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Abstract
A model is developed to predict the impact of particle load imbalances on
the performance of domain-decomposed Monte Carlo neutron transport al-
gorithms. Expressions for upper bound performance "penalties" are derived
in terms of simple machine characteristics, material characterizations and
initial particle distributions. The hope is that these relations can be used
to evaluate tradeoffs among different memory decomposition strategies in
next generation Monte Carlo codes, and perhaps as a metric for triggering
particle redistribution in production codes.
Keywords: Monte Carlo neutron transport reactor analysis load
balancing

1. Background

Particle based Monte Carlo (MC) methods for neutron transport are
becoming an increasingly active area of research in the reactor physics com-
munity. Traditional reactor core analysis codes are based on various dis-
cretizations of the deterministic transport equation, viz. so-called PN, SN,
and Method of Characteristics (MOC) formulations. Monte Carlo methods,
however, offer several potential advantages to these traditional formulations,
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particularly in areas that tend to encumber the practical adoption of trans-
port tools to new classes of problems – viz. the avoidance of complex mesh-
ing for complicated geometries, the simplification of the cumbersome multi-
group cross section generation process, and, perhaps most importantly, the
potentially easier adaptability to the extreme levels of concurrency that are
likely to characterize beyond-petascale HPC architectures [1]. Reactor MC
simulations, though, are notoriously expensive computationally [2, 3, 4],
and a number of algorithmic and implementation challenges remain before
they can be robustly applied to practical reactor analysis.

One of these challenges involves developing parallel methods with dra-
matically reduced per-node memory footprints (e.g. [5]). Existing produc-
tion MC codes for reactor analysis are either implemented serially or carry
out parallelization by simple replication – i.e. distributing batches of par-
ticles to processors while replicating and synchronizing the key data struc-
tures across nodes. This approach is relatively easy to implement and has
excellent scalability properties. However, for robust reactor calculations,
the required memory footprint in general far exceeds node-level memory re-
sources. Thus, even the largest reactor MC calculations to date have been
forced to employ a number of simplifications and approximations in order
to fit standard reactor physics calculation in memory [4].

In reactor applications the majority of memory is consumed by two types
of data – 1) interaction cross section libraries and 2) interaction tallies for
pre-defined geometric regions [2]. The cross section data libraries are read
into main memory and accessed randomly during the tracking of an indi-
vidual neutron. This data needs to be accessible to each process and can
be more or less significant depending on the specific application. Standard
Light Water Reactor (LWR) analyses, for example, require data for several
reaction types for each of 200–400 isotopes at approximately 50 tempera-
ture intervals and 200,000 energy points. At eight bytes per data point this
memory can exceed 100GB. Existing research into compact functional rep-
resentations has the potential to reduce this footprint significantly, but this
is currently a topic of research and developing algorithmically creative ways
of handling cross section data remains an important technique for reducing
the total memory cost [6].

For LWR applications in particular, the tallies are an even more signifi-
cant consumer of memory. We conservatively estimate that a robust LWR
analysis would require approximately a factor of fifty greater than the 8GB
reported in the landmark calculations of Kelly et al. [4] – specifically, an
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additional 5 axial levels and and a factor of 10 in radial rings per fuel pin (to
treat radial temperature profiles and self-shielded absorbers) – for a total
of 500GB of memory. Unlike the cross section libraries, tally data is write
only and requires a relatively small amount of data to be transferred for
each update.

In this paper we focus on algorithmic issues related to the reduction of
the local tally memory. Two classes of strategies have been proposed to
address this problem – what we loosely refer to as data decomposition and
domain decomposition. Data decomposition could take many forms, but
the basic approach would involve the same naturally parallel by-particle
parallelization strategy as is currently employed together with a set of ded-
icated tally servers that continuously receive tally updates from the track-
ing processors (e.g. with one-side operations or by running a continuous
receive loop). The spatial decomposition of the tallies is in general arbi-
trary and the data sent from the tracking processors could be carried out
with non-blocking MPI send operations to maximize overlap in communi-
cation/computation. Of course, this idea could be extended to non-disjoint
processor sets, but for illustrative purposes it is perhaps easiest to imagine
them as distinct.

Domain decomposition on the other hand associates a contiguous region
of physical space with each processing element (or node). Each proces-
sor then owns the subset of tallies for the corresponding region of physical
space. This approach is potentially made efficient with a more complex par-
allelization strategy where each processor only tracks the particles that are
passing through its own portion of the domain. However, new complexities
emerge – fast neutrons travel long distances before absorption, and thus the
local leakage rates (probability of a neutron leaving a partition before being
absorbed) are relatively large. This requires intermediate data exchange
stages where particles are moved to adjacent processors, potentially leading
to significant communication costs and non-trivial load imbalances.

In a recent work by Siegel et al. [7], the authors attempt to quantify this
cost, exploring the feasibility of carrying out efficient domain decomposition
in a parameter regime relevant to Light Water Reactor (LWR) analysis.
Key scaling regimes are identified and performance estimates are carried
out over a range of characteristic parameters. The results demonstrate that
for the model problem good performance is expected for reasonable effec-
tive latency and bandwidth values for partition particle densities as low as
104 per node (e.g. on the BG/P platform). This analysis takes an impor-
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tant step toward quantifying the key theoretical issues and establishing the
feasibility of carrying out robust LWR calculations with MC methods.

However, the analysis in [7] does not address the impact of initial particle
imbalances and small variations in local leakage rates on evolving particle
distributions. If particle communication costs are potentially manageable
in light of typical machine bandwidth and latencies, to what extent will
load imbalances negatively impact performance to the point where such
an approach is no longer a practical alternative? Establishing a quantita-
tive foundation for this performance penalty will greatly facilitate weighing
tradeoffs in deciding the best path forward among various approaches for
next-generation MC codes. In this paper we address this issue directly by
attempting to quantify the effect of particle load imbalances and typical
material inhomogeneities on the performance of domain decomposed MC
algorithms.

2. Analysis

2.1. Problem definition
To fully define the problem, begin with a domain X segmented into N

non-overlapping partitions X = ∪xj, j = 1...N . If we denote the initial
number of particles on partition xj as p0,j, then the initial global particle
count P0 is given by:

P0 =
N∑
j=1

p0,j. (1)

For simplicity, assume that each partition is mapped to a single processing
element on a three-dimensional virtual Cartesian topology of N processors.
In this work we thus use the terms processor, partition, and process inter-
changeably.

On a given partition, particles owned by that partition are advanced
through a sequence of interactions until they are either 1) absorbed or 2)
reach a processor boundary. For optimal performance particles that reach
the boundary are buffered locally until all particle trajectories are computed,
and are subsequently exchanged with neighbor processors. We refer to the
particle exchange phase of this process as a stage, and to a complete set of
stages (i.e. until all particles are absorbed) as a cycle. At the end of each
cycle, the fission source is updated and the next cycle begins.
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Define the particle local leakage λ on each xj for a given stage i as

λi,j = number of particles leaving xj at stage i
number of particles starting in xj at stage i

.

The goal of this analysis is to estimate the impact of initial particle load
imbalances and spatially varying local leakage values on previous perfor-
mance estimates of domain-decomposed LWR simulations. We refer to the
perfectly load balanced, constant leakage scenario as the ideal case. This
was explored in depth in [7], where it was shown that communication costs
imposed a reasonable penalty on overall simulation time for a broad range
of relevant parameter values.

An important followup question, though, is to what extent load imbal-
ances will affect overall performance. In [7] the analysis was carried out in
the ideal case, and it was assumed that load imbalances could be handled
efficiently by standard re-partitioning algorithms. Here we aim to quantify
the cost of load balance, both to further gauge the feasibility of domain-
decomposed MC codes, as well as to provide a decision-making metric for
carrying out load balancing in production codes.

Following [8] we first define the load balance Γi at each stage i as

Γi := P i

pmaxi

, (2)

where
P i := 1

N

N∑
j=1

pi,j

and pmaxi denotes the maximum particle count at stage i. The amount
the load balance Γi differs from the ideal case Γ = 1 measures the relative
difference between the highest particle and average particle counts:

1− Γi = pmaxi − P i

pmaxi

(3)

Note that unlike [8] we express the load imbalance in terms of particle
densities rather than execution time. Their equivalence will be argued in
the following section.

We seek to estimate a related but distinct quantity – an upper bound for
the difference between the total per-cycle simulation time of the non-ideal
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case and the ideal case. We define this normalized difference as the load
imbalance penalty ∆:

∆ := τ ′ − τ
τ

= τ ′

τ
− 1, (4)

where τ denotes the total per-cycle simulation time in the ideal case, and
τ ′ for the non-ideal case. Note that an expression for ∆ must include both
the particle tracking as well as the communication costs across all stages of
a given cycle. While related to the per-stage particle load balance, the load
imbalance penalty is a distinct quantity.

2.2. Basic properties
Given this simple problem definition above, it is clear that, for purely

reflective boundary conditions (a good approximation for reflectors in power
reactors) the global number of particles at any stage is given by

Pi+1 =
N∑
j=1

pi+1,j =
N∑
j=1

λi,jpi,j i = 0, 1, . . .M, (5)

where M denotes the final stage in the cycle – i.e. when all particles are
absorbed and none remain. We emphasize again that Pi denotes the global
particle count at stage i while pi,j denotes the local particle count on par-
tition j at stage i.

To estimate τ ′, the per cycle simulation time in the non-ideal case, we
seek an expression for the local particle distribution – i.e. the number of
particles on each partition xj at stage i. Assuming isotropic leakage, the
neutron count on a partition is given by:

pi+i,j = 1
6 (λi,j1pi,j1 + λi,j2pi,j2 + · · ·+ λi,j6pi,j6) (6)

where j1, j2 · · · j6 denote the six immediate neighbors of partition j on a
Cartesian lattice. Equation 6 simply states that, in advancing stages, a
given partition receives 1/6th of the leaked particles from each of its six
neighbors on a Cartesian grid.

Equation 6 shows that the evolution of the local particle distributions
depends on the detailed alignment of the local particle counts and the lo-
cal leakage rates. To reduce it further requires additional assumptions. We
start by noting that, in an LWR, the neutron spectrum and material hetero-
geneities are roughly constant from partition to partition (this property is
demonstrated using simulation data in Section 3). This observation makes
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the case of approximately spatially uniform local leakages of great practical
interest in the present context, and thus we initially consider the case of
λi,j = λi. Note that we still expect non-trivial per-stage variation in leak-
ages as neutron energies will shift toward the thermal range with increasing
stages. Important model corrections for small spatial variations in λ will be
considered in Section 3.

For spatially constant λ, (5) then becomes

Pi =
N∑
j=1

λi−1pi−1,j = λi−1

N∑
j=1

pi−1,j = λi−1Pi−1

= λi−1λi−2 . . . λ0P0

∼ 〈λ〉iP0 i = 1, 2, . . .M (7)

where 〈λ〉 is defined as the geometric mean of the leakage rate,

〈λ〉 := M

√
λM−1λM−2 . . . λ0. (8)

Equation 6 then simplifies to

pi+i,j = λi
6 (pi,j1 + pi,j2 + · · ·+ pi,j6) (9)

Equation 9 shows that, for spatially constant λ, at each subsequent stage
each partition has the average value of the total leaked particles from the
neighboring partitions in the previous stage. Equation 7 shows that, in the
case of constant λ, the particle load imbalance does not affect the number
of stages required to complete a cycle, which can be estimated by setting
Pi = 1 in (7):

〈λ〉MP0 = 1 =⇒ M ∼ − logP0

log〈λ〉 . (10)

Both properties are used in the analysis that follows.

2.3. Expression for τ
Given these basic properties, we first seek an estimate of the total per-

cycle cost in the idealized case of an initial even distribution of particles and
spatially constant λ. This is accomplished by decomposing τ into a local
work τl and inter-processor communication τc component as

τ := τl + τc. (11)
7



In the case of perfect load balancing and assuming a roughly equal distri-
bution of track length and neutron spectra across partitions (i.e. our earlier
assumption of constant λ), the local work τl should be roughly proportional
to the total number of particles tracked on a partition in a given cycle,

τl = µ
M∑
i=0

P i, (12)

where the constant µ is a measure of the tracking time per particle, and
where it is understood that the particle count pi,j is the same on any given
partition, since all partitions are equivalent in the ideal case.

The communication time τc can be further decomposed into a latency
and bandwidth component [7]. For each cycle, a total of M messages need
to be sent to each processor’s six neighbors, so in general the total time per
cycle due to message latency can be modeled as ∼ 6αM , where α is some
measure of the effective application-level latency for a single send.

If we ignore the dependence of λ on stage, by definition λP i particles
are sent from each processor at stage i, the total number of particles sent
in a cycle from any processor is λ∑i P i. Thus, the bandwidth term can be
roughly modeled as βλ∑i P i, where β denotes the effective inverse band-
width for nearest-neighbor exchanges (expressed in time

particle
).

When we account for stage dependence λ is replaced by ||λ||, defined as
the solution to the M -th order polynomial:

M∑
i=1
||λ||i = λ0 + λ1λ0 + · · ·+ λMλM−1...λ0. (13)

The latency term can then be written as:

β
M∑
i=0

λiP i = β(λ0P 0 + λ1P 1 + . . . λMPM)

= β(λ0P 0 + λ1λ0P 0 + · · ·+ λMλM−1...λ0P 0)
= βP 0(λ0 + λ1λ0 + . . . )

= βP 0

M∑
i=1
||λ||i

∼ βP 0
||λ||

1− ||λ|| (14)

Using these relations together with (10) then yields the following expres-
sion for the total communication time:
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τc = −6α logP0

log〈λ〉 + βP 0
||λ||

1− ||λ|| (15)

where it is understood that the last term in the summation is zero – i.e.
no particles are sent after the final stage – and that it is included as a
notational convenience. Using the same approach on (12) and combining
with (15) gives the final expression for total simulation time in the idealized
case:

τ = −6α logP0

log〈λ〉 + (µ+ β‖λ‖) P 0

1− ‖λ‖ , (16)

2.4. Expression for τ ′

We now seek an estimate for the total cycle time τ ′ in the presence of an
initial load imbalance. For convenience we first express pi,j as a combination
of partition mean and fluctuating parts. That is,

δpi,j := pi,j − P i (17)

When a load imbalance is present the partition with the largest particle
count controls the total performance cost. If we denote the particle count
on this process as pmaxi = P i + δpmaxi , then by analogy with (16) it is clear
that the load-imbalanced performance cost is:

τ ′ = −6α logP0

log〈λ〉 + (µ+ β‖λ‖)
M∑
i=0

(P i + δpmaxi )

= τ + (µ+ β‖λ‖)
M∑
i=0

δpmaxi (18)

where the equivalence of the latency terms (i.e. (10)) has been used.
While we cannot directly evaluate the sum of δpmaxi , a simple upper

bound can be derived by recognizing that, assuming roughly equal leakage
to each neighbor, the largest possible value of p at stage i + 1 occurs if all
six neighbors of a partition contain δpmaxi particles. Thus,

δpmaxi+1 ≤ λiδp
max
i . (19)

Substituting the right hand side of (19) for each element of the sum (22)
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yields:

M∑
i=0

δpmaxi ≤ δpmax0 + λ0δp
max
0 + · · ·+ λMδp

M
0

= δpmax0 (1 + λ0 + λ0λ1 + . . . )

∼ δpmax0
1− ||λ|| (20)

Equation 18 then becomes

τ ′ = τ + (µ+ β‖λ‖) δpmax0
1− ||λ|| . (21)

2.5. Expression for ∆
Using (18) and (21) we get the following expression for ∆:

∆ := τ ′ − τ
τ
≤ δpmax0

(1− ‖λ‖)ε+ P0
(22)

where ε measures the relative importance of latency relative to bandwidth
and tracking timescales, i.e.

ε := 6α
µ+ β‖λ‖

logP0

log〈λ〉 (23)

which is presumed to be small for typical problem sizes and parameter
regimes (e.g. see [7]) but which is retained here for the sake of generality.
Note that (22) implies that

∆ ≤ δpmax0
P0

= 1
Γ0
− 1, (24)

which should be a good approximation for applications where the latency
term is much smaller than the bandwidth and tracking terms.

Assuming spatially constant λ, then, and given isotropic neutron local
leakage and constant mean tracking rates per partition, we can establish an
upper bound for ∆ entirely in terms of the initial particle configuration.
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3. Variable leakage rates

Equation 22 should give a reasonable estimate for reactor applications
across a range of parameter values, where material inhomogeneities are
roughly equally distributed and thus local leakage rates show very little
variation. However, it fails to capture a critical effect that emerges as we
move to smaller partition sizes, and which sets an important limit on the
utility of the domain-decomposed approach. To see this we explicitly ac-
count for spatially variant, non-constant leakage in the formulation of the
model.

Consider a distribution of leakage rates across partitions at a given stage
with a maximum value defined as:

λmaxi = max {λi,j : 1 ≤ j ≤ N} (25)

In estimating the computation time for this scenario compared to the ideal
case (i.e. calculating ∆), the question arises of what corresponding spatially
constant value of λ should be used for the ideal case. Several options are
reasonable, but here we choose a mean value that preserves stages. Specif-
ically, if we define a particle-weighted mean leakage as:

λi :=
∑N
j=1 pi,jλi,j

Pi
(26)

then the ideal and non-ideal cases are guaranteed to have the same number
of global particles at successive stages:

Pi+1

Pi
= 1
Pi

N∑
j=1

λi,jpi,j = λi

Following (19), then, the largest possible particle count at stage i occurs on
partition xj if on its six neighbors pmaxi coincides with λmaxi . That is,

pmaxi+1 ≤ λmaxi pmaxi . (27)

This relation then allows us to derive an upper bound for τ ′ in the case of
variable λ:

τ ′ ≤ 6α logP0

log〈λ〉
+ β

M∑
i=0

λmaxi pmaxi + µ
M∑
i=1

pmaxi

= 6α logP0

log〈λ〉
+ (µ+ β||λmax||)

M∑
i=0

pmaxi (28)
11



where ||λmax|| is defined analogous to (13):

M∑
i=1
||λmax||i = λmax0 + λmax1 λmax0 + · · ·+ λmaxM λmaxM−1...λ

max
0 .

This then yields the following upper bound for the load imbalance:

∆ ≤ (µ+ β||λmax||)∑M
i=0 δp

max
i

6α logP0
log〈λ〉 + (µ+ β||λ||) P0

1−||λ||

(29)

Note that the term ∑M
i=0 δp

max
i can be written in terms of pmax0 as:

M∑
i=0

δpmaxi = δpmax0 + λmax0 δpmax0 + λmax0 λmax1 δpmax0 + . . .

= δpmax0 (1 + λmax0 |λmax0 λmax1 + . . .

= δpmax0

M∑
i=1
||λmax||i (30)

If for convenience we replace ∑M
i=1 ||λmax||i by its continuous represen-

tation 1
1−||λ|| , then (29) implies that:

∆ ≤ C
pmax0
P 0

= C

Γ0
− 1. (31)

where the quantity C, defined as,

C := (β||λmax||+ µ)
(β||λ||+ µ)

(1− ||λ||)
(1− ||λmax||) ,

can be seen as a "correction factor" relative to (24) – clearly, when ||λ|| =
||λmax||, (29) reduces to (24).

Note however that the Taylor Series expansion used in the derivation of
(31),

1
1− x = 1 + x+ x2 + · · ·+ xM ,

even for large M is a poor approximation for x extremely close to 1. While
this will not be a problem for average values of λ in reactor applications,
we must allow for the possibility that ∑M

i=0 ||λmax||i approaches its true

12



upper bound of M (i.e. the maximum leakage in each stage is 1). Thus, a
potentially more accurate version of C is:

C := (β||λmax||+ µ)
(β||λ||+ µ)

∑M
i=0 ||λmax||i∑M
i=0 ||λ||i

The greater the spatial variation in leakage rates the more the system
bandwidth and neutron tracking rates factor into the performance. The
implications of these formulas are explained in the simple tests below, where
we aim to estimate C as a function of the main problem parameters.

4. Evaluation of model

For a given initial particle configuration, evaluation of the model equa-
tion (29) requires estimates for particle tracking rate µ, application-level
inverse bandwidth β and latency α, and local leakage rate estimates from
which to compute ||λmax|| and ||λ||. These parameters vary widely by both
machine and specific code application. Here we evaluate these terms in a pa-
rameter regime relevant to LWR physics on modern supercomputers. Other
applications and machine architectures can be evaluated with appropriate
values of these parameters.

4.1. Leakage rates
While best-estimate application-level bandwidth and latency terms can

be estimated from standard benchmarks (e.g. [9] ), the leakage rate terms
in (29) are more difficult to approximate. Simplified models, such as the
Wigner rational approximation [10] provide rough estimates of expected
domain-dependent leakage rates, but do a poor job at estimating stage
dependence. Thus, to be as precise as possible we measure these values di-
rectly using an existing Monte Carlo simulation code – OpenMC [11]. Note
that, though parallel, OpenMC does not employ domain decomposition. To
model partitions and stages, we overlay within OpenMC an imaginary grid
decomposition and effectively measure the behavior of particles between
fictional stages during a cycle.

The specific test executed was based on the Monte Carlo Performance
benchmark [12] using .5 billion active particle histories. Leakage rates at
each stage and within each partition were measured for three cases: a single
assembly, quarter-assembly, and ninth-assembly partition overlay using 20,
40, and 60 axial levels, respectively. In each case, the benchmark model was
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simulated with 1 million neutrons per cycle for 150 inactive and 500 active
cycles. For neutron cross-sections, data from ENDF/B-VII.0 was used.

Figure 1 illustrates the scale and level of variation in local leakage rates
for the full, quarter, and one-ninth assembly cases. The plots shown are
for axial level nearest the middle of the core at stage zero. They represent
"typical" leakage rate distributions and are intended to graphically illustrate
their relative lack of spatial coherency and small range of values. Also, it is
evident from the figure that, as expected, leakage rates increase non-trivially
with decreasing partition size.

Figure 1: Sample leakage rate distributions for the full, quarter, and ninth assem-
bly experiments. Each image shows the local leakage for stage 0 at the midplane.
The figure depicts a "typical" case, showing the very small degree of spatial fluc-
tuation and lack of spatial coherency. Also, the expected trend toward higher
leakage rates with decreasing partition size is evident.

To see this more clearly, Figure 2 shows the stage-dependent mean and
standard deviation (error bar overlay) of λ for each simulation. In each
case, we see the clear trend toward lower leakages as neutrons have a higher
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probability of thermalization in later stages. Furthermore, the superposed
standard deviations indicate extremely small spatial variation in the first
several stages, which accounts for the majority of data movement and per-
formance cost. When particle counts are small in later stages statistical
variations result in larger standard deviation values, but their impact on
total performance is expected to be small. We note that this very small
spatial variation hints that the correction factor for variable λ in equation
(31) may be small. This is evaluated in the next section.
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Figure 2: Average values of leakage rate λ at each stage for the full, quarter, and
ninth assembly experiments. Superposed as error bars are the standard deviation,
showing very little spatial variation in the early stages. The leakage rate trend
clearly indicates the higher probability of thermalization in later stages of the
calculation

We next test the predictions for total number of cycles M per stage
given by (10), i.e.

M = − logP0

log
〈
λ
〉

The values of the
〈
λ
〉
were calculated for each of the three experiments

and plugged into the formula for M. Table 1 compares these results with
15



experiment M (data) M (model)
full assembly 41 39

quarter assembly 52 51
ninth assembly 71 70

Table 1: The number of stages M for the three numerical experiments vs. the value
predicted by (10)

those obtained directly from the simulation. The model formula behaves as
expected, differing by only several percent from the measured data. Exact
correspondence is not expected – statistical fluctuations, slight anisotropies
and other minor effects are likely to yield small variations. For practical
purposes though the current estimate is more than adequate.

It is furthermore instructive to test the fidelity of (27) to the true mea-
sure maximum particle counts at each stage. While (27) is a true statement,
in a practical sense it is of questionable value if it over-predicts pmaxi by too
significant a margin. Figure 3 shows the computed value of pmax for each
stage versus the value predicted by (27). Given that leakage rate variation is
very small spatially, it is not surprising to see that (27) works extremely well
as an upper bound, over-predicting the measured value by less than 1.0%
for the initial stages (which account for the bulk of the particle transfers).

4.2. Evaluation of correction factor C and penalty ∆
Given an initial particle configuration and reasonable estimates for leak-

age, it remains to evaluate C in (31). To reiterate, under the assumption
of spatially constant leakage C is identically 1 and the load balance can
be upper bounded by the initial particle configuration as pmax

0
P0

. When leak-
age rates vary spatially C measures the amplification of the performance
penalty. We estimate C in two steps, first evaluating the contribution of
the bandwidth and tracking times, given by the ratio

β||λmax||+ µ

β||λ||+ µ
=

β
µ
||λmax||+ 1
β
µ
||λ||+ 1

.

Note that for any conventional machine β << µ, reflecting that tracking
rates are much slower than inter-processor communication, and since ||λ|| ∼
||λmax||, this term remains very close to unity and contributes negligibly to
the overall load imbalance.
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Figure 3: Average values of leakage rate λ at each stage for the full, quarter, and
ninth assembly experiments. Superposed as error bars are the standard deviation,
showing very little spatial variation in the early stages. The leakage rate trend
clearly indicates the higher probability of thermalization in later stages of the
calculation

The second contribution of C is the ratio∑M
i=0 ||λmax||i∑M
i=0 ||λ||i

.

Note that this term becomes problematic as the processor grid is refined,
since we intuitively expect maximum leakage rates of unity for sufficiently
small domains. Assuming that this is the case, the numerator is upper
bounded by 1 + M , where again M is the number of stages in a cycle.
Assuming that the average value does not approach unity, the Taylor series
approximation should be reasonable and we can rewrite this expression as:∑M

i=0 ||λmax||i∑M
i=0 ||λ||i

≤M(1− ||λ||).

While this term is likely a modest fraction of the total number of stages,
17



experiment β||λmax||+µ
β||λ||+µ

∑M

i=0 ||λ
max||i∑M

i=0 ||λ||
i

C
pmax

0
P0

∆
full assembly 1.00 1.13 1.13 3.24 3.67

quarter assembly 1.00 2.58 2.58 3.28 8.47
ninth assembly 1.00 6.98 6.98 3.45 24.15

Table 2: Values of ∆ and the various terms which contribute to it for each of the three
numerical experiments. The tables used values of inverse latency β = 10−8 sec

particle and
tracking time µ = 5 × 10−4 sec

particle . Note that within the precision presented the band-
width term (second column) is identical in all cases, a manifestation of the fact that
bandwidths are much higher than tracking rates. Notice also that the load imbalance
penalty is magnified significantly on the finest partitions grid.

we must recall that M increases with decreasing partition size, and even a
small fraction could easily significantly amplify the load imbalance.

To explore this in greater depth requires use of the OpenMC simula-
tion results. Table 2 shows the results, including the model predictions for
the load imbalance penalty for the full, quarter, and ninth assembly exper-
iments. Note that in all cases the initial particle configuration and thus
pmax

0
p0

is expected to be roughly independent of partition size and be roughly
approximated by the one-group solution on a cylindrical geometry:

S(x, y, z) = J0

(2r0x

L

)
J0

(2r0y

L

)
cos

(
πz

L

)
,

L

2 ≥ x, y, z ≤ L

2

where r0 = ±2.4048 is the root of the zeroth order Bessel Function J0. Note
that S has a peak to mean value Smax

S
= 4.33, which is reasonably close the

values of pmax
0
P

shown in Table 2.
Equation 31 states that, with no load rebalancing, a simulation with

this initial particle distribution is expected to take at most C pmax
0
P0

as long
as a perfectly load balanced simulation. For the full assembly simulation
C = 1.13 and the total penalty is 3.67, which could in many contexts be
considered reasonable compared to e.g. the cost and complexity of imple-
menting repartitioning algorithms. However, it is clear that the situation
rapidly deteriorates for decreasing partition size, with a value of C = 6.98
for the ninth partition experiments. This corresponds to load imbalance
penalty of 24.15, which for most contexts is likely unacceptably high. It is
clear what has happened both in the model and the physics – In the one-
ninth assembly case the peak leakage is unity for all but the final stage, and
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thus the summation in the numerator of C approaches M . Note that we
expect the performance to degenerate even further with decreasing partition
size since M is expected to increase according to (10).

5. Conclusion

We have developed simple relationships to quantitatively analyze the
impact of load imbalances on the performance of domain decomposed MC
methods in the context of reactor analysis. These techniques provide a quan-
titative framework to estimate the additional performance costs incurred by
typical load imbalances in reactor applications. Preliminary numbers were
presented for a classic reactor benchmark, indicating that load imbalances
were not that significant for assembly-size partitions, but increased dramat-
ically as partition sizes were decreased beyond that point. This indicates
that domain decomposition is likely a reasonable strategy for modest-size
parallelism but that it is inherently limited when we consider the massive
levels of concurrency on the path to exascale computing (at least without
significant repartitioning).

Our main goal however is not to judge here whether these penalties are
large or small in an absolute sense. Rather, the techniques presented allow
one to weigh tradeoffs between domain decomposition and more sophisti-
cated data decomposition strategies for their specific needs, or perhaps to
estimate the cost of carrying out load re-balancing or other re-tracking tech-
niques within an operational production code. When processing power is
cheap and memory is at a premium, factors of several in performance time
are not necessarily large, and performance models that go beyond purely
speculative are a critical component of assessing the best path forward.
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