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Global and local curvature in density functional theory 
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Piecewise linearity of the energy with respect to fractional electron removal or addition is a requirement of an 

electronic structure method that necessitates the presence of a derivative discontinuity at integer electron occupation. 

Semi-local exchange-correlation (xc) approximations within density functional theory (DFT) fail to reproduce this 

behavior, giving rise to deviations from linearity with a convex global curvature that is evidence of many-electron, 

self-interaction error (SIE) and electron delocalization. Popular functional tuning strategies focus on reproducing 

piecewise linearity, especially to improve predictions of optical properties. In a divergent approach, Hubbard U-

augmented DFT (i.e., DFT+U) treats self-interaction errors by reducing the local curvature of the energy with 

respect to electron removal or addition from one localized subshell to the surrounding system. Although it has been 

suggested that DFT+U should simultaneously alleviate global and local curvature in the atomic limit, no detailed 

study on real systems has been carried out to probe the validity of this statement. In this work, we show when 

DFT+U should minimize deviations from linearity and demonstrate that a "+U" correction will never worsen the 

deviation from linearity of the underlying xc approximation. However, we explain varying degrees of efficiency of 

the approach over 27 octahedral transition metal complexes with respect to transition metal (Sc-Cu) and ligand 

strength (CO, NH3, and H2O) and investigate select pathological cases where the delocalization error is invisible to 

DFT+U within an atomic projection framework. Finally, we demonstrate that the global and local curvature 

represent different quantities that show opposing behavior with increasing ligand field strength, and we identify 

where these two may still coincide. 

I. INTRODUCTION 

Density functional theory (DFT) is the workhorse of the electronic structure community, and 

it is playing an ever increasing role in the design and discovery of new materials1, 2. However, 

presently available exchange-correlation (xc) approximations in DFT are plagued by both one- 

and many-electron self-interaction errors (SIE)3-7, which give rise to well-known problems in 

dissociation energies4, 8-11, barrier heights12, band gaps13, 14, electron affinities15-17, and other 

manifestations of delocalization error18-20. It has been shown21 that an exact energy functional  
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should be piecewise linear with respect to fractional addition (q) or removal of charge: 

 E(q)  (1 q)E(N )qE(N 1) , (1) 

 
where E(N) and E(N+1) are the energies of N- and N+1-electron systems, respectively, and q is 

varied between 0 (N electrons) and 1 (N+1 electrons).  This piecewise linearity22 necessitates a 

derivative discontinuity23-26 in an exact functional, but the analytical forms of common xc 

approximations lack this discontinuity unless re-expressed in an ensemble formalism27, 28. 

Instead, both semi-local (e.g., generalized gradient approximation, GGAs) functionals and the 

formally self-interaction free Hartree-Fock (HF) theory produce a deviation from linearity in 

E(q) with convex and concave behavior, respectively.3, 29 We refer to the second derivative of the 

energy with respect to charge, 
2 E

q2
, as a global curvature that is a good measure of a 

functional's delocalization error and energetic deviation from linearity.  

Utilizing Janak's30 or Koopmans'31 theorem, Stein et al.32 showed that an average or 

constant global curvature of a functional may be approximated as the difference in the N+1-

electron highest occupied molecular orbital (HOMO) and the N-electron lowest unoccupied 

molecular orbital (LUMO) eigenvalues: 

 
2 E

q2
N1

HOMO N
LUMO  . (2) 

In the same work32, Stein et al. also proposed a linear-response approach to obtaining the 

curvature, as outlined in the Supporting Information of Ref. 32. By tuning the range separation 

parameters33-42 that divide short-range semi-local or hybrid xc forms from long-range HF 

exchange to minimize this curvature, long-range corrected (LRC) hybrids43-49 frequently improve 
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excited state50 and some ground state37 properties by improving delocalization or self-interaction 

error3, 6, 13, 19, 20, 39, 51, 52. Similar efforts have motivated xc functionals53-55 that explicitly obey 

Koopmans' theorem31 and the improvement of approaches in many-body perturbation theory 

(i.e., GW)56. However, the curvature-minimizing strategy is not without issues, occasionally 

worsening predictions57-60 and showing marked size-dependence57, 58, 61, 62. Such size-dependence 

suggests that deviation from linearity is not sufficient for identifying SIE-free electronic structure 

methods, as it only guarantees removal of relative errors with respect to integer-electron 

endpoints and makes the likely incorrect assumption that what we will refer to as endpoint error 

(i.e., delocalization error effects on the total energy at integer electron number) is not increasing 

with system size. Orbital-dependent self-interaction corrections have also been pursued for some 

time63-68, but curvature-correction through optimally-tuned hybrid functionals remains the most 

widely employed SIE-correction strategy due to the relative ease of use and broad applicability 

of range-separated hybrids. 

 The self-consistent, linear-response DFT+U method shares similarities in spirit to LRC 

hybrid tuning but is applied much more frequently in solid-state transition-metal-containing 

materials, where long-range exchange remains more computationally expensive than semi-local 

xc approximations. Within DFT+U, the local curvature of the energy with respect to addition or 

removal of electrons from a localized subshell (nnl
I ) to the rest of the system at constant charge is 

minimized, and the calculated Hubbard U, or local curvature, is: 

 Unl
I 

2 E

(nnl
I )2

q

 . (3) 

This local curvature is obtained from the second derivative of the energy with respect to 

occupations on a single atom I computed at a constant charge, q, whereas global curvature is the 
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second derivative of the energy with respect to total charge, q, of the overall system. A main 

motivation for the DFT+U approach is the recognition that its functional form should also 

exactly recover piecewise linearity for an atom as fractional charge is added or removed to a 

localized subshell as long as global curvature is constant and nq  (Figure 1).  However, 

there is no reason that the two curvatures should necessarily be equal, since the global curvature 

reflects the behavior of the energy upon electron removal or addition, whereas the U, which we 

refer to here as the local curvature, reflects the change in energy as an electron is redistributed to 

the rest of the system. Furthermore, it has been argued69, 70 that if the nl subshell orbitals treated 

with DFT+U are frontier orbitals, the derivative discontinuity may be recovered, alleviating band 

gap problems within semi-local DFT because the DFT+U potential shifts orbitals with opposing 

character differently (see Sec. II). Notably, if the frontier orbitals do not have sufficient nl 

subshell character, then DFT+U may have little or no effect on the semi-local DFT band gap. In 

practice, DFT+U is widely used to address delocalization at integer occupations, i.e., endpoint 

total energy error in the ground state, which is different in spirit from the LRC approach that 

focuses on excitation energies. However, it is worthwhile to investigate whether deviation from 

linearity errors can also simultaneously be addressed by DFT+U in real systems.  

 
Figure 1. (Left) Comparison of the dependence of the energy in a practical exchange-correlation 
functional (e.g. GGA) as the charge (q) is varied between integer points (blue lines) with the 
energy as on-site occupations (n) are varied at a fixed q (red lines) along with representative 
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correct piecewise linear behavior (gray dashed line). An example +U correction is shown in the 
atomic limit (green line). (Right) Octahedral metal-ligand complexes studied in this work (inset) 
with a schematic showing that n is varied for fixed q by shifting electrons between the metal and 
surrounding environment as compared to complete electron removal, which also affects n. 

We thus present the first such investigation of the theoretical limits of DFT+U for global 

curvature corrections by focusing on model electron configurations in Sec. II. Computational 

details are summarized in Sec. III. In Sec. IV, we present and discuss results on calculated 

properties of 27 transition metal complexes to identify the extent DFT+U eliminates deviations 

from linearity in practice, and we also identify the relationship between global E vs. q and local 

U curvature.  Finally, we provide our Conclusions in Sec. V.  

II. THEORY 

Beyond average curvature expressions32, Johnson and coworkers have demonstrated20 that the 

energetic behavior of semi-local and hybrid functionals with fractional charge can be 

interpolated using quantities obtained only at integer electron count with the following cubic 

spline equation: 

 E(q)  Eq[(N
LUMO E)(1q) (E N1

HOMO )q]q(1q),  (4) 

where q = 0 and 1 correspond to the N- and N+1-electron systems, respectively. Here, ΔE is the 

difference in energy between the N+1- and N-electron molecules: 

 E  E(N 1)E(N ). (5) 

The N-electron LUMO eigenvalue, N
LUMO, and N+1-electron HOMO eigenvalue, N1

HOMO , are 

incorporated into the fit as they approximate the first derivative of the energy with respect to 

electron removal or addition30. We focus on the deviation from linearity at any value of q: 

 Edev(q) E(q)Eq  [(N
LUMO E)(1 q) (E N1

HOMO )q]q(1 q),  (6) 
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which highlights that deviations from linearity, Edev(q), disappear when the LUMO of the N-

electron system and HOMO of the N+1-electron system faithfully represent the N-electron 

electron affinity (EA) and N+1-electron ionization potential (IP), respectively. Semi-local DFT is 

well known to exhibit convex behavior, i.e. negative Edev(q) for q between 0 and 1.3, 29  

  An alternative approach to improve delocalization error in molecules and solids is the so-

called DFT+U method71-74. Within DFT+U, a Hubbard model Hamiltonian correction is added to 

a standard xc approximation to tune the degree of localization of electrons on specific Hubbard 

atoms. A frequent argument70, 75 for the theoretical rigor of DFT+U has been that within the 

atomic limit, the functional form of DFT+U corrects parabolic global curvature errors at 

fractional charge. When DFT+U is in applied to systems that exhibit hybridization and 

delocalization with surrounding atoms, the effect of DFT+U on global curvature errors is not 

known. We now examine the "+U" functional form and how it may alter Edev as predicted via the 

cubic spline expression of Johnson and coworkers20.  

First, recall that the full DFT+U energy functional71, 73 is: 

 EDFT+U[n(r)] EDFT[n(r)]EHub[{nm
I }]EDC[{nI }] , (7) 

where the first term (DFT) is the contribution from a standard xc approximation, the second term 

(Hub) is a Hubbard model Hamiltonian correction, and the double counting (DC) term 

approximately removes the effect of corrections present in both of the first two terms. There will 

be a Hub and DC contribution for each Hubbard atom and subshell identified. Most commonly, 

the DC term is obtained within the fully-localized limit: 

 EDC[{n }] 1

2
Un(n1) 1

2
J[n(n 1)n(n 1)],  (8) 
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where the total number of electrons is denoted n, spin up or down electrons is denoted n or n, 

respectively.  

A frequent simplifying assumption75, 76 is to treat same-spin and opposite-spin electrons 

equivalently with Ueff=U-J, yielding an expression for the DFT+U energy as: 

 EDFT+U  EDFT  1

2
Unl

I [Tr(n
nl

I (1
nl

 n
nl

I )
I ,
 ] . (9) 

There is a "+U" contribution for each nl subshell of atom I to which a Unl
I  is applied. The 

elements of the nnl
I  occupation matrix are obtained as a projection of the molecular state k ,  

at k-point k onto localized atomic orbitals on an atom I: 

 nmm '
I  k , m '

I m
I k ,

k ,
  . (10) 

The "+U" correction is incorporated self-consistently with a modification to the potential as: 

 VU 
Unl

I

2
(1 2nnl ,m

I )
m

 nl ,m
I

I ,nl

 nl ,m
I  , (11) 

where the shifts are a maximum U/2 or minimum –U/2 for molecular orbitals (MOs) that project 

fully onto the atomic orbitals (AOs) that are empty or filled, respectively.  

The Hubbard U in these DFT+U corrections corresponds to the difference between the IP 

and EA of electrons on atom I in subshell nl with respect to the rest of the system: 

 Unl
I  IPnl

I EAnl
I  E(nnl

I 1)E(nnl
I 1)2E(nnl

I ) , (12) 

which may be recognized as a finite difference approximation to the second derivative of the 
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energy (i.e., Unl
I 

2 E

(nnl
I )2

). More details on calculating75, 77 U are outlined in the Appendix.  

The simple functional form of DFT+U enables us to directly identify the manner in which 

a "+U" correction alters the Edev of an underlying xc approximation as: 

 
Edev(q)

U


N
LUMO

U

E

U









(1q)

E

U

N1

HOMO

U









q









q(1q) . (13) 

Here, we will distinguish LUMO error (LE) as the deviation from linearity arising from the first 

term inside the brackets, whereas the HOMO error (HE) is the deviation from linearity arising 

from the second term in eqn. 13. Due to the order of subtraction and sign convention, both the 

HE and LE are negative numbers. If the DFT+U functional is successful in reducing convexity in 

the underlying exchange-correlation approximation, then 
Edev (q)

U
 will be positive as a result of 

positive first derivatives of both the HE and LE with U. 

Both the HE and LE derivatives with U incorporate the derivative 
E

U
, which is: 

 
E

U
 E(N 1)

U
 E(N )

U
 , (14) 

where we make the approximation to the low-U-limit that the only change in the energy with U 

is due to the "+U" component of the functional and there is no change in the underlying xc 

approximation energy of the N+1- and N-electron systems with applied U.  Then, we can express 

in terms of the respective occupation matrices of the N+1- and N-electron states: 

 
E

U



U

U

2
Tr nN1(1nN1) 










U

U

2
Tr nN (1nN ) 







 , (15) 
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where nN1  and  nN  represent the occupation matrices of the N+1- and N-electron systems, 

respectively, and the Tr n(1n)   
term is the fractionality of the system.78  

When adding an electron to the N-electron system, up to 100% of that electron will 

manifest in larger values of elements in the occupation matrix of the N+1-electron system. 

Working in a diagonal occupation basis enables us to directly cast N+1- and N-electron 

fractionality differences in terms of projected AO filling differences. An occupation matrix 

element of the N+1-electron system becomes nmm
I , where I and  are atomic the site and spin, 

and the mm subscript indicates the diagonal element of the occupation matrix with quantum 

number ml=m. Then the N-electron system occupation matrix elements are nmm
I nmm

I , where 

0  nmm
I  nmm

I 1. The "+U"-derived energy difference of the two states (EU ) becomes:  

 EU U

2
nmm  nmm

2  (nmm nmm ) (nmm nmm )2

m










 , (16) 

where the first two terms comprise the fractionality of the N+1-electron system and the last two 

the N-electron system fractionality. We simplify EU  by defining and extracting the total 

occupation shift,ntot  nmm

m

 : 

 EU U

2
ntot  nmm nmm 2nmm 

m










 . (17) 

The term in the inner parentheses must always be negative, and the expression will be most 

negative if the addition or removal of the electron is well-localized to a single element of the 

occupation matrix (i.e., 1~ni  nji). We further simplify by assuming that the MO being 
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emptied or filled projects onto a single AO, leading to the simplified 
E

U
 derivative: 

 
E

U


1

2
nn2 2nn  , (18) 

where we have dropped all subscripts on the occupation matrix element and shift to indicate that 

only a single level is involved.  Limits in this simplified expression are clear: if the N+1-electron 

state is maximally fractional (i.e., n=½) and this ½ electron is fully removed during ionization to 

the neutral case, then the change in energy shift with U is a maximally positive value of 0.125 

eV/eV of U. For a minimally-fractional (i.e., n=1) N+1 state with ½ electron removal, the change 

in energy shift with U is maximally negative at -0.125 eV/eV (see Figure 2c). If the two states 

have equivalent fractionality, e.g. , n  n 1 then E is unchanged with U.  

 
Figure 2. a) Dependence of HOMO error derivative with U in eV/eV on the N+1-electron 
system occupation (n) and the fractional occupation loss (n). b) Dependence of LUMO error 
derivative with U in eV/eV on the N+1-electron system occupation (n) and the fractional 
occupation loss (n). c) Dependence of only the anion-neutral energy difference (E) on U in 
eV/eV on the N+1-electron system occupation (n) and fractional occupation loss (n). All three 
plots employ the same color gradient with color bar shown at right ranging from -0.5 eV/eV 
(blue) to +0.5 eV/eV (red). 

We will now show that the derivative of the eigenvalues with respect to applied U value 

contributes more strongly to shifts in HE and LE than the energy shift. These eigenvalue energy 

derivatives are closely related to the DFT+U potential as:   

n  n 1
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
U

 k ,
VU

U
k ,  ,  (19) 

where 
V U

U
 is the non-vanishing Hubbard contribution to the potential. We again neglect any 

higher-order contributions, e.g. from the "+U" correction changing the density. Recall, the 

derivative of the "+U" contribution to the potential with respect to U is: 

 
VU

U


1

2
(12nm

I ) m
I

I ,m

 m
I  . (20) 

This potential term produces an eigenvalue shift with U as: 

 
k ,

U
 k ,

1

2
(12nm

I ) m
I

I ,m

 m
I k ,  , (21) 

where we recognize the projection of the k-,-indexed MO onto the AO that contribute to the 

eigenvalue shift. This projection may be rewritten as a new occupation term: 

 nm,k
I  k , m

I m
I k ,  , (22) 

and the eigenvalue dependence on U may be written in terms of these two occupations as: 

 
k ,

U
 1

2
(12nm

I )nm,k
I

I ,m

  . (23) 

Two factors thus determine the extent of eigenvalue shift with U: i) the MO must have a 

strong contribution from one of the projected basis AOs and ii) the AOs should have near integer 

(i.e., 0 or 1) occupations. These multiplicative effects (eqn. 23 is plotted in Figure 3) lead to fast 

attenuation of the effect of DFT+U on an eigenvalue if i) the AO occupation decreases through 
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hybridization or ii) the contribution of the AO to the MO diminishes. In the limit of an MO 

projecting exactly onto one AO, the appropriate simplified eigenvalue shift becomes: 

 

U

 1

2
(1 2nocc ) , (24) 

where nocc is the occupations of the relevant AO. In the fully unoccupied and occupied limits, the 

potential shift becomes maximally positive (0.5 eV/eV of U) or negative (-0.5 eV/eV of U), 

respectively, which is 4x the maximum 
E

U
 in the HE/LE correction (Figure 3). Unoccupied 

MOs are often diffuse, making the maximum positive shift likely harder to achieve (see Sec. IV). 

 
Figure 3. Rate of change of a molecular orbital energy with U based on the occupation of the 

orbital in the molecular orbital ( nm,
I ) and the occupation of that atomic orbital ( nm

I ), for both 

occupied and unoccupied MOs. The data ranges from -0.50 eV/eV in blue to +0.50 eV/eV in red, 
as indicated by color bar in inset. 

The resulting formulae for LE and HE in the single orbital-emptying and filling limit are: 

 
LE

U
 N

LUMO

U
 E

U
 1

2
[1 2(nn)] 1

2
nn2 2nn   , and (25) 
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HE

U
 E

U
 N1

HOMO

U
 1

2
nn2  2nn   1

2
(12n)  . (26) 

These expressions reveal that maximum HE reduction occurs when a fully occupied orbital is 

emptied, but n> ½ all reduce HE (Figure 2a). The LE shift is positive over a more stringent range 

of occupations in the N+1- and N-electron states due to the competing effects of the eigenvalue 

and energy shift terms. Even when the N+1-electron state is well-occupied (i.e., 0.6  n 1), the 

LE increases for n  0.4 . Low n can yield productive LE shifts but must be emptied (i.e., n~n, 

Figure 2b), emphasizing high sensitivity of the LE to the dominant AO in the LUMO. 

 

Figure 4. Rate of change of Edev with U at q=+½ in eV/eV based on the occupation of the 
emptying or filling orbital for the N+1- (q=1) and N- (q=0) electron states, respectively. The data 
ranges from -0.125 eV/eV in blue to +0.125 eV/eV in red, as indicated by color bar in inset. 

A typical assumption is that the deviation from linearity has a maximum value at q=1/2 

where, conveniently, the Edev cubic spline and its derivative with U simplifies to:  

  . (27) 

The Edev shift with U at q=1/2 depends only on the N+1- and N-electron frontier orbital energy 
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shifts with U. We identified that the maximum negative/positive shift occurs when an MO 

projects onto one occupied/unoccupied AO. In this limit, the eqn. 27 simplifies to: 

 
Edev (q)

U
q1/2

 1

16
[1 2(nn)] (1 2n)   n

8
,  (28) 

where 0<n<n  and 0<n<1, and a maximum 0.125 eV/eV derivative is achieved for n=1 and 

n=1 (Figure 4). If the occupations do not shift (i.e., n=0), then the "+U" correction will have 

no effect. Only in the highly unlikely case that the occupations of the N-electron reference are 

higher than the N+1-electron reference would a "+U" correction increase E vs. q convexity. This 

observation highlights the potential benefit of a negatively valued U in HF+U, which we have 

previously discussed79 and found beneficial to employ78 to correct HF problems with concave, 

overlocalization. We next investigate whether the DFT+U curvature corrections to real inorganic 

complexes achieve the best case, limiting scenarios identified and whether the maximum Edev 

correction is sufficient to correct convexity in semi-local xc approximations (see Sec. IV). 

III. COMPUTATIONAL DETAILS 

Calculations on 28 M(II)/M(III) octahedral complexes (Sc-Cu with H2O, NH3, and CO 

ligands as well as Zn with H2O ligands) and the iron atom were carried out using the plane-wave 

periodic boundary condition code Quantum-ESPRESSO80. The Perdew-Burke-Ernzerhof 

(PBE)81 generalized-gradient approximation (GGA) was employed with ultrasoft 

pseudopotentials (USPPs)82 obtained from the Quantum-ESPRESSO website83. Plane wave 

cutoffs for the USPPs employed were 30 Ry for the wavefunction and 300 Ry for the charge 

density. For Sc, Ti, V, Cr, Mn, and Fe, USPPs with semicore 3s/3p states in the valence were 

used, and. for Co, Ni, Cu, and Zn, only the 3d and 4s states were in the valence. Rappe-Rabe-

Kaxiras-Joannopoulos USPPs84 were employed for carbon, hydrogen, oxygen, and nitrogen in 
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the test set ligands. A complete list of all USPPs used in this work is provided in supplementary 

material Table S1. In order to eliminate periodic image effects in the calculations on the 

molecular complexes studied, the Martyna-Tuckerman scheme85 was used along with substantial 

vacuum inside the 14.8 Å cubic box. At least 15 and up to 25 unoccupied states (bands) were 

included for all complexes. All optimized geometries are provided in the supplementary material.  

Initial structures were built with the molSimplify86 toolkit with both ligand force-field 

preoptimization and trained metal-ligand bond lengths features enabled. These structures were 

subsequently geometry optimized with PBE-GGA in the +3 charge state, which was taken as the 

N-electron reference. Any additional calculations of other charge states were obtained on that 

optimized geometry, regardless of differences in charge or U value employed. Fractional electron 

calculations were carried out by manually altering band occupations using the 'from_input' 

command in Quantum-ESPRESSO.  

Except for the low-spin Fe(CO)6 case, the ground state spin of the isolated atom, as 

obtained from the National Institute of Standards and Technology atomic spectra database87, was 

employed for all studies to simplify ligand-field-dependent comparisons. This spin state choice is 

likely correct for the weak field, hexa-aqua complexes, but a low-spin state may be preferred for 

strong field carbonyl ligands, with spin states of the ammonia complexes likely being metal- and 

xc-approximation-dependent88, 89. For the nine metals studied, M(II/III) complexes range from 

nominally d1/d0 for Sc to d9/d8 for Cu. The +2/+3 redox states are considered here due to their 

prevalence in biological and inorganic catalytic cycles90 and due to their nominal 3d occupation 

difference. From Sc to Mn, the M(II)/M(III) spin state increases from doublet and singlet for Sc 

to sextet and quintet for Mn, as a majority spin electron added. For Fe to Cu, spin states are 

reversed with M(II) and M(III) Fe corresponding to quintet and sextet and decreasing magnetic 
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moment down to doublet and triplet for Cu, as a minority spin electron is added.  

Linear response U calculations75, 91 were carried out using a rigid potential shift ranging 

from -0.2 eV to +0.2 eV in roughly 0.02 eV increments.  In select cases, difficulties converging 

the GGA ground state necessitated calculation of a self-consistent U on the DFT+U density 

instead.77 A standard, linear-response calculation of U was employed for the remaining cases due 

to previous observations92 that the two coincide for cases where the GGA and +U electronic 

states are qualitatively the same. For fractional charge linear response U calculations, the same 

procedure was applied for linear-response U calculation but with a non-integer total charge. 

Density difference and molecular orbital density isosurfaces were plotted at 0.002 e-.  

IV. RESULTS AND DISCUSSION 

A. Validating Interpolated E vs. q within DFT+U  

It is expedient to employ the interpolated formula suggested and demonstrated on semi-local 

DFT total energies by Johnson and coworkers20, but it is not yet clear that the correspondence 

will hold for DFT+U total energies of molecules. In the limit of a single atomic orbital filled or 

emptied as charge is varied, it is evident that the fractionality will smoothly vary, but for 

molecules, solids, and atoms with degenerate orbitals, the added fractional electron could 

hybridize differently over a number of already fractionally occupied orbitals at different q. 
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Figure 5. a) Comparison of real (circle symbols) and interpolated (dashed lines) deviation from 
linearity (Edev) for low-spin Fe(CO)6. b) Highest-occupied eigenvalue (HO) with charge centered 
around Fe(CO)6

3+. The lines for both graphs are colored by the value of U applied following the 
color bar shown in inset (i.e., red is a pure GGA result and blue is a U = 6 eV result). 

However, we do indeed find the interpolated cubic spline holds for predicting DFT+U 

Edev, as shown for a low-spin Fe(CO)6 complex (Figure 5a).For the larger U values at which we 

approach linearity, multiple solutions may emerge92-94 giving some rise to noisiness in the 

fractional energies, but overall fidelity between the interpolation and calculated values is quite 

good (see supplementary material Figures S1-8 for results on eight other complexes). The Edev 

crosses from convex to concave at U = 5-6 eV, which are typical values applied in DFT+U 

calculations. The starting Edev of -0.7 eV at q=+0.5 is thus reduced by nearly the maximum 

theoretical limit we identified of 0.125 eV/eV of U (see Sec. IV.C for broader efficiency 
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discussion). Both the real and interpolated data provide the first evidence that DFT+U is suitable 

to alleviate global curvature errors even in systems with considerable hybridization. As expected, 

the derivative discontinuity (Figure 5b) is also restored as determined by the eigenvalue of the 

highest-occupied level (HO) within q±0.5 of the +3 charge state. Invariant eigenvalues with MO 

filling are observed around U = 5-6 eV, consistent with the energy perspective.    

B. DFT+U corrections to convexity 

We now compare components of the validated spline for five representative complexes to 

identify how "+U" corrections reduce deviation from linearity (Figure 6). The GGA HEs and 

LEs are comparable around -2.5 and -4.0 eV and produce maximum Edev GGA values that range 

from -1.0 to -0.7 eV. Recall, HEs and LEs are both negative from sign convention but arise due 

to the N+1-electron HOMO energy being too high and the N-electron LUMO being too low. The 

"+U" correction has a consistent effect on most of the complexes compared. As suggested in Sec. 

II, energy differences between N- and N+1-electron states become slightly more negative as U is 

increased for 4 of the 5 complexes, especially for hexa-aqua iron. Low-spin iron hexa-carbonyl is 

the sole exception in which the energy difference decreases as U is increased. In all iron 

complexes, HEs and LEs are reduced as U is increased with comparable slopes in LE and HE 

reduction leading to a projected linearity around U = 5-8 eV. In contrast to iron, Mn(CO)6 

HOMO and LUMO errors are nearly unchanged as U is increased, and this reduced efficiency as 

well as in the hexa-aqua complex will be revisited in Sec. IV.C. Based on the theoretical model 

that we introduced in Sec. II, unchanging Mn(CO)6 HE and LE suggests unchanged, half-filled 

AO associated with both frontier orbitals. In most cases, DFT+U alleviates deviation from 

linearity by eliminating HEs and LEs through HOMO stabilization and LUMO destabilization 

along with a secondary effect on E.  
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Figure 6. Comparison of deviation from linearity components and their dependence on U value 
in eV for four iron octahedral complexes with differing ligands and spins (NH3 in blue, H2O in 
red, CO high-spin in gray solid and CO low-spin in gray dashed lines) with one manganese 
octahedral complex (CO in green). Specifically, we compare the HOMO error (top, left), LUMO 
error (bottom, left), shift in energy difference (top, right), and total maximum deviation from 
linearity (bottom, right) all in units of eV. The zero error or change point is indicated with a 
dashed black line.   

Comparison of both individual and averaged LEs/HEs and component derivatives across 9 

transition metals (i.e., Sc-Cu) with CO, NH3, and H2O ligands (Table I) reveals several trends. 

For the carbonyl complexes, total-energy-derived EAs are largest, and the HEs and LEs are 

smallest at around -3 eV versus -3.4-3.5 eV for ammonia or -3.6-3.7 for water. Within the same 

ligand field, filling the 3d shell generally increases both the HE and LE. The DFT+U corrections 

to the total energy are on average small and negative (-0.04 eV/eV for CO, -0.10 eV/eV for NH3 

and -0.18 eV/eV for H2O). Corrections of the N+1-electron HOMO are substantially steeper than 

those for the N-electron LUMO, averaging -0.3-0.4 eV/eV for the former versus 0.03-0.26 eV/eV 

for the latter.  

Table I. Components of deviation from linearity in GGA results on octahedral complexes (in 
eV) as well as the dependence of those quantities on U (in eV/eV) and the point at which the 
curves become linear labeled 'Cross' (in eV). Maximum, minimum, and average values of select 
quantities are also tabulated. 

CO 
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HOMO 
Error 

LUMO 
Error E 

N1
HOMO

U
 

N
LUMO

U
 

E

U
 

Cross 
Sc -2.77 -2.89 -16.57 -0.30 0.36 -0.03 8.1 
Ti -2.92 -2.91 -17.95 -0.30 0.35 0.01 9 
V -2.98 -2.99 -19.03 -0.34 0.42 0.02 7.7 
Cr -3.06 -3.02 -19.61 -0.12 -0.03 -0.07 100.9 
Mn -3.16 -3.03 -18.28 -0.20 -0.09 -0.14 95.1 
Fe -3.30 -3.25 -18.87 -0.46 0.45 -0.05 7.7 
Co -3.27 -3.15 -19.97 -0.44 0.40 -0.13 7.9 
Ni -3.25 -3.15 -21.23 -0.38 0.53 0.06 7.6 
Cu -2.98 -2.88 -19.04 -0.10 0.00 -0.04 93.9 
min -2.77 -2.88 -16.57 -0.10 -0.09 -0.14  
max -3.30 -3.25 -21.23 -0.46 0.53 0.06  
avg -3.07 -3.03 -18.95 -0.29 0.26 -0.04  
NH3 

 
HOMO 
Error 

LUMO 
Error E 

N1
HOMO

U
 

N
LUMO

U
 

E

U
 

Cross 
Sc -3.17 -3.45 -11.85 -0.40 0.32 -0.09 8.5 
Ti -3.56 -3.49 -13.03 -0.48 0.33 -0.10 9 
V -3.63 -3.55 -14.06 -0.49 0.36 -0.09 8.2 
Cr -3.35 -3.36 -12.34 -0.27 -0.06 -0.16 39.8 
Mn -3.43 -3.27 -14.16 -0.28 -0.10 -0.18 69.9 
Fe -3.85 -3.66 -14.51 -0.52 0.40 -0.09 7.9 
Co -3.74 -3.40 -15.72 -0.54 0.37 -0.07 8 
Ni -3.67 -3.42 -16.61 -0.55 0.53 -0.02 7.3 
Cu -3.09 -3.00 -15.08 -0.19 0.00 -0.08 45.1 
min -3.09 -3.00 -11.85 -0.19 -0.10 -0.18  
max -3.85 -3.66 -16.61 -0.55 0.53 -0.02  
avg -3.50 -3.40 -14.15 -0.41 0.24 -0.10  
H2O 

 
HOMO 
Error 

LUMO 
Error E 

N1
HOMO

U
 

N
LUMO

U
 

E

U
 

Cross 
Sc -3.16 -3.72 -12.33 -0.42 0.14 -0.15 12.2 
Ti -3.83 -3.75 -13.52 -0.46 0.16 -0.17 12.4 
V -3.97 -3.80 -14.68 -0.44 0.08 -0.19 14.10 
Cr -3.87 -3.86 -13.89 -0.33 -0.09 -0.22 35.7 
Mn -4.02 -3.81 -19.29 -0.35 -0.15 -0.23 52.3 
Fe -4.16 -3.71 -15.96 -0.54 0.11 -0.21 13.67 
Co -4.03 -3.70 -16.58 -0.45 0.11 -0.17 13.4 
Ni -3.32 -2.90 -18.13 -0.36 -0.05 -0.15 31.8 
Cu -3.48 -3.25 -17.51 -0.27 0.00 -0.12 38.6 
min -3.16 -2.90 -12.33 -0.27 -0.15 -0.23  
max -4.16 -3.86 -19.29 -0.54 0.16 -0.12  
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avg -3.76 -3.61 -15.77 -0.40 0.03 -0.18  
 

Recall from the theoretical model (see Sec. II), the LUMO must have a strong projection 

onto a fully unoccupied AO for the LUMO eigenvalue shift to be strongly positive with U. The 

LUMO shift is weaker because rehybridization of still occupied levels upon electron removal 

leads to some fractional occupation of the AO the likely diffuse LUMO projects onto. The 

LUMO error has the added disadvantage of interfering deconstructively with shifts in the total 

energy difference, meaning that only cases where an orbital is at least half emptied give rise to 

the desired behavior.  In some cases, we do observe very efficient LUMO corrections with slopes 

around +0.53 eV/eV even in excess of the theoretical limit we predicted for a single orbital 

correction, due to occupations slightly above 1 (see supplementary material Table S2). As a 

practical note, the frontier orbital ordering may change at high U, and the appropriate orbital for 

use in the cubic spline may differ from the HOMO or LUMO (see example in supplementary 

material Figures S9-10). These results suggest that one can identify when DFT+U will be most 

effective at treating deviation from linearity errors without carrying out E vs. q calculations by 

identifying when the frontier MO energies are strongly U dependent, as evident from the 

occupation matrix itself or from finite difference of DFT and DFT+U eigenvalues.  

DFT+U produces a linear energy profile at U=7-9 eV for six M(CO)6 and M(NH3)6 

complexes (M=Sc,Ti,V,Fe,Co,Ni) (complete details for all complexes are provided in 

supplementary material Tables S3-S30). This range of U values is within the realm of those 

applied in production DFT+U calculations, but inefficiencies are apparent for the hexa-aqua 

complexes and Cr, Mn, and Cu complexes regardless of ligand (see Sec. IV.C). For the hexa-

aqua iron case, we added a U on O 2p states, which has seen some success95, in order to bolster 

the standard DFT+U global curvature correction. This procedure worsened HOMO and LUMO 
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placement, increasing Edev (see supplementary material Table S31). Intersite terms96, found to be 

valuable for covalent metal-oxygen bonds97, would not impact the weak metal-water interaction.  

For comparison, we also studied the closed shell Zn(H2O)6, complex in which all 3d 

orbitals are filled and the HOMO and LUMO does not have strong 3d character. As expected 

from Sec. II, a "+U" correction has no effect on the global curvature (see supplementary material 

Table S32). DFT+U has been employed previously for d10 materials98, 99, where special effort has 

been made to overcome the closed shell nature of the manifold in these cases for U calculation 

either by large potential shifts100 or through HF calculations101.  However, it is clear that d10 

systems with no 3d character in frontier orbitals will have global curvatures that are immune to 

DFT+U.  

C. Efficiency of "+U" corrections 

We now examine observed DFT+U inefficiency in reducing GGA Edev errors (Table I) 

with 1) reduced HE shifts for Mn, Cr, and Cu complexes and 2) broader small or incorrect-sign 

LE shifts. We quantify the effectiveness of DFT+U at reducing deviations from linearity by 

comparing the average GGA global curvature obtained from the difference in the N-electron 

LUMO and N+1-electron HOMO eigenvalues with the point at which a DFT+U correction 

produces straight-line energetics (Figure 7). The efficiency of DFT+U is thus defined as follows: 

 Efficiency 

2 E
q2

GGA

Ucross

100  , (29) 

which is the percentage ratio of global curvature and the Ucross that produces linear E vs. q. The 

global curvature is highest for weak-field water ligands, with only Ni(H2O)6 as an exception, and 

lowest for strong-field carbonyl ligands, with ammonia generally residing between the two 

(Table II and Figure 7). The global curvature is generally largest for the middle of the periodic 
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table and smallest for nearly empty Sc (d0-1) or nearly filled Cu (d8-9) octahedral complexes. 

Efficiency, in turn, is highest overall for ammonia ligands and second for carbonyl ligands, with 

diminished efficiency on nearly all hexa-aqua complexes. This combined effect of lower 

efficiency but higher global curvature in hexa-aqua complexes means that not only would we 

project a high U needed between 7-8 eV from the GGA global curvature but that a U value closer 

to 14 eV would be required to achieve linearity once efficiency is taken into account. Such a 

large value of U is not typically practical to employ, and its necessity both in the water ligands 

and in select cases (i.e. Cr, Mn, and Cu) may be traced to being in the regime of incompletely 

filled and emptied occupations we previously identified in our theoretical model (see Sec. IV.D). 

Nevertheless, the high efficiencies (as much as 90-98%) for NH3 and CO ligands suggest that 

DFT+U often succeeds in correcting both local and global curvature error as long as the 

numerical values of the two coincide strongly (see also Sec. IV.F).  

Table II. Calculated U in eV for 2+ and 3+ octahedral complexes of metals (Sc-Cu) grouped by 
the relevant ligand (CO, NH3, or H2O) along with curvature (Curv., in eV), point of crossing (U 
labeled Cross, in eV), and efficiency (in %). 
CO 
 U (2+) U (3+) Curv. Cross Efficiency
Sc 2.7 2.5 5.7 8.1 70% 
Ti 4.8 4.4 5.8 9.0 65% 
V 4.5 3.8 6.0 7.7 77% 
Cr 3.4 3.0 6.0 101 6% 
Mn 3.7 4.1 6.2 95 7% 
Fe 4.3 3.9 6.5 7.7 85% 
Co 6.9 5.0 6.4 7.9 81% 
Ni 4.9 4.7 6.4 7.6 84% 
Cu 8.6 8.2 5.9 94 6% 
NH3 
 U (2+) U (3+) Curv. Cross Efficiency
Sc 2.6 2.1 6.6 8.5 78% 
Ti 4.1 3.9 7.0 9.0 78% 
V 3.0 3.2 7.2 8.2 88% 
Cr 2.0 2.7 6.7 40 17% 
Mn 2.7 4.2 6.7 70 10% 
Fe 3.3 3.7 7.5 7.9 95% 
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Co 4.1 4.7 7.1 8.0 90% 
Ni 3.0 4.5 7.1 7.3 98% 
Cu 6.1 7.1 6.1 45 14% 
H2O 
 U (2+) U (3+) Curv. Cross Efficiency
Sc 2.4 2.1 6.9 12.2 57% 
Ti 3.8 3.6 7.6 12.4 61% 
V 2.2 2.9 7.8 14.1 55% 
Cr 1.6 2.2 7.7 36 22% 
Mn 2.8 3.3 7.8 52 15% 
Fe 2.9 4.1 7.9 13.7 58% 
Co 4.0 4.7 7.7 13.4 58% 
Ni 2.0 5.4 6.0 32 19% 
Cu 5.7 7.5 6.7 39 17% 
 

 
Figure 7. (Top) Efficiency of the DFT+U correction for octahedral transition metal complexes 
(M=Sc-Cu) with CO (gray squares), NH3 (blue triangles), and OH2 (red circles) ligands as 
measured by the expected U at which linearity occurs divided by the actual value of U required. 
(Bottom) Value of the curvature (in eV) obtained from +2 and +3 eigenvalues for the same 
complexes, which is the number employed as the expected U in the efficiency metric. 

D.  Occupation and density perspective on the "+U" correction  

The behavior of DFT+U is derived from the occupation matrix properties, and we may 

interpret the efficiency and role of a "+U" correction on representative complexes through how 

the local occupation matrix changes as total charge, q, is varied. We revisit the example of 

Mn(CO)6, which is a case where DFT+U is ineffective, and compare it to the non-pathological 

high-spin Fe(CO)6 case (Figure 8). For Mn, a spin up orbital is only partially emptied as charge 

is varied, from n=1 at Mn(II) to about 0.75 at Mn(III), explaining the negative shift of the LUMO 
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with increasing U for Mn(III). From Mn(II) to Mn(III), spin down occupations increase, 

compensating the spin up occupation loss, leading to a negligible change in total on-site 

occupations (ntot) across the range of q considered. The resulting fractionality increases weakly 

in an approximately linear fashion as a result of partial emptying of the spin up orbital. In the 

contrasting Fe case, a full (n=0.95) spin down orbital becomes nearly empty (n-n=0.04), and 

the fractionality peaks at around q=0.5 where the HOMO becomes half occupied. The total spin 

down 3d occupations only decrease from 1.5 to 1.0 as a result of rehybridization of other 

orbitals, but this compensation does not impact the fractionality.  

 

Figure 8. Comparison of features of M(CO)6 metal d occupations in octahedral complexes with 
M=Mn (left) and M=Fe (right): (bottom) individual occupation matrix elements for spin up 
(dotted line) and spin down (dashed line), (middle) total occupations of the spin up (dotted) and 
down (solid) d electrons, and (top) total fractionality (gray dashed line) and contributing 
fractionality from individual states colored the same as in the bottom all as the total charge is 
varied from +3 to +2. 

Within the other iron complexes, NH3 ligands behave comparably to CO, with slightly 

more single projected AO emptying and enhanced fractionality at q = 0.5 (Figure 9). Conversely, 

the Fe(H2O)6 complex differs substantially: instead of the fully-occupied (i.e., all orbitals besides 

the HOMO), spin down AO occupation being split over two other orbitals, it is split over three 

orbitals, due to the weaker ligand field. In the other cases, the three occupied MOs are only the 
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t2g orbitals, whereas the field is weak enough in the water case to include an eg orbital. This 

altered occupation for the hexa-aqua complex gives an increase in fractionality as charge is 

depleted from +2 to +3, but these partial occupations increase from 0.0-0.2 for Fe(II) to around 

0.25 in Fe(III). This splitting of occupations as charge is depleted toward Fe(III) results in a 

nearly monotonic increase in fractionality from Fe(II) to Fe(III), which we will show is what 

gives rise to inefficiency in a "+U" correction. Although the key AO corresponding to the 

frontier MO is nearly fully emptied to n-n=0.15, this value is higher than the other two iron 

complexes.  

 

Figure 9. Comparison of features of spin down iron occupations in octahedral complexes with 
water (left) and ammonia (right) ligands: (bottom) individual occupation matrix elements, 
(middle) total occupations of the spin down d electrons, and (top) total fractionality (gray dashed 
line) and contributing fractionality from individual states colored the same as in the bottom all as 
the total charge is varied from +3 to +2.  

Thus, we may summarize that from an occupation perspective in real systems what we 

previously identified in theoretical limits of the approach on idealized systems. DFT+U is 

ineffective at reducing deviations from linearity if: i) fractionality increases from one charge 

state to another due to reorganization of the occupations aside from the level being emptied or 

filled (e.g., the case of Fe(H2O)6) or ii) the state being emptied is only partially 3d orbital in 
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character and becomes only weakly emptied (e.g., the case of Mn(CO)6).   

 

Figure 10. Density difference isosurface between the +2 and +3 states (left) and HOMO density 
(right) for M(CO)6 complexes (M=Mn (top) and Fe (bottom)).  The isosurfaces are colored as 
follows: (left) red represents an increase in density, blue represents a decrease as an electron is 
added and (right) yellow represents positive wavefunction phase and purple represents the 
negative wavefunction phase.  

A comparison of the GGA N+1-electron HOMO density of the Fe(CO)6 and Mn(CO)6 

molecules further reveals the reason that DFT+U is effective for correcting deviations from 

linearity of the former complex but not the latter. Although the Fe(CO)6 HOMO is nearly 

exclusively centered on the metal center in a t2g-like orbital expected from ligand field theory, 

the eg  Mn(CO)6  molecular orbital has significant contribution from 2p states in the CO ligands 

(Figure 10). This combination in Mn(CO)6 means that a projection of the MO onto AOs will 

produce intermediate occupations (see Figure 8) where DFT+U does very little to shift states up 

or down. It is important to note that by visual inspection, one might still describe the Mn(CO)6  

HOMO character as strongly atomic, as the majority of the density is localized on the Mn center. 
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However, even smaller contributions of electron density from the surrounding ligands limit the 

approach’s effectiveness. The density difference () between the +2 and +3 states also reveals 

enhanced on the ligands for Mn versus more metal-centered density shifts in Fe (Figure 10). 

In total, the net percentage of density that is added directly to the metal center is 18% in the Mn 

case and 29% in the Fe case (see supplementary material). This density perspective suggests that 

a reformulation of the potential dependence on occupations is needed, e.g. to work directly with 

projecting maximally localized molecular orbitals onto the localized atomic-like orbital set or to 

a reformulation of the potential to address complex-wide delocalization error. 

E. Fractionality as an indicator of efficiency in DFT+U corrections 

Within the context of reducing Edev errors with electron addition and removal, a 

motivating factor for employing DFT+U is that in the limit of a single atom with an orbital being 

emptied or filled, the fractionality should rise from zero at the endpoints to a maximum value of 

0.25 when a ½ charge is added. In real systems, the fractionality of the endpoints is not zero, but 

a rise in fractionality may occur as fractional charge is added. Since we are interested in the 

correction to the curvature of the energy, we focus on the deviation of this fractionality (fracdev) 

from a linear interpolation of the fractionality in the endpoints:  

 fracdev(q) Tr[nNq(1nNq )]qTr[nN1(1nN1)] (1 q)Tr[nN (1nN )],  (30) 

where the first term is the fractionality of the occupation matrix obtained with partial charge N+q 

and the second and third terms are the linear average of the N+1- and N-electron fractionalities. 

We observe (Figure 11) that for cases where the DFT+U correction does nothing to alleviate 

global curvature errors, the fractionality appears linear over the range of charges considered and 

the fracdev is near zero. Thus, these systems (e.g., Cr(CO)6 and Mn(CO)6 in Fig. 11) have a global 

curvature that is "invisible" to DFT+U because there is no increase in fractionality, even as the 
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total electron count is becoming more fractional.  Instead, a "+U" energy correction will rigidly 

shift all points up equivalently, rather than selectively shifting up the points at fractional charge. 

This “invisibility” is a side-effect of employing the most common projection choice, i.e., atom-

centered atomic basis functions. An alternate formulation of the definition of n that enters into 

the +U correction, e.g., the total electron count or in a molecular orbital basis for the projections, 

would recover corrections for these and other cases with comparable occupation matrix 

properties.  

 

Figure 11. (Left) Fractionality (Tr[n(1-n)]) of M(CO)6 (M=Cr, Mn, or  Fe) as the charge on the 
complex is varied from +3 to +2 with symbols colored by element (Cr in salmon, Mn in green, 
Fe in blue).  (Right) Deviation of fractionality (dev. frac.) from a linear admixture between M3+ 
and M2+ endpoints compared to the limiting case of an atom (black dotted line). 

 

Figure 12. (Left) Fractionality (Tr[n(1-n)]) of Fe(L)6 (L=CO, NH3, or OH2) as the charge on the 
complex is varied from +3 to +2 with symbols colored by ligand (gray squares for CO, blue 
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triangles for NH3, and red circles for OH2). (Right) Deviation of fractionality (dev. frac.) from a 
linear admixture between Fe3+ and Fe2+ endpoints compared to the limiting case of an atom 
(black dotted line). 

 We also revisit the fractionality and consider the fracdev for representative iron octahedral 

complexes with carbonyl, ammonia, and water ligands. For a strong ligand field, we expect that 

hybridization, and thus fractionality, would increase substantially over a weak field ligand. 

However, only in the Fe(II) endpoint is the fractionality of the carbonyl complex higher than the 

aqua complex (Figure 12). Instead, the weak field of the hexa-aqua complex gives rise to 

residual fractional occupations split over several states that peaks as charge is reduced toward 

Fe(III) (see Sec. IV.D). Because the Fe(III) endpoint of the hexa-aqua complex is close to the 

curve maximum, the fracdev is diminished. Ammonia fractionality is as low as water for Fe(II) 

but approaches lower fractionality that is comparable to CO at Fe(III). In contrast, NH3 has low 

fractionality in both endpoints, which is comparable to H2O at Fe(II) and CO at Fe(III), but peaks 

with fractionality comparable to CO at around +2.5. This behavior gives NH3 the maximum 

fracdev of the three, which is nearly comparable to the limiting atom case (see Fig. 12). Thus, we 

can rationalize earlier efficiency observations: weak field ligands such as water may hybridize 

less and produce complexes with lower fractionality but weaker ligand fields may also increase 

fractionality via residual small amounts of minority spin d electron to be distributed equivalently 

over more AOs/MOs than in strong field cases.  
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Figure 13. (Left) Fractionality (Tr[n(1-n)]) of Fe(H2O)6 in red and Fe(NH3)6 in blue as the 
charge on the complex is varied from +3 to +2 for GGA (solid line) and U = 5 eV (dashed line). 
The maximum of the GGA curve is indicated with a circle and a vector is drawn to the maximum 
on the U = 5 eV curve. (Right) Deviation of fractionality (dev. frac.) from a linear admixture 
between M3+ and M2+ endpoints for GGA (solid lines) and U = 5 eV (dashed lines) with the 
maximum of the GGA curve indicated with a circle and a vector is drawn to the maximum on the 
U = 5 eV curve. 

Absolute fractionality at integer charge thus matters less than large fracdev increases at 

q=1/2 needed for DFT+U efficiency. The fracdev provides evidence of the extent to which a 

DFT+U correction will penalize the overstabilized GGA energies for fractional electron number 

and is proportional to the "+U" energy correction. Outside the low-U-limit approximation, 

DFT+U calculations with increasingly large U values applied should shift the fractionality by 

preferentially filling or emptying AOs/MOs (see Sec. II). Although one might expect all 

fractionality to be eliminated entirely, in practice (Figure 13), the shift is subtle. Namely, moving 

from GGA to a typically applied U value of 5 eV shifts absolute fractionalities by as much as 0.2 

e-2, about 25%. Interestingly, Fe(H2O)6 has a stronger decrease in fractionality with U than 

Fe(NH3)6 (Figure 13).  However, the decrease in Fe(H2O)6 fractionality is distributed evenly 

across the curve, with the largest effect at the Fe(III) endpoint. When comparing the Fe(H2O)6 

fracdev for U = 0  and 5 eV, fracdev is slightly reduced and its maximum is shifted off-center from 

q=+0.5.  For Fe(NH3)6, on the other hand, the DFT+U reduction in fractionality is selectively 

effective on the endpoints by localizing the other MOs besides the Fe(II) HOMO/Fe(III) LUMO. 

This increases the fracdev even as overall fractionality decreases, amplifying the "+U" correction 

effectiveness as U increases, further explaining the relatively high efficiency of NH3 complexes. 

F. Global versus local curvature 

Having observed that DFT+U can alleviate Edev errors when a U that is at least as large as 

the initial GGA curvature is applied, one may be wondering do these Edev-minimizing values of 

U bear any relation to linear response values of U? It is apparent that the practice102 of choosing 
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a U value that adjusts the HOMO and LUMO to target positions or through IP-tuning commonly 

employed33-42  in LRC hybrid functionals will directly alleviate deviations from linearity in the 

context of DFT+U as well. However, the U at which the HOMO and LUMO errors are corrected 

is sensitive to the nature of the projection scheme and not necessarily the same as the one 

obtained from linear response103. In order to address this outstanding question, we calculated the 

linear response U for all complexes in both the N+1 (M(II)) and N (M(III)) states (Table I) and 

investigate the relation of U to GGA global curvatures.  

 

Figure 14. Plot of global curvature versus local curvature (U), both in eV, for the transition 
metals considered (from red Sc to blue Cu across the periodic table, as indicated by inset color 
bar) with y = x line shown in dotted black. Each symbol corresponds to a different ligand (circle 
OH2, triangle NH3, square CO and diamond for low-spin CO, as indicated in inset legend).   

 

We first compare the U obtained for the N+1-electron state against the global curvature 

(Figure 14). The highest curvatures obtained for weak-field water ligands coincide to the lowest 

linear-response U values, and strong-field carbonyl ligands exhibit lower global curvatures and 

higher linear response U values across all complexes studied. Thus, there is an apparent negative 
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correlation between the ligand-field dependence of global curvature and linear response U.  The 

only points where the two quantities appear to coincide are mid- to late-transition metals: Fe, Co 

and Cu, where the strongest field ligands have comparable linear response U and global 

curvature values. This result suggests that if one employs the linear response U value intending 

to simultaneously correct Edev, e.g. for an octahedral hexa-aqua complex, then only a small 

percentage of the global curvature will be alleviated. This mismatch in global and local curvature 

(i.e. U) is further compounded by lower efficiencies for the weak field ligands (Table I).   

The observed negative linear correlation between global and local curvature measures: 

 
2 E

q2
 mU b   (31) 

is quite strong with correlation coefficients (R2) between 0.9 and 1.0, excluding only Mn and Ni 

(Table III). The slopes, m, are typically most negative for Sc and Ti, which are low d-occupation 

transition metals, and most other transition metals have slopes around -1 eV/eV of U. We 

consider the practical likelihood that the calculated linear response U would coincide with a 

value of U needed to correct Edev at what we refer to as the equal curvature (EC) point. We note 

the average ( x ) GGA curvature is 6.9 eV across the 27 molecules (range 5 to 8 eV) with a 

standard deviation (s) of 0.8 eV. The slope (m) and intercept (b) from the linear relationships 

obtained for each metal enable us to identify the EC point: 

 EC 
2 E

q2
U 

b

1m
 . (32) 

Next we determine the number of standard deviations ( ns ) below x  this predicted point would 

be, as the EC must occur when global curvature is low and linear response U is high:  
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 ns 
x EC

s
 . (33) 

With this analysis (Table III), the late transition metals Co, Ni, Cu have an EC point quite close 

to the average global curvature, whereas the EC is substantially below the average value for early 

transition metals (e.g. Sc-Mn). Next, we take into account the average efficiency (eff.) with 

which the DFT+U method corrects the global curvature for each metal with a modified 

expression for an effective equivalent curvature (EEC) point: 

 EEC 
1

eff.

2 E

q2
U 

b

1 m
 . (34) 

The revised number of standard deviations, ns,eff ., that the crossing point is shifted off the mean 

increase once efficiency is taken into account in the EEC (Table III). It becomes clear that a 

linear response U would not eliminate Edev especially for Sc, Cr, Mn, or Cu complexes, and the 

correspondence of linear response U and global curvature is likely best for the Fe, Co, and Ni 

systems to which DFT+U is widely applied104-106 (Table III). 

Table III. Summary of properties of lines relating global curvature and calculated U values 
including intercept (int.), slope, correlation coefficient (R2), point where two curvatures are 
equal, standard deviations below average global curvature to satisfy point where two curvatures 
are equal( ns ), and the last two quantities repeated taking into account the average efficiency 
(eff.) of DFT+U for that metal. 

 int. slope R2 2 E

q2
U   

ns   1

eff.

2 E

q2
U   

ns,eff . 

Sc 18.5 -4.8 0.89 3.2 -4.4 2.5 -5.3 
Ti 13.9 -1.7 1.00 5.2 -2.0 4.2 -3.3 
V 9.6 -0.8 1.00 5.3 -1.9 4.8 -2.5 
Cr 8.7 -0.8 0.90 4.8 -2.5 1.1 -7.0 
Mn 10.1 -1.0 0.69 4.9 -2.3 0.7 -7.4 
Fe 10.5 -0.9 1.00 5.5 -1.7 5.2 -2.0 
Co 8.9 -0.4 0.91 6.5 -0.4 6.3 -0.8 
Ni 6.3 0.1 0.15 6.7 -0.2 6.7 -0.2 
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Cu 8.4 -0.3 0.96 6.4 -0.6 2.1 -5.8 
 

We also compared linear response U obtained at both integer (Table III) and fractional 

electron counts. Computing linear response U at +2 and +3 charge produces similar values for 

many of the compounds of interest typically within 0.5 eV of each other, although exceptions 

include cases where i) M(III) U values are in substantial excess of M(II) U values, e.g. Ni(H2O)6, 

Mn(NH3)6, and Ni(NH3)6  and ii) the reverse is true, e.g. Co(CO)6. Overall, linear response U 

typically increases as the manifold is filled, regardless of ligand choice, and U values are 

smallest for the earliest transition metals, e.g. Sc, and for the Cr and Mn cases. There is limited 

correspondence between isoelectronic molecules, e.g. Fe(III)(H2O)6 versus Mn(II)(H2O)6, 

emphasizing our earlier observations92 that U is sensitive to the underlying electronic structure.    

 

Figure 15. Measures of local (U, red circles) and global (
2 E

q2
, gray circles) curvature in eV for 

three octahedral iron complexes Fe(L)6 with L=H2O (left), NH3 (middle), and CO (right) as the 
charge on the complex is varied from +3 to +2.  

For the three high-spin Fe(L)6 complexes with L=H2O, NH3, and CO, we computed 

global curvature and linear response U at fractional charges between the N+1- and N- electron 

integer values (Figure 15). In order to obtain global curvature at fractional charge, we fit the 
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fractional E vs. q curve to a fifth-order polynomial and took the second derivative to obtain 

2 E

q2
q

. The result was not sensitive to the order of the fitting polynomial. We then evaluated 

linear response U at 0.1 increments of fractional total charge, which we believe is the first time 

such a calculation has been considered within plane-wave DFT+U. One argument in favor of the 

"+U" correction is its ability to exactly reproduce piecewise linearity and the derivative 

discontinuity in the atomic limit if a constant global curvature holds70, 75. Unlike CO and, to a 

lesser extent, NH3 ligands, the computed global curvature data reveals variations that are 

especially strong for water ligands where the curvature ranges from 6 to 9 eV from Fe(III) to 

Fe(II), possibly motivating +U(q) correction in future work along the lines of the DFT+U(R) 

approach we have previously developed107, where the U applied in this case is the global 

curvature at each q.  As in DFT+U(R), DFT+U(q) total energies require only a reference point at 

which they are aligned for each value of U. In the +U(q) approach, a natural reference point is 

the higher-electron count charge state, and relative energies with U at each q may then be 

interpolated to obtain the precise E(q, U) at the appropriate global curvature value for that point. 

Within +U(q), one overcomes the lack of constant curvature (Figure 15), which may cause 

DFT+U E vs. q curves to be convex for some range of q and concave for other ranges. In fact, a 

demonstration of DFT+U(q) on Fe(NH3)6 reveals a nearly linear profile that cannot be achieved 

at constant applied U value (see supplementary material Figure S11). 

In general, the Fe(III) species exhibits lower global curvature, which steadily increases 

towards the Fe(II) endpoint. The opposite trends are observed for linear response U as fractional 

charge is varied, and the two properties appear to be mirror images of each other, although no 

consistent correlation of the values across all values of q may be obtained. It may at first be 

counterintuitive that removing an electron from the transition metal center to another part of the 
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molecule versus removing it entirely (schematic in Figure 1) can lead to such different measures 

of energy curvature. However, we now present two arguments for why these global and local 

curvature measures should exhibit opposing trends.  

First, consider the simplest case of an atom with n occupations and q charge. We will 

assume that the localized subshell of interest is emptied and filled when charge is varied (i.e., 

n q ), which is a good assumption for the frontier subshell in an open-shell atom. Recall that 

the local curvature or U ( 
2 E

n2
 ) and global curvature (

 2E

q2
) both may be defined in terms of 

two-point central difference formulae centered around the same point: 

 
2 E

n2


E(nn)
q
 2 E(n)

q
E(nn)

q

(n)2
 and (35) 

 
2 E

q2


E(nn)
qq

2 E(n)
q
E(nn)

qq

(q)2
 , (36) 

where in the former, n is being varied directly, while in the latter n changes when q is varied. The 

two expressions will therefore be nontrivially equal if and only if: 

 E(nn)
q
E(nn)

q
 E(nn)

qq
E(nn)

qq
 , (37) 

where the terms on the left-hand side represent the central difference terms from determination 

of the U obtained by varying onsite occupations at constant charge and the terms on the right-

hand side represent the energies obtained by varying charge. We have no reason to expect these 

two quantities should be equal. To emphasize further, we may represent the same equality by 

returning the neutral term to represent these total energies instead as relative to the neutral case: 
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 E(nn)
q
E(nn)

q
 E(nn)

qq
E(nn)

qq
 , (38) 

where the  represents that each energy is a relative energy referenced against the E(n)
q
 value.  

At charge q, n is the occupation corresponding to the self-consistent stationary point, and adding 

or removing occupations from that manifold causes the energy to rise. Therefore, both terms on 

the left-hand side of eqn. 38 will be positive. On the right hand side, adding charge lowers the 

total energy, whereas removing charge makes the energy rise, giving one positive and one 

negative term. The extent to which those positive and negative terms do not cancel is what 

produces negative Edev values. Therefore, it becomes clear that the global and local curvature 

measures are focused on two separate quantities and should only coincide out of chance. 

A second argument pertains to the extent to which total energy errors at integer electrons 

are effectively reducing the computed global curvature. It has been observed32, 57, 58, 61, 62 that 

curvature decreases as size increases in molecules. Here, we are studying molecules of 

comparable size but strong field ligands (e.g. CO) lead to higher effective hybridization than 

weak field ligands (e.g. H2O). A comparison to Fe(II)/Fe(III) ions further highlights this effect as 

the global curvature decreases from its highest value at around 16 eV for Fe(II)/Fe(III) ions (see 

supplementary material Figures S12-13) to its smallest value in the low-spin Fe(CO)6 complex of 

around 5 eV. The energies of inorganic complexes at integer electron count are artificially 

lowered through metal-ligand bond overdelocalization, whereas there is less opportunity for 

electrons to delocalize in an atom, producing lower computed curvatures as stronger ligands are 

added to a metal center. At the same time, linear response U targets exactly the opposite feature 

by answering: to what extent is hybridization at a constant charge overly favored within a 

molecule between states we expect to be localized? Therefore, when curvature decreases, we 
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would expect computed U to increase, as observed for several complexes (Figures 14 and 15).   

The outcome of this study thus reinforces that if band-position-dependent properties are 

the main motivation for using DFT+U, then a U fit to reproduce key features of the density of 

states102, or redefined as the value of U that eliminates HOMO-LUMO-derived definition of 

global curvature proposed by Stein et al.32 (see eq. 2), is a better strategy than employing linear 

response U. Thankfully, for many of the materials to which DFT+U is most commonly 

employed, these two choices of U values often coincide quite closely (Table III).  As a follow-up 

to this work, an ongoing area of interest for us is to identify how tuning delocalization error 

evidenced by convex energy behavior at non-integer occupations affects computed endpoint 

properties such as spin state ordering.  

V. CONCLUSIONS 

We have developed understanding of where DFT+U, a method designed to treat 

unphysical local curvature that governs delocalization between atomic subshells and surrounding 

atoms in molecules and solids, is suitable for simultaneously treating global curvature errors 

indicated by deviations from linearity in energy with electron removal or addition. We have 

provided quantitative criteria for DFT+U efficiency in correcting deviations from linearity: i) 

strong AO character in the HOMO and LUMO and ii) strong loss of the AO character from the 

MO as the MO is emptied without reorganization of that character into other occupied states. We 

have determined that under no circumstances should DFT+U with positive U values increase 

convex deviations from linearity. We have identified the maximum efficiency of DFT+U to 

correct curvature as -0.125 eV/eV of U, which corresponds to moderate U values around 5-6 eV 

for only a select subset of mid- to late-transition metal complexes with strong field ligands, 

which are coincidentally among the complexes most typically studied with this method. We 

demonstrated additional requirements for efficiency including that the occupations must show 
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deviations from linearity at fractional charge for the method to identify delocalization error. This 

criterion is not satisfied in Mn and Cr complexes that therefore remain uncorrected by DFT+U. 

Similar logic applies to no reduction in deviation from linearity in closed shell complexes.  

Finally, we provided a firm case and quantitative evidence that local and global curvature 

measures on a complex should not coincide. We observed that increasing ligand field strength 

increases the effective size of the complex for the delocalizing 3d electrons in the frontier 

orbitals, leading to reduced curvature. Conversely, strong field ligands increase the measure of 

on-site unphysical curvature. We identified late transition metals with strong field ligands as the 

rare cases in which the two quantities would coincide.  Indeed, based on typical practices in the 

literature, correcting DFT+U to alleviate local curvature likely leaves behind residual global 

curvature. This work highlights the need to develop an understanding of when employing tuning 

strategies for alleviating global energetic deviations from linearity improves or worsens density-

delocalization driven total-energy errors at integer electron count.  

SUPPLEMENTARY MATERIAL 

See supplementary material for optimized geometries, list of pseudopotentials used, calculated 

and interpolated deviations from linearity for eight octahedral complexes, eigenvalue crossing 

analysis and interpolation, and complete components of interpolation for 28 octahedral 

complexes, interpolation and calculated results on an iron atom, results with U on O 2p, example 

occupations, method for density difference calculation, and demonstration of a DFT+U(q) 

approach. 
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APPENDIX: CALCULATING U 

By exploiting Janak's theorem30 in DFT,  U may instead be calculated in terms of eigenvalue 

differences: 

 U nl ,ml

I (nnl
I 

1

2
)nl ,ml

I (nnl
I 

1

2
) , (A39) 

which is the finite difference expression of:  

 U 
nl ,ml

I

nnl
I

 . (A40) 

Within linear response U75, rather than directly constraining occupations, a linear shift is applied 

to the localized occupations: 

 E lin  nl
I Tr(nnl

I , )
nl


I ,
  , (A41) 

where nl
I  is only applied to the nl subshell of atom I. This rigid potential shift adjusts the 

eigenvalues of MOs with strong projection onto the AO subshell of interest as:  

 V lin  nl
I

m

 nl ,m
I

I ,nl

 nl ,m
I  ,  (A42) 

where this correction is additive with any underlying xc approximation potential and the "+U" 

potential shift in eqn. 11 if they are simultaneously applied. As the potential shift moves MOs 



42 
 

with strong nl subshell character, it alters the filling of the AOs that the MOs project onto, 

leading to reorganization of the occupations. This procedure was first introduced by Pickett and 

coworkers91 and later clarified by Cococcioni and de Gironcoli75 to remove any non-interacting 

or 'bare' shift in occupations that would occur as a result of the shift in level positions. In 

practice, U is computed by inverting the slope of the line obtained by applying several values of 

 against the bare and converged total occupations of the subshell of interest as follows: 

 Unl
I 

dnl
I

d(nnl
I )0


dnl

I

dnnl
I

 , (A43) 

where the first term represents the bare contribution that is removed from the converged solution. 

A self-consistent extension77 to this original approach enabled the calculation of U directly on 

the DFT+U density as follows: 

 Uout Uscf Uin / m , (A44) 

where m is a degeneracy factor and Uscf is obtained by applying several values of Uin, computing 

Uout, and extrapolating back to the Uin=0 limit. This approach is motivated when the standard xc 

approximation and DFT+U electronic states differ substantially. More recently, it has been 

shown70 that freezing the U potential during the linear response calculation may equivalently be 

used to obtain the U from a DFT+U density. Alternatively, one can return to the original 

expression of U (eqn. 3) and simply obtain the energy contribution from the underlying xc 

approximation in the DFT+U calculation and fit to a quadratic form against the total occupations. 
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