
MIT Open Access Articles

Using Fractional Cascading to Accelerate Cross Section
Lookups in Monte Carlo Neutron Transport Calculations

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Lund, Amanda L., Andrew R. Siege, Benoit Forget, Colin Josey and Paul K. Romano.
"Using Fractional Cascading to Accelerate Cross Section Lookups in Monte Carlo Neutron
Transport Calculations" Article presented at the Joint International Conference on Mathematics
and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo
(MC) Method. ANS MC2015 (Nashville, Tennessee, April 19–23, 2015).

As Published: http://meetingsandconferences.com/mc2015/Program-schedule.html

Publisher: American Nuclear Society

Persistent URL: http://hdl.handle.net/1721.1/108585

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/108585
http://creativecommons.org/licenses/by-nc-sa/4.0/

ANS MC2015 - Joint International Conference on Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the
Monte Carlo (MC) Method · Nashville, Tennessee · April 19–23, 2015, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2015)

USING FRACTIONAL CASCADING TO ACCELERATE CROSS SECTION
LOOKUPS IN MONTE CARLO NEUTRON TRANSPORT

CALCULATIONS

Amanda L. Lund1, Andrew R. Siegel1, Benoit Forget2, Colin Josey2, and Paul K. Romano3

1 Mathematics and Computer Science Division, Argonne National Laboratory, 9700 S. Cass Ave,
Building 240, Lemont, IL 60439, alund@anl.gov; siegela@mcs.anl.gov

2 Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77
Massachusetts Avenue, 24-107, Cambridge, MA 02139, bforget@mit.edu; cjosey@mit.edu
3Bechtel Marine Propulsion Corporation, Knolls Atomic Power Laboratory, P.O. Box 1072,

Schenectady, NY 12301, United States, paul.romano@unnpp.gov

ABSTRACT

We describe and test a technique for carrying out energy grid searches in continuous-energy Monte
Carlo (MC) neutron transport calculations that represents an optimal compromise between grid search
performance and memory footprint. The method, based on the fractional cascading technique and
referred to as the cascade grid, is tested within the OpenMC Monte Carlo code, and performance
results comparing the method with existing approaches are presented for the Hoogenboom-Martin
reactor benchmark. The cascade grid achieves significant speedups in calculation rate with negligible
initialization overhead while not increasing the memory footprint by more than 2×.

Key Words: OpenMC, Monte Carlo, fractional cascading, cross section

1 INTRODUCTION

Robust depletion analysis of large power reactors is for all practical purposes still beyond the
reach of Monte Carlo (MC) codes on present-day systems. For example, in [1] the authors estimate
that a single state point calculation of a realistic reactor geometry requires many thousands of core
hours on existing architectures. While the performance of MC codes in general is typically associated
with random number generation and the cost of complex nested branching logic, recent research
indicates that the principle performance bottleneck for problems with large nuclide inventories
lies elsewhere – specifically, a small set of operations that include the search and retrieval of cross
section values at the point of each neutron interaction [2].

For a robust light-water-reactor depletion calculation hundreds of nuclides need to be tracked
within the fuel regions; thus, calculating the macroscopic cross section at each collision point
requires essentially random lookups from cross section data tables that are much larger than last-
level cache. Tramm et al. [2], for example, shows that in the OpenMC code a modified form of
the Hoogenboom-Martin (H-M) reactor benchmark [3] with 362 nuclides devotes 85% of its time
retrieving cross section data. Related studies confirm this result and go further in elucidating the

Lund et al.

underlying source of the bottleneck in terms of the exhaustion of hardware resources, both for single
and multicore [4] analyses.

In fact, when analyzing the problem more deeply it was shown in [2] that the cross section
lookup process is composed of two distinct parts, one of which is explicit in the algorithm – the
energy grid index search for each nuclide – and another which is implicitly part of the computer
architecture – the memory latency associated with out-of-cache memory references, including
various forms of contention on multicore systems. The energy grid search itself consists of finding
the bounding cross section values for the incident neutron energy for each of several hundred
nuclide grids. There are several techniques in practice for doing this, balancing performance with
memory footprint. These are discussed in further detail in section 2. The most straightforward
approach, what we refer to as a nuclide grid, involves a simple binary search on each nuclide grid
with complexity k log n, where n is the average number of energy points for a given nuclide and
k is the number of nuclides . The memory latency bottleneck is more complex. Tramm et al. [2]
showed that 65% of all cross section references resulted in last level cache misses. Prefetchers
and caching algorithms work poorly given the quasi-random nature of incident neutron energy
levels. On modern architectures out of cache memory references incur several hundred clock cycles
of latency, which for certain applications was shown to be an even larger source of performance
degradation than the search itself.

Several investigators have recently proposed new techniques to improve performance of both
aspects of the cross section lookups mentioned above. Leppänen [5] introduces both a unionized
and universal energy grid, showing significant performance improvements at the cost of greatly
increased memory footprint. Brown [6] proposes a new hash-based energy lookup algorithm that
reduces the length of the grid index search by providing search bounds for each nuclide, producing
speedups with little increase in memory footprint. In [7] a classic “energy banding” algorithm is
reinterpreted to reduce lookup latency by maximizing the chance of cache reuse. In [8], the authors
leverage the superior bandwidth of GPUs to offload large numbers of parallel cross section lookups
to effectively mask latency.

In the present work our focus is optimization of the grid index search problem as one key step
in improving time to solution and memory footprint in MC codes. To accomplish this we apply the
fractional cascade (FC) technique [9] to the nuclide grid indices, resulting in a method that aims to
provide an optimal compromise between grid search performance and memory footprint. The goal is
to achieve memory usage close to that of the nuclide grid but with runtime performance comparable
to the unionized grid. The FC method is programmed in the OpenMC code [10], and performance
results are compared with several existing approaches for the H-M benchmark. Overall the FC
approach shows comparable or superior runtime performance, negligible initialization overhead,
and a memory footprint always less than twice the nuclide grid approach.∗

∗We consider the universal grid impractically large for robust depletion calculations of large power reactors.

Page 2 of 8

Using fractional cascading to accelerate cross section lookups in Monte Carlo neutron transport calculations

2 BACKGROUND

In continuous-energy MC codes, the macroscopic cross section must be recalculated each time
a particle changes energy (through a collision) or travels into another material. These computations
require the storage of microscopic cross section values for each reaction type for every nuclide in
the model over the range of all possible particle energies. The cross section tables are formulated
to be dense enough such that linear interpolation between the bounding values for any particle
energy will produce a result within a specified tolerance. In order to ensure adequate precision
of the interpolated values, the number of the data points and the distribution of energies is highly
dependent on the nuclide. In fact, the number of energy values can differ by over two orders of
magnitude between elements depending on the complexity of their cross section functions. This
disparity between the size and distribution of the data necessitates a separate energy and cross
section grid for each nuclide.

The most straightforward approach to storing the data and performing the cross section lookups
is referred to as the nuclide grid method. Every nuclide has its own distinct grid of energy values
as well as a grid of the microscopic cross section values corresponding to each energy. Since the
distribution of the energy values is unique to the nuclide, every time the microscopic cross section
for a particular nuclide must be determined a binary search is performed on that nuclide’s energy
grid. Though the binary search itself takes only O(log n) time for an energy grid of length n, the
search must be repeated for each nuclide in a material each time the macroscopic cross section is
computed. The space required to store the grid structure is minimal compared to other schemes,
but the repeated searches have a noticeable detrimental effect on performance, especially when the
material is composed of a large number of nuclides (for example, in the case of fuel).

A method originally described by Leppänen [5] and currently implemented in OpenMC known
as the unionized grid sacrifices memory in order to improve performance by precomputing some
information. The unionized grid decreases the time spent doing cross section lookups by reducing
the number of grid index searches in any material to a single binary search. To accomplish this, a
supplementary energy grid structure is created on top of the nuclide grid. This structure consists of
a single comprehensive energy grid constructed from the union of the energy values of each of the k
nuclide’s energy grids as well as a list of k integers, referred to as pointers, associated with each
energy in the unionized grid. The pointer associated with energy E on the unionized energy grid and
with nuclide i identifies the index that would be returned in a search for E in i’s nuclide energy grid.
This new data structure accelerates the grid index search by requiring only a single binary search to
locate the particle’s energy on the unionized grid. The location of the energy on the nuclide grids
and the related cross section values are then determined through a series of indirections using the
corresponding pointers. Though a significant performance improvement can be achieved using this
method, it is done at the cost of increasing the memory footprint of the energy and cross section
tables by approximately an order of magnitude.

Page 3 of 8

Lund et al.

Figure 1. A representation of the cascade grid structure and lookup procedure for a model
with 4 nuclides, with the original nuclide energy grids shown on the left and the augmented
energy grids and pointers shown on the right. A single binary search is performed on the
top augmented grid. The first pointer indicates the location of the energy on the nuclide grid,
and the second pointer indicates the location of the energy on the next augmented grid. The
arrows show the process of following the pointers and cascading down the grids to find the
location of the energy on each nuclide grid.

3 THE CASCADE GRID AND LOOKUP ALGORITHM

In an effort to preserve the smaller space requirement of the nuclide grid structure while
achieving a faster query time, the FC technique is employed to construct what we will refer to as the
cascade grid and to accelerate the cross section lookups without any loss in data or accuracy. Like
the unionized grid, the cascade grid method boosts performance by supplementing the nuclide grid
structure with additional energy arrays and precomputed information about the location of energy
values, but it does so while increasing the memory footprint by no more than 2×.

The cascade grid structure consists of the original k nuclide energy grids, a new set of k
augmented energy grids, and a pointer pair associated with each value in the augmented grids.
To build the augmented grids, each of the original energy grids is expanded with values from the
grid immediately following it in order to correlate the two so that a lookup in one facilitates a
lookup in the other. The pair of pointers accompanying an augmented grid energy value E provide
information about the location of E on other energy grids: the first pointer is the index of E on
the original nuclide grid, and the second pointer is the approximate index of E on the following
augmented grid. The structure is designed to maintain a correspondence both between the adjacent
pairs of augmented grids and between each augmented grid and the original grid from which it was
constructed.

More precisely, let {M1,M2, . . . ,Mk} denote the set of augmented energy grids in a model
with k total nuclides and with nuclide energy grids {L1, L2, . . . , Lk}. Furthermore, let each energy
E ∈Mi have two pointers, p1 and p2, associated with it. In OpenMC, the cascade grid data structure
is implemented in the following manner:

Page 4 of 8

Using fractional cascading to accelerate cross section lookups in Monte Carlo neutron transport calculations

1. The final augmented energy grid Mk is the same as the final energy grid Lk

2. The augmented energy grid Mi is a sorted list containing every element in Li and every
second element in Mi+1

3. The pointer p1 associated with energy E in Mi is the index of E in Li

4. The pointer p2 associated with energy E in Mi is the approximate index of E in Mi+1.
Specifically, it is either the index of E in Mi+1 or one more than the index of E in Mi+1

From 2, the size of an augmented list Mi can be shown by induction to be

|Mi| = |Li|+
1

2
|Li+1|+ . . .+

1

2j
|Li+j|+ . . .+

1

2k−i
|Lk|. (1)

The upper bound on the total size of the data structure can then be shown to be twice the size of the
original set of lists:

k∑
i=1

|Mi| = |L1|+
(

1 +
1

2

)
|L2|+ . . .+

(
1 +

1

2
+ . . .+

1

2k−1

)
|Lk| ≤ 2

k∑
i=1

|Li| (2)

Figure 1 illustrates the cascade grid structure and lookup process. To locate the position of
an energy E in each of the nuclide energy grids, a binary search is performed on only the first
augmented grid M1. The pointer p1 associated with the returned index then identifies the position
that would be returned when searching for E in the nuclide grid L1, and the pointer p2 identifies
the approximate position that would be returned when searching for E in the following augmented
grid M2. To determine the true location of E in M2, a single comparison is made between the value
at p2 and the value at p2 − 1. This process of following the pointers is repeated down to the last
augmented grid Mk. The procedure for calculating the macroscopic cross section of a material using
the cascading energy grid structure where the given material region is composed of m nuclides and
each nuclide i in the material has atomic density ρi is presented in Algorithm 1.

Algorithm 1 Cascade Grid Macroscopic Cross Section Lookup
1: for i← 1,m do . for each nuclide in material
2: if i = 1 then . if on first nuclide
3: j ← binary search(Mi, Ep) . find index of energy using binary search
4: else . if not on first nuclide
5: j ← p2 . find index of energy using pointer
6: end if
7: p1, p2 ←Mi, j . lookup pointers associated with energy
8: σ ← i, p1 . lookup microscopic cross section
9: Σ← Σ + ρiσ . accumulate macroscopic cross section

10: end for

In problems where the number of nuclides in a material varies significantly (e.g., in a problem
that contains both fuel, made up of hundreds of nuclides, and water, consisting of only two), there

Page 5 of 8

Lund et al.

would be a penalty incurred for cascading through the full set of nuclides to retrieve the values for
any material composed of only a few nuclides. In OpenMC, the cascade grid is implemented such
that the binary search is performed on the augmented array belonging to the first nuclide in the
material (rather than the first nuclide in the problem) and the cascade process terminates at the last
nuclide in the material. The cascade structure is ordered by nuclide in a way that reduces the depth
needed to cascade down the grids to retrieve the values for each material. As a result, overhead
from unnecessary null operations is avoided.

4 NUMERICAL EXPERIMENTS

To test the performance of the cascade grid algorithm, OpenMC was modified to provide the
runtime option to store the nuclear data in cascade grid format. A series of numerical experiments
were then carried out to measure the performance and memory footprint of the cascade grid
compared to the nuclide grid and the unionized grid. Two benchmark problems were used – the
popular Hoogenboom-Martin performance benchmark, referred to as Small H-M in the tables, with
68 total nuclides, and a modified version of Hoogenboom-Martin which uses a full nuclide inventory
in the fuel region, referred to as Large H-M, with 362 total nuclides. For the Large H-M Tramm et
al. [2] observe that 85–90% of the computation time was spent in the cross section lookup loop,
which then provides a good use case for expected performance improvements of the cascade grid
approach. All experiments were carried out on both a PC node consisting of two Intel Xeon E5-2650
octo-core CPUs and a single node of the IBM Blue Gene/Q (BG/Q) supercomputer Mira consisting
of 16 physical CPUs. We commonly employ these systems for production computing, and as they
represent two vastly different strategies in architecture design it is useful to test and compare our
conclusions between them.

Table I. Memory footprint of the three energy grid methods.
Small H-M Large H-M

Nuclide Grid 52 MB 157 MB
Cascade Grid 94 MB 299 MB
Unionized Grid 408 MB 5637 MB

To gain a comprehensive view of the tradeoffs and limitations of each algorithm, we focused on
comparing four key quantities: memory footprint, grid creation startup cost, cumulative macroscopic
cross section lookup time, and resulting particle tracking rate. Table I presents the memory
requirement of each of the three grid structures for both the Large H-M and Small H-M benchmarks.
The unionized grid uses 8× more memory than the nuclide grid for the Small H-M, and scales
poorly as the number of nuclides in the problem increases, requiring 36× more memory (5.6 GB
total) than nuclide grid structure for the Large H-M. The space requirement of the cascade grid
structure, on the other hand, is never more than twice that of the nuclide grid and even for the Large
H-M is only a few hundred MB.

Results for grid creation startup cost, total time spent carrying out the macroscopic cross section
lookups, and particle tracking rate are presented in Table II for the two different compute systems
mentioned previously. The speedup and relative timings observed between the three grid methods

Page 6 of 8

Using fractional cascading to accelerate cross section lookups in Monte Carlo neutron transport calculations

Table II. Timing results for the three energy grid methods.
Intel Xeon E5-2650 IBM Blue Gene/Q Vesta

Creation Σ Lookup Calculation Creation Σ Lookup Calculation
Time Time Rate Time Time Rate

Small H-M
Nuclide Grid 0.00 s 41.4 s 3780 n/s 0.0 s 315.3 s 440 n/s
Cascade Grid 0.03 s 24.1 s 5610 n/s 0.1 s 200.3 s 588 n/s
Unionized Grid 1.72 s 30.2 s 4780 n/s 13.1 s 207.6 s 576 n/s
Large H-M
Nuclide Grid 0.00 s 437.3 s 458 n/s 0.0 s 2265.5 s 83 n/s
Cascade Grid 0.09 s 371.1 s 525 n/s 0.3 s 1748.9 s 105 n/s
Unionized Grid 36.84 s 329.3 s 640 n/s 156.2 s 1275.0 s 140 n/s

are consistent between the two systems. The grid creation time for the cascade method is negligible,
never exceeding a few hundred milliseconds on either system for either problem size. The unionized
grid, on the other hand, takes a significant amount of time to set up, from seconds to several minutes
on BG/Q running the Large H-M. This startup cost can amount to a non-trivial proportion of the
total runtime depending on the problem, but is typically most significant when doing frequent,
high-turnaround test cases.

The performance benefit of the cascade and unionized grids is evident when comparing the
time spent doing the macroscopic cross section lookups. Both techniques are able to greatly reduce
the computational time spent on the energy search and cross section retrieval, which translates into
an improved calculation rate. The unionized grid method consistently achieves a higher particle
tracking rate (measured in neutrons/second) than the nuclide grid. However, while requiring only
a single binary search, the unionized grid has greater hidden memory costs due to indirection,
and thus in practice some erosion of the expected performance benefit given strictly the reduced
number of operations is observed. The cascade grid method also generates considerable speedups
in calculation rate for each benchmark and compute system. Compared against the nuclide grid
method, the cascade grid attains tracking rate speedups of 1.2-1.5×. Additionally, it demonstrates
comparable or superior performance to that of the unionized grid. When run on the Small H-M
benchmark on either system, it performs better than the unionized grid method, though on the Large
H-M benchmark its calculation rate is slightly lower. However, it possesses the added benefits of
small memory usage and trivial startup cost.

5 CONCLUSIONS

Applying the FC technique to the energy grid index search problem in the OpenMC particle
transport code produces considerable speedups in the particle tracking rate with trivial initialization
overhead and little increase in memory usage. The performance is consistently superior to that of the
nuclide grid method and comparable to or better than that of the unionized grid method depending
on the model. Unlike the unionized grid method, the startup cost for the cascade grid is negligible.
Additionally, the memory footprint of the cascade grid never exceeds twice that of the nuclide grid,

Page 7 of 8

Lund et al.

requiring at most a few hundred MB for the Large H-M benchmark compared to the several GB
required of the unionized grid method. The cascade grid presents a suitable compromise between
performance and memory footprint for continuous-energy Monte Carlo transport calculations.

6 REFERENCES

[1] K. Smith, “Reactor Core Methods,” Proceedings of M&C 2003 International Conference,
Gatlinburg, Tennessee, USA, April 6–10, 2003.

[2] J. R. Tramm and A. R. Siegel, “Memory Bottlenecks and Memory Contention in Multi-Core
Monte Carlo Transport Codes,” Proceedings of SNA+MC 2013, Paris, France, Oct 27–31,
2013.

[3] J. E. Hoogenboom, W. R. Martin, and B. Petrovic, “The Monte Carlo Performance Benchmark
Test – Aims, Specifications, and First Results,” Proceedings of International Conference on
Mathematics and Computational Methods Applied to Nuclear Science and Engineering, Rio
de Janeiro, Brazil, May 8–12, 2011.

[4] A. R. Siegel, K. Smith, P. K. Romano, B. Forget, and K. G. Felker, “Multi-core perfor-
mance studies of a Monte Carlo neutron transport code,” The International Journal of High
Performance Computing Applications, 28, pp. 87–96 (2014).

[5] J. Leppänen, “Two practical methods for unionized energy grid construction in continuous-
energy Monte Carlo neutron transport calculation,” Annals of Nuclear Energy, 36, 7, pp.
878–885 (2009).

[6] F. B. Brown, “New Hash-Based Energy Lookup Algorithm for Monte Carlo Codes,” Trans.
Am. Nucl. Soc., 111, 1, pp. 659–662 (2014).

[7] A. Siegel, K. Smith, K. Felker, P. Romano, and B. Forget, “Improved cache performance in
Monte Carlo transport calculations using energy banding,” Comput. Phys. Commun., 185, pp.
1195–1199 (2014).

[8] A. R. Siegel, J. Tramm, T. Scudiero, and P. K. Romano, “A strategy for accelerating Monte
Carlo criticality calculations using GPUs,” (2014), Manuscript submitted for publication.

[9] B. Chazelle and L. J. Guibas, “Fractional cascading: I. A data structuring technique,” Algo-
rithmica, 1, 1-4, pp. 133–162 (1986).

[10] P. K. Romano and B. Forget, “The OpenMC Monte Carlo particle transport code,” Annals of
Nuclear Energy, 51, pp. 274–281 (2013).

Page 8 of 8

	Introduction
	Background
	The Cascade Grid and Lookup Algorithm
	Numerical Experiments
	Conclusions
	References

