the DIRECT algorithm and solves its major
issues, including its weak theoretical basis. That is, the SOO algorithm not only guarantees
the finite-time loss bound without knowledge of the slope’s bound, but also employs a
weaker assumption. In contrast to the Lipschitz continuity assumption used by the DIRECT
algorithm (Equation (1)), the SOO algorithm only requires the local smoothness assumption
described below.

Assumption 1 (Local smoothness). The decreasing rate of the objective function f around
at least one global optimal solution {x∗ ∈ Ω′ : f(x∗) = supx∈Ω′ f(x)} is bounded by a semi-
metric `, for any x ∈ Ω′ as

f(x∗)− f(x) ≤ `(x, x∗).

Here, semi-metric is a generalization of metric in that it does not have to satisfy the
triangle inequality. For instance, `(x, x∗) = b‖x∗ − x‖ is a metric and a semi-metric. On
the other hand, whenever α > 1 or p < 1, `(x, x∗) = b‖x∗ − x‖αp is not a metric but
only a semi-metric since it does not satisfy the triangle inequality. This assumption is much
weaker than the assumption described by Equation (1) for two reasons. First, Assumption 1
requires smoothness (or continuity) only at the global optima, while Equation (1) does so
for any points in the whole input domain, Ω′. Second, while Lipschitz continuity assumption
in Equation (1) requires the smoothness to be defined by a metric, Assumption 1 allows
a semi-metric to be used. To the best of our knowledge, the SOO algorithm is the only
algorithm that provides a finite-loss bound with this very weak assumption.

Summarizing the above, while the DIRECT algorithm has been successful in practice,
concern about its weak theoretical basis led to the recent development of its generalized
version, the SOO algorithm. We further generalize the SOO algorithm to increase the
practicality and strengthen the theoretical basis at the same time. This paper adopts a very
weak assumption, Assumption 1, to maintain the generality and the wide applicability.

156



Global Continuous Optimization with Error Bound and Fast Convergence

Iteration 1 Iteration 2 Iteration 3 Iteration 4

w = 1

w = 4(N = 3) (N = 9)

(N = 9)

Figure 1: Illustration of SOO (w = 1) and LOGO (w = 1 or 4) at the end of each iteration

3. Locally Oriented Global Optimization (LOGO) Algorithm

In this section, we modify the SOO algorithm (Munos, 2011) to accelerate the convergence
while guaranteeing theoretical loss bounds. The new algorithm with this modification,
the LOGO (Locally Oriented Global Optimization) algorithm, requires no additional as-
sumption. To use the LOGO algorithm, one needs no prior knowledge of the objective
function f ; it may leverage prior knowledge if it is available. The algorithm uses two pa-
rameters, hmax (n) and w, as inputs where hmax (n) ∈ [1,∞) and w ∈ Z+. hmax (n) and w
act in part to balance the local and global search. hmax (n) biases the search towards a
global search whereas w orients the search toward the local area.

The case with w = 1 or 4 (top or bottom diagrams) in Figure 1 illustrates the function-
ality of the LOGO algorithm in a simple 2-dimensional objective function. In this view,
the LOGO algorithm is a generalization of the SOO algorithm with the local orientation
parameter w in that SOO is a special case of LOGO with a fixed parameter w = 1.

3.1 Predecessor: SOO Algorithm

Before we discuss our algorithm in detail, we briefly describe its direct predecessor, the
SOO algorithm2 (Munos, 2011). The top diagrams in Figure 1 (the scenario with w =
1) illustrates the functionality of the SOO algorithm in a simple 2-dimensional objective
function. As illustrated in Figure 1, the SOO algorithm employs hierarchical partitioning
to maintain hyperintervals, each center of which is the evaluation point of the objective
function f . That is, in Figure 1, each rectangle represents the hyperintervals at the end
of each iteration of the algorithm. Let ψh be a set of rectangles of the same size that are
divided h times. The algorithm uses a parameter, hmax (n), to limit the size of rectangle so
as to be not overly small (and hence restrict the greediness of the search). In order to select
and refine intervals that are likely to contain a global optimizer, the algorithm executes the
following procedure:

2. We describe SOO with the simple division procedure that LOGO uses. SOO itself does not specify a
division procedure.
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(i) Initialize ψ0 = {Ω′} and for all i > 0, ψi = {∅}
(ii) Set h = 0

(iii) Select the interval with the maximum center value among the intervals in the set ψh
(iv) If the interval selected by (iii) has a center value greater than that of any larger

interval (i.e., intervals in ψl for all l < h), divide it and adds the new intervals to
ψh+1. Otherwise, reject the interval and skip this step.

(v) Set h = h+ 1

(vi) Repeat (iii)–(v) until no smaller interval exists (i.e., until ψl = {∅} for all l ≥ h) or
h > hmax (n)

(vii) Delete all the intervals already divided in (iv) from ψ and repeat (ii)–(vi)

We now explain this procedure using the example in Figure 1. For brevity, we use the
term, “iteration”, to refer to the iteration of step (ii)–(vii). In Figure 1, the center point
is shown as a (black) dot in each rectangle and each rectangle with a (red) circle around a
(black) dot is the one that was divided (into three smaller rectangles) during an iteration.
At the beginning of the first iteration, there is only one rectangle in ψ0, which is the entire
search domain Ω′. Thus, step (iii) selects this rectangle and step (iv) divides it, resulting
in the leftmost diagram with N = 3 (the rectangle with the center point with a red circle is
the one divided during the first iteration and the other two are created as a result). At the
beginning of the second iteration, there are three rectangles in ψ1 (i.e., the three rectangles
in the leftmost diagram with N = 3) but none in ψ0 (because step (vii) in the previous
iteration deleted the interval in ψ0). Hence, steps (iii)–(iv) are not executed for ψ0 and
we begin with ψ1. Step (iii) selects the top rectangle from the three rectangles because
it has the maximum center point among these. Step (iv) divides it because there is no
larger interval, resulting in the second diagram on the top (labeled with w = 1). Iteration
2 continues by conducting steps (iii)–(iv) for ψ2 because there are three smaller rectangles
in ψ2. Step (iii) selects the center rectangle on the top (in the second diagram on the top
labeled with w = 1). However, step (iv) rejects it because its center value is not greater
than that of the larger rectangle in ψl with l < h = 2. There is no smaller rectangle in ψ
and iteration 2 ends. At the beginning of iteration 3, there are two rectangles in ψ1 and
three rectangles in ψ2 (as shown in the second diagram on the top labeled with w = 1).
Iteration 3 begins by conducting steps (iii)–(iv) for ψ1. Steps (iii)–(iv) select and divide the
top rectangle. For rectangles in ψ2, steps (iii)–(iv) select and divides the middle rectangle.
Here, the middle rectangle was rejected in iteration 2 because of a larger rectangle with
a larger center value that existed in iteration 2. However, that larger rectangle no longer
exists in iteration 3 due to step (vii) in the end of iteration 2, and hence it is not rejected.
The result is the third diagram (on the top labeled with w = 1). Iteration 3 continues for
the newly created rectangles in ψ3. It halts, however, for the same reason as iteration 2.

3.2 Description of LOGO

Let Ψk be the superset that is the union of the w sets as Ψk = ψkw ∪ψkw+1∪ · · · ∪ψkw+w−1

for k = 0, 1, 2, . . . . Then, similar to the SOO algorithm, the LOGO algorithm conducts
the following procedure to select and refine the intervals that are likely to contain a global
optimizer:
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(i) Initialize ψ0 = {Ω′} and for all i > 0, ψi = {∅}
(ii) Set k = 0

(iii) Select the interval with the maximum center value among the intervals in the super-
set Ψk

(iv) If the interval selected by (iii) has a center value greater than that of any larger interval
(i.e., intervals in Ψl with l < k), divide it and adds the new intervals to ψ. Otherwise,
reject the interval and skip this step.

(v) Set k = k + 1

(vi) Repeat (iii)–(v) until no smaller interval exists (i.e., until Ψl = {∅} for all l ≥ k) or
k > bhmax (n)/wc.

(vii) Delete all the intervals already divided in (iv) from ψ and repeat (ii)–(vi)

When compared with the SOO algorithm, the above steps are identical except that
LOGO processes the superset Ψk instead of set ψh. The superset Ψk is reduced to ψh with
k = h when w = 1 and thus LOGO is reduced to SOO.

We now explain this procedure using the example in Figure 1. With w = 1, the LOGO
algorithm functions in the same fashion as the SOO algorithm. See the last paragraph in
the previous section for the explanation as to how the SOO and LOGO algorithms function
in this example. For the case with w = 4, the difference arises during iteration 3 when
compared to the case with w = 1. At the beginning of iteration 3, there are two sets ψ1 and
ψ2 (i.e., there are two sizes of rectangles in the second diagram on the bottom with w = 4).
However, there is only one superset consisting of the two sets Ψ0 = ψ0 ∪ ψ0+1 ∪ ψ0+4−1.
Therefore, step (iii)–(iv) is conducted only for k = 0 and the LOGO algorithm divides
only the one rectangle with the highest center value among those in Ψ0. Consequently,
the algorithm has one additional iteration (iteration 4) using the same number of function
evaluations (N = 9) as the case with w = 1. It can be seen that as w increases, the
algorithm is more biased to the local search and, in this example, this strategy turns out
to be beneficial as the algorithm divides the rectangle near the global optima more when
w = 4 than when w = 1.

The pseudocode for the LOGO algorithm is provided in Algorithm 1. Steps (ii), (v), and
(vi) correspond to the for-loop in lines 10–19. Steps (iii)–(iv) correspond to line 11 and line
12–14, respectively. We use following notation. Each hyperrectangle, ω ⊆ Ω′, is coupled
with a function value at its center point f(cω), where c indicates the center point of the
rectangle. As explained earlier, we use h to denote the number of divisions and the index
of the set as in ψh. We define ωh,i to be the ith element of a set ψh (i.e., ωh,i ∈ ψh). Let
xh,i and ch,i be an arbitrary point and the center point in the rectangle ωh,i, respectively.
We denote val[ωh,i] to indicate a stored function value of the center point in the rectangle
ωh,i. As it can be seen in line 14, this paper considers a simple division procedure with
a rescaled domain Ω′. If we have prior knowledge about the domain of the function, we
should leverage the information. For example, we could map the original input space to
another so that we can obtain a better ` based on the theoretical results in Section 4, or we
could employ a more elaborate division procedure based on the prior knowledge.

Having discussed how the LOGO algorithm functions, we now consider the reason why
the algorithm might work well. The key mechanism of the DIRECT and SOO algorithms
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Algorithm 1: LOGO algorithm

0: Inputs (problem): an objective function f : x ∈ RD → R, the search domain Ω: x ∈ Ω
1: Inputs (parameter): the search depth function hmax : Z+ → [1,∞), the local weight
w ∈ Z+, stopping condition

2: Define the set ψh as a set of hyperrectangles divided h times
3: Define the superset Ψk as the union of the w sets: Ψk = ψkw ∪ ψkw+1 ∪ · · · ∪ ψkw+w−1

4: Normalize the domain Ω to Ω′ = [0, 1]D

5: Initialize the variables: the set of hyperrectangles: ψh = {∅}, h = 0, 1, 2, . . . ,
the current maximum index of the set: hupper = 0
the number of total divisions: n = 1

6: Adds the initial hyperrectangle Ω′ to the set: ψ0 ← ψ0 ∪ {Ω′} (i.e., ω0,0 = Ω′)
7: Evaluate the function f at the center point of Ω′, c0,0: val [ω0,0]← f(c0,0)
8: for iteration = 1, 2, 3, . . .
9: valmax ← −∞, hplus ← hupper

10: for k = 0, 1, 2, . . . ,max(bmin(hmax (n), hupper )/wc, hplus)
11: Select a hyperrectangle to be divided: (h, i) ∈ arg maxh,i val [ωh,i] for h, i : ωh,i ∈ Ψk

12: if val [ωh,i] > valmax then
13: valmax ← val [ωh,i], hplus ← 0, hupper ← max(hupper , h+ 1), n← n+ 1
14: Divide this hyperrectangle ωh,i along the longest coordinate direction

- three smaller hyperrectangles are created → ωleft , ωcenter , ωright

- val [ωcenter ]← val [ωh,i]
15: Evaluate the function f at the center points of the two new hyperrectangles:

val [ωleft ]← f(cωleft
), val [ωright ]← f(cωright

)

16: Group the new hyperrectangles into the set h+1 and remove the original rectangle:

ψh+1 ← ψh+1 ∪ {ωcenter , ωleft , ωright}, ψh ← ψh \ ωh,i
17: end if
18: if stopping condition is met then Return (h, i) = arg maxh,i val [ωh,i]
19: end for
20: end for

is to divide all the hyperintervals with potentially highest upper bounds w.r.t. unknown
smoothness at each iteration. The idea behind the LOGO algorithm is to reduce the number
of divisions per iteration by biasing the search toward the local area with the concept of
the supersets. Intuitively, this can be beneficial for two reasons. First, by reducing the
number of divisions per iteration, more information can be utilized when selecting intervals
to divide. For example, one may simultaneously divide five or ten intervals per iteration.
In the former, when selecting the sixth to the tenth interval to divide, one can leverage
information gathered by the previous five divisions (evaluations), whereas the latter makes
it impossible. Because the selection of intervals depends on the information, which in turn
provides the new information to the next selection, the minor difference in availability of
the information may make the two sequences of the search very different in the long run.
Second, by biasing the search toward the local area, the algorithm likely converges faster in
a certain type of problem. In many practical problems, we do not aim to find a position of
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global optima, but a position with a function value close to global optima. In that case, the
local bias is likely beneficial unless there are too many local optima, the value of which is far
from that of global optima. Even though our local bias strategy is motivated to solve the
problem of the impractically slow convergence rate of most global optimization methods,
the algorithm maintains guaranteed loss bounds w.r.t. global optima, as discussed below.

4. Theoretical Results: Finite-Time Loss Analysis

We first derive the loss bounds for the LOGO algorithm when it uses any division strategy
that satisfies certain assumptions. Then, we provide the loss bounds for the algorithm with
the concrete division strategy provided in Algorithm 1 and with the parameter values that
we use in the rest of this paper. The motivation in the first part is to extend the existing
framework of the theoretical analysis and thus produce the basis for future work. The
second part is to prove that the LOGO algorithm maintains finite-time loss bounds for the
parameter settings that we actually use in the experiments.

4.1 Analysis for General Division Method

In this section, we generalize the result obtained by Munos (2013) in that the previous result
is now seen as a special case of the new result when w = 1. The previous work provided
the loss bound of the SOO algorithm with any division process that satisfied the following
two assumptions, which we adopt in this section.

Assumption A1 (Decreasing diameter). There exists a function δ(h) > 0 such that for
any hyperinterval ωh,i ⊆ Ω′, we have δ(h) ≥ supxh,i `(xh,i, ch,i), while δ(h− 1) ≥ δ(h) holds
for h ≥ 1.

Assumption A2 (Well-shaped cell). There exists a constant ν > 0 such that any hyperin-
terval ωh,i contains a `-ball of radius νδ(h) centered in ωh,i.

Intuitively, Assumption A1 states that the unknown local smoothness ` is upper-bounded
by a monotonically decreasing function of h. This assumption ensures that each division
does not increase the upper bound, δ(h). Assumption A2 ensures that every interval covers
at least a certain amount of space in order to relate the number of intervals to the unknown
smoothness ` (because ` is defined in terms of space). To present our analysis, we need to
define the relevant terms and variables. We define ε-optimal set Xε as

Xε := {x ∈ Ω′ : f(x) + ε ≥ f(x∗)}.

That is, the set of ε-optimal set Xε is the set of input vectors whose function value is at least
ε-close to the value of the global optima. In order to bound the number of hyperintervals
relevant to the ε-optimal set Xε, we define near-optimality dimension as follows.

Definition 1 (Near-optimality dimension). The near-optimality dimension is the smallest
d ≥ 0 such that there exists C > 0, for all ε > 0, the maximum number of disjoint `-balls
of radius νε centered in the ε-optimal set Xε is less than or equal to Cε−d.

The near-optimality dimension was introduced by Munos (2011) and is closely related
to a previous measure used by Kleinberg, Slivkins, and Upfal (2008). The value of the
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near-optimality dimension d depends on the objective function f , the semi-metric ` and the
division strategy (i.e., the constant ν in Assumption A2). If we consider a semi-metric `
that satisfies Assumptions 1, A1, and A2, then the value of d depends only on such a semi-
metric ` and the division strategy. In Theorem 2, we show that the division strategy of the
LOGO algorithm can let d = 0 for a general class of semi-metric `.

Now that we have defined the relevant terms and variables used in previous work, we
introduce new concepts to advance our analysis. First, we define the set of δ-optimal
hyperinterval ψh(w)∗ as

ψh(w)∗ := {ωh,i ⊆ Ω′ : f(cωh,i
) + δ(h− w + 1) ≥ f(x∗)}.

The δ-optimal hyperinterval ψh(w)∗ is used to relate the hyperintervals to ε-optimal set Xε.
Indeed, the δ-optimal hyperinterval ψh(w)∗ is almost identical to the δ(h− w + 1)-optimal
set Xδ(h−w+1) (ε-optimal set Xε with ε being δ(h−w+1)), except that ψh(w)∗ only considers
the hyperintervals and the values of their center points while Xδ(h−w+1) is about the whole
input vector space. In order to relate ψh(w)∗ to ψh(1)∗, we define `-ball ratio as follows.

Definition 2 (`-ball ratio). For every h and w, the `-ball ratio is the smallest λh(w) > 0
such that the volume of a `-ball of radius δ(h−w+ 1) is no more than the volume of λh(w)
disjoint `-balls of radius δ(h).

In the following lemma, we bound the maximum cardinality of ψh(w)∗. We use |ψh(w)∗|
to denote the cardinality.

Lemma 1. Let d be the near-optimality dimension and C denote the corresponding con-
stant in Definition 1. Let λh(w) be the `-ball ratio in Definition 2. Then, the δ-optimal
hyperinterval is bounded as

|ψh(w)∗| ≤ Cλh(w)δ(h− w + 1)−d.

Proof. The proof follows the definition of ε-optimal set Xε, Definition 1, Definition 2, and
Assumption A2. From the definition of ε-optimal space Xε, we can write δ(h−w+1)-optimal
set as

Xδ(h−w+1) = {x ∈ Ω′ : f(x) + δ(h− w + 1) ≥ f(x∗)}.
The definition of the near-optimality dimension (Definition 1) implies that at most Cδ(h−
w + 1)−d centers of disjoint `-balls of radius νδ(h − w + 1) exist within space Xδ(h−w+1).

Then, from the definition of the `-ball ratio (Definition 2), the space of Cδ(h − w + 1)−d

disjoint `-balls of radius νδ(h−w+ 1) is covered by at most Cλh(w)δ(h−w+ 1)−d disjoint
`-balls of radius νδ(h). Notice that the set of space covered by Cδ(h − w + 1)−d disjoint
`-balls of radius νδ(h − w + 1) is a superset of Xδ(h−w+1). Therefore, we can deduce that

there are at most Cλh(w)δ(h − w + 1)−d centers of disjoint `-balls of radius νδ(h) within
Xδ(h−w+1). Now, recall the definition of the h-w-optimal interval,

ψh(w)∗ := {ωh,i ⊆ Ω′ : f(cωh,i
) + δ(h− w + 1) ≥ f(x∗)}

and notice that the number of intervals is equal to the number of centers cωh,i
that satisfy

the condition f(cωh,i
) + δ(h − w + 1) ≥ f(x∗). Assumption A2 causes this number to be

equivalent to the number of centers of disjoint `-balls with radius νδ(h), which we showed
to be upper bounded by Cλh(w)δ(h− w + 1)−d.
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Next, we bound the maximum size of the optimal hyperinterval, which contains a global
optimizer x∗. In the following analysis, we use the concept of the set and superset of
hyperintervals. Recall that set ψh contains all the hyperintervals that have been divided h
times thus far, and superset Ψk is a union of the w sets, given as Ψk = ψkw ∪ψkw+1 ∪ · · · ∪
ψkw+w−1 for k = 0, 1, 2, . . . . We say that a hyperinterval is dominated by other intervals
when the hyperinterval is not divided because its center value is at most that of other
hyperintervals in any set.

Lemma 2. Let k∗n be the highest integer such that the optimal hyperinterval, which contains
a global optimizer x∗, belongs to the superset Ψk∗n after n total divisions (i.e., k∗n ≤ n
determines the size of the optimal hyperinterval, and hence the loss of the algorithm). Then,
k∗n is lower bounded as k∗n ≥ K with any K that satisfies 0 ≤ K ≤ bhmax (n)/wc and

n ≥
⌊
hmax (n) + w

w

⌋ K∑
k=0

(
|ψkw(1)∗|+

w−1∑
l=1

|ψkw+l(l + 1)∗|
)
.

Proof. Let τ(Ψk) be the number of divisions, with which the algorithm further divides the
optimal hyperinterval in superset Ψk and places it into Ψk+1. In the example in Figure 1
with w = 1, the optimal hyperinterval is initially the whole domain Ω′ ⊆ Ψ0. It is divided
with the first division and the optimal hyperinterval is placed into Ψ1. Therefore, τ(Ψ0) = 1.
Similarly, τ(Ψ1) = 2. A division of non-optimal interval occurs before that of the optimal
one for τ(Ψ2) and hence τ(Ψ2) = 4. In other words, τ(Ψk) is the time when the optimal
hyperinterval in superset Ψk is further divided and escapes the superset Ψk, entering into
Ψk+1. Let ckw+l,i∗ be the center point of the optimal hyperinterval in a set ψkw+l ⊆ Ψk.

We prove the statement by showing that the quantity τ(Ψk) − τ(Ψk−1) is bounded
by the number of δ-optimal hyperintervals ψh(w)∗. To do so, let us consider the possible
hyperintervals to be divided during the time [τ(Ψk−1), τ(Ψk) − 1]. For the hyperintervals
in the set ψkw, the ones that can possibly further be divided during this time must sat-
isfy f(ckw,i) ≥ f(ckw,i∗) ≥ f(x∗) − δ(kw). The first inequality is due to the fact that the
algorithm does not divide an interval that has center value less than the maximum cen-
ter value of an existing interval for each set, and there exists f(ckw,i∗) during the time
[τ(Ψk−1), τ(Ψk)− 1]. The second inequality follows Assumption 1 and the definition of the
optimal interval. Then, from the definition of ψh(w)∗, the hyperintervals that can possibly
be divided during this time belong to ψkw(1)∗ ⊆ Ψk.

In addition to set ψkw, in superset Ψk, there are sets ψkw+l with l : w − 1 ≥ l ≥ 1.
For these sets, we have f(ckw+l,i) ≥ f(clw+l,i∗) ≥ f(x∗) − δ(kw) with similar deductions.
Here, notice that during the time [τ(Ψk−1), τ(Ψk)−1], we can be sure that the center value
in the superset is lower bounded by f(ckw,i∗) instead of f(ckw+l,i∗). In addition, we have
δ(kw) = δ(kw+ l− l). Thus, we can conclude that the hyperintervals in set ψkw+l that can
be divided during time [τ(Ψk−1), τ(Ψk)−1] belongs to ψkw+l(l+ 1)∗ where (w−1) ≥ l ≥ 1.

No hyperinterval in superset k may be divided at iteration since the intervals can be
dominated by those in other supersets. In this case, we have f(cjw+l,i) ≥ f(ckw,i∗) ≥
f(x∗) − δ(kw) for some j < k and l ≥ 0. With similar deductions, it is easy to see
f(x∗) − δ(kw) ≥ f(x∗) − δ(jw + l). Thus, the hyperintervals in a superset Ψj with j < k
that can dominate those in superset Ψk during [τ(Ψk−1), τ(Ψk)− 1] belongs to ψjw+l(1)∗.
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Putting the above results together and noting that the algorithm divides at most
bhmax (n)/wc + 1 intervals during any iteration (hplus plays its role only when the algo-
rithm divides at most one interval), we have

τ(Ψk)−τ(Ψk−1) ≤
(⌊

hmax (n)

w

⌋
+1

)(
|ψkw(1)∗|+

w−1∑
l=1

|ψkw+l(l+1)∗|+
k−1∑
j=1

w−1∑
l=0

|ψjw+l(1)∗|
)
.

Then,

k∗n∑
k=1

τ(Ψk)− τ(Ψk−1) ≤
⌊
hmax (n) + w

w

⌋ k∗n∑
k=1

(
|ψkw(1)∗|+

w−1∑
l=1

|ψkw+l(l + 1)∗|
)

since the last term for a superset Ψj with j ≤ k − 1 in the previous inequality contains
only the optimal intervals that are subsets of the optimal intervals covered by the new
summation

∑k∗n
k=1.

If k∗n ≥ bhmax (n)/wc, then the statement always holds true for any 0≤K ≤bhmax (n)/wc
since k∗n ≥ bhmax (n)/wc ≥ K. Accordingly, we assume k∗n < bhmax (n)/wc in the following.
Since τ(Ψ0) is upper bounded by the term in the previous summation on the right hand of
the above inequality with k = 0,

τ(Ψk∗n+1) ≤
⌊
hmax (n) + w

w

⌋ k∗n+1∑
k=0

(
|ψkw(1)∗|+

w−1∑
l=1

|ψkw+l(l + 1)∗|
)
.

By the definition of k∗n, we have n < τ(Ψk∗n+1). Therefore, for any K ≤ bhmax (n)/wc such
that⌊

hmax (n) + w

w

⌋ K∑
k=0

(
|ψkw(1)∗|+

w−1∑
l=1

|ψkw+l(l + 1)∗|
)

≤ n <
⌊
hmax (n) + w

w

⌋ k∗n+1∑
k=0

(
|ψkw(1)∗|+

w−1∑
l=1

|ψkw+l(l + 1)∗|
)
,

we have k∗n ≥ K.

With Lemmas 1 and 2, we can now present the main result in this section that provides
the finite-time loss bound of the LOGO algorithm.

Theorem 1. Let ` be a semi-metric such that Assumptions 1, A1, and A2 are satisfied.
Let h(n) be the smallest integer h such that

n ≤ C
⌊
hmax (n) + w

w

⌋ bh/wc∑
k=0

(
δ(kw)−d +

w−1∑
l=1

λkw+l(l + 1)δ(kw)−d
)
.

Then, the loss of the LOGO algorithm is bounded as

rn ≤ δ
(
min(wbh(n)/wc − w,wbhmax (n)/wc)

)
.
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Proof. From Lemma 1 and the definition of h(n),

n > C

⌊
hmax (n) + w

w

⌋ bh(n)/wc−1∑
k=0

(
δ(kw)−d +

w−1∑
l=1

λkw+l(l + 1)δ(kw + l − l)−d
)

≥
⌊
hmax (n) + w

w

⌋ bh(n)/wc−1∑
k=0

(
|ψkw(1)∗|+

w−1∑
l=1

|ψkw+l(l + 1)∗|
)
.

Therefore, we set K as K = bh(n)/wc − 1 in the following to apply the result of Lemma 2.
Then, it follows that k∗n ≥ K(n) when K < bhmax (n)/wc. Here, the number of divisions
that an interval in the superset ΨK is at least Kw = wbh(n)/wc − w. Therefore, from
Assumptions 1, A1, and A2, we can deduce that rn ≤ δ(wbh(n)/wc − w).

When K ≥ bhmax (n)/wc, we have b(hupper )/wc ≥ k∗n ≥ bhmax (n)/wc. Thus, in this
case, we have k∗n being equal to at least bhmax (n)/wc. From Assumptions 1, A1, and A2,
we can similarly deduce that rn ≤ δ(wbhmax (n)/wc).

The loss bound stated by Theorem 1 applies to the LOGO algorithm with any division
strategy that satisfies Assumptions A1 and A2. We add the following assumption about
the division process to derive more concrete forms of the loss bound.

Assumption A3 (Decreasing diameter revisit). The decreasing diameter defined in As-
sumption 1 can be written as δ(h) = cγh/D for some c > 0 and γ < 1, and accordingly the
corresponding `-ball ratio is λh(w) = (δ(h− w + 1)/δ(h))D.

Assumption A3 is similar to an assumption made by Munos (2013), which is that
δ(h) = cγh. In contrast to the previous assumption, our assumption explicitly reflects
the fact that the size of a hyperinterval decreases at a slower rate for higher dimensional
problems. For the LOGO algorithm, the validity of Assumptions A1, A2, and A3 is con-
firmed in the next section.

We now present the finite-loss bound for the LOGO algorithm in the case of the general
division strategy with the above additional assumption and with d = 0.

Corollary 1. Let ` be a semi-metric such that Assumptions 1, A1, A2, and A3 are satisfied.
If the near-optimality dimension d = 0 and hmax (n) is set to

√
n − w, then the loss of the

LOGO algorithm is bounded for all n as

rn ≤ c exp

(
−min

(√
n
w

C

(
γ−w − 1

γ−1 − 1

)−1

− 2,
√
n− w

)
w

D
ln

1

γ

)
.

Proof. Based on the definition of h(n) in Theorem 1, we first relate h(n) to n as

n ≤ Chmax (n) + w

w

bh(n)/wc∑
k=0

(
δ(kw)−d +

w−1∑
l=1

λkw+l(l + 1)δ(kw + l − l)−d
)

= C
hmax (n) + w

w

bh(n)/wc∑
k=0

(
1 +

w−1∑
l=1

γ−w
)
≤ Chmax (n) + w

w

(⌊
h(n)

w

⌋
+ 1

)w−1∑
l=0

γ−w.
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Figure 2: Effect of local bias w on loss bound in the case of d = 0 := w2(γ−1−1)/(γ−w−1)

The first line follows the definition of h(n), and the second line is due to d = 0 and
Assumption A3. By algebraic manipulation,⌊

h(n)

w

⌋
≥ n

C

w

hmax (n) + w

(
γ−w − 1

γ−1 − 1

)−1

− 1.

Here, we use hmax (n) =
√
n− w, and hence⌊

h(n)

w

⌋
≥
√
n
w

C

(
γ−w − 1

γ−1 − 1

)−1

− 1.

By substituting these results into the statement of Theorem 1,

rn ≤ δ

(
min

(√
n
w2

C

(
γ−w − 1

γ−1 − 1

)−1

− 2w,w
√
n− w2

))
.

From Assumption A3, δ(h) = cγh/D. By using δ(h) = cγh/D in the above inequality, we
have the statement of this corollary.

Corollary 1 shows that the LOGO algorithm guarantees an exponential bound on the
loss in terms of

√
n (a stretched exponential bound in terms of n). The loss bound in

Corollary 1 becomes almost identical to that of the SOO algorithm with w = 1. Accordingly,
we illustrate the effect of w, when n is large enough to let us focus on the coefficient of

√
n,

in Figure 2. The (red) bold line with label 1 indicates the area where w has no effect on the
bound. The area with lines having labels greater than one is where w improves the bound,
and the area with labels less than one is where w diminishes the bound. More concretely, in
the figure, we consider the ratio of the coefficient of

√
n in the loss bound with the various

value of w to that with w = 1. The ratio is w2(γ−1−1)/(γ−w−1) or w, depending on which
element of the min in the bound is smaller. Since w2(γ−1−1)/(γ−w−1) is at most w (in the
domain we consider), we plotted w2(γ−1− 1)/(γ−w− 1) to avoid overestimating the benefit
of w. Thus, this is a rather pessimistic illustration of the advantage of our generalization
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regarding w. For instance, if the second element of the min in the bound is smaller and n is
large enough, increasing w always improves the bound, regardless of the values in Figure 2.

The next corollary presents the finite-loss bound for the LOGO algorithm in the case of
d 6= 0.

Corollary 2. Let ` be a semi-metric such that Assumptions 1, A1, A2, and A3 are satisfied.
If the near-optimality dimension d > 0 and hmax (n) is set to be Θ((lnn)c1) − w for some
c1 > 1, the loss of the LOGO algorithm is bounded as

rn ≤ Õ

(
n−1/d

(
w2(γwd/D − γ2wd/D)

(
γ−w − 1

γ−1 − 1

)−1)−1/d
)
.

Proof. In the same way as the first step in the proof of Corollary 1, except for d > 0,

n ≤ Cc−dhmax (n) + w

w

bh(n)/wc∑
k=0

w−1∑
l=0

γ−l−kwd/D.

The reason why we could not bound the loss in a similar rate as in the case d = 0 is that
the last summation term

∑w−1
l=0 is no longer independent of k. Since

w−1∑
l=0

γ−l−kwd/D = γ−kwd/D
γ−w − 1

γ−1 − 1
,

bh(n)/wc∑
k=0

γ−kwd/D =
γ−(bh(n)/wc+1)wd/D − 1

γ−wd/D − 1
,

with algebraic manipulation,

c−d(γ−(bh(n)/wc+1)wd/D − 1) ≥ n

C

w

hmax (n) + w

(
γ−w − 1

γ−1 − 1

)−1

(γ−wd/D − 1).

Therefore,

cγ(wbh(n)/wc−w)/D ≥

(
n

C

w

hmax (n) + w

(
γ−w − 1

γ−1 − 1

)−1

(γ−wd/D − 1)γ2wd/D

)−1/d

.

From Theorem 1 and Assumption A3,

rn ≤ max

((
n

C

w

hmax (n) + w

(
γ−w − 1

γ−1 − 1

)−1

(γwd/D − γ2wd/D)

)−1/d

, cγ(wbhmax (n)/wc−w)/D

)
.

For hmax (n) = Θ((lnn)c1)−w and for a sufficiently large n, the first element of the previous
max becomes larger than the second one, and its order is equivalent to the one in the
statement.

We derived the loss bound for the SOO algorithm with Assumption A3 in the case of
d 6= 0 as well. The SOO version of the loss bound is rn ≤ Õ(n−1/d(γd/D − γ2d/D)−1/d),
which is equivalent to the loss bound of the LOGO algorithm with w = 1 in Corollary 2.
In Figure 3, we thereby illustrate the effect of w on the loss bound in the Õ form. In the
figure, we plotted the ratio of the elements inside Õ of the loss bounds. From Figure 2 and
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Figure 3: Effect of local bias w on loss bound in the case of d 6= 0 := (w2(γwd/D −
γ2wd/D(γ

−w−1
γ−1−1

)−1)−1/d/(γd/D − γ2d/D)−1/d

Figure 3, we can infer that the loss bound is improved with w > 1 if γ is large and d is
small (when n is sufficiently large). Intuitively, this makes sense, since there are more of
the different yet similar sizes of hyperintervals w.r.t. ` if γ is larger and d is smaller. In that
case, dividing all the hyperintervals in the marginally different sizes would be redundant
and a waste of computational resources. Note that our discussion here is limited to the loss
bound that we have now, which may be tightened in future work. We would then see the
different effects of w on such tightened bounds.

4.2 Basis of Practical Usage

In this section, we derive the loss bound of the LOGO algorithm with the concrete division
strategy presented in Section 3.1. The purpose of this section is to analyze the LOGO
algorithm with the division process and the parameter settings that are actually used in the
rest of this paper. The results of this section are directly applicable to our experiments. In
this section, we discard Assumptions A1, A2, and A3. We consider the following assumption
to present the loss bound in a concrete form.

Assumption B1. There exists a semi-metric ` such that that it satisfies Assumption 1 and
both of the following conditions hold:

• there exist b > 0, α > 0 and p ≥ 1 such that for all x, y ∈ Ω′, `(x, y) = b‖x− y‖αp

• there exist θ ∈ (0, 1) such that for all x ∈ Ω′, f(x∗) ≥ f(x) + θ` (x, x∗).

First, we state that the loss bound of the algorithm with the practical division process
and parameter settings decreases at a stretched exponential rate.

Theorem 2 (worst-case analysis). Let ` be a semi-metric such that Assumptions 1 and B1
are satisfied. The loss of the LOGO algorithm is bounded as

rn ≤ c exp

(
−min

(√
n
w

w′C

(
γ−w − 1

γ−1 − 1

)−1

− 2, w′
√
n− w

)
w

D
ln

1

γ

)
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where γ = 3−α and c = b3αDα/p. Here, w′ = 1 if we set the parameter as hmax (n) =
√
n−w.

On the other hand, w′ = w if we set the parameter as hmax (n) = w
√
n− w.

Proof. From Assumption B1 and the division strategy,

supxh,i`(xh,i, ch,i) ≤ b(3
−bh/DcD1/p)α = bDα/p3−αbh/Dc

which corresponds to the diagonal length of each rectangle, while 3−αbh/Dc corresponds
to the length of the longest side. This quantity is upper bounded by 3−αh/D+α. Thus,
we consider the case where δ(h) = b3αDα/p3−αh/D, which satisfies Assumption A1. Also,
Assumption A3 is satisfied for δ(h) with γ = 3−α and c = b3αDα/p.

Every rectangle contains at least a `-ball of radius corresponding to the length of the
shortest side for the rectangle. Consequently, we have at least a `-ball of radius νδ(h) =
b3−α3−αh/D for any rectangle where ν = 3−2αD−α/p, which satisfies Assumption A2.

From Assumption B1, the volume V of a `-ball of radius νδ(h) is proportional to (νδ(h))D

as the following: V p
D(νδ(h)) = (2νδ(h)Γ(1+1/p))D/Γ(1+D/p). Therefore, Assumption A3

is satisfied for the `-ball ratio λh(w). In addition, the δ(h)-optimal set Xδ(h) is covered by a

`-ball of radius δ(h) by Assumption B1, and thereby contains at most (δ(h)/νδ(h))D = ν−D

disjoint `-balls of radius νδ(h). Hence, the number of the `-balls does not depend on δ(h),
which means d = 0.

Now that we have satisfied Assumptions A1, A2, and A3 with γ = 3−α, c = b3αDα/p,
and d = 0, we obtain the statement by following the proof of Corollary 1.

Regarding the effect of local orientation w, Theorem 2 presents the worst-case analysis.
Recall that w is introduced in this paper to restore the practicality of global optimization
methods. Thus, focusing on the worst case is likely too pessimistic. To mitigate this
problem, we present the following optimistic analysis.

Theorem 3 (best-case analysis in terms of w). Let ` be a semi-metric such that As-
sumptions 1 and B1 are satisfied. For 1 ≤ l ≤ w, let ωh+l−1,i′ be any hyperinterval that
may dominate other intervals in the set ψh during the algorithm’s execution. Assume that
ωh+l−1,i′ ⊆ ψh(1)∗. Then, the loss of the LOGO algorithm is bounded as

rn ≤ c exp

(
−min

(√
n

1

w′C
− 2, w′

√
n− w

)
w

D
ln

1

γ

)
where γ = 3−α and c = b3αDα/p. Here, w′ = 1 if we set the parameter as hmax (n) =

√
n−w.

On the other hand, w′ = w if we set the parameter as hmax (n) = w
√
n− w.

Proof. The statement of Lemma 2 is modified as

n ≥
⌊
hmax (n) + w

w

⌋ K∑
k=0

(
|ψkw(1)∗|+

w−1∑
l=1

|ψkw(1)∗|
)
.

The statement of Theorem 1 is modified as

n ≤ C
⌊
hmax (n) + w

w

⌋ bh/wc∑
k=0

(wδ(kw)−d),

rn ≤ δ
(
min(wbh(n)/wc − w,wbhmax (n)/wc)

)
.
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Figure 4: Effect of local bias w on loss bound with practical setting. The real effect would
exist somewhere in-between.

Then, we can follow the proof of Theorem 2 and Corollary 1, obtaining⌊
h(n)

w

⌋
≥ n

C

1

hmax (n) + w
− 1.

With hmax (n) =
√
n−w, from the modified statement of Theorem 1, we obtain the statement

of this theorem.

As Theorem 3 makes a strong assumption to eliminate the negative effect of the local
orientation in the bound, increasing w always improves the loss bound in the theorem when
n is sufficiently large. This may seem to be overly optimistic, but we show an instance of
this case in our experiment.

More realistically, the effect of w with large n would exist somewhere between the left
and the right diagrams in Figure 4. As in the previous figures, the (red) bold line with
label 1 is where w has no effect on the bound, the area with labels greater than one is where
w improves the bound, and the area with labels less than one is where w diminishes the
bound. The left diagram shows the effect of w in the worst case of Theorem 2 by plotting
w2(γ−1 − 1)/(γ−w − 1) with γ = 3−α. The reason why plotting w2(γ−1 − 1)/(γ−w − 1)
represents the worst case is discussed in the previous section. The right diagram presents
the effect of w in the best case of Theorem 2 or Theorem 3 by simply plotting w2. Notice
that in both Theorem 2 and Theorem 3, the best scenario for the effect of w is when we use
hmax (n) = w

√
n−w and the second element of the min dominates the bound. In this case,

the coefficient of
√
n is w2, which is the effect of w on the bound when n is large enough to

ignore the other term.

In conclusion, we showed that the LOGO algorithm provides a stretched exponential
bound on the loss with the algorithm’s division strategy, which is likely more practical
than the one used in the analysis of the SOO algorithm, and with the parameter setting
hmax (n) =

√
n − w or hmax (n) = w

√
n − w. We also discussed how the local bias w
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affects the loss bound. Based on these results, we use the LOGO algorithm in the following
experiments.

5. Experimental Results

In this section, we test the LOGO algorithm with a series of experiments. In the main
part of the experiments, we compared the LOGO algorithm with its direct predecessor,
the SOO algorithm (Munos, 2011) and its latest powerful variant, the Bayesian Multi-Scale
Optimistic Optimization (BaMSOO) algorithm (Wang, Shakibi, Jin, & de Freitas, 2014).
The BaMSOO algorithm combines the SOO algorithm with a Gaussian Process (GP) to
leverage the GP’s estimation of the upper confidence bound. It was shown to outperform
the traditional Bayesian Optimization method that uses a GP and the DIRECT algorithm
(Wang et al., 2014). Accordingly, we omitted the comparison with the traditional Bayesian
Optimization method. We also compare LOGO with popular heuristics, simulated annealing
(SA) and genetic algorithm (GA) (see Russell & Norvig, 2009 for a brief introduction).

In the experiments, we rescaled the domains to the [0, 1]D hypercube. We used the same
division process for SOO, BaMSOO and LOGO, which is the one presented in Section 3.2
and proven to provide stretched exponential bounds on the loss in Section 4.2. Previous
algorithms have also been used with this division process in experiments (Jones et al., 1993;
Gablonsky, 2001; Munos, 2013; Wang et al., 2014). For the SOO and LOGO algorithms, we
set hmax (n) = w

√
n−w. This setting guarantees a stretched exponential bound for LOGO,

as proven in Section 4.2, and for SOO (Munos, 2013). For the LOGO algorithm, we used
a simple adaptive procedure to set the parameter w. Let f(x+

i ) be the best value found
thus far in the end of iteration i. Let W = {3, 4, 5, 6, 8, 30}. The algorithm begins with
w = W1 = 3. At the end of iteration i, the algorithm set w = Wk with k = min(j + 1, 6)
if f(x+

i ) ≥ f(x+
i−1), and k = max(j − 1, 1) otherwise, where Wj is the previous parameter

value w before this adjustment occurs. Intuitively, this adaptive procedure is to encourage
the algorithm to be locally biased when it seems to be making progress, forcing it to explore
a more global region when this does not seem to be the case. Although the values in the
set W = {3, 4, 5, 6, 8, 30} are arbitrary, this simple setting was used in all the experiments
in this paper, including the real-world application in Section 6.4. The results demonstrate
the robustness of this setting. As discussed later, a future work would be to replace this
simple adaptive mechanism to improve the performance of the proposed algorithm. For the
BaMSOO algorithm, the previous work of Wang et al. (2014) used a pair of a good kernel
and hyperparameters that were handpicked for each test function. In our experiments, we
assumed that such a handpicking procedure was unavailable, which is typically the case
in practice. We tested several pairs of a kernel and hyperparameters; however, none of
the pairs performed robustly well for all the test functions (e.g., one pair performed well
for one test function, although not others). Thus, we used the empirical Bayes method
to adaptively update the hyperparameters3. We selected the isotropic Matern kernel with
ν = 5/2, which is given by κ(x, x′) = g(

√
5‖x− x′‖2/l), where the function g is defined to

be g(z) = σ2(1+z+z3/3). The hyperparameters were initialized to σ = 1 and l = 0.25. We
updated the hyperparameters every iteration until 1,000 function evaluations were executed

3. We implemented BaMSOO by ourselves to use the empirical Bayes method, which was not done in the
original implementation. The original implementation of BaMSOO was not available for us as well.
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f D Ω
SOO BaMSOO LOGO

N Time (s) Error N Time (s) Error N Time (s) Error

Sin 1 1 [0, 1] 57 5.3 E−02 2.3 E−06 30 2.0 E+00 2.3 E−06 17 3.9 E−02 2.3 E−06

Sin 2 2 [0, 1]2 271 1.7 E−01 4.6 E−06 181 7.5 E+00 4.6 E−06 45 5.4 E−02 4.6 E−06

Peaks 2 [−3, 3]2 141 1.0 E−01 9.0 E−05 37 3.5 E+00 9.0 E−05 35 6.1 E−02 9.0 E−05

Branin 2 [−5, 10]× [0, 15] 339 2.1 E−01 9.0 E−05 121 8.1 E+00 9.0 E−05 85 7.0 E−02 8.7 E−05

Rosenbrock 2 2 [−5, 10]2 491 3.1 E−01 9.7 E−06 >4000 5.8 E+04 5.5 E−03 137 1.3 E−01 9.7 E−06

Hartman 3 3 [0, 1]3 359 2.3 E−01 7.91 E−05 126 8.9 E+00 7.9 E−05 65 7.1 E−02 5.1 E−05

Shekel 5 4 [0, 10]4 1101 6.6 E−01 8.4 E−05 316 3.1 E+01 8.4 E−05 157 1.2 E−01 8.4 E−05

Shekel 7 4 [0, 10]4 1117 7.1 E−01 9.4 E−05 95 1.2 E+01 9.4 E−05 157 1.2 E−01 9.4 E−05

Shekel 10 4 [0, 10]4 1117 6.4 E−0.1 9.68 E−05 >4000 4.5 E+04 8.1 E+00 197 1.5 E−01 9.7 E−05

Hartman 6 6 [0, 1]6 1759 1.2 E+00 7.51 E−05 >4000 4.0 E+04 2.3 E−03 161 1.3 E−01 6.8 E−05

Rosenbrock 10 10 [−5, 10]10 >8000 7.8 E+00 3.83 E−03 >8000 5.8 E+04 9.6 E+00 1793 1.7 E+00 4.8 E−05

Table 1: Performance comparison in terms of the number of evaluations (N) and CPU time
(Time) to achieve Error < 10−4. The grayed cells indicate the experiments where we could
not achieve Error < 10−4 even with a large number of function evaluations (4000 or 8000).

and then per 1,000 iterations afterward (to reduce the computational cost). For SA and GA,
we used the same settings as those of the Matlab standard subroutines simulannealbnd

and ga, except that we specified the domain bounds.

Table 1 shows the results of the comparison with 11 test functions in terms of the
number of evaluations and CPU time to achieve a small error. The first two test functions,
Sin 1 and Sin 2, were used to test the SOO algorithm (Munos, 2013), and have the form
f(x) = (sin(13x) sin(27x) + 1)/2 and f(x1, x2) = f(x1)f(x2) respectively. The form of the
third function, Peaks, is given in Equation (16) and illustrated in Figure 2 of McDonald,
Grantham, Tabor, and Murphy’s paper (2007). The rest of the test functions are common
benchmarks in global optimization literature; Surjanovic and Bingham present detailed
information about the functions (2013). In the table, Time (s) indicates CPU time in
second and Error is defined as

Error =

{
|(f(x∗)− f(x+))/f(x∗)| if f(x∗) 6= 0,

|f(x∗)− f(x+)| otherwise.

In the table, N = 2n is the number of function evaluations needed to achieve Error < 10−4,
where n is the total number of divisions and is the one used as the main measure in the anal-
yses in the previous sections. Here, N is equal to 2n because of the adopted division process.
Thus, the lower the value of N becomes, the better the algorithm’s performance is. We
continued iterations until 4000 function evaluations for all the functions with dimensionality
less than 10, and 8000 for the function with dimensionality equal to 10.

As can be seen in Table 1, the LOGO algorithm outperformed the other algorithms.
The superior performance of the LOGO algorithm with the small number of function eval-
uations is attributable to its focusing on the promising area discovered during the search.
Conversely, the SOO algorithm continues to search the global domain and tends to be sim-
ilar to a uniform grid search. The BaMSOO algorithm also follows the tendency toward a
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grid search as it is based on the SOO algorithm. The BaMSOO algorithm chooses where to
divide based on the SOO algorithm; however, it omits function evaluations when the upper
coincidence bound estimated by the GP indicates that the evaluation is not likely to be
beneficial. Although this mechanism of the BaMSOO algorithm seems to be beneficial to
reduce the number of function evaluations in some cases, it has two serious disadvantages.
The first disadvantage is computational time due to the use of GP. Notice that it requires
O(N3) every time to re-compute the upper confidence bound.4 A more serious disadvan-
tage is the possibility of not determining a solution at all. From Table 1, we can see that
BaMSOO improves the performance of SOO in 7/11 cases; however, it severely degrades
the performance in 4/11 cases. Moreover, not only may BaMSOO reduce the performance
but also it may not guarantee convergence even in the limit in practice. The BaMSOO
algorithm reduces the number of function evaluations by relying on the estimation of the
upper confidence bound. However, the estimation can be wrong, and if it is wrong, it may
never explore the region where the global optimizer exists. Notice that these limitations
are not unique to BaMSOO but also apply to many GP-based optimization methods. In
terms of the first limitation (computational time), BaMSOO is a significant improvement
when compared to other traditional GP-based optimization methods (Wang et al., 2014).

Although the LOGO algorithm has a bias toward local search, it maintains a strong
theoretical guarantee, similar to the SOO algorithm, as proven in the previous sections.
In terms of theoretical guarantee, the SOO algorithm and the LOGO algorithm share a
similar rate on the loss bound and base their analyses on the same set of assumptions that
hold in practice. On the other hand, the BaMSOO algorithm has a worse rate on the loss
bound (an asymptotic loss of the order n−(1−ε)/d) and its bound only applies to a restricted
class of a metric ` (the Euclidean norm to the power α = {1, 2}). It also requires several
additional assumptions to guarantee the bound. Some of the additional assumptions would
be impractical, particularly the assumption of the objective function being always well-
captured by the GP with a chosen kernel and hyperparameters. As discussed above, this
assumption would cause BaMSOO to not only lose the loss bound but also the consistency
guarantee (i.e., convergence in the limit) in practice.

Figure 5 presents the performance comparison for each number of function evaluations
and Figure 6 plots the corresponding computational time. In both figures, a lower plotted
value along the vertical axis indicates improved algorithm performance. For SA and GA,
each figure shows the mean over 10 runs. We report the mean of the standard deviation
over time in the following. For SA, it was 1.19 (Sin 1), 1.32 (Sin 2), 0.854 (Peaks), 0.077
(Branin), 1.06 (Rosenbrock 2), 0.956 (Hartman 3), 0.412 (Shekel 5), 0.721 (Shekel 7), 1.38
(Shekel 10), 0.520 (Hartman 6), and 0.489 (Rosenbrock 10). For GA, it was 0.921 (Sin 1),
0.399 (Sin 2), 0.526 (Peaks), 0.045 (Branin), 1.27 (Rosenbrock 2), 0.493 (Hartman 3), 0.216
(Shekel 5), 0.242 (Shekel 7), 1.19 (Shekel 10), 0.994 (Hartman 6), and 0.181 (Rosenbrock
10).

As illustrated in Figure 5, the LOGO algorithm generally delivered improved perfor-
mance compared to the other algorithms. A particularly impressive result for the LOGO
algorithm was its robustness for the more challenging functions, Shekel 10 and Rosenbrok 10.

4. Although there are several methods to mitigate its computational burden by approximation, the effect
of the approximation on the performance of the BaMSOO algorithm is unknown and left to a future
work.
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(k) Rosenbrock 10

Figure 5: Performance comparison: the number of evaluations N vs. the log error computed
as log10|f(x∗) − f(x+)|. f(x∗) indicates the true optimal value of the objective function
and f(x+) is the best value determined by each algorithm.

The function Shekel m has m local optimizers and the slope of the surface generally becomes
larger as m increases. Therefore, Shekel 10 and Rosenbrok 10, which have 10-dimensionality,
are generally more difficult functions when compared with the others in our experiment.
Indeed, only the LOGO algorithm achieved acceptable performance on these. From Fig-
ure 6, we can see that the LOGO algorithm and the SOO algorithm were fast. The LOGO
algorithm was often marginally slower than the SOO algorithm owing to the additional
computation required to maintain the supersets. The reason why the BaMSOO algorithm
required a large computational cost at some horizontal axis points is that it continued skip-
ping to conduct the function evaluations (because the evaluations were judged to be not
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Figure 6: CPU time comparison: CPU time required to achieve the performance indicated
in Figure 5

beneficial based on GP). This is an effective mechanism of BaMSOO to avoid wasteful func-
tion evaluations; however, one must be careful to make sure that the function evaluations
are costly, relative to this mechanism.

In summary, compared to the BaMSOO algorithm, the LOGO algorithm was faster and
considerably simpler (in both implementation and parameter selection) and had stronger
theoretical bases while delivering superior performance in the experiments. When compared
with the SOO algorithm, the LOGO algorithm decreased the theoretical convergence rate
in the worst case analysis, but exhibited significant improvements in the experiments.

Now that we have confirmed the advantages of the LOGO algorithm, we discuss its pos-
sible limitations: scalability and parameter sensitivity. The scalability for high dimensions
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(a) Scalability: a 1000-dimensional function
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Figure 7: On the current possible limitations of LOGO

is a challenge for non-convex optimization in general as the search space grows exponentially
in space. However, we may achieve the scalability by leveraging additional structures of the
objective function that are present for some applications. For example, Kawaguchi (2016b)
showed an instance of deep learning models, in which the objective function has such an
additional structure: the nonexistence of poor local minima. As an illustration, we combine
LOGO with a random embedding method, REMBO (Wang, Zoghi, Hutter, Matheson, &
De Freitas, 2013), to account for another structure: a low effective dimensionality. In Fig-
ure 7 (a), we report the algorithms’ performances for a 1000 dimensional function: Sin 2
embedded in 1000 dimensions in the same manner described in Section 4.1 in the previous
study (Wang et al., 2013).

Another possible limitation of LOGO is the sensitivity of its performance to the free
parameter w. Even though we provided theoretical analysis and insight on the effect of
the parameter value in the previous section, it is yet unclear how to set w in a principle
manner. We illustrate this current limitation in Figure 7 (b). The result labeled with
“adaptive w” indicates the result with the fixed adaptive mechanisms of w that we use in
all the other experiments except ones in Figure 7 (b) and 8. In the illustration, we use the
Branin function because the experiment conducted with it clearly illustrated the limitation.
As can be seen in the figure, the performance in the early stage is always improved as w
increases because the algorithm finds a local optimum faster with higher w. However, if w
is too large, such as w = 20 in the figure, the algorithm gets stuck at the local optimum for
a long time. Thus, the best value (or sweet spot) exists between too large and too small
values of w. In the results of this experiment, it can be seen that the choice of w = 2 is the
best, which finds the global optima with high precision within only 200 function evaluations.

However, this limitation would not be a serious problem in practice for the following four
reasons. First, a similar limitation exists, to the best of our knowledge, for any algorithms
that are successfully used in practice (e.g., simulated annealing, genetic algorithm, swarm-
based optimization, the DIRECT algorithm, and Bayesian optimization). Second, unlike
any other previous algorithm, the finite-time loss bound always applies even for a bad choice
of w. Third, we demonstrated in the previous experiments that a very simple adaptive
rule may suffice to produce a good result. Also, future work may further mitigate this
limitation by developing different methods to adaptively determine the value of w. Also,
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another possibility would be to conduct optimization over w with a cheaper surrogate model.
Finally, the limitation may not apply to some of the target objective functions at all.

For the fourth and final reason, recall that we speculated in the algorithm’s analysis
that increasing w would always have beneficial effects in some problems, as illustrated in
Figure 4. Clearly, any problems within the scope of local optimization fall into this category.
In Figure 8, we show a rather unobvious instance of such problems, and thus an example,
for which the limitation of the parameter sensitivity does not apply. As can be seen in the
diagram on the left in Figure 8, this test function has many local optima, only one of which
is the global optimum. Nevertheless, as in the diagram on the right, the performance of the
LOGO algorithm improves as w increases, with no harmful effect.
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Figure 8: An example of problems where increasing w is always better. The diagram on the
left shows the objective function, and the diagram on the right presents the performance at
N = 50 and 100 for each w.

6. Planning with LOGO via Policy Search

We now apply the LOGO algorithm to planning, which is an important area in the field
of AI. The goal of our planning problem is to find an action sequence that maximizes the
total return over the infinite discounted horizon or finite horizon (unlike classical planning
problem, we do not consider constraints that specify the goal state). In this paper, we discuss
the formulations for the case of the infinite discounted horizon, but all the arguments are
applicable to the case of a finite horizon with straightforward modifications. We consider
the case where the state/action space is continuous, the planning horizon is long, and the
transition and reward functions are known and deterministic.

The planning problem can be formulated as follows. Let S ⊂ RDS be a set of states,
A ⊂ RDA be a set of actions, T : RDS → RDS be a transition function, R : RDS ×RDA → R
be a return or reward function, and γ ≤ 1 be a discount factor. A planner considers to
take an action a ∈ A in a state s ∈ S, which triggers a transition to another state based
on the transition function T , while receiving a return based on the reward function R.
The discount factor γ discounts the future rewards to fulfill either or both of the following
two roles: accounting for the relative importance of immediate rewards compared to future
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rewards, and obviating the need to think ahead toward the infinite horizon. An action
sequence can be represented by a policy π that maps the state space to the action space:
π : RDS → RDA .

The value of an action sequence or a policy π, V π, is the sum of the rewards over the
infinite discounted horizon, which is

V π(s0) =

∞∑
j=0

γtR(sj , π(sj)).

The value of a policy can be also written with a recursive form as

V π(s) = R(s, π(s)) + γV π
(
T (s, π(s))

)
. (2)

Here, we are interested in finding the optimal policy π∗. In the dynamic programing ap-
proach, we can compute the optimal policy, by solving the following Bellman’s optimality
equation:

V ∗(s) = max
a

R(s, a) + γV ∗(T (s, a)) (3)

where V ∗ is the value of the optimal policy. In Equation (3), the optimal policy π∗ is the set
of the actions defined by the max. A major problem with this approach is that the efficiency
of the computation depends on the size of the state space. In a real-world application, the
state space is usually very large or continuous, which often makes it impractical to solve
Equation (3).

A successful approach to avoid the state size dependency is to focus only on the state
space that is reachable from the current state within the planning time horizon. In this
way, even with an infinitely large state space, a planner only needs to consider a finitely
sized subset of the space. This approach is called local planning. Unlike local optimization
vs. global optimization, the optimal solution of local planning is indeed globally optimal,
given the initial state. It is called local planning because it does not cover all the states and
its solution changes for different initial states. Accordingly, as the initial state changes, a
planner may need to conduct re-planning.

A natural way to solve local planning is to use tree search methods, which construct a
tree rooted in an initial state toward the future possible states in the depth of the planning
horizon. This tree search can be conducted using any traditional search method, including
both uninformed search (e.g., breadth-first and depth-first search) and informed (heuristic)
search (e.g., A∗ search). Also, recent studies have developed several tree-based algorithms
that are specialized to local planning. Among those, the SOO algorithm, the direct prede-
cessor of the LOGO algorithm, was applied to local planning with the tree search approach
(Busoniu, Daniels, Munos, & Babuska, 2013). Most of the new algorithms, for example,
HOLOP (Bubeck & Munos, 2010; Weinstein & Littman, 2012), operate with stochastic
transition functions.

However efficient these proposed algorithms are, the search space in the tree search
approach grows exponentially in the planning time horizon, H. Therefore, local planning
with the tree search approach would not work well with a very long time horizon. In some
applications, a small H is justified, but in other applications, it is not. If an application
problem requires a long time tradeoff between immediate and future rewards, then the tree
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search approach would be impractical. Here, we are motivated to solve such a real-world
application, and therefore need another approach.

In this paper, we consider policy search (Deisenroth, Neumann, & Peters, 2013) as an
effective alternative to solve the planning problem with continuous state/action space and
with a long time horizon. Policy search is a form of local planning. Thus, like the tree search
approach, it operates even with infinitely large or continuous state space. In addition, unlike
the tree search approach, policy search significantly reduces the search space by naturally
integrating the domain-specific expert knowledge into the structure of the policy. More
concretely, the search space of policy search is a set of policies {πx : x ∈ Ω}, which are
parameterized by a vector x in Ω ⊂ RD. Therefore, the search space is no longer dependent
on the planning time horizon H, the state space S, nor the action space A, but only on
the parameter space Ω. Here, parameter space Ω can be determined by expert knowledge,
which can significantly reduce the search space.

We use the regret rm as the measure of the policy search algorithm’s performance:

rm = V π∗x(s0)− V π+
x (m)(s0)

where π∗x is the optimal policy in the given set of policies {πx : x ∈ Ω}, and π+
x (m) is the

best policy found by an algorithm after the m steps of planning. An evaluation of each
policy takes mH steps if we consider a fixed planning horizon H. Here, π∗x may differ from
the optimal policy π∗ when π∗ is not covered in the set {πx : x ∈ Ω}.

The policy search approach is usually adopted with gradient methods (Baxter & Bartlett,
2001; Kober, Bagnell, & Peters, 2013; Weinstein, 2014). While a gradient method is fast,
it converges to local optima (Sutton, McAllester, Singh, & Mansour, 1999). Further, it
has been observed that it may result in a mere random walk when large plateaus exist in
the surface of the policy space (Heidrich-Meisner & Igel, 2008). Clearly, these problems
can be resolved using global optimization methods at the cost of scalability (Brochu et al.,
2009; Azar, Lazaric, & Brunskill, 2014). Unlike previous policy search methods, our method
guarantees finite-time regret bounds w.r.t. global optima in {πx : x ∈ Ω} without strong
additional assumption, and provides a practically useful convergence speed.

6.1 LOGO-OP Algorithm: Leverage (Unknown) Smoothness in Both Policy
Space and Planning Horizon

In this section, we present a simple modification of the LOGO algorithm to leverage not only
the unknown smoothness in policy space but also the known smoothness over the planning
horizon. The former is accomplished by the direct application of the LOGO algorithm to
policy search, and the latter is what the modification in this section aims to do without
losing the advantage of the original LOGO algorithm. We call the modified version, Locally
Oriented Global Optimization with Optimism in Planning horizon (LOGO-OP). As a result
of this modification, we add a new free parameter L.

The pseudocode for the LOGO-OP algorithm is provided in Algorithm 2. By comparing
Algorithms 1 and 2, it can be seen that the LOGO-OP algorithm functions in the same
manner as the LOGO algorithm, except for line 15 (the function evaluation or, equivalently,
the policy evaluation in the policy search) and line 20. Notice that the LOGO algorithm is
directly applicable to the policy search by considering V to be f in Algorithm 1. While the
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LOGO algorithm does not assume the structure of the function f , the LOGO-OP algorithm
functions with and exploits the given structure of the value function V (i.e., MDP model).
The algorithm functions as follows. The policy evaluation is performed for each policy
πx with a parameter x specified by each of the two new hyperrectangles (from line 15-1 to
15-11). Given the initial condition s0 ∈ S, the transition function T , the reward function R,
a discount factor γ ≤ 1, and the policy πx, the algorithm computes the value of the policy
as in Equation (2) (from line 15-2 to line 15-10, except line 15-6).

The main modification appears in line 15-6 where the algorithm leverages the known
smoothness over the planning horizon. Remember that the unknown smoothness in policy
space (or input space x) is specified as f(x∗)−f(x) ≤ `(x, x∗) (from Assumption 1) and thus
it infers the upper bound of the value of a policy that is not yet evaluated but similar (close
in policy space w.r.t. `) to already evaluated polices. Conversely, the known smoothness over
the planning horizon renders the upper bound on the value of a policy while the particular
policy is being evaluated. That is, the known smoothness over the planning horizon can be
written as

∞∑
j=0

γjR(sj , πx(sj))−
t∑

j=0

γjR(sj , πx(sj)) ≤
γt+1

1− γ
Rmax

where 0 ≤ t ≤ ∞ is a arbitrary point in the planning horizon as in line 15-3 and Rmax is
the maximum reward. This known smoothness is due to the definition of Rmax and the sum
of a geometric series. In the case of the finite horizon with H, we have the same formula
with (γt/(1 − γ))Rmax being replaced by (H − t)Rmax . In line 15-6, unlike the original
LOGO algorithm, the LOGO-OP algorithm terminates the evaluation of a policy when the
continuation of evaluating the policy is judged to be a misuse of the computational resources
based on the known smoothness over the planning horizon. Concretely, it terminates the
evaluation of a policy when the upper bound of the value of the policy becomes less than
(V + −L), where V + is the value of the best policy found thus far and L is the algorithm’s
parameter.

When the upper bound of the value of policy becomes less than V +, the planner can
know that the policy is not the best policy. Thus, it is tempting to simply terminate the
policy evaluation with this criterion. However, the essence of the LOGO algorithm is the
utilization of the unknown smoothness embedded in the surface of the value function in the
policy space. In other words, the algorithm makes use of the result of each policy evaluation,
whether the policy is the best one or not. Any interruption of the policy evaluation changes
the shape of the surface of the value function, which interferes with the mechanism of the
LOGO algorithm. Nevertheless, the some degree of the interruption is likely to be beneficial
since our goal is to find the optimal policy instead of surface analysis.

The LOGO-OP algorithm uses L to determine the degree of the interruption. Because
V + is monotonically increasing along the execution, the value of a policy that is not fully
evaluated owing to line 15-6 in early iterations tends to be greater than the value of a policy
that is not fully evaluated in the later iterations. The algorithm resolves this problem in
line 20 such that it is not biased to divide the interval evaluated in an early iteration.

With smaller L, the LOGO-OP algorithm can stop the evaluation of a non-optimal
policy earlier, at the cost of accuracy in the evaluation of the value function’s surface. With
larger L, the algorithm needs to spend more time on the evaluation of a non-optimal policy,
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Algorithm 2: LOGO-OP algorithm

0: Inputs (problem): the initial condition s0 ∈ S, the transition function T , the reward
function R, a discount factor γ ≤ 1 with convergence criteria (or finite horizon H), the
policy space πx : x ∈ Ω ⊂ RD.

1: Inputs (parameter): the search depth function hmax : Z+ → [1,∞), the local weight
w ∈ Z+, stopping condition, the maximum reward Rmax , a parameter L.

2–5: lines 2–5 are exactly the same as lines 2–5 in Algorithm 1
6: Adds the initial hyperrectangle Ω′ to the set: ψ0 ← ψ0 ∪ {Ω′} (i.e., ω0,0 = Ω′)
7: Evaluate the value function V at the center point of Ω′, c0,0: val [ω0,0] ← V (c0,0),
V + ← val [ω0,0]

8: for iteration = 1, 2, 3, . . .
9: valmax ← −∞, hplus ← hupper

10: for k = 0, 1, 2, . . . ,max(bmin(hmax (n), hupper )/wc, hplus)
11: Select a hyperrectangle to be divided: (h, i) ∈ arg maxh,i val [ωh,i] for h, i : ωh,i ∈ Ψk

12: if val [ωh,i] > valmax then
13: valmax ← val [ωh,i], hplus ← 0, hupper ← max(hupper , h+ 1), n← n+ 1
14: Divide this hyperrectangle ωh,i along the longest coordinate direction

- three smaller hyperrectangles are created → ωleft , ωcenter , ωright

- val [ωcenter ]← val [ωh,i]
15: Evaluate the value function V at the center points of the two new hyperrectangles:

15–1: for each policy πx corresponding cωleft
and cωright

15–2: z1 ← 0, z2 ← 1, s← s0

15–3: for t = 0, 1, 2, . . . ,
15–4: z1 ← z1 + z2R(s, πx(s))
15–5: z2 ← γz2, s← T (s, πx(s)) ,
15–6: if z1 + (γt+1/(1− γ))Rmax < (V + − L) then Exit loop
15–7: if convergence criteria is met then Exit loop
15–8: end for
15–9: save z1 as the value of the corresponding rectangle

15–10: val [ωleft ]← z1 or val [ωright ]← z1

15–11: end for
15–12: V + ← max(V +, val [ωleft ], val [ωcenter ], val [ωright ])

16: Group the new hyperrectangles into the set h+1 and remove the original rectangle:

ψh+1 ← ψh+1 ∪ {ωcenter , ωleft , ωright}, ψh ← ψh \ ωh,i
17: end if
18: if stopping condition is met then Return (h, i) = arg maxh,i val [ωh,i]
19: end for
20: for all intervals ω with val [ω] < (V + − L) do val [ω]← (V + − L)
21: end for

but can obtain a more accurate estimate of the value function’s surface. In the regret
analysis, we show that a certain choice of L ensures a tighter regret bound when compared
to the direct application of the LOGO algorithm.
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6.2 A Parallel Version of the LOGO-OP Algorithm

The LOGO-OP algorithm presented in Algorithm 2 has four main procedures: Select (line
11), Divide (line 14), Evaluate (line 15), and Group (line 16). A natural way to paral-
lelize the algorithm is to decouple Select from the other three procedures. That is, let the
algorithm first Select z hyperrectangles to be divided, and then allocate the z number of
Divide, Evaluate, and Group to z parallel workers. However, this natural parallelization
has data dependency from one Select to another Select. In other words, the procedure of
the next Select cannot start before Divide, Evaluate, and Group for the previous Select
are finalized. As a result, the parallel overhead tends to be non-negligible. In addition, if
Select chooses less hyperrectangles than parallel workers, then the available resources of the
parallel workers are wasted. Indeed, the latter problem was tackled by creating multiple
initial rectangles in a recent parallelization study of the DIRECT algorithm (He, Verstak,
Sosonkina, & Watson, 2009). While the use of multiple initial rectangles can certainly
mitigate the problem, it still allows the occasional occurrence of the resource wastage, in
addition to requiring the user to specify the arrangement of the initial rectangles.

To solve these problems, we instead decouple the Evaluate procedure from the other
three procedures and allocate only the Evaluate task to each parallel worker. We call the
parallel version, the pLOGO-OP algorithm. The algorithm uses one master process to
conduct Select, Divide, and Group operations and an arbitrary number of parallel workers
to execute Evaluate. The main idea is to temporarily use the artificial value assignment
to the center point of a hyperrectangle in the master process, which is overwritten by the
true value when the parallel worker finishes evaluating the center point. With this strategy,
there is no data dependency and all the parallel workers are occupied with tasks almost
all the time. In this paper, we use the center value of the original hyperrectangle before
division as the temporary artificial value, but the artificial value may be computed using a
more advanced method (e.g., methods in surface analysis) in future work. For the center
point of the initial hyperrectangle, we simply assign the worst possible value (if we have no
knowledge regarding the worst value, we can use −∞).

The master process keeps selecting new hyperrectangles unless all the parallel workers
are occupied with tasks. This logic ensures that all the parallel workers always have tasks
assigned by the master process, but the master process does not select too many hyperrect-
angles based on the artificial information. Note that this parallelization makes sense only
when Evaluate is the most time consuming procedure, and it is very likely true for policy
evaluation.

6.3 Regret Analysis

Under a certain condition, all the finite-loss bounds of the LOGO algorithm are directly
translated to the regret bound of the LOGO-OP algorithm. The condition that must be
met is that (V + − L) is less than the center value of the optimal hyperinterval during the
algorithm’s execution. We state the regret bound more concretely below. For simplicity,
we use the notion of a planning horizon H, which is the effective (non-negligible) planning
horizon for LOGO in accordance with the discount factor, γ. Let H ′ be the effective
planning horizon of the LOGO-OP algorithm. Then, the planning horizon for LOGO-OP,
H ′, becomes smaller than that for LOGO, H, as the algorithm finds improved function
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values. This is because the LOGO-OP algorithm terminates each policy evaluation at line
15-6 when the upper bound on the policy value is determined to be lower than (V + − L).

Corollary 3. Let H ′ ≤ H be the planning horizon used by the LOGO-OP algorithm at
each policy evaluation. Let V + be the value of the best policy found by the algorithm at any
iteration. Assume that the value function of the policy satisfies Assumptions 1 and B1. If
(V + − L) is maintained to be less than the center value of the optimal hyperinterval, then
the algorithm holds the finite-time loss bound of Theorem 2 with

n ≥
⌊
m

2H ′

⌋
.

Proof. As the policy search is just a special case of the optimization problem, it is trivial
that the loss bound of Theorem 2 holds for the LOGO algorithm when it is applied to policy
search. Because every function evaluation takes H steps in the planning horizon, we have
n ≥ bm/2Hc in this case. For the LOGO-OP algorithm, only the effect that new parameter
L has in the loss analysis takes place in the proof of Lemma 2. If (V + − L) is maintained
to be less than the center value of the optimal interval, then all the statements in the proof
hold true for the LOGO-OP algorithm as well. Here, due the effect of L, function evaluation
may take less than H steps in the planning horizon. Therefore, we have the statement of
this corollary.

We can tighten the regret bound of the LOGO-OP algorithm by decreasing L, since
the algorithm can then terminate evaluations of unpromising policies earlier, which means
that the value of H ′ in the bound is reduced. However, using a too small value of L that
violates the condition in Corollary 3 leads us to discard the theoretical guarantee. Even
in that case, because the too small value of L only results in a more global search, the
consistency property, limn→∞ rn = 0, is still trivially maintained. On the other hand, if we
set L = ∞, the LOGO-OP algorithm becomes equivalent to the direct application of the
LOGO algorithm to policy search, and thus, we have the regret bound of Corollary 3 with
H ′ = H.

The pLOGO-OP algorithm also maintains the same regret bound with n = np where
np counts the number of the total divisions that are devoted to the set of δ-optimal hy-
perinterval ψkw+l(l + 1)∗, where (w − 1) ≥ l ≥ 0. While non-parallel versions ensure the
devotion to ψkw+l(l+ 1)∗, the parallelization makes it possible to conduct division on other
hyperintervals. Thus, considering the worst case, the pLOGO-OP may not improve the
bound in our proof procedure, although the parallelization is likely beneficial in practice.

6.4 Application Study on Nuclear Accident Management

The management of the risk of potentially hazardous complex systems, such as nuclear
power plants, is a major challenge in modern society. In this section, we apply the proposed
method to accident management of nuclear power plants and demonstrate the potential
utility and usage of our method in a real-world application. Our focus is on assessing the
efficiency of containment venting as an accident management measure and on obtaining
knowledge about its effective operational procedure (i.e., policy π). This problem requires
planning with continuous state space and with a very long planning horizon (H ≥ 86400),
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for which dynamic programming (e.g., value iteration), tree-based planning (e.g., A∗ search
and its variants) would not work well (dynamic programming suffers from the curse of
dimensionality for the state space, and the search space of tree-based methods grows expo-
nentially in the planning horizon).

Containment venting is an operation that is used to maintain the integrity of the con-
tainment vessel and to mitigate accident consequences by releasing gases from the contain-
ment vessel to the atmosphere. In the accident at the Fukushima Daiichi nuclear power
plant in 2011, the containment venting was activated as an essential accident management
measure. As a result, in 2012, the United States Nuclear Regulatory Commission (US-
NRC) issued an order for 31 nuclear power plants to install the containment vent system
(USNRC, 2013). Currently, many countries are considering the improvement of the con-
tainment venting system and its operational procedures (OECD/NEA/CSNI, 2014). The
difficulty of determining its actual benefit and effective operation comes from the fact that
the containment venting also releases fission products (radioactive materials) into the at-
mosphere. In other words, the effective containment venting must trade off the future risk
of containment failure against the immediate release of fission products (radioactive materi-
als). In our experiments, we use the release amount of the main fission product compound,
cesium iodide (CsI), as a measure of the effectiveness of the containment venting.

In the nuclear accident management literature, an integrated physics simulator is used
as the model of world dynamics or the transition function T and the state space S. The
simulator that we adopt in this paper is THALES2 (Thermal Hydraulics and radionuclide
behavior Analysis of Light water reactor to Estimate Source terms under severe accident
conditions) (Ishikawa, Muramatsu, & Sakamoto, 2002). Thus, the transition function T and
the state space S are fully specified by THALES2. The initial condition s0 ∈ S is designed
to approximately simulate the accident at the Fukushima Daiichi nuclear power plant. In
this experiment, we focus on a single initial condition with the deterministic simulator, the
relaxation of which is discussed in the next section. The reward function R is the negative
of the amount of CsI being released in the atmosphere as a result of a state-action pair. We
use the finite-time horizon H = 86400 seconds (24 hours), which is a traditional first phase
time-window considered in risk analysis with nuclear power plant simulations (owing to the
assumption that after 24 hours, many highly uncertain human operations are expected).
We use the following policy structure based on our engineering judgment.

πx =

{
1 if ((FP ≤ x1) ∩ (Press ≥ x2)) ∪ (Press > 100490),

0 otherwise,

where πx = 1 indicates the implementation of the containment venting, FP (g) represents
the amount of CsI in the gas phase of the suppression chamber, and Press (kgf/m2) is
the pressure of the suppression chamber. Here, the suppression chamber is the volume in
the containment vessel that is connected to the atmosphere via the containment venting
system. This policy structure reflects our engineering knowledge that the venting should
be done while the fission products exist under a certain amount in the suppression cham-
ber, but should not be operated before the pressure gets larger than a specific value. We
consider x1 = [0, 3000] and x2 = [10810, 100490]. We let πx = 1 whenever the pressure
exceeds 100490 kgf/m2, since the containment failure is considered to probably occur af-
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Figure 9: Performance of the computed policy (CsI release) vs. Wall Time.

ter the pressure exceeds this point. The detail of the experimental setting is outlined in
Appendix A.

We first compare the performance of various algorithms in this problem. For all the
algorithms, we used the same parameter settings as in the benchmark tests in Section 5.
That is, we used hmax (n) = w

√
n−w and a simple adaptive procedure for the parameter w

with W = {3, 4, 5, 6, 8, 30}. For the LOGO-OP algorithm and the pLOGO-OP algorithm,
we blindly set L = 1000 (i.e., there is likely a better parameter setting for L). We used only
eight parallel workers for the pLOGO-OP algorithm.

Figure 9 shows the result of the comparison with wall time ≤ 12 hours. The vertical axis
is the total amount of CsI released into the atmosphere (g), which we want to minimize.
Since we conducted containment venting whenever the pressure exceeded 100490 kgf/m2,
containment failure was prevented in all the simulation experiments. Thus, the lower the
value along the vertical axis gets, the better the algorithm’s performances is. As can be seen,
the new algorithms performed well compared to the SOO algorithm. It is also clear that the
two modified versions of the LOGO algorithm improved the performance of the original. For
the LOGO-OP algorithm, the effect of L on the computational efficiency becomes greater
as the found best policy improves. Indeed, the LOGO algorithm required 10798 seconds
for ten policy evaluations and 52329 seconds for 48 evaluations. The LOGO-OP algorithm
required 9297 seconds for ten policy evaluations, and 44678 seconds for 48 evaluations. This
data in conjunction with Figure 9 illustrates the property of the LOGO-OP algorithm that
the policy evaluation becomes faster as the found best policy improves. For the pLOGO-
OP algorithm, the number of function evaluations performed by the algorithm increased
by a factor of approximately eight (the number of parallel workers) compared to the non-
parallel versions. Notice that the parallel version tends to allocate the extra resources to
the global search (as opposed to the local search). We can focus more on the local search by
utilizing the previous results of the policy evaluations; however, the parallel version must
initiate several policy evaluations without waiting for the previous evaluations, resulting in
a tendency for global search. This tendency forced the improvement, in terms of reducing
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Figure 10: Action sequence generated by found policy and CsI release  
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Figure 10: Action sequence generated by found policy and CsI release

the amount of CsI, to be moderate relative to the number of policy evaluations in this
particular experiment. However, such a tendency may have a more positive effect in different
problems where increased global search is beneficial. The CPU time per policy evaluation
varied significantly for different policies owing to the different phenomenon computed in the
simulator. On the average, for the LOGO-OP algorithm, it took approximately 930 seconds
per policy evaluation.

Now that we partially confirmed the validity of the pLOGO-OP algorithm, we attempt
to use it to provide meaningful information to this application field. Based on the examina-
tion of the results in the above comparison, we narrowed the range of the parameter values
as x1 = [0, 1.2] and x2 = [10330, 10910]. After the computation with CPU time of 86400 (s)
and with eight workers for the parallelization, the pLOGO-OP algorithm found the policy
with x1 ≈ 0.195 (g) and x2 ≈ 10880 (kgf/m2). With the policy determined, containment
failure was prevented and the total amount of CsI released into the atmosphere was limited
to approximately 0.5 (g) (approximately 0.002% of the total CsI) in the 24 hours after
the initiation of the accident. This is a major improvement because this scenario with our
experimental setting is considered to result in a containment failure or at best, in a large
amount of CsI release, more than 2000 (g) (about 10% of total CsI) in our setting. The
computational cost of CPU time of 86400 (s) is likely acceptable in the application field.
In terms of computational cost, we must consider two factors: the offline computation and
the variation of scenarios. The computational cost with CPU time of 86400 (s) for a phe-
nomenon that requires 86400 (s) is not acceptable for online computation (i.e., determining
a satisfactory policy while the accident is progressing). However, such computational cost
is likely acceptable if we consider preparing acceptable policies for various scenarios in an
offline manner (i.e., determining satisfactory polices before the accident). Such information
regarding these polices can be utilized during an accident by first identifying the accident
scenario with heuristics or machine learning methods (Park & Ahn, 2010). For offline prepa-
ration, we must determine policies for various major scenarios and thus if each computation
takes, for example, one month, it may not be acceptable.

Note that the policy found by our method is both novel and nontrivial in the literature,
and yet worked very well. Accordingly, we explain why the policy performed as well as it
did. Figure 10 shows the action sequence generated by the policy found and the amount
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of CsI (g) released versus accident progression time (s). We analyze the action sequence
by dividing it into six phases, as indicated in Figure 10, with the six numbers inside the
parentheses. In the first phase (1), the venting is conducted intermittently in order to
keep the pressure around x2 ≈ 10880 (kgf/m2). In this phase, no fission product has yet
been released from the nuclear fuels. Reducing the pressure and the heat should be done
preferably without releasing fission products, and the actions in this phase accomplish this.
One may wonder why the venting should be done intermittently, instead of continuing to
conduct venting to reduce the pressure as much as possible, which can be done without the
release of fission products only in this phase. This is because reducing the pressure too much
leads to a large difference between the pressures in the suppression chamber and the reactor
pressure vessel, which in turn results in a large mass flow and fission product transportation
from the reactor pressure vessel to the suppression chamber (see Figure 11 in Appendix A
for information about the mass flow paths). The increase in the amount of fission products
in the suppression chamber will likely result in a large release of fission products into the
atmosphere when venting is conducted. Therefore, this specific value of x2 that generates
the intermittent venting works well in the first phase. In the second phase (2), containment
venting is executed all the time since the pressure in the suppression chamber increases
rapidly in this phase (due to the operation of depressurizing the reactor pressure vessel via
the SRV line), and thus, the criterion (Press ≥ x2) in the policy is satisfied all the time from
this point. In the beginning of the third phase (3), the amount of CsI in the suppression
chamber exceeds x1 ≈ 0.195 (g) and thereby no venting is conducted. In the fourth phase
(4), the pressure reaches 100490 (kgf/m2) and containment venting is intermittently done
in order to keep the pressure under the point to avoid catastrophic containment failure. In
the fifth phase (5), the containment vent is kept open because the amount of CsI in the gas
phase of the suppression chamber decreases to below x1 (due to the phenomenon illustrated
in Figure 12 in Appendix A). This continuous containment venting decreases the pressure
such that no venting is required in terms of the pressure in the final phase (6), where venting
is not conducted also because the amount of CsI becomes larger than x1.

Thus, it is clear that the policy found by this AI-related method also has a basis in
terms of physical phenomenon. In addition, the generated action sequence is likely not
simple enough for an engineer to discover with several sensitivity analyses. In particular,
not only did our method solve the known tradeoff between the immediate CsI release and the
risk of future containment failure, the method also discovered the existence of a new tradeoff
between the immediate reduction of the pressure without CsI release and future increase in
the mass flow. Although there is no consensus as to how to operate the containment venting
system at the moment, the tendency is to use it only when the pressure exceeds a certain
point in order to prevent immediate sever damage of containment vessel, which corresponds
only to the fourth phase (4) in Figure 10. In our experiment, such a myopic operation
resulted in containment failure, or a significantly large amount of CsI being released into
the atmosphere (at least more than 4800 (g)).

In summary, we successfully applied the proposed method to investigate the containment
venting policy in nuclear power plant accidents. As a preliminary application study, several
topics are left to future work. From a theoretical viewpoint, future work should consider
a way to mitigate the simulation bias due to model error and model uncertainty. For the
model error, the robotics community is already cognizant that a small error in a simulator

187



Kawaguchi, Maruyama, & Zheng

can result in poor performance of the derived policy (i.e., simulation bias) (Kober et al.,
2013). We can mitigate this problem by adding a small noise to the model, since the
noise works as regularization to prevent over-fitting as demonstrated by Atkeson (1998).
For the model uncertainty, recent studies in the field of nuclear accident analysis provide
possible directions for the treatment of uncertainty in accident phenomena (Zheng, Itoh,
Kawaguchi, Tamaki, & Maruyama, 2015) and accident scenarios (Kawaguchi, Uchiyama, &
Muramatsu, 2012). As a result of either or both of these countermeasures, the objective
function becomes stochastic, and thereby we may first expand the pLOGO-OP algorithm to
stochastic case. On the other hand, from the phenomenological point of view, future work
should consider other fission products as well as CsI. Such fission products include, but are
not limited to, Xe, Cs, I, Te, Sr, and Ru. In particular, a noble gas element, such as Xe, can
be a major concern in an accident (it tends to be released a lot and is easily diffused into
the atmosphere), but its property is different from CsI (its half-life is much smaller). Thus,
if Xe is identified as a major concern, one may consider a significantly different policy from
ours (considering its half-life, one may delay conducting the containment venting).

7. Conclusions

In this paper, we proposed the LOGO algorithm, the global optimization algorithm that is
designed to operate well in practice while maintaining a finite-loss bound with no strong
additional assumption. The analysis of the LOGO algorithm generalized previous finite-loss
bound analysis. Importantly, the analysis also provided several insights regarding practical
usage of this type of algorithm by showing the relationship among the loss bound, the
division strategy, and the algorithm’s parameters.

We applied the LOGO algorithm to an AI planning problem with the policy search
framework, and showed that the performance of the algorithm can be improved by lever-
aging not only the unknown smoothness in policy space, but also the known smoothness
in the planning horizon. As our study is motivated to solve real-world engineering applica-
tions, we also discussed a parallelization design that utilizes the property of AI planning in
order to minimize the overhead. The resulting algorithm, the pLOGO-OP algorithm, was
successfully applied to a complex engineering problem, namely, policy derivation for nuclear
accident management.

Aside from the planning problem that we considered, the LOGO algorithm can be also
used, for example, to optimize parameters of other algorithms (i.e., algorithm configura-
tion). In the AI community, the algorithm configuration problem has been addressed by
several methods, including a genetic algorithm (Ansótegui, Sellmann, & Tierney, 2009), dis-
crete optimization with convergence guarantee in the limit (Hutter, Hoos, Leyton-Brown, &
Stützle, 2009), the racing approach originated from the machine learning community (Ho-
effding Races) (Birattari, Yuan, Balaprakash, & Stützle, 2010), model-based optimization
with convergence guarantee in the limit (Hutter, Hoos, & Leyton-Brown, 2011), a simul-
taneous use of several randomized local optimization methods (Gyorgy & Kocsis, 2011),
and Bayesian optimization (Snoek, Larochelle, & Adams, 2012). Compared to the previous
parameter tuning methods, the LOGO algorithm itself is limited to optimizing continuous
deterministic functions. To apply it to stochastic functions, a future work would modify
the LOGO algorithm as was done for the SOO algorithm in a previous study (Valko, Car-
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pentier, & Munos, 2013). To consider categorical and/or discrete parameters in addition to
continuous parameters, a possibility could be to use the LOGO algorithm as a subroutine
to deal with the continuous variables in one of the previous methods.

The promising results presented in this paper suggest several interesting directions for
future research. An important direction is to leverage additional assumptions. Since LOGO
is based on a weak set of assumptions, it would be natural to use LOGO as a main sub-
routine but add other mechanisms to account for additional assumptions. As a example,
we illustrated that LOGO would be able to scale up for a higher dimension with additional
assumptions in Section 5. Another possibility is to add a GP assumption based on the
idea presented in a recent paper (Kawaguchi, Kaelbling, & Lozano-Pérez, 2015). Future
work also would design an autonomous agent by integrating our planning algorithm with
a learning/exploration algorithm (Kawaguchi, 2016a). One remaining challenge of LOGO
is to derive a series of methods that adaptively determine the algorithm’s free parameter
w. As illustrated in our experiment, the achievement in this topic not only mitigates the
problem of parameter sensitivity, but also would improve the algorithm’s performance.
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Appendix A. Experimental Design of Application Study on Nuclear
Accident Management

In this appendix, we present the experimental setting for the Application Study on Nuclear
Accident Management in Section 6.4. With THALES2, we consider the volume nodaliza-
tion as shown in Figure 11. The reactor pressure vessel was divided into seven volumes,
consisting of core, upper plenum, lower plenum, steam dome, downcomer, and recirculation
loops A and B. The containment vessel consists of drywell, suppression chamber, pedestal
and vent pipes. The atmosphere and suppression chamber are connected via the contain-
ment venting system (S/C venting). The plant data and initial conditions were determined
based on the data of the Unit 1 of the Browns Ferry nuclear power plant (BWR4/Mark-I)
and the construction permit application forms of BWR plants in Japan. The failure of
the containment vessel is assumed to occur when the pressure of the vessel becomes 2.5
times greater than the design pressure. Here, the design pressure is 3.92 (kgf/cm2g) and
the criterion for the containment failure is 108330 kgf/m2. The degree of opening for the
containment venting was fixed at 25% and no filtering was considered.

We consider the TQUV sequence as the accident scenario. In the TQUV sequence, no
Emergency Core Cooling Systems (ECCSs) functions, similar to the case of the accident
at the Fukushima Daiichi nuclear power plant. The TQUV sequence is one of the major
scenarios considered in Probabilistic Risk Assessment (PRA) of nuclear plants. Therefore,
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Figure 11: Nodalization of physical space  
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our results show a promising benefit of containment venting, as long as we use it with a
good policy.

The simulator we developed at the Japan Atomic Energy Agency and adopted in this
experiment (THALES2) computes the transportation of fission products as well as thermal
hydraulics in each volume of Figure 11 and core melt progression in the Core volume. The
transportation of fission products considered in the experiment is shown in Figure 12. The
details of the computation of the THALES2 code are found in the paper by Ishikawa et al.
(2002). Figure 11 and Figure 12 are the modified versions of the graphs used in a previous
presentation about the ongoing development of the THALES2 code, which was given at the
USNRC’s 25th Regulatory Information Conference (Maruyama, 2013).
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