MIT Open Access Articles

Synthesis of Molybdenum and Tungsten Alkylidene Complexes that Contain a tert-Butylimido Ligand

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation: Jeong, Hyangsoo; Schrock, Richard R. and Müller, Peter. " Synthesis of Molybdenum and Tungsten Alkylidene Complexes That Contain a Tert -Butylimido Ligand ." Organometallics 34, no. 17 (September 2015): 4408-4418. © 2015 American Chemical Society

As Published: http://pubs.acs.org/doi/full/10.1021/acs.organomet.5b00633
Publisher: American Chemical Society (ACS)
Persistent URL: http://hdl.handle.net/1721.1/108422
Version: Author's final manuscript: final author's manuscript post peer review, without publisher's formatting or copy editing

Terms of Use: Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Synthesis of Molybdenum and Tungsten Alkylidene Complexes that Contain a tert-Butylimido Ligand

Hyangsoo Jeong, Richard R. Schrock,* Peter Müller
Department of Chemistry 6-331, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139
rrs@mit.edu

Abstract

A variety of molybdenum or tungsten complexes that contain a t-butylimido ligand have been prepared. For example, the o-methoxybenzylidene complex, $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-o-$ $\left.\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)(\mathrm{Cl})_{2}($ py $)$, was prepared through addition of pyridinium chloride to $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})_{2}\left(\mathrm{CH}_{2}-\right.$ $\left.o-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{2}$, while $\mathrm{Mo}(\mathrm{N}-t-\mathrm{Bu})\left(\mathrm{CH}-o-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)\left(\mathrm{OR}_{\mathrm{F}}\right)_{2}\left(t-\mathrm{BuNH}_{2}\right)$ complexes $\left(\mathrm{OR}_{\mathrm{F}}=\mathrm{OC}_{6} \mathrm{~F}_{5}\right.$ or $\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}$) were prepared through addition of two equivalents of $\mathrm{R}_{\mathrm{F}} \mathrm{OH}$ to $\mathrm{Mo}(\mathrm{N}-t-\mathrm{Bu})_{2}\left(\mathrm{CH}_{2}-\right.$ $\left.o-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{2}$. An X-ray crystallographic study of $\mathrm{Mo}(\mathrm{N}-t-\mathrm{Bu})\left(\mathrm{CH}-o-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)\left[\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right]_{2}(t-$ BuNH_{2}) showed that the methoxy oxygen is bound to the metal and two protons on the tertbutylamine ligand are only a short distance away from one of the CF_{3} groups on one of the perfluoro-tert-butoxide ligands ($\mathrm{H} \cdots \mathrm{F}=2.456(17)$ and $2.467(17) \AA$). Other synthesized tungsten t-butylimido complexes include $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})\left(\mathrm{CH}-o-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)(\text { pyr })_{2}\left(2,2^{\prime}\right.$-bipyridine) ($\mathrm{pyr}=$ pyrrolide), $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})\left(\mathrm{CH}-o-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)(\mathrm{pyr})(\mathrm{OHMT})\left(\mathrm{OHMT}=\mathrm{O}-2,6-(\text { mesityl })_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)$, $\mathrm{W}(\mathrm{N}-t-$ $\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{OHMT})(\mathrm{Cl})(\mathrm{py}) \quad($ py $=$ pyridine $), \mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{OHMT})(\mathrm{Cl}), \mathrm{W}(\mathrm{N}-t-$ $\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{pyr})(\mathrm{ODFT})(\mathrm{py}), \quad \mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{OHMT})_{2}$, and $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-$ $\mathrm{Bu})(\mathrm{ODFT})_{2}\left(\mathrm{ODFT}=\mathrm{O}-2,6-\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)$. Interestingly, $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{OHMT})_{2}$ does not react with ethylene or 2,3-dicarbomethoxynorbornadiene. Removal of pyridine from W(N-t-$\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})\left(\mathrm{Biphen}_{\mathrm{CF} 3}\right)($ pyridine $)\left(\right.$ Biphen $_{\mathrm{CF} 3}=3,3$ '-di-tert-butyl-5,5'-bistrifluoromethyl-6,6'-dimethyl-1,1'-biphenyl-2,2'-diolate) with $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ led to formation of a five-coordinate 14 e neopentyl complex as a consequence of CH activation in one of the methyl groups in one t-butyl group of the Biphen ${ }_{\text {CF3 }}$ ligand, as was proven in an X-ray study. An attempted synthesis of W(N-t-Bu) $(\mathrm{CH}-t-\mathrm{Bu})\left(\right.$ Biphen $\left._{\mathrm{Me}}\right)\left(\right.$ Biphen $_{\mathrm{Me}}=3,3^{\prime}$-di-tert-butyl-5,5',6,6'-tetramethyl-1, 1'-biphenyl-2,2'diolate) led to formation of a $1: 1$ mixture of $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})\left(\mathrm{Biphen}_{\mathrm{Me}}\right)$ and a neopentyl complex analogous to the one characterized through an X-ray study. The metallacyclobutane complexes, $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})\left(\mathrm{C}_{3} \mathrm{H}_{6}\right)($ pyrrolide $)(\mathrm{ODFT})$ and $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})\left(\mathrm{C}_{3} \mathrm{H}_{6}\right)(\mathrm{ODFT})_{2}$, were prepared in reactions involving $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{pyr})_{2}$ (bipy), ZnCl_{2} (dioxane), and one or two equivalents of DFTOH, respectively, under 1 atm of ethylene.

INTRODUCTION

Imido alkylidene complexes of molybdenum and tungsten with the generic formula $\mathrm{M}(\mathrm{NR})\left(\mathrm{CHR}^{\prime}\right)(\mathrm{X})(\mathrm{Y})(\mathrm{M}=\mathrm{Mo}$ or $\mathrm{W} ; \mathrm{X}$ and Y can be a variety of monoanionic ligands, e.g., alkoxide, aryloxide, pyrrolide, etc.) have been the mainstay of the development of well-defined Mo or W catalysts for the metathesis of olefins. ${ }^{1}$ The reactivity characteristics of these initiators depend strongly upon M and the steric and electronic nature of $N R$, X, and Y. In the majority of situations R is an aryl group. Analogs that contain a t-butylimido ligand have appeared in metathesis catalysts only relatively recently. In 2012 we showed ${ }^{2}$ that tungsten-based t-butylimido alkylidene catalysts could be accessed through the chloro-bridged dimer, [W(N-t-$\left.\mathrm{Bu})_{2}\left(t-\mathrm{BuNH}_{2}\right) \mathrm{Cl}_{2}\right]_{2}$, which is prepared conveniently from t - $\mathrm{BuNH}(\mathrm{TMS})$ and $\mathrm{WCl}_{6}{ }^{3}$ The molybdenum t-butylimido alkylidene complex, $\mathrm{Mo}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})\left[\mathrm{OCH}\left(\mathrm{CF}_{3}\right)_{2}\right]_{2}\left(t-\mathrm{BuNH}_{2}\right)$, was prepared by Osborn (as an oil in 80% yield) ${ }^{4}$ through the reaction between $\mathrm{Mo}(\mathrm{N}-\mathrm{t}-$ $\mathrm{Bu})_{2}\left(\mathrm{CH}_{2}-t-\mathrm{Bu}\right)_{2}$ and hexafluoro-2-propanol, and several preliminary studies of metathesis reactions involving $\mathrm{Mo}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})\left[\mathrm{OCH}\left(\mathrm{CF}_{3}\right)_{2}\right]_{2}\left(t-\mathrm{BuNH}_{2}\right)$ as an initiator were explored. We confirmed that $\mathrm{Mo}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})\left[\mathrm{OCH}\left(\mathrm{CF}_{3}\right)_{2}\right]_{2}\left(t-\mathrm{BuNH}_{2}\right)$ could be prepared in this manner (and isolated as an off-white solid in 26% yield) and found that $\mathrm{Mo}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t$ $\mathrm{Bu})\left(\mathrm{OC}_{6} \mathrm{~F}_{5}\right)_{2}\left(t-\mathrm{BuNH}_{2}\right)$ similarly can be obtained in 84% yield upon treating $\mathrm{Mo}(\mathrm{N}-t-\mathrm{Bu})_{2}\left(\mathrm{CH}_{2}-\right.$ t-Bu) $)_{2}$ with two equivalents of pentafluorophenol. ${ }^{5}$ (Osborn noted that "various phenol derivatives" (not fluorinated) do not react with $\mathrm{Mo}(\mathrm{N}-t-\mathrm{Bu})_{2}\left(\mathrm{CH}_{2}-t-\mathrm{Bu}\right)_{2}$ to yield phenoxide analogs of $\left.\mathrm{Mo}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})\left[\mathrm{OCH}\left(\mathrm{CF}_{3}\right)_{2}\right]_{2}\left(t-\mathrm{BuNH}_{2}\right){ }^{4}\right)$ These two syntheses of $\mathrm{Mo}(\mathrm{N}-t-$ $\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})\left(\mathrm{OR}_{\mathrm{F}}\right)_{2}\left(t-\mathrm{BuNH}_{2}\right)$ compounds are rare examples of formation of an alkylidene through addition of a relatively acidic alcohol, $\mathrm{R}_{\mathrm{F}} \mathrm{OH}$, instead of triflic acid or HCl , to a bisimido dialkyl complex. No analogous reactions for arylimido complexes have been reported, presumably because the arylimido ligand is less likely to be protonated for electronic reasons. Monoaryloxide pyrrolide (MAP) alkylidene complexes of molybdenum and tungsten that contain a t-butylimido ligand have proven to be valuable catalysts for the Z-selective ROMP of 3substituted (Me, Hex, Ph) cyclooctenes ${ }^{5}$ and for the stereospecific ROMP of norbornene, ${ }^{6}$ endodicyclopentadiene, ${ }^{7}$ and endo, anti-tetracyclododecene. ${ }^{6}$

In this paper we employ tert-butylimido complexes of W (primarily) and Mo as a platform to explore new synthetic variations of imido alkylidene complexes, several of which are not known for arylimido analogs.

RESULTS AND DISCUSSION

Synthesis of ortho alkoxy benzylidene complexes

Ortho alkoxy benzylidene complexes of tungsten were first prepared through addition of a Wittig reagent to a tungsten(IV) species (eq 1). ${ }^{8}$ They also have been prepared through addition of styrenes to neophylidene or neopentylidene complexes (eq 2). ${ }^{9}$ In ruthenium alkylidene chemistry ortho alkoxy benzylidene complexes have allowed important phosphinefree catalysts to be synthesized, as first reported by Hoveyda. ${ }^{10}$ For Mo and W we envisioned that five-coordinate complexes that contain an ortho alkoxy benzylidene ligand might be less soluble than related four-coordinate neopentylidene or neophylidene complexes and therefore isolated more readily.

Addition of 2-methoxystyrene to $\mathrm{Mo}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})\left(\mathrm{OC}_{6} \mathrm{~F}_{5}\right)_{2}\left(t-\mathrm{BuNH}_{2}\right)$ yields $\mathrm{Mo}(\mathrm{N}-$ t - Bu$)\left(\mathrm{CH}-o-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)\left(\mathrm{OC}_{6} \mathrm{~F}_{5}\right)_{2}\left(t-\mathrm{BuNH}_{2}\right)\left(\mathbf{1}_{\mathbf{M o}}\right)$ in 68% yield (eq 3). A similar reaction between 2-methoxystyrene and $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{Cl})_{2}(\mathrm{py})_{2}$ yields $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-o-$ $\left.\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)(\mathrm{Cl})_{2}(\mathrm{py})\left(\mathbf{1}_{\mathbf{W}}\right)$ in 96% yield (eq 4). Heating is required in the latter case, we propose

in order for $18 \mathrm{e} \mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{Cl})_{2}(\mathrm{py})_{2}$ to lose a pyridine and form the more reactive intermediate 16e monopyridine derivative.

We wondered whether it might be possible to generate o-methoxybenzylidene complexes from bis-o-methoxybenzyl complexes directly through α hydrogen abstraction instead of preparing a neopentylidene or neophylidene complex first. $\mathrm{M}(\mathrm{N}-t-\mathrm{Bu})_{2}\left(\mathrm{CH}_{2}-\mathrm{O}-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{2}$ complexes ($M=\operatorname{Mo}\left(\mathbf{2}_{M 0}\right.$, eq 5), W ($\mathbf{2}_{w}$, eq 6)) can be prepared straightforwardly through addition of two equivalents of 2-methoxybenzylmagnesium chloride to $\mathrm{Mo}(\mathrm{N}-t-\mathrm{Bu})_{2}(\mathrm{Cl})_{2}(\mathrm{dme})$ or $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})_{2}(\mathrm{Cl})_{2}(\mathrm{py})_{2}$. We have no information as to whether the methoxy oxygens on $\mathbf{2}_{\mathrm{Mo}}$ or $\mathbf{2}_{\mathrm{w}}$ are bound strongly to Mo or W on the NMR times scale at room temperature in solution at $22{ }^{\circ} \mathrm{C}$ or not. Compound $\mathbf{2}_{\mathbf{w}}$ also can be prepared from $\left[\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})_{2}(\mu-\mathrm{Cl})(\mathrm{Cl})\left(t-\mathrm{BuNH}_{2}\right)\right]_{2}$. Compound $\mathbf{2}_{\mathbf{M o}}$ is a yellow solid, while $\mathbf{2}_{\mathbf{W}}$ so far has been isolated only as a brown oil.

Addition of 2.2 equivalents of pentafluorophenol or perfluoro-tert-butanol to $\mathrm{Mo}(\mathrm{N}-t-\mathrm{Bu})_{2}\left(\mathrm{CH}_{2}-o-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{2}$ leads to $\mathrm{Mo}(\mathrm{N}-t-\mathrm{Bu})\left(\mathrm{CH}-o-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)\left(\mathrm{OR}_{\mathrm{F}}\right)_{2}\left(t-\mathrm{BuNH}_{2}\right)\left(\mathrm{OR}_{\mathrm{F}}\right.$
 $\mathrm{Bu})_{2}\left(\mathrm{CH}_{2}-t-\mathrm{Bu}\right)_{2}$ to yield $\mathrm{Mo}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})\left(\mathrm{OC}_{6} \mathrm{~F}_{5}\right)_{2}\left(t-\mathrm{BuNH}_{2}\right)$ (vide supra), we could not prepare the neopentylidene analog of $\mathbf{3}_{\mathbf{M} \mathbf{o}}$ by treating $\mathrm{Mo}(\mathrm{N}-t-\mathrm{Bu})_{2}\left(\mathrm{CH}_{2}-t-\mathrm{Bu}\right)_{2}$ with $\left(\mathrm{CF}_{3}\right)_{3} \mathrm{COH}$. Compounds $\mathbf{1}_{\mathbf{M o}}$ and $\mathbf{3}_{\mathbf{M o}}$ are believed to be the only examples of complexes that are not a neopentylidene or neophylidene complex formed through addition of a relatively acidic alcohol to a bisimido dialkyl complex, and the reaction to give $\mathbf{3}_{\mathbf{M o}}$ is the only one of this general type that employs perfluoro- t-butanol.

Complexes $\mathbf{1}_{\mathbf{M o}}$ and $\mathbf{3}_{\mathbf{M o}}$ both have ${ }^{1} J_{\mathrm{CH}}$ values for the alkylidene protons characteristic of anti alkylidene isomers $(145 \mathrm{~Hz}) .{ }^{11}$ An X-ray crystallographic study of $\mathbf{3}_{\mathbf{M 0}}$ (Figure 1) confirmed that the methoxy oxygen is bound to the metal $(\mathrm{Mo}(1)-\mathrm{O}(1)=2.3675 \AA)$ in a position trans to the imido group. One of perfluoro-tert-butoxide groups is disordered over three positions. The $\mathrm{Mo}(1)-\mathrm{N}(2)$ distance in $\mathbf{3}_{\mathrm{Mo}}(1.7039 \AA$) is comparable to the $\mathrm{Mo}=\mathrm{N}$ bond distance in $\mathrm{Mo}(\mathrm{NAd})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{pyr})(\mathrm{OHIPT})\left(1.707 \AA \AA^{12}{ }^{12}\right.$ Two protons on the tert-butylamine ligand are only a relatively short distance away from two fluorines in one of the CF_{3} groups on one of the perfluoro-tert-butoxide ligands $(\mathrm{H} \cdots \mathrm{F}=2.456(17)$ and 2.467(17) \AA). (The sum of the van der Waals radii is $\sim 2.55 \AA$). ${ }^{13}$ The two inequivalent protons (H1A and H1B) on the tert-butylamine ligand in $\mathbf{3}_{\mathbf{M o}}$ are coupled to one another (${ }^{2} J_{\mathrm{HH}}=12.5 \mathrm{~Hz}$) in the ${ }^{1} \mathrm{H}$ NMR spectrum, but no coupling to fluorine could not be observed. Two fluorine resonances are observed by ${ }^{19} \mathrm{~F}$ NMR spectroscopy at room temperature, which suggests that the two perfluoro-t-butoxide ligands do not exchange readily on the NMR time scale, but the $\mathrm{C}\left(\mathrm{CF}_{3}\right)_{3}$ group that contains C 15 must rotate readily on the time scale.

Addition of three equivalents of pyridinium chloride to $\mathbf{2}_{\mathbf{W}}$ in diethyl ether yields $\mathbf{1}_{\mathbf{w}}$ (eq 8). Compound $\mathbf{1}_{\mathbf{W}}$ also showed a ${ }^{1} J_{\mathrm{CH}}$ value of 145 Hz for the alkylidene proton, indicative of an anti alkylidene. We propose that $\mathbf{1}_{\mathbf{W}}$ has a six-coordinate structure analogous to that of $\mathbf{1}_{\mathbf{M o}}$.

Figure 1. Thermal ellipsoid plots shown at 50% probability level of $\mathbf{3}_{\mathrm{M} 0}$. Minor component of disorders are omitted for clarity. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right): \operatorname{Mo}(1)-\mathrm{N}(2)=1.7039(11), \operatorname{Mo}(1)-$ $\mathrm{N}(1)=2.2551(10), \mathrm{Mo}(1)-\mathrm{C}(1)=1.9611(12), \mathrm{Mo}(1)-\mathrm{O}(1)=2.3675(9), \mathrm{Mo}(1)-\mathrm{O}(2)=2.0452(9)$, $\mathrm{Mo}(1)-\mathrm{O}(3)=2.1421(9), \mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Mo}(1)=122.00(9), \mathrm{C}(11)-\mathrm{O}(2)-\mathrm{Mo}(1)=144.01(8), \mathrm{C}(15)-\mathrm{O}(3)-$ $\operatorname{Mo}(1)=148.07(9), \mathrm{C}(21)-\mathrm{N}(1)-\mathrm{Mo}(1)=134.48(8), \mathrm{C}(25)-\mathrm{N}(2)-\mathrm{Mo}(1)=177.20(10)$.

$\mathrm{Mo}(\mathrm{NAr})_{2}\left(\mathrm{CH}_{2}-\mathrm{o}-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{2} \quad\left(\mathrm{Ar}=2,6-i-\mathrm{Pr}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)$ is formed upon treatment of $\mathrm{Mo}(\mathrm{NAr})_{2} \mathrm{Cl}_{2}$ (dme) with two equivalents of the o-methoxybenzyl Grignard reagent. However, attempts to form alkylidene species from $\mathrm{Mo}(\mathrm{NAr})_{2}\left(\mathrm{CH}_{2}-\mathrm{O}-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{2}$ using $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{OH}$, TfOH, $\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{H}, \mathrm{HCl}$, or pyHCl led only to apparent protonation of the benzyl group on the basis of
the fact that 2-methoxytoluene was observed in ${ }^{1} \mathrm{H}$ NMR spectra in all cases. Apparently the NAr ligand is not basic enough and is too sterically crowded to be protonated more readily than the benzylidene ligand. The tendency for a t-butylimido to be protonated preferentially in competition with a NAr ligand is illustrated dramatically in the reaction of $\mathrm{Mo}(\mathrm{NAr})(\mathrm{N}-t-$ $\mathrm{Bu})\left(\mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{Ph}\right)_{2}$ with two equivalents of $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{OH}$ in pentane at $-35{ }^{\circ} \mathrm{C}$ to give $\mathrm{Mo}(\mathrm{NAr})\left(\mathrm{CHCMe}_{2} \mathrm{Ph}\right)\left(\mathrm{OC}_{6} \mathrm{~F}_{5}\right)_{2}\left(t-\mathrm{BuNH}_{2}\right)$ as a yellow microcrystalline solid in high yield. ${ }^{14} \mathrm{~A}$ t-butylimido group is also protonated more readily than a $\mathrm{NC}_{6} \mathrm{~F}_{5}$ ligand. ${ }^{15}$ Finally, preferential protonation of a t-butylimido ligand is the key to the synthesis of Mo and W complexes that contain a sterically demanding N-2,6-(2,4,6- $\left.\mathrm{R}_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$ ligand $\left(\mathrm{R}=\mathrm{Me}\right.$ or i - Pr). ${ }^{16}$ So far to our knowledge there are no reported examplkes of the use of fluorinated alcohols as acids for inducing α hydrogen abstraction to yield arylimido alkylidene Mo or W complexes.

We demonstrated that one tungsten MAP complex that contains an o-methoxybenzylidene ligand could be prepared through the reaction between $\mathbf{1}_{\mathbf{W}}$ and two equivalents of lithium pyrrolide followed by addition of $2,2^{\prime}$-bipyridine to yield $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-$ $\left.o-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)(\mathrm{pyr})_{2}$ (bipy) $\left(\mathbf{4}_{\mathbf{w}}\right)$, which is isolated readily (eq 9). In view of the six-coordinate metal center we propose that the methoxy group in the alkylidene is not bound to W center in $\mathbf{4}_{\mathbf{w}}$. Treatment of $\mathbf{4}_{\mathbf{w}}$ with ZnCl_{2} (dioxane) and HMTOH (2,6-dimesitylphenol) in toluene at $75^{\circ} \mathrm{C}$ for 24 h then yields $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})\left(\mathrm{CH}-o-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)(\mathrm{pyr})(\mathrm{OHMT})\left(\mathbf{5}_{\mathrm{w}}\right)$ in high yield (eq 9).

Table 1. 1-Octene homocoupling catalyzed by $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{pyr})(\mathrm{OHMT})$ and $\mathbf{5}_{\mathrm{w}}$.

	$\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{pyr})(\mathrm{OHMT})$		$\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})\left(\mathrm{CH}-o-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)(\mathrm{pyr})(\mathrm{OHMT})\left(\mathbf{5}_{\mathrm{w}}\right)$	
Time	Conv (\%)	cis $(\%)$	Conv (\%)	cis $(\%)$
1 h	42	80	32	90
4 h	68	72	63	88
8 h	81	60	73	84
24 h	81	48	75	76

A comparison of $\mathbf{5}_{\mathrm{w}}$ with its neopentylidene analog, $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{pyr})(\mathrm{OHMT})$ for the homocoupling of 1 -octene ($2 \mathrm{~mol} \%$ catalysts in neat 1 -octene) is shown in Table 1. The results are clearly approximately the same for the two initiators; neither is an efficient Z selective homocoupling catalyst under the conditions employed. The formation of more E product with time is typical of isomerization of the product from Z to E and there appears to be less isomerization when $\mathbf{5}_{\mathbf{w}}$ is employed (Table 1).

Synthesis of Tungsten tert-butylimido Bisaryloxide Complexes

Three complexes have prepared that contain two sterically demanding 2,6-terphenoxide ligands, $\mathrm{W}(\mathrm{O})\left(\mathrm{CHCMe}_{2} \mathrm{Ph}\right)(\mathrm{OHMT})_{2},{ }^{17} \mathrm{Mo}\left(\mathrm{NC}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{CHCMe}_{2} \mathrm{Ph}\right)(\mathrm{ODFT})_{2}$ (ODFT $=\mathrm{O}-2,6-$ $\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right),{ }^{18}$ and $\mathrm{Mo}\left(\mathrm{N}-2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)(\mathrm{CHCMe} 2 \mathrm{Ph})(\mathrm{ODFT})_{2} .{ }^{18}$ Analogous complexes that contain an NAr ligand could not be prepared employing analogous methods under the same conditions, presumably for steric reasons. BisOHMT complexes as ROMP initiators yield $>90 \%$ cis,syndiotactic polymers, whereas $>98 \%$ cis,isotactic polymers are formed from bisODFT species. Therefore, we became interested in attempting to synthesize $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t$ $\mathrm{Bu})(\mathrm{OHMT})_{2}$ and $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{ODFT})_{2}$ and compare them with $\mathrm{W}(\mathrm{O})\left(\mathrm{CHCMe}_{2} \mathrm{Ph}\right)(\mathrm{OHMT})_{2}$ and $\mathrm{Mo}(\mathrm{NR})\left(\mathrm{CHCMe}_{2} \mathrm{Ph}\right)(\mathrm{ODFT})_{2}$.

Addition of one equivalent of HMTOH to $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{pyr})(\mathrm{OHMT})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ (concentration $=73 \mathrm{mM}$) followed by heating the reaction mixture at $100^{\circ} \mathrm{C}$ for 12 hours led to no reaction to yield $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{OHMT})_{2}$. However, addition of one equivalent of LiOHMT to a benzene solution of $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{Cl})_{2}(\mathrm{py})_{2}$ followed by heating the mixture to $70{ }^{\circ} \mathrm{C}$ overnight led to formation of $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{Cl})(\mathrm{OHMT})(\mathrm{py})\left(\mathbf{6}_{\mathbf{w}}\right)$ cleanly in 79% yield (eq 10). Addition of another equivalent of LiOHMT to $\mathbf{6}_{\mathbf{w}}$ followed by heating the reaction mixture to $100^{\circ} \mathrm{C}$ for 48 hours in toluene- d_{8} led to no formation of a

bisaryloxide complex. We propose that the pyridine ligand in $\mathbf{6}_{\mathbf{w}}$ is not labile enough to form more reactive four-coordinate $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{Cl})(\mathrm{OHMT})$.

It has been reported that a mixture of $\mathrm{W}(\mathrm{O})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{Cl})_{2}\left(\mathrm{PPh}_{2} \mathrm{Me}\right)_{2}$ and 2.4 equivalents of LiOHMT in toluene at $100^{\circ} \mathrm{C}$ for 48 hours leads to formation of $\mathrm{W}(\mathrm{O})\left(\mathrm{CHCMe}_{2} \mathrm{Ph}\right)(\mathrm{OHMT})_{2}$ in good yield. ${ }^{19}$ Addition of 1.1 equivalents of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ to $\mathbf{6}_{\mathbf{w}}$ led to formation of $\mathrm{W}(\mathrm{N}-t-$ $\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{Cl})(\mathrm{OHMT})\left(\mathbf{6 w}^{\prime}\right)$ along with $(\mathrm{py}) \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$. Compound $\mathbf{6}_{\mathbf{w}}$ ' was separated from (py) $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ through addition of pentane, in which $\mathbf{6}_{\mathrm{w}}$ ' is soluble, and that solution was treated with 1.1 equivalents of LiOHMT at $130{ }^{\circ} \mathrm{C}$ for 5 hours in toluene to give $7_{\mathbf{w}}$ (eq 11). Compound $\mathbf{7}_{\mathbf{w}}$ was isolated by adding acetonitrile, in which it is not soluble. Compound $\mathbf{6}{ }_{\mathbf{w}}$, which could not be isolated in crystalline form, is a rare example of a monoaryloxide halide complex. To our knowledge the only others that have been reported have the formula $\operatorname{Mo}(\mathrm{N}-2,6-$ $\left.\mathrm{Mes}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)\left(\mathrm{CHCMe}_{2} \mathrm{Ph}\right)($ pyridine $)(\mathrm{Cl})(\mathrm{OR})$ where OR is $\mathrm{O}-2,6-\mathrm{Mes}_{2} \mathrm{C}_{6} \mathrm{H}_{3}, \mathrm{O}-2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$, $\mathrm{O}-t$ Bu , or $\mathrm{OCMe}\left(\mathrm{CF}_{3}\right)_{2} .{ }^{16 \mathrm{a}}$

When two equivalents of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ were added to $\mathbf{6}_{\mathbf{w}}$ along with 1 equivalent of LiOHMT, the starting materials were consumed and a mixture of $\mathbf{6}_{\mathbf{w}}{ }^{\prime}$ and $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{OHMT})_{2}$ (7w) was observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Heating the reaction mixture at $60{ }^{\circ} \mathrm{C}$ led to formation of a new alkylidene complex with an alkylidene proton ${ }^{1} \mathrm{H}$ NMR resonance at 9.77 ppm. This alkylidene resonance is a triplet $(J=4.5 \mathrm{~Hz})$ with tungsten satellites $\left({ }^{2} J_{\mathrm{WH}}=14.5 \mathrm{~Hz}\right)$. This side product could not be isolated and identified.

The metathesis reactivity of $7_{\mathbf{w}}$ for ROMP was tested using DCMNBD (2,3dicarbomethoxynorbornadiene). Surprisingly, when $7_{\mathbf{w}}$ was treated with 50 equivalents of DCMNBD in CDCl_{3} solution, neither $7_{\boldsymbol{W}}$ nor DCMNBD was consumed, even at $60{ }^{\circ} \mathrm{C}$. A degassed solution of $7_{\mathbf{w}}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ also did not react with ethylene (1 atm) either at room temperature or at $60^{\circ} \mathrm{C}$. Evidently, $\mathbf{7}_{\mathbf{w}}$ is simply too crowded and the metal is not electrophilic enough to counteract what appears to be a significant steric problem. In contrast, $\mathrm{W}(\mathrm{O})(\mathrm{CH}-t$ -
$\mathrm{Bu})(\mathrm{OHMT})_{2}$ reacts with 1 atm of ethylene to form $\mathrm{W}(\mathrm{O})\left(\mathrm{C}_{3} \mathrm{H}_{6}\right)(\mathrm{OHMT})_{2}$ and $\mathrm{W}(\mathrm{O})\left(\mathrm{CH}_{2}\right)(\mathrm{OHMT})_{2}$ species. ${ }^{19}$ Another example of a 14 e alkylidene complex that is relatively unreactive for steric reasons is $\mathrm{Mo}(\mathrm{NAd})\left(\mathrm{CHCMe}_{2} \mathrm{Ph}\right)(\mathrm{Silox})_{2}(\mathrm{Ad}=1$-adamantyl, Silox $=$ $\left.\mathrm{OSi}(t-\mathrm{Bu})_{3}\right)$, which does not react with ethylene $(5 \mathrm{~atm})$ at $120^{\circ} \mathrm{C}$ in toluene- $\mathrm{d}_{8} .{ }^{20}$

When a mixture of one equivalent of ZnCl_{2} (dioxane), 1.9 equivalents of DFTOH , and $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})(\text { pyr })_{2}($ bipy $)$ was heated in toluene at $75^{\circ} \mathrm{C}, \mathbf{8}_{\mathbf{w}}$ was formed cleanly after two hours and could be isolated in 47% yield (eq 12). Compound $\mathbf{8}_{\mathbf{w}}$ was proposed to be formed as a major byproduct when the synthesis of $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{pyr})(\mathrm{ODFT})$ was attempted from $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{pyr})_{2}($ bipy $)$ and 1 equivalent of ZnCl_{2} (dioxane) in the presence of 0.9 equivalents of DFTOH.

When $\mathbf{8}_{\mathbf{w}}$ was treated with 50 equiv of DCMNBD in CDCl_{3} solution, 33% of the DCMNBD was polymerized after 24 h . The isolated poly(DCMNBD) contained a cis,syndiotactic biased microstructure (cis selectivity 88%; syndiotactic selectivity 67%). The metathesis activity of $\mathbf{8}_{\mathbf{W}}$ versus $\mathbf{7}_{\mathbf{w}}$ can be attributed directly to the electron-withdrawing nature of the ODFT ligand versus the OHMT ligand.

Synthesis of Biphenoxide Complexes

Molybdenum imido alkylidene complexes that contain a chelating biphenolate or binaphtholate ligand have been known for more than twenty years. ${ }^{21}$ At present, biphenolate complexes of Mo and W are employed primarily to form cis,isotactic polymers through ringopening metathesis polymerization (ROMP) of various monomers. ${ }^{\text {ee,6,7,22 }}$ A typical successful biphenolate in stereoregular ROMP is one derived from the biphenols shown below. Because tungsten imido alkylidene complexes that contain biphenolate ligands of this type are especially
rare, ${ }^{23}$ we were curious as to whether t-butylimido biphenolate complexes could be prepared. Biphen $_{\mathrm{CF} 3}$ and Biphen $_{\mathrm{Me}}$ (shown below) were chosen as diolate ligands. ${ }^{24}$

The reaction between one equivalent of $\left[\mathrm{Biphen}_{\mathrm{CF} 3}\right] \mathrm{H}_{2}$ and $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t$ $\mathrm{Bu})\left(\mathrm{Me}_{2} \mathrm{pyr}\right)_{2}(\mathrm{py})$ in benzene at $70^{\circ} \mathrm{C}$ for 12 h yielded $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})\left(\mathrm{Biphen}_{\mathrm{CF} 3}\right)(\mathrm{py})\left(9_{\mathrm{w}}\right.$; eq 13). The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{9}_{\mathbf{w}}$ contains two alkylidene resonances in a 57:43 ratio, as would be expected if two diastereomers were formed. Both isomers of $\mathbf{9}_{\mathbf{w}}$ have the

neopentylidene in a syn orientation on the basis of ${ }^{1} J_{\mathrm{CH}}$ values (112 Hz for both) compared to a typical value for ${ }^{1} J_{\mathrm{CH}}$ in an anti isomer $(\sim 135-155 \mathrm{~Hz})$. One equivalent of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ was added to a benzene solution of $\mathbf{9}_{\mathbf{w}}$ at room temperature in order to remove the pyridine ligand. After 30 minutes (py) $\mathrm{B}_{(}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ and a new complex and were observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The new product did not contain any alkylidene resonances, but two doublets (at 3.53 ppm and 2.24 ppm both with ${ }^{2} J_{\mathrm{HH}}=16 \mathrm{~Hz}$) were observed (Figure 3). The two alkyl protons that give rise to the 3.53 ppm and 2.24 ppm resonances are not coupled to one another according to ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ gCOSY NMR spectra, which suggests that they arise from two distinct $\mathrm{W}-\mathrm{CH}_{2}$ groups. The two other CH_{2} proton resonances were shown by ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ gCOSY NMR spectroscopy to be at 1.66
ppm (correlated with a resonance at 2.24 ppm) and 1.36 ppm (correlated with a presonance at $3.58 \mathrm{ppm})$.

Figure 2. Top: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})\left(\mathrm{Biphen}_{\mathrm{CF} 3}\right)(\mathrm{py})\left(\mathbf{9}_{\mathrm{w}}\right)$ in $\mathrm{C}_{6} \mathrm{D}_{6}$. Bottom: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})\left(\mathrm{CH}_{2}-t-\mathrm{Bu}\right)\left(\mathrm{Biphen}_{\mathrm{CF} 3}-\mathrm{H}\right)\left(\mathbf{1 0}_{\mathbf{w}}\right)$ obtained in situ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

The new compound, $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})\left(\mathrm{CH}_{2}-t-\mathrm{Bu}\right)\left(\mathrm{Biphen}_{\mathrm{CF} 3}-\mathrm{H}\right)\left(\mathbf{1 0}_{\mathrm{w}}\right)$, crystallizes from a mixture of toluene and diethyl ether in the monoclinic space group $\mathrm{P} 2_{1 / \mathrm{n}}$ as a two-component non-merohedral twin (Figure 3). The W atom is five-coordinate with $\tau=0.81$ (where $\tau=0$ for a square pyramid and $\tau=1$ for a trigonal bipyramid), ${ }^{25}$ which indicates that it is close to a trigonal bipyramid in which the imido ligand and O 1 occupy axial sites and $\mathrm{O} 2, \mathrm{C} 1$ and C 18 occupy the equatorial sites. The W1-C18 bond results from addition of one of the methyl CH bonds in a Biphen t-butyl group across the $\mathrm{M}=\mathrm{C}$ bond. Bond lengths and angles are those expected for W imido alkyl species. Addition of a CH bond across a $\mathrm{W}=\mathrm{C}$ bond was observed when the synthesis of $\mathrm{W}(\mathrm{NAr})(\mathrm{CH}-t-\mathrm{Bu})\left[\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{2}(p \text {-tolyl })\right]_{2}$ was attempted; in this case an ortho CH
bond in the tolyl group was cleaved. ${ }^{26}$ Addition of CH bonds intramolecularly and intermolecularly across metal-carbon double bonds (as well as across metal-carbon single and metal-carbon triple bonds) in early transition metal chemistry is relatively well known. ${ }^{27}$

Figure 3. Thermal ellipsoid (50\%) drawing of W(N-t-Bu)(CH2-t-Bu)(Biphen $\left.\mathrm{CF}_{\mathrm{CF}}-\mathrm{H}\right)\left(\mathbf{1 0}_{\mathbf{w}}\right)$.
Selected bond length (\AA) and angles $\left(^{\circ}\right):$ W1-N1 $=1.7525(16)$, W1-C1 $=2.1239(20)$, W1-O1 $=$ $2.0084(13)$, $\mathrm{W} 1-\mathrm{O} 2=1.9315(13), \mathrm{W} 1-\mathrm{C} 18=2.1383(19) . \mathrm{N} 1-\mathrm{W} 1-\mathrm{C} 1=92.18(8), \mathrm{C} 1-\mathrm{W} 1-\mathrm{O} 2=$ $125.55(7), \mathrm{O} 2-\mathrm{W} 1-\mathrm{O} 1=85.92(5), \mathrm{W} 1-\mathrm{C} 18-\mathrm{C} 17=121.22, \mathrm{O} 1-\mathrm{W} 1-\mathrm{C} 18=83.39(6), \mathrm{C} 18-\mathrm{W} 1-$ $\mathrm{N} 1=91.42(7), \mathrm{N} 1-\mathrm{W} 1-\mathrm{O} 1=174.32(6)$.

Addition of two equivalents of pyridine to a $\mathrm{C}_{6} \mathrm{D}_{6}$ solution of $\mathbf{1 0}_{\mathrm{w}}$ yielded no change in the proton NMR spectrum at room temperature after two hours. However, upon heating the reaction mixture at $60{ }^{\circ} \mathrm{C}$ for $2.5 \mathrm{~h}, \mathbf{9}_{\mathrm{w}}(43 \%$ conversion versus an internal standard) was reformed, new alkylidene resonances (4% versus an internal standard) were observed at 11.13 ppm and 9.59 ppm , and $\sim 4 \%$ of $\mathbf{1 0}_{\mathbf{w}}$ remained. The new alkylidene resonances in $\mathbf{9}_{\mathbf{W}^{\prime}}$ are postulated to result from α-hydrogen abstraction in the methylene group (C18) to form an |alkylidene in the biphen ligand (eq 14). Unfortunately, the low yield of the minor product and the likely formation of other side products does not allow us to confirm that neopentane is formed in the process of forming $\mathbf{9}_{\mathbf{w}}$. However, we can at least conclude that $\mathbf{1 0}_{\mathbf{w}}$ is formed
upon addition of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ to $\mathbf{9}_{\mathbf{w}}$ and addition of pyridine to $\mathbf{1 0}_{\mathbf{w}}$ yields $\mathbf{9}_{\mathbf{w}}$ in fair yield upon heating the reaction mixture to $60^{\circ} \mathrm{C}$.

$\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{Cl})_{2}(\mathrm{py})_{2}$ was added to a THF solution of $\mathrm{K}_{2}\left(\right.$ Biphen $\left._{\mathrm{Me}}\right)$, which was generated in situ from benzyl potassium and $\left[\operatorname{Biphen}_{\mathrm{Me}}\right] \mathrm{H}_{2}$, to yield $\mathbf{1 1}_{\mathbf{W}}$ (eq 15), which is analogous to $\mathbf{9}_{\mathbf{w}}$. For compound $\mathbf{1 1}_{\mathbf{w}}$ two alkylidene resonances at 10.56 ppm and 9.27 ppm were observed in a ratio of $51: 49$ by ${ }^{1} \mathrm{H}$ NMR spectroscopy in $\mathrm{C}_{6} \mathrm{D}_{6}$, which again we feel most likely can be assigned to two diastereomers. When 1 equivalent of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ was added to a $\mathrm{C}_{6} \mathrm{D}_{6}$ solution of $\mathbf{1 1}_{\mathbf{W}}$, a mixture of $\mathbf{1 1}_{\mathbf{w}^{\prime}}$ (with an alkylidene peak at 7.59 ppm) and the C-H activation product ($\mathbf{1 1}_{\mathbf{w}}{ }^{\prime}$, eq 15) were observed in a ratio of about 1:1.

When $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{pyr})_{2}($ bipy $)$ was sonicated with one equivalent of ZnCl_{2} (dioxane) and 0.9 equivalents of $\left[\mathrm{Biphen}_{\mathrm{Me}}\right] \mathrm{H}_{2}$ in toluene for 4.5 hours, a mixture of $\mathbf{1 1}_{\mathbf{W}}{ }^{\prime}$ and what we propose is the C-H activated product ($\mathbf{1 1}_{w^{\prime \prime}} ; \sim 1: 1$) again were observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy. We conclude that CH activation takes place in a biphenolate methyl group
in $\mathbf{1 1}_{\mathbf{w}}{ }^{\prime}$. Because we could not isolate either $\mathbf{1 1}_{\mathbf{w}^{\prime}}$ or $\mathbf{1 1}_{\mathbf{w}}{ }^{\prime \prime}$ in pure form, we cannot say whether these two compounds interconvert readily, or not.

Synthesis of Tungsten tert-Butylimido Metallacyclobutane Complexes

The reaction between one equivalent of ZnCl_{2} (dioxane), 0.9 equivalents of DFTOH, and $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{pyr})(\mathrm{ODFT})$ in toluene under 1 atm of ethylene at room temperature for 30 min produced a pale yellow precipitate. The mixture was filtered and a white compound was isolated in 31% yield. Carbon and proton NMR data are consistent with the product being a TBP metallacyclobutane complex, $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})\left(\mathrm{C}_{3} \mathrm{H}_{6}\right)(\mathrm{pyr})(\mathrm{ODFT})\left(\mathbf{1 2}_{\mathrm{w}}\right.$; eq 16$) .{ }^{28}$ A similar reaction starting with $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{pyr})_{2}($ bipy $)$ yields $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})\left(\mathrm{C}_{3} \mathrm{H}_{6}\right)(\mathrm{ODFT})_{2}\left(\mathbf{1 3}_{\mathbf{w}}\right.$; eq 17) in 29% yield. To our knowledge, $\mathbf{1 2}_{\mathbf{W}}$ and $\mathbf{1 3}_{\mathbf{W}}$ are the only reported Mo or W metallacyclobutane complexes of this general type that contain a t-butylimido ligand. Reactions between a variety of molybdenum and tungsten NAr complexes and ethylene have been found to yield either unsubstituted metallacyclobutane complexes ${ }^{12}$ or ethylene complexes. ${ }^{29,30}$

We were unable to isolate the proposed intermediate in equation $16, \mathrm{~W}(\mathrm{~N}-t-\mathrm{Bu})(\mathrm{CH}-t-$ $\mathrm{Bu})(\mathrm{pyr})(\mathrm{ODFT})$. However, addition of DFTOH to $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{pyr})_{2}(\mathrm{py})$ that had been generated in situ led to formation of a pyridine adduct, $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-$
$\mathrm{Bu})(\mathrm{pyr})(\mathrm{ODFT})(\mathrm{py})$, in 73% yield ($\mathbf{1 4}_{\mathbf{w}}$, eq 18). There was no immediate reaction of $\mathbf{1 4}_{\mathbf{w}}$ (in $\mathrm{C}_{6} \mathrm{D}_{6}$) with ethylene (1 atm) in a J-Young tube. After 18 h , resonances for unreacted $\mathbf{1 4}_{\mathrm{w}}$, TBP metallacyclobutane resonances, and resonances assigned to olefin adducts were observed in ${ }^{1} \mathrm{H}$ NMR spectra.

CONCLUSIONS

In contrast to bis-arylimido dialkyl complexes, we have found that bis-tert-butylimido dialkyl complexes can be converted more generally into imido alkylidene complexes with acids other than triflic acid, a reaction that was first reported by Osborn for $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{CHOH},{ }^{4}$ as a consequence of the easier and controlled protonation of a t-butylimido versus an arylimido ligand. Complexes that contain two o-methoxybenzyl ligands can be converted to o-methoxybenzylidene bisalkoxide complexes simply through addition of perfluoro- t-butanol or $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{OH}$, and the resulting $\mathrm{W}=\mathrm{CH}-o-\mathrm{MeOC}_{6} \mathrm{H}_{4}$ complexes behave in metathesis reactions in a manner similar to the behavior of the analogous neopentyl complexes. $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t$ $\mathrm{Bu})(\mathrm{OHMT})_{2}$ and $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{ODFT})_{2}$, the only examples of imido bisterphenoxide complexes at this time, could be prepared. $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{OHMT})_{2}$ did not react readily with ethylene or DCMNBD , unlike $\mathrm{W}(\mathrm{O})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{OHMT})_{2}$ and $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{ODFT})_{2}$. Attempts to prepare biphenolate complexes resulted in formation of a neopentyl complex through addition of a CH bond across the $\mathrm{W}=\mathrm{CH}-t-\mathrm{Bu}$ bond. One biphenolate complex could be observed in a mixture of it and the analogous product derived from CH addition across the $\mathrm{W}=\mathrm{C}$ bond. Finally, the first examples of tert-butylimido tungsten metallacyclobutane complexes that contain one or two DFTO ligands were prepared and characterized. The synthetic approaches to t-butylimido alkylidene complexes of Mo and W reported here are more direct and likely will be lower in cost in large scale applications of Mo and W olefin metathesis chemistry.

EXPERIMENTAL

General Considerations

All air- and moisture-sensitive materials were manipulated under a nitrogen atmosphere in a Vacuum Atmospheres glovebox or on a dual-manifold Schlenk line. All glassware, including NMR tubes, was dried in an oven prior to use. Diethyl ether, toluene, dichloromethane, 1,2-dimethoxyethane, and benzene were degassed, passed through activated alumina columns, and stored over $4 \AA$ Linde-type molecular sieves prior to use. Pentane was washed with $\mathrm{H}_{2} \mathrm{SO}_{4}$, followed by water and saturated aqueous NaHCO_{3}, and dried over CaCl_{2} pellets for at least two weeks prior to use in the solvent purification system. Deuterated solvents were dried over $4 \AA$ Linde-type molecular sieves prior to use. Proton NMR spectra were obtained on 400 or 500 MHz spectrometers, ${ }^{13} \mathrm{C}$ NMR spectra on 100.61 or 125 MHz machines, and ${ }^{19} \mathrm{~F}$ on a 376.5 MHz machine. Chemical shifts for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra are reported as parts per million relative to tetramethylsilane and referenced to the residual ${ }^{1} \mathrm{H}$ or ${ }^{13} \mathrm{C}$ resonances of the deuterated solvent (${ }^{1} \mathrm{H}(\delta)$: benzene 7.16 , chloroform 7.26 , methylene chloride $5.32 ;{ }^{19} \mathrm{~F}(\delta)$ external PhF standard $113.15 ;{ }^{13} \mathrm{C}(\delta)$: benzene 128.06, chloroform 77.16, methylene chloride 53.84$) .{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ gCOSY NMR experiments were conducted on a 500 MHz spectrometer. Sonications were performed on a Bransonic Ultrasonic Cleaner 1510R-MT purchased from Branson Ultrasonics Corporation. Benzaldehyde was distilled and stored under nitrogen. Pyridinium chloride was purchased from Sigma-Aldrich or Alfa Aesar and sublimed before use. Lipyr and LiOHMT were prepared by addition of one equivalent of n-butyllithium to a cold pentane or ether solution of pyrrole or HMTOH, and the solids were collected on a glass frit, washed with pentane, and dried in vacuo. Endo-dicyclopentadiene was purchased from Sigma-Aldrich and was distilled before use. 1Octene was dried over CaH_{2} and vacuum transferred. Ethereal solutions of HCl were prepared by bubbling HCl gas into diethyl ether and were titrated before use. $\mathrm{Mo}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t$ $\mathrm{Bu})\left(\mathrm{OC}_{6} \mathrm{~F}_{5}\right)_{2}\left(\mathrm{NH}_{2}-t-\mathrm{Bu}\right),{ }^{5} \quad\left[\mathrm{~W}(\mathrm{~N}-t-\mathrm{Bu})_{2}(\mathrm{Cl})_{2}\left(t-\mathrm{BuNH}_{2}\right)_{2}\right]_{2},{ }^{2} \quad \mathrm{~W}(\mathrm{~N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{Cl})_{2}(\mathrm{py})_{2},{ }^{2}$ $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{pyr})(\mathrm{OHMT}),{ }^{2}$ 2-methoxystyrene, ${ }^{31}$ benzyl potassium, ${ }^{32}$ DCMNBD, ${ }^{33}$ $\left[\right.$ Biphen $\left._{\mathrm{Me}}\right] \mathrm{H}_{2},{ }^{24} \quad\left[\right.$ Biphen $\left._{\mathrm{CF} 3}\right] \mathrm{H}_{2},{ }^{24}$ neopentyl Grignard, ${ }^{34} \mathrm{HMTOH},{ }^{35} \mathrm{DFTOH},{ }^{36}$ and ZnCl_{2} (dioxane) ${ }^{37}$ were prepared according to literature procedures. All other reagents were used as received. The CENTC Elemental Analysis Facility at the University of Rochester provided elemental analyses.
$\mathbf{W}(\mathbf{N}-\boldsymbol{t}-\mathbf{B u})\left(\mathbf{C H}-\boldsymbol{o}-\mathbf{M e O C}_{\mathbf{6}} \mathbf{H}_{\mathbf{4}}\right)(\mathbf{C l})_{\mathbf{2}} \mathbf{(p y)} \mathbf{(\mathbf { 1 } _ { \mathbf { W } })}$. Pyridinium chloride $(0.354 \mathrm{~g}, 3.06 \mathrm{mmol})$ was added portion-wise to a cold $\left(-30{ }^{\circ} \mathrm{C}\right)$ solution of $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})_{2}\left(\mathrm{CH}_{2}-\mathrm{O}-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{2}\left(\mathbf{2}_{\mathbf{w}}\right)$ $(0.580 \mathrm{~g}, 1.02 \mathrm{mmol})$ in 20 mL of ether. The reaction mixture was stirred for 19 h at room temperature. The solvents were removed in vacuo. Dichloromethane was added and the mixture was filtered through a pad of Celite on a glass frit and the solvents were removed from the filtrate in vacuo. Ether was added and the yellow precipitate was collected by filtration (0.423 g , 79%): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 11.96\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{W}=\mathrm{CH},{ }^{1} J_{\mathrm{CH}}=145 \mathrm{~Hz}\right), 8.65(\mathrm{~d}, 2 \mathrm{H}, \mathrm{py}), 6.96$ $(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ar}), 6.59(\mathrm{~d}, 1 \mathrm{H}, \mathrm{Ar}), 6.45(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}$ and py), $6.10(\mathrm{t}, 2 \mathrm{H}, \mathrm{py}), 4.35(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 1.44$ (s, 9H, t - Bu); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 260.87,160.77,156.67,152.25,138.45,134.62$, $129.48,128.59,125.88,124.55,122.42,120.90,110.31,71.15,59.55,29.72$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{OW}: \mathrm{C}, 38.88 ; \mathrm{H}, 4.22$; N, 5.33. Found C, $39.20 ; \mathrm{H}, 4.30 ; \mathrm{N}, 5.42$.
$\mathbf{M o}(\mathbf{N} \boldsymbol{-} \boldsymbol{t}-\mathrm{Bu})\left(\mathbf{C H} \boldsymbol{o} \boldsymbol{o}-\mathbf{M e O C}_{\mathbf{6}} \mathbf{H}_{\mathbf{4}}\right)\left(\mathbf{O C}_{\mathbf{6}} \mathbf{F}_{\mathbf{5}}\right)_{\mathbf{2}}\left(\boldsymbol{t}-\mathbf{B u N H}_{\mathbf{2}}\right)\left(\mathbf{1}_{\mathbf{M o}}\right)$. Pentafluorophenol (85.3 mg , $0.463 \mathrm{mmol})$ was added in portions to a cold $\left(-30{ }^{\circ} \mathrm{C}\right)$ solution of $\mathrm{Mo}(\mathrm{N}-t-\mathrm{Bu})_{2}\left(\mathrm{CH}_{2}-O-\right.$ $\left.\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{2}\left(\mathbf{2}_{\mathbf{M 0}}\right)(0.101 \mathrm{~g}, 0.211 \mathrm{mmol})$ in 6 mL of ether. The reaction mixture was stirred for 2 h at room temperature and the solvents were then removed in vacuo. Pentane was added to and the yellow solid was isolated by filtration ($0.084 \mathrm{~g}, 55 \%$): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 13.31$ (s, $1 \mathrm{H}, \mathrm{Mo}=\mathrm{CH}$), 6.60 (m, 2H, Ar), 6.48 (m, 1H, Ar), 6.09 (m, 1H, Ar), 4.10 (s, 3H, OMe), 3.06 (d, $1 \mathrm{H}, \mathrm{NH}_{2}$), $2.20\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}_{2}\right), 1.51(\mathrm{~s}, 9 \mathrm{H},-t-\mathrm{Bu}), 0.45(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}) ;{ }^{19} \mathrm{~F}$ NMR (300 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right)$ $\delta-166.23(\mathrm{~d}, 2 \mathrm{~F}),-161.92(\mathrm{~d}, 2 \mathrm{~F}),-188.69(\mathrm{t}, 2 \mathrm{~F}),-169.62(\mathrm{t}, 2 \mathrm{~F}),-176.41(\mathrm{~m}, 2 \mathrm{~F}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 281.31,158.18,146.19,143.11,141.74,139.89,138.90,137.91,136.99$, $134.63,134.03,132.08,130.09,122.66,122.07,109.47,75.19,56.46,51.72,29.99,28.57$. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~F}_{10} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Mo}: \mathrm{C}, 46.29$; H, 3.88; N, 3.86. Found C 46.28, H 3.91, N 3.74.
$\mathbf{W}(\mathbf{N}-\boldsymbol{t}-\mathbf{B u})_{\mathbf{2}}\left(\mathbf{C H}_{\mathbf{2}} \boldsymbol{o} \boldsymbol{o}-\mathbf{M e O C} \mathbf{6}_{\mathbf{6}} \mathbf{H}_{\mathbf{4}}\right)_{\mathbf{2}} \mathbf{(\mathbf { 2 } _ { \mathbf { W } }) .}$ 2-Methoxybenzylmagnesium chloride $(9.76 \mathrm{~mL}$, $0.25 \mathrm{M}, 2.44 \mathrm{mmol})$ was added to a cold $\left(-30{ }^{\circ} \mathrm{C}\right)$ solution of $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})_{2}(\mathrm{Cl})_{2}(\mathrm{py})_{2}(0.677 \mathrm{~g}$, 1.22 mmol) in 50 mL of ether/THF. The reaction mixture was stirred for 19 h at room temperature. The mixture was filtered through a pad of Celite on a glass frit and the solvents were removed from the filtrate in vacuo. Benzene was added and the mixture was filtered through a pad of Celite on a glass frit and the solvents were removed from the filtrate in vacuo. Pentane was added and the brown liquid product was separated by decantation ($0.580 \mathrm{~g}, 84 \%$): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.20$ (d, 2H, Ar), 6.86 (m, 4H, Ar), 6.30 (d, 2H, Ar), 3.43 ($\mathrm{s}, 6 \mathrm{H}$, OMe), $2.76\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.33\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) δ 160.63, 138.17,
$131.75,124.98,122.18,110.93,67.41,57.64,39.34$, 32.66. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~W}: \mathrm{C}$, 50.71; H, 6.38; N, 4.93. Found C, 50.88; H, 6.43; N, 4.81.
$\left.\mathbf{M o}(\mathbf{N}-\boldsymbol{t} \text { - } \mathbf{B u})_{\mathbf{2}}^{\mathbf{2}} \mathbf{(\mathbf { C H } _ { \mathbf { 2 } } - \boldsymbol { o } - \mathbf { M e O C }} \mathbf{6}_{\mathbf{6}} \mathbf{H}_{\mathbf{4}}\right)_{\mathbf{2}} \mathbf{(\mathbf { 2 } _ { \mathbf { M o } }) .}$ 2-Methoxybenzylmagnesium chloride (21.9 mL , $0.25 \mathrm{M}, 5.48 \mathrm{mmol})$ was added to a cold $\left(-30^{\circ} \mathrm{C}\right)$ solution of $\mathrm{Mo}(\mathrm{N}-t-\mathrm{Bu})_{2}(\mathrm{Cl})_{2}(\mathrm{dme})(1.09 \mathrm{~g}$, 2.74 mmol) in 50 mL of ether. The reaction mixture was stirred for 5 h at room temperature. The mixture was filtered through a pad of Celite on a glass frit and the solvents were removed from the filtrate in vacuo. Pentane was added and the mixture was filtered through a pad of Celite on a glass frit and the solvents were removed from the filtrate in vacuo. Minimum amount of pentane was added and the yellow product was collected by filtration ($0.934 \mathrm{~g}, 71 \%$): ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.05$ (d, 2H, Ar), $6.99(\mathrm{t}, 2 \mathrm{H}, \mathrm{Ar}), 6.79(\mathrm{t}, 2 \mathrm{H}, \mathrm{Ar}), 6.42$ (d, 2H, Ar), 3.39 ($\mathrm{s}, 6 \mathrm{H}$, OMe), $2.59\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.28\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 158.73,131.93$, $130.34,125.74,121.56,110.88,67.15,55.45,32.70,31.93$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Mo}$: Theory C, 59.99; H, 7.55; N, 5.83. Found C, 60.04; H, 7.62; N, 5.70.
$\mathbf{M o}(\mathbf{N}-\boldsymbol{t}-\mathrm{Bu})\left(\mathbf{C H}-\boldsymbol{o}-\mathrm{MeOC}_{6} \mathbf{H}_{4}\right)\left[\mathbf{O C}\left(\mathbf{C F}_{\mathbf{3}}\right)_{3}\right]_{\mathbf{2}}\left(\boldsymbol{t}\right.$ - $\left.\left.\mathbf{B u N H}_{2}\right) \quad \mathbf{(3}_{\mathbf{M o}}\right)$. Perfluoro- t-butanol (150 $\mu \mathrm{L}, 1.08 \mathrm{mmol})$ was added to a cold $\left(-30^{\circ} \mathrm{C}\right)$ solution of $\mathrm{Mo}(\mathrm{N}-t-\mathrm{Bu})_{2}\left(\mathrm{CH}_{2}-\mathrm{O}-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{2}\left(\mathbf{2}_{\mathbf{M o}}\right)$ $(0.259 \mathrm{~g}, 0.540 \mathrm{mmol})$ in 20 mL of ether. The reaction mixture was stirred for 2 h at room temperature. The solvents were removed from the filtrate in vacuo. Pentane was added to precipitate and the reaction mixture was chilled to $-30^{\circ} \mathrm{C}$. The precipitated green solid was isolated by filtration $(0.287 \mathrm{~g}, 64 \%):{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 13.28(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Mo}=\mathrm{CH}), 6.81(\mathrm{t}$, $1 \mathrm{H}, \mathrm{Ar}), 6.69(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ar}), 6.47(\mathrm{~d}, 1 \mathrm{H}, \mathrm{Ar}), 6.30(\mathrm{~d}, 1 \mathrm{H}, \mathrm{Ar}), 3.96(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.97(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{NH}_{2}\right), 2.550\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}_{2}\right), 1.37(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.51(\mathrm{~s}, 9 \mathrm{H},-t-\mathrm{Bu}) ;{ }^{19} \mathrm{~F}$ NMR (300 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ -72.13 (s, 9F), -73.16 (s, 9F); ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 282.5,159.04,135.18,130.00$, 122.69, 121.10, 109.37, 84.66, 75.75, 56.56, 52.07, 30.13, 28.26. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~F}_{18} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Mo}$: C, 34.71 ; H, 3.40; N, 3.37. Found C, 34.95; H, 3.43; N, 3.26.
$\mathbf{M o (N A r})_{\mathbf{2}}\left(\mathbf{C H}_{\mathbf{2}} \mathbf{- \boldsymbol { o } - \mathbf { M e O C } _ { \mathbf { 6 } } \mathbf { H } _ { \mathbf { 4 } }) _ { \mathbf { 2 } } \text { . 2-Methoxybenzylmagnesium chloride } (5 . 6 4 \mathrm { mL } , 0 . 2 5}\right.$ $\mathrm{M}, 1.41 \mathrm{mmol})$ was added to a cold $\left(-30^{\circ} \mathrm{C}\right)$ solution of $\mathrm{Mo}(\mathrm{NAr})_{2}(\mathrm{Cl})_{2}(\mathrm{dme})(428 \mathrm{mg}, 0.705$ mmol) in 10 mL of ether. The reaction mixture was stirred for 12 h at room temperature. The mixture was filtered through a pad of Celite on a glass frit and the solvent was removed from the filtrate in vacuo. Pentane was added and an orange solid was filtered off. The orange solid was dissolved in benzene $(10 \mathrm{~mL})$ and the mixture was filtered through a pad of Celite on a glass frit and the solvent was removed from the filtrate in vacuo. Pentane was added and the resulting orange solid was collected by filtration ($380 \mathrm{mg}, 78 \%$): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.17$ (d, 2H,

Ar), 7.01 (d, 4H, Ar), 6.93 (t, 2H, Ar), 6.84 (t, 2H, Ar), 6.78 (t, 2H, Ar), 6.22 (d, 2H, Ar), 3.87 (m, $4 \mathrm{H}, i-\mathrm{Pr}$), $3.36-3.34\left(\mathrm{~s}, 10 \mathrm{H}, \mathrm{CH}_{2}\right.$ and OMe), $1.17\left(\mathrm{~d}, 24 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 159.11,153.94,142.81,134.46,131.17,125.85,124.80,122.74,121.73,110.45,56.55$, 39.94, 28.18, 24.10. Anal. Calcd for $\mathrm{C}_{40} \mathrm{H}_{52} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Mo}: \mathrm{C}, 69.75$; H, 7.61; N, 4.07. Found C, 69.42; H, 7.55; N, 3.93.
$\mathbf{W}(\mathbf{N}-\boldsymbol{t}-\mathrm{Bu})\left(\mathbf{C H}-\boldsymbol{o}-\mathbf{M e O C}_{\mathbf{6}} \mathbf{H}_{\mathbf{4}}\right)(\mathbf{p y r})_{\mathbf{2}}(\mathbf{b i p y}) \quad\left(\mathbf{4}_{\mathbf{w}}\right) . \quad \mathrm{W}(\mathrm{N}-t-\mathrm{Bu})\left(\mathrm{CH}-o-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)(\mathrm{Cl})_{2}(\mathrm{py})$ $\left(\mathbf{1}_{\mathrm{W}}, 0.626 \mathrm{~g}, 1.19 \mathrm{mmol}\right)$ was suspended in toluene (50 ml) and the suspension was chilled at $-30{ }^{\circ} \mathrm{C}$ for 1 h . Lipyr ($0.183 \mathrm{~g}, 2.502 \mathrm{mmol}$) was added in one portion and the mixture was allowed to stir at room temperature for 2 h . The precipitated salts were filtered off on a pad of Celite on a glass frit and the pad was washed with toluene. 2,2'-Bipyidine ($0.168 \mathrm{~g}, 1.072 \mathrm{mmol}$) was added to the solution and the mixture was allowed to stir at room temperature overnight. The resulting precipitate was collected by filtration and the solvents were removed from the filtrate in vacuo to give a red powder ($0.574 \mathrm{~g}, 81 \%$); at room temperature, two isomers were observed in NMR spectra: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 11.87(\mathrm{~s}, 1 \mathrm{H}, \mathrm{W}=\mathrm{CH}), 10.94(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{W}=\mathrm{CH}$), 9.91 (d, 1H, bipy), 9.61 (d, 1H, bipy), 9.50 (d, 1H, bipy), 8.63 (d, 1H, bipy), $8.18-7.55$ (m, 18H, Ar), $7.01-6.50(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}), 6.31(\mathrm{~m}, 4 \mathrm{H}, \mathrm{pyr}), 6.17(\mathrm{~m}, 2 \mathrm{H}, \mathrm{pyr}), 5.97(\mathrm{~m}, 2 \mathrm{H}, \mathrm{pyr})$, $5.75(\mathrm{~m}, 2 \mathrm{H}, \mathrm{pyr}), 5.67(\mathrm{~m}, 4 \mathrm{H}, \mathrm{pyr}), 5.32(\mathrm{~m}, 4 \mathrm{H}, \mathrm{pyr}), 3.93(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.66(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe})$, $1.37(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Me}), 1.34(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Me})$; a ${ }^{13} \mathrm{C}$ NMR spectrum could not be obtained readily at $22{ }^{\circ} \mathrm{C}$ due to insolubility of the sample in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{OW}: \mathrm{C}, 54.31 ; \mathrm{H}, 5.01 ; \mathrm{N}$, 10.56. Found C, 54.50; H, 5.02; N, 10.16.
$\mathbf{W}(\mathbf{N}-\boldsymbol{t}$ - Bu$)\left(\mathbf{C H}-\boldsymbol{o}-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)(\mathbf{p y r})(\mathbf{O H M T}) \quad\left(5_{\mathrm{w}}\right) . \quad \mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-o-$ $\left.\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)(\text { pyr })_{2}($ bipy $)\left(\mathbf{4}_{\mathrm{w}}, 338.1 \mathrm{mg}, 0.510 \mathrm{mmol}\right), \mathrm{ZnCl}_{2}$ (dioxane) ($114.3 \mathrm{mg}, 0.510 \mathrm{mmol}$), and HMTOH ($143 \mathrm{mg}, 0.433 \mathrm{mmol}$) were suspended in toluene ($\sim 25 \mathrm{~mL}$) in a 100 mL Schlenk bomb. The solution was stirred for 24 h at $75^{\circ} \mathrm{C}$, and filtered through a pad of Celite on a glass frit and the solvents were removed from the filtrate in vacuo. The compound was extracted with minimum amount of pentane, the mixture was filtered through a pad of Celite on a glass frit, and the solvents were removed from the filtrate to yield an orange powder; 324 mg (97\%): ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 10.83\left(\mathrm{~s}, 1 \mathrm{H}\right.$, anti-W $\left.=\mathrm{CH},{ }^{1} J_{\mathrm{CH}}=152 \mathrm{~Hz}\right), 7.04-6.98(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 6.92(\mathrm{t}$, $1 \mathrm{H}, \mathrm{Ar}), 6.85(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}), 6.54(\mathrm{t}, 2 \mathrm{H}, \mathrm{Ar}), 6.42-6.37(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 6.26(\mathrm{~m}, 4 \mathrm{H}, \mathrm{pyr}), 3.20(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OMe}$), $2.24-2.07$ (br, $18 \mathrm{H}, \mathrm{Me}$), 1.25 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{Me}$); ${ }^{13} \mathrm{C}$ NMR ($100.61 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) 232.19, $159.32,156.04,136.50,136.26,135.51,135.45,134.76,130.89,129.84,129.07,128.60,128.47$,
$125.11,123.67,122.00,121.04,109.70,107.67,70.12,56.03,32.83,30.44,21.65,21.34,21.17$. Anal. Calcd for $\mathrm{C}_{40} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{2}$ W: C, 62.34; H, 6.02; N, 3.64. Found C, 62.07; H, 5.90; N, 3.49.
$\mathbf{W}(\mathbf{N}-\boldsymbol{t}-\mathbf{B u})(\mathbf{C H}-\boldsymbol{t}-\mathbf{B u})(\mathbf{O H M T})(\mathbf{C l})(\mathbf{p y})\left(\mathbf{6 w w}_{\mathbf{w}}\right)$. Solid LiOHMT$\cdot \mathrm{THF}(398.4 \mathrm{mg}, 0.975$ $\mathrm{mmol})$ was added portion-wise to a solution of $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{Cl})_{2}(\mathrm{py})_{2}(491.3 \mathrm{mg}, 0.887$ $\mathrm{mmol})$ in benzene (20 mL). The reaction mixture was stirred for 19 h at $70^{\circ} \mathrm{C}$. The mixture was filtered through a pad of Celite on a glass frit and the filtrate was dried in vacuo. Pentane was added and removed in vacuo a couple of times to remove excess benzene. The resulting precipitate was collected by filtration in pentane and the solvents were removed from the filtrate to yield an ivory-colored powder ($541 \mathrm{mg}, 79 \%$): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 9.67(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{W}=\mathrm{CH}), 8.05(\mathrm{~m}, 2 \mathrm{H}, \mathrm{py}), 7.24(\mathrm{~d}, 1 \mathrm{H}, \mathrm{Ar}), 7.17(\mathrm{~d}, 1 \mathrm{H}, \mathrm{Ar}), 7.08(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 7.01(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar})$, $6.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 6.74(\mathrm{~m}, 2 \mathrm{H}$, py and Ar$), 6.41(\mathrm{~m}, 2 \mathrm{H}, \mathrm{py}), 2.76(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.74(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me})$, 2.31 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), $2.27(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.95(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.65(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.22(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 1.14(\mathrm{~s}$, $9 \mathrm{H}, t-\mathrm{Bu}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 278.23,160.82,153.75,139.13,138.99,138.12,138.02$, $137.54,137.07,135.81,135.50,132.04,131.47,130.01,129.90,129.47,129.24,127.49,127.23$, $124.44,119.81,67.85,43.11,32.68,31.88,31.10,22.41,22.23,21.44,21.24,20.91,20.86$. Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{49} \mathrm{ClN}_{2} \mathrm{OW}: \mathrm{C}, 59.34 ; \mathrm{H}, 6.42 ; \mathrm{N}, 3.64$. Found C, $58.27 ; \mathrm{H}, 6.17 ; \mathrm{N}, 3.75$. Several other attempts at elemental analysis produced similar and variable results. However, $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{OHMT})(\mathrm{Cl})(\mathrm{py})$ could be employed in the next step without further purification.

Observation of $\mathbf{W}(\mathbf{N}-\boldsymbol{t}-\mathbf{B u})(\mathbf{C H}-\boldsymbol{t}-\mathbf{B u})(\mathbf{O H M T})(\mathbf{C l})\left(\mathbf{6 w}^{\prime}\right) . \quad \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \quad(66 \mathrm{mg}, 0.129$ mmol) was added portion-wise to a solution of $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{OHMT})(\mathrm{Cl})(\mathrm{py})(99 \mathrm{mg}$, 0.129 mmol) in benzene (5 mL). The reaction mixture was stirred for 30 min at room temperature and the solvents were removed from the filtrate in vacuo. Pentane was added and removed in vacuo a couple of times to remove benzene. Pentane was added and the mixture was filtered through a pad of Celite on a glass frit. The solvents were removed from the filtrate in vacuo, leaving a sticky orange solid: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 8.21$ (s, 1H, W=CH), 6.98 $6.90(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar}), 2.22(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}), 2.19(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}), 2.17(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}), 1.16(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 1.05(\mathrm{~s}$, $9 \mathrm{H}, t-\mathrm{Bu})$.
$\mathbf{W}(\mathbf{N} \boldsymbol{-} \boldsymbol{t}-\mathrm{Bu})(\mathbf{C H}-\boldsymbol{t}-\mathbf{B u})(\mathbf{O H M T})_{\mathbf{2}}\left(\mathbf{7}_{\mathbf{w}}\right) . \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(96.4 \mathrm{mg}, 0.19 \mathrm{mmol})$ was added in portions to a solution of $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{OHMT})(\mathrm{Cl})(\mathrm{py})(132 \mathrm{mg}, 0.17 \mathrm{mmol})$ in benzene $(6 \mathrm{~mL})$. The reaction mixture was stirred for 30 min at room temperature and the solvents were removed from the mixture in vacuo. Pentane was added and removed in vacuo a couple of times
to remove benzene. Pentane was added and the mixture was filtered through a pad of Celite on a glass frit. The solvents were removed from the filtrate in vacuo and the residue was dissolved in toluene- d_{8} and the mixture was transferred into a J-Young tube along with LiOHMT (69 mg , $0.21 \mathrm{mmol})$. The mixture was placed in a $130^{\circ} \mathrm{C}$ oil bath for 17 h and then filtered through a pad of Celite on a glass frit. The mixture was washed with benzene and the solvents were removed from the filtrate in vacuo. A small quantity of acetonitrile was added and light yellow powder was filtered off after 30 min ; yield $52.6 \mathrm{mg}(31 \%)$: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.64$ (s, $1 \mathrm{H}, \mathrm{W}=\mathrm{CH}$), 6.92 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{Ar}), 6.89$ ($\mathrm{s}, 4 \mathrm{H}, \mathrm{Ar}$), $6.86-6.79$ (m, 6H, Ar), 2.27 (s, 12H, Me), 2.18 $(\mathrm{s}, \quad 12 \mathrm{H}, ~ \mathrm{Me}), \quad 2.05(\mathrm{~s}, \quad 12 \mathrm{H}, \mathrm{Me}), \quad 0.94 \quad(\mathrm{~s}, \quad 9 \mathrm{H}, \quad t$-Bu$), 0.92 \quad(\mathrm{~s}, 9 \mathrm{H}$, t-Bu); ${ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 241.61\left({ }^{1} J_{\mathrm{CW}}=192.5 \mathrm{~Hz}\right.$), 160.33, 137.00, 136.82, 136.34, $136.29,131.88,131.24,128.91,128.80,121.63,70.44,41.63,34.72,32.78,32.04,22.12,21.55$, 21.36. Anal. Calcd for $\mathrm{C}_{57} \mathrm{H}_{69} \mathrm{NO}_{2} \mathrm{~W}: ~ \mathrm{C}, 69.57$; H, 7.07; N, 1.42. Found C, 69.77; H, 6.99; N, 1.29 .
$\left.\mathbf{W}(\mathbf{N}-\boldsymbol{t}-\mathrm{Bu})(\mathbf{C H}-\boldsymbol{t}-\mathbf{B u})(\mathbf{O D F T})_{\mathbf{2}} \mathbf{(8}_{\mathbf{W}}\right) . \mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{pyr})_{2}(\mathrm{bipy})(197.3 \mathrm{mg}, 0.322$ mmol), ZnCl_{2} (dioxane) ($72.2 \mathrm{mg}, 0.322 \mathrm{mmol}$), and DFTOH ($260.5 \mathrm{mg}, 0.611 \mathrm{mmol}$) were dissolved in toluene (20 mL) in a 100 mL Schlenk bomb. The mixture was heated for 2 h at $75^{\circ} \mathrm{C}$. The solution was filtered through a pad of Celite on a glass frit and filtrate was dried in vacuo. The compound was triturated with a minimum amount of pentane and isolated by filtration; yield of yellow solid $=179.2 \mathrm{mg}(47 \%)$: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.86(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{W}=\mathrm{CH}), 6.97(\mathrm{~d}, 4 \mathrm{H}, \mathrm{Ar}), 6.73(\mathrm{t}, 2 \mathrm{H}, \mathrm{Ar}), 0.84(\mathrm{~s}, 9 \mathrm{H},-t-\mathrm{Bu}), 0.73(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}) ;{ }^{19} \mathrm{~F}$ NMR (300 $\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta-130.37(\mathrm{~m}, 4 \mathrm{~F}),-144.38(\mathrm{t}, 2 \mathrm{~F}),-151.46(\mathrm{~m}, 4 \mathrm{~F}) ;{ }^{13} \mathrm{C}$ NMR (100.62 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 248.95,161.99,145.75,143.22,142.70,139.74,138.19,133.62,122.23,117.82,112.16$, 71.96, 42.56, 33.45, 31.61. Anal. Calcd for $\mathrm{C}_{45} \mathrm{H}_{25} \mathrm{~F}_{20} \mathrm{NO}_{2} \mathrm{~W}: \mathrm{C}, 45.98 ; \mathrm{H}, 2.14 ; \mathrm{N}, 1.19$. Found C, 45.69; H, 1.81; N, 1.41.
$\mathbf{W}(\mathbf{N}-\boldsymbol{t}-\mathrm{Bu})(\mathbf{C H}-\boldsymbol{t}-\mathrm{Bu})\left(\right.$ Biphen $\left._{\mathbf{C F} 3}\right)(\mathbf{p y})\left(\mathbf{9}_{\mathbf{w}}\right) . \mathrm{W}(\mathrm{N}-\boldsymbol{t}-\mathrm{Bu})(\mathrm{CH}-\boldsymbol{t}-\mathrm{Bu})\left(\mathrm{Me}_{2} \mathrm{pyr}\right)_{2}(\mathrm{py})(173.5$ $\mathrm{mg}, 0.314 \mathrm{mmol})$, and $\left[\mathrm{Biphen}_{\mathrm{CF} 3}\right] \mathrm{H}_{2}(145 \mathrm{mg}, 0.314 \mathrm{mmol})$ were dissolved in benzene $(10 \mathrm{~mL})$ in a 20 mL Schlenk bomb. The mixture was heated at $70{ }^{\circ} \mathrm{C}$ for 12 h , and the solvent was removed in vacuo. The mixture was triturated with pentane, and the resulting suspension was filtered off to give a off-white solid. The filtrate contained some product, $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t$ $\mathrm{Bu})\left(\mathrm{Me}_{2} \mathrm{pyr}\right)_{2}(\mathrm{py})$, and some free $\left[\mathrm{Biphen}_{\mathrm{CF}}\right] \mathrm{H}_{2}$, so the mixture was dissolved in benzene $(5 \mathrm{~mL})$ in a 20 mL Schlenk bomb and heated at $70^{\circ} \mathrm{C}$ for 12 h . After the same workup, two crops were combined ($153.2 \mathrm{mg}, 56 \%$). Two isomers were present in a $56: 44$ ratio, according to NMR
spectra: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 10.66\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{W}=\mathrm{CH},{ }^{1} J_{\mathrm{CH}}=112 \mathrm{~Hz},{ }^{2} J_{\mathrm{HW}}=15 \mathrm{~Hz}\right.$, major), $9.37\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{W}=\mathrm{CH},{ }^{1} J_{\mathrm{CH}}=112 \mathrm{~Hz},{ }^{2} J_{\mathrm{HW}}=15 \mathrm{~Hz}\right.$, minor), $8.36-8.44$ (dd, $\left.4 \mathrm{H}, \mathrm{Ar}\right), 7.85$ - 7.95 (m, 4H, Ar), 6.66 (m, 2H, Ar), 6.31 (t, 2H, Ar), 6.24 (t, 2H, Ar), 2.47 (s, 3H, Me), 2.41 (s, $3 \mathrm{H}, \mathrm{Me}), 2.06(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.01(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.59(\mathrm{~d}, 18 \mathrm{H}, t-\mathrm{Bu}), 1.38(\mathrm{~s}, 18 \mathrm{H},-t-\mathrm{Bu}), 1.15(\mathrm{~s}$, $9 \mathrm{H},-t-\mathrm{Bu}), 1.06(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.85(\mathrm{~s}, 9 \mathrm{H},-t-\mathrm{Bu}), 0.78(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}) ;{ }^{19} \mathrm{~F}$ NMR (300 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta-58.41(\mathrm{~m}, 3 \mathrm{~F}),-58.45(\mathrm{~m}, 6 \mathrm{~F}),-58.62(\mathrm{~m}, 3 \mathrm{~F}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 276.84,271.98$, $170.78,167.59,164.66,164.30,154.64,153.84,138.61,137.81,135.88,135.86,135.79,135.42$, 134.74, 134.61, 133.72, 131.87, 131.18, 130.44, 130.27, 128.60, 125.97, 125.90, 125.62, 125.50, $125.21,124.58,124.51,124.39,123.98,123.58,121.05,120.82,120.66,120.43,119.70,119.47$, $119.36,119.13,69.61,69.12,44.06,43.75,35.92,35.50,34.56,34.13,33.52,32.34,32.31,31.58$, 31.54, 31.53, 30.09, 30.00, 16.47, 16.25, 16.19, 16.02. Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{50} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~W}: \mathrm{C}$, 52.79; H, 5.83; N, 3.24. Found C, 52.46; H, 5.64; N, 3.02.
$\mathbf{W}(\mathbf{N}-\boldsymbol{t}-\mathrm{Bu})\left(\mathbf{C H}_{2}-\boldsymbol{t}-\mathrm{Bu}\right)\left(\right.$ Biphen $\left._{\mathbf{C F 3}}-\mathbf{H}\right) \quad\left(\mathbf{1 0}_{\mathrm{W}}\right)$. In a 20 mL vial, $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-$ $\mathrm{Bu})\left(\right.$ Biphen $\left._{\mathrm{CF3}}\right)(\mathrm{py})(35.5 \mathrm{mg}, 0.041 \mathrm{mmol})$ was dissolved in benzene $(3 \mathrm{~mL}) . \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(21.0$ $\mathrm{mg}, 0.041 \mathrm{mmol}$) was added in portions and the mixture was stirred at room temperature for 30 min before the solvent was removed in vacuo. The product was extracted into pentane, and the mixture was filtered through a bed of Celite to remove py $\cdot \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$. The pentane was removed from the filtrate in vacuo to yield an orange solid, which was recrystallized from a mixture of toluene and diethyl ether. A small quantity of residual py- $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ was observed in the ${ }^{1} \mathrm{H}$ NMR spectrum and the product could not be completely freed of py•B(C6F5) ${ }_{3}$: ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.95\left(\mathrm{br}, \mathrm{py} \cdot \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right), 7.89(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 7.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 6.57\left(\mathrm{t}, \mathrm{py} \cdot \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right), 6.23(\mathrm{t}$, py• $\left.\cdot\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right), 3.58\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{WCH}_{2},{ }^{2} J_{\mathrm{HW}}=16 \mathrm{~Hz}\right.$, other WCH_{2} signal is at 1.36 ppm$) 2.45(\mathrm{~d}, 3 \mathrm{H}$, $\mathrm{Me}), 2.25\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{WCH}_{2},{ }^{2} J_{\mathrm{HW}}=15.2 \mathrm{~Hz}\right.$, other WCH_{2} signal is at 1.66 ppm$), 2.08(\mathrm{~d}, 3 \mathrm{H}, \mathrm{Me})$, $1.66(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.41(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.37(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 1.18(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.95(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu})$.
$\left.\mathbf{W}(\mathbf{N}-\boldsymbol{t}-\mathbf{B u})(\mathbf{C H}-\boldsymbol{t}-\mathbf{B u})\left(\mathbf{B i p h e n}_{\mathbf{M e}}\right)(\mathbf{p y}) \mathbf{(1 1}_{\mathbf{W}}\right)$. Benzyl potassium (145 mg, 1.114 mmol$)$ was added to a solution of $\left[\right.$ Biphen $\left._{\mathrm{Me}}\right] \mathrm{H}_{2}(197.4 \mathrm{mg}, 0.557)$ in THF $(20 \mathrm{~mL})$ and the mixture was stirred for 20 min at room temperature. A solution of $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{py})_{2}(\mathrm{Cl})_{2}(308.5 \mathrm{mg}$, 0.557 mmol) in THF was added to this reaction mixture and the mixture was stirred for 19 h at room temperature. The solvents were removed from the reaction mixture in vacuo. Pentane was added and then removed in vacuo in order to remove THF. The solid was extracted with benzene and the mixture was filtered through a bed of Celite to remove KCl . The solvent was removed in vacuo, the product was triturated with pentane, and the resulting suspension was
filtered off to give an off-white solid; yield 318.9 mg (76\%). Two isomers were present in a 51:49 ratio, according to NMR data: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 10.56\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{W}=\mathrm{CH},{ }^{2} J_{\mathrm{HW}}=\right.$ 11.2 Hz, major), $9.27\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{W}=\mathrm{CH},{ }^{2} \mathrm{~J}_{\mathrm{HW}}=12.8 \mathrm{~Hz}\right.$, minor), $8.61-8.55(\mathrm{dd}, 4 \mathrm{H}, \mathrm{Ar}), 7.38(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{Ar}), 7.36$ (s, 1H, Ar), 7.30 (d, 2H, Ar), 6.66 (m, 2H, Ar), 6.32 (t, 2H, Ar), 6.25 (t, 2H, Ar), 2.41 (s, 3H, Me), 2.35 (s, 3H, Me), $2.30(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.24(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.22(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.18(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{Me}), 1.79(\mathrm{~d}, 21 \mathrm{H}$, Me and $-t-\mathrm{Bu}), 1.75(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.45(\mathrm{~s}, 18 \mathrm{H},-t-\mathrm{Bu}), 1.35(\mathrm{~s}, 9 \mathrm{H},-t-\mathrm{Bu})$, $1.26(\mathrm{~s}, 9 \mathrm{H},-t-\mathrm{Bu}), 0.94(\mathrm{~s}, 9 \mathrm{H},-t-\mathrm{Bu}), 0.90(\mathrm{~s}, 9 \mathrm{H},-t-\mathrm{Bu}) ;{ }^{13} \mathrm{C}$ NMR ($100.61 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 273.50,268.81,164.80,160.96,160.45,160.01,154.76,153.88,138.01,137.19,135.15$, $134.87,134.81,134.63,134.54,133.79,133.66,133.06,131.17,130.92,130.31,129.76,127.57$, $127.46,126.86,126.74,126.30,126.10,125.77,124.17,124.12,69.05,68.32,43.66,43.33$, $35.88,35.47,34.44,34.00,33.81,32.77,32.51,32.41,32.35,31.79,30.89,30.84,29.87,22.73$, 20.76, 20.67, 20.33, 20.24, 17.48, 17.26, 17.05, 16.81, 14.28. Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{56} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~W}: \mathrm{C}$, 60.32; H, 7.46; N, 3.79. Found C, 60.68; H, 7.80; N, 3.40.
$\mathbf{W}(\mathbf{N}-\boldsymbol{t}-\mathrm{Bu})\left(\mathbf{C}_{\mathbf{3}} \mathbf{H}_{\mathbf{6}}\right)(\mathbf{p y r})(\mathbf{O D F T})\left(\mathbf{1 2}_{\mathbf{w}}\right) . \mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-\boldsymbol{t}-\mathrm{Bu})(\mathrm{pyr})_{2}(\mathrm{bipy})(270 \mathrm{mg}, 0.440$ mmol), ZnCl_{2} (dioxane) $(98.7 \mathrm{mg}, 0.440 \mathrm{mmol}$), and DFTOH ($169 \mathrm{mg}, 0.396 \mathrm{mmol}$) were dissolved in toluene (20 mL) in a 100 mL Schlenk bomb. The mixture was sonicated for 15 h , filtered through a pad of Celite on a glass frit and filtrate was dried in vacuo. The compound was extracted with pentane (20 mL), filtered through a pad of Celite on a glass frit, and solven was removed from the filtrate in vacuo to a volume of about 2 mL . The mixture was transferred to a Schlenk bomb. The solution was degassed via three freeze-pump-thaw cycles, and it was exposed to 1 atm of ethylene for 30 min . An off-white solid precipitated out and was filtered off; yield $98.1 \mathrm{mg}(31 \%):{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.36$ (m, 2H, pyr), 7.08 (d, 2H, Ar), $6.79(\mathrm{t}$, $1 \mathrm{H}, \mathrm{Ar}), 6.47(\mathrm{~m}, 2 \mathrm{H}, \mathrm{pyr}), 4.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{WCH}_{\alpha}\right), 3.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{WCH}_{\alpha}\right), 0.66(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}),-1.55$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{WCH}_{\beta}\right),-1.84\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{WCH}_{\beta}\right) ;{ }^{19} \mathrm{~F}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta-137.61(\mathrm{~m}, 4 \mathrm{~F}),-156.06$ (t, 2F), -161.57 (m, 4F); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 159.17,145.72,143.76,142.00,139.99$, 138.74, 136.76, 133.16, 132.52, 119.68, 118.65, 113.98, 110.32, 96.12, 65.96, 29.00, -6.47. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{~F}_{10} \mathrm{~N}_{2} \mathrm{OW}$: C, 44.18; H, 2.81; N, 3.55. Found C, 44.29; H, 2.87; N, 3.42.
$\left.\mathbf{W}(\mathbf{N}-\boldsymbol{t}-\mathrm{Bu})\left(\mathbf{C}_{\mathbf{3}} \mathbf{H}_{\mathbf{6}}\right)(\mathbf{O D F T})_{\mathbf{2}} \mathbf{(1 3}_{\mathbf{W}}\right) . \mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{pyr})_{2}(\mathrm{bipy})(160 \mathrm{mg}, 0.260$ mmol), ZnCl_{2} (dioxane) $(58.5 \mathrm{mg}, 0.260 \mathrm{mmol}$), and DFTOH ($211 \mathrm{mg}, 0.495 \mathrm{mmol}$) were dissolved in toluene (10 mL) in a 100 mL Schlenk bomb. The mixture was sonicated for 19 h , filtered through a pad of Celite on a glass frit and solvent was removed from the filtrate in vacuo. The compound was extracted with pentane $(20 \mathrm{~mL})$, the mixture was filtered through a pad of

Celite on a glass frit, and the solvent was removed from the filtrate until the volume was about 2 mL . The mixture was transferred to a Schlenk bomb. The solution was degassed via three freeze-pump-thaw cycles, and it was exposed to 1 atm of ethylene for 30 min . Off-white solids precipitated out and were filtered off; yield $85.5 \mathrm{mg}(29 \%)$: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 6.98(\mathrm{~d}$, $4 \mathrm{H}, \mathrm{Ar}), 6.74(\mathrm{t}, 2 \mathrm{H}, \mathrm{Ar}), 2.72\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{WCH}_{\alpha}\right), 1.87\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{WCH}_{\alpha}\right), 0.53(\mathrm{~s}, 10 \mathrm{H}, t$-Bu and $\left.\mathrm{WCH}_{\beta}\right),-0.20\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{WCH}_{\beta}\right) ;{ }^{19} \mathrm{~F}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta-138.72(\mathrm{~m}, 4 \mathrm{~F}),-154.76(\mathrm{~m}, 2 \mathrm{~F})$, $-162.22(\mathrm{~m}, 4 \mathrm{~F}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 161.04,145.71,143.74,142.11,140.10,139.13$, 137.13, 133.88, 121.27, 118.59, 113.65, 70.48, 68.85, 28.50, 5.99. Anal. Calcd for $\mathrm{C}_{43} \mathrm{H}_{21} \mathrm{~F}_{20} \mathrm{NO}_{2} \mathrm{~W}: \mathrm{C}, 45.01 ; \mathrm{H}, 1.84 ; \mathrm{N}, 1.22$. Found C, $45.13 ; \mathrm{H}, 1.92 ; \mathrm{N}, 1.10$.
$\mathbf{W}(\mathbf{N}-\boldsymbol{t}-\mathrm{Bu})(\mathbf{C H}-\boldsymbol{t}-\mathbf{B u})(\mathbf{p y r})(\mathbf{O D F T})(\mathbf{p y})\left(\mathbf{1 4 w}_{\mathbf{w}}\right) . \mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{Cl})_{2}(\mathrm{py})_{2}(158.8 \mathrm{~g}$, 0.287 mmol) was suspended in toluene (20 ml). Lipyr ($0.043 \mathrm{~g}, 0.587 \mathrm{mmol}$) was added in one portion and the mixture was stirred at room temperature for 2 h , during which time salts precipitated out. The precipitate was filtered off on a pad of Celite on a glass frit and the pad was washed with toluene. DFTOH ($0.104 \mathrm{~g}, 0.244 \mathrm{mmol}$) was added to the solution and the mixture was allowed to stir at room temperature overnight. All solvents were removed from the filtrate in vacuo. Pentane was added and removed in vacuo a couple of times to remove excess toluene. The resulting precipitate was collected by filtration in pentane and dried in vacuo to yield a gray powder; yield $159 \mathrm{mg}(73 \%)$: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 10.79(\mathrm{~s}, 1 \mathrm{H}$, anti$\left.\mathrm{W}=\mathrm{CH},{ }^{1} J_{\mathrm{CH}}=178.3 \mathrm{~Hz},{ }^{2} J_{\mathrm{WH}}=9.6 \mathrm{~Hz}\right), 8.47(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}), 6.81(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ar}), 6.89(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ar}), 6.43$ (m, 4H, pyr), $6.32(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 1.08(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Me}), 1.06(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Me}) ;{ }^{19} \mathrm{~F}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) δ $-137.81,-138.83,-157.77,-161.48,-162.92 ;{ }^{13} \mathrm{C}$ NMR (100.61 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 281.31$ $\left(\mathrm{WCHCMe}_{3},{ }^{1} J_{\mathrm{CW}}=178 \mathrm{~Hz}\right), 160.02,152.02,146.07,143.29,141.54,139.04,138.42,133.29$, 131.29, 124.67, 119.72, 118.18, 114.30, 108.81, 69.61, 43.92, 32.53, 31.43. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{31} \mathrm{~F}_{10} \mathrm{~N}_{3} \mathrm{OW}$ C, 48.29; H, 3.49; N, 4.69. Found C, 48.03; H, 3.66; N, 4.96.

General procedure for polymerization reactions. In a 20 mL vial in the glovebox was placed 50 equivalents of monomer with a stir bar and solvents $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right.$, dichloromethane, or CDCl_{3}). In a 4 vial, 1 equivalent of catalyst was dissolved in appropriate solvents, and catalyst solution was added dropwise to the monomer solution. The reaction progress was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy by taking aliquots in wet CDCl_{3} outside box.

General procedure for 1-octene homocoupling experiments. In a 0.5 dram vial in the glovebox was placed $5 \mu \mathrm{~mol}$ solid catalyst ($2 \mathrm{~mol} \%$) and $43 \mu \mathrm{~L} 1$-octene ($0.272 \mathrm{mmol}, 50$ equiv) was injected. The vial was capped with a septum, a needle added through the septum to allow
ethylene to excape, and the mixture was stirred at room temperature. The aliquots were taken after $1 \mathrm{~h}, 2 \mathrm{~h}, 8 \mathrm{~h}$, and 24 h and wet chloroform- d was added outside box. The conversion of 1octene to 7-tetradecene was measured with ${ }^{1} \mathrm{H}$ NMR spectroscopy.

Acknowledgments. We are grateful to the National Science Foundation (CHE-1111133) for financial support. The X-ray diffractometer was purchased with the help of funding from the National Science Foundation (NSF) under Grant Number CHE-0946721.

Financial Interests. The authors declare no competing financial interests.

Supporting Information Available. Experimental details for X-ray structural studies and proton NMR spectra for $\mathbf{1}_{\mathrm{M} 0}, \mathbf{2}_{\mathrm{W}}, \mathbf{2}_{\mathrm{M} 0}, \mathbf{4}_{\mathrm{M} 0}, \mathbf{5}_{\mathrm{W}}, \mathbf{6}_{\mathrm{W}}, \mathbf{7}_{\mathrm{W}}, \mathbf{8}_{\mathrm{w}}, \mathbf{9}_{\mathrm{w}}, \mathbf{1 0}_{\mathrm{W}}, \mathbf{1 1}_{\mathrm{W}}, \mathbf{1 2}_{\mathrm{W}}, \mathbf{1 3}_{\mathrm{W}}$, and $\mathbf{1 4}_{\mathrm{w}}$. Supporting Information is available free of charge via the Internet at http://pubs.acs.org.

References

${ }^{1}$ (a) Schrock, R. R. Chem. Rev. 2002, 102, 145-180. (b) Schrock, R. R. in Handbook of Metathesis, Grubbs, R. H., Ed., Wiley-VCH, Weinheim, 2003, p. 8-46. (c) Schrock, R. R. Chem. Rev. 2009, 109, 3211-3226. (d) Schrock, R. R.; Hoveyda, A. H. Angew. Chem. Int. Ed. 2003, 42, 4592-4633. (e) Schrock, R. R. Acc. Chem. Res. 2014, 47, 2457-2466. (f) Schrock, R. R. Dalton Trans. 2011, 40, 74847495.
${ }^{2}$ Jeong, H.; Axtell, J.; Török, B.; Schrock, R. R.; Müller, P. Organometallics 2012, 31, 6522-6525.
${ }^{3}$ Nielson, A. J. Polyhedron 1987, 6, 1657-1667.
${ }^{4}$ Schoettel, G.; Kress, J.; Osborn, J. A. J. Chem. Soc., Chem. Commun. 1989, 1062-1063.
${ }^{5}$ Jeong, H.; Kozera, D. J.; Schrock, R. R.; Smith, S. J.; Zhang, J.; Ren, N.; Hillmyer, M. A. Organometallics 2013, 32, 4843-4850.
${ }^{6}$ Autenrieth, B.; Schrock, R. R. Macromolecules 2015, 48, 2493-2503.
${ }^{7}$ Autenrieth, B.; Jeong, H.; Forrest, W. P.; Axtell, J. C.; Ota, A.; Lehr, T.; Buchmeiser, M. R.; Schrock, R. R. Macromolecules 2015, 48, 2480-2492.
${ }^{8}$ Johnson, L. K.; Virgil, S. C.; Grubbs, R. H.; Ziller, J. W . J. Am. Chem. Soc. 1990, 112, 5384-5385.
${ }^{9}$ Fox, H. H.; Lee, J. K.; Park, L. Y.; Schrock, R. R. Organometallics 1993, 12, 759-768.
${ }^{10}$ Kingsbury, J. S., Harrity, J. P. A.; Bonitatebus, P. J., Jr.; Hoveyda, A. H. J. Am. Chem. Soc. 1999, 121, 791-799.
${ }^{11}$ Oskam, J. H.; Schrock, R. R. J. Am. Chem. Soc. 1993, 115, 11831-11845.
${ }^{12}$ Schrock, R. R.; Jiang, A. J.; Marinescu, S. C.; Simpson, J. H.; Müller, P. Organometallics 2010, 29, 5241-5251.
${ }^{13}$ (a) Mountford, A. J.; Lancaster, S. J.; Coles, S. J.; Horton, P. N.; Hughes, D. L.; Hursthouse, M. B.; Light, M. E. Inorg. Chem. 2005, 44, 5921-5933. (b) Kui, S. C. F.; Zhu, N.; Chan, M. C. W. Angew Chem. Int. Ed. 2003, 42, 1628-1632.
${ }^{14}$ Bell, A. P.; Clegg, W.; Dyer, P. W.; Elsegood, M. R. J.; Gibson, V. C.; Marshall, E. L. J. Chem. Soc., Chem. Commun. 1994, 2547-2548.
${ }^{15}$ Bell, A. P.; Clegg, W.; Dyer, P. W.; Elsegood, M. R. J.; Gibson, V. C.; Marshall, E. L. J. Chem. Soc., Chem. Commun. 1994, 2247-2248.
${ }^{16}$ (a) Gerber, L. C. H.; Schrock, R. R.; Müller, P.; Takase, M. K. J. Am. Chem. Soc. 2011, 133, 1814218144. (b) Gerber, L. C. H.; Schrock, R. R.; Müller, P. Organometallics 2013, 32, 2373-2378. (c) Axtell, J. C.; Schrock, R. R.; Müller, P.; Hoveyda, A. H. Organometallics 2015, 34, 2110-2113.
${ }^{17}$ Forrest, W. P.; Axtell, J. C.; Schrock, R. R. Organometallics 2014, 33, 2313-2325.
${ }^{18}$ Yuan, J.; Schrock, R. R.; Gerber, L. C. H.; Müller, P.; Smith, S. Organometallics 2013, 32, 29832992.
${ }^{19}$ Peryshkov, D. V.; Schrock, R. R. Organometallics 2012, 31, 7278-7286.
${ }^{20}$ Wampler, K. M.; Hock, A. S.; Schrock, R. R. Organometallics 2007, 26, 6674-6680.
${ }^{21}$ (a) McConville, D. H.; Wolf, J. R.; Schrock, R. R. J. Am. Chem. Soc. 1993, 115, 4413-4414. (b)
O'Dell, R.; McConville, D. H.; Hofmeister, G. E.; Schrock, R. R. J. Am. Chem. Soc. 1994, 116, 34143423. (c) Totland, K. M.; Boyd, T. J.; Lavoie, G. G.; Davis, W. M.; Schrock, R. R. Macromolecules 1996, 29, 6114-6125.
${ }^{22}$ Jeong, H.; Ng, V. W. L.; Börner, J.; Schrock, R. R. Macromolecules 2015, 48, 2006-2012.
${ }^{23}$ Tsang, W. C. P.; Hultzsch, K. C.; Alexander, J. B.; Bonitatebus, P. J., Jr.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2003, 125, 2652-2666.
${ }^{24}$ Singh, R.; Czekelius, C.; Schrock, R. R.; Müller, P.; Hoveyda, A. H. Organometallics 2007, 26, 2528-2539.
${ }^{25}$ Addison, A. W.; Rao, T. N.; Reedijk, J.; van Rijn, J.; Verschoor, G. C. J. Chem. Soc., Dalton Trans. 1984, 1349-1356.
${ }^{26}$ Schrock, R. R.; DePue, R. T.; Feldman, J.; Yap, K. B.; Yang, D. C.; Davis, W. M.;
Park, L. Y.; DiMare, M.; Schofield, M.; Anhaus, J.; Walborsky, E.; Evitt, E.; Krüger, C.; Betz, P. Organometallics 1990, 9, 2262-2275.
${ }^{27}$ (a) Rothwell, I. P. Acc. Chem. Res. 1988, 21, 153-159. (b) Pamplin, C. B.; Legzdins, P. Acc. Chem. Res. 2003, 36, 223-233. (c) Mindiola, D. J. Acc. Chem. Res. 2006, 39, 813-821.
${ }^{28}$ Feldman J.; Schrock, R. R. Prog. Inorg. Chem. 1991, 39, 1-48.

[^0]
TOC Graphic for

Synthesis of Molybdenum and Tungsten Alkylidene Complexes that Contain a tert-Butylimido Ligand

by Hyangsoo Jeong, Richard R. Schrock,* Peter Müller

Supporting Information for

Synthesis of Molybdenum and Tungsten Alkylidene Complexes that Contain a tert-Butylimido Ligand

Hyangsoo Jeong, Richard R. Schrock,* Peter Müller
Department of Chemistry 6-331, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139 rrs@mit.edu

Table of Contents

1. Proton NMR spectra of metal complexes

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})\left(\mathrm{CH}-o-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)(\mathrm{Cl})_{2}(\mathrm{py})\left(\mathbf{1}_{\mathbf{W}}\right)$
Figure S2. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{Mo}(\mathrm{N}-t-\mathrm{Bu})\left(\mathrm{CH}-o-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)\left(\mathrm{OC}_{6} \mathrm{~F}_{5}\right)_{2}\left(t-\mathrm{BuNH}_{2}\right)\left(\mathbf{1}_{\mathbf{M o}_{\mathbf{0}}}\right)$
Figure $\mathrm{S} 3 .{ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})_{2}\left(\mathrm{CH}_{2}-\mathrm{o}-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{2}\left(\mathbf{2}_{\mathbf{w}}\right)$
Figure S4. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{Mo}(\mathrm{N}-t-\mathrm{Bu})_{2}\left(\mathrm{CH}_{2}-\mathrm{o}-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{2}\left(\mathbf{2}_{\mathbf{M o}}\right)$
Figure $55 .{ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{Mo}(\mathrm{N}-t-\mathrm{Bu})\left(\mathrm{CH}-o-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)\left[\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right]_{2}\left(t-\mathrm{BuNH}_{2}\right)\left(\mathbf{3}_{\mathrm{Mo}}\right)$
Figure S6. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{Mo}(\mathrm{NAr})_{2}\left(\mathrm{CH}_{2}-\mathrm{O}-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{2}$
Figure $\mathrm{S} 7 .{ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})\left(\mathrm{CH}-o-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)(\mathrm{pyr})(\mathrm{OHMT})\left(\mathbf{5}_{\mathrm{w}}\right)$
Figure $\mathrm{S} 8 .{ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{OHMT})(\mathrm{Cl})(\mathrm{py})\left(\mathbf{6}_{\mathbf{w}}\right)$
Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{OHMT})_{2}\left(\mathbf{7 w}_{\mathbf{w}}\right)$
Figure $\mathrm{S} 10 .{ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{ODFT})_{2}\left(\mathbf{8}_{\mathbf{w}}\right)$
Figure $\mathrm{S} 11 .{ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})\left(\right.$ Biphen $\left._{\mathrm{CF}}\right)(\mathrm{py})\left(\mathbf{9}_{\mathbf{w}}\right)$
Figure $\mathrm{S} 12 .{ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})\left(\mathrm{CH}_{2}-t-\mathrm{Bu}\right)\left(\mathrm{Biphen}_{\mathrm{CF} 3}-\mathrm{H}\right)\left(\mathbf{1 0}_{\mathbf{W}}\right)$
Figure $\mathrm{S} 13 .{ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})\left(\mathrm{Biphen}_{\mathrm{Me}}\right)(\mathrm{py})\left(\mathbf{1 1}_{\mathbf{W}}\right)$
Figure S14. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})\left(\mathrm{C}_{3} \mathrm{H}_{6}\right)(\mathrm{pyr})(\mathrm{ODFT})\left(\mathbf{1 2}_{\mathbf{w}}\right)$
Figure S15. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})\left(\mathrm{C}_{3} \mathrm{H}_{6}\right)(\mathrm{ODFT})_{2}\left(\mathbf{1 3}_{\mathbf{w}}\right)$
Figure S16. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{pyr})(\mathrm{ODFT})(\mathrm{py})\left(\mathbf{1 4}_{\mathbf{w}}\right)$
Figure $\mathrm{S} 17 .{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ gCOSY spectrum of $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})\left(\mathrm{CH}_{2}-t-\mathrm{Bu}\right)\left(\right.$ Biphen $\left._{\mathrm{CF} 3}-\mathrm{H}\right)\left(\mathbf{1 0}_{\mathbf{w}}\right)$
Figure S18. ${ }^{1} \mathrm{H}$ NMR spectrum of a mixture of $\mathbf{1 1}_{\mathbf{w}}{ }^{\prime}$ and $\mathbf{1 1}_{\mathbf{w}}{ }^{\prime \prime}$

2. Proton NMR spectra of metathesis products

Figure S19. ${ }^{1} \mathrm{H}$ NMR spectrum of 1-octene homocoupling by (a) $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-$ $\mathrm{Bu})(\mathrm{pyr})(\mathrm{OHMT})$ and (b) $\mathbf{5}_{\mathrm{w}}$.

Figure S20. ${ }^{1} \mathrm{H}$ NMR spectrum of poly(DCMNBD) generated by $\mathbf{8}_{\mathbf{w}}$

3. X-ray crystal structure determination details

Table S1. Crystal data and structure refinement for $\mathbf{3}_{\mathbf{M} \mathbf{o}}$
Table S2. Bond lengths [\AA] and angles [${ }^{\circ}$] for $\mathbf{3}_{\mathbf{M o}}$
Table S3. Crystal data and structure refinement for $\mathbf{1 0}_{\mathbf{w}}$
Table S4. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for $\mathbf{1 0}_{\mathbf{W}}$

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{W}\left(\mathrm{N}-\boldsymbol{t}\right.$-Bu) $\left(\mathrm{CH}-o-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)(\mathrm{Cl})_{2}(\mathrm{py})\left(\mathbf{1}_{\mathrm{W}}\right)\left(\mathrm{in} \mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}\right)$.

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{Mo}(\mathrm{N}-\boldsymbol{t}-\mathrm{Bu})\left(\mathrm{CH}-\boldsymbol{o}-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)\left(\mathrm{OC}_{6} \mathrm{~F}_{5}\right)_{2}\left(\boldsymbol{t}-\mathrm{BuNH}_{2}\right)\left(\mathbf{1}_{\mathrm{Mo}}\right)\left(\mathrm{in} \mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}\right)$.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{W}(\mathrm{N}-\boldsymbol{t} \text { - } \mathrm{Bu})_{2}\left(\mathrm{CH}_{2}-\sigma-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{2}\left(\mathbf{2}_{\mathrm{w}}\right)\left(\right.$ in $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}\right)$.

Figure S4. ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $\mathrm{Mo}(\mathbf{N}-\boldsymbol{t}-\mathrm{Bu})_{\mathbf{2}}\left(\mathrm{CH}_{\mathbf{2}}-\boldsymbol{o}-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{\mathbf{2}}\left(\mathbf{2}_{\mathbf{M o}}\right)\left(\right.$ in $\left.\mathrm{C}_{6} \mathrm{D}_{6}, \mathbf{5 0 0} \mathbf{~ M H z}\right)$.
 Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{Mo}(\mathbf{N}-\boldsymbol{t}-\mathrm{Bu})\left(\mathrm{CH}-\boldsymbol{o}-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)\left[\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right]_{2}\left(t-\mathrm{BuNH}_{2}\right)\left(\mathbf{3}_{\mathrm{Mo}}\right)\left(\right.$ in $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}\right)$.

Figure S6. ${ }^{\mathbf{1}} \mathbf{H}$ NMR spectrum of $\mathrm{Mo}(\mathrm{NAr})_{\mathbf{2}}\left(\mathrm{CH}_{\mathbf{2}}-\boldsymbol{o}-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{\mathbf{2}}\left(\mathbf{4}_{\mathrm{Mo}}\right)\left(\right.$ in $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}\right)$.

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{W}(\mathrm{N}-\boldsymbol{t}$ - Bu$)\left(\mathrm{CH}-\boldsymbol{o}-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)(\mathrm{pyr})(\mathrm{OHMT})\left(\mathbf{5}_{\mathrm{w}}\right)\left(\right.$ in $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}\right)$.

Figure S8. ${ }^{1} \mathbf{H}$ NMR spectrum of $\mathbf{W}(\mathbf{N}-t-\mathrm{Bu})(\mathbf{C H}-\mathrm{t}-\mathrm{Bu})(\mathbf{O H M T})(\mathbf{C l})(\mathbf{p y})\left(\mathbf{6}_{\mathrm{w}}\right)\left(\right.$ in $\left.\mathrm{C}_{6} \mathrm{D}_{\mathbf{6}}, \mathbf{5 0 0} \mathbf{M H z}\right)$.

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{W}(\mathbf{N}-\boldsymbol{t}-\mathrm{Bu})(\mathrm{CH}-\mathrm{t}-\mathrm{Bu})(\mathrm{OHMT})_{2}\left(\mathbf{7}_{\mathrm{w}}\right)\left(\right.$ in $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}\right)$.

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{W}(\mathrm{N}-\boldsymbol{t}$ - Bu$)(\mathrm{CH}-\mathrm{t}-\mathrm{Bu})(\mathrm{ODFT})_{2}\left(\mathbf{8}_{\mathrm{W}}\right)\left(\right.$ in $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}\right)$.

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathbf{C H}-t-\mathrm{Bu})\left(\operatorname{Biphen}_{\mathrm{CF} 3}\right)(\mathrm{py})\left(\mathbf{9}_{\mathrm{w}}\right)\left(\right.$ in $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}\right)$.

Figure S12. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{W}(\mathrm{N}-\boldsymbol{t}$ - Bu$)\left(\mathrm{CH}_{2}-t-\mathrm{Bu}\right)\left(\right.$ Biphen $\left._{\mathrm{CF} 3}-\mathrm{H}\right)\left(\mathbf{1 0}_{\mathrm{W}}\right)\left(\right.$ in $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}\right)$.

Figure $\mathrm{S} 14 .{ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{W}(\mathrm{N}-\boldsymbol{t}-\mathrm{Bu})\left(\mathrm{C}_{3} \mathrm{H}_{6}\right)(\mathrm{pyr})(\mathrm{ODFT})\left(12_{\mathrm{w}}\right)\left(\mathrm{in}_{\mathbf{C}} \mathrm{D}_{6}, 500 \mathrm{MHz}\right)$.

| 1 | | | | | | | | | | | | | | | | | |
| :--- |
| 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 | -0.5 | -1.0 |

Figure S15. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{W}(\mathrm{N}-\boldsymbol{t}$ - Bu$)\left(\mathrm{C}_{3} \mathrm{H}_{6}\right)(\mathrm{ODFT})_{2}\left(13_{\mathrm{w}}\right)\left(\right.$ in $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}\right)$.

| 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 |
| :--- |

Figure S18. ${ }^{1} \mathrm{H}$ NMR spectrum of a mixture of $11_{w^{\prime}}$ (alkylidene 7.6 ppm) and $11_{w^{\prime \prime}}$ (alkyl 3.7 ppm) from the reaction of $\mathrm{W}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{pyr})_{2}($ bipy $)$ with $\mathbf{Z n C l}_{2}$ (dioxane) and $[B i p h e n M e] \mathbf{H}_{2}\left(\right.$ in $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}\right)$.

Figure S19. ${ }^{1} \mathrm{H}$ NMR spectrum of $1-o c t e n e$ homocoupling products by (a) $\mathrm{W}(\mathbf{N}-\mathrm{t}-\mathrm{Bu})(\mathrm{CH}-\mathrm{t}-\mathrm{Bu})(\mathrm{pyr})(\mathrm{OHMT})$ and (b) 5_{w} (after $24 \mathrm{~h}, \mathrm{CDCl}_{3}, 500 \mathrm{MHz}$).

Figure S20. ${ }^{1} \mathrm{H}$ NMR spectrum of poly(DCMNBD) generated by $8_{\mathrm{w}}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$.

X-ray crystal structure determination details.

Low-temperature diffraction data (ϕ-and ω-scans) were collected on a Bruker-AXS X8 Kappa Duo diffractometer coupled to a Smart APEX2 CCD detector with Mo K α radiation ($\lambda=$ $0.71073 \AA$) from an $\mathrm{I} \mu \mathrm{S}$ micro-source for the structure of compound $\mathbf{3}_{\mathrm{Mo}}$ and on a Siemens Platform three-circle diffractometer coupled to a Bruker-AXS Smart Apex CCD detector with
graphite-monochromated Mo $\mathrm{K} \alpha$ radiation $(\lambda=0.71073 \AA)$ for the structure of compound $\mathbf{1 0}_{\mathbf{w}}$. Absorption and other corrections were applied using $\operatorname{SADABS}{ }^{1}$ for the structure of $\mathbf{3}_{\mathbf{M o}}$ and TWINABS ${ }^{2}$ for the structure of $\mathbf{1 0}_{\mathbf{w}}$. All structures were solved by direct methods using SHELXT 3 and refined against F^{2} on all data by full-matrix least squares with SHELXL-2012 $\left(\mathbf{3}_{\mathbf{M o}}\right)$ or SHELXL-2014 $\left(\mathbf{1 0}_{\mathbf{W}}\right)^{4}$ using established refinement approaches ${ }^{5}$. Unless noted otherwise below, all hydrogen atoms were included into the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the $U_{e q}$ value of the atoms they are linked to (1.5 times for methyl groups). Details about crystal properties, diffraction data and crystal structures can be found in the tables below.

Compound $\mathbf{3}_{\mathbf{M o}}$ crystallizes in the orthorhombic centrosymmetric space group Pbca with one molecule of $\mathbf{3}_{\mathbf{M o}}$ per asymmetric unit. One of the two $\mathrm{O}-\mathrm{C}\left(\mathrm{CF}_{3}\right)_{3}$ ligands was refined as disordered over three positions corresponding to a rotation about the $\mathrm{O}-\mathrm{C}$ bond. The fractional occupancies of the three disorder components were refined freely while restraining the sum of the three occupancies to unity within 0.0001 . The fractional occupancies refined to $0.4950(16)$, 0.4397 (17), and $0.0652(11)$, respectively. The disorder was refined with the help of similarity restraints on 1-2 and 1-3 distances and displacement parameters as well as advanced rigid bond restraints ${ }^{6}$ for anisotropic displacement parameters. Coordinates for the hydrogen atoms on nitrogen N1 and on the alkylidene carbon C1 were taken from the difference Fourier synthesis and those hydrogen atoms were subsequently refined semi-freely with the help of distance restraints.

Compound $\mathbf{1 0}_{\mathbf{W}}$ crystallizes in the monoclinic centrosymmetric space group $P 2_{1} / n$ with one molecule of $\mathbf{1 0}_{\mathbf{w}}$ per asymmetric unit. The crystal was non-merohedrally twinned; two independent orientation matrices for the unit cell were found using the program CELL_NOW ${ }^{7}$, and data reduction taking into account the twinning was performed with SAINT ${ }^{8}$. The program TWINABS ${ }^{i}$ was used to set up the HKLF4 format file for structure refinement. Coordinates for hydrogen atoms bound to carbon directly attached to the central tungsten atom (carbon atoms C 1 and C18) were taken from the difference Fourier synthesis and those hydrogen atoms were subsequently refined semi-freely with the help of distance restraints.

[^1]Table S1. Crystal data and structure refinement for $\mathbf{3}_{\mathbf{M 0}}$.

Identification code	x13120
Empirical formula	$\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~F}_{18} \mathrm{MoN}_{2} \mathrm{O}_{3}$
Formula weight	830.42
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	Pbca
Unit cell dimensions	$a=16.5372(8) \AA \quad \alpha=90^{\circ}$
	$b=17.6547(9) \AA \quad \beta=90^{\circ}$
	$c=21.0898(11) \AA \quad \gamma=90^{\circ}$
Volume	6157.4(5) \AA^{3}
Z	8
Density (calculated)	$1.792 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.566 \mathrm{~mm}^{-1}$
$F(000)$	3312
Crystal size	$0.500 \times 0.400 \times 0.300 \mathrm{~mm}^{3}$
Theta range for data collection	1.931 to 31.301°
Index ranges	$-24<=h<=24,-25<=k<=25,-30<=l<=30$
Reflections collected	133122
Independent reflections	10068 [$\left.R_{\text {int }}=0.0394\right]$
Completeness to theta $=25.242^{\circ}$	100.0 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7463 and 0.6800
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	10068 / 3442 / 644
Goodness-of-fit on F^{2}	1.038
Final R indices [$1>2 \sigma(I)$]	$R 1=0.0249, w R 2=0.0593$
R indices (all data)	$R 1=0.0314, w R 2=0.0627$
Largest diff. peak and hole	0.483 and -0.425 e. $\AA^{\AA}{ }^{-3}$

Table S2. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for $\mathbf{3}_{\mathbf{M o}}$.

$\mathrm{Mo}(1)-\mathrm{N}(2)$	1.7039(11)	$\mathrm{C}(18)-\mathrm{F}(16)$	1.390(7)
$\mathrm{Mo}(1)-\mathrm{C}(1)$	1.9611(12)	$\mathrm{C}(16 \mathrm{~A})-\mathrm{F}(11 \mathrm{~A})$	$1.315(4)$
$\mathrm{Mo}(1)-\mathrm{O}(2)$	2.0452(9)	$\mathrm{C}(16 \mathrm{~A})-\mathrm{F}(10 \mathrm{~A})$	1.333(3)
$\mathrm{Mo}(1)-\mathrm{O}(3)$	2.1421(9)	$\mathrm{C}(16 \mathrm{~A})-\mathrm{F}(12 \mathrm{~A})$	$1.336(7)$
$\mathrm{Mo}(1)-\mathrm{N}(1)$	2.2551(10)	$\mathrm{C}(17 \mathrm{~A})-\mathrm{F}(15 \mathrm{~A})$	$1.293(5)$
$\mathrm{Mo}(1)-\mathrm{O}(1)$	$2.3675(9)$	$\mathrm{C}(17 \mathrm{~A})-\mathrm{F}(13 \mathrm{~A})$	$1.335(4)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.4495(17)$	$\mathrm{C}(17 \mathrm{~A})-\mathrm{F}(14 \mathrm{~A})$	1.431(7)
$\mathrm{C}(1)-\mathrm{H}(1)$	0.960(13)	$\mathrm{C}(18 \mathrm{~A})-\mathrm{F}(17 \mathrm{~A})$	$1.298(7)$
$\mathrm{C}(2)-\mathrm{C}(7)$	$1.3980(17)$	$\mathrm{C}(18 \mathrm{~A})-\mathrm{F}(16 \mathrm{~A})$	$1.338(4)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.4030(17)$	C(18A)-F(18A)	1.340 (6)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.3884(18)	$\mathrm{C}(16 \mathrm{~B})-\mathrm{F}(12 \mathrm{~B})$	1.349(13)
$\mathrm{C}(3)-\mathrm{H}(3)$	0.9500	$\mathrm{C}(16 \mathrm{~B})-\mathrm{F}(10 \mathrm{~B})$	1.352(13)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.383(2)	$\mathrm{C}(16 \mathrm{~B})-\mathrm{F}(11 \mathrm{~B})$	1.355(13)
$\mathrm{C}(4)-\mathrm{H}(4)$	0.9500	$\mathrm{C}(17 \mathrm{~B})-\mathrm{F}(14 \mathrm{~B})$	$1.342(12)$
$\mathrm{C}(5)-\mathrm{C}(6)$	1.396(2)	$\mathrm{C}(17 \mathrm{~B})-\mathrm{F}(15 \mathrm{~B})$	$1.347(13)$
$\mathrm{C}(5)-\mathrm{H}(5)$	0.9500	$\mathrm{C}(17 \mathrm{~B})-\mathrm{F}(13 \mathrm{~B})$	1.354(13)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.3863(18)	$\mathrm{C}(18 \mathrm{~B})-\mathrm{F}(18 \mathrm{~B})$	$1.348(12)$
$\mathrm{C}(6)-\mathrm{H}(6)$	0.9500	$\mathrm{C}(18 \mathrm{~B})-\mathrm{F}(17 \mathrm{~B})$	1.350(12)
$\mathrm{C}(7)-\mathrm{O}(1)$	$1.3886(15)$	$\mathrm{C}(18 \mathrm{~B})-\mathrm{F}(16 \mathrm{~B})$	$1.353(12)$
$\mathrm{O}(1)-\mathrm{C}(8)$	$1.4466(15)$	$\mathrm{N}(1)-\mathrm{C}(21)$	$1.5100(16)$
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9800	$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A})$	0.896(13)
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	0.9800	$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~B})$	0.899(13)
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	0.9800	$\mathrm{C}(21)-\mathrm{C}(23)$	$1.5158(19)$
$\mathrm{O}(2)-\mathrm{C}(11)$	$1.3538(14)$	$\mathrm{C}(21)-\mathrm{C}(24)$	$1.5188(19)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.5567(18)$	$\mathrm{C}(21)-\mathrm{C}(22)$	$1.5323(19)$
$\mathrm{C}(11)-\mathrm{C}(14)$	$1.5644(18)$	$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	0.9800
$\mathrm{C}(11)-\mathrm{C}(13)$	$1.5647(18)$	$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	0.9800
$\mathrm{C}(12)-\mathrm{F}(3)$	$1.3314(15)$	$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	0.9800
$\mathrm{C}(12)-\mathrm{F}(1)$	$1.3337(15)$	$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	0.9800
$\mathrm{C}(12)-\mathrm{F}(2)$	1.3466 (14)	$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	0.9800
$\mathrm{C}(13)-\mathrm{F}(5)$	$1.3294(15)$	$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	0.9800
$\mathrm{C}(13)-\mathrm{F}(4)$	$1.3321(16)$	$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	0.9800
$\mathrm{C}(13)-\mathrm{F}(6)$	$1.3476(14)$	$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	0.9800
$\mathrm{C}(14)-\mathrm{F}(7)$	$1.3282(17)$	$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	0.9800
$\mathrm{C}(14)-\mathrm{F}(9)$	$1.3374(17)$	$\mathrm{N}(2)-\mathrm{C}(25)$	$1.4586(16)$
$\mathrm{C}(14)-\mathrm{F}(8)$	$1.3465(15)$	$\mathrm{C}(25)-\mathrm{C}(27)$	$1.529(2)$
$\mathrm{O}(3)-\mathrm{C}(15)$	$1.3480(15)$	$\mathrm{C}(25)$-C(26)	$1.5327(19)$
$\mathrm{C}(15)-\mathrm{C}(18)$	1.473(3)	$\mathrm{C}(25)-\mathrm{C}(28)$	1.5361(19)
$\mathrm{C}(15)-\mathrm{C}(17)$	$1.508(3)$	$\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~A})$	0.9800
$\mathrm{C}(15)-\mathrm{C}(17 \mathrm{~A})$	1.516 (4)	$\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~B})$	0.9800
$\mathrm{C}(15)-\mathrm{C}(17 \mathrm{~B})$	1.523(11)	$\mathrm{C}(26)-\mathrm{H}(26 \mathrm{C})$	0.9800
$\mathrm{C}(15)-\mathrm{C}(18 \mathrm{~A})$	$1.525(3)$	$\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~A})$	0.9800
$\mathrm{C}(15)-\mathrm{C}(16 \mathrm{~B})$	1.593(11)	$\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~B})$	0.9800
$\mathrm{C}(15)-\mathrm{C}(18 \mathrm{~B})$	1.594(11)	$\mathrm{C}(27)-\mathrm{H}(27 \mathrm{C})$	0.9800
$\mathrm{C}(15)-\mathrm{C}(16)$	1.684(3)	C(28)-H(28A)	0.9800
$\mathrm{C}(15)-\mathrm{C}(16 \mathrm{~A})$	1.689(4)	$\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~B})$	0.9800
$\mathrm{C}(16)-\mathrm{F}(12)$	1.321(4)	$\mathrm{C}(28)-\mathrm{H}(28 \mathrm{C})$	0.9800
$\mathrm{C}(16)-\mathrm{F}(10)$	1.326 (7)		
$\mathrm{C}(16)-\mathrm{F}(11)$	$1.338(3)$	$\mathrm{N}(2)-\mathrm{Mo}(1)-\mathrm{C}(1)$	94.51(5)
$\mathrm{C}(17)-\mathrm{F}(15)$	1.322(3)	$\mathrm{N}(2)-\mathrm{Mo}(1)-\mathrm{O}(2)$	101.95(4)
$\mathrm{C}(17)-\mathrm{F}(13)$	$1.343(6)$	$\mathrm{C}(1)-\mathrm{Mo}(1)-\mathrm{O}(2)$	99.74(4)
$\mathrm{C}(17)-\mathrm{F}(14)$	1.350(6)	$\mathrm{N}(2)-\mathrm{Mo}(1)-\mathrm{O}(3)$	112.51(4)
$\mathrm{C}(18)-\mathrm{F}(17)$	1.291(5)	$\mathrm{C}(1)-\mathrm{Mo}(1)-\mathrm{O}(3)$	151.60(4)
$\mathrm{C}(18)-\mathrm{F}(18)$	1.330 (4)	$\mathrm{O}(2)-\mathrm{Mo}(1)-\mathrm{O}(3)$	83.64(3)

$\mathrm{N}(2)-\mathrm{Mo}(1)-\mathrm{N}(1)$	95.19(5)
$\mathrm{C}(1)-\mathrm{Mo}(1)-\mathrm{N}(1)$	95.14(4)
$\mathrm{O}(2)-\mathrm{Mo}(1)-\mathrm{N}(1)$	156.23(4)
$\mathrm{O}(3)-\mathrm{Mo}(1)-\mathrm{N}(1)$	74.58(4)
$\mathrm{N}(2)-\mathrm{Mo}(1)-\mathrm{O}(1)$	167.70(4)
$\mathrm{C}(1)-\mathrm{Mo}(1)-\mathrm{O}(1)$	73.93(4)
$\mathrm{O}(2)-\mathrm{Mo}(1)-\mathrm{O}(1)$	84.48(3)
$\mathrm{O}(3)-\mathrm{Mo}(1)-\mathrm{O}(1)$	78.39(3)
$\mathrm{N}(1)-\mathrm{Mo}(1)-\mathrm{O}(1)$	81.95(4)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Mo}(1)$	122.00(9)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1)$	112.6(10)
$\mathrm{Mo}(1)-\mathrm{C}(1)-\mathrm{H}(1)$	125.4(10)
$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(3)$	117.82(11)
$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(1)$	118.17(11)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	123.98(11)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	120.37(13)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	119.8
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	119.8
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	120.25(13)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	119.9
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	119.9
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	120.98(13)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	119.5
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	119.5
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	117.96(13)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6)$	121.0
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	121.0
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{O}(1)$	124.45(12)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(2)$	122.61(12)
$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(2)$	112.92(10)
$\mathrm{C}(7)-\mathrm{O}(1)-\mathrm{C}(8)$	116.92(10)
$\mathrm{C}(7)-\mathrm{O}(1)-\mathrm{Mo}(1)$	112.98(7)
$\mathrm{C}(8)-\mathrm{O}(1)-\mathrm{Mo}(1)$	127.56(8)
$\mathrm{O}(1)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	109.5
$\mathrm{O}(1)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.5
$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.5
$\mathrm{O}(1)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	109.5
$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	109.5
$\mathrm{H}(8 \mathrm{~B})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	109.5
$\mathrm{C}(11)-\mathrm{O}(2)-\mathrm{Mo}(1)$	144.01(8)
$\mathrm{O}(2)-\mathrm{C}(11)-\mathrm{C}(12)$	110.15(10)
$\mathrm{O}(2)-\mathrm{C}(11)-\mathrm{C}(14)$	107.39(10)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(14)$	108.20(10)
$\mathrm{O}(2)-\mathrm{C}(11)-\mathrm{C}(13)$	114.60(10)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(13)$	108.01(10)
$\mathrm{C}(14)-\mathrm{C}(11)-\mathrm{C}(13)$	108.31(10)
$\mathrm{F}(3)-\mathrm{C}(12)-\mathrm{F}(1)$	106.98(10)
$F(3)-\mathrm{C}(12)-\mathrm{F}(2)$	107.30(10)
$\mathrm{F}(1)-\mathrm{C}(12)-\mathrm{F}(2)$	106.67(10)
$\mathrm{F}(3)-\mathrm{C}(12)-\mathrm{C}(11)$	111.28(11)
$\mathrm{F}(1)-\mathrm{C}(12)-\mathrm{C}(11)$	111.07(10)
$\mathrm{F}(2)-\mathrm{C}(12)-\mathrm{C}(11)$	113.22(10)
$F(5)-C(13)-\mathrm{F}(4)$	107.78(11)
$F(5)-C(13)-F(6)$	107.14(10)
$\mathrm{F}(4)-\mathrm{C}(13)-\mathrm{F}(6)$	106.88(10)
$\mathrm{F}(5)-\mathrm{C}(13)-\mathrm{C}(11)$	111.25(10)

$\mathrm{F}(4)-\mathrm{C}(13)-\mathrm{C}(11)$	111.30(10)
$\mathrm{F}(6)-\mathrm{C}(13)-\mathrm{C}(11)$	112.24(10)
$F(7)-C(14)-\mathrm{F}(9)$	107.51(12)
$\mathrm{F}(7)-\mathrm{C}(14)-\mathrm{F}(8)$	106.91(12)
$\mathrm{F}(9)-\mathrm{C}(14)-\mathrm{F}(8)$	107.04(11)
$\mathrm{F}(7)-\mathrm{C}(14)-\mathrm{C}(11)$	111.34(11)
$\mathrm{F}(9)-\mathrm{C}(14)-\mathrm{C}(11)$	110.55(12)
$\mathrm{F}(8)-\mathrm{C}(14)-\mathrm{C}(11)$	113.20(11)
$\mathrm{C}(15)-\mathrm{O}(3)-\mathrm{Mo}(1)$	148.07(9)
$\mathrm{O}(3)-\mathrm{C}(15)-\mathrm{C}(18)$	112.52(15)
$\mathrm{O}(3)-\mathrm{C}(15)-\mathrm{C}(17)$	110.47(14)
$\mathrm{C}(18)-\mathrm{C}(15)-\mathrm{C}(17)$	116.8(2)
$\mathrm{O}(3)-\mathrm{C}(15)-\mathrm{C}(17 \mathrm{~A})$	114.97(17)
$\mathrm{O}(3)-\mathrm{C}(15)-\mathrm{C}(17 \mathrm{~B})$	113.8(5)
$\mathrm{O}(3)-\mathrm{C}(15)-\mathrm{C}(18 \mathrm{~A})$	109.80(16)
$\mathrm{C}(17 \mathrm{~A})-\mathrm{C}(15)-\mathrm{C}(18 \mathrm{~A})$	112.5(2)
$\mathrm{O}(3)-\mathrm{C}(15)-\mathrm{C}(16 \mathrm{~B})$	107.5(6)
$\mathrm{C}(17 \mathrm{~B})-\mathrm{C}(15)-\mathrm{C}(16 \mathrm{~B})$	111.9(8)
$\mathrm{O}(3)-\mathrm{C}(15)-\mathrm{C}(18 \mathrm{~B})$	111.0(5)
C(17B)-C(15)-C(18B)	109.9(8)
$\mathrm{C}(16 \mathrm{~B})-\mathrm{C}(15)-\mathrm{C}(18 \mathrm{~B})$	102.1(8)
$\mathrm{O}(3)-\mathrm{C}(15)-\mathrm{C}(16)$	105.37(14)
$\mathrm{C}(18)-\mathrm{C}(15)-\mathrm{C}(16)$	106.8(2)
$\mathrm{C}(17)-\mathrm{C}(15)-\mathrm{C}(16)$	103.74(17)
$\mathrm{O}(3)-\mathrm{C}(15)-\mathrm{C}(16 \mathrm{~A})$	110.42(14)
$\mathrm{C}(17 \mathrm{~A})-\mathrm{C}(15)-\mathrm{C}(16 \mathrm{~A})$	104.9(2)
$\mathrm{C}(18 \mathrm{~A})-\mathrm{C}(15)-\mathrm{C}(16 \mathrm{~A})$	103.51(19)
$\mathrm{F}(12)-\mathrm{C}(16)-\mathrm{F}(10)$	105.7(4)
$\mathrm{F}(12)-\mathrm{C}(16)-\mathrm{F}(11)$	108.3(2)
$\mathrm{F}(10)-\mathrm{C}(16)-\mathrm{F}(11)$	109.0(4)
$\mathrm{F}(12)-\mathrm{C}(16)-\mathrm{C}(15)$	112.5(2)
$\mathrm{F}(10)-\mathrm{C}(16)-\mathrm{C}(15)$	111.0(3)
$\mathrm{F}(11)-\mathrm{C}(16)-\mathrm{C}(15)$	110.1(2)
$F(15)-C(17)-\mathrm{F}(13)$	111.2(4)
$F(15)-C(17)-\mathrm{F}(14)$	105.5(4)
$\mathrm{F}(13)-\mathrm{C}(17)-\mathrm{F}(14)$	104.5(5)
$\mathrm{F}(15)-\mathrm{C}(17)-\mathrm{C}(15)$	115.2(2)
$\mathrm{F}(13)-\mathrm{C}(17)-\mathrm{C}(15)$	113.1(3)
$\mathrm{F}(14)-\mathrm{C}(17)-\mathrm{C}(15)$	106.4(4)
$\mathrm{F}(17)-\mathrm{C}(18)-\mathrm{F}(18)$	108.8(4)
$\mathrm{F}(17)-\mathrm{C}(18)-\mathrm{F}(16)$	110.1(4)
$\mathrm{F}(18)-\mathrm{C}(18)-\mathrm{F}(16)$	104.2(4)
$\mathrm{F}(17)-\mathrm{C}(18)-\mathrm{C}(15)$	108.7(3)
$\mathrm{F}(18)-\mathrm{C}(18)-\mathrm{C}(15)$	112.8(2)
$\mathrm{F}(16)-\mathrm{C}(18)-\mathrm{C}(15)$	112.1(4)
$\mathrm{F}(11 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})-\mathrm{F}(10 \mathrm{~A})$	107.2(3)
$\mathrm{F}(11 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})-\mathrm{F}(12 \mathrm{~A})$	105.3(4)
$\mathrm{F}(10 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})-\mathrm{F}(12 \mathrm{~A})$	109.0(5)
$\mathrm{F}(11 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})-\mathrm{C}(15)$	112.2(3)
F(10A)-C(16A)-C(15)	113.5(2)
$\mathrm{F}(12 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})-\mathrm{C}(15)$	109.2(3)
$\mathrm{F}(15 \mathrm{~A})-\mathrm{C}(17 \mathrm{~A})-\mathrm{F}(13 \mathrm{~A})$	107.7(4)
$\mathrm{F}(15 \mathrm{~A})-\mathrm{C}(17 \mathrm{~A})-\mathrm{F}(14 \mathrm{~A})$	107.8(4)
$\mathrm{F}(13 \mathrm{~A})-\mathrm{C}(17 \mathrm{~A})-\mathrm{F}(14 \mathrm{~A})$	111.4(5)
$\mathrm{F}(15 \mathrm{~A})-\mathrm{C}(17 \mathrm{~A})-\mathrm{C}(15)$	107.8(3)
F(13A)-C(17A)-C(15)	113.2(3)

$\mathrm{F}(14 \mathrm{~A})-\mathrm{C}(17 \mathrm{~A})-\mathrm{C}(15)$	108.8(4)	$\mathrm{H}(22 \mathrm{~A})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5
$\mathrm{F}(17 \mathrm{~A})-\mathrm{C}(18 \mathrm{~A})-\mathrm{F}(16 \mathrm{~A})$	104.1(5)	$\mathrm{H}(22 \mathrm{~B})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5
$\mathrm{F}(17 \mathrm{~A})-\mathrm{C}(18 \mathrm{~A})-\mathrm{F}(18 \mathrm{~A})$	106.5(5)	$\mathrm{C}(21)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	109.5
$\mathrm{F}(16 \mathrm{~A})-\mathrm{C}(18 \mathrm{~A})-\mathrm{F}(18 \mathrm{~A})$	107.3(4)	$\mathrm{C}(21)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	109.5
$\mathrm{F}(17 \mathrm{~A})-\mathrm{C}(18 \mathrm{~A})-\mathrm{C}(15)$	114.7(4)	$\mathrm{H}(23 \mathrm{~A})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	109.5
$\mathrm{F}(16 \mathrm{~A})-\mathrm{C}(18 \mathrm{~A})-\mathrm{C}(15)$	116.2(3)	$\mathrm{C}(21)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	109.5
$\mathrm{F}(18 \mathrm{~A})-\mathrm{C}(18 \mathrm{~A})-\mathrm{C}(15)$	107.4(4)	$\mathrm{H}(23 \mathrm{~A})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	109.5
$\mathrm{F}(12 \mathrm{~B})-\mathrm{C}(16 \mathrm{~B})-\mathrm{F}(10 \mathrm{~B})$	109.9(14)	$\mathrm{H}(23 \mathrm{~B})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	109.5
$F(12 B)-C(16 B)-F(11 B)$	104.7(14)	$\mathrm{C}(21)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	109.5
$\mathrm{F}(10 \mathrm{~B})-\mathrm{C}(16 \mathrm{~B})-\mathrm{F}(11 \mathrm{~B})$	112.0(15)	$\mathrm{C}(21)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	109.5
F(12B)-C(16B)-C(15)	112.8(11)	$\mathrm{H}(24 \mathrm{~A})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	109.5
$\mathrm{F}(10 \mathrm{~B})-\mathrm{C}(16 \mathrm{~B})-\mathrm{C}(15)$	106.5(11)	$\mathrm{C}(21)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	109.5
$\mathrm{F}(11 \mathrm{~B})-\mathrm{C}(16 \mathrm{~B})-\mathrm{C}(15)$	111.1(12)	$\mathrm{H}(24 \mathrm{~A})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	109.5
$\mathrm{F}(14 \mathrm{~B})-\mathrm{C}(17 \mathrm{~B})-\mathrm{F}(15 \mathrm{~B})$	108.4(13)	$\mathrm{H}(24 \mathrm{~B})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	109.5
$\mathrm{F}(14 \mathrm{~B})-\mathrm{C}(17 \mathrm{~B})-\mathrm{F}(13 \mathrm{~B})$	109.2(13)	$\mathrm{C}(25)-\mathrm{N}(2)-\mathrm{Mo}(1)$	177.20(10)
$\mathrm{F}(15 \mathrm{~B})-\mathrm{C}(17 \mathrm{~B})-\mathrm{F}(13 \mathrm{~B})$	119.3(14)	$\mathrm{N}(2)-\mathrm{C}(25)-\mathrm{C}(27)$	107.47(11)
$\mathrm{F}(14 \mathrm{~B})-\mathrm{C}(17 \mathrm{~B})-\mathrm{C}(15)$	109.6(11)	$\mathrm{N}(2)-\mathrm{C}(25)-\mathrm{C}(26)$	108.94(11)
$\mathrm{F}(15 \mathrm{~B})-\mathrm{C}(17 \mathrm{~B})-\mathrm{C}(15)$	104.3(10)	$\mathrm{C}(27)-\mathrm{C}(25)-\mathrm{C}(26)$	111.29(12)
$\mathrm{F}(13 \mathrm{~B})-\mathrm{C}(17 \mathrm{~B})-\mathrm{C}(15)$	105.7(11)	$\mathrm{N}(2)-\mathrm{C}(25)-\mathrm{C}(28)$	108.05(11)
$\mathrm{F}(18 \mathrm{~B})-\mathrm{C}(18 \mathrm{~B})-\mathrm{F}(17 \mathrm{~B})$	115.8(15)	$\mathrm{C}(27)-\mathrm{C}(25)-\mathrm{C}(28)$	110.80(13)
$\mathrm{F}(18 \mathrm{~B})-\mathrm{C}(18 \mathrm{~B})-\mathrm{F}(16 \mathrm{~B})$	108.0(13)	$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(28)$	110.17(11)
$\mathrm{F}(17 \mathrm{~B})-\mathrm{C}(18 \mathrm{~B})-\mathrm{F}(16 \mathrm{~B})$	104.9(13)	$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~A})$	109.5
$\mathrm{F}(18 \mathrm{~B})-\mathrm{C}(18 \mathrm{~B})-\mathrm{C}(15)$	111.6(12)	$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~B})$	109.5
F(17B)-C(18B)-C(15)	106.3(12)	$\mathrm{H}(26 \mathrm{~A})-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~B})$	109.5
F(16B)-C(18B)-C(15)	110.0(11)	$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{C})$	109.5
$\mathrm{C}(21)-\mathrm{N}(1)-\mathrm{Mo}(1)$	134.48(8)	$\mathrm{H}(26 \mathrm{~A})-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{C})$	109.5
$\mathrm{C}(21)-\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A})$	105.0(11)	$\mathrm{H}(26 \mathrm{~B})-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{C})$	109.5
$\mathrm{Mo}(1)-\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A})$	102.7(11)	$\mathrm{C}(25)-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~A})$	109.5
$\mathrm{C}(21)-\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~B})$	106.9(11)	$\mathrm{C}(25)-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~B})$	109.5
$\mathrm{Mo}(1)-\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~B})$	100.0(11)	$\mathrm{H}(27 \mathrm{~A})-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~B})$	109.5
$\mathrm{H}(1 \mathrm{~A})-\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~B})$	104.5(15)	$\mathrm{C}(25)-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{C})$	109.5
$\mathrm{N}(1)-\mathrm{C}(21)-\mathrm{C}(23)$	109.05(10)	$\mathrm{H}(27 \mathrm{~A})-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{C})$	109.5
$\mathrm{N}(1)-\mathrm{C}(21)-\mathrm{C}(24)$	109.20(11)	$\mathrm{H}(27 \mathrm{~B})-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{C})$	109.5
$\mathrm{C}(23)-\mathrm{C}(21)-\mathrm{C}(24)$	110.91(12)	$\mathrm{C}(25)-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~A})$	109.5
$\mathrm{N}(1)-\mathrm{C}(21)-\mathrm{C}(22)$	107.53(11)	$\mathrm{C}(25)-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~B})$	109.5
$\mathrm{C}(23)-\mathrm{C}(21)-\mathrm{C}(22)$	110.34(12)	$\mathrm{H}(28 \mathrm{~A})-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~B})$	109.5
$\mathrm{C}(24)-\mathrm{C}(21)-\mathrm{C}(22)$	109.75(11)	$\mathrm{C}(25)-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{C})$	109.5
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	109.5	$\mathrm{H}(28 \mathrm{~A})-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{C})$	109.5
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	109.5	$\mathrm{H}(28 \mathrm{~B})-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{C})$	109.5
$\mathrm{H}(22 \mathrm{~A})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	109.5		
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5		

Table S3. Crystal data and structure refinement for $\mathbf{1 0}_{\mathbf{w}}$.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z

Density (calculated)
Absorption coefficient
$F(000)$
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.242^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[I>2 \sigma(I)]$
R indices (all data)
Largest diff. peak and hole

14018_t4
$\mathrm{C}_{33} \mathrm{H}_{45} \mathrm{~F}_{6} \mathrm{NO}_{2} \mathrm{~W}$
785.55

100(2) K
$0.71073 \AA$
Monoclinic
$P 2{ }_{1} / n$
$a=12.8518(11) \AA \quad \alpha=90^{\circ}$
$b=17.2888(16) \AA \quad \beta=97.0070(10)^{\circ}$
$c=15.1767(14) \AA \quad \gamma=90^{\circ}$
$3347.0(5) \AA^{3}$
4
$1.559 \mathrm{Mg} / \mathrm{m}^{3}$
$3.514 \mathrm{~mm}^{-1}$
1576
$0.380 \times 0.340 \times 0.190 \mathrm{~mm}^{3}$
1.984 to 30.034°.
$-18<=h<=18,0<=k<=25,0<=l<=22$
175483
$9799\left[R_{\text {int }}=0.0364\right]$
100.0 \%

Semi-empirical from equivalents
0.746156 and 0.473130

Full-matrix least-squares on F^{2}
9799 / 85 / 413
1.058
$R 1=0.0158, w R 2=0.0363$
$R 1=0.0191, w R 2=0.0373$
0.787 and -0.480 e. \AA^{-3}

Table S4. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for $\mathbf{1 0}_{\mathbf{w}}$.

$\mathrm{C}(1)-\mathrm{C}(2)$	1.549(2)	$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	0.9800
$\mathrm{C}(1)-\mathrm{W}(1)$	2.1234(16)	$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	0.9800
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	0.982(14)	$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	0.9800
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	0.961(14)	$\mathrm{C}(21)-\mathrm{F}(1)$	$1.3435(18)$
$\mathrm{C}(2)-\mathrm{C}(4)$	1.531(2)	$\mathrm{C}(21)-\mathrm{F}(2)$	$1.3467(18)$
$\mathrm{C}(2)-\mathrm{C}(3)$	1.532(2)	$\mathrm{C}(21)-\mathrm{F}(3)$	$1.3528(19)$
$\mathrm{C}(2)-\mathrm{C}(5)$	1.539(2)	$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	0.9800
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	0.9800	$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	0.9800
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	0.9800	$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	0.9800
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{C})$	0.9800	$\mathrm{C}(31)-\mathrm{C}(32)$	$1.4092(19)$
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	0.9800	$\mathrm{C}(31)-\mathrm{C}(36)$	1.417(2)
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	0.9800	$\mathrm{C}(32)-\mathrm{C}(33)$	1.3941(19)
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{C})$	0.9800	$\mathrm{C}(32)-\mathrm{C}(37)$	1.542 (2)
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	0.9800	$\mathrm{C}(33)-\mathrm{C}(34)$	1.389(2)
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	0.9800	$\mathrm{C}(33)-\mathrm{H}(33)$	0.9500
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{C})$	0.9800	$\mathrm{C}(34)$-C(35)	$1.402(2)$
N(1)-C(6)	1.4496(18)	$\mathrm{C}(34)-\mathrm{C}(41)$	1.504(2)
N(1)-W(1)	1.7501(12)	$\mathrm{C}(35)-\mathrm{C}(36)$	$1.4023(19)$
$\mathrm{C}(6)-\mathrm{C}(8)$	1.512(3)	$\mathrm{C}(35)-\mathrm{C}(42)$	1.510 (2)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.523(2)	$\mathrm{C}(37)-\mathrm{C}(38)$	1.537(2)
C(6)-C(9)	1.527(3)	$\mathrm{C}(37)-\mathrm{C}(39)$	$1.538(2)$
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	0.9800	$\mathrm{C}(37)-\mathrm{C}(40)$	1.539(2)
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	0.9800	$\mathrm{C}(38)-\mathrm{H}(38 \mathrm{~A})$	0.9800
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	0.9800	C(38)-H(38B)	0.9800
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9800	$\mathrm{C}(38)-\mathrm{H}(38 \mathrm{C})$	0.9800
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	0.9800	$\mathrm{C}(39)-\mathrm{H}(39 \mathrm{~A})$	0.9800
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	0.9800	$\mathrm{C}(39)-\mathrm{H}(39 \mathrm{~B})$	0.9800
C(9)-H(9A)	0.9800	$\mathrm{C}(39)-\mathrm{H}(39 \mathrm{C})$	0.9800
C(9)-H(9B)	0.9800	$\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~A})$	0.9800
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	0.9800	$\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~B})$	0.9800
$\mathrm{W}(1)-\mathrm{O}(2)$	1.9328(10)	$\mathrm{C}(40)-\mathrm{H}(40 \mathrm{C})$	0.9800
$\mathrm{W}(1)-\mathrm{O}(1)$	2.0074(10)	$\mathrm{C}(41)-\mathrm{F}(5)$	1.340(2)
$\mathrm{W}(1)-\mathrm{C}(18)$	2.1392(14)	$\mathrm{C}(41)-\mathrm{F}(4)$	$1.3415(18)$
$\mathrm{O}(1)-\mathrm{C}(11)$	1.3521(17)	$\mathrm{C}(41)-\mathrm{F}(6)$	$1.345(2)$
$\mathrm{O}(2)-\mathrm{C}(31)$	1.3818(16)	$\mathrm{C}(42)-\mathrm{H}(42 \mathrm{~A})$	0.9800
$\mathrm{C}(11)-\mathrm{C}(12)$	1.4024(19)	$\mathrm{C}(42)-\mathrm{H}(42 \mathrm{~B})$	0.9800
$\mathrm{C}(11)-\mathrm{C}(16)$	1.4036(19)	$\mathrm{C}(42)-\mathrm{H}(42 \mathrm{C})$	0.9800
$\mathrm{C}(12)-\mathrm{C}(13)$	1.384(2)		
$\mathrm{C}(12)-\mathrm{C}(17)$	1.5229(19)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{W}(1)$	127.28(11)
$\mathrm{C}(13)-\mathrm{C}(14)$	1.397(2)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	109.3(12)
$\mathrm{C}(13)-\mathrm{H}(13)$	0.9500	$\mathrm{W}(1)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	106.6(12)
$\mathrm{C}(14)-\mathrm{C}(15)$	1.4090(19)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	110.5(12)
$\mathrm{C}(14)-\mathrm{C}(21)$	1.496(2)	$\mathrm{W}(1)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	96.3(12)
$\mathrm{C}(15)-\mathrm{C}(16)$	1.403(2)	$\mathrm{H}(1 \mathrm{~A})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	104.2(17)
$\mathrm{C}(15)-\mathrm{C}(22)$	1.514(2)	$\mathrm{C}(4)-\mathrm{C}(2)-\mathrm{C}(3)$	109.41(14)
$\mathrm{C}(16)-\mathrm{C}(36)$	1.4923(19)	$\mathrm{C}(4)-\mathrm{C}(2)-\mathrm{C}(5)$	108.32(14)
$\mathrm{C}(17)-\mathrm{C}(20)$	1.537(2)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(5)$	108.31(14)
$\mathrm{C}(17)-\mathrm{C}(19)$	1.541(2)	$\mathrm{C}(4)-\mathrm{C}(2)-\mathrm{C}(1)$	112.56(13)
$\mathrm{C}(17)-\mathrm{C}(18)$	1.557(2)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	111.18(13)
$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	0.968(14)	$\mathrm{C}(5)-\mathrm{C}(2)-\mathrm{C}(1)$	106.90(13)
$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	0.970(14)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	109.5
$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	0.9800	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	109.5
$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	0.9800	$\mathrm{H}(3 \mathrm{~A})-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	109.5
$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	0.9800	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{C})$	109.5

$\mathrm{H}(3 \mathrm{~A})-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{C})$	109.5	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(17)$	117.22(13)
$\mathrm{H}(3 \mathrm{~B})-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{C})$	109.5	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	120.98(13)
$\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	109.5	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13)$	119.5
$\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	109.5	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13)$	119.5
$\mathrm{H}(4 \mathrm{~A})-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	109.5	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	121.43(13)
$\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{C})$	109.5	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(21)$	118.13(13)
$\mathrm{H}(4 \mathrm{~A})-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{C})$	109.5	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(21)$	120.35(13)
$\mathrm{H}(4 \mathrm{~B})-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{C})$	109.5	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	117.40(13)
$\mathrm{C}(2)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	109.5	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(22)$	121.13(13)
$\mathrm{C}(2)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	109.5	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(22)$	121.44(13)
$\mathrm{H}(5 \mathrm{~A})-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	109.5	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(11)$	119.80(12)
$\mathrm{C}(2)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{C})$	109.5	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(36)$	123.65(12)
$\mathrm{H}(5 \mathrm{~A})-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{C})$	109.5	$\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(36)$	116.34(12)
$\mathrm{H}(5 \mathrm{~B})-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{C})$	109.5	$\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{C}(20)$	111.20(12)
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{W}(1)$	176.25(11)	$\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{C}(19)$	111.21(12)
$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(8)$	108.16(14)	$\mathrm{C}(20)-\mathrm{C}(17)-\mathrm{C}(19)$	108.09(12)
$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	109.37(13)	$\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{C}(18)$	107.43(11)
$\mathrm{C}(8)-\mathrm{C}(6)-\mathrm{C}(7)$	110.55(17)	$\mathrm{C}(20)-\mathrm{C}(17)-\mathrm{C}(18)$	107.19(12)
$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(9)$	107.61(13)	$\mathrm{C}(19)-\mathrm{C}(17)-\mathrm{C}(18)$	111.67(12)
$\mathrm{C}(8)-\mathrm{C}(6)-\mathrm{C}(9)$	111.49(19)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{W}(1)$	121.22(9)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(9)$	109.60(17)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	110.0(11)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	109.5	W(1)-C(18)-H(18A)	104.2(11)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	109.5	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	109.0(12)
$\mathrm{H}(7 \mathrm{~A})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	109.5	$\mathrm{W}(1)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	103.7(12)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	109.5	$\mathrm{H}(18 \mathrm{~A})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	107.9(16)
$\mathrm{H}(7 \mathrm{~A})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	109.5	$\mathrm{C}(17)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	109.5
$\mathrm{H}(7 \mathrm{~B})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	109.5	$\mathrm{C}(17)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.5
$\mathrm{C}(6)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	109.5	$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.5
$\mathrm{C}(6)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.5	$\mathrm{C}(17)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5
$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.5	$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5
$\mathrm{C}(6)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	109.5	$\mathrm{H}(19 \mathrm{~B})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5
$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	109.5	$\mathrm{C}(17)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	109.5
$\mathrm{H}(8 \mathrm{~B})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	109.5	$\mathrm{C}(17)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	109.5
$\mathrm{C}(6)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	109.5	$\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	109.5
$\mathrm{C}(6)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	109.5	$\mathrm{C}(17)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5
$\mathrm{H}(9 \mathrm{~A})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	109.5	$\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5
$\mathrm{C}(6)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	109.5	$\mathrm{H}(20 \mathrm{~B})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5
$\mathrm{H}(9 \mathrm{~A})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	109.5	$\mathrm{F}(1)-\mathrm{C}(21)-\mathrm{F}(2)$	106.02(13)
$\mathrm{H}(9 \mathrm{~B})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	109.5	$\mathrm{F}(1)-\mathrm{C}(21)-\mathrm{F}(3)$	105.60(13)
$\mathrm{N}(1)-\mathrm{W}(1)-\mathrm{O}(2)$	98.69(5)	$\mathrm{F}(2)-\mathrm{C}(21)-\mathrm{F}(3)$	105.59(12)
$\mathrm{N}(1)-\mathrm{W}(1)-\mathrm{O}(1)$	174.25(5)	$\mathrm{F}(1)-\mathrm{C}(21)-\mathrm{C}(14)$	113.00(13)
$\mathrm{O}(2)-\mathrm{W}(1)-\mathrm{O}(1)$	85.94(4)	$\mathrm{F}(2)-\mathrm{C}(21)-\mathrm{C}(14)$	112.56(13)
$\mathrm{N}(1)-\mathrm{W}(1)-\mathrm{C}(1)$	92.20(6)	$\mathrm{F}(3)-\mathrm{C}(21)-\mathrm{C}(14)$	113.40(13)
$\mathrm{O}(2)-\mathrm{W}(1)-\mathrm{C}(1)$	125.42(5)	$\mathrm{C}(15)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	109.5
$\mathrm{O}(1)-\mathrm{W}(1)-\mathrm{C}(1)$	87.84(5)	$\mathrm{C}(15)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	109.5
$\mathrm{N}(1)-\mathrm{W}(1)-\mathrm{C}(18)$	91.38(5)	$\mathrm{H}(22 \mathrm{~A})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	109.5
$\mathrm{O}(2)-\mathrm{W}(1)-\mathrm{C}(18)$	119.26(5)	$\mathrm{C}(15)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5
$\mathrm{O}(1)-\mathrm{W}(1)-\mathrm{C}(18)$	83.34(5)	$\mathrm{H}(22 \mathrm{~A})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5
$\mathrm{C}(1)-\mathrm{W}(1)-\mathrm{C}(18)$	113.69(6)	$\mathrm{H}(22 \mathrm{~B})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5
$\mathrm{C}(11)-\mathrm{O}(1)-\mathrm{W}(1)$	108.44(8)	$\mathrm{O}(2)-\mathrm{C}(31)-\mathrm{C}(32)$	118.40(12)
$\mathrm{C}(31)-\mathrm{O}(2)-\mathrm{W}(1)$	125.70(9)	$\mathrm{O}(2)-\mathrm{C}(31)-\mathrm{C}(36)$	119.92(12)
$\mathrm{O}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	120.15(12)	$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{C}(36)$	121.67(12)
$\mathrm{O}(1)-\mathrm{C}(11)-\mathrm{C}(16)$	117.94(12)	$\mathrm{C}(33)-\mathrm{C}(32)-\mathrm{C}(31)$	115.94(13)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(16)$	121.69(13)	$\mathrm{C}(33)-\mathrm{C}(32)-\mathrm{C}(37)$	121.01(12)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	117.30(13)	$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(37)$	123.04(12)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(17)$	125.31(13)	$\mathrm{C}(34)-\mathrm{C}(33)-\mathrm{C}(32)$	122.67(13)

$\mathrm{C}(34)-\mathrm{C}(33)-\mathrm{H}(33)$	118.7
$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{H}(33)$	118.7
$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)$	$121.24(13)$
$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(41)$	$118.37(13)$
$\mathrm{C}(35)-\mathrm{C}(34)-\mathrm{C}(41)$	$120.35(13)$
$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(36)$	$117.44(13)$
$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(42)$	$121.81(13)$
$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{C}(42)$	$120.67(13)$
$\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{C}(31)$	$120.16(13)$
$\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{C}(16)$	$121.87(12)$
$\mathrm{C}(31)-\mathrm{C}(36)-\mathrm{C}(16)$	$117.96(12)$
$\mathrm{C}(38)-\mathrm{C}(37)-\mathrm{C}(39)$	$109.84(12)$
$\mathrm{C}(38)-\mathrm{C}(37)-\mathrm{C}(40)$	$107.58(12)$
$\mathrm{C}(39)-\mathrm{C}(37)-\mathrm{C}(40)$	$106.94(12)$
$\mathrm{C}(38)-\mathrm{C}(37)-\mathrm{C}(32)$	$110.78(12)$
$\mathrm{C}(39)-\mathrm{C}(37)-\mathrm{C}(32)$	$110.41(12)$
$\mathrm{C}(40)-\mathrm{C}(37)-\mathrm{C}(32)$	$111.17(12)$
$\mathrm{C}(37)-\mathrm{C}(38)-\mathrm{H}(38 \mathrm{~A})$	109.5
$\mathrm{C}(37)-\mathrm{C}(38)-\mathrm{H}(38 \mathrm{~B})$	109.5
$\mathrm{H}(38 \mathrm{~A})-\mathrm{C}(38)-\mathrm{H}(38 \mathrm{~B})$	109.5
$\mathrm{C}(37)-\mathrm{C}(38)-\mathrm{H}(38 \mathrm{C})$	109.5
$\mathrm{H}(38 \mathrm{~A})-\mathrm{C}(38)-\mathrm{H}(38 \mathrm{C})$	109.5
$\mathrm{H}(38 \mathrm{~B})-\mathrm{C}(38)-\mathrm{H}(38 \mathrm{C})$	109.5
$\mathrm{C}(37)-\mathrm{C}(39)-\mathrm{H}(39 \mathrm{~A})$	109.5
$\mathrm{C}(37)-\mathrm{C}(39)-\mathrm{H}(39 \mathrm{~B})$	109.5
$\mathrm{H}(39 \mathrm{~A})-\mathrm{C}(39)-\mathrm{H}(39 \mathrm{~B})$	109.5
$\mathrm{C}(37)-\mathrm{C}(39)-\mathrm{H}(39 \mathrm{C})$	109.5
$\mathrm{H}(39 \mathrm{~A})-\mathrm{C}(39)-\mathrm{H}(39 \mathrm{C})$	109.5
$\mathrm{H}(39 \mathrm{~B})-\mathrm{C}(39)-\mathrm{H}(39 \mathrm{C})$	109.5
$\mathrm{C}(37)-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~A})$	109.5
$\mathrm{C}(37)-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~B})$	109.5
$\mathrm{H}(40 \mathrm{~A})-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~B})$	109.5
$\mathrm{C}(37)-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{C})$	109.5
$\mathrm{H}(40 \mathrm{~A})-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{C})$	109.5
$\mathrm{H}(40 \mathrm{~B})-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{C})$	109.5
$\mathrm{~F}(5)-\mathrm{C}(41)-\mathrm{F}(4)$	$105.96(14)$
$\mathrm{F}(5)-\mathrm{C}(41)-\mathrm{F}(6)$	$106.15(14)$
$\mathrm{F}(4)-\mathrm{C}(41)-\mathrm{F}(6)$	$106.04(14)$
$\mathrm{F}(5)-\mathrm{C}(41)-\mathrm{C}(34)$	$113.03(14)$
$\mathrm{F}(4)-\mathrm{C}(41)-\mathrm{C}(34)$	$112.60(13)$
$\mathrm{F}(6)-\mathrm{C}(41)-\mathrm{C}(34)$	$112.49(15)$
$\mathrm{C}(35)-\mathrm{C}(42)-\mathrm{H}(42 \mathrm{~A})$	109.5
$\mathrm{C}(35)-\mathrm{C}(42)-\mathrm{H}(42 \mathrm{~B})$	109.5
$\mathrm{H}(42 \mathrm{~A})-\mathrm{C}(42)-\mathrm{H}(42 \mathrm{~B})$	109.5
$\mathrm{C}(35)-\mathrm{C}(42)-\mathrm{H}(42 \mathrm{C})$	109.5
$\mathrm{H}(42 \mathrm{~A})-\mathrm{C}(42)-\mathrm{H}(42 \mathrm{C})$	109.5
$\mathrm{H}(42 \mathrm{~B})-\mathrm{C}(42)-\mathrm{H}(42 \mathrm{C})$	109.5

[^0]: ${ }^{29}$ Marinescu, S. C.; King, A. J.; Schrock, R. R.; Singh, R.; Müller, P.; Takase, M. K. Organometallics 2010, 29, 6816-6828.
 ${ }^{30}$ Schrock, R. R. Handbook of Metathesis, Vol 1, 2nd Ed., Wiley-VCH, Weinheim, R. H. Grubbs and A. G. Wenzel, Ed., 2015, pp. 1-32.
 ${ }^{31}$ Greenhalgh, M. D.; Thomas, S. P. J. Am. Chem. Soc. 2012, 134, 11900-11903.
 ${ }^{32}$ Schlosser, M.; Hartmann, J. Angew. Chem. Int. Ed. Engl. 1973, 12, 508-509.
 ${ }^{33}$ Tabor, D. C.; White, F.; Collier, L. W.; Evans, S. A. J. Org. Chem. 1983, 48, 1638-1643.
 ${ }^{34}$ Schrock, R. R.; Sancho, J.; Pederson, S. F.; Virgil, S. C.; Grubbs, R. H. in Inorganic Syntheses; John Wiley \& Sons, Inc., 1989; pp 44-51.
 ${ }^{35}$ Dickie, D. A.; MacIntosh, I. S.; Ino, D. D.; He, Q.; Labeodan, O. A.; Jennings, M. C.; Schatte, G.; Walsby, C. J.; Clyburne, J. A. C. Can. J. Chem. 2008, 86, 20-31.
 ${ }^{36}$ Yuan, J.; Schrock, R. R.; Müller, P.; Axtell, J. C.; Dobereiner, G. E. Organometallics 2012, 31, 46504653.
 ${ }^{37}$ Hatch, L. F.; Everett, G. D. J. Org. Chem. 1968, 33, 2551-2552.

[^1]: ${ }^{1}$ Krause, L., Herbst-Irmer, R., Sheldrick, G. M. \& Stalke, D, J. Appl. Cryst. 2015, 48, 3-10.
 ${ }^{2}$ Sheldrick, G. M., TWINABS; University of Göttingen: Germany, 2008.
 ${ }^{3}$ Sheldrick, G. M., Acta Cryst. 2015, A71, 3-8.
 ${ }^{4}$ Sheldrick, G. M., Acta Cryst. 2015, C71, 3-8.
 ${ }^{5}$ Müller, P., Crystallography Reviews 2009, 15, 57-83.
 ${ }^{6}$ Thorn, A., Dittrich, B. \& Sheldrick, G. M., Acta Cryst. 2012, A68, 448-451
 ${ }^{7}$ Sheldrick, G. M CELL_NOW; University of Göttingen: Germany, 2008.
 ${ }^{8}$ Bruker SAINT, Bruker-AXS Inc., Madison, Wisconsin, USA, 2010.

