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Abstract  43	
  

In this research, we propose a methodology to develop OD matrices using mobile phone Call 44	
  

Detail Records (CDR), which consist of time stamped tower locations with caller IDs, and 45	
  

limited traffic counts. CDR from 2.87 million users from Dhaka, Bangladesh over a month and 46	
  

traffic counts from 13 key locations of the city over 3 days of the same period are used in this 47	
  

regard. The individual movement patterns within certain time windows are extracted first from 48	
  

CDR to generate tower-to-tower transient OD matrices. These are then associated with 49	
  

corresponding nodes of the traffic network and used as seed-OD matrices in a microscopic traffic 50	
  

simulator. An optimization based approach, which aims to minimize the differences between 51	
  

observed and simulated traffic counts at selected locations, is deployed to determine scaling 52	
  

factors and the actual OD matrix is derived. The applicability of the methodology is supported by 53	
  

a validation study.   54	
  

 55	
  

Keywords: Mobile phone, Origin-Destination, Video Count, Traffic Microsimulation  56	
  



1. Background 57	
  

Reliable Origin-Destination (OD) matrices are critical inputs for analyzing transportation 58	
  

initiatives. Traditional approaches of developing OD matrices rely on roadside and household 59	
  

surveys, and/or traffic counts. The roadside and household surveys for origin destination involve 60	
  

expensive data collection and thereby have limited sample sizes and lower update frequencies. 61	
  

Moreover, they are prone to sampling biases and reporting errors (e.g.1,2,3). Estimation of 62	
  

reliable OD matrices from traffic link count data on the other hand is extremely challenging 63	
  

since very often the data is limited in extent and can lead to multiple plausible non-unique OD 64	
  

matrices (4,5). A number of Bayesian methods (e.g.6,7,8), Generalized Least Squares approaches 65	
  

(e.g.9,10), Maximum Likelihood Approaches (11), and Correlation Methods (e.g.12,13,14) have 66	
  

been used to tackle the indeterminacy problem. These approaches typically use target matrices 67	
  

based on prior information for generating the plausible route flows and are very sensitive to this 68	
  

prior information as well as to the chosen methodology (15). More recent approaches for OD 69	
  

estimation include automated registration plate scanners (16)  and mobile traffic sensors such as 70	
  

portable GPS devices (e.g.17,18,19) . The practical successes of these approaches have however 71	
  

been limited due to high installation costs of the license plate readers and the low penetration 72	
  

rates of GPS devices (especially in developing countries). 	
  73	
  

Mobile phone users on the other hand also leave footprints of their approximate locations 74	
  

whenever they make a call or send an SMS. Over the last decade, mobile phone penetration rates 75	
  

have increased manifold both in developed and developing countries: the current penetration 76	
  

rates being 128% and 89% in developed and developing countries respectively (20). 77	
  

Subsequently, mobile phone data has emerged as a very promising source of data for 78	
  

transportation researchers. In recent years, mobile phone data have been used for human travel 79	
  

pattern visualization (e.g. 21,22,23),  mobility pattern extraction (e.g. 24,25,26,27,28,29), route 80	
  

choice modeling (e.g. 30,31), traffic model calibration (e.g. 32), traffic flow estimation (33)  to 81	
  

name a few. There have been several limited scale researches to explore the feasibility of 82	
  

application of mobile phone data for OD estimation as well. Wang et al. (34) for instance use a 83	
  

correlation based approach to dynamically update a prior OD matrix using time difference of 84	
  

phone signal receipt times of base stations and Caceras et al. (35) use a GSM network simulator 85	
  

to simulate the detailed movements of phones that are turned on. But both of these feasibility 86	
  

studies are based on synthetic data in small networks and the practical application is challenging 87	
  

given the need to collect and process detailed location data (which are currently processed by the 88	
  

mobile phone companies for load management purposes but are not stored). The potential 89	
  

estimate OD matrices using mobile phone Call Detail Records (CDR) (which are stored by 90	
  

operators for billing purposes and hence more readily available) have also been explored (e.g. 91	
  

36,37,38).  Mellegård et al. (36) have developed an algorithm to assign mobile phone towers 92	
  

extracted from CDR to traffic nodes and Calabrese et al. (37) have proposed a methodology to 93	
  

reduce the noise in the CDR data but both studies have focused more on computation issues and 94	
  

the relationship between the mobile phone OD and the traffic OD have not been explored in 95	
  



detail. Wang et al. (38) have used an analytical model to scale up the ODs derived from CDR by 96	
  

using the population, mode choice probabilities and vehicle occupancy and usage ratios and have 97	
  

validated it using probe vehicle data. The methodology however relies heavily on availability of 98	
  

traffic and demographic data in high spatial resolution which may not be always available, 99	
  

particularly in developing countries. 100	
  

In this research, we propose a methodology to develop OD matrices using mobile phone CDR 101	
  

and limited traffic counts. CDR from 2.87 million users from Dhaka, Bangladesh over a month 102	
  

are used to generate the OD patterns on different time periods and traffic counts from 13 key 103	
  

locations of the city over a limited time are used to scale it up to derive the actual ODs using a 104	
  

microscopic traffic simulator. The methodology is particularly useful in situations when there is 105	
  

limited availability of high resolution traffic and demographic data. The ODs are validated by 106	
  

comparing the simulated and observed traffic counts of a different location (which has not been 107	
  

used for calibration).  108	
  

The rest of the paper is organized as follows. First we describe the data followed by the 109	
  

methodology used for development of the OD matrix. The estimation and validation results are 110	
  

presented next. We conclude with the summary of findings and directions for future research.   111	
  

2. Data 112	
  

2.1 Study Area 113	
  

The central part of the Dhaka city has been selected as the study area and the major roads in the 114	
  

network has been coded.  This consists of 67 nodes and 215 links covering an area of about 115	
  

300km2 with a population of about 10.7million (39). The average trip production rate is 2.74 per 116	
  

person per day with significant portions of walking (19.8%) and non-motorized transport trips 117	
  

(38.3%) (39).The traffic is subjected to severe congestion in most parts of the day, the average 118	
  

speed being only 17km/hr1.  119	
  

The mobile phone penetration rate is approximated to be more than 90% in Dhaka (66.36% 120	
  

being the national average) and Grameenphone Ltd. has the highest market share with 42.7m 121	
  

mobile phone subscribers nationwide (40). 122	
  

2.2 CDR Data 123	
  

The CDR data, collected from Grameenphone Ltd, consists of calls from 6.9 million users 124	
  

(which are more than 65% of the population of the study area) over a month. This comprises of 125	
  

971.33 million anonymized call records in total made in between June 19, 2012 and July 18, 126	
  

2012. The majority of the users (63%) have made 100 calls or less over the month. The 127	
  

frequencies of users making certain number of calls over the month and on a randomly selected 128	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  Excluding the non-motorized vehicles which are restricted from entering the major roads	
  



day (15th July, 2012) are presented in Figure 1. It may be noted that no demographic data related 129	
  

to the phone users are available. 130	
  

 131	
  

    132	
  

 133	
  
Figure 1:  Frequency of calls per user  134	
  

2.3 Traffic Count Data 135	
  

Video data, collected from 13 key locations of Dhaka city network over 3 days (12th, 15th and 136	
  

17th July 2012) have been used in this study to extract the traffic counts2. The locations (shown 137	
  

in Figure 2) have been selected such that they cover the major roads (links) of Dhaka city with 138	
  

flows from major generators and governed by the availability of foot over bridges for mounting 139	
  

video cameras. Since MITSIMLab is developed for lane-based motorized traffic, care has been 140	
  

taken to avoid roads that have high percentages of non-motorized transport and where lane-141	
  

discipline is not strictly followed. The data has been collected for 8 hrs (8.00 am to 12.00 noon 142	
  

and 3.00 pm to 7.00pm) and analyzed using the software TRAZER (41) to generate classified 143	
  

vehicle counts. Due to inclement weather and poor visibility some portion of the data is non-144	
  

usable though. Moreover, TRAZER (which is the only commercial software that can deal with 145	
  

mixed traffic streams with ‘weak’ lane discipline) has high misspecification rates in presence of 146	
  

high congestion levels and in those cases, manual counting has been performed instead.  147	
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2	
  There are no loop detectors or any other automatic traffic counters in Dhaka	
  	
  



 149	
  

 150	
  
Figure 2: Locations of video data collection and position of OD generating nodes 151	
  

3. Methodology  152	
  

Each entry in the CDR contains unique caller id (anonymized), the date and time of the call, call 153	
  

duration and latitude and longitude of the Base Transceiver Station (BTS). A snapshot of the data 154	
  

is presented in Figure 1. As seen in the figure, if a person traverses within the city boundary and 155	
  

uses his/her phone from different locations that is captured in the CDR. CDR can thus provide an 156	
  

abstraction of his/her physical displacements over time (Figure 3).  157	
  

ID	
   Call	
  Date	
   Call	
  Time	
   Duration	
   Latitude	
   Longitude	
  

AH03JAC8AAAbXtAId	
   20120701	
   09:34:19	
   18	
   23.8153	
   90.4181	
  

AAH03JABiAAJKnPAa5	
   20120707	
   06:15:20	
   109	
   23.8139	
   90.3986	
  

AAH03JABiAAJKnPAa5	
   20120707	
   09:03:06	
   109	
   23.7042	
   90.4297	
  

AAH03JABiAAJKnPAa5	
   20120707	
   10:34:19	
   16	
   23.6989	
   90.4353	
  

AAH03JABiAAJKnPAa5	
   20120707	
   18:44:53	
  	
   154	
   23.6989	
   90.4353	
  

AAH03JABiAAJKnPAa5	
   20120707	
   20:00:08	
   154	
   23.8092	
   90.4089	
  

AAH03JAC5AAAdAYAE	
   20120701	
   09:15:05	
   62	
   23.7428	
   90.4164	
  

AAH03JAC+AAAcVKAC	
   20120707	
   08:56:34	
   242	
   23.7908	
   90.3753	
  

AAH03JAC+AAAcVKAC	
   20120701	
   18:03:06	
   36	
   23.9300	
   90.2794	
  

AAH03JAC5AAAdAYAA	
   20120701	
   11:15:55	
   12	
   23.7428	
   90.4164	
  

 158	
  

Figure 3:  An excerpt from CDR data (entries of the same user are highlighted) and locations of 159	
  

a random user “AAH03JABiAAJKnPAa5” throughout the day as observed in data 160	
  



However, in the CDR data, a user’s location information is lost when he/she does not use his/her 161	
  

phone. As shown in Figure 4, according to the CDR, a user may be observed to move from zone 162	
  

B to zone C, but his/her initial origin (O) and final destination (D) may actually be located in 163	
  

zone A and zone D. In such cases, a segment of the trip information is unobserved in the CDR. 164	
  

However, the mobile phone call records enable us to capture the transient origins and 165	
  

destinations which still retain a large portion of the actual ODs. Thus, we use the concept of 166	
  

transient origin destination (t-OD) matrix (as used by Wang et al. (38)), which uses the mobile 167	
  

phone data to efficiently and economically capture the pattern of travel demand. 168	
  

 169	
  

Figure 4:  Actual vs. Transient OD 170	
  

The second source of data used in this research is classified traffic counts extracted from video 171	
  

recordings collected from 13 key locations of Dhaka. These counts represent the ground truth 172	
  

but are more expensive to collect3 and limited in extent (only 3 days). This limited point source 173	
  

data therefore cannot be used as a stand-alone source to reliably capture the OD pattern. 174	
  

In this research, we therefore plan to combine the two data sources. The OD pattern is generated 175	
  

using the CDR data and scaled up to match the traffic counts. The scaling factors are determined 176	
  

using a microscopic traffic simulator platform MITSIMLab (42) using an optimization based 177	
  

approach which aims to minimize the differences between observed and simulated traffic counts 178	
  

at the points where the traffic counts are available.  179	
  

The methodology is summarized in Figure 5 and described in the subsequent sections. 180	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3	
  There	
  are	
  no	
  detectors	
  or	
  any	
  other	
  traffic	
  count	
  mechanisms	
  in	
  Dhaka	
  



 181	
  
Figure 5:  Framework for developing OD Matrix 182	
  

3.1 Generation of tower-to-tower transient OD matrix 183	
  

The time-stamped BTS tower locations of each user are first extracted from the mobile phone 184	
  

CDR data and used for generating tower-to-tower transient OD matrix. The CDR however only 185	
  

contains sparse and irregular records (28), in which user displacements (consecutive non-186	
  

identical locations) are usually observed with long travel intervals i.e. the first location may be 187	
  

observed at 8:56 and next location may be observed at 18:03 with no information about 188	
  

intermediate locations (if any) or the time when the trip in between these two locations have been 189	
  

made.  190	
  

Another limitation is the CDR data often records changes in towers in spite of no actual 191	
  

displacement (as the operator balances call traffic among adjacent towers). To better identify 192	
  

timing and origin-destinations of specific trips and reduce the number of false displacements, we 193	
  

therefore extract displacements that have occurred within a specific time window. A lower bound 194	
  

in the time window (10 minutes) is imposed to reduce the number of false displacements without 195	
  

affecting the number of physical displacements occurring within short intervals. An upper bound 196	
  

in the time window (1 hr) is imposed to ensure that meaningful numbers of trips are retained.  197	
  

Therefore, a person trip is recorded if in the CDR, subsequent entries of the same user indicate a 198	
  

displacement (change in tower) with a time difference of more than 10 minutes but less than 1 199	
  

hour.  200	
  

Further, both call volumes (from CDR data) and traffic volumes (from traffic counts) had 201	
  

significant variations throughout the day. Based on correlation analysis of total mobile call 202	
  

volumes and total traffic counts (Figure 6), four time periods (7:00-9:00, 9:00-12:00, 15:00-203	
  

17:00 and 17:00-19:00), have been chosen for analysis. 204	
  



 205	
  

 206	
  

Figure 6:  Hourly variations a. traffic count b. transient ODs from mobile call records 207	
  

3.2 Conversion of tower-to-tower t-OD to node-to-node t-OD 208	
  

For application of the t-ODs in traffic analyses, the origin and destination towers need to be 209	
  

associated with corresponding nodes of the traffic network. The typical tower coverage area can 210	
  

be represented as a combination of three hyperbolas (Figure 7), the size varying depending on 211	
  

tower height, terrain, locations of adjacent towers and number of users active in the proximity 212	
  

(which can vary dynamically).  213	
  

 214	
  

Figure 7: Typical coverage area of a tower (http://www.truteq.co.za/tips_gsm/) 215	
  



The population density in the chosen study area is very high (more than 8111 inhabitants/sq. km 216	
  

(44) and the tower locations are very close to each other (1 km on average). Because of the high 217	
  

user density, it can be assumed that the area between two towers is equally split among the two 218	
  

towers (Figure 8) that is, each tower t has a coverage area (At) approximately defined by a circle 219	
  

of radius 0.5l, where l is the tower-to-tower distance. 220	
  

 221	
  

 222	
  
Tower 6 and Node 3 need to be added to Figure 223	
  

 224	
  

Tower
Candidate	
  
Node

Tower
Candidate	
  
Node

AAH03JA 20120718 15:54 6 1 AAH03JA 14:54 6 3 1 1 AAH03JA 14:54 3 1
AAH03JA 20120718 16:13 1 2 AAH03JA 16:13 1 1 2 2	
  Or	
  1	
   AAH03JA 16:13 1 1
AAH03JA 20120718 16:15 2 1 AAH03JA 16:15 2 2	
  Or	
  1	
   1 1 AAH03JA 16:15 1 1
AAH03JA 20120718 18:53 1 6 AAH03JA 18:53 1 1 6 3 AAH03JA 18:53 1 3
AAH03JA 20120718 20:49 6 1 AAH03JA 20:49 6 3 1 1 AAH03JA 20:49 3 1
AAH03JA 20120718 23:41 1 6 AAH03JA 23:41 1 1 6 3 AAH03JA 23:41 1 3

IDID Call	
  Date
Call	
  
Time

Origin	
  
Tower

Destination	
  
Tower

Origin	
  
Node

Destination	
  
Node

Call	
  
Time

Origin Destination

ID
Call	
  
Time

225	
  
a. Tower-to-tower OD           b. Intermediate OD with candidate nodes  c. Node-to-node OD  226	
  
Figure 8:  Example of tower to node allocation 227	
  

If a unique traffic node i overlaps with At, the calls handled by t are associated with node i (as in 228	
  

the case of Tower 1in Figure 6). However, if At has two (or more) candidate nodes for 229	
  

association, then the candidate nodes are ranked based on the proportion of At
 feeding to each 230	
  

node. That is, the node serving greatest portion of At is ranked 1, the node serving second highest 231	
  

portion of At is ranked 2, etc. For example, in Figure 6, network connectivity (feeder roads) and 232	
  

topography (presence of a canal with no crossing facility in the vicinity) denote that Node 1 and 233	
  

Node 2 are candidate nodes for association with Tower 2. As the major portion of At is connected 234	
  

to Node 2 and the remaining portion is connected to Node 1, they are ranked 1 and 2 respectively 235	
  

for Tower 2. The data format after this step is presented in Figure 7b. As seen in the figure, this 236	
  

typically consists of call records associated with unique nodes and some calls associated with 237	
  

multiple candidate nodes. The calls are then sorted and ranked based on the frequency of the 238	
  

unique nodes used by each user.  The frequency of occurrence of the candidate nodes are 239	
  



compared and used as the basis of replacement. For example, frequency analysis of User 240	
  

“AAH03JA” indicates a higher frequency of Node 1. Therefore, in cases where there are 241	
  

ambiguities between Nodes 2 and 1, Node 1 is used (for this particular user).  242	
  

The same process is used for all users and node-to-node t-OD matrices for each time period of 243	
  

each day are derived. 244	
  

 245	
  

3.3 Finding the scaling factor and determining the actual OD matrix 246	
  

As discussed, the node-to-node t-OD matrix (𝑡-­‐𝑂𝐷!")  provides the trip patterns for developing the 247	
  

actual OD matrix (O𝐷!"). However, in order to determine the actual OD matrix, the t-OD needs to 248	
  

be scaled to match the real traffic flows. A scaling factor 𝛽!"   is used in this regard: 249	
  

𝑂𝐷!" = (𝑡
!"

-­‐𝑂𝐷!") ∗ 𝛽!" 

It may be noted that 𝛽!"   takes into account the market penetration rates (i.e. not every user has a 250	
  

mobile phone or uses the specific service provider), the mobile phone non-usage issue (i.e. 251	
  

mobile phone calls are not made from every location traversed by the user), the vehicle usage 252	
  

issue (i.e. users may not use cars for every trip). The potential error introduced due to false 253	
  

displacement (described in Section 2.1) is also accounted for in the scaling factors. 254	
  

The scaling factors are determined using the open-sourced microscopic traffic simulator platform 255	
  

MITSIMLab (42) by applying an optimization based approach. The movements of vehicles in 256	
  

MITSIMLab are dictated by driving behavior models based on decision theories and estimated 257	
  

with detailed trajectory data using econometric approaches. Route choices of drivers are based 258	
  

on a discrete choice based probabilistic model where the utilities of selecting and re-evaluating 259	
  

routes are functions of path attributes, such as path travel times and freeway bias (see 43 for 260	
  

details). The inputs of the simulator include network data, driving behavior parameters and OD 261	
  

matrix. The generated outputs include traffic flow at specified locations in the network.  262	
  

The node-to-node OD matrix derived from the mobile phone data are provided as the initial or 263	
  

seed-OD in this case. The simulated traffic flows are compared with the actual traffic flows 264	
  

extracted from video recordings. The objective function seeks to minimize the difference 265	
  

between the actual and simulated traffic flows in each location by changing the scaling factors. 266	
  

The optimization problem can be represented as follows:  267	
  

 268	
  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒,𝑍 = (𝑉!"#$!%! −   𝑉!"#$%&'()! )!!
!!!                            (1) 269	
  

                 Such  that,𝑂𝐷!",! =    𝑡-­‐𝑂𝐷!",! ∗ 𝛽!",!  !
!,!!!                                                                                                                                270	
  

Where, 271	
  

𝑉!"#$%&'()! = Traffic flow of link k of the road network from simulation 272	
  

𝑂𝐷!",!       = Actual OD between nodes i and j in time period t 273	
  

𝑡-­‐𝑂𝐷!",!    = Transient OD between nodes i and j in time period t 274	
  

𝛽!",!          = Scaling factor associated with the node pair i and j and time period t 275	
  



 K             = Total number of links for which traffic flow data is available 276	
  

N      = Total number of nodes in the network 277	
  

 278	
  

However, to make the optimization problem more tractable, group-wise scaling factors are used 279	
  

rather than an individual scaling factor for each OD pair. The grouping is based on the analyses 280	
  

of the CDR data. This simplifies the problem as follows: 281	
  

 282	
  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒,𝑍 = (𝑉!"#$!%! −   𝑉!"#$%&'()! )!!
!!!                            (2) 283	
  

                 Such  that, 𝑂𝐷!",! =    𝑡-­‐𝑂𝐷!",!! ∗ 𝛽!!    !
!!!                                                                                                                                284	
  

Where, 285	
  

𝑡-­‐𝑂𝐷!",!!      = Transient OD between node pair i and j in time period t where the node pair i,j 286	
  

                      belong to group m 287	
  

𝛽!!            = Scaling factor for group m and time period t 288	
  

M       = Total number of groups of OD-pairs 289	
  

 290	
  

4. Results 291	
  

The mobile phone network within the study area comprises of 1360 towers which have been 292	
  

assigned to 29 OD generating nodes (812 OD pairs). Out of the one month CDR data, the 293	
  

weekend data have been discarded. For each day, the calls of each user originating from two 294	
  

different towers in each of the time period have been extracted. After application of the transient 295	
  

trip definitions (displacements occurring more than 10mins but less than 1hr apart) and the tower 296	
  

to node conversion rules (elaborated in Section 3.2), the node-to-node t-ODs are derived. The 297	
  

total number of node-to-node t-ODs are presented in Table 1. 298	
  

Table 1: Node-to-node t-OD 299	
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4	
  Includes	
  weekends	
  

Time 
Period Time 

t-OD 
Total Over the Month4 Weekday Average 

1 7:00-9:00 397355 13681.86 

2 9:00-12:00 1915417 68418.48 

3 15:00-17:00 2255859 82226.05 

4 17:00-19:00 1549109 53950.57 



Analyses of the node-to-node transient flows indicate that the flows between adjacent nodes are 304	
  

substantially higher than those between non-adjacent nodes (Figure 9).  This is reasonable since 305	
  

given the low travel speed in Dhaka, a traveler may not be able to move very far in the 50min 306	
  

time window and the t-ODs mostly capture segments of a longer trip. However, part of it may 307	
  

also be due to the false displacement problem discussed in section 3.1. Therefore, the OD-pairs 308	
  

have been divided into two groups (adjacent and non-adjacent nodes) and the objective function 309	
  

to determine scaling factors has been formulated as follows: 310	
  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒,𝑍 = (𝑉!"#$!%! −   𝑉!"#$%&'()! )!!
!!!                            (3) 311	
  

               Such  that, 𝑂𝐷!",! =    𝑡-­‐𝑂𝐷!",!
!"# ∗ 𝛽!

!"#     !"# + 𝑡-­‐𝑂𝐷!",!
!"!-­‐!"# ∗ 𝛽!

!"!-­‐!"#     !"!-­‐!"#            312	
  

Where, 313	
  

𝑡-­‐𝑂𝐷!"
!"#          = Transient OD between node pair i and j in time period t where the node pair i,j 314	
  

                            are adjacent nodes 315	
  

𝑡-­‐𝑂𝐷!"
!"!-­‐!"#         = Transient OD between node pair i and j in time period t where the node pair i,j 316	
  

                           are non-adjacent nodes 317	
  

𝛽!
!"# ,𝛽!

!"!-­‐!"# = Scaling factors for time period t and adjacent and non-adjacent nodes 318	
  

                            respectively  319	
  

 320	
  

 321	
  

Figure 9: Comparison of  t-ODs between adjacent and non-adjacent nodes 322	
  



This yielded eight scaling factors in total that needed to be estimated from the simulation runs of 323	
  

MITSIMLab. Running the optimization process in MATLAB (that invokes MITSIMLab) and 324	
  

using a BOX algorithm (45), the following values of scaling factors have been derived.  325	
  

Table 2: Scaling Factors 326	
  

 327	
  

 328	
  

It is interesting to note that the scaling factors for adjacent nodes are higher than those of non-329	
  
adjacent in all time periods other than 15:00-17:00. This does not however indicate that most of 330	
  
the actual trips are to the adjacent nodes (since a full trip may consist of several segments each 331	
  
represented by a separate t-OD).  332	
  

The graphical representation of the t-ODs and actual ODs across the network for one of the time 333	
  
periods and the variations for an example node are presented in Figures 10 and 11 respectively. 334	
  

 
 

 

a. t-OD               b. actual OD  335	
  

Figure 10: t-ODs and actual ODs across the network for 7:00-9:00  336	
  

Time Period OD Type Scaling Factor 

7:00-9:00 Adjacent  6.787 
Non-adjacent 1.712 

9:00-12:00 Adjacent  0.971 
Non-adjacent 0.345 

15:00-17:00  Adjacent  1.647 
Non-adjacent 3.407 

17:00-19:00 Adjacent  9.404 
Non-adjacent 6.779 



 337	
  

Figure 11: Example of Transient and Actual Traffic Flows To and From a Node (Shyamoli) 338	
  

between 7:00-9:00. 339	
  

5. Validation 340	
  

In addition to the aggregate data used for calibration, traffic counts are collected from four 341	
  

additional locations on a different day. For validation purposes, the scaled up ODs have been 342	
  

applied to simulate the traffic between 9:00-12:00 in MITSIMLab and the simulated traffic 343	
  

counts are compared against the observed counts from these locations. In order to quantify the 344	
  

prediction error, Root Mean Square Error and Root Mean Square Percent Errors have been 345	
  

calculated and are found to be 335.09 and 13.59% respectively.   346	
  

6. Conclusion 347	
  

The main outcome of this research is the methodology for development of the OD matrix using 348	
  

mobile phone CDR and limited traffic count data. The strengths of both data sources are utilized 349	
  

in this approach:  the trip patterns are extracted from mobile phones and the ground truth traffic 350	
  

scenario are derived from the counts. The methodology is demonstrated using data collected 351	
  

from Dhaka.  352	
  

There are several limitations of the current research though. Firstly, in this research a simplified 353	
  

objective function with grouped scaling factors has been used. This overlooks the heterogeneity 354	
  

in call rates from different locations (e.g., more calls may be generated to and from railway 355	
  

stations compared to and from offices with land telephone lines, etc.). A more detailed 356	
  

classification of scaling factor can be used to overcome this bias and may yield better results. 357	
  

Moreover, in this particular context, detailed network data and extensive calibration data were 358	
  

not available which may have increased the simulation errors and affected the validation results.  359	
  

However, initial validation results indicate promising success in real life application by transport 360	
  

planners and managers.  361	
  



Since CDR is already recorded by mobile phone companies for billing purposes, the approach is 362	
  

more economic than the traditional approaches which rely on expensive household surveys 363	
  

and/or extensive traffic counts. It is also convenient for periodic update of the OD matrix and 364	
  

extendable for dynamic OD estimation. This method is particularly effective for generating 365	
  

complex OD matrix where land use pattern is heterogeneous and asymmetry in travelling pattern 366	
  

prevails throughout the day but there is a limitation of traditional data sources. 367	
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