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Introduction
Vaccines are a proven, powerful tool for public health and have 
had a major effect on medicine and society. Vaccine development 
has been very successful, with 81 currently FDA-licensed prod-
ucts in the US and many more worldwide. However, this success 
has had a natural sieving effect, removing the easier to neutralize 
microbes from the list of remaining challenges, and many of the 
important pathogens for which no effective vaccine exists (e.g., 
malaria, HIV, tuberculosis, various bacteria) present daunting 
immunological obstacles (1–3). In addition to these challenges, 
modern standards for vaccine safety, in which adverse events at 
frequencies comparable to those of rare genetic disorders in the 
population are viewed as unacceptable, add to the challenge of 
solving the vaccine puzzle for new pathogen threats. These chal-
lenges fuel interest in new technologies that can help shape the 
strength and quality of immune responses to vaccination and pro-
vide new means to induce potent immune responses with a high 
degree of safety.

Vaccines typically comprise an antigen (the target for the 
immune response) and an adjuvant (a coadministered compound 
meant to promote the immune response to the antigen); vaccines 
based on defined target antigens are known as subunit vaccines 
(4). In the last 15 years, much effort in vaccinology has focused on 

the development of adjuvants based on defined “danger signals,” 
conserved molecular motifs signifying the presence of danger-
ous microbes that are recognized by specific pattern recognition 
receptors (PRRs) in host stromal or immune cells (5). In the case 
of live-attenuated vaccines, the weakened pathogen is both anti-
gen and adjuvant due to the endogenous danger signals (e.g., viral 
or bacterial nucleic acids) present within the microbe itself. How-
ever, in many current vaccine candidates, the antigen is a well- 
defined recombinant protein, and the adjuvant is composed of one 
or more molecular danger signals, such as monophosphoryl lipid 
A, CpG DNA, or polyinosinic:polycytidylic acid (6). Such molecu-
lar vaccines, like any other drug from the broader field of pharma-
ceuticals, can require formulation technologies that ensure that 
the biodistribution and pharmacokinetics of the vaccine are opti-
mized for potency and safety. Therefore, many current “antigen 
plus adjuvant” vaccine concepts are better defined as comprising 
three components — antigen, adjuvant, and vaccine formulation.

Several outstanding fundamental problems are relevant for 
producing new subunit vaccines against infectious disease and 
tumors. Prophylactic vaccines often fail to elicit durable protection 
through the production of sufficient long-lived antibody-produc-
ing plasma cells and memory T and B cell populations (7, 8); meth-
ods to promote sustained immunity are needed. Broadly neu-
tralizing antibodies against some microbes, such as HIV, appear 
to require relatively high levels of somatic hypermutation (SHM) 
(9), the process by which antibodies are mutated away from their 
germline sequence to refine their specificity and affinity for tar-
get antigens. Methods to promote germinal center (GC) reactions 
in which SHM occurs are a focus of ongoing research. For thera-
peutic vaccines against cancer and intracellular microbes, strong 
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antigen is internalized and then transported by neutrophils, mono-
cytes, and DCs to draining LNs to support T cell responses (10). 
Antigen also drains from the intramuscular injection site, as MF59 
does not directly associate with antigens (11) and not all antigen is 
retained at the injection site with alum (12); MF59 can also promote 
antigen retention in LNs that likely supports B cell responses (13). 
The intramuscular route of administration has long been favored 
because these adjuvants can elicit significant injection site reac-
tions when administered at other sites (e.g., subcutaneous), and, 
for many vaccines, intramuscular administration with alum or oil-
in-water emulsions promotes robust, protective humoral responses 
in humans. However, APCs trafficking vaccine to LNs have been 
shown in most instances to represent a small population (e.g.,  
~1%–5% of all DCs in a LN); thus, a minute quantity of antigen is 
typically detectable in muscle-draining LNs with traditional adju-
vants (10, 11), which may limit the strength of the immune response 
in ways that could be important for intracellular pathogens. An 
alternative is to use subcutaneous or intradermal routes of injec-
tion where lymphatic drainage is efficient to increase direct vaccine 
delivery to LNs, combined with formulation strategies that elimi-
nate or minimize injection site reactions. A number of approaches 
now exist that enable vaccines to accumulate at high levels in LNs 
from these sites, reaching a majority of DCs in a node.

For direct lymphatic drainage, the molecular weight and 
dimensions of vaccine particles are critical because fluid clearance 
from peripheral tissues is gated by physical size: the blood clears 
10-fold more fluid from tissues than lymph, but transport across 
the basement membrane and between tight junctions of endo-
thelial cells is highly inefficient for large macromolecules. Thus, 
there exists a nearly linear dependence of lymphatic uptake and 
molecular weight, up to a plateau value of approximately 45 kDa in 
size, above which proteins show nearly 100% trafficking to lymph 
in both animal models and humans (refs. 14, 15, and Figure 1). This 
relationship between molecular size and lymph uptake explains 
why low-molecular-weight adjuvants like imidazoquinolines show 
high levels of systemic exposure/inflammatory toxicity following 
parenteral injection (16) and partly explains the poor potency of 
low-molecular-weight antigens like peptides. Efficient trafficking 
to lymphoid tissues is only a first step; vaccine materials must also 
be subsequently captured in LNs. Material that flushes through the 
LN will eventually be delivered to the systemic circulation through 

CD8+ T cell responses are required, and methods to elicit strong T 
cell immunity in humans using safe, non-live vaccines remain an 
ongoing challenge. Finally, the use of adjuvants to enable subunit 
vaccines to approach the potency of live infections introduces seri-
ous safety concerns, and strategies to safely use powerful danger 
signals in vaccination will likely be important for tackling several 
of the issues described above.

In this brief Review, we highlight recent efforts in vaccine for-
mulation that aim to address some of these immunological chal-
lenges, focusing in particular on transport of vaccines to lymphoid 
tissues, delivery of danger signals to immune cells, and using 
materials to regulate the kinetics of subunit vaccine presentation 
to immune cells. Key issues are the distribution of adjuvant com-
pounds into lymphoid tissues versus the systemic circulation and 
codelivery of antigen and adjuvant to the same cells. In addition, 
because the immune system has evolved to intrinsically recognize 
the particulate state of microbes (viruses, typically nanoparticles; 
bacteria, typically microparticles), the design of subunit vaccines 
that “rebuild” selected features of microbial structure, such as the 
display of antigen at the surface of particles or the repetitive dis-
play of molecular danger signals, has been shown to significantly 
affect the immune response. Finally, the timing with which the 
immune system is exposed to antigen and inflammatory cues is 
known to play a critical role in the immune response to infectious 
agents but remains an understudied area in synthetic vaccines. 
Vaccine delivery approaches that could tailor the kinetics of vac-
cine uptake in lymphoid tissues thus provide another means to 
shape the resulting immune response. Addressing these issues 
requires a combination of efforts in pharmaceutical sciences, 
materials science, medicinal chemistry, and protein engineering.

Controlling vaccine biodistribution
Cell-mediated versus lymphatic transport for vaccine delivery to lymph 
nodes. Naive T cells and B cells recirculate through the lymph nodes 
(LNs) and spleen, and thus vaccines must physically access these 
organs to elicit an immune response. Trafficking of vaccines from 
an injection site to LNs can be mediated by lymphatic drainage or 
through immune cell–mediated transport. “First-generation” adju-
vants, such as aluminum salts (alum) and MF59 (an oil-in-water 
nanoemulsion), function by promoting antigen-presenting cell 
(APC) migration to intramuscular injection sites, in which vaccine 

Figure 1. Roles of particulate vaccine formu-
lations in controlling vaccine biodistribution 
and presentation to immune cells. Particulate 
vaccines in the 20- to 100-nm size range prefer-
entially traffic into lymphatic vessels towards the 
LNs, while smaller molecules disseminate into the 
systemic circulation with poor lymphatic uptake. 
Larger particles become trapped in tissue and tend 
to depot near the site of injection. (i) Particulate 
vaccines containing both antigen and danger 
signals can codeliver these vaccine components 
to the same APC, enabling activation of PRRs 
selectively in cells that have acquired antigen. (ii) 
A high-density display of antigen on the surface 
of particulate vaccines enhances cross-linking of 
antigen receptors on specific B cells.
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tionalizing vaccines with DC-binding ligands is another approach 
to enhance LN uptake and vaccine efficacy. Vaccines that target 
DEC-205 or other cell surface molecules expressed by DCs using 
antibodies coupled to antigens, nanoparticles, or lentiviral vectors 
have been shown to enhance LN accumulation and immunogenic-
ity in small animal models (39, 40) and to promote both cellular 
and humoral immunity in humans (41). Thus, antibodies against 
DEC-205 serve as a proof of concept for the many DC-targeting 
agents being studied for vaccine delivery (42, 43). However, it 
remains to be determined whether vaccine efficacy can be best 
achieved by targeting delivery to a precise subset of DCs versus 
optimizing formulations to activate and antigen-load multiple DC 
subsets simultaneously.

Separating pharmacokinetics from adjuvant effector properties. 
Formulation strategies to increase vaccine delivery to LNs can 
often simultaneously decrease the blood distribution of adju-
vants, thereby limiting systemic toxicity. For example, many 
danger signal compounds, such as Pam3Cys and monophospho-
ryl lipid A, are lipids that form micelles or aggregates in water 
and may interact with proteins and/or reorganize based on the 
composition of the surrounding solution, making poorly defined 
products. However, incorporation of these amphiphiles into the 
bilayers of synthetic liposomes or multilamellar vesicles enables 
stable adjuvant nanoparticles to be generated with well-defined 
in vivo biodistribution properties. A prototypical example of this 
strategy is GlaxoSmithKline’s AS01B/E adjuvant formulation, 
which consists of liposomes incorporating monophosphoryl lipid 
A and the plant-derived saponin QS-21, a liposomal adjuvant 
with proven effectiveness in numerous clinical trials, particularly 
in malaria (44–46). Encapsulation of small-molecule adjuvants 
in polymer nanoparticles (47, 48) or liposomes (16, 49) has been 
shown to eliminate systemic exposure to these compounds, while 
enhancing accumulation and stimulation of draining LNs in mice 
and nonhuman primates (NHPs). Direct modifications to small 
molecules have also been used to alter adjuvant pharmacokinet-
ics: “small-molecule immune potentiator” (SMIP) TLR7 agonists 
containing aluminum-binding phosphate groups were recently 
synthesized, which, when mixed with alum, become bound to the 
adjuvant, focusing their action in the muscle and muscle-drain-
ing LNs (50). Alum-binding SMIPs showed much less systemic 
dissemination/toxicity than their non-alum-binding parent com-
pounds, while exhibiting much greater efficacy for promoting 
humoral immunity in mice.

Codelivery of antigen and danger signals
Codelivery and internalization in APCs. In addition to recognition 
of antigen by the T cell receptor, T cells require two additional 
signals from APCs for maximal activation — costimulation and 
cytokine stimulation (51). Expression of costimulatory molecules 
and inflammatory cytokine secretion are triggered in APCs by an 
encounter with danger signals (52). Studies in mice have suggested 
that optimal activation of DCs requires direct stimulation by dan-
ger signals rather than “in trans” activation by inflammatory 
cytokines produced by other cells in the tissue (53, 54). In addition, 
optimal humoral responses have been shown in some instances to 
require PRR signaling in B cells in mice (48, 55). During infection, 
APCs and B cells most often encounter antigen and danger signals 

the thoracic duct, providing a second route for systemic exposure 
to antigens and adjuvants. That such systemic dissemination is 
possible is illustrated by studies with small (30 nm in diameter) 
PEGylated polymer particles, which, following intradermal injec-
tion in mice, were shown to reach concentrations in the blood 
comparable to a direct i.v. injection after 18 hours (17).

The size-based regulation of lymph versus blood trafficking 
described above has motivated the exploration of nanoparticles 
as carriers for vaccine delivery to LNs (18, 19). The efficiency of 
direct lymphatic trafficking of nanoparticles is hindered by con-
vection through the extracellular matrix (ECM) as particle size 
increases, and antigen-conjugated solid polymer nanoparticles 20 
to 50 nm in diameter have been shown by multiple studies in mice 
to more efficiently accumulate in LNs when compared with solu-
ble antigen or with larger nanoparticles (refs. 20–23 and Figure 1).  
These results correlate well with the estimated approximately 
50-nm mean mesh size of connective tissue ECM (24). However, 
elastic particles (e.g., liposomes) that may deform during trans-
port appear to have different size limits (25). Virus-like particles 
(VLPs), based on self-assembling proteins (26–28) and synthetic 
polymer or lipid nanoparticle formulations (21, 29–32), have been 
demonstrated to enhance vaccine accumulation in LNs and to 
promote superior cellular and humoral immunity to a variety of 
antigens in mice relative to soluble forms of protein and peptide 
vaccines. In addition to size, particle surface chemistry plays a key 
role in lymphatic trafficking by regulating the tendency toward 
aggregation in physiological conditions and interactions with cells 
and/or ECM. For example, liposomes formed of gel-phase cat-
ionic lipids containing the danger signal trehalose 6,6-dibehenate, 
an adjuvant known as CAF01, form a sustained local depot at the 
injection site that lasts more than 2 weeks, while gel-phase neu-
tral liposomes clear over several days (33). Thus, CAF01 promotes 
CD4+ T cell responses in humans through attracting and activat-
ing APCs at the injection site rather than directly draining to LNs 
(34). PEGylation of particles is a general strategy to shield surface 
charge and sterically block aggregation and interactions with the 
ECM and has often been used to enhance LN accumulation of par-
ticulate vaccines (21, 30, 35).

Targeting APCs in lymphoid organs. Antigens or adjuvants can 
be designed to target immune cells or endogenous proteins to 
promote LN accumulation. For example, modification of oligo-
nucleotide adjuvants or peptide antigens with lipid tails designed 
to bind endogenous albumin was shown to promote substan-
tially enhanced LN uptake (36). By binding to albumin, these 
low-molecular-weight vaccine components were blocked from 
disseminating into the blood and instead trafficked efficiently to 
the lymphatics, leading to accumulation in multiple LN-resident 
DC subsets. Enhanced LN accumulation translated to greatly 
increased immunogenicity compared with the equivalent soluble 
antigen/adjuvant in mice.

DCs are themselves a heterogeneous collection of cells made 
up of many phenotypic subsets with distinct functions in the adap-
tive immune response (37). For example, CD11b+ DCs play an 
important role in priming CD4+ T cells (38), while CD8α+ DCs in 
mice (CD141+XCR1+CADM1+ DCs in humans) are most efficient 
at presenting antigens acquired from the extracellular environ-
ment to CD8+ T cells (37). Targeting specific DC subsets by func-
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Targeting multiple danger sensor pathways. All microbes con-
tain multiple danger signals, and the immune response to many 
live infectious agents has been formally shown to involve multiple 
PRRs. Perhaps unsurprisingly, certain combinations of danger sig-
nals have been shown to trigger strongly synergistic amplification 
of innate immune activation through PRRs in mouse and human 
DCs (71). A few studies to date suggest that such synergies may 
also be relevant for in vivo responses to vaccination. For example, 
a cancer vaccine based on irradiated flagellin- and ovalbumin-
expressing tumor cells was shown to elicit potent T cell responses 
in mice, dependent on both TLR5 and the Nod-like receptors 
NLRC4 and NAIP5 (72). In NHPs, combinations of TLR7/8 and 
TLR9 agonists enhanced the induction of binding and neutral-
izing antibody titers against an HIV envelope immunogen (73). 
High-throughput screening has begun to be applied to the prob-
lem of defining optimal danger signal combinations, and in vitro 
assays predictive of in vivo vaccine performance should enable 
more facile exploration of the vast parameter space of possible 
adjuvant combinations (74).

Combination engagement of PRRs can be achieved through 
the synthesis of chemically linked danger signal ligands (75) or 
through coformulation strategies. Covalent heterodimers of TLR2 
and TLR9 agonists have been shown to elicit enhanced NF-κB 
expression in DCs relative to stimulation with physical mixtures of 
these ligands in vitro, and this response may be linked to enforced 
spatial colocalization of TLRs and their associated adaptor mole-
cules (76). The use of particulate or oil-in-water formulations also 
facilitates combination delivery of danger signals in mouse and 
NHP models (73, 77). PLGA nanoparticles encapsulating TLR4 
and TLR7 agonists were found to synergistically promote strong 
antibody titers and increase the number of GCs following vaccina-
tion in mice, while avoiding the toxicity of the free adjuvant com-
pounds (48). Effective formulation strategies such as this will be 
key to safely implementing synergistic danger signal compounds 
as adjuvants. A key question for the future is whether the synergies 
observed between TLR agonists and other danger signals in the 
studies to date will still be manifest and important when danger 
signals are optimally formulated for LN delivery and APC uptake.

Optimizing antigen display to B cells
The majority of licensed vaccines are thought to protect through 
the generation of neutralizing antibodies (78), and thus strategies 
to promote the humoral response are of key importance in vaccine 
development. Because multivalent B cell receptor (BCR) engage-
ment and clustering promotes B cell activation (79), vaccine for-
mulations can play an important role in regulating the presentation 
of antigens to B cells in a manner that promotes BCR aggregation. 
Molecules that can elicit B cell activation and antibody production 
in the absence of T cell help (e.g., bacterial polysaccharides) are 
known as T-independent antigens, while most peptide and pro-
tein antigens are T-dependent and require both BCR triggering 
and interactions of B cells with CD4+ Th cells. Early studies using 
small-molecule antigens termed haptens demonstrated that these 
T-independent epitopes were only immunogenic in mice when 
presented as multimers of at least 10 to 20 haptens linked to a 
synthetic polymer backbone (80). Polymers functionalized with 
haptens show an increase in BCR clustering and calcium flux in 

together as microparticulate (bacteria, fungi) or nanoparticulate 
(viruses) packages. Notably, optimal antigen processing and pre-
sentation following uptake of particulate antigens by DCs in vitro 
has been shown to require coassociation of appropriate danger sig-
nals in the same particle, such that danger signals and antigen are 
colocalized to the same endosome/phagosome within APCs (ref. 
56 and Figure 1). Many examples have been published of murine 
studies that demonstrate enhanced humoral and cellular immu-
nity elicited by particulate vaccines co-incorporating antigen and 
danger signal compounds (29, 32, 57–59), and virus-like nanopar-
ticles carrying peptide antigens and CpG DNA have recently been 
shown to elicit CD8+ T cell responses of magnitudes sufficient 
for direct ex vivo detection by peptide-MHC tetramer staining 
in humans (60). A balancing concern, especially for prophylactic 
vaccines, is the potential of coformulation of antigen and danger 
signals to trigger autoreactive T or B cell responses: autoantigen/
danger signal complexes are implicated as drivers of some auto-
immune diseases (61). Coencapsulation of antigen and immu-
nosuppressive compounds can be alternatively used to generate 
particulate vaccines promoting tolerance. For example, polymer 
nanoparticles containing both antigen and rapamycin were shown 
to inhibit antigen-specific T cell activation, increase regulatory 
B and T cells, and inhibit hypersensitivity reactions and autoim-
mune encephalomyelitis in mouse models (62).

Whether antigen and danger signal coassociation is an abso-
lute requirement for synthetic vaccines has been unclear, as, in 
some cases, adjuvant compounds delivered in particles mixed with 
soluble antigen or antigen and adjuvants encapsulated in separate 
particles have been shown to be effective in driving strong immune 
responses in mouse and NHP models (48, 49, 63). However, stud-
ies have not yet been carried out to determine whether separately 
encapsulated danger signals and antigens remain segregated in 
vivo or, alternatively, if antigen becomes cointernalized with par-
ticles or released adjuvant molecules by DCs in situ. Small-mole-
cule adjuvant compounds might disperse rapidly throughout the 
tissue as they are released from particles at an injection site or in 
LNs, providing direct stimulation to nearby APCs that internalized 
antigen without direct co-uptake of distinct particle carriers (64).

A number of strategies have been used to create effective 
antigen/danger signal co-formulations. Chemical conjugation of 
adjuvant compounds to protein antigens ensures delivery to the 
same endocytic compartment, and this approach has been shown 
to enhance both humoral and cellular immunity in preclinical 
mouse and NHP models (65–67). Notably, these studies revealed 
that aggregation of antigen-danger signal conjugates to form par-
ticulates was critical to their in vivo efficacy, results which moti-
vated recent studies that demonstrated how polymer-conjugated 
TLR agonists show both enhanced efficacy and safety when engi-
neered to aggregate into a particulate form (68). The incorpora-
tion of antigen or danger signals into particulate vehicles can also 
be achieved by conjugation of these components to the surface 
of nanoparticles (69), entrapment within lipid vesicles or cap-
sules (70), or encapsulation within polymer particles (47) or VLPs 
(60). Materials such as liposomes and poly(lactide-co-glycolide) 
(PLGA, the polymer used in resorbable sutures) are well-suited as 
vaccine carriers from a safety perspective due to their long history 
of safe use in humans.

Downloaded from http://www.jci.org on January 24, 2017.   https://doi.org/10.1172/JCI81083

https://www.jci.org
https://www.jci.org
https://www.jci.org/126/3


The Journal of Clinical Investigation   R e v i e w

8 0 3jci.org   Volume 126   Number 3   March 2016

(99). Using intravital microscopy, smaller proteins (14 kDa) were 
observed to diffuse from the subcapsular sinus into the B cell fol-
licular region, while larger proteins (450 kDa) were taken up by 
subcapsular sinus macrophages and then presented to follicular  
B cells (100). These processes are alternatives to DCs capturing 
and trafficking antigen to the LNs from the periphery (101). An 
important unanswered question is how these many different path-
ways for antigen delivery to B cells influence subsequent B cell 
triggering and interactions with Th cells.

Programming vaccine kinetics
Natural infections versus artificial immunizations. Chronic infec-
tions induce sustained high levels of antigen and inflammatory 
cues, such as IL-1, IL-6, TNF-α, caspase-1, and type I IFNs, for 
many months, leading to major defects in the immune response 
(102). By contrast, during “acute” viral infections, the majority of 
infectious virus is often cleared by 7 days, but residual antigen/
viral nucleic acids can often be detected for 4 to 8 weeks, with 
clear effects on the immune response (103–105). Persistent anti-
gen/inflammation exposure in draining LNs over periods of at 
least several days can be important for maximizing the immune 
response, enhancing the differentiation of follicular Th cells (106, 
107), enhancing GC induction (35), and producing an optimal 
cytokine milieu (108). The duration and magnitude of antigen and 
adjuvant exposure during priming of naive lymphocytes or boost-
ing of memory cells is known to play a significant role in deter-
mining the degree of clonal expansion (109–111), fate decisions 
between different functional phenotypes (Th subsets or plasma 
cells versus memory cell differentiation of B cells; refs. 106, 112), 
and the quality of memory established (113, 114). Further, studies 
examining the role of temporal dosing profiles through repeated 
daily injections of antigen/adjuvant showed that exponentially 
increasing doses of an antigen and adjuvant over the course of a 
week could greatly increase T cell responses to a model peptide 
vaccine in mice (108).

These data suggest that strategies to control the kinetics of 
vaccine exposure could have a substantial beneficial effect on 
the response to immunization. However, unformulated soluble 
antigens/adjuvants rapidly flush through draining LNs within 
hours and are quickly cleared by lymph flow (35, 99). There is a 
general belief that classic adjuvants, such as alum and oil-in-water 
emulsions, act to create depots of antigen at the injection site, sug-
gesting that existing vaccines may already achieve some level of 
sustained vaccine exposure. However, the oil-in-water emulsion 
MF59 has been shown not to alter antigen clearance from injec-
tion sites or persistence in draining LNs (11). Alum appears to form 
a depot with some antigens (12) but not others (115) and likely 
undergoes desorption of some antigens under in vivo conditions 
(116). Recent studies have further demonstrated that, following 
alum immunization, the injection site can be surgically removed 
2 hours after injection with no effect on the humoral immune 
response, suggesting that depot formation is not a critical part of 
alum’s mechanism of action (117, 118).

Engineering vaccine kinetics. In one of the earliest studies of the 
use of synthetic polymer matrices to obtain sustained release of 
biologics, Robert Langer’s group demonstrated that nonbiode-
gradable poly(ethylene-co-vinyl acetate) implants could release 

vitro, suggesting that B cells differentiate antigens based on the 
epitope density (81). Similarly, polysaccharide antigens arrayed 
on polymer nanoparticles have been shown to elicit enhanced 
humoral responses compared with soluble forms of the same 
antigens in mice (82). Generally, these results suggest that high- 
density antigens arrayed on functionalized polymers or particles 
yield improved T-independent antibody responses.

For T-dependent protein/peptide antigens, increasing valency 
(through multimerization, coupling to polymers/carrier proteins, 
or display from nanoparticles) has been shown to lead to increas-
ing B cell triggering, antigen internalization, and presentation to 
Th cells both in vitro and in vivo in mice (83–85). Dimeric and tri-
meric forms of a model protein antigen bound to B cells and were 
presented on MHC II complexes, while monomeric versions did 
not lead to epitope presentation in vitro (83). Antigen organiza-
tion — whether epitopes are displayed in a dense or sparse array 
and whether they are held in a rigid or flexible orientation — also 
affects B cell responses in mice (ref. 86 and Figure 1). For example, 
VLPs displaying peptide epitopes were shown to only induce IgG 
responses in vivo when the antigen was displayed at high density 
(84). This response can be further amplified if the VLPs incor-
porate TLR agonists in a manner dependent on TLR signaling in  
B cells and high-density display of antigen (59). These results may 
reflect the importance of antigen spacing, the total number of 
antigens per particle, or both but are consistent with the idea that  
B cells have evolved to optimally recognize viruses and bacteria 
that often express dense, rigidly arrayed repetitive copies of bind-
ing and entry proteins at their surfaces. High-density display of 
epitopes by VLPs has been shown to in fact be capable of overcom-
ing B cell tolerance to neo-self antigens in mice (87). The licensed 
human papilloma virus vaccines, hepatitis B vaccine, and the 
most-studied malaria vaccine candidate, RTS,S, are all examples 
of vaccines based on the use of self-assembled VLPs that exploit 
these principles (88). Recently, it has been demonstrated that mul-
tivalent antigens formed by supramolecular assembly of peptides 
from ovalbumin or model protein antigens into nanoscale-diame-
ter fibers (presenting thousands of copies of antigen per fiber) elicit 
robust humoral immune responses in mice (89, 90). Interestingly, 
nanofibers carrying a malaria antigen elicited robust T-dependent 
antibody responses in a manner dependent on MyD88 signaling 
but independent of the NALP3 inflammasome (91). Vaccines dis-
playing multivalent antigens at the surfaces of synthetic nanoparti-
cles (35), peptide micelles (92), or engineered protein/peptide par-
ticles (26, 93) or on soluble polymer backbones (94) have shown 
promise in preclinical studies in mice. Notably, many of these strat-
egies for optimizing antigen display to B cells are also expected to 
enhance overall antigen accumulation in LNs (Figure 1).

The presentation of antigens to B cells in vivo depends on the 
route taken by the antigen to accumulate in the LN. Unlike DCs 
that can interact with and become activated by the vaccine at the 
injection site, B cell stimulation is confined to the LNs during the 
primary response. B cells often encounter particulate antigens 
at the border between follicles and the subcapsular sinus of LNs 
through macrophages that initially acquire and then “hand off ” 
the antigens (95–97). In contrast, influenza particles are captured 
in the medulla of LNs (98). For small soluble antigens, B cells 
appear to interact directly with the antigen in the follicular region 
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protein antigens over up to a month in vivo in mice, leading to anti-
body responses equivalent to multiple injections with Freund’s 
adjuvant (119). To achieve more practical formulations for prophy-
lactic vaccines, biodegradable PLGA microspheres used to encap-
sulate and slowly release vaccine antigens were pursued by many 
groups in the 1990s; however, chronic issues of antigen degrada-
tion within the acidic microclimate of these polymer particles, dif-
ficulties in manufacturing scale-up, and challenges of demonstrat-
ing superiority of these formulations over alum have contributed 
to the fact that no biodegradable polymer formulation of encap-
sulated vaccine antigens has yet to move forward into advanced 
clinical trials (120). However, PLGA particle formulations of dan-
ger signals or tolerogenic compounds may be an effective strategy 
to influence adjuvant kinetics in vaccination, and such approaches 
are under development in preclinical models (48, 62, 121).

Several additional new technologies offer the potential to 
control vaccine kinetics in prophylactic or therapeutic vaccines. 
Microneedle skin patches, comprising an array of solid pyramidal 
or cylindrical projections that are each a fraction of a millimeter 
in height and several hundred microns at their base, are designed 
to mechanically perforate the stratum corneum to enter the viable 
epidermis and/or upper dermis upon application to the skin (Fig-

ure 2, A and B). Microneedles can be coated with dried vaccine for-
mulations, or the microneedles themselves can comprise dissolv-
ing polymers that release the vaccine upon application to the skin. 
Vaccine administration via microneedles provides several key 
advantages over traditional intramuscular injections by targeting 
the abundant repertoire of immune cells in the skin, allowing for 
minimal pain and discomfort, and providing a way to encapsulate 
the bioactive molecules in a stable, lyophilized state prior to use 
(122). Several types of microneedle patches that can tailor vac-
cine kinetics have been designed and tested in mice, NHPs, and 
early clinical trials, including microneedles composed of poly-
mers that swell or dissolve at controlled rates when applied to the 
skin, releasing encapsulated vaccines (refs. 123–125 and Figure 
2A); microneedles composed of polymer microparticles or nano-
particles carrying encapsulated vaccine supported in a dissolving 
matrix, which rapidly deposit vaccine-loaded particles into the skin 
for subsequent tunable release kinetics from the implanted parti-
cles (126, 127); and microneedles composed of a solid tip or poly-
mer coating on a dissolving base, in which the vaccine-releasing 
tip is rapidly implanted into the skin upon patch application (refs. 
126, 128, 129, and Figure 2B). A particularly interesting example 
is the encapsulation of vaccine antigens within silk protein–based 

Figure 2. Programming vaccine kinetics. (A) Microneedle arrays composed of a swellable or slowly dissolving polymer that releases entrapped vaccine over 
time. (B) Implantable microneedles detach from a dissolving backing following brief application to skin and then slowly release vaccine in situ. (C) Porous 
PLGA sponges that are loaded with tumor lysates, the cytokine granulocyte-macrophage CSF (GM-CSF), and TLR agonists are implanted subcutaneously. 
DC precursors are attracted to the scaffold, differentiated, activated, and loaded with antigen in situ as controlled release from the implant takes place for 
up to 1 month. Immunoregulatory pathways that involve Tregs are also inhibited. pDC, plasmacytoid DC.
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microneedles, as silk protein has been shown to thermostabilize 
vaccines in a dried state (130), and silk matrices can be designed 
to release vaccines with extended kinetics in the skin, promoting T 
cell and humoral responses following vaccination (128).

A second approach that is promising, particularly for the 
development of therapeutic vaccines, is the formulation of anti-
gens and danger signals together within porous PLGA polymer 
sponges, which are implanted into the skin. These resorbable vac-
cine scaffolds orchestrate the attraction, activation, and antigen 
loading of APCs through tunable kinetics of antigen and adjuvant 
release at the implant site in mice (refs. 131, 132, and Figure 2C). In 
preclinical models of therapeutic cancer vaccination, these struc-
tures elicited potent antitumor T cell responses that were superior 
to a leading clinical cell-based cancer vaccine. These responses 
were mediated by optimal programming of responding DCs (133). 
This PLGA scaffold-based vaccine approach has recently entered 
phase I clinical testing in patients with melanoma.

Conclusions
The first vaccines based on live, attenuated microbes were devel-
oped empirically with a poor understanding of how they or their 
disease-causing source pathogens interacted with the immune 
system. We now understand that pathogens such as viruses are 
often of a size that is optimal for efficient dissemination through 
lymphatics for collection in LNs; that microbes contain many com-
ponents that are recognized by innate immune PRRs, which direct 
the immune response; that B cells and APCs are highly attuned 
to the particulate structure and repetitive display of surface pro-
teins/sugars on microbes; and that the duration of antigen and 
inflammatory cues encountered by the immune system during 
infection strongly shape the resulting immune response. Con-
trollably mimicking these features of live infections in a tailored 

manner to induce immunity safely and efficiently with synthetic 
vaccines is a grand challenge being tackled by current efforts in 
vaccine development. To this end, vaccine formulations compris-
ing engineered materials that control antigen and adjuvant biodis-
tribution, regulate uptake of vaccine by APCs, optimize triggering 
of antigen-specific B cells, and influence vaccine kinetics will all 
have a role to play in the design of future vaccines. These advances 
may be critical to the development of vaccines that overcome the 
significant challenges presented by diseases such as HIV, tuber-
culosis, and cancer or that can be used to treat autoimmunity or 
promote therapeutic tolerance.
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