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Abstract

First developed by Zakharov, Weak Turbulence Theory (WTT) aims at describing
the steady-state statistical property of an ensemble of waves in weakly nonlinear
interactions. In the wavenumber k£ domain, the WTT steady-state analytical solution
yields a power-law inertial-range spectrum I ~ k¢, with a constant energy flux P from
large forcing scales to small dissipative scales. Over the years, this result has found
applications in various physical contexts including plasma physics, optics, internal
waves, surface gravity and capillary waves. As a representative physical system with
three-wave resonant interactions, capillary wave turbulence has been the subject
of many investigations. In addition to the fundamental interest of this problem,
an accurate representation of capillary waves on water surface is also important in
understanding the air-sea interaction and remote sensing of the ocean.

We study capillary wave turbulence from both theoretical and computational con-
siderations. The original theoretical derivation, from the primitive Euler equations to
the Kinetic Equation (KE) which yields the final power-law solution I ~ CP'/2k=19/4,
is re-formulated. While an emphasis is placed on understanding the assumptions in
wave turbulence, we correct the analytical evaluation of the Kolmogorov Constant,
with C' = 6.97, different compared to the original derivation.

We then develop a tool, based on the High Order Spectral (HOS) method, to
simulate the primitive Euler equations on a Cartesian grid. The simulation confirms
the theoretical results, which can be approached at sufficiently high nonlinearity
level, and uncovers the physics at insufficient nonlinearity, namely with the steepened
power-law spectral slope and reduced capability of energy flux. These phenomena,
earlier observed experimentally in finite wave basin, are shown to be caused by the
finite-box effect, i.e., nonlinear resonance broadening becomes insufficient to overcome
the discreteness in k.

The mechanism of finite-box effect is further elucidated in the framework of the
KE. In order to incorporate the quasi-resonant interaction on a discrete grid, we
develop the quasi-resonant kinetic equation (QRKE) with the introduction of an
additional parameter x, which governs the ratio of nonlinear resonance broadening
and wavenumber discreteness. We show that the physics at sufficient and insufficient
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nonlinearity, as obtained in the simulation of primitive Euler equations, are recovered
in the results of K = ko and kK < ko, where k(o represents an upper limit of energy
flux by quasi-resonance approaching that of exact resonance in theoretically infinite
domain. This thus establishes the physical connection between nonlinearity level and
the features of the power-law spectrum, through the nonlinear broadening.

We finally apply the developed tool of primitive Euler equations to study the
freely-decaying capillary wave turbulence. The problem considered here is an ex-
tension of WTT, where the turbulence is allowed to evolve freely in the presence
of physically realistic broad-scale dissipation and finite-box effect. Based on our
numerical findings, we obtain a simple mathematical model, describing the evolution
of the power-law spectrum in the form of exponential modal decay from an initial
power-law spectrum. The evolving dynamics involved in this process is elucidated.

The investigations in this thesis are for the special case of capillary wave turbu-
lence, while our main findings are expected to also hold for weak turbulence in other
similar physical systems.

Thesis Supervisor: Dick K.P. Yue
Title: Philip J. Solondz Professor of Engineering
Professor of Mechanical and Ocean Engineering
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Chapter 1

Introduction

A description of the wind-generated waves on the ocean surface is of vital importance
for both engineering and oceanographic purposes. The wavelength of waves in a
typical wind sea ranges from O(1mm) to O(100m), and rich mechanisms are involved,
including energy input from wind, gravity/capillary wave-wave interactions, wave-
current-bathymetry interactions, and energy dissipation by viscosity and wave break-
ing. While a complete and accurate modelling of all these multi-scale mechanisms are
beyond the physical understanding and computational capability of today, the interest
of our research is focused on the capillary wave regime, which is the dominant part of
ocean surface with wavelength less than 17mm (see figure 1-1 for a sketch of the wind-
wave spectrum). Despite the narrow range in the wave spectrum, capillary waves play
an important role on the dynamics of the sea surface, e.g., the air-sea interactions
and energy transport and dissipation at small scales. Physically, we know little of the
wavenumber spectral distribution of these short waves, as well as their modulation
by and energy exchange with the underlying long swell. This information is crucial in
calculation of the acoustic and electromagnetic back-scattering, and thus sheds light
on the interpretation of microwave remote sensing of the ocean.

We consider the statistical property, at zero gravity, in the inertial range of
a capillary wavefield under weakly nonlinear interactions. This problem can be
generalized to nonlinear dispersive waves in different physical contexts, and bears

fundamental interests to physicists. It can be considered as a special case under
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Figure 1-1: Typical wind-wave spectrum of the ocean.

24

1000m



energy dissipation
supply inertial range i\ range
range

A 4

;‘T'V

Energy flux P

Figure 1-2: (left) A statistically stationary wavefiled; (right) its associated energy
spectrum.

weak nonlinearity to Kolmogorov’s general description of power-law cascade process
in the inertial range of turbulent flows (Kolmogorov, 1941) (see figure 1-2 for a sketch
of a statistically stationary wavefield and its associated energy spectrum). Due to
the additional assumption of weak nonlinearity, mathematical formulations are more
accessible and the cascade spectrum can be obtained as an exact stationary solution
of the Kinetic Equation (KE), which governs the evolution of wave spectrum due
to nonlinear resonant interactions. This methodology, named the Weak Turbulence
Theory (WTT) (Newell & Rumpf, 2011; Zakharov et al., 1992), has found applications
in various contexts of nonlinear waves, including plasma physics (Galtier et al., 2002),
optics (Dyachenko et al., 1992), internal waves (Lvov et al., 2004), surface gravity
and capillary waves (Zakharov & Filonenko, 1966, 1967). Despite the importance,
the validity and limitations of the WT'T solutions are not fully understood.

1.1 WTT of capillary waves

As a representative physical system with three-wave resonant interactions, capillary

wave turbulence has been the subject of many investigations. The theoretical frame-
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work of WTT of capillary waves is developed by Zakharov & Filonenko (1967) (and
reformulated in (Pushkarev & Zakharov, 2000; Stiassnie et al., 1991)). Under WTT
assumptions, including weak nonlinearity, infinite domain and dissipation at only
high wavenumbers, the isotropic spectrum of surface elevation yields a closed-form
stationary solution (with energy supply at large scales balanced by energy dissipation

at small scales) in the inertial range:

I(k) = I,(k) = C%k—”/‘l. (1.1)
Here and hereafter we use k to represent vector wavenumber and k& = |k|. In (1.1),
P (kg/s?) is the energy (density) flux to large wavenumbers, o (kg/s?) the surface
tension coefficient and p (kg/m?®) the fluid density. I, (m?) is defined (Zakharov
& Filonenko, 1967; Pushkarev & Zakharov, 2000) by (7(k)7*(k"))=1I,(k)é(k — k'),
with the angle bracket denoting ensemble average, star denoting complex conjugate,
and f(k) = 1/(2m) [[°2 n(r)e~™ *dr being the Fourier transform of surface elevation
n(r) = n(x,y). Leaving the proof in Chapter 2, we claim here that this definition of
I, is equivalent to the definition of energy density spectrum (see Phillips, 1985) with
a proportional factor. C' is the non-dimensional Kolmogorov Constant, analytically
evaluated in Pushkarev & Zakharov (2000), with a value of Cy = 9.85. Physically, it
represents the amount of energy flux that can be carried by a power-law spectrum at

certain magnitude, i.e., the capability of a power-law spectrum to transfer energy.

The validity of this solution (1.1), and especially the assumptions made in the
derivation, have received many investigations. In particular, the scaling of the spec-
trum with respect to wavenumber I, ~ k* has been tested experimentally (Falcon
et al., 2007; Wright et al., 1996; Brazhnikov et al., 2007; Xia et al., 2010) and
numerically (Pushkarev & Zakharov, 1996, 2000; Deike et al., 2014b). While the
exponents found in Falcon et al. (2007); Xia et al. (2010); Pushkarev & Zakharov
(1996, 2000); Deike et al. (2014b) are consistent with the theoretical value, deviations
are reported in Xia et al. (2010); Wright et al. (1996) with o = —5.3, and Brazhnikov

et al. (2007) with a = —6.0 under weak or narrow-band forcing.
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The scaling of I,, with P, and the value of Kolmogorov constant C, have remained
open questions. Recent experimental observations from two independent groups
Falcon et al. (2007); Xia et al. (2010) suggest that a linear scaling relation I, ~ P
should apply, in apparent disagreement with (1.1). This controversy is summarized
in Newell & Rumpf (2011), and appears now resolvable (Deike et al., 2014a) by
a better experimental estimation of P that distinguishes the energy flux from the
energy dissipation at large scales. There is no direct numerical investigation of this
scaling.

Attempts at estimating C' numerically are given in Pushkarev & Zakharov (2000)
and Deike et al. (2014b), by respectively a potential flow simulation and a Navier-
Stokes simulation, with reported values of C,,, = 1.7 and Cyg = 5.0. This value
is only recently measured experimentally (Deike et al., 2014a) with C.,, = 0.5.
The reasons for these discrepancies remain unclear. Resolving these controversies
requires both a close scrutiny of the theoretical derivation and understanding of
the physical discrepancy between WTT and simulations/experiments, e.g., finite box
effect (see Pushkarev & Zakharov, 1996) which limits the nonlinear resonance due to
wavenumber discreteness, occurring generally in finite computational domain/wave

basin.

1.2 Quasi-resonance in finite wave domain

In spite of the assumption of theoretically infinite domain in the derivation, the
tempted validation of (1.1) is usually conducted in a finite domain. This posed
questions including why the theoretical spectrum, derived based on the assumption
of infinite wave domain, can be recovered in realistic condition of finite wave domain,
and how the wavenumber discreteness in a finite domain affects the dynamics. Indeed,
these questions can be originated from the mathematical property of the exact triad
resonant conditions: In a rectangular finite domain, it is shown in Kartashova (1990)
that there is no solution of exact triad resonance, as the frequency-matching condition

turns into a particular case of Fermat’s last theorem. It has been shown in experiment
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(Denissenko et al., 2007) that the nonlinearity level plays a key role in the dynamics:
While the theoretical result can be approached at sufficient nonlinearity level, insuf-
ficient nonlinearity results in the steepened power-law spectral slope |a| > |ag|. To
understand this phenomenon, it is qualitatively argued (e.g. Pushkarev & Zakharov,
2000; Connaughton et al., 2001) that the energy transfer in finite domain is only
possible under sufficient nonlinear broadening. However, a quantitative description of
this mechanism is still lacking, and an explanation on how nonlinearity level modifies

these spectral properties is still under investigation.

There is no attempts, till today, of understanding the problem regarding the
discrete capillary wave turbulence in the framework of the KE. Indeed, the equation is
not directly applicable, as the wavenumber discreteness in finite domain restricts the
triad resonance, rendering the collision integral which represents nonlinear interaction
to be zero. It is, however, desirable to establish this framework, which is physically
more tangible than that of the primitive Euler equations, in terms of its explicit
mathematical description of energy transfer by triads. We postulate that the influence
of the nonlinearity level on the dynamics of energy transfer can be elucidated after

the corresponding parameter is properly introduced.

1.3 Decaying capillary wave turbulence with broad-

scale dissipation

While there are many investigations of the weak turbulence in stationary regime,
where energy input is balanced by energy dissipation, the freely decaying non-stationary
capillary wave turbulence is much less studied. A notable exception is the theoretical
work of Falkovich et al. (1995), where the decaying spectrum is considered in the
framework of the Kinetic Equation (KE). Under the WTT assumptions, the unsteady
solution of the KE yields a time-varying spectral amplitude inversely proportional to

time, and a power-law spectrum within an inertial range of fixed width that decays
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with constant spectral slope o = —19/4:
L(k,t) ~ k%71 for t > 1°, (1.2)

where t° is the initial time of the evolution of the power-law spectrum. The total
energy is obtained in Falkovich et al. (1995) by analytical integration of (1.2) in k, to
yield E(t) ~t1.

In physically-realistic situations, finite box effect is always present; and dissipation
exists over broad scales. The validity of (1.2) under these effects must be checked by
experimental and numerical studies. While there is no numerical investigation of this
problem, experimental investigations show that, during the decay, the inertial range
varies, with the cutoff wavenumber k. moving towards lower k as time increases (Deike
et al., 2012, 2013; Kolmakov et al., 2004). The spectral slope « is, in general, found to
be time-varying (e.g. Miquel & Mordant, 2011; Deike et al., 2013, 2014a), depending
on the nonlinearity level and viscosity of the fluid. The time decay of the modal
amplitudes obtained in all the experiments is exponential, rather than ¢~!. In terms
of the total energy E(t), the only direct measurement is Deike et al. (2012), which
also shows an exponential decay, in disagreement with the theory (notwithstanding
possible effects of gravity waves on the energy measurement which may affect the
direct comparison). It is postulated that at least some of these apparent discrepancies
can be attributed to the inherent WT'T assumptions underlying (1.2) (e.g. Kolmakov
et al., 2004; Miquel & Mordant, 2011; Deike et al., 2013). This leaves the modification

of (1.2) under finite box effect and broad-scale dissipation an open issue.

The broad-scale dissipation present in the actual physics is especially important
for decaying turbulence, as it enhances unsteadiness by allowing a faster spectral
energy variation at broad scales. Yet it introduces an extra dynamics into the weak
turbulence problem. Deike et al. (2014a) shows, for stationary turbulence, that
dissipation within the inertial range results in a nonconstant inter-modal energy
transfer. This is in contrast to WTT which assumes a constant energy flux P

transferring energy across k from large to small scales. The variation of energy
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transfer in k affects the experimental (or numerical) quantification of P. For the case
of stationary-state forced turbulence, earlier measurements of P (e.g. Falcon et al.,
2007; Xia et al., 2010) rely on the assumption that P is equal to the total energy
input rate, or equivalently the total rate of dissipation I'. The obtained results are in
apparent disagreement with the WT'T scaling of I,, ~ P2 This controversy is later
shown resolvable (Deike et al., 2014a), in limited range of nonlinearity, by defining
P as the average of the inter-modal energy transfer over the entire inertial range. In
decaying turbulence with broad-scale dissipation, the inter-modal energy transfer is
further affected by the unsteadiness of the spectrum, and an effective way to evaluate
P is not available.

The complexities associated with the unsteadiness in the decaying turbulence,
broad-scale dissipation and finite box effect, inevitably present in realistic physical
experiments, are closely coupled. The general problem is difficult, and there is still
not a clear elucidation, especially in the context of direct numerical investigation, of
the underlying dynamics. In particular, it would be desirable to obtain a modified
form of (1.2) (or (1.1)) for the spectral evolution, as well as that for E(t), applicable
to the general physical problem of decaying capillary wave turbulence. Physically, the
role of unsteadiness in the spectrum evolution and dynamics, the time dependence
of the spectral slope «(t), as well as its inherent connection to the wave field and

dissipation magnitude, remain unknown.

1.4 Long-short wave and wave-current interactions

Investigation of the interactions of these short (capillary) waves with long waves or
currents is another key step in understanding the upper ocean dynamics. These
phenomena are in essence multi-scale, which is an indispensable component in many
other studies of physical oceanography, for example at larger scale, the interactions
of internal tide with gulf stream, bathymetry and horizontal density variation. In
particular, the propagation of internal tide under these influences is recently analyzed

at Middle Atlantic Bight region using the decomposition of field variables with the
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hydrostatic assumption (Kelly & Lermusiaux, 2016; Kelly et al., 2016).

For long-short wave interactions, the first effort is Longuet-Higgins & Stewart
(1960), who considers the modulation of linear short waves by a weakly nonlinear
long wave, and derives the formulae for modulated short-wave wavenumber and
amplitude. This is extended in Longuet-Higgins (1987) by a numerical solution
which allows the long-wave amplitude to be finite, and in Zhang & Melville (1990) by
removing the linearity limitation of the short wave. More sophisticated investigation
on the evolution of a short-wave spectrum on a long-wave background is provided
in Gramstad & Trulsen (2010). Another phenomenon involving the long-short wave
interactions is the generation of parasitic capillary waves on steep gravity or gravity-
capillary waves. Since the first observation of this phenomenon by Cox (1958), it
has been extensively studied in experiments (Fedorov et al., 1998; Chang et al., 1978;
Zhang, 1995; Perlin et al., 1993), numerics (Longuet-Higgins, 1963; Fedorov et al.,
1998; Longuet-Higgins, 1995) and theory (Jiang et al., 1999; Dommermuth, 1994;
Hung & Tsai, 2009; Watson & Buchsbaum, 1996; Watson, 1999; Watson & Mcbride,
1993; Ceniceros & Hou, 1999).

All the above theoretical and numerical studies rely more or less on the assump-
tions amongst linearity, steadiness and narrow-bandedness. To obtain a compre-
hensive study on the long-short wave interactions, a fully-nonlinear unsteady solver
is desirable. The most popular choice in this category is the High-Order Spectral
(HOS) method, developed independently by Dommermuth & Yue (1987) and West
et al. (1987). The key step in HOS solution is a Dirichlet-to-Neumann Operator
(DNO), which maps the surface potential to the derivative of surface potential. The
accuracy of the DNO, can be increased as needed, by increasing the nonlinearity
order in the boundary perturbation method applied in HOS. This procedure, however,
involves a known difficulty in solving the long-short wave interactions with disparate
wavelengths. Indeed, the boundary perturbation method is historically controversial
(Holliday, 1977; Zhang et al., 1993) in its capability of solving the long-short wave
interactions. Although vindicated theoretically (Brueckner & West, 1988), difficulty

remains in high-order numerical solutions (Nicholls & Reitich, 2001). A robust
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approach which remedies this numerical difficulty, for modelling long-short wave
interactions, is yet to be established.

For wave-current interactions, existing studies mainly focus on the influence of a
prescribed current on the surface waves. Longuet-Higgins & Stewart (1961) considers
the modulation of a weakly nonlinear wave by a slowly-varying current, from a
perturbation analysis. The major results are later shown to be obtainable from
principle of conservation of apparent frequency and wave action (Phillips, 1981; Shyu
& Phillips, 1990; Bretherton & Garrett, 1968). The current field is also shown to be
one of the major concerns for rogue wave generation (Mallory, 1974; Dysthe et al.,
2008; Wu & Yao, 2004; Merkoune et al., 2013; White & Fornberg, 1998; Lavrenov
& Porubov, 2006; Lavrenov, 1998; Smith, 1976). On the other hand, studies on
the influence of surface waves on the underlying currents, which is also expected to
be physically in-negligible, are generally lacking. Numerical study provides a viable
means to elucidate the physics involved in these problems, and a reliable way for
prediction. For this purpose, an efficient numerical solver is desirable. This requires
a first effort to include the influence of a prescribed current field on nonlinear surface
wave simulation, with a fully-nonlinear coupled current-wave solver to be developed

next.

1.5 Outline of current work

This thesis is mainly devoted to the study of capillary wave turbulence from both
theoretical and computational considerations, with the last two chapters discussing

simulations of long-short wave and wave-current interactions.

1.5.1 Re-formulation of WTT derivation

For the purpose of building a solid theoretical background, we re-formulate the
derivation of WT'T for capillary waves. The original derivation outlined in Zakharov
& Filonenko (1967); Pushkarev & Zakharov (2000) is substantially expanded, from the

primitive Euler equations to the final stationary power-law solution of the wave spec-
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trum. In the midst, the obtained kinetic equation (KE) is accentuated, which directly
governs the spectral evolution due to triad resonant interactions. The assumptions
involved in the derivation is elucidated, which facilitates the ensuing analysis of the
deviation to the theoretical results in numerical simulations incorporating realistic
conditions. Two errors involved in the original derivation (Pushkarev & Zakharov,
2000), regarding the Komogorov Constant, are emphasized, including a normalization
factor and the evaluation of a key integral. These yield an updated value of Cy = 6.97
along with a modification of (1.1).

1.5.2 Simulation of the primitive Euler equations

A direct numerical investigation of capillary wave turbulence can be performed via
simulation of the primitive Euler equations. To this end, it is crucial to develop an
efficient numerical technique for the simulation. This is achieved based on the High
Order Spectral (HOS) method, which is widely applied in the simulation of gravity
wave field. We develop a modification which incorporates capillarity in HOS, by
adding surface tension term in the governing equation.

In HOS, the primitive Euler equations are truncated up to an arbitrary order

M in wave steepness €. We develop two schemes to include the surface tension

term Vy - (Vin/v/14 Vi - Vin), either as a whole or truncated to order M using
Taylor expansion. The two implementations are respectively consistent with gravity-
wave HOS originated from two independent groups, Dommermuth & Yue (1987) and
West et al. (1987), and should be used accordingly. In practical consideration, these

M+1 even though

two implementations yield truncation errors of the same order e
the former includes random terms higher than order M in the governing equations.
Notwithstanding, the exact truncation (exclusive of all terms higher than order M)
of the latter bears slight theoretical advantage of exact conservation of energy within
order M, as the truncated equations form an exact Hamiltonian system.

Extensive validations and analysis of the developed method are pursued, including

a validation against the Crapper analytical solution for a one-dimensional capillary

wave of finite amplitude (Crapper, 1957); and a numerical instability analysis. In

33



particular, it is shown that the inclusion of the surface tension term aggravates the
numerical restriction on the time step size. In order to accelerate the simulation,
we develop an implicit Runge-Kutta time-marching method which combines a linear
propagator method (Hou et al., 1994) and the 4th-order Runge-Kutta scheme. This
allows larger time steps to be used in the simulation (with the inevitable cost of
decreased accuracy). In addition, we upgrade the 1/2-rule de-aliasing scheme in the
original HOS to the more popular 2/3 rule, which allows more wave modes to be

simulated for a given grid.

The first application of the developed method is to investigate isotropic turbulence
of capillary waves, and evaluate the validity of WTT, by direct numerical simulation
of the primitive Euler equations. The aim is to obtain a clean development of
the wave spectrum not obscured by complexities associated with the mechanical
forcing of the waves (Pushkarev & Zakharov, 1996, 2000; Falcon et al., 2007; Xia
et al., 2010; Deike et al., 2014a) and difficulties associated with the estimation of P
(Falcon et al., 2007; Xia et al., 2010; Deike et al., 2014a). Furthermore, we seek to
uncover the physics at a substantially broader range of nonlinearity level relative to
existing measurements (Falcon et al., 2007; Xia et al., 2010; Deike et al., 2014a) and
numerics (Pushkarev & Zakharov, 1996, 2000; Deike et al., 2014b). To achieve this,
we consider the free evolution of an arbitrary initial wavefield represented by a general
isotropic spectrum. We then look for the development of a power-law spectrum in
the evolution process from different initial nonlinearity levels. In the simulation, the
dissipation effect is represented by additional terms in the primitive Euler equations
which exponentially damps the wave amplitude at high wavenumbers. The energy
flux P is evaluated, without ambiguity, by direct evaluation of the energy dissipation
rate in the dissipation range. We expect to elucidate the scaling of I with £ and P,
and value of C'in this study, and understand the influence on the results by interplay

between finite box effect and nonlinearity level.

We then employ the developed method on decaying capillary wave turbulence
with realistic broad-scale dissipation. In contrast to WTT in stationary regime, we

simulate the evolving spectrum for a long enough time scale to investigate the time-
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varying dynamics. We expect that these configurations are sufficient to replicate the
results from experiments on a power-law spectrum with exponential modal decay,
as well as monochromatic decrease of the cut-off wavenumber k, and variation of o
during the decay. Based on the simulation results, we seek a modified form of (1.2),
which describes the time-dependent power-law spectrum within the inertial range
under broad-scale dissipation. The physical roles of unsteadiness, finite box effect

and dissipation magnitude in the decaying process are elucidated.

1.5.3 Study of quasi-resonant kinetic equation (QRKE)

For the purpose of understanding wave turbulence, the KE is superior to the primitive
Euler equations in terms of its explicit description of energy transfer by triads. The

KE of capillary waves reads

% ~ / / (K K s i i3 — o — ) — i — )l (1)
where ny is the spectral density of wave action, wy = |k|*/? is the angular frequen-
cy determined from the linear dispersion relation, and F'(k, ki, ko, nk, ng,, nk,) is a
particular function that will be specified in a later chapter.

The term Ony /0t takes nonzero value when the arguments of the two delta func-
tions in (1.3) simultaneously vanish. This is only possible with exact resonant inter-
actions in the limit of theoretically infinite domain, as k takes continuous values. In
contrast, it is shown in Kartashova (1990) that there is no exact triad resonance in a
finite rectangular domain, as the frequency condition, turning into a particular case
of Fermat’s last theorem, does not satisfy. This imposes a difficulty in understanding
discrete turbulence in finite domain in the framework of (1.3).

Physically under the situation of grid discreteness, nonlinearity broadens the
linear dispersion relation (e.g. Pushkarev & Zakharov, 2000; Herbert et al., 2010),
making possible the energy transfer within quasi-resonant triads. To account for this
mechanism, a technique can be applied which represents the exact delta function on

frequency in (1.3) with a generalized finite-width delta function d,. The width of ¢,
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thus characterizes the nonlinear broadening. This approach has been developed for
shallow-water gravity waves as a simulation tool, validated against experimental data
(Piscopia et al., 2003; Zaslavskii & Polnikov, 1998). It is worthwhile to develop the
corresponding approach for the capillary-wave KE, with the purpose of studying the
capillary wave turbulence. We point out that although this broadening technique is
inspired by the physical reasoning of quasi-resonance, the particular form of the finite-
width delta function is mathematically derivable from the primitive Euler equations
by assuming discreteness in wavenumber.

Following this reasoning, and guided by a quantitative study of the broadening
mechanism using results from the Euler equations, we develop a quasi-resonant kinetic
equation (QRKE) for capillary waves, which takes into consideration the wavenumber
discreteness, nonlinear resonance broadening and quasi-resonant triad interactions.
An additional non-dimensional parameter x is introduced in this developed QRKE,
which exclusively governs the ratio of nonlinear broadening and wavenumber discrete-
ness. This thus provides a framework in which the influence of nonlinear broadening
on discrete wave turbulence can be directly evaluated. By simulating the QRKE with
different values of k, and correlating with the features of the power-law spectrum at
different nonlinearity levels (obtained in the simulation of primitive Euler equations),
we establish the physical connection between nonlinearity level and wave turbulence,

through the nonlinear resonance broadening.

1.5.4 Long-short wave and wave-current interactions

We first consider long-short wave interactions with disparate wavelengths (y = ks/kp >
1). We illustrate the ill-conditioning of the boundary perturbation method in solving
the boundary value problem regarding velocity potential ¢, which is due to the
presence of “divergently” large terms proportional to the multiplication of short-
wave wavenumber and long-wave amplitude, raised to power m — 1 in the mth order
calculation in the boundary perturbation method. Although these terms can be shown
to exactly cancel one another at each order (for which we provide a general theoretical

proof), they amount to the calculation of small numbers as differences of very large
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numbers in the numerical solution. This inaccuracy in numerics significantly limits
the capability of HOS in dealing with a wave field with v > 1. As a remedy, we can
either use accordingly higher precision arithmetics, or introduce a mapping scheme,
which fundamentally removes the difficulty regarding long-short wave interaction-
s. The computational cost is however increased as the scheme requires additional
vertical discretization of the wave field. The efficacy of the developed approach is
demonstrated by applying it to a prescribed boundary value problem involving the
long-short wave interaction.

For wave-current interactions, we first develop the framework of nonlinear surface
wave simulation superposed on a prescribed current. The derived governing equations
are then casted in a Hamiltonian formulation to elucidate the conservation of coupled
wave-current energy. A simulation is conducted for a long-crested wave spectrum
passing a realistic current field. The effects of following/opposing current on the
evolution of waves are elucidated, accompanied with physical interpretations. We
finally present algorithms for a fully nonlinear coupled simulation of wave-current

interactions, where the waves and currents are both allowed to evolve in time.

1.5.5 Thesis organization

The remainder of this thesis is organized as follows: We start in Chapter 2 by re-
formulating the theoretical derivation of WT'T for capillary waves. In Chapter 3, the
numerical tool for simulation of the primitive Euler equations is developed, along
with multiple validations and analysis. The studies of stationary capillary wave
turbulence via simulations of primitive Euler equations and QRKE are respectively
described in Chapter 4 and 5. Chapter 6 is devoted to the study of decaying capillary
wave turbulence. The long-short wave interaction and wave-current interaction are
respectively discussed in Chapter 7 and 8. Summary and possible future extensions

are described in Chapter 9.
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Chapter 2

Theoretical Derivation

In this chapter, we re-formulate the derivation of WTT for capillary waves. The
original derivation outlined in Zakharov & Filonenko (1967); Zakharov et al. (1992);
Pushkarev & Zakharov (2000) is substantially expanded. We show two errors in-
volved in Pushkarev & Zakharov (2000) regarding the analytical evaluation of the
Kolmogorov Constant C, including the normalization for (2.85) and the evaluation
of a key integral (2.68). This results in a final solution written in the form of (2.90)

and (2.91). The inherent assumptions involved in the derivation are summarized.

2.1 Canonical formulation of governing equations

We consider capillary waves in two surface dimensions on the free surface of an ideal
incompressible fluid. For small Bond number, gravity is neglected. Without loss of
generality, the time and mass units are chosen so that the surface tension coefficient o
and fluid density p are unity. The system is described in the context of potential flow
(velocity potential ¢(x,y, z,t)) in terms of nonlinear evolution equations (Zakharov

& Filonenko, 1967) for surface elevation n(z,y,t) and velocity potential at the surface

¢°(z,y,t) = ¢(w,y,m,1):

N+ Vx@® - Vxn — (1 + Vi1 - Vxﬁ)@ =0, (2'1)
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Cx’r] 1 2
; — x <«@° — =(1 x x =0, 2.2
¢; — Vx \/HvxanrVd) Vx¢® = 5(1+ Vi - Vi) (2.2)

where Vy = (0/0z,0/0y) denotes the horizontal gradient. ¢, is the vertical velocity

evaluated at the free surface.

The first task is to transform (2.1) and (2.2) to Fourier space, by defining a two-
dimensional (2D) Fourier transform of a function f(x) as (For simplicity, we use
[ dx to denote the 2D integration [[°° dzdy in the rest of this thesis as long as

no confusion is incurred.)

— % /_ h f(x)e ®>*dx. (2.3)

The transform of nonlinear terms formed by multiplication of functions are described

below, taking (Vx¢®) - (V1) as an example:

— 1 o0 .
Vad® Vall = o / Vid® - Vaene ®*dx

1 o9 [eS) oo )
— —zk de / ( xqs ) zkl-xdkl/ (V;J’])Q@Zk?xdkg

—00

B / / / Vaed®)1 - (Vaerp)o€ 120 gk, ke,

_ __// Ky - ko (i, ¢) - fi(ka, t) - 6(k — k1 — kg)dkdko.

where we have used two identities:

1 [
5(k) = @) /_Oo kX dx (2.4)
and
(Vad?); = ik;é*(k;, 1), for j =1,2. (2.5)

Following the above procedures, equations (2.1) and (2.2) can be transformed to:

n(k, t) ~ 5 // (ki - ko)o k17 t) - ko, t) - 6(k —k; — ko)dk dky — gz =0, (2.6)
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5., 1) + k25(k, 1) ——// (ks - ko) (kr, 1) - 6+ (Ko, ) - (K — Ky — ko )dley s

// ¢z k17 (Zsz(k?v ) (k kl - kQ)dklde =0.
(2.7)

Here we have made the assumptions of small wave steepness ||kn|| ~ O(e) (week
nonlinearity), and that three-wave interactions are dominant for capillary waves. As

a result, only terms up to second order (€?) are retained in (2.6) and (2.7).

Let us eliminate the surface vertical velocity ¢: so that the two governing equations
involve only two unknowns &(k, t) and 7(k, t). For this purpose, we must express ¢:

in terms of <2>\3 and 7). The procedure is outlined below.

To satisfy the Laplace equation, the velocity potential a(k, 2z,t) in deep water can
be expressed as:

ok, z,t) = B(k, t)e", (2.8)

where k = |k|. By substituting z = n(x,t) in (2.8), the surface potential can be

obtained:

ok, t) = p(k,n,t) = Bk, )" (2.9)

In physical domain, this can be expressed as:

1 [~ .
¢°(x,t) = 7 / d(k, t)e"e™*dk. (2.10)

™

Similarly, taking the derivative of (2.8) in z direction and substituting z = n(x, t),

we obtain the vertical velocity in physical domain:

1 [~ - :
¢Z(x,t):2— / k®(k,t)e e *dk. (2.11)

™

We now truncate equation (2.10) up to O(e?):

d°(x,t) = zi /oo <13(k1,t)(1 + kin)e® *dk;. (2.12)

T J -
Substituting 7(x,t) = 5= [~ 7(ks, t)e™**dk, in (2.12) and transforming to wavenum-
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ber domain, equation (2.12) becomes:
ok, t) = Dk, t) + — // 1 ®(ky, 0)7(ke, 1)5(k — ky — ko)dkidks.  (2.13)
Applying the same procedure to (2.11), we obtain

o.(k, t) = k®(k, 1) +—// K20 (ky, t)7(ke, 1)0(k — ky — ko)dkidks.  (2.14)

We now invert (2.13) iteratively to express @(k, t) in terms of the surface quantities

¢* and 7). For the zeroth iteration, we retain terms of order O(e) in (2.13) and obtain
O (k, t) = ¢°(k, 1) + O() (2.15)

For the next iteration, we obtain terms up to O(€?) in (2.13) (sufficient for three-wave

interactions):
~ ~ 1 o
¢k, t) = W (k, t) + > / / k10O (ky, 1)k, t)0(k — ki — ky)dkidky.  (2.16)
dW(k, t) = ¢°(k, 1) ~ 5 // k10 (K, £)7(ke, 1)5(k — ki — ko)dkidks.  (2.17)
Substituting (2.17) into (2.14), we obtain (consistently truncated to O(e?))
5ol 1) = K 1) — 5 // (kb — ) (o, £)7(Kka, £)5(k — 1 — o)k dky. (2.18)

The primitive Euler equations truncated up to O(€®) in wavenumber space can now

be obtained by substituting (2.18) into (2.6) and (2.7):

Ak, ) — b (k, ) // (ki -k — kik)d (o, 1) - ke, £) - 6(k — Ky — ko)dkdko.
(2.19)
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o*,(k, )+ k*7(k, t) // (k1 -ko+k1ka)d* (K, t) - ¢° (Ko, t) - 6 (k — k1 — ko) dk, dks.

(2.20)
We now introduce the canonical variables:
k_1/4

Al £) = o (alk,1) + " (k. 1), (2.21)

~ —ik/4
¢ (k,t) = 7 (a(k,t) —a*(—k,1)). (2.22)

=
2 2

a(k,t) = gkl/“ﬁ(k,t) +i\£_k Vigs (k, t). (2.23)

To obtain the canonical form of the governing equations, we multiply (2.19) by
V2k'*/2 and (2.20) by iv/2k~'/*/2, and add up the two equations. After some

algebraic manipulations, we obtain

e e =10 v [ (e e s = b+ ()40 K+ ko
ot ks k
+ [z(kkl)l/“(k ki — kky) — (%)”‘*(kl ko + Kk, aZy,
2
kk kik
— [( k21)1/4(k ko — k) + (%)1/4(& ko + Kiko)]ay, ax,
kkq K1k

— () 0Ky — k) = ()Y e+ Raka)laty 0%, }
2

d(k — k; — ko)dk;dko,

(2.24)

where ay = a(k,t) and we use this short notation throughout this thesis. Making

use of the symmetrical properties of functions: [ f(ki)dk, = [ f(—ki)dk;;
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fffooo f(kl, kg)dklde = fffooo f(kz, kl)dkldkg, we obtain

Oa R
i — i = / / V0 (&, k1, ko) s, 0, 6(k — ki — ko)
+ VP (K, ky, ko), 0, 0(k — Ky + ko) + VO (k, Ky, Ko)ag, a1, 0(k + Ky — ko)
+ VY (&, ky ko)ag, af, 0(k + K + ko)]dky ks,
(2.25)
where
VO (k, k1, k) = U(ky, ko, k) — U(k, —k1, ko) — Uk, —ks, k1), (2.26)
V2 (ki ko) = Uk, ko k) — Uk, —k ko) — Uk, —ko, k), (2.27)
VO (k, Ky, ko) = U(k, ky, ko) — Uk, —k, ki) — U(ks, —ky, k), (2.28)
VW (k, ki, k) = U(ky, ko, k) + U(k, ky, ko) + U(k, ko, k1), (2.29)
with U(k, ki, ko) = 22 (B0 V4 (k- Ky + kk).
The symmetrical properties of these functions can be found as:
V(K ki, ko) =V (1, k, Ky), (2.30)
VO (K, kp, ke) = VO (ko k, ky ). (2.31)
Let
Vik ki, k) = V' (K, ki, ko), (2.32)
V(k ki, k) = V' (K, ki, ko), (2.33)
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equation (2.25) is transformed to

Z— — Wk = // k kl,kg aklakQ(S(k — k1 — kg)

+ V(kb ka k2)ak1aik{26(k - kl + k2) + V(k27 k; kl)a’l*qak25(k + kl - k2)
+ V(K ki, ko)ag, ag, 0(k + k; + ky)]dk, dks.
(2.34)

Equation (2.34) is the canonical formulation of the truncated primitive Euler equa-
tions. The framework of the above formulation follows Stiassnie & Shemer (1984)
for gravity waves. We note that (2.34) is alternatively derivable using the traditional
and general technique of Zakharov & Filonenko (1967), by truncating the Hamiltonian
form of (2.1) and (2.2).

2.2 Definition of statistical variables

The following task is to obtain the statistical (spectral) description of the wave field.

We define the correlation function ny:
(a(k)a*(k')) = med(k — k'), (2.35)

where “()” denotes the ensemble average. This definition of ny is physically ambigu-
ous. To obtain a better understanding, we first make connections of ny with a wave

elevation spectrum I, (k), where
()7 (K')) = I, (k)d(k — K'). (2.36)
To this end, we expand (7(k)n*(k)), using (2.21), as

(kk/)_1/4 a a* / a al— /
——la(k)a™ (k) + {a(k)a(-k')) (2.37)

+(a"(—k)a" (k) + (a"(—k)a(-K))]

(k)" (k') =
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We make assumptions of random phase distribution (which also underlies (2.35)) and

isotropic spectrum (n(k) = n(k)), under which (2.36) and (2.37) can be reduced to
n(k) = k21, (k). (2.38)

A straightforward and superficial understanding of I, (k) can be obtained by writing
I,(k) ~ (n(k)?). This, in principle, can be used intuitively, but with great cautious, as
it messes up the dimension of (2.36). Here we present a more rigourous understanding
by connecting I,(k) with the energy density spectrum I,(k) (e.g. Phillips, 1985),

defined under the Wiener-Khinchin theorem:

o0

k) = 5 [ GG me e, (2.39)

o0

with the overline denoting spatial average. We claim that, under the assumptions of

homogeneity and ergodicity, I, (k) is proportional to I, (k), with
I,(k) = 47?1, (k). (2.40)

The proof of (2.40) is shown in Appendix A. Equation (2.39) defines the energy
density spectrum T, (k) as the Fourier Transform of the autocorrelation 7(x)n(x + r).
We note that the Fourier Transform here is differently normalized compared with
(2.3), as this results in an expression of energy density with unity normalization.

This can be obtained by the inverse Fourier Transform of (2.39) with r = 0:

M) = /_ T (k) dk. (2.41)

o0

Analogously, the leading-order energy density of the wave field E;, = (Vn(x))? =

= k2T,(k)dk can be expressed in terms of n(k). Invoking the dispersion relation

w(k) = k%2, (2.42)

46



we obtain

— 1 >

= 4—7]_2 Wknkdk. (243)

We believe that the factor 1/(47?) in (2.43) is overlooked in the original derivation in
Pushkarev & Zakharov (2000), which results in a later mis-representation of energy

(density) flux P.

2.3 Derivation of the kinetic equation

In order to derive the evolution equation for n(k), we multiply (2.34) by a*(k'),

day
ik ;t — Waal = / / V(k, ki, ko)l i, a1, 0(k — ki — ko)
+ V(kl, k, kg)a;/aklai"{25(k - k1 + k2) + V(kg, k, kl)al*{,altlab&(k + kl - k2)
+ V(k, ki, ko)apap, ap, 6(k + ki + ko)|dk; dks,
(2.44)

and multiply the conjugate of (2.34) (with k replaced by k') by a(k),

daz,
i g — el = // V(K &y, ko)aag, b, (K — ki — k)

+ V(ky, k' k) axay, ax,0 (k' — ky + ko) + V(ka, K, ky ) axa, ay, 0(k" + ki — ko)
+ V(K Ky, Ko )ty uc, 01, 6 (K + k1 + ko)]dky dks.
(2.45)

47



Averaging the equation obtained by subtraction of (2.45) from (2.44) gives

[V(k kla k2)<ai/ak1ak2>5(k - k1 - k2) V(k 7k17 k2)(akal*qai2>5(k' - k1 - kg)]
+ [V(kl, k kg)(a;aklai"{2>(5(k k1 + kg) - V(kl, k ,k2)<akak1ak2)5(k' — k1 + kg)]
+ [V(kg, k kl)(ailaklak2>(5(k + k1 — kg) — V(kg, k ,k1)<akak1a;’;2)5(k' + k1 — kg)]
+ [V(k kl, kQ)(al*(,ak ak2>(5(k + k1 + k2) — V(k/, kl, k2)<akak1ak2>6(k' + k1 + kg)]
dk,dko
(2.46)
We define a third-order correlation function
Jklzé(k — k1 — k2) = (aiaklab). (247)
Apply an integral [~ dk on (2.46) and let k' = k, we obtain
on o
8—tk =2Im // [Vk12Jk125k_k1—k2 — Vika J1k20k k1 +ko
o0 (2.48)

- V2k1<]2k15k+k1—k2 - ‘N/ku <ak1 akﬂk) dkydks,

where I'm takes the imaginary part of the following integral, and we have extensively

used the subscripts j for k; as arguments of functions .

Equation (2.48) is the evolution equation for ny, which nevertheless involves the
third-order statistics. To close (2.48), we need to find closure models for Jy12, Jixo,
Jor1 and {ay,ay,ax). While all these terms are zero in a linear wave field due to
randomness of phases, they are nonzero in second-order perturbation theory as mode
coupling is possible for triad resonant interactions. This argument also eliminates the
term (ax,ax,ax) in (2.48), as k + k; + ko = 0 does not form a resonant triad, and

(ax,ax,ax) = 0 can be obtained in a linear consideration.

Theoretically, Ji12, Jixe and Jor can all be obtained by deriving their evolution

equations based on (2.34). Since all these derivations are similar, we present here
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with the example of (ajax,ax,), which can be written as

ot’

a((Llial*il akz) % aak2

5t = Ol —, (2.49)

* Qxk,
+ Gy Ok, —8t + ak, Qk,

We need the representations of all three terms on the RHS. These can be obtained

by manipulations of (2.34),

8ak *
* 2 . * N *
Ay 0k, W = = Wk, O, 0k, Ak, — 0 [‘/234akak1 (ks Oy Ok, ks kg
— 00
* * * * 2.50
+ ‘/324akak1 Q4 a’k45k2—k3+k4 + ‘/;1230,]{(1,]{1 Ay, ak46k2+k3—k4 ( )
+ Vo340 i, Que, Qi Oty s+ ks | AR K4,
3%ky
8ak *
* 1 . * N *
Ay Ok, o Wi, Ay Ok, Ak, — © [%34akak2ak3ak46kl_k3_k4
— 00
* * * * 2_51
+ ‘/314akak2ak3 a’k45k1—k3+k4 + ‘/;113akak2ak3 ak46k1+k3—k4 ( )
+ V13403 i, Qi Qi Oty s+ ks | K3 0K,
37ky
a* o0
k . * . * %
aklakQﬁ =1Wk ) Ok, Ak, + z// [%34ak1ak2ak3ak46k_k3_k4
—00
(2.52)

* *
+ VaraQx, Qxy Oy, Ok, Ok ks +kq + Va3, Gk, Qreg Ay, Ok ks ks
+ %34 a/kl akQ a’kg ak4 5k—|—k3 +k4] dk3 dk4 )

The average of these equations involves the fourth-order statistics, for which we need
a model. Since the four-wave interaction is not considered (we have assumed that
the three-wave interaction is dominant), there is no four-wave nonlinear coupling in
the wave field, i.e., these statistics can be obtained from the consideration of a linear
wave field:

< a’{a§a3a4 >= 77,1712((51_3(52_4 + (51_4(52_3), (2.53)

kK ok

where we have extensively used j to denote k;, and < ajasaszas >=< ajasazas >=<

aiasasza, >= 0. Now, summing up (2.50), (2.51) and (2.52) and taking the average,
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we obtain

o{ay.ax, ax, - i o
% = i{ay 0, ax, ) (W — Wi, — Wi,) — Z// [

VaoaiNa(0k—104—3 + Ok—304-1)02—3+4 + Vaosnxns(03-40k—1 + 03-10k—1)02+3-4
+ Varamucna(0r—201_3 + Ok—304—2)01—5.14 + Varsnucns (Gr_203_a + Op_a03_2)01+5_4
— Visanana(3_164_2 + 53_254_1)5k_3_4] dksdk,.
(2.54)

In (2.54), we can set 0,1 = dr—2 = 0, as these possibilities are excluded by the fact
that ay, ax, and ay, are coupled by triad resonant interactions. Working out the

integral in (2.54), we obtain

% = i<a1tak1ak2>(wk — Wk; — wkg) - i[vkzlnknl(SQ—kH
+ Viornxnidor 1k + Viaanknadi—ki2 + Veianknadiyo—k
— Vir2mino0r—1-2 — Vi21nan16x—o_1]
= (g 0K, Ok, ) (Wk — Wk, — Wiy) — 20Vi120k—1-2(NkN1 + NiNa — NyN2).
(2.55)
=
8;’?2 — i T2z + i Ag1s = 0, (2.56)

with Q10 = wk — Wi, — Wiy, and Agia = 2Viga(nkny + nxne — ning).

The solution of (2.56) provides the closure for Jij2. This can be obtained by
two manners, respectively outlined in Zakharov et al. (1992) and Janssen (2003).
Both methods yield the same closure of ImJii2 under the assumptions of long term
evolution (¢ — 00), slow spectral variation and infinite wave domain. Here we present
following the procedure of Zakharov et al. (1992), and leave the counterpart of Janssen
(2003) in Appendix B.

It is usually assumed that the evolution of the spectrum ny, and thus A1z, is slower
compared to that of Ji12. This can be understood from (2.56) that Ji12 evolves on

a time scale of O(e™!), and from (2.48) that ny evolves on O(e72). As a result, the
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term Ay can be considered as a constant in solving (2.56). This leads to a solution

in the form

Jklg = BeIp(Zlegt) + (257)

The term Bexp(iQ12t) involves a fast oscillation with the change of Q19 for ¢ — co.
As it is substituted into (2.48), this term can be neglected under the integration of
k; and ks from —oo to oo. This reduces (2.57) to Jri2 = Agi2/u12, which, upon
substitution to (2.48), gives

ony o Aki2 Aipo
=21 [— ViroOk 1 ko — ———  ViroOk: 1
ot m//_oo Qk12—|-26 k120k—k1—ko Qle T e 1k20k; —k—ko

(2.58)

SN2 VA S ]dkdk.
ng1+26 2k1Vks—k—k1 1 2

where we have added a small positive parameter z€ to the denominator to circumvent
the pole, i.e., to eliminate the singularity of the integral. This procedure is mathemat-
ically similar as the limiting absorption principle (e.g. Ignatowsky, 1905). According
to the Sokhotski-Plemelj theorem

lim f(x)
=0t J_oo T E i€

dr = Fim f(0) + P/_OO @dw, (2.59)

with P denoting the Cauchy principal value, (2.58) can be reduced to

8nk

W =—A4r // [‘/16212(7111{’)’&2 + nknqi — nlng)é(k — k1 — kg)é(wk — W — WQ)

— Vika(nana + nani — micna)d (ki — k — ko)d(wr — wi — w2) (2.60)

— ‘/22161(711271/1 + NoNk — ’I’Lknl)é(kg —k — kl)(s(WQ — Wk — wl) dkldkg

Equation (2.60) is the kinetic equation of capillary waves. After some algebraic

manipulations, we summarize and write it in the following symmetric form:

on
8_tk = S(n), (2.61)
S(nk) = // [Rkkle — Rklkkz — szkkl]dkldkz, (2.62)
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Rkk1k2 = 47T|ka1k2 |25(k — k1 — kz)é(wk —Wk; — wkz) [nklnk2 — NNk, — nknkQ], (263)

1 Ly, x Ly x Ly, —x
V — 1/2 1,X2 _ ) 1 _ ) 2 2.64
kkika 87r\/§(wkwk1(Uk2) [(k1k2)1/2k (kk1)1/2k2 (k’k’g)l/gkl], ( )
Lk1,k2 - kl ‘ k2 —I— kle. (265)

For energy transfer to be possible in the framework of KE, i.e., Ryy,k, 7# 0, we
have mathematically assumed that the two arguments in the two delta functions in
(2.63) can vanish simultaneously. This stems from (2.58) where we allow ¢ — 07, and
physically corresponds to the exact triad resonance. Under the dispersion relation
of capillary waves, this is not possible in a finite (rectangular) domain (Kartashova,
1990). Therefore, an inherent assumption involved in the KE is that the wave field

evolves in an infinite domain.

2.4 Stationary solution of the kinetic equation

Consider the kinetic equation (KE) (2.61)~(2.65). This set of equations can be sim-
plified in an isotropic wavefield, by transforming the integral in (2.62) from Cartesian
coordinates k to Polar coordinates (k, ), with the purpose of eliminating the angle
dependency in the KE. The result (after multiplication of kdk/dw on both sides to

keep the symmetry) can be written as

21 2w 00 00

dk on dk dk, dk
b 3tk / / / / [Rickikz — Picikio — Ricokky [Kkrka —— o doon : y zdwldw2d91d92

(2.66)

where 6; is the argument of the vector k;.

Consider the first term Ryk,x, as an example for the evaluation of this integral.

Substitution of (2.63), (2.64), and separation of the angle dependent part of the
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integrand lead to

27 2w 0o oo

////Rkklekk’le%%%dwldﬁdgdeldeg
dw dwy dws

0O 0 0 O
1087T // Wkw1w2) e 5(wk —w w2)(nw1nw2 nwnwl nwan) (267)
27 2w I I I
1,2 k,—1 k,—2 2
’ - - k—k; —k
// (kyks) 12 (kk1) ks (ka)l/le] o( 1 9)dB1dbrdw; dws,

where n, = n,, for k = w?/3.

Equation (2.67) involves a key integral which appears in many wave turbulence

derivations (for another example, gravity waves, Zakharov, 2010), in the form of

27 27

- / / F(Q)5(k — Ky — ko) drdbs, (2.68)

where f(Q) is a general function depending on @ = (k, k1, k2, ki - ko, k - ki, k - ko).
The argument of the delta function in (2.68) vanishes when #; and 6, take values
which make vectors k, k; and ks form a triangle. Denoting variables on the triangle

with a subscript “A”, the integral can be evaluated as

2w 21
I = //f(@)é(k — k100501 — k200592)5(/€15in91 + kQSinQQ)d%dQQ =2- |x7A|_1f(QA)
0 0
(2.69)
where Ja is the Jacobian determinant
0(k1cosby + kacoshs)  O(kicoshy + kacosbs)
_ 060 00
JIa = O(kysind, %} kosindy)  O(kysinb; f kosindy) (2.70)

891 a02 A

The factor “2” in (2.69) comes from the fact that, for given k, k; and ko (the delta
constraint on frequency ensures that k > ki, k > ko and k < k;+ks), there are always

two possible ways to choose ¢; and 2 (along the integration path) in a 2D space to
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(b)

Figure 2-1: Two possible ways (a) and (b) to choose 6; and 6, in a 2D space to form
a triangle (ka, kia, kon), for given k, k; and k.

form a triangle k — k; — ko = 0), for which f(Q) takes the same value, as shown in
figure 2-1. This is missed in the original derivation in Pushkarev & Zakharov (2000).
Substitution of (2.70) to (2.69) gives

I'= f(Qa)/Ta, (2.71)

where Tx is the area of the triangle formed by k, k; and k2, and Qa = Q(k, k;, ko)
for which k —k; —k, =0.

Note that f(Qa) only depends on k, k; and ks, as the angles between the vectors
are uniquely determined given the triangle k —k; —ks = 0. Therefore, substitution of
(2.71) into (2.67) eliminates all the angle dependency in the integral. This procedure

can next be applied on the second and third terms in (2.66), and we obtain the kinetic

o4



equation for an isotropic wave field:

dw at ww1w2 w w1 — w2)(nw1nw2 - nwnwl - nwan)
— Srwwn (W1 — W — wW2) (NwNwy — Ny Mo — Ny Ny ) (2.72)
_ Sw2ww15(w2 — W — W1)(nwnw1 - nwnw2 - n(/Janl )] dwldu_)Q’
where
1 1
S‘U WmWn = —(wlwmwn)4/3_'
! 27T k?
1— _ 1+ _44/8 146l 4/3  .4/3
[(1 + 52/3525/23 )(5152)1/3 - (1 - §;£2/3§2 )(%)1/3 - (1 - 5252/3E )(52)1/3]2
4/3 .4 3 4/3 4/3 ’
VaePel — - gy
(2.73)

with & = w,,/w; and & = w, /w;. We note that in the derivation of (2.72), we have
expressed the area of a triangle Ta = +/2(k2k? + k2k2 + k2k2) — (k* + kI + k3) /4.
The right hand side of (2.72) is twice as that in Pushkarev & Zakharov (2000), due

to the correction of the integral (2.68).
The following steps seek for a stationary power-law solution of (2.72). We first

note two properties of function S:

e Homogeneous property of S:

S(ew, ewr, ews) = €38 (w, w1, ws). (2.74)

e Symmetric property of S:

S(w,wr,ws) = S(w, ws,wr). (2.75)

Suppose
n, = Aw” (2.76)
is a stationary solution of (2.72). We shall substitute (2.76) into the RHS of (2.72)
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with dny /0t = 0, solve for the exponent z, and relate A to the energy flux P. For
this purpose, we need to make a (Zakharov) conformal transformation in the second

term of RHS (2.72)

W =—, W , 2.77
= = (2.77)
and in the third term
ww) w?
w —, Wy = —. 2.78
= e = (2.78)

Now let us transform the terms in (2.72) one by one.

The first term:

— //000 S(w,wr, ws)d(w — wy — wy)A? |:((4.)1(4.)2)w — (ww1)® — (wwg)””] dwydws;  (2.79)

The second term:

© W wwh o w? wwh
o [5G e - 2
0 w1 Wy Wy Wi

2 2 / 2 /

(@2 — @y — (2
w1 w1 wyp Wy w1 wi (2.80)

// )22 G, wry, we )6 (W — wy — wo) A2

[(wlwg)“ — (wwy)® — (wwg)w] dwydws;

The third term:

— = //oo(wig)MBHwS(W,Mhw2)5(w—w1—w2)A2 [(wlwz)w—(wwl)””—(wwg)m] dw,dws.
: (2.81)

These transform (2.72) to

dk on
dw atk // (w, w1, wa)d(w — wy — wy) A2
w w

[(wlwz)w — (wwn)® — (ww2)w] [1 —(Zy — (2] dw, duws,

w1 Wa

(2.82)

where y = 14/3 4 2x.
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There are two stationary solutions of (2.82): x = —1 and y = —1(z = —17/6).
The former represents a thermodynamically equilibrium distribution where energy
flux is zero (as all three energy-transfer terms on the RHS of (2.72) vanish). This
is not what we are physically interested. The latter corresponds to the Kolmogorv-
Zakharov spectrum which is formed by the balance of energy transfer and carries a

finite energy flux.

The remaining task is to relate A with the energy flux P so that we can find the
scaling between n, and P. To determine P, we invoke the equation of balance of

spectral energy:

Oe, OP

— 4+ — =0, 2.83
ot " ow (2.83)
where €, is the spectral density of energy density. Transforming (2.43) to frequency

integration, we obtain

_ 1 o0 dk
EL = 4—7_‘_2 ; WENg - Zﬁk@dw (284)
Therefore, ¢, can be expressed by €, = wN,/(47?), where N,, = 2wknidk/dw (note

that this is different with n,), such that E = fooo €,dw.

Integrate (2.83) with respect to w, we obtain

“ Oe,, 1 “ ON,
P=— dw = ——— ) .
i dw 47T2/0 W dw (2.85)

We note that the factor 1/(47?) is missed in Pushkarev & Zakharov (2000). Evalu-
ation of (2.85) can be obtained by substituting (2.82), which, under the solution of
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y = —1, yields

1 « dk ank
pP—_ —
dw 8t y——ldw
- / oo [ 56,000 - & - )27 (66" - & ~ 6]
(2.86)
1- &7 - & dades
y=—1
AQ y+1
bdm2y 4+ 1 y=—1
where
- [[ @i -a-a)@ar - g -] L-a - &)
4/3 _ .4/3 4/3  .4/3 2
[(1 + %)(5152)1/3 (1- 1%152/3)32 )P = (1 %)(%)l/g]
4/3 ,4/3 43 .4/3 2 13-
VAEBElE — (1 — g3 — gl
(2.87)
Equation (2.86) involves 0/0 and can be evaluated by L’Hospital’s Rule. This
leads to
9J(y)
= 2.88
547T2 Oy ly=—1’ (2.88)
where
20 = [[T@aresn-a - e @ar - & - &) oo - atose]
g/ 4/3  ,4/3 2
[(1 + ST @6) - (1 %)(%)1/3 — (1 Hmy(5)e
267" 2¢7 & 265 & df dg
4313 _ 4/3  .4/3 e
NG s gy
(2.89)
The integral in (2.89) can be evaluated numerically to yield 0.J/0y = —0.28.
y=—1
This establishes the relation of A and P and leads to the final solution:
n,, = 2wCPY?,=17/8, (2.90)
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where the Kolmogorov Constant

C =6.97. (2.91)

Note that we have factored “27” out in (2.90). This compensates for the missing
of factor 1/(47?) in (2.85) in Pushkarev & Zakharov (2000). The final solution of C
(2.91) is thus different as that in Pushkarev & Zakharov (2000) with a factor of v/2,

due to the corrected evaluation of the integral (2.68).

2.5 Summary of solutions

While (2.90) and (2.91) are the final solutions of WTT for capillary waves, we
summarize here the solutions in different forms. Transforming (2.90) to wavenumber

representation, we obtain

ny = 2rC P27/, (2.92)

This can also be expressed in terms of the wave elevation spectrum I, (k) by using
(2.38):
I, (k) = 2nCPY2E~19/4, (2.93)

Finally, we retrieve the parameters p and o to the solution, and express the solution

in dimensional form:
pl/2 ol /4
o3/4

I,(k) = 2nC k1974, (2.94)

For sake of completeness, we repeat the dimensions of parameters here: P(kg/s?),

o(kg/s?), p(kg/m?) and I,(m*).

2.6 Summary of assumptions
We list all inherent assumptions involved in the derivation. These include:
1. Weak nonlinearity;

2. Random phase distribution;
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3. Infinite domain;

4. Dominance of three-wave interactions;
5. Homogeneity and ergodicity;

6. Long-time evolution;

7. Slow spectral variation.

We will show in later chapters that the assumption 3 is a most delicate one in
numerical simulations or physical experiments, as these are usually obtained in finite

computational domains or wave basins.

60



Chapter 3

Numerical formulation for primitive

Euler equations

In this chapter, we present the numerical formulation for capillary-wave primitive
Euler equations. We introduce two formulations for the surface tension term, which
are developed in consistency with the frameworks of Dommermuth & Yue (1987) and
West et al. (1987). The theoretical difference of these two methods are discussed,
though they can be used interchangeably for numerical purposes. The developed
method is benchmarked against an analytical solution of Crapper wave. We further
present an Implicit 4th-order Runge-Kutta (IRK4) scheme, which are designed to
alleviate the time step limitation due to capillarity. The linear and nonlinear stability
of this scheme is analyzed. Finally, we introduce a spatial de-aliasing scheme, which

can be considered as an improvement to the one used in Dommermuth & Yue (1987).

3.1 Basic numerical formulation

As introduced in Chapter 2, we consider capillary waves in two surface dimensions
on the free surface of an ideal incompressible fluid. The system is described in the
context of potential flow with governing equations (2.1) and (2.2) in terms of the
surface elevation 7(x,t) and surface potential ¢°(x,t) = ¢(x,2z = n,t). For initial

conditions, ¢*(x,0) and 7(x,0) are prescribed.
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3.1.1 Nonlinear expansion to determine ¢,

Equations (2.1) and (2.2) are numerically evolved in time from the initial conditions.
Within each time step, the key element is to solve for the surface vertical velocity
¢.(x,t) from a boundary value problem, with values of ¢*(x,t) and 7(x,t) defined on
the free surface and the field (Laplace) equation

V2h(x,2,t) + ¢..(x,2,t) =0, for z < n(x,t). (3.1)

The algorithm of this evaluation is described in Dommermuth & Yue (1987) and
West et al. (1987). Both methods rely on an Taylor expansion of surface quantities
based on their value at z = 0, but differ in detail regarding the nonlinearity order in
representing ¢.. Generally, this problem can be considered as a Dirichlet-Neumann
Operation (DNO), and this class of method is referred to as boundary perturbation
method (Nicholls & Reitich, 2001). For completeness, we outline the procedures here,

with an illustration of the difference between the two methods.

We assume that 7(x,t) and ¢°(x,t) are O(€) quantities, where € is a small param-
eter measuring the wave steepness. We consider a consistent approximation up to
and including a given order M in €, and write ®(x,t) = ¢(x,0,t) as a perturbation

series in €:
M

O(x,t) = Y _[@](x,1), (3.2)

m=1
where [ ]™ denotes a quantity of O(¢™). Consistently up to order M, an equation
can be obtained which relates the surface potential ¢* with [®](™) using the Taylor

expansion around z = 0:

M—m

(bS(X?t) = Z Z

m=1 [=

Ly
217, ) (3.3)

[®](™ can be solved by inverting (3.3) at each order, which gives

(@)™ (x,t) = [R]™(x,t), m=1,2,... M, (3.4)
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where

(R (x,t) = ¢°(x, 1), (3.5)
and o
[R)™(x,t) = ?—ai[cb](m‘l) (x,t), m=2,3,...M. (3.6)

=1

These equations can be solved successively at increasing orders for any prescribed ¢°

and 7.

Our ultimate goal is to determine the surface vertical velocity ¢.(x,t). To this

end, we express ¢(x, 2,t) as a truncated eigenfunction expansion

(%, 2,t) ZZ 1) ()W, (x, 2), (3.7)

where W, (x,2) is an eigenfunction at mode n which satisfies (3.1). ¢.(x,t) can be
determined by vertical derivative of (3.7), where ¥, (x, z) is expressed as a Taylor

expansion around z = 0:

M-—m l oi+1

[6.](x,t; M) Z[d)z 1M (x,8) =) T Z (t)w\lfn(x, 2)|=0. (3.8)

m=1 [=0 n=1

where [ [(x,t; M) = M [ 10" (x,t) represents a quantity up to order M. Equa-

m=1

tion (3.1) (with the deep-water boundary condition) indicates that the eigenfunction

U, (x,2) can be expressed in the form of
U, (x,2) ~ exp(ik, - x + k,2), (3.9)

where k,, = |k,|. This provides significant numerical convenience in evaluating (3.8),

as the vertical derivative can be calculated by

8l+1

5571 Un (%, 2) =0 = kN, (%, 0), (3.10)

and [,,]™ (t) can be determined using the Fast Fourier Transform (FFT) of [®]™ (x, ¢)
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(by assuming horizontally periodic boundary condition).

The formulations in Dommermuth & Yue (1987) and West et al. (1987) (hereafter
referred to as DY and WW) differ in the next step in truncating ¢.(x,t) in (2.1) and
(2.2). DY simply represents ¢,(x, t) using [¢.|(x,t; M), which results in the following

evolution equations:
Ne + Vi@ - Vi — (14 Vyn - Vin)[¢:](x, t; M) = 0, (3.11)

51+ Tow () + 3Va0" - Vo™ — 214+ V- Van) 6 i M =0, (3.12)

where Tpy (1) denotes the surface tension term that will be discussed in the next
section. In viewing (3.11) and (3.12), we see that these two equations consistently
include all terms within order M, but introduce some terms with higher orders (e.g.,
Vxn - Vxno.(x,t; M) with order M + 2). In contrast, WW develops a completely

order-consistent scheme, which truncates (2.1) and (2.2) exactly at order M:
T+ Vx¢® - V) = [¢:](x, 1 M) — Vi - Viene.](x, 8, M — 2) = 0, (3.13)

81+ Tow ) + 59" Vb = 18205, 6 M) — S Vs Vo], 85 M — 2), (314)

where

[¢?] xtM:ZXm: Dip, )0, (3.15)

m=1 [=1

In terms of the numerical accuracy, the DY and WW formulations are equivalent:
they both result in a truncation error of O(¢M*1) in 7 or ¢°, even though WW
excludes all terms higher than M while DY retains some of them. As we have tested,
the truncation error of these two formulations are case-dependent. Nevertheless, the
WW formulation bears a slight theoretical advantage as it keeps an exact Hamiltonian
structure of the truncated equations (see Milder, 1990). Upon proper truncation in
terms of Tyyw(n) and energy EYW exact energy conservation within order M can
be obtained in the WW framework. This will be illustrated by an example after we

introduce the formulations of 7 and E.
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3.1.2 Formulation of the surface tension term 7

In the framework of DY, the term Tpy(n) can be represented by its fully nonlinear

form

. VXTI
* I+ Ve Ve

Toy(n) = =V (3.16)

This formulation, in principle of perturbation series, can be considered as equivalent
to Tov(n) = .00 [T(n)]™. Indeed, this introduces nonlinear terms with order
higher than M which are merged into the truncation error of O(e*1).

On the other hand, to develop the formulation of Ty w (1) consistent with the WW
framework, we shall truncate (3.16) at order M. This can be obtained using Taylor

expansion around |Vyn[? = 0:

Toww(n) = =V - {Vxn(l + Z i‘(—l)ml X 3 X 2:2 (2m —1) |Vx77|2m)},

(3.17)

where F'L[a] calculates the nearest integer less than or equal to a. Substituting (3.17)
into (3.14) leads to the evolution equations truncated exactly at nonlinearity order

M.

3.1.3 Formulation of the energy F
The total energy in the wavefield can be decomposed into the kinetic energy and
potential energy (due to surface tension):

E — Ekin + Epot' (318)

In the framework of DY, both EJY and E[J)Y can be represented by their fully

nonlinear forms

1
EPY = 3 /¢sntdx, (3.19)

and

1
EDY = 3 /(\/1 + V|2 — 1)dx. (3.20)
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The WW framework requires both E¥V" and E;th to be truncated at order M + 1.

Mathematically, E;Y" retains the same form as EPY
ww 1 s

as the term 7, determined by (3.13) contains orders exactly up to M. The potential

energy E}7"" can be evaluated by Taylor expansion around |Vyn[* = 0:
Sl (-1) (3 — 2m)
ww X (=1) X ... x (3—2m o
Epot = 5/ mEZI % om |Vx77| dx. (322)

The total energy EPY and EW'W can be calculated correspondingly.

3.1.4 Time integration

Equations (3.11)/(3.13) and (3.12)/(3.14) are integrated in time using an explicit
4th-order Runge-Kutta scheme. Here we present a numerical test illustrating the
difference between the DY and WW formulations. Numerically, we use N, = N, =
512 grid points in a 27 X 27 domain to represent a wavefield (k from 1 to 256), and
the nonlinearity order M = 3. We start the simulation from the initial condition
represented by linear solution of an arbitrary JONSWAP spectrum (i.e., ¢*(x,0) and
n(x,0) are specified as modal summation of linear wave solution, see Appendix C for
details), with peak wavenumber k, = 16 and significant wave height H,; = 0.025. The
wave field is evolved using respectively the DY and WW formulations.

The corresponding energies EPY (t) and EVW (t) are evaluated at each time step,
and plotted in figure 3-1. While EPY (t) varies with time which magnifies the O(e*?)
truncation error in energy, E"'"W (t) keeps a constant. This indicates complete energy
conservation (other than those caused by the error of numerical integration) within
order O(e”*1), which is indeed the main objective of the WW formulation.

We remark that the WW formulation is not more accurate than the DY formu-

lation, despite the complete energy conservation as described. In fact, this slight
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Figure 3-1: Evolution of energies EPY (t) (—) and EYW(¢) (- — ) with time. The
time ¢ is non-dimensionalized by t/T,,, where T, is the period of the peak wavenumber
in the JONSWAP spectrum.
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theoretical advantage of WW formulation is resulted from its consistent truncations
of (3.13), (3.14) and energy E'". Numerically, we have not yet found any direct
evidence of the superiority of WW formulation to DY formulation, as either method is
associated with a truncation error of O(e*1) in n (or ¢*). The practical performance
of these two formulations are case-dependent upon our tests. For general purposes,

they can be interchangeably applied.

3.2 Benchmark with a Crapper wave solution

To verify the method’s capability in modelling capillary waves, we use as a benchmark
test the Crapper analytical solution for a 1D capillary wave of finite amplitude.
As derived in Crapper (1957), the Crapper wave solution represents a progressive
capillary wave with permanent form which satisfies (2.1) and (2.2). It can be written
as

21

2.2
T™a )1/2 o 1}627ria]—1 _I_ = (323)
m

4)\?

2 21 2\
a1+ 220
A @ 7T[+7ra{(+

where z. = x. + 1y., with x. being horizontal coordinate pointing left and y. being
vertical coordinate pointing downwards, a is the height of the wave, defined as the
vertical height between trough and crest, & = (¢+1i1)/(c)), with ¢ being the velocity
potential, ¥ being the stream function, A being the wavelength, ¢ being the phase

speed and calculated as

210 1/2(1 —A2)1/2

c=( Y, ) W (3.24)
where
2\ m2a?
A="2{14 )72 -1 .
{1+ T -1 (325)

The solution (3.23) can be considered as obtained in a crest-fixed coordinate system
with (¢,1) being the independent coordinates. Therefore, the solution of the free
surface (z2,9%) in a period can be obtained with ¢y = 0 and 0 < ¢ < c), ie.,
(22,95) = (TeyYe)lp=0,0<p<er- A typical solution (z2,ys) of a Crapper wave with
a = 0.2 and A = 27 is plotted in figure 3.23.

The analytical solution of ¢.|, can be obtained by substituting the free surface
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convenience, we have adjusted the directions of the coordinates to conventional
definition, in contrast to that of (3.23).

Figure 3-2: A typical Crapper wave solution with a = 0.2 and A = 27. For
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M
N 2 3 4 6 8
0.1 4 20x107* 1.1x107° 3.6x107% 2.6x107% 2.6x10°°
8 2.0x107* 1.1x107° 1.8x107% 1.7x107® 7.9x107%
16 2.0x107* 1.1x107° 1.9x107% 1.8x107® 1.7x107%

0.2 4 1.6x107* 2.0x107* 1.1x107* 1.1x107* 1.1x107*
8 1.6x107* 1.8x10™* 6.1x107° 2.3x107% 7.3x107"7
16 1.6x107* 1.8x107* 6.1x107° 2.3x107% 9.0x107%®

0.3 4 5.7x107* 1.2x107% 7.6x107* 9.4x107* 9.3x107*
8 5.7x107* 9.6x107* 4.8x107* 4.4x107° 3.9x107°
16 5.7x107* 9.6x107* 4.8x107* 4.2x107° 3.8x107°

Table 3.1: Maximum absolute error in surface vertical velocity ¢.|, of a Crapper wave
of steepness € = ma/\ for varying nonlinearity order M and number of modes N.

t/T
€ 100 200 300 400 500
0.3 19x10™* 4.1x10™* 5.2x10™* 6.0x10™* 7.4x10~*

Table 3.2: Modal error {+|||fin|* = [kal?1}'/2/a (where Ty and 74 are the
numerical and analytical solutions of 7, and a the wave amplitude) in long time
simulation of Crapper wave with M = 3, N = 16, and up to ¢t/T=>500, where T is
the fundamental period of the wave. DY formulation is applied.

solution to (2.1). This can be used to benchmark the boundary perturbation solution
of the boundary value problem for ¢.|,. Table 3.1 shows the error of ¢.|,, as
numerically determined from (3.8), compared to the analytical solution. It can be
seen that the error decreases exponentially with both N and M as they increase
(the exponential convergences of M and N are established after sufficient N and M

respectively).

The performance of the method for long-time evolution of the wave field can also
be tested against (3.23). Table 3.2 illustrates the accuracy of the method for up to

O(500) fundamental periods of a Crapper wave.
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3.3 Linear numerical stability analysis

To understand the numerical behavior of time integration and develop a Courant con-
dition in simulating (2.1) and (2.2), we conduct a linear numerical stability analysis,

with a representative explicit 4th-order Runge-Kutta (ERK4) scheme.

3.3.1 For a single wave mode

We linearize (2.1) and (2.2) as follows:
N — ¢= =0, (3.26)

¢f - vx . vxn =0. (327)

These two equations can be re-written in matrix form in wavenumber domain:

o | m 0 k m
o - T (3.28)
Pk —k* 0 Pk
where we have written 7 and ¢?Sk as 7, and gsk because (3.28) depends only on k.

The numerical stability analysis of (3.28) is equivalent as that of a single equation

ov

where \,,, = ik*? is the eigenvalue(s) of the matrix [0, k; —k2, 0]. Strictly speaking,
(3.29) can be obtained by diagonalization of (3.28), which is later shown in section
3.4.1.

With the problem simplified to (3.29), we only need to compare \,, with the
stability diagram of a numerical scheme to determine the Courant condition. (As
a reminder, the stability diagram of a numerical scheme refers to a region of AAt
which leads to stable result, as it is applied to solve dv/dt = Av.) Since A, is
purely imaginary, we need a numerical scheme whose stability diagram contains the

imaginary axis. The ERK4 method is a scheme of such kind, whose stability diagram
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covers the imaginary axis up to AAt < 2v/2i (e.g. Moin, 2010). This gives the Courant
condition of ERK4 as applied to (3.28):

At < (2/k)%2, (3.30)

or

(3.31)

At
T

S

with T = 27 /k3/2.

3.3.2 For a capillary wave spectrum

Consider a capillary wave spectrum peaked at k,. We shall derive the Courant
condition for simulation of this spectrum in terms of ¢/7,. According to (3.30) (or
(3.31)), the most severe stability requirement is applied on the highest wavenumber
Emaz, i-€.; At < (2/kpmas)®/? or At < /2T,,;,/7. Using the dispersion relation (2.42),
we obtain T,/ Trin = (Kmaa/ k)3/2. Therefore, the Courant condition can be written

as
At \/§
< _(—p)3/2‘

3.32
T, = T ke ( )

This imposes more limitation of the time step size At compared to its counterpart
for gravity waves At/T, < (vV2/7)(ky/kmaz)'/?, especially for k, < kmae. We are
dedicated to develop a new time integration scheme which mitigates the stability

requirement of (3.32).

3.4 Implicit 4th-order Runge-Kutta (IRK4) method

We combine the linear propagator method (Hou et al., 1994) and the ERK4 method to
develop an implicit 4th-order Runge-Kutta (IRK4) method. This method is supposed

to be (unconditionally) linearly stable and exact.
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3.4.1 Formulation

We split the linear and nonlinear parts of (2.1) and (2.2), and write them in wavenum-
ber space:

o | M 0 k|| 7 J2

o ol T (3.33)
Pk —k* 0 P Qx

where P and Q represent the nonlinear terms in (2.1) and (2.2).

Diagonalization of (3.33) gives

0| v MO ) F
— =" HE s (3.34)
ot Vo 0 )\2 V2 F2

where \; = k%2, Ay = —ik®/?, and

. _
Plogr| ™| (3.35)
i U2 P°x ]
F, B |
Y=ot K, (3.36)
B2 Q|
with
k=2 kT2
Q= . (3.37)

-1 1

We define ¥; = exp(—Ait)v; and Wy = exp(—Aot)vy, with which (3.34) transforms to

2‘1’1 = exp(—)\lt)Fl (338)
ot
0
5\112 - 6$p(—)\2t)F2 (3‘39)

The ERK4 scheme is then applied to (3.38) and (3.39). This completes the
formulation of the IRK4 scheme. This scheme is (unconditionally) linearly stable

and exact. This can be understood by setting F; = F» = 0 in (3.38) and (3.39), due
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to which the evolution equations can be written as
exp(—Mt"THot = exp(—\i ")}, (3.40)

exp(—Aot" T Hvit = exp(—at™)vy. (3.41)

We can see that the solution of (3.40) and (3.41) corresponds to that of a linear wave

field, independent of time step size At.

3.4.2 Numerical test

Despite the linear stability of IRK4, the presence of nonlinearity in the simulation
(Fy # 0, Fy # 0) can still lead to numerical instability. We benchmark the stability
and accuracy of IRK4 as applied to a Crapper wave evolution. This is conducted
by starting the simulation with the exact Crapper wave solution, and measure the
error in surface elevation at ¢/7 = 1. Tables 3.3 and 3.4 show the maximum error,
in simulating a Crapper wave of ¢ = ma/\ = 0.1 and 0.2, incurred in IRK4, with the
comparison to that in ERK4, for varying At and N. In general, smaller At is required
for larger IV and e. By comparing the results from IRK4 and ERK4, we see that the
allowable At by IRK4 is appreciably larger than that of ERK4, and the accuracy of
IRK4 is significantly improved compared to that of ERK4 (in general O(10) times
better).

To further understand the numerical behavior regarding the nonlinear stability of
IRK4, we develop a more sophisticated criterion to evaluate the nonlinear stability of
a simulation: A simulation is considered to be stable if the numerical error is confined
within that of IRK4 for ¢/T < 10. Practically, a test based on this criterion can be

realized in the following three steps:

1. We conduct simulations up to t/T = 10 by varying At, and obtain a function of
€(At), where € is the maximum error in wave elevation at ¢/7 = 10 (note that

€ ~ (T/At)At5 ~ At* if the case is stable, since IRK4 is used).

2. For At, — 0, for which the simulation is meant to be stable, we evaluate €,. In
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T/At

N  Method 20 40 60 80 100
ERK4 X X 8.04x 1077 253 x1077 1.04x1077
IRK4 X 1.54 x 1077  3.04x107% 9.50x 1072 3.87 x 107°

8 200 300 400 500 600
ERK4 6.64x107° 146 x107° 5.82x1071° 343 x1071° 557 x 1071
IRK4 385x1071° 219x10719 1.90x 10719 1.83x10~1° 1.80x 10710

20 40 60 80 100
ERK4 X X X X X
IRK4 X 1.55 x 1077 3.06 x 1078  9.67 x 1072  3.96 x 10~°

16 200 300 400 500 600
ERK4 648 %1072 1.28x107° 4.05x 107 1.66 x 10719 7.99 x 10~
IRK4 247 %1071 488 x 10~ 1.55 x 1071 6.34 x 10712 3.06 x 10712

20 40 60 80 100
ERK4 X X X X X
IRK4 X X X X X

32 200 300 400 500 600
ERK4 X X X 1.66 x 10719 7.99 x 10~1
IRK4 248 x1071° 488 x 107" 1.55x 107" 6.34 x 1072 3.06 x 10712

Table 3.3: Maximum absolute error in surface elevation |7num(Z) — Nana(z)| of a
Crapper wave of steepness € = wa/\ = 0.1, measured at ¢t/T = 1, for varying time
step size At and number of modes V. The unstable simulations are marked by X.
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T/At

N  Method 20 40 60 80 100
ERK4 X X 221 x107% 731 x1077 3.34x107"
IRK4 X 1.80 x 1076 293 x 1077 1.73x 1077 1.52x 1077

8 200 300 400 500 600
ERK4 155x1077 143 x1077 1.39x1077 1.37x1077 1.37x10°"
IRK4 137x1077 136x1077 1.36x1077 1.36x10"7 1.36x 107"

20 40 60 80 100
ERK4 X X X X X
IRK4 X X X 7.17x 1078 299 x 1078

16 200 300 400 500 600
ERK4 1.74x107% 342x107° 1.06x107% 4.19x1071% 1.93x 10710
IRK4 1.90x107% 363 x1071° 1.02x1071° 3.01 x 107t 1.52x 10~

20 40 60 80 100
ERK4 X X X X X
IRK4 X X X X X

32 200 300 400 500 600
ERK4 X X X 422 x 10710 1.91 x 10710
IRK4 X 3.59 x 10710 972 x 1071 256 x 1071 1.42 x 10711

Table 3.4: Maximum absolute error in surface elevation |7num(Z) — Nana(z)| of a
Crapper wave of steepness € = wa/\ = 0.2, measured at ¢t/T = 1, for varying time

step size At and number of modes V. The unstable simulations are marked by X.
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Figure 3-3: Stability analysis of IRK4 and ERK4: marginal time step Aty for
ERK4 (A), graphically above which (meaning At < Atyg) all At give stable results;
marginal time step Aty for IRK4 (®); time step At (0) that is larger than Aty
but leads to stable results; linear Courant condition for ERK4 (—).

practice, we use a sufficiently small At to obtain ;.

3. IRK4 scheme is considered as stable for a certain At if e(At) < Ce,(At/At,)?,

where C' (say C' = 1.2) is a relaxation factor.

Based on this criterion, we test the stability of IRK4 and ERK4 as they are applied
to a Crapper wave of € = 0.1, with an increment of At as 6(7/At) = 1. The results are
plotted in figure (3-3), along with the linear Courant condition of ERK4. We see that
the marginal time step Aty g (all At < Aty g give stable results) for ERKA4 is slightly
smaller than that predicted from the Courant condition, reflecting the influence of

nonlinearity on the stability. The marginal time step Aty for IRK4 is significantly
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larger than Aty g, which is as expected. What remains unclear in figure 3-3 is that
there exists discontinuous At > Aty;; which lead to stable results. We investigate

the mechanism underlying this behavior in the following.

To obtain a better elucidation for these stable At > At,;;, we plot these At in
figure 3-4 respectively for N = 8,16 and 32. It is evident that these At form “clusters”

3/2

around some “attractor” of At = T,,, where T,, = T/n*? is the period of mode n,

especially for large N.

To understand this salient “clustered” behavior, we need to consider the energy
transfer mechanism in a 1D capillary wave field, as an “unstable” simulation is gen-
erally caused by the accumulation of energy at high wave mode n. Physically, it
has been shown that energy transfer can be caused by the triad resonant interaction

among three modes satisfying (Mcgoldrick, 1965)

ko + ky = ke, (3.42)

and

W, + Wp = W,. (3.43)

Equation (3.43) can be relaxed with a “~” for quasi-resonant interactions. It has been
shown (Mcgoldrick, 1965) that (3.42) and (3.43) cannot be simultaneously satisfied
in 1D with w representing the physical frequency. However, the situation is different
in numerical simulation. As At becomes larger, the sampling rate is possibly lower
than the Nyquist frequency for some high-frequency mode. As a result, these modes

manifest themselves with the aliasing frequency

W= |w — wsl, (3.44)

with ws being the sampling frequency. A toy model problem to illustrate these
concepts is sketched in figure 3-5. With w replaced by w’ in (3.43), a “pseudo” triad

resonant interaction is possible.

Since most energy are concentrated at the fundamental mode for Crapper wave,
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Figure 3-4: Stable time step At > Aty (O) for (a) N =8, (b) N = 16 and (c)
N = 32. The marginal time step Aty (B) and the attractors (x) are indicated for

each subfigure.
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Figure 3-5: Sketch of a toy model problem to illustrate the Nyquist frequency and
aliasing frequency. (a) A continuously rotating wheel with frequency f, and Nyquist
frequency calculated as fy = 2f; (b) Consecutive samples with sampling frequency
fs =4f(> fn), the captured frequency f. = f; (c) Consecutive samples with sampling
frequency f, = 8f/7(< fn), the captured frequency f. = f/7; (d)Consecutive samples
with sampling frequency f, = 8f/9(< fn), the captured frequency f. = f/9.
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Figure 3-6: Sketch of the configurations of At: (a) a most “dangerous”’ situation,
with At locating amid 7,, and T,,,1; (b) a most “safe” situation, with At locating
coincidentally on T,.

the most possible “pseudo” triad that can be involved in energy transfer is among 1,
n and n 4+ 1. In general (for Crapper wave), a case becomes unstable if the following
condition is satisfied,

w1 + W, X Wy, (3.45)

This places a direct restriction on the configuration of At. For the sake of explanation,
we describe two situations. Figure 3-6(a) shows a most “dangerous” situation, with
At located amid 7,, and T,,;;. This leads to w], ~ w/,,, (see figure 3-5(c) and (d)
for an illustration), which renders (3.45) most likely to be satisfied. On the contrary,
figure 3-6(b) shows a most “safe” situation, with At locating coincidentally on T,,. In
this configuration, w], —w},,; = wp — Wn41 (see (3.44)), and the “pseudo” resonance is
not possible. As a result, the time step At that leads to stable results are “clustered”
around At = T,. In summary, the application of IRK4 does gain some advantage
compared to ERK4, in terms of numerical stability. Nevertheless, this scheme should
be used with great caution if accuracy is under consideration. As larger At is used,
the accuracy regarding the high-frequency modes can be severely deteriorated, even
though the results stay stable. In addition, the above analysis only considers the
simulation with most energy concentrated in the fundamental modes. For the general
simulation of a broadband spectrum, there could be much more possibilities leading

to the “pseudo” resonance and the “clustered” behavior is less applicable.
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mistakenly represented

kl+k2-N kl k2 k1+k2
| | | [ | |

-N/2 0 N/2

Figure 3-7: Sketch of the spatial aliasing: mode with wavenumber k; + ko mistakenly
represented by ki + ko — N.

3.5 Spatial de-aliasing

We present the 2/3 spatial de-aliasing rule, which is widely applied and superior
to the 1/2 de-aliasing rule used in Dommermuth & Yue (1987). We remark that
the spatial aliasing considered here is different with the time aliasing in section 3.4.2.
Instead, it is caused by the insufficient grid points to resolve high wavenumbers due to
multiplication of functions. For example, say we have two functions u(x) = cos(kix)
and us(x) = cos(kax) defined on a computational domain with z € [0, 1, ..., N]x27/N,
ie, ke [-N/2,—N/2+1,....N/2]. If k; + ky > N/2, the multiplication result u;us
cannot be properly represented. It results in an aliasing mode which is mistakenly
represented by wavenumber k; + ko — N in the computational domain (see figure 3-7
for a sketch).

To avoid the aliasing error, we can use the zero-padding scheme in spatial domain,
i.e., we set part of the amplitudes to zero always prior to and after multiplications,
and keep the sub-range [—K, K] free of aliasing. To determine the value of K, we
consider a most severe situation, with k; = ky = K, which results in an aliasing
wavenumber 2K — N. For this mode to be out of the alias-free range, we need to set
2K — N < —K, which gives

K < N/3. (3.46)

Therefore, K = N/3 is the most computationally efficient choice, as maximum number
of modes can be kept in the simulation. This scheme is called the 2/3 spatial de-
aliasing rule as we keep 2/3 of the total modes (see figure 3-8 for a sketch). In

contrast, the previous choice of 1/2 de-aliasing rule in Dommermuth & Yue (1987) is
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folding back

Il‘(1|+|f.2-h| | | kfl. kIZ | , k1|+|-c2
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N2 K=N/3 0 k=N/3  N/2

Figure 3-8: Sketch of the 2/3 de-aliasing rule.

sufficient but not necessary.

3.6 Summary

We have developed the formulation of high-order spectral method for the simulation
of capillary waves. We present two ways to simulate the capillarity term, which
are respectively consistent with the frameworks of DY (Dommermuth & Yue, 1987)
and WW (West et al., 1987) formulations, and should be used accordingly. While
the WW formulation bears a slight theoretical advantage of achieving exact energy
conservation, the two methods can be used interchangeably for general purposes.
The accuracy of the developed scheme is benchmarked using an analytical Crapper
wave solution. A linear numerical stability analysis is conducted with respect to the
ERK4 scheme for time integration. It is found that capillarity imposes a more severe
limitation on time step size At, compared to that for gravitation, for simulation of
a wave spectrum. To mitigate this limitation, we have developed an IRK4 scheme
for time integration, which is obtained by combining the ERK4 scheme and linear
propagator method. The new IRK4 scheme is shown to be linearly stable and exact,
and more accurate than the ERK4 scheme when applied to a Crapper wave. The
stability of IRK4 under nonlinearity is numerically analyzed. It is shown that its
marginal time step At,, (for all At < At,, results are stable) is much larger than
that of ERK4. We also find that there are many At > At,, which leads to stable
results. These At are observed to show a “clustered” behavior around At = T,,. This

is explained in terms of the “pseudo” resonant interactions which result in energy
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transfer to high wavenumbers. We finally end the chapter by presenting the 2/3 de-
aliasing rule, which obtains a computational improvement compared with the previous

1/2 de-aliasing rule used in Dommermuth & Yue (1987).
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Chapter 4

Direct numerical investigation of

capillary wave turbulence

In this chapter, our objective is to investigate isotropic turbulence of capillary waves,
and evaluate the validity of WT'T, by direct numerical simulation of the primitive
Euler equations. The aim is to obtain a clean development of the wave spectrum
not obscured by complexities associated with the mechanical forcing of the waves
(Pushkarev & Zakharov, 1996, 2000; Falcon et al., 2007; Xia et al., 2010; Deike
et al., 2014a) and difficulties associated with the estimation of P (Falcon et al.,
2007; Xia et al., 2010; Deike et al., 2014a). Furthermore, we seek to uncover the
physics at a substantially broader range of nonlinearity level relative to existing
measurements (Falcon et al., 2007; Xia et al., 2010; Deike et al., 2014a) and numerics
(Pushkarev & Zakharov, 1996, 2000; Deike et al., 2014b). To achieve this, we consider
the free evolution of an arbitrary initial wavefield represented by a general isotropic
spectrum. We then look for the development of a power-law spectrum in the process
of the evolution from different initial nonlinearity levels. The energy flux P is
evaluated, without ambiguity, by direct evaluation of the energy dissipation rate in
the dissipation range.

We show the development of the WT'T k=194 power-law spectrum, at high enough
nonlinearity, and I,, ~ P2 The Kolmogorov constant C' is for the first time found

to be reasonably close to Cy = 6.97 (see 2.91). With decreased nonlinearity on
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a fixed grid (or decreased mode number N for a given nonlinearity), our results
illustrate the finite box effect (Pushkarev & Zakharov, 2000), i.e., nonlinear resonance
broadening becomes insufficient to overcome the discreteness in k, which results in a
reduced capability of energy transport. This is reflected in the reduction of energy
flux P, larger and smaller values respectively of observed Kolmogorov Constant C
and spectral slope a, relative to WT'T. These results offers, for the first time, both a

validation of and supplement to WTT in the description of capillary wave turbulence.

The main results of this chapter is also presented in Pan & Yue (2014).

4.1 Numerical formulation

We consider capillary waves in two surface dimensions on the free surface of an ideal
incompressible fluid. For small Bond number, gravity is neglected. The system is
described in the context of potential flow (velocity potential ¢(x,y, 2,t)) in terms
of nonlinear evolution equations (Zakharov, 1968) for surface elevation 7(x,y,t) and

velocity potential at the surface ¢*(z,y,t) = ¢(x,y,n,t):

= —Vx¢® - V) + (14 Vi) - V)b + F~ yng], (4.1)

1 1
& = —§Vx¢5 - Vxd® + 5(1 + Vi - Vi) 2+
gvx ) V]

where F~! is the inverse Fourier transform, ~y, is the dissipation rate at small scales.

(4.2)

+ F_1[7k¢%]7

Equations (4.1) and (4.2) can be simulated using the schemes described in Chap-
ter 3, other than the dissipation terms F~'[y7;] and F~'[y,¢?]. These terms are
introduced beyond k., to represent the physical (viscous) damping, with 7y defined in
the Fourier space with the following form (Pushkarev & Zakharov, 1996):

—volk — k)% k>k
e = 0( 'y) Y (4.3)
0, k <k,
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These two terms can be straightforwardly included in the simulation by multiplying

both 7(k) and ¢*(k) with exp(y:At) at each time step.

The energy (density) dissipation rate, and thus the energy (density) flux, due to
(4.3), can be evaluated explicitly (cf. Pushkarev & Zakharov (1996)):

P 4%2 / /k T8+ k21, () dR, (4.4)

where I4(k) is (proportional to) the energy density spectrum (see (2.40) for an analogy
of I,,(k)) of ¢°. We note that this definition is equivalent to (2.85).

The simulation starts from an initial isotropic wavefield with a somewhat arbitrary
spectral energy distribution. The wavefield is allowed to evolve freely, with total en-
ergy decreasing due to dissipation at high wavenumbers. In the presence of nonlinear
wave interactions, after sufficient time ¢ > t4, a power-law spectrum develops in
the inertial range. In this asymptotic phase, as the overall spectrum decays with
time, its slope in the inertial range as well as scaling with P, and value of C' remain
quasi-stationary and are evaluated. Note that the general development of the power-
law spectrum is independent of the details of the initial spectrum (which we verify
numerically). For specificity, we choose initial wavefields described by a JONSWAP
spectrum (see Appendix C for the specificity of 1(x, 0) and ¢*(x, 0)). The nonlinearity

of the initial spectrum is characterized by the effective wave steepness
B = kas/Za (45)

where k£, is the peak wavenumber and H, is the significant wave height. To cover a
broad range of P (and nonlinearity), we can conduct a single simulation (starting with
a sufficiently large ) and follow the asymptotic spectrum as it decays. Alternatively,
we can conduct different simulations with different initial spectral energies. The

predicted results are effectively identical (figure 4-2).

HOS simulations are carried out using the DY formulation with N, = N, = N =

128 alias-free modes, with k, = 16k and k, = 60ko, where kqy is the fundamental
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wavenumber of the (doubly periodic) domain. For dissipation, we use
Yo = Yok /w, =5 % 1072, (4.6)

which leads to the asymptotic spectrum with a smooth development of and connection
between the power-law and dissipation ranges (we verify that the realized spectra
and evaluation of P are not sensitive to variation of 7, around this choice). For
o > 5 x 1073, a sharp transition develops between the power-law and dissipation
ranges; For 7y < 5 x 1073, the dissipation is not sufficient to damp the energy
transferred from large scales.

HOS can handle arbitrary order, M, of nonlinear interactions. Although the
nonlinear capillary wave evolution is expected to be dominated by the three-wave
process (Zakharov & Filonenko, 1967), we follow Pushkarev & Zakharov (1996) to
use M = 3 (corresponding to their Hj). The inclusion of four-wave processes is
important for broadening the spectral tail where the nonlinearity level is low for
triad resonance (cf. the discussions Xia et al. (2010); Pushkarev & Zakharov (1996,
2000)). Thus M = 3 significantly speeds up the spectral evolution relative to M = 2
(although the final predictions are little affected).

4.2 Results

4.2.1 Spectral evolution

Figure 4-1 shows a typical evolution of the spectrum starting with $=0.25. For
this case, a power-law spectrum is fully developed at t4 ~ O(5007,), where T, =
27 (p/(ck3))/2. Within a substantial range, the power-law spectrum follows closely
the theoretical slope of g = —19/4. As the spectrum decays, the normalized energy
flux

P = P/(ow,) (4.7)
also decreases, while the inertial range remains power-law.
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Figure 4-1: Typical development of spectrum with time. Initial spectrum at t/7,=0
(— —-); fully-developed spectrum corresponding to P=9.6 x 107 (—); decayed
spectra corresponding to P=1.6 x 1077 (- - -) and 3.2 x 1078 (- - - -).
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Figure 4-2: Time trajectories of (P2 I,) for two simulations with different initial
effective wave slopes: [=0.225 (—) and =0.2 (- - -). For reference, the WTT
I, ~ P2 scaling (- — -) is indicated.
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We define
k'Y
i= / I, (k)dk (4.8)

as an integral measure of the amplitude of I,,(k) within the inertial range. The time
trajectories of (]31/ 2,]7]), for two simulations with different initial values of 3 are
plotted in figure 4-2. Indicated are the respective time ¢4 when the asymptotic phase
is established for each case. For t > t4, the slopes of the (ﬁl/ 2 I~7,) trajectories follow
closely the WTT I, ~ P2 scaling. We establish this scaling for a wide range of P
by repeating simulations such as those in figure 4-2 for many initial values of 8 or

equivalently by following a long single evolution starting from large .

4.2.2 Evaluation of P, C' and «

Figure 4-3 plots P2 versus IN,7 for P ¢ [ﬁmm, ﬁmaw] ranging over 1.5 decades. Our
ﬁmaw is limited by the capability of HOS, and ﬁmm is chosen to be sufficiently small
to reveal the mechanism at low nonlinearity level. The WTT P'/2 scaling is realized,
with the deviation from the theoretical fit greater at lower values of P (and INT])
These deviations are due to the finite box effect (Pushkarev & Zakharov, 2000), i.e.,
nonlinear resonance is limited by the finite wavenumber spacing. As a result, fewer
triads are active in transferring energy, resulting in a reduced P. For given N, as
nonlinearity further decreases below some critical value, frozen turbulence (Pushkarev
& Zakharov, 2000) obtains and P — 0 with a finite IN,7 The present result provides
a direct numerical confirmation of I, ~ P2 for the first time. They thus help
support the recent clarification (Deike et al., 2014a) of apparent inconsistencies in the
experimental predictions (Falcon et al., 2007; Xia et al., 2010), and illustrate the finite

box effect by substantially extending the range of P realized in the measurements.

The Kolmogorov constant C' can be evaluated directly from the simulation data.

Specifically, at each value of 13, we define

k(o) = [k1, k2]a (4.9)
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Figure 4-3: I, (—o-) and C/Cy (—=—) as functions of P*/2, compared to WTT (- - -).
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as the maximum spectral interval within which the linear fit log I,,(k) ~ alogk has
R? > 0.99. C’(ﬁ), plotted in figure 4-3, is then evaluated from (2.94) in the range
k(ap=—19/4). The higher values of C at lower values of P reflects the deviation from
the WTT I, ~ P'/2 scaling in this range. With the increase of nonlinearity, C (P)
approaches C' = 9.90, with reasonable error compared to the theoretical Cy=6.97.
Despite the discrepancy, this study regarding the value of C' is much improved
compared to previous ones (Pushkarev & Zakharov, 2000; Deike et al., 2014a,b),
from both theoretical and numerical considerations. The difference between C (ﬁmam)
and C is resulted from the reduced nonlinearity with the increase of k£, which becomes
insufficient to sustain the energy flux needed to recover Cy. This point will be re-

visited and discussed in detail in Chapter 5.

In practice, the finite box effect, in limiting the nonlinear resonance, also results
in a deviation of o from «g. To show this effect, at each ﬁ, we calculate a best-fit o
and the spectral range k(). The dependence of a on P is shown in figure 4-4. Near
ﬁmaw, a = —4.8; and it decreases monotonically with decreasing Ptoa = —58 at
ﬁmm. Similar phenomenon of steepening of the spectrum at low nonlinearity has been
reported in experiment for gravity waves (Denissenko et al., 2007). Also reported in
figure 4-4 are the widths of the spectral ranges x(cr) and k(ap) as functions of P.
k(a) is almost constant, while x(c) decreases monotonically with decreasing P. In
general k() > K(ap) except asymptotically at large P. These results are in contrast
to the theoretical self-similar decay (Falkovich et al., 1995), and are useful in the
interpretation of observed deviations of « from «p in experiments (Xia et al., 2010;

Wright et al., 1996; Brazhnikov et al., 2007). The detailed mechanism leading to the

steepening of the spectrum at lower nonlinearity level is discussed in Chapter 5.

For given nonlinearity, finite box effect can be mitigated by increasing N (or
by increasing the physical dimension of the experimental tank). We show this by
varying N with N = 64 and 256 from the preceding value of N = 128 (with k,/ko
and k,/ko scaled correspondingly). Figure 4-5 shows the calculated o and C with
varying N. With the increase of N, a and C approach WTT values (despite the

discrepancy of C) showing that earlier deviations from these asymptotic values are
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Figure 4-4: Evaluated o (——) compared to WTT (- - -), and log,o(k2/k1)a (—e—),
log,o(ka/k1)ae (—5—) as functions of P.
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Figure 4-5: C/Cy (—=—) and « (—e—) compared to WTT (- — —) with varying mode
number N, for P = 3.4 x 107".

indeed manifestations of the finite box effect.

4.3 Summary

In this Chapter, we present results from direct numerical simulations of freely-evolutional
capillary wave turbulence. With the precisely evaluated P from the energy dissipation
rate, we are able to confirm the WI'T P2 scaling over a broad range of P. For
sufficiently large P, the WTT k~'%/* scaling is recovered to high accuracy, and the
value of Kolmogorov Constant C' ~ 9.9 is obtained with reasonable error compared
to the theoretical value of Cy = 6.97. At lower nonlinearity level, the deviations of

the power-law spectral slope o and proportionality constant C' from their asymptotic
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values at sufficient nonlinearity are obtained and shown to be a result of finite box
effect. The current work reinforces the validity of WT'T as a description of capillary
wave turbulence over a broad range of energy fluxes, and quantifies the deviations
from WTT due to finite box effect when grid resolution or tank size is limited. We
have studied the special case of capillary wave turbulence, our main findings are

expected to also hold for weak turbulence in other similar physical systems.
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Chapter 5

Understanding discrete capillary wave

turbulence using quasi-resonant

kinetic equation (QRKE)

Investigations in Chapter 4 have shown that the power-law spectrum of weak turbu-
lence, theoretically derived by assuming infinite domain with continuous wavenumber
representation, is realizable in realistic finite domain with discrete wavenumbers. In
this chapter, we seek to understand this phenomenon of discrete capillary wave tur-
bulence, under the framework of the Kinetic Equation (KE). In cases of finite domain,
the KE is not directly applicable, as the condition of exact triad resonant interaction
does not hold, i.e., the frequency mismatch within a triad is restrained from being
zero and energy transfer is governed by the quasi-resonant interactions with nonlinear
resonance broadening. In order to develop appropriate modification of the KE, we
conduct a study on the mechanism of nonlinear broadening using data from the
simulation of the primitive Euler equations (Pan & Yue, 2014). It is elucidated
that the nonlinear broadening increases with nonlinearity level (wave steepness), and
reaches an upper limit at sufficient nonlinearity level in the regime of weak turbulence.
Inspired by these findings, we develop a quasi-resonant kinetic equation (QRKE) for
capillary waves, which takes into consideration the wavenumber discreteness and

quasi-resonant triad interactions. An additional non-dimensional parameter £ is
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introduced in the equation, which exclusively governs the ratio between nonlinear
broadening and wavenumber discreteness. The simulation of the QRKE shows that
an arbitrary initial spectrum, subject to forcing at the fundamental wavenumber,
evolves into a stationary power-law spectrum. At k = kg = 0.02, the theoretical
values ap and Cj are simultaneously recovered. This physically represents an upper
limit that the energy flux by quasi-resonance approaching that of exact resonance in
theoretically infinite domain. For kK < ko, physics of insufficient nonlinearity, namely
the steepened power-law spectral slope and reduced energy flux, is replicated in the
simulation results. We thus establish the physical connection of nonlinearity level,
nonlinear broadening and features of the power-law spectrum. The method is further
justified by showing that the key parameter k is linearly correlated with nonlinear

broadening obtained from the data of Euler equations.

5.1 On the Kinetic Equation and Resonance Condi-
tion

For completeness of this chapter, we re-write the kinetic equation (KE) derived in

Chapter 2:
8nk
*X_9 5.1
S(nk) = // [Rkkle — Rklkkz — szkkl]dkldkg, (52)

Rkk1k2 = 47T|ka1k2 |25(k — k1 — kg)é(wk — Wk, — wkz)[nklnb — NNk, — nknkQ], (53)

1 L Ly Ly
V — 1/2 k17k2 _ k7 ki _ k7 ko 5.4
kkiko —SWﬁ(wkwklka) [(k1k2)1/2k (kky) 2k, (kkg)l/%l]’ (5.4)
Lk17k2 - k1 . k2 —|- klkg. (55)

For simplicity, the time and mass units are chosen so that the surface tension coef-
ficient o and the fluid density p are unity. In the KE, ny is the spectral density of
wave action (see Chapter 2 for the normalization) at wavenumber k. S(ny) is the

collision integral, representing the nonlinear spectral evolution due to triad resonant
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interactions. At a mode k = |k,
wi = |k[*/? (5.6)

is the angular frequency determined from the linear dispersion relation.

In an isotropic wavefield, the analytical stationary solution (with large-scale forc-
ing and small-scale dissipation) of the KE yields a power-law spectrum in the inertial

range (see the derivation in Chapter 2),
n(k) = 2nCyPY/2|=17/4, (5.7)

where P is the energy flux from large forcing scales to small dissipative scales, and
Co = 6.97 is the Kolmogorov Constant. In obtaining (5.7), a key assumption is made,
under which S(nx) can take non-zero value, that the wave domain contains triad

(k, k1, ko) in exact triad resonance, satisfying
k - kl - k2 = O, (58)
Wk — Wk — Wky = 0. (59)

The existence of exact triad resonance is mathematically only possible as k varies
continuously in a theoretically infinite wave tank/domain. In a finite domain with
wavenumber discreteness, significant difference can be originated from the mathe-
matical property of the (5.8) and (5.9): It is shown in Kartashova (1990) that there
is no solution of exact triad resonance, as the frequency condition (5.9) turns into a
particular case of Fermat’s last theorem. Therefore, the KE is not directly applicable,
as the integral S(ny) is rendered to be zero. It is, however, desirable to establish
this framework, which is physically more tangible than that of the primitive Euler
equations, in terms of its explicit mathematical description of energy transfer by
triads (see (5.3)). We postulate that the influence of the nonlinearity level on the

dynamics of energy transfer can be elucidated after the corresponding parameter is
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properly introduced.

5.2 Nonlinear Broadening in Discrete Wave Turbu-

lence

In a L x L finite domain associated with wavenumber discreteness Ak ~ 1/L, the KE
is not directly applicable, as the triad resonant condition for frequency (5.9) cannot
be exactly satisfied. Physically under this constraint, the nonlinear broadening plays
a key role in exciting the quasi-resonant interaction, allowing a small mismatch in
(5.9). While it is argued (e.g. Pushkarev & Zakharov, 2000; Connaughton et al.,
2001) that the energy transfer is only possible under sufficient nonlinear broadening,
a quantitative description of this mechanism is lacking. In order to develop an
appropriate modification of KE for this scenario, we first conduct such a study
using the results from the simulation of primitive Euler equations. With the data in
analysis drawn from the fully-developed wavefield represented by power-law spectra,
we provide a direct measure of nonlinear broadening and the corresponding spectral
properties under different nonlinearity levels.

To construct a quantitative measure of the nonlinear broadening, we first define

a bi-coherence

[(n* (k)n (ki )n(ks = k — ky))|
(In(k)[|n(k1)[|In(ke = k —k;)[)’

with () denoting the time average and  the complex conjugate, 1(k) being the spatial

Bz(k7 kl) =

(5.10)

Fourier component of the surface elevation at wavenumber k. B; measures the phase
coupling of the three wave vectors k, k; and ky = k — k;. It ranges from 0 to 1 for
zero and perfect coupling. In a wavefield with discrete wavenumber, B; obtains high
values for quasi-resonant triads, and low values for non-resonant triads.

Without loss of generality, we set k = (25,0), and plot B; as a function of k; =
(K1, k1,). This is shown for two cases with higher and lower nonlinearity levels in
figure 5-1(a) and (b) in the same finite domain, i.e., same Ak. The regions of high

values of B;(k;) for both cases are concentrated around curves of k; for which exact
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Figure 5-1: B; for (a) high nonlinearity (o« ~ —4.25) and (b) low nonlinearity
(o ~ —4.6) wavefield. Time average are obtained over 2007, where T, is the
modal period of wavenumber at the spectral peak. The vectors k; for which exact
resonance occurs are indicated by — ——. The middle ellipse represents the triads
of (n*(k)n(ki)n(ks)) (k12 = 0), and the left and right branches represent, due to

conjugation, (n*(k)n*(—ki)n(kz)) (R = 0) and (n*(k)n(ki)n*(—ka)) (Qur2 = 0).
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resonance condition is satisfied. These curves are mathematically characterized by
Q = min(|Qeazl, [Qurel, [Q211]) = 0, (5.11)

where Q;;; = w; — w; — w;. With the finite width of B;(k;) at the vicinity of the
resonant curves measuring the nonlinear broadening, it is now visibly clear from
figure 5-1 that the nonlinear broadening associated with higher nonlinearity level
(and shallower spectral slope «) is appreciably wider than that of lower nonlinearity
level (and steeper a). To further obtain a quantitative measure, we define

Ly = %, (5.12)
with O = Q/(Akk'/?) being a normalized frequency mismatch, i.e., distance of a
point in the domain to the resonance curve measured by frequency, and the summation
being for all grid points adjacent to the resonance curve (say |2 < 2). The parameter
Ly thus measures the (non-dimensional) characteristic length of nonlinear broadening

by first moment of B;(k;) centered at the resonance curve.

We plot in figure 5-2 the variation of L, and the spectral slope o with the increase
of nonlinearity level, measured here by the amount of (non-dimensionalized) energy
flux P (see Chapter 4 for its calculation). The range of nonlinearity considered here
corresponds to the weak turbulence regime, i.e., cases with relatively small wave
steepness such that perturbation analysis in WT'T /HOS is valid. It is shown that the
approaching of « to the theoretical value o is accompanied by that of l:b toward some
constant. This is an illustration of the broadening approaching a limit with sufficiently
large nonlinearity (in the considered range), for which the dynamics governed by
quasi-resonance approximates that of exact resonance in theoretically infinite domain.
While the dynamics above this limit remains elusive (e.g. Denissenko et al., 2007) and
is beyond the capability of HOS and KE, we focus our consideration on the range

below it.
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Figure 5-2: The spectral slope a (—x—) and the broadening L, (—o—) as functions
of the non-dimensionalized energy flux P = P/(ow,), with w, being the angular
frequency of the peak mode.

5.3 QRKE for Discrete Turbulence

In addition to elucidating the mechanism of nonlinear broadening, the analysis in
section 5.2 inspires us to develop a simplified model in the framework of the KE. To
represent the quasi-resonant interactions, we broaden the exact delta function §($212)

in (5.3) (and the counterparts for other triads) as a finite-width delta function,

g1

0(Rk12) ~ 0g(12) = — 575 (5.13)
12 g3 2k12 7B+,

where [ is a small parameter introduced to characterize the nonlinear resonance
broadening in frequency. The physical significance of using (5.13) can additionally
be traced back in the derivation of KE. Rigourously speaking, the delta function in
(5.3) is a result of the closure for third-order cumulant Jii2 (~ ensemble average of
multiplication of modal amplitudes at k, k; and ks), which renders Ji12 to be nonzero
only when {15 = 0. The treatment of (5.13) broadens the nonzero region of Jy2,
and, in the framework of KE, effectively allows the triads in quasi-resonance to be

excited for nonlinear energy transfer. The specific form (5.13) of the finite-width
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delta function is preferred as it is mathematically a direct result of relaxing the limit
of zero-approaching small parameter (to account for the discrete wavenumber) in the
application of the Sokhotski-Plemelj theorem in the derivation (cf. Zakharov et al.,
1992).

We further define the non-dimensional frequency broadening:

B

N ARE?

(5.14)

where the denominator Akk'/? is a measure of the frequency discreteness associated
with Ak at wavenumber k. k is thus a non-dimensional parameter characterizing the
ratio between nonlinear broadening and grid spacing, i.e., a measure of the number
of grid points underneath the broadening. Furthermore, it is the exclusive parameter
in the modified KE by which the nonlinearity level is introduced, and is of significant
role in the dynamics of energy transfer on a discrete grid. In a single simulation with a
particular nonlinearity level, k is set as a constant, and 3 is calculated accordingly as
a function of k. This ensures that the frequency broadening scales with the frequency

discreteness, and is thus evenly applied, at all wavenumbers.

The simulation domain is confined to be (0, ky4e], Where k., physically corre-
sponds to the cut-off wavenumber of the inertial range. To model the small-scale
energy sink, we assume that all the energy transferring across k... is dissipated.

This is equivalent to adding an additional term I'(n;) in (5.1), in the form of

I(ng) = — / / 8T Viersaes|26(k1 — k — k)6, (why — b — i)y 0 s,
kmam<k1 <kd

(5.15)
which selects all the triads transferring energy from &k € (0, knaz] t0 [Kmaz, ka]. While
n(k > Kmaz) is set to be zero and not updated in the simulation, [Kqz, ka] serves as
an energy sink regime, which physically absorbs energy transferred from (0, k0] In
theory, kg = 2k,,q, accounts for all such triads and (5.15) thus provides a parameter-
free dissipation model with I'(n;) representing the evolution of 1, due to these quasi-

resonant triad interactions. The energy flux can be directly evaluated as the energy
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transfer across Kz,
1 kmaa:

P = k2T (ny,)dk. (5.16)

27 Jimo

With these configurations, it is expected that the continuous case described by the
original KE can be numerically represented with the parameter x > 1 on a sufficiently
fine grid. We have been able to verify this, by obtaining converged results of o and
C to their theoretical values with the decrease of grid size for any large enough value
of k. This provides a direct confirmation of our newly evaluated value of Cy, and an
alternative way by which different types of kinetic equation can be solved numerically
for the theoretical solution (even prior to the lengthy theoretical derivation). These
solutions, however, do not correspond to the cases of discrete turbulence (for example,
it requires at least O(10° x 10°) modes to obtain the theoretical results, which is much
more than that for discrete turbulence (O(100 x 100), as in Chapter 4).

Our purpose is to study the discrete capillary wave turbulence in the framework
of the QRKE, that is, to obtain the stationary spectrum on a coarse grid with small
values of k. To this end, we perform simulations with O(10 ~ 100) modes and
selected values of kK < 1. Starting from a somewhat arbitrary initial solution, chosen
in present work as an exponential function n(k) = exp(—k?/5), we numerically evolve
the spectrum in time according to the QRKE, (5.1)~(5.5) and (5.13)~(5.15), with
a second-order Runge-Kutta scheme. To obtain a stationary spectrum, a large-scale
forcing is required. Instead of adding an extra forcing term in the KE (e.g. Pushkarev
et al., 2003), we assume that the forcing exactly compensates for the decrease of n at
large scales due to energy transfer to small scales, i.e., n(k) within the forcing regime
numerically keeps constant in the simulation. This approach is found to be very
efficient in obtaining the converged stationary spectrum. Without loss of generality,

we consider the forcing concentrated at the fundamental wavenumber k& = Ak.

5.4 Results of the QRKE

We consider the evolutions of the spectra governed by the QRKE with prescribed

values of k. After sufficient time, the spectra evolve to stationary power-law solutions
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with different spectral slopes « for different values of k. These are plotted in figure
5-3(a) with k.. = 32, Ak = 1 and selected values of k. The evolutions of the
total spectral energy FE for these cases are plotted in figure 5-3(b), showing that the

stationary state is reached as the power-law spectra are formed.

The evaluation of spectral slope « is straightforward at the stationary state.
The Kolmogorov Constant C' is evaluated, after the value of « is obtained, as C' =
(n(k)/(2m PY/2k*));, where P is calculated using (5.16) and (), denotes the average
over range of k (This is in contrast to Chapter 4 where we can find an interval
complying with g slope amid the spectrum with overall but slowly-varying slope «).
The value of C' such evaluated is a measure of the capability of a spectrum to transfer
energy: For two spectra with different values of C', the one associated with larger
C has smaller energy flux scaled by the spectral amplitude at k£ = 1, i.e., weaker

capability of transferring energy.

Guided by the analysis in section 5.2, we consider the range of x (and Ak)
corresponding to the physically realizable spectra in weak turbulence regime, i.e.,
those with |a] > |ag| and C' > Cj, which otherwise covers broad range of a and C.
These are plotted in figure 5-4 for Ak = 1. It is shown that the theoretical values of
ag = —17/4 and Cy = 6.97 are simultaneously achieved at kK = ko = 0.02. This thus
physically corresponds an upper limit, in our consideration, of nonlinear broadening,
for which the dynamics excited by the quasi-resonant interactions approximates that
of the exact resonance in theoretically infinite domain. For k < kg, the plots show
that both |a| and C' monotonically increase with the decrease of k in the tested range.
These results are clear manifestations of the physics with insufficient nonlinearity
level, i.e., steepened spectral slope and reduced capability of energy transfer. These
phenomena are also fundamentally observed in the direct simulation of the primitive
Euler equations (Chapter 4) and experiments (e.g. Denissenko et al., 2007; Deike
et al., 2013, 2015).

The influence of Ak on « and C is considered and plotted in the two insets of
figure 5-4, using the case with K = K¢ as a representation. It is shown that both o and

C can be considered as functions of x only, even though C' exhibits weak oscillations
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Figure 5-3: (a) Converged stationary power-law spectra at t=2500 and (b) variations
of total energy E in the spectral evolutions for kK = 0.01 (—a—), K = 0.02 (—o—),
k = 0.04 (——) and Kk = 0.1 (—=—). In (a), the initial spectrum (- - -) and the
theoretical slope —17/4 (- — —) are indicated. Curves with different values of x are
shifted for clarity.
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around the mean value. This can be mathematically understood from the scalability
of the problem. The variation of Ak without modifying o and C'is a direct result of
the scale invariance of the KE (where, numerically for the QRKE, the summation of
triads is obtained by sampling near () = 0 with shifts that are similarly distributed
for different Ak). The physical implication of this independence on Ak is profound.
It signifies that values of a and C, both reflections of dynamics of energy transfer
on discrete grid, are solely determined by the ratio between nonlinear broadening
and grid discreteness, i.e., the dynamics can be changed equivalently by varying the

nonlinear broadening or grid discreteness.

As nonlinearity level is solely represented by k in the QRKE, the steepened
spectral slope and reduced energy flux at insufficient nonlinearity level can be directly
explained through the decreased nonlinear broadening. To corroborate this point with
the results of Euler equations in section 5.2, we plot in figure 5-5 k as a function of
the corresponding ﬁb, associated with the same spectral slope a. It is clear that s
increases monotonically with ﬁb, with the correlation being linear in this considered
range, and Kk = ko = 0.02 corresponds to the largest value of ﬁb for which @ = ayp
is obtained. This result confirms the established connection of nonlinear broadening
with the spectral properties, and provides a direct justification of the formulation of

k in the modified KE.

We finally remark an important difference in the mechanism of nonlinear broad-
ening between the Euler equations and the QRKE. Instead of the uniformly applied
broadening (5.14) in k, nonlinearity decreases as k increases due to the decreased wave
steepness for a realistic wavefield. This is illustrated in figure 5-1 by the diminished
value of B; with the increase of £, which vanishes for sufficiently large k. Dynamically,
this results in a reduced energy flux, and to some extend, explains the discrepancy
between Cy and the obtained value of C' =~ 9.9 in Chapter 4 from the primitive Euler

equations.
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Figure 5-4: (a) |a| and (b) C/Cqy as functions of k for Ak = 1. Insets: (a) |a| and
(b) C/Cy as functions of Ak for k = kg. The theoretical values (— ——) of |ag| = 17/4
and C/Cy =1 are indicated in all figures.
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the same spectral slope a. From left to right, the associated values of o are 4.45,
4.39, 4.34, 4.29 and ap=4.25.

5.5 Summary

We present a study regarding discrete capillary wave turbulence in the framework of
the Kinetic Equation (KE). Under the assumption of theoretically infinite domain,
the original derivation of the stationary solution of the KE is expanded. With
the correction of a key integral in the derivation process, we obtain the theoretical
Kolmogorov Constant with an updated value of Cy = 6.97. In cases of discrete
turbulence in a finite domain where energy transfer is sustained by quasi-resonant
interactions, the KE is not directly applicable, and further development requires
a quantitative understanding of the mechanism of nonlinear broadening. This is
obtained using data from the simulation of the primitive Euler equations. It is
found that nonlinear broadening increases with the increase of nonlinearity level, and
reaches an upper limit in the regime of weak turbulence. Guided by these findings,
we develop a quasi-resonant kinetic equation (QRKE) for discrete capillary wave
turbulence, by introducing a non-dimensional parameter x governing the ratio of
nonlinear broadening and wavenumber discreteness. In simulation of the QRKE, we

find that the obtained values of a and C are functions of k only. As Kk = ko = 0.02, the
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theoretical values of oy and Cy are simultaneously recovered, indicating an upper limit
of energy flux by quasi-resonance approaching that of exact resonance in theoretically
infinite domain. For Kk < kg, the simulation results replicate those with insufficient
nonlinearity level, namely the steepened spectral slope and reduced capability of
transferring energy. As a justification of the established QRKE, the key parameter
k is confirmed to be linearly correlated with the nonlinear broadening in Euler
equations. The elucidation the role of nonlinear broadening in discrete turbulence
and the methodology regarding the QRKE are expected to be valid for the weak

turbulence in various physical contexts.
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Chapter 6

Decaying capillary wave turbulence

under broad-scale dissipation

In this chapter, we perform direct numerical simulation of decaying capillary wave
turbulence implementing the nonlinear primitive Euler equations. We consider low
Bond number such that the influence of gravity is neglected. The problem we solve
is a substantial generalization of Chapter 4, or Pan & Yue (2014), where realistic
broad-scale dissipation is included in the context of decaying turbulence. In contrast
to Chapter 4, we also simulate the evolving spectrum for a long enough time scale to
investigate the time-varying dynamics. Our results replicate those from experiments
of a power-law spectrum with exponential modal decay, as well as monochromatic
decrease of the cut-off wavenumber k. and variation of a during the decay. Along
with the evolution of the spectrum (91I,,/0t #0), the broad-scale dissipation results in
variation of the energy transfer, J(k,t), along k. This substantially complicates the
evaluation of the energy flux P. We propose a novel and effective way to obtain P,
by integrating the modal energy balance equation along k, thus incorporating both
effects of unsteadiness and nonconstant inter-model energy transfer 7. The obtained
results on P are shown to be consistent with the framework of Pushkarev & Zakharov
(2000) and Pan & Yue (2014) in term of the scaling I, ~ PY/2. By considering energy
dissipated at broad scales, we also show that the total energy dissipation rate I' can

be significantly higher than P, which settles the previous debate on the measurement
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of P by assuming the equivalence of the two (Falcon et al., 2007; Xia et al., 2010).

Based on our simulations, we are able to describe the time-dependent power-law

spectrum within the inertial range |ks, k.(f)| in an explicit general form:

In(k, t) _ IokaO—A(t—tO)e—B(t—tO)’
(6.1)
for ky < k < k.(t) and t > t°

where I° and o° are respectively the spectral amplitude and slope of the spectrum at
t=t°. k; is the (almost) constant wavenumber above which the power-law spectrum
is established, and k.(t) is the spectral location where the spectrum departs from the

power law (6.1). A and B are functions of v, only.

Equation (6.1) is shown to fit our numerical data obtained over the ranges of
dissipation magnitude, spectral amplitude (nonlinearity) and evolution time that can
be obtained by our simulation. For sufficiently high initial nonlinearity, a® ~ —19/4.
While A(,) represents the time-varying rate of the spectral slope «(t) = a®—A(t—t°),
we show that the value of « at a given ¢ can be solely related to the nonlinearity level
of the spectrum at that time, irrespective of 7y. The evolution of energy F;(t) within

the inertial range is shown to be well predicted by the analytical integration of (6.1).

The main results of this chapter is also presented in Pan & Yue (2015).

6.1 Numerical Formulation

We consider isotropic decaying capillary wave turbulence in the context of potential
flow (velocity potential ¢(z,y, 2,t)), in terms of the primitive Euler evolution equa-

tions (e.g. Zakharov, 1968) for the surface elevation 7(z,y,t) and surface velocity

potential ¢*(z,y,t)=¢(z,y,n,1):

M= —Vx¢* - Vxn+ (1 + Ven - Vi) + F~ yanz], (6.2)
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where F~! is the inverse Fourier transform, and -y, = (k) = —7ok? is applied on all

k, modeling the broad-scale viscous dissipation at the free surface (e.g. Deike et al.,

2014a).

We numerically integrate (6.2) and (6.3) in time with the WW formulation of the
HOS method (refer to Chapter 3 for a validation of the method), with the dissipation
term modelled as exponentially decayed wave modes (see Chapter 4). The simulation
starts from an initial isotropic wave field with arbitrary spectral energy distribution.
After sufficient time, an inertial-range power-law spectrum forms due to nonlinear
wave interactions. Our objective is to study the decay of this spectrum until the
physics reaches purely dissipative regime, i.e., we focus on the spectrum with an
inertial range longer than a critical value (in practice, 20.3 decade). To obtain a
broad range of energy variation, we choose an initial state specified by a JONSWAP
spectrum (the inertial-range results are not sensitive to the specific choice of the initial
spectrum), with effective steepness 3 = k,H,/2 = 0.25 (with k, being the peak wave
number and H, the significant wave height), which is the highest nonlinearity that
can be modelled by HOS.

Simulations are carried out on a periodic domain with 256 x 256 grid points (k.. =256)
with a 2/3 de-aliasing rule. The peak wavenumber k, = 10ky, with k; being the
fundamental wavenumber of the domain. Up to third-order nonlinearity is included
to allow interactions of both three and four waves (cf. Pushkarev & Zakharov, 1996;
Pan & Yue, 2014). We define normalized dissipation coefficient 7y = ’yokf, /wp, where
wp = 4/0k3/p is the angular frequency corresponding to k,. Power-law spectrum can
be obtained in our simulation for Fp € (0.5 X 107°,3.0 x 107°). This range is limited
above by the dominance of dissipation over nonlinear interaction, and below by the
inherent numerical instability associated with the growth of short waves. Results

from selected values of 7 = 0.8 x 107>, 1.6 x 1075 and 2.4 x 1075 are presented.
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6.2 Results

6.2.1 Spectral decay

Figure 6-1 shows a typical decay of spectrum I, after the power-law inertial range
is established. This plot is a representative of all our results, where the evolving
spectrum features a power-law range within [k, k.(t)] (with k, ~ 1.5k,) and an
exponential range within [k.(t), kmae|- In practice (with sufficiently wide [ky, k.]), ke is
obtained from the intersection of the power-law I, ~ k* and exponential I, ~ exp(5k)
fits of the numerical data. Physically, k. corresponds to the spectral location at
which the time scales of nonlinear interaction and viscous dissipation are balanced
(Kolmakov et al., 2004; Deike et al., 2014b). As the spectrum decays, k. decreases
monotonically (cf. Kolmakov et al., 2004). This decrease is found to be approximately
linear with ¢ for all our cases (see figure 6-1 inset). Within the power-law range, it
is clear that I, ~ k“ where a = «(t). As spectrum evolves, o decreases as the
negative power-law spectral slope steepens. This phenomenon, also observed in the
simulation without dissipation in the inertial range (Chapter 4), is concluded to be
due to the finite box effect. This is a phenomenon where nonlinear wave interactions
are suppressed due to the discreteness in k (and nonlinear resonance broadening is
insufficient to overcome it) (e.g. Pushkarev & Zakharov, 2000). It results in steeper
spectrum at lower nonlinearity, as evidenced also from gravity wave turbulence (e.g.

Denissenko et al., 2007).

Figure 6-2 plots I,,(k;, t) as functions of time for different values of k; € [k, kmaz]-
Regardless of whether k; is in the power-law range, I, (¢; k;) decays exponentially (cf.
Deike et al., 2012, 2013) with I,(k,t) ~ exp(—£t), where £=£(k). As a fixed k; goes
from below to above k.(t) (due to the time-variation of k.(t)), & slightly decreases,
as evidenced by the change of slope of I, (¢; k;) beyond t when k.(t) becomes smaller
than k; (for example the k;/ky=24, 32 curves in the figure; whilst £ are constants for

k; = 16ko < k.(t) and k; = 45ko > k.(t) for the time range plotted).
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Figure 6-1: A typical decay of the power-law spectrum for 7,=1.6x107>. The spectra
from top to bottom are realized at respectively ¢/7, = 600 (—e—) with a=-4.8;
t/T, = 2100 (—a—) with a=-5.7; ¢/T}, = 3600 (—e—) with a=-6.7; t/T}, = 5100 (—v—)
with a=-7.5, where T,=2m/w,. For reference, the power-law (——) and exponential
(— — —) fits of the spectra respectively within [ky,k.| and [k, Knas], as well as values
of k. (O) are indicated. Inset: Variation of k. (/) with ¢, and the linear fit (—)
with R2=0.96.
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Figure 6-2: Evolution of I, (¢; k;) for four select modes k;/ko=16 (O), 24 (O), 32 (A)
and 45 (V). For reference, linear curve fits for k; less (——) or greater (— — —) than
k.(t) are plotted.
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6.2.2 Evaluation of P

The modal decay rate £(k) as a function of k is plotted in fig. 6-3. For comparison,
the modal dissipation rate 7, (k) = 2|y(k)| is also shown. In general, {(k) # v, (k)
due to the inter-modal energy transfer. For a given 7y, there is a wavenumber £,
above which £(k) < 7,(k), indicating a transition to a regime where more energy
is dissipated by 7o than that can be explained by the decrease in I,. This can be

elucidated by considering the modal energy balance:

06 0J

E + % - _7yg ) <6'4)

where & (k,t) = ok®I,(k)/(2) is the modal energy density. As 0& /0t = —£&, 0T [0k
can be explicitly evaluated as 0J /0k = ({ —7,)&. In the sub-regime k < k., we have
¢ =, and 0J/0k = 0 (see fig.6-3); and the energy flux can be approximated by a
constant, say, P, = J| k=k,- In this wavenumber regime, the framework of WTT is
recovered with (constant) energy flux P = P,. For k > k,, £ <, and 0J/0k < 0,
showing that the energy transferred by P, is absorbed in this regime. Using this

physical argument, P, can be evaluated by

P [ w08 (6.5)

ke

Figure 6-4 shows the variation of P,/

as a function of the spectral evolution char-
acterized by the spectral amplitude at the reference wavenumber ky, I, (t; ky) /1, (t°; ks).
We observe that the dependence of I, ~ Pwl/ % resembles closely that obtained in
Chapter 4 for P in the context of WTT. The deviations from the WTT theoretical
scaling for decreasing amplitude in both cases reflect the presence of finite box effect.
Since I,,(t; k) ~ exp(—£&t), we obtain P, ~ exp(—2¢t). The total energy dissipation

rate, calculated as

kmaz
r— / & dk, (6.6)
0

is also plotted in fig. 6-4, showing that in general I' > P,. This explains the

significant over-prediction of P using I' (or equivalently by using energy input in
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forcing turbulence) in previous work (Falcon et al., 2007; Xia et al., 2010).
The impact of the unsteady effect on the evaluation of P, can be seen from (6.5),
which tends to reduce P,. The relative importance of the unsteady effect can be

characterized by a parameter Z

_ fk>k7 §&dk

Z=—1
fk>kﬂ, V& dk

(6.7)
The parameter Z is plotted in fig.6-4 showing that Z = 0.6 ~ 0.7 (in general also
a function of 7). This illustrates the significant unsteady effect for this problem, in
contrast to our previous work for quasi-stationary turbulence (Chapter 4) where, in

theory, Z =0 (in the actual numerics, Z = 0.1 ~ 0.2 (Chapter 4)).

6.2.3 General form of the time-dependent power-law spectrum

Equation (6.1) is equivalent to
I =1°%F"exp(—¢(k) (L — 1)), (6.8)

where £ = Alnk + B, which describes the exponential modal decay with rate £(k)
from an initial power-law spectrum I°k*’, as evidenced from fig.6-1 and 6-2. The
linear dependence of £ and Ink is confirmed in fig.6-3. Indeed, this is an algebraic
requirement for the spectrum to maintain power-law form in the evolution. Since &
is not a function of time in the power-law range (cf. fig.6-2), A and B are constants
(and functions of v, only).

The explicit time dependence of the spectral slope «(t) can be factored out in

(6.1) to obtain:

_ 1 Ly(k) 0 _
a= lnk+R<ln 70 + Ra”), R = BJ/A. (6.9)

While A and B are functions of 7o, we find that the value of R (see fig.6-3 inset)
remains almost constant over the range of 7o we consider. Equation (6.9) thus shows
that, even though the evolutional rates of a(t) and I, (¢; k) depend on the magnitude

of dissipation, the instantaneous « is uniquely related to the spectral magnitude
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Figure 6-3: Normalized modal decay rate £(k)= £(k)/v,, (—o—), modal dissipation
rate 4, (k)= 2|y(k)| /7, (—), and variation of energy transfer 22 /(&£7,,) (—=—)
as functions of k at a certain time t/7, = 2100, where 7, ,=7,(k,). The linear fit
within the inertial range £ = Alnk + B (— — —), and locations of k., (e) and k. ([J)
are indicated. Inset: Values of |R| = |B/A| () and A/7,, (o) for different values of

Yo-
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Figure 6-5: Spectral slope || as a function of I, (k) for 7o = 0.8 x107° (0), 1.6 x 107°
() and 2.4x107° (A). Scatter of the data is caused by the fluctuations of the spectra.
Equation (6.9) is indicated (— — —).

(nonlinearity), independent of -,. Physically, this states that the development of the
spectral slope within the inertial range is governed by nonlinear wave interactions

(only), i.e., local effects of dissipation are removed by faster nonlinear interactions.

To further validate this, we plot in fig.6-5 the spectral slope « as a function of I,,(k;)
for all the values of 7y we consider. Indeed, all the data collapse to the curve described
by (6.9). The value of a ~ —19/4, corresponding to WTT (see (2.94)), is achieved
at highest nonlinearity (I,(k;)) that can be modelled in HOS. In recent experiment
with much broader range of dissipation magnitude (varying over a factor of 100)
(Deike et al., 2014a), « is found to be different between the regimes of high and low
dissipation. The result may also depend on the specific form of dissipation considered
(cf. Deike et al., 2012; Miquel et al., 2014). The underlying physics for broader ranges

of dissipation magnitude and nonlinearity level requires further investigation.
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6.2.4 Decay of energy

If dissipation is absent in the power-law range (and Z — 0), the decay of the total
energy E can be related to the (constant) nonlinear energy flux P to obtain E ~ ¢!
(Falkovich et al., 1995). Indeed, This relation can be derived by direct integration of
the equation dE/dt = —T' = —P ~ —E? (since I, ~ PY/?), where the assumption of
P =T is needed. In the present context of broad-scale dissipation, I' > P, ~ P and

the t~! scaling does not hold. We focus on the power-law range and define

ke B
By~ / / K21, (k) dF. (6.10)
kp

Substitution of (6.1) (or equivalently (6.8)) gives

N exp(—B(t —t°))

Tram (M7= ky 0y (6.11)

E(t)

Figure 6-6 plots the evolution of E; with time, comparing the numerical data with
(6.11). Agreements are achieved over two decades of E; for the range of -y, we consider.
This consolidates the effectiveness of (6.1) in representing the decaying spectrum, and

provides a simple form in approximating E7(t).

6.3 Summary

We present a direct numerical investigation of freely decaying capillary wave turbu-
lence with broad-scale dissipation of magnitude v5. The problem we consider is an
extension of WTT (Zakharov & Filonenko, 1967; Falkovich et al., 1995) where the
turbulence is allowed to evolve freely in the presence of physically realistic dissipation
and finite box effect. Our simulation results are consistent with evidences from
physical experiments, in terms of the shortening of power-law range and steepening
of spectral slope a during the decay (e.g. Deike et al., 2012, 2013; Kolmakov et al.,
2004; Miquel & Mordant, 2011). Based on our numerical findings, we obtain a simple

model, (6.1), describing the evolution of the power-law spectrum in the form of
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Figure 6-6: Variations of energy E;/E? (where EY is the inertial-range spectral energy

at t = t°) with time from predictions of (6.11) (——) and numerical data for v, =
0.8 x 1075 (0J), 1.6 x 10~° (O) and 2.4 x 10~% (V).
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exponential modal decay from an initial spectrum. The rate of modal decrease in
time, £(k), is shown to be given by &(k) = Alnk + B, with A and B depending
only on vy. Over the range of dissipation magnitude that can be obtained using our
direct simulation, the instantaneous spectral slope o during the evolution is found
to depend only on the nonlinearity of the spectrum at that time, irrespective of 7q.
The decay of energy within the inertial range obtained from (6.1) is also shown to
approximate well those obtained from simulations. These findings are in contrast
to the theoretical result (Falkovich et al., 1995) without broad-scale dissipation and
finite box effect, underscoring the importance of these effects in the actual physical
problem. Relative to WTT, broad-scale dissipation and unsteadiness here result in
a nonconstant inter-modal energy transfer 7 in the inertial range, which requires an
alternative quantification of the energy flux P. Within a subrange k < k, of our
inertial range, we find that 0.7 /0k ~ 0, so that the energy flux can be approximated
by a constant P = P, = J|i—k,. In this subrange, the framework of (stationary)
WTT obtains, and we recover the WT'T scaling I, ~ Pyl/ 2 (e.g. Pan & Yue, 2014,
Pushkarev & Zakharov, 2000). The present results describing decaying capillary wave
turbulence are expected to hold in other weak turbulence systems with broad-scale

dissipation.
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Chapter 7

Simulation of long-short wave

interaction

Having extensively studied the capillary wave turbulence in Chapters 2,4, 5 and
6, our next task in understanding the upper ocean dynamics is to investigate the
interaction of these short waves with long waves. This requires the HOS simulation
of a multi-scale wave field with significantly disparate wavelengths. Unfortunately,
the boundary perturbation method in calculating ¢, is known to be numerically
ill-conditioned for this multi-scale simulation. In this Chapter, we illustrate this ill-
conditioning, which is related to the presence of large “divergent” terms, proportional
to the product of long-wave amplitude and short-wave wavenumber raised to power
m — 1, in the Taylor expansion to calculate [¢.]™. Although these terms are subject
to analytical cancellations at arbitrary order m, for which we provide the first general
proof, they numerically amounts to the calculation of small numbers as the differences
of large numbers. This results in diverged results for large m, and largely limits the
capability of HOS in multi-scale simulations. A detailed error analysis is performed
which reveals this mechanism of error generation, where we also show that higher
precision arithmetic can mitigate this divergence. As a fundamental remedy, we
develop a method based on a mapping scheme, which eliminates this numerical ill-
conditioning, at the cost of increased computational complexity due to the additional

discretization in vertical direction. We present a relatively efficient way to solve the
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mapped equation based on a Fourier-Chebyshev collocation method, accelerated by
Richardson iteration and pre-conditioning. The validity of this new scheme to remove
the numerical instability is verified in solving a prescribed boundary value problem,
and its possible physical application in studying the long-short wave interactions are
discussed.

For simplicity, we use formulation under one-dimensional surface in this chapter,
though all the schemes and analysis presented are straightforwardly extended to two-
dimensional surface. The variable definitions in Chapter 3 are retained, with newly-

defined variables only and wherever necessary.

7.1 Problem definition

7.1.1 Governing equations

The governing equations of general gravity-capillary waves on a one-dimensional free
surface 7(x), in the context of potential flow (surface velocity potential ¢°(x) =

o(z,z =mn(x))), can be written as
M+ $ae — (L +1m3)¢. =0, (7.1)

Now o 1
+ 50305 — (1 +n2)¢? =0, (7.2)

s g
®; +gn 5

p(L+2)2 " 2
We consider a wave field with k;a; ~ O(e) for i = 1,2,..., N, where k; and a; are
the wavenumber and elevation amplitude for mode 7, and N is the total number of
modes in consideration. The maximum wavelength ratio of this problem is defined
by v = kn/ki. For simulation of long-short wave interaction with widely separated

wavelengths, we consider v > 1.

7.1.2 Boundary value problem (BVP)

The key procedure in HOS to march (7.1) and (7.2) in time is to express the surface

vertical velocity ¢, in terms of ¢* and 7. This requires the solution of ¢(x, z) from a
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boundary value problem (for simplicity, we neglect the ¢ dependence of the variables

and assume deep water):

P 0%
hadlh L < .
o2 + 557 0, for z < n(x), (7.3)
subject to
¢=¢", onz=n(x), (7.4)
V¢ — 0, on z — —o0, (7.5)

and horizontally periodic boundary condition.

Since only ¢, = 0¢/0z|,=, at z = n(z) is needed, the boundary value problem can
be conveniently cast into a Dirichlet-Neumann Operator (DNO) D, which produces
vertical derivatives from boundary values. Our task can be considered as establishing

the formulation of lA)cﬁs.

7.1.3 Formulation of boundary perturbation method

The boundary value problem (BVP) (7.3), (7.4) and (7.5) are solved using the
boundary perturbation method in HOS (Dommermuth & Yue, 1987; West et al.,
1987). We briefly review the procedures discussed in Chapter 3, with some newly-
defined variables.

By expressing the surface potential ¢° as Taylor expansion around ®(z) = ¢(z, z =
0) and solving the inversion problem, we obtain (3.4),(3.5) and (3.6). These equations

can be written in orders:

(@] = ¢,

(@] = —nk[@]D,
1

(@]9 = =[] — Zn?s?[2], (7.6)
1 1

(@] = —nsl@]? — on’k*[@]® — ci'’[2)),
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In (7.6) we have used an operator k, where k® multiplies each Fourier coefficient
of ® by its corresponding wavenumber magnitude |k|. This definition of k is due
to the BVP ((7.3), (7.4) and (7.5)), which renders the wave field representable by
eigenfunctions ¢(z,2) = >, & (k)exp(ikz + |k|z). As aresult, 0¢/0z|,_ is equivalent
as k®. The introduction of the operator x offers convenient mathematical expressions
in the following analysis.

By writing ¢, = > n"/n! - k"1®, we obtain

[¢Z](1) - n[@](l),
61 = K[8]® + ()0,
(619 = K[8) +ne?(2]® + Jree] (.7

1 1
(6.9 = K[BI) + (@] + PR (B + ZPt(a] ),

The surface vertical velocity ¢, can then be expressed in terms of surface potential

¢ by combining (7.6) and (7.7). Upon using an operator expansion of the DNO,
D¢* =Y Di¢’, (7.8)
i=1
the final expression can be written as

[6:] = D1¢* = Kg",
[6.]® = Dog® = —knrd* + nK*e",

~ S S S 1 S S
(6] = D3g¢® = knrng® — nknre® + 5(772"0% — K°K*¢%)

(7.9)

7.1.4 Ill-conditioning of boundary perturbation method

We show that the boundary perturbation method is ill-conditioned in calculating
high-order surface vertical velocity ([¢,]™ with m > 1) for a wave field with v > 1.

For simplicity, we consider two modes with respectively ks, as and kr, ar, for which
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v = ks/kr > 1 and ksas ~ krar ~ O(€). By this definition, ksar ~ ~e is a large
number which increases with ~.

By substituting these two modes in (7.9), we can see that large terms involving
O(ksay) are present in [¢,]™ for m > 1. This is shown by using the first term in

[¢.]® as an example:

KNkQ®
~K (L +1s)K(9L, + 05)
~k(nL +ns)(kLdy, + ksds)

~KNLkL @y + kNpkss + knskpor, + knskss.

(7.10)

All terms in (7.10) are of O(€?), except for the second onme, for which knpksdy ~
O(7€?). And this is the term involving the large quantity produced by ksar. Ap-
plying this analysis to higher orders of ¢., we can generally conclude that terms of
O(y™'e™) = O((ksar)™ '€) are present in [¢,]"™. For m > 1 (and v > 1), these
terms can be “divergently” large.

This seemingly ill-posed expansion (7.9) has historically roused criticism, where
it is postulated that the boundary perturbation method is incapable of solving prob-
lems involving long-short wave interactions with widely separated wavelengths. The
criticism is rested in Brueckner & West (1988), where the authors argue that the
“divergent” terms involving kgsa; are analytically cancelled against one another at
each order. This cancellation is explicitly shown in Brueckner & West (1988) for
[¢.]®, with the higher-order cancellation briefly argued through the similarity in
formulations regarding a commutation operation. We shall provide a general proof
for the cancellation of “divergent” terms for [¢,]"™ in section 7.2.

Despite the vindication for boundary perturbation method in analytical consid-
eration, the “divergent” terms do cause ill-conditioned configuration in numerical
simulation. In calculation of [¢,]™ (m >> 1), the presence of these terms result in

two issues of significant error accumulation:

1. Calculating [¢.]™ from (7.9) amounts to the calculation of a small term (~ €™)
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as the difference of large terms (~ (Y™ '€™). This operation results in absolute
error of PG, where P is the machine epsilon (relative machine error), with P ~
O(1077), O(1071%) and O(1073%) for single, double and quadruple precisions,

and G is the largest number involved in (7.9).

2. Calculation of [¢,]™ from (7.9) involves successive multiplication and de-aliasing.
This results in the error accumulation near the de-aliasing boundary as the
elimination of the modes by zero padding affects the modes near the boundary

in the next multiplication.

With respect to the second issue, a strategy that can largely fix the problem is to
use a filter near the de-aliasing boundary. Specifically, after each term in [¢,]™ is
calculated, we zero Ny (say Ny = 150) modes near the de-aliasing boundary. This is
found to be effective in removing the error near the de-aliasing boundary caused by
successive multiplication. The first issue, however, is inherent in, and directly limits
the accuracy of boundary perturbation method as long as floating numbers are used in
computation. A detailed error analysis is provided in section 7.3, where we explicitly
reveal the numerical divergence due to this issue, and show that this divergence with
increase of m can be procrastinated by using higher precision arithmetic. Complete
circumvention of this numerically ill-conditioned expansion requires us to develop
an alternative scheme to solve the BVP ((7.3), (7.4) and (7.5)), which ensures the

implicit cancellation of the “divergent” terms. This is discussed in section 7.4.

7.2 Analytical cancellation of the “divergent” terms

We first show the cancellation of terms proportional to ksay in [¢.]®, following a
similar procedure as in Brueckner & West (1988). (Note that [¢.]), by definition, is
free of terms involving ksar,.)

We write n and ¢° as summations of their Fourier components:

= a", (7.11)

g=—00
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and

¢ = i ae". (7.12)

r=—00
where, for simplicity, we have omitted the factor w,/k, (in linear consideration) in
the coefficients of ¢°. This simplification does not have any influence on our analysis
since our goal is to find terms proportional to ksar, for which the factor w,/k, does

not play a role. We consider ga, ~ O(e), for all q.

A typical Fourier component of [¢.]® (composed of mode ¢ in 7 and mode 7 in

¢°) can be written as

[0.]? ~ —a,a4,k6 " KE™ + 0,0, K2 = apa,(|r)? — |r|lg + 7)) TFOT. (7.13)

“ 2

Here and hereafter in this section, we use “~”, wherever necessary, to denote a
particular Fourier component of a variable, with its coefficient exactly represented.
For terms proportional to ksay to be present in the calculation of [¢Z](2), we need
7| > |q| (or |r| > |q|), for which |r|?> — |r||r + q| = —rq. Therefore, (7.13) can be
written as

[0:1? ~ —(ra,)(qa,)e" . (7.14)

We see that the expression (7.14) is free of terms proportional to ksay after cancel-

lation. It is of O(e?), consistent with the definition of [¢,]®.

This analysis can be continued to [¢.]™ for m > 2 for a general proof. However,
the formulation involved for m > 1 is dauntingly formidable, and the continuation
of the analysis has to be ceased. We instead provide a proof by induction, based on

a re-group of terms in ¢,.

It is shown in Milder (1990) that the DNO operator can be expanded as

D, =—— (1, D] Doy, (7.15)

where [, D,] is a commutator which equals to nD,, — D,n.

A useful property of this formulation is that the operator D, is expressed in terms
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of D at orders smaller than m. This inspires us to prove the cancelation at all orders
by induction. Having proved that 151¢S and _D2¢s are both free of divergent terms,

the only lemma we need to prove is as follows:

Lemma If D,¢* ~ O(€e") and ﬁj¢5 ~ O(€?) are free of terms involving ksar,
then [n, ﬁj]ﬁn¢3 is free of terms involving ksay and [n, ﬁj]ﬁn¢s ~ O(ertm).

Proof. Since ﬁn¢s is free of terms involving ksar, it can be written as
Dyn¢® ~ afMe", (7.16)

where o, by definition, is of O(e").

We then express ﬁj¢s in an alternative form. Since ﬁj¢s can be considered as
multiplication of j — 1 terms regarding 1, and 1 term of ¢°, it can be written as (cf.

(7.14))
Dj¢* ~ 253 Y (pa,)e’®, (7.17)

where we have considered the component ¢* ~ a,e”*, and 5 pe’(q )% given by the
multiplication of the rest terms. Sq_p , of O(¢/71), depends only on the operator Dj

and value of ¢ — p.

Now we consider 7 ~ are®®. In order to prove the Lemma, we only need to
prove: For each R, the “divergent” terms in nﬁjﬁn¢5 are exactly cancelled by those
in ﬁjnf?ndf. Applying ﬁj on D,¢* (replacing ¢° in (7.17) with D,¢°, in the form of
(7.16)), we obtain

259 Y (pal)e’s, (7.18)

and in turn

nD;D,¢* ~ ZS(J Va rpa(Meat R, (7.19)

Similarly, by multiplying 1 with (7.16), we have

1D, ~ aMape @R, (7.20)
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Applying bj on (7.20), we obtain (mode p+ R from 1D,¢* and mode g — p from ﬁj)

DinDag®) ~ 3" 8V (0 + R)aMageia e, (7.21)

P

Finally, we reach

0, Dj1D0u¢® = nD;Dud® — DinDag® ~ =Y 9Vl Rape'F)e, (7.22)
p
This is independent of “divergent” terms, and [, D;]D,¢* ~ O(€*™). O
As a direct result of Lemma 1 and (7.15), D,,¢® is free of “divergent” terms for all
integer m. Even though (7.9) is derived by assuming 7 and ¢° to be small parameters,
it is in essence a series only with respect to the small parameter of modal wave
steepness. Since the proof is obtainable for arbitrary modes, it is valid for a broadband

spectrum.

7.3 Error analysis in numerical implementation

In order to understand the numerical error accumulation and convergence property
of the series (7.9), we consider the BVP (7.3), (7.4) and (7.5), with prescribed 7(z)
and ¢°(x):

n(z) = ascos(ksx) + apcos(krx), (7.23)

¢°(x) = agsin(ksz)exp(ksn(z)) + arsin(kpx)exp(krn(zx)), (7.24)

for which an analytical solution of ¢, is known:
oS(x) = askssin(ksx)exp(ksn(x)) + apkrsin(kpz)exp(kn(z)). (7.25)

This BVP is solved using boundary perturbation method with N, = 4098 (with
2/3 de-aliasing rule and Np = 150). We consider two cases: (i) apk; = 0.2, ag = 0,
and (ii) € = apkp = asks = 0.2, v = ks/k;, = 100. The solutions, which can be
expressed by the series (7.9), are obtained by respectively single, double and quadruple
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Figure 7-1: The relative L?-norm error err(M) with increase of nonlinearity order
M, with respectively single (—e—), double (—=—) and quadruple (——) precisions.
The plot is for case (i): arkr = 0.2, as = 0, with N, = 4098, 2/3 de-aliasing rule and
Nr = 150.

precisions. The error of a numerical solution [¢,](z; M) = S2M_ [4.]™ is defined as

(@) — [6.)(; M),
M) =k wh (7.26)

Figure 7-1 plots the error err(M) for case (i), with (7.9) calculated with respec-
tively single, double and quadruple precisions. It is shown that [¢.](x; M) converges
exponentially with the increase of M before numerical divergence occurs at My (with
M; = 4 and 11 for single and double precisions, and M, not present for quadruple
precision). This is consistent with the analysis in section 7.2 that (7.9) is a power

series with respect to the small parameter of wave steepness.

As discussed in section 7.1.4, the origin of this numerical divergence is the calcu-
lation of a small term as the difference of large terms. We note that large terms are
present in case (i) even though the assigned modal energy is narrow-banded on the

low-wavenumber modes. This is due to the existence of small machine errors (say
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Figure 7-2: Amplitudes of [¢.]™™ (- —-) and T(™ (—) in wavenumber domain for

m = 12 with double precision. The modes prior to filtering and de-aliasing zone are
plotted. The plot is for case (i): arkr, = 0.2, ag = 0, with N, = 4098, 2/3 de-aliasing
rule and Nr = 150.
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e ~ O(1071%) for double precision) on the high-wavenumber modes whose associated
modal amplitudes are theoretically zero. In theory, the impact of these errors on
[6.]™) is negligibly small (~ (kraz)™ 'e); In numerics, however, they are subject
to the amplification of ((ksaz)™ 'e) in calculation of each single term in (7.9). To
reveal the effect of this calculation, we plot in figure 7-2 the amplitudes of [¢.]™
and T(™ in wavenumber domain for m = 12 with double precision, where 7™ is the
single large term (with maximum element) in calculation of [¢.]™. It is clear that
the largest number involved in the calculation G' = ||T(?||,, ~ O(107), which results
in the error in [¢,]*? of PG ~ O(107°). This limits the lower bound of number
representation in [¢.](?, i.e., all the numbers smaller than O(10~°) are represented

at the level of O(107?).

This analysis allows us to establish a quantitative criterion for the numerical

divergence of the series (7.9), which is characterized by
PIT oo ~ I[85 ]cos (7.27)

where [¢¢](™ is the accurately calculated (or exact) vertical velocity ¢. at order m.
As described by (7.27), the numerical divergence occurs with the increase of m as
the error due to the existence of large number exceeds the level of the largest mode
in [¢¢]™). In figure 7-3, we plot F = P||T™)||oo/||[65]™||ce and err(M) with the
increase of M, for both single and double precisions, where [¢¢]™) is obtained from the
numerical solution using quadruple precision. Indeed, it can be seen that the increase
of err(M) occurs where F ~ O(1), which corroborates (7.27) in quantitatively

characterizing the numerical divergence.

The same analysis is also performed for case (ii), where modal energy is present at
both low and high wavenumbers. The error curves err(M) with respectively single,
double and quadruple precisions are plotted in figure 7-4. Similar as that for case (i),
the boundary perturbation method achieves exponential convergence for M < My,
and application of higher precision arithmetic procrastinates the occurrence of My,

with My =4, 9 and 18 for the three precisions considered.
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Figure 7-3: F = P||T™)||oo/||[¢5]™||oe (—v—) and err(M) (—o—, —o—) with the
increase of M, for both (a) single and (b) double precisions, where [¢<]™) is obtained
from the numerical solution using quadruple precision. The position of F = 1 is
indicated by — — —. The plots are for case (i): ark;, = 0.2, ag = 0, with N, = 4098,
2/3 de-aliasing rule and N = 150.
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Figure 7-4: The relative L?-norm error err(M) with increase of nonlinearity order
M, with respectively single (—e—), double (—=—) and quadruple (—=—) precisions.
The plot is for case (ii): € = arkr = asks = 0.2, v = ks/kr, = 100, with N, = 4098,
2/3 de-aliasing rule and N = 150.
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Figure 7-5: Amplitudes of [¢.]™ (- —-) and T(™ (—) in wavenumber domain for
m = 10 with double precision. The modes prior to filtering and de-aliasing zone are
plotted. The plot is for case (ii): € = apk; = asks = 0.2, v = kg/k; = 100, with
N, = 4098, 2/3 de-aliasing rule and Np = 150.

In addition to the machine error at high-wavenumber modes, the existence of large
terms in calculation of [¢,](™ using (7.9) for case (ii) is largely due to the finite modal
amplitude at k;, = 100. In order to elaborate its impact on the error in [¢z](m), we
again plot in figure 7-5 the amplitudes of [¢.]™ and T in wavenumber domain
for m = 10 with double precision. It is shown that the largest number involved in
the calculation ||T'||e ~ O(10'7) limits the lower bound of number representation in
[0.]29 to be P||T||e ~ O(10'). We finally show that the numerical divergence for
case (ii) is also characterized by (7.27) in figure 7-6.
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Figure 7-6: F = P||T™)||o/||[¢¢]™||os (—v—) and err(M) (—e—, —=—) with the
increase of M, for both (a) single and (b) double precisions, where [¢¢]™) is obtained
from the numerical solution using quadruple precision. The position of F = 1 is
indicated by — — —. The plot is for case (ii): € = arkr = asks = 0.2, v = ks/kr, = 100,
with N, = 4098, 2/3 de-aliasing rule and Np = 150.

7.4 A new numerical approach

7.4.1 Mapping scheme

The numerical divergence described above does place an limitation on the accuracy
and stability of the boundary perturbation method. Although this limitation can
be mitigated by using higher precision arithmetic, a fundamental remedy for the
problem is still desirable. This requires us to develop a scheme which is free of the
large numbers involved in boundary perturbation method. We present in this section
such a new approach to solve the BVP ((7.3), (7.4) and (7.5)), based on a mapping
scheme (cf. Nicholls & Reitich, 2001).

We first transform the governing equation (7.3) and boundary conditions (7.4)

and (7.5) from (x, 2) to (Z, 2), where
T=ux, (7.28)

. 2= ()
5= h(m), (7.29)

where h > 0 is an arbitrary depth. The main objective of (7.28) and (7.29) is to
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deform the free surface z = n(z) to a flat surface (z =n — 2 = 0), and z = —h to

2 = —h (see figure 7-7 for the deformation of the computational domain).

Subject to (7.28) and (7.29), the derivative operations in the governing equation

(7.3) can be transformed to:

o _ 90, 90:_ 0 0 m(h+?)
or 0&0xr 020x 0& 0% h+mn

)

—Nza(h 4+ 1) + 13

o> 0P N 02 —n@(h+2)+£(h+2)
0x2  0%2 0802 h+n 0z (h+mn)?
0? 0 —nz(h+ 2 0 —mz —ma(h+2
_|_[ ’ 12 M ( +z)+_A n } N ( +Z), (7.30)
010z 022 h+n 0Zh+n h+n

0 _00r 00:_0
0z 030z 020z 0% h+n’
0? 0? h

= ()
922 922 ‘hty

Substituting (7.30) to (7.3), we obtain the governing equation in variables (Z, 2):

2 in s 20 PP 2m(h+ 2)(h4m) P
Vet 8 = -5 gt 72 5593 (731)
h+2 o208 5 h+2,0% '

The deep-water bottom boundary condition (7.5) can be re-written as

0.2, _ oe.—h), (7.32)

0z

due to the form of eigenfunction exp(ikz + |k|z) imposed by (7.3). Upon the trans-
formations (7.28) and (7.29), equation (7.32) becomes

(7.33)

0
2|~ wle,—h) = Lo, —h).

In summary, by dropping the hat symbol on & and 2, we have a new BVP to be
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Figure 7-7: Sketch of the mapping scheme.

solved:

¢, 2ma(h+2)(h+n) O
06 o h+z,8% ‘

Vig(z,2) = Fz,) = —(2L + )

h+z

—5 — 22 == —n’ 2 for—h<z<
s Mol 1) = 2] 5~ — (=) 5, for—h < 2 <0,
subject to
¢(z,2) = ¢°(x), at z =0, (7.35)
% — ko(z, —h) = %Hd)(w, —h), at z = —h, (7.36)

and periodic boundary condition horizontally. The transformation from (7.3), (7.4)

and (7.5) to (7.34), (7.35) and (7.36) is sketched in figure 7-7.

7.4.2 Perturbation expansion

We now expand ¢(x, 2) as a perturbation series in €

¢z, 2) = _[p(x,2)]™, (7.37)

m

143



where [¢(z,2)]™ ~ O(e™). Considering n/h ~ O(e) and 1, ~ O(€), equation (7.34)

can then be successively written in orders:

V2 [g(z, )]V = [F(z,2)]" =0,
2 (h+2) P?[p|Y  h+2z O]V

V2o, 2)]® = [F(z, )@ = - 21207

h 0Ox2? h 0x0z n T,
2n%[¢]® 02 9?[g]D  2n,(h 4+ 2) 02[¢]@
2 (3) (G ) It i . R
Vi, 2)] F(z,2)] h 0Ox2 h? Ox2 h 0rdz

L 2e(h 2 (@Y htz 09
h2 0x0z n T,

h+z 2, 0]V 2 h+2,,0°[g]V

(7.38)
In general, for m > 3, we have
21 &[g] D 2 P[] 2n,(h + 2) 87[¢) Y
(m) _ _20=Z W i
Pz, 2)] h  Ox2 h?  Ox? h 0x0z
27 11(m—2) (m—1)
I 2n.(h + 2)n 9°[¢] h+ ana[¢] (7.39)
h? 0x0z h 0z
h+z 2, 0[9] (m—2) o N+ 2o 0? (0] (m—2)

From (7.38) and (7.39) we see that [F(z, 2)]™ depends only on [¢]™ where n < m,
and thus can be considered known at order m. Consequently, the BVP ((7.34),(7.35)
and (7.36)) can be successively solved in orders. In each order m, we have a Poisson
equation as the field equation, subject to a Dirichlet boundary condition on top, a
Robin boundary condition at bottom, and periodic boundary condition horizontally,

summarized as follows:

V3 p(x, 2)]™ = [F(z,2)]™, for—h <2 <0, (7.40)

144



subject to

[p(z, )] = [¢" (2)]™ = , onz=0, (7.41)

x, 2)]™)
WA o, = [P @)™

0z
0, m=1
= , onz=—h,
Lg(p(x, —h))™ D, m > 1.
(7.42)
[p(x, 2)]™ = [p(z + A, 2)™, (7.43)

with A being the horizontal period.

In this newly-defined BVP at order m, the most intense multiplication involves
only three variables. This thus effectively eliminates the accuracy (and stability)
barrier imposed in the boundary perturbation method regarding ksar. With the
increase of m, the solution of (7.40), (7.41), (7.42) and (7.43) gives a successively
accurate approximation of ¢,, even though the solution at each order m differs in

nuance from that in the boundary perturbation method.

7.4.3 Fourier-Chebyshev collocation method

We use a Fourier-Chebyshev collocation method (e.g. Boyd, 2001) to solve (7.40),
(7.41), (7.42) and (7.43). For each variable, to this end, we implement Fourier
decomposition in z direction and discretize in z direction on the Gauss-Lobatto-

Chebyshev collocation points:

Na/2

Bz, 2)] ™ = D [6(k, z)] e, (7.44)

k=—Ng/2

Na/2

[Pz, 2)]™ = Y [F(k,2)) e, (7.45)

k=—Ng/2
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[V (@) = 37 [gY (k)] (7.46)
k=—N,/2
No/2
P (@)™ = > [@B(k) e, (7.47)
k=—N,/2
where
zj = g[zj —1], j=0,.., N, (7.48)
with .
z; = cos(]N—W), j=0,..,N, (7.49)

are the N, + 1 Gauss-Lobatto-Chebyshev collocation points mapped from [—1, 1] to
[—h, 0].

Substituting (7.44),(7.45),(7.46) and (7.47) to (7.40), (7.41) and (7.42), we obtain,

at each order m and wavenumber £, a discretized 1D Helmholtz equation:

Rz + ZOEDN e o0 1 (a0
subject to
Bk, 2;)]™ = [¢Y ()™, on 2 =0, (7.51)

Ak, )]

S = K9k, 2)) ™ = [PR] ™, on 2 = —h. (7.52)

Using Chebyshev collocation method, the derivative operation 0/0z can be written

in matrix form

Ol (k, )™ ’” ](m Z Ak, )™, (7.53)
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where

¢ (— J+l .
a(gjl_)gl y ) #l
2 - 2_j527 1SJZZSN2_1
Dj = 7 9 22(1 : ) (7.54)
2Né+17 i=1=0
_%2“’ — =N,
\
with
2, 7=0,N
¢ = . (7.55)

Therefore, equations (7.50), (7.51) and (7.52) can be written in matrix form

N
S Aul(k, 2)]™ = B, (7.56)
=0
where

4

(DD)jy —k*, 1<j<N,—1,0<I<N,,j=1

1, j=1=0

A=< ,  (7.57)

0, 1=0,1<[I<N,

Dy, j=N,1<I[<N,

Diu—Ikl, j=1=N;
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and

(F@E)™, =0

Bj = S [Flk,z)]™, 1<j<N.—1- (7.58)

—_—~

(BRI, =N,

7.4.4 Richardson Iterative method for solving (7.56)

Once (7.56) is solved for each m and k, we can obtain the solution ¢(z, z) for (7.34),
(7.35) and (7.36) by applying (7.37) and (7.44). However, the Chebyshev collocation
method results in a full matrix A, for which a direct inversion is particularly time-
consuming for large N, (O(N?) operations required if, say, Gaussian elimination is
used). Moreover, the matrix A becomes increasingly ill-conditioned with the increase

of N,, with its spectral condition number (Canuto et al., 2012)

>

K:

A"“”” ~ O(N?), (7.59)

where \,,., and \,,;, are the largest and smallest eigenvalues of the positive definite
matrix A. This urges us to seek an efficient way to solve (7.56) for large N,. We
hereby present a Richardson iteration method combined with preconditioning scheme,

which leads to a computational complexity of O(N,logN,).

The Richardson iteration method to solve (7.56) (for simplicity, we use V; for
[6(k, 2;)]™, v(2) for [6(k, 2)]™ . and consider solving AV = B) can be considered to

integrate the pseudo time-dependent equation
V,=-AV + B, (7.60)
with an initial guess V° to V. The subsequent approximation are obtained via

V=Vt 4 7(B - AV, (7.61)
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where 7 can be considered as a pseudo time step. For sufficient iteration, V" ap-

proaches the final solution V.

The efficiency of this iteration can be analyzed by defining the n-th iteration error
E=yv -y (7.62)
By substituting (7.62) to (7.61), we obtain
gttt =ger, (7.63)
where

G=T-1A, (7.64)

with Z being the identity matrix. Defining the spectral radius p(G) as the maximum
in the magnitudes of eigenvalues of G, the iteration scheme is then convergent for
p(G) < 1. This is equivalent to

1—7)\ <1, (7.65)

for all eigenvalues A\ of A. This places an limitation on the size of the pseudo time
step
T < 2/ Mae- (7.66)

The optimal choice of 7 is that which minimizes p(G). It can be obtained from the

relation

1 — TAmaz = —(1 — TAmin), (7.67)

which gives the optimal 7 as
(7.68)

and the spectral radius

(7.69)



We define the rate of convergence R to be
R = —log(p), (7.70)

whose reciprocal R~! measures the number of iterations required for a significant
decrease of the error (by a factor of e). Substituting (7.59) and (7.69) to (7.70), we
obtain

R™!' ~ O(N?). (7.71)

This means that O(N?) iterations are required to obtain even moderate accuracy. For
large N, this convergence rate becomes increasingly lamentable (Aae/Amin > 1),
and we are obliged to develop supplement to the Richardson iteration which can
alleviate the limitation on convergence rate. Fortunately, It has been shown that
the efficiency of the Richardson method can generally be tremendously improved
through three supplements: (i) Chebyshev acceleration; (ii) Preconditioning and (iii)
multigrid. We apply in current work a finite-difference preconditioning scheme, as

presented below.

7.4.5 Finite-difference preconditioning

By using preconditioning, we consider solving a modification of (7.56):
H AV =H'B. (7.72)
A preconditioned version of (7.61) is
Vit = yr L rH Y (B — AVT). (7.73)

In practice, the inverse of the preconditioning matrix # is never explicitly required.

Instead we solve

HOVMT = V) =7(B— AVY). (7.74)
This places the first requirement for # that (7.74) can be solved inexpensively.
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The effective iteration matrix associated with the error equation (7.63) is now
G=TI—-TH A (7.75)

We then have the second requirement for A that H~! is a good approximation to

A1, i.e., the spectral condition number K of H~!A is small.

A convenient choice of H under these two requirements is the finite-difference

matrix, which approximates the derivative 9?/92% as

v 2
072 (Z]) hj—l(hj + hj—l) +

- (7.76)
hohy ‘

2
V. — V.,
o hy(hy +hjy) 7

where h; = z; — z;41. Taking consideration of the boundary conditions (7.51) and
(7.52), H can be explicitly formulated as

(

L j=101=0
5y K, 1<j=1<N. ~1
ey 1SJSN.-Li=j+1
M=\ motmyy 1SiSN-Li=j-1 (7.77)
hj1_17 j=N,l=N,—1
—p k. j=1=N.
0, else

It has been shown (Haldenwang et al., 1984) that the convergence behavior by
using this preconditioned Helmholtz operator with Dirichlet and Robin boundary
conditions is practically similar as that with purely Dirichlet boundary conditions,
where the eigenvalues (of H™'A) of the latter are confined within [1,72/4]. This

brings a spectral radius p(G) and convergence rate R independent of N, (p ~ O(1),
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R ~ O(1)), i.e., the iteration is efficient independent of IV,.

In each iteration, we need to solve (7.74). As H is a tridiagonal matrix, the
solution regarding the (implicit) inversion of H takes only O(N,) operations. The
most heavy operations in solving (7.74) lie in the multiplication of AV™. For small
N, this can be obtained by direct matrix-vector multiplication, which takes O(N?)
operations. For large N,, an algorithm making use of Fast Fourier Transform (FFT)
can be used to retain the computational complexity with O(N,logN,) operations
(Don & Solomonoff, 1995).

In summary, by applying the Richardson iteration and finite-difference precondi-
tioning, the solution of (7.56) can be obtained in O(1) iterations with O(N.logN,)
operations required per iteration. The solution to the original problem (7.1) and
(7.2) takes O(M N,_logN,N_logN,) operations per time step. As a trade-off for this
increased computational cost compared with the boundary perturbation method, the
current method obtains numerical stability and accuracy for M > 1, especially for

the calculation of a wave field with v > 1. This is validated in 7.4.6.

7.4.6 Numerical validation

Equations (7.3), (7.4) and (7.5) with (7.23) and (7.24) are solved respectively by using
the boundary perturbation method and the current method associated with mapping
scheme (hereafter we name it MAP). For both methods, we use N, = 2048 (with 2/3
de-aliasing and Np = 0) and double precision. For MAP, we additionally use h = 0.5
(As a rule of thumb, h should be chosen as a smallest possible value, as long as
n/h ~ O(€)) and N, = 40. The L?*-norm error in the solutions of these two methods
are obtained by comparing with the exact solution (7.25). We consider cases with
asks = apkyp = 0.2, and different wavelength ratio A\ = kg/k; (for convenience, we
fix k = 1). The results for A = 1, A\ = 10 and A = 100, with increasing nonlinearity
order M up to M = 30, are shown in figure 7-8.

We see that, even for 7 =1 (ar, = 0), the error of boundary perturbation method
starts to increase with M for M > 10. The mechanism of error generation in this

case of modal energy assigned narrow-banded at low wavenumbers is described in
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Relative L2-norm error

nonlinearity order M

(c)

Figure 7-8: The relative L?>-norm error in the solution ¢, with increase of nonlinearity
order M by boundary perturbation method (—s—) and MAP (—e—), for (a) v =1
(ap, = 0), (b) v =10 and (c) v = 100.
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section 7.3. This is clearly remedied by the MAP scheme, which is robust with
converged results of O(1071%) error for M > 13. With the increase of ~ (figure
7.62(b) and (c)), the boundary perturbation method behaves increasingly poorly,
with results starting to diverge at smaller value of M (M = 10 for v = 10 and
M = 8 for v = 100). This reflects the increasing severity of the numerical instability
caused by the long-short mode interaction. In contrast, the MAP scheme removes
this instability, with converged results for all v in the tested range. The accuracy of
the converged results, on the other hand, should depend on the parameterization of
the MAP scheme, including the choice of N,, N, and h. This is indeed the focus of

our next investigation.

For this purpose, we evaluate the effect of N,, N, and h on the performance of
the MAP scheme for the case of v = 100 and asks = arkr = 0.2. The variation of
error in the MAP scheme with increasing M is plotted in figure 7-9 for varying values
of N,. For sufficient M, the result converges with the increase of N_, illustrating the
grid convergence in solving the boundary value problem. Figure 7-10 plots the error
for different values of h (To avoid the influence of grid resolution on results, we keep
h/N, = 0.0125 as a constant). It is shown practically that larger value of h leads
to smaller error, and the result converges with increase of h for sufficient M. Figure
7-11 shows the same error curve for different values of IV,. In principle, NN, affects
the error due to the truncation in Fourier series. This is reflected in figure 7-11 that
the error decreases with the increase of N, (the convergence is yet to be shown as

N, = 4096 is forbidden by current machine memory).

7.5 Future work - physical application

The developed method significantly enhances our capability of simulating a wave field
with v > 1. It thus should be applied, with extension to two surface dimensions if
necessary, to investigate physical problems involving long-short wave interactions. A

brief literature review and possible future applications are described below.
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Figure 7-9: The relative L?-norm error in the solution ¢. with increase of nonlinearity
order M by MAP scheme, for N, = 20 (—=—), 30 (—x—), 40 (—e—) and 50 (—o—),
with fixed h = 0.5 and N, = 2048.
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Figure 7-10: The relative L2-norm error in the solution ¢, with increase of nonlinearity

order M by MAP scheme, for h = 0.3 (——), 0.4 (——), 0.5 (—=—), 0.6 (——), 0.7
(—x—) and 0.8 (—e—), with fixed h/N, = 0.0125 and N, = 2048.
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Figure 7-11: The relative L2-norm error in the solution ¢, with increase of nonlinearity
order M by MAP scheme, for N, = 512 (—e—), 1024 (—=—) and 2048 (—o—), with
fixed N, =40 and h = 0.5.

7.5.1 Modulation of short waves by long waves

Short waves riding on long waves can interact with, and are modulated by the long
wave. This study is an important component in remote sensing, where the back
scattering from the sea surface involves waves with much smaller wavelength compared
to the dominant wavelengths of ocean surface waves. The first investigation starts
from Longuet-Higgins & Stewart (1960), who considers the modulation of a linear
short wave by a weakly nonlinear long wave. Under the condition of ka << O(1)
(where k and a applies generally for long or short waves), the formulae for the
modulation of short-wave wavenumber and amplitude are derived. Longuet-Higgins
(1987) further extends the study and obtains the numerical solution of the modulation
of a linear short wave on a finite-amplitude long wave. By expanding the short wave
on the unperturbed long wave surface, Zhang & Melville (1990) remove the limitation
of linearity of short wave and investigate the effect of short wave nonlinearity on the

modulation. The instability of this solution is investigated in Zhang & Melville (1992),
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where it is found that in addition to the conventional sideband instability, the solution
is also unstable for a wide range of perturbation wavenumber. Similar conclusions are
found in Naciri & Mei (1992), by using Lagrangian formulation and Gerster’s solution
for the long wave.

Despite these theoretical /numerical analysis, this problem has never been studied
through a direct numerical simulation of the wave field. Equipped with our developed
MAP scheme, a simulation of (7.1) and (7.2), for the purpose of understanding short
wave modulation by long waves (with 7 > 1), can be obtained with high accuracy.
We are prepared to establish the quantitative modification of a nonlinear short wave
by a nonlinear long wave, with varying steepness for both waves. These results are
expected to provide a validation and extension to Longuet-Higgins & Stewart (1960);
Longuet-Higgins (1987); Zhang & Melville (1990), and investigate the unsteady effect

which is ignored in all above analysis.

7.5.2 Nonlinear interaction of short waves in the presence of

a long wave

In addition to the modulation of short wave field, the long wave also has impact on
the energy transfer rate among short wave components. This is studied in Olmez
& Milgram (1995a), where they show both numerically and experimentally that the
presence of the long wave reduces the energy transfer rate among short waves. How-
ever, their numerical simulations are limited to the initial growth of the tertiary wave
component (code crashes for longer time), probably due to the numerical instability
associated with the ksay, issue. Their investigation is also limited to one particular
case, i.e. all wave components are specially chosen and fixed. With our newly-
developed approach, we can (i) do a long-time simulation of the interaction among
short wave components in the presence of a long wave, thus give a comprehensive
description of the phenomenon, probably including the Fermi-Pasta-Ulam recurrence
behavior (Fermi et al., 1955); (ii) investigate the effect of the long wave as a function

of long wave direction, long-to-short wavelength ratio, etc.
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7.5.3 Short wave spectrum under long wave background

Given the influence of long wave on the nonlinear interactions of short waves, it is
not unreasonable to expect that a long wave background can affect the evolution of
short wave spectrum. The study of this problem is in general lacking, with the only
exception in awareness being Gramstad & Trulsen (2010), where the authors derive a
modified nonlinear Schrodinger equation with a long wave background. This equation
is applied to understand the influence of a swell background on the probability of rogue
waves developed in a narrow-banded spectrum.

This study can be extended to broadband short-wave spectrum by our developed
approach. The analysis of rogue wave probability by this direct numerical simulation
can be obtained as an analogy of Xiao et al. (2013). The results should be supple-
mented by a theoretical derivation of Benjamin-Feir instability modulated by a long
wave. Another application in this direction is the impact of a long wave on the WTT
of the short wave field. Specifically, the spectral slope and energy flux of a capillary

wave spectrum under long wave background are yet to be studied.

7.5.4 Parasitic capillary wave

Parasitic capillary wave generation on steep gravity or gravity-capillary waves has re-
ceived much attention because of remote-sensing applications. Historical observation
of this phenomenon starts from Russel (1838). While it is hypothesized (Munk, 1955)
that the parasitic capillary waves are generated due to some (unknown) disturbance
near the crest of the gravity waves, this phenomenon is later observed in experiment
Cox (1958) even when wind is not present. Over the years it has been extensively
studied, in experiments (Fedorov et al., 1998; Chang et al., 1978; Zhang, 1995; Perlin
et al., 1993), theory (Longuet-Higgins, 1963; Fedorov et al., 1998; Longuet-Higgins,
1995) and numerics (Jiang et al., 1999; Dommermuth, 1994; Hung & Tsai, 2009;
Watson & Buchsbaum, 1996; Watson, 1999; Watson & Mcbride, 1993; Ceniceros &
Hou, 1999). In spite of these great advances over the years, there are still some

unsolved problems, and we list a few issues that can possibly be investigated using
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our direct numerical simulation.

1. Steadiness of the parasitic ripples: Most theoretical formulation assumes that
the ripples are steady with respect to the phase of the long wave. This as-
sumption is found not completely valid in both numerical and experimental
work. The investigation in this direction can be carried on regarding two
considerations. (i) Fedorov et al. (1998) shows experimentally that the capillary
ripples become irregular (unstable) with respect to the phase of the long wave,
for large long wave steepness (ak = 0.3). (ii) Both Perlin et al. (1993) and
Hung & Tsai (2009) show that the ripple steepness varies periodically with

time. Convincing explanations for these phenomenon have not yet been given.

2. Blockage of capillary wave: Phillips (1981) shows that the short capillary wave
can be blocked to some phase point of the long wave. Longuet-Higgins (1995)
further shows that due to this effect there exists a critical wave steepness above
which the ripple steepness reduces with the increase of long wave steepness.
However, this critical wavelength (as well as blockage) is not observed in numer-
ical and experimental work (Jiang et al., 1999). It is argued that unsteadiness
may reduce ripple blocking, though a more detailed explanation is certainly

desired.

3. Enhanced dissipation of gravity or gravity-capillary wave due to ripple gen-
eration: There have already been numerical (Tsai & Hung, 2010; Melville &
Fedorov, 2015) and experimental (Zhang, 2002; Caulliez, 2013) evidences that
the dissipation rate of the long wave is enhanced by the generation of ripples
(energy transferred to ripples and then dissipated by viscosity). To develop an
accurate model for this phenomenon, we may need include viscosity/vorticity
in the HOS simulation. This is possibly obtainable in two ways: (i) Since we
use vertical grid for the MAP scheme, we can take advantage of these grids and
solve the vortex equation in the sub-layer of the surface. (ii) We may consider
using a quasi-potential surface boundary condition (Dommermuth, 1994; Jiang

et al., 1999).
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7.6 Summary

We have illustrated an ill-conditioning in the boundary perturbation method in
solving the BVP involved in the HOS simulation of long-short wave interaction with
largely disparate wavelength ratio (7 > 1). This is shown to be associated with large
“divergent” terms proportional to O((ksar)™ ') in calculation of mth order vertical
velocity [¢.]™. Analytically, the boundary perturbation method behaves robustly as
all these large terms cancel one another at each order m, for which we have provided
the first general proof. Numerically, however, these cancelations are ill-conditioned, as
it amounts to calculating relatively small numbers as differences of very large numbers.
A detailed error analysis is performed, which quantitatively reveals the mechanism of
numerical error generation in boundary perturbation method. We further show that
this numerical ill-conditioning can be mitigated by using higher precision arithmetic.
To fundamentally circumvent this difficulty, we have developed a mapping scheme,
which transforms the original rough free surface to a flat surface, and the original
BVP to a Poisson field equation subject to Dirichlet/Robin boundary conditions at
top/bottom boundaries. This approach effectively removes the numerical instability
inherent in the boundary perturbation method, as the most intense multiplications
at arbitrary order M involve only three variables. As a trade-off to solve the new
BVP, vertical grids are needed, which increases the computational cost. We present
a relatively efficient way to solve the problem by a Fourier-Chebyshev collocation
method, which, upon using Richardson iteration and finite-difference preconditioning,
results in a computational complexity of O(M N_logN,N,logN,). The validity of the
developed MAP approach is benchmarked by solving a prescribed BVP involving
long-short mode interactions, where it is shown that significant improvement in
performance is obtained compared with the boundary perturbation method. Future
extensions of the method and its possible physical explanations involving long-short

wave interactions are discussed.
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Chapter 8

Simulation of wave-current

interaction

In this chapter, we develop the framework for numerical study of wave-current inter-
actions. We first derive the governing equations for waves superposed on a prescribed
steady and slowly-varying current. The derivation, which assumes negligible vortic-
ity of the current field, is reformulated from that in Wu (2004). We further give
the Hamiltonian formulation of the governed equations, which shows that the total
(coupled) energy of wave and current is conserved by the equations. In addition, we
provide a derivation which deals with generally rotational current field. Numerically,
we consider waves passing a following/opposing current field, where it is shown
that the former stretches and lowers the waves, while the latter behaves oppositely.
Physical interpretations for these phenomenon, as well as possible future development

and applications are discussed.

For simplicity, we assume one-dimensional surface in the derivation, and generalize
the results to two surface dimensions after they are obtained. Without loss of
generality, the time and mass units are assumed to be properly chosen so that the

gravity acceleration g and fluid density p are unity.
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8.1 Theoretical and numerical formulation

8.1.1 Derivation of the governing equations

In this section, we consider the derivation of the governing equations of a wave
field superposed on a background steady current. For simplicity, the derivation is
performed by assuming a one-dimensional surface. The derived governing equations
are then generalized for a two-dimensional surface. This derivation is different from
that in Wu (2004), as we do not assume a flat surface (7 = 0 as defined in (8.6))
due to current field. Instead, we allow the horizontal variation of 9, and use Taylor
expansion based on the current surface 7. To start, we consider the total velocity

field Vror, decomposed as

Vror(x,z,t) = Vo(z, 2,t) + (U, W)(x, 2), (8.1)

where Vé(z, z,t) is the velocity due to irrotational wave motion, U(z, 2) and W (z, 2)
are the horizontal and vertical steady current velocity. We make the following as-

sumptions on the current.
1. U/0x + OW/0z = 0, i.e., the flow is incompressible.

2. Analytical continuation is valid near the surface, i.e., quantity on the wave

surface can be obtained by Taylor expansion.

3. The horizontal length scale of current is much larger than that of the wave, i.e.,

L.> L,

4. The vorticity component U/dz ~ OW/dx ~ O(eM*!), and thus can be ne-
glected in the derivation. The consideration of a general (rotational) current

field significantly complicates the derivation, which is presented in Appendix E.

The kinematic boundary condition can be obtained by considering a particle

remaining on the free surface, i.e., D(z—n(z))/Dt = 0, where D denotes the material
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derivative. This gives

0¢ 0
) =W - =0. (8.2)

The dynamic boundary condition can be obtained from the Bernoulli’s equation, i.e.,

0¢/0t + Vior/2+n =0, which gives

0 1 1
Eg+Iww+ww,+§wj+@)+§aﬂ+wﬂy+n:a (8.3)
By substituting the surface potential ¢°(x,t) = ¢(x,n(x,t),t) in (8.2) and (8.3),

we obtain the governing equations in Zakharov form:

M+ 1205 — (L+n03)¢. +Un, — W =0. (8.4)
s s 1 S IS 1 2\ 12 1 2 2
Now let
n=n+n", (8.6)

where 77 and 0™ are the surface elevations respectively due to current and wave.
Considering a waveless flow motion, we have the kinematic and dynamic boundary

conditions on the surface z = 7, determined by the current field
Ui, = W, on z = 17, (8.7)

1
?7+§(U2+W2):0, on z = 1. (8.8)

Due to assumption 3 (and the weak assumption that the current velocity is not
terribly larger than the velocity due to wave motion), the variation of 7 can be
considered negligible in a wavelength (7, < 7’ ~ O(¢)). As a result, expanding the

surface quantity based on z = 7], we have

)
wm—wquwm—wmﬂ+wawm—wmﬂ=Wﬁ—wmmﬂww)
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where we have used the assumptions 1, 2 and 4. Similarly

1 1 01
§(U2+W2)|z:n+77:§(U2+W2)|z=ﬁ+77 §[§(U2+W2)]|

=0 +n*(WW,)|.=; = n".

where the last equal sign is due to the fact of WW, ~ UU,7j, ~ 7> < 1.

By substituting (8.9) and (8.10) to (8.4) and (8.5), and applying 7, < 1Y, we
obtain the governing equations in terms of ¢° and n*. The superscript “w” can
further be dropped by considering a z-axis (z = 0) coinciding with the surface of 7.
This gives

Ur + nw(b; - (1 + 775)@ + an|z=0 + nUw|z=0 = Oa (8'11)

1 1
81+ + 56505 — S (L4122 + 6UL—o = 0. (8.12)

This derivation can be straightforwardly generalized to two surface dimensions

with a current field (U, W)(x, 2), where U = (U, V),
M+ VanVx¢® — (14 Vyn - Vxn) . + Vi - Ul.—o + nVx - Ul.—0 = 0, (8.13)

1 1
o] +n+ §VX¢S - Vx¢® — 5(1 + Vi1 - Vx))$2 + Vx¢® - Ul = 0. (8.14)

We shall proceed with equations (8.13) and (8.14) hereafter.

8.1.2 Hamiltonian formulation

There is no guarantee that, after the above manipulation of including the current
field, the governing equations (8.13) and (8.14) can retain a Hamiltonian structure.
This is however desired, as energy conservation principle should not be degraded by
the current field. Hence, we show the Hamiltonian formulation of (8.13) and (8.14)
in this section, and prove that the quantity conserved by them is the total (coupled)

energy of wave and current.
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We first re-write (8.13) and (8.14):

e = :Vxnvx¢s + (1 + Vxn . Vxn)¢i:Vxn . Ulz:() — an . U|Z:9, (815)
o ®
s 1 s s 1 2 s
O === 5Vx¢" V¢ + 5 (1 + Vin - V)¢, —Vx¢® - Ul . (8.16)
N " N ——
‘@S @

We next show that (8.15) and (8.16) can be written as a Hamiltonian system,

oy 6H d¢°  SH
ot g7 ot  on’

(8.17)

where ¢ denotes the variational derivative, and the Hamiltonian H can be decomposed
as

H=H,+H,. (8.18)

In (8.18), H, is the part due to wave motion, corresponding to the terms marked by
@ in (8.15) and (8.16). This has been well understood (e.g. Zakharov, 1968), which

is equal to the summation of the wave-like potential energy and kinetic energy:

H, = %/Ude - % /_Zo/ [Vx¢ - Vxo + (%)ﬂdxdz. (8.19)

This can be shown, by involving the Green’s theorem [(¢V2¢ + V¢ - Vg)dV =
$¢(Veé-n)dS (where V = (Vy,0/0z)) and (8.15), to be

1 1
Hw = 5 /?’]QdX—F §/¢snt|U:0dX, (820)

where 7;|u—o is obtained from (8.15) with U = 0, and we have assumed horizontally

periodic boundary condition.

We now claim that H., which corresponds to the terms marked by @) in (8.15)

and (8.16), can be expressed as

H—— / 6 (Uluro - Vi) — V.| oo dx. (8.21)
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Let’s prove this by substituting (8.21) to (8.17) (refer to Zakharov et al. (1992) for

the rule of variational derivative):

0H. _ B _ .

== [ 8 =) [ o D) = ()W o) 5o
= —Ul.—0 - Vxn = nVx - U|.-.

0H, 0 R s s

5= 3y | [V (0'1ULm0) =V (9'Ulmo) — 'We o] dx
= Vi - (¢°Ul.=0) + ¢*W.|.=0 (8.23)

= U|z=0 - Vxo?,
where we have used the horizontally periodic condition for the second equal sign.

These are exactly the terms marked by @) in (8.15) and (8.16), and we have thus
proved that the Hamiltonian H is in the form of (8.18), (8.20) and (8.21).

We next consider the physical meaning of H. = — [ ¢*(Ul.—o - Vi) —nW.|.—0)dx.
We will show that it corresponds to the wave-current cross terms in the evaluation of
the total (wave and current) kinetic energy. This can be obtained by subtracting the

wave-only and current-only parts of the kinetic energy from the total kinetic energy:

KEr_c_w = % /_ ZO / [(U+Vx¢) - (U+Vyo)+ (W + g—f)ﬂ dxdz — KE¢ — [(ZE;Z)
where
KEo+ KEw = % /77 / [U-U+W?+ Vi Vi + (%)ﬂdxdz. (8.25)

We thus have

KB — /_ Zo / (U-Vx¢+W%)dxdz: /_ 7; / V. (4Up)dxdz,  (8.26)

where V = (Vy, 0/02), Ur = (U, W), and we have used the continuity of the current
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field (assumption 1). Due to the divergence theorem, we have
KET—C—W = /‘¢SUT|Z:77 . l’ldS, (827)

where ds is an element on the free surface z = 7, and n is the outward unit normal

vector

n— (e, =10y, 1) (8.28)

VIFnZ+n2

Substituting (8.28) to (8.27), we obtain

KET—C—W = —/¢8[J-|Z:,7 . Vxndx + /le:n¢sd}€. (829)

Substituting (8.9) (the corresponding version for two-dimensional surface) to (8.29),

and considering the surface-coinciding z-axis, we obtain
KEr_c_w = — / ¢S(U|z=0 - Vxn — 77Wz|z=0)dx- (8.30)
Therefore, we have shown that
KEp_¢c_w = H,, (8.31)

and the quantity conserved by (8.13) and (8.14) (or (8.15) and (8.16)) is the total

(wave-current coupled) energy.

8.1.3 Numerical time integration

Equations (8.15) and (8.16) can be integrated in time, once ¢, is solved by boundary
perturbation method in HOS at each time step. We conduct in this section a linear

stability analysis, assuming ERK4 is used in the time integration.

We consider the decomposition

U="U+u, (8.32)
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where U is the mean current field, and u is the fluctuation with zero mean (considered
to be O(e¢)). The linear part of (8.15) and (8.16) can be separated, which, in

wavenumber space, reads

S =T] (8.33)
Ok P°
where
—ik-U k
T = _ (8.34)
-1 —k-U

with k = (k,, k,) and k = |k|.
As discussed in Chapter 3, the eigenvalues of the matrix 7 dictate the property
of linear stability of the problem. This can be solved to be

Ay = +ivk — ik - U. (8.35)

Defining 8 = maz(|vk — k- U|, |[vk +k - U|), we obtain the linear stability criterion
for using ERK4 to solve (8.33),

At < %. (8.36)

From (8.36), we see that the time step At can be severely limited for large [U].
This problem can be remedied, if necessary, by using the IRK4 scheme presented in

Chapter 3.

8.2 Numerical simulation

We consider gravity waves, on a two-dimensional surface, passing a prescribed real-
istic current field. The current field, applied on a 4km x 4km region, is obtained
from a MSEAS (http://mseas.mit.edu) analysis of ocean surface centered around
39° 30'N, 72° 30'W. To manifest the effect of current on waves, we use a totally
10km x 10km computational domain, centered by the 4km x 4km patch with current,

whose surroundings gradually diminishing to quiescence. This is shown in figure 8-
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Figure 8-1: The current field, with a contour of current velocity magnitude and arrows
indicating directions of velocity. The region with non-zero current velocity is centered
in a 4kmx4km patch, whose surroundings gradually diminishing to quiescence, within
a totally 10km x 10km computational domain. The data is obtained from a MSEAS
(http://mseas.mit.edu) analysis of ocean surface centered around 39° 30’N, 72° 30'W.

1, with a contour of current velocity magnitude and arrows indicating directions of

velocity.

We further consider a superposed wave field, whose initial condition is specified
from a JONSWAP spectrum with peak period T, = 14s, significant wave height
H, = 12m, effective steepness 8 = k,H;/2 = 0.12, and spreading angle of 30°. This
spectrum is plotted in figure 8-2. Equations (8.13) and (8.14) are simulated by HOS
with nonlinearity order M = 3, starting from this initial condition and the prescribed

steady current field.

We consider three cases of simulation: (1) wave without current; (2) wave following
current; and (3) wave opposing current. Cases (2) and (3) are indicated in figure 8-
1 where these two scenarios are indeed realized in an approximate sense (since the
current velocity is not exactly pointing rightward). Typical snapshots of the wave

fields at t = 75T, for the three cases are shown in figure 8-3. Compared with case (1),
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Figure 8-2: The initial JONSWAP wave spectrum, with peak period 7, = 14s,
significant wave height H, = 12m, effective steepness f = k,H;/2 = 0.12, and
spreading angle of 30°.
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Figure 8-3: Typical snapshots of the wave fields at ¢ = 757}, for the three cases: (a)
wave without current; (b) wave following current; and (c) wave opposing current.
The field with significant current velocity is indicated by a box in (b) and (c).

it is apparent that waves become longer and lower, i.e., suppressed, when following
current (case 2), and behaves oppositely when opposing current (case 3).
For a more detailed elucidation, we define a variable ( as a representation of

surface roughness

C(S) = (IVn(z,y))s, (8.37)

which computes the spatial average in the region S of the quantity |Vn(z,y)>. We
plot, in figure 8-4, ((S) with S being the centered 4km x 4km region. Compared to

the case without current, we see that ((S) becomes respectively larger and smaller
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than normal when wave is opposing and following current.

The effect of following/opposing current on waves can be physically interpreted.
This is first discussed in Longuet-Higgins & Stewart (1961). We summarize the key
results here. For simplicity, we consider the steady wave field formed on a slowly-
varying collinear current. (For general wave-current interaction on two-dimensional
surface, ray theory can be used (Mei et al., 2005).) The wavenumber modulation by
current can be obtained by considering the conservation of apparent wave frequency

(relative to a fixed point in space):
k(C + U) = ko(Co + Uo), (838)

where ¢ = 1/1/k is the phase velocity of waves, and the subscript “0” denotes a
reference position (say wave without current, for which Uy = 0). Equation (8.38) can

be considered as a quadratic equation in ¢/co, and can be solved as

k £_2:[ 2(1+7) 2

ko 00) 1+/1+40+)U/co”

(8.39)

with Y= UO/C().

As discussed in Longuet-Higgins & Stewart (1961), the energy conservation is
not a valid assumption for waves on a varying current background. Instead, the
modulation of wave amplitude by current should be determined by the conservation
of wave action:

(6 +U)= = (cgo + Up) =2, (8.40)

; Wo
where ¢, = ¢/2 is the group velocity of waves, and E ~ a® with a being the wave

amplitude, w = 1/c is the intrinsic frequency of waves (in a frame of reference moving

with U). The solution of (8.40) gives

a . [Co(CO + 2U0)]1/2

w0 elet 20) (8.41)

The effect of following/opposing current on waves can be obtained by setting
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Up =0 1in (8.39) and (8.41). It can be shown that for U > 0 (following current), we
have k < ko and a < ag, which means waves being stretched and lowered; for U < 0,
we have kK > kg and a > ag, meaning a shortened and amplified wave field. These
physical insights are consistent with our simulation results, and (8.39) and (8.41) are

quantitatively verified by 2D linear HOS simulation in Wu (2004).

8.3 Future work

8.3.1 Influence of current field on wave attenuation

The study in section 8.2 elucidates the apparent effect of current field on wave
steepness, which implies that the wave dissipation can also be affected by currents.
Indeed, this has been shown experimentally in An & Shibayama (1994); Simons et al.
(1988), that rate of wave attenuation increases in the opposing current and decreases
in the following current. Besides these qualitative description, a quantitative relation
is yet to be established. The influence on wave dissipation by a turbulent background
flow is considered theoretically (Phillips, 1959) and experimentally (Green et al., 1972;
Gutiérrez & Aumaitre, 2016), where it is shown that the background turbulence in
general enhances wave dissipation. A numerical study of this phenomenon can be
obtained by simulating the governing equations derived in appendix E, for which the

influence of vorticity on the wave field is accounted.

8.3.2 Influence of current field on wave spectral evolution

It is expected that the nonlinear wave interaction, and thus spectral evolution, can
be affected by a background current field. We are not aware of many studies on
this subject, with the exception of Trulsen et al. (1990); Lamy et al. (2004), where
the problem is studied in terms of the wave action balance equation (a kinetic-type
equation). A direct numerical simulation of the wave field is desired in order to

elucidate the mechanism involved in energy transfer modulated by current.
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8.3.3 Influence of current field on rogue wave probability

It has been well understood that wave focusing by an opposing current can be an
important factor for rogue wave occurrence (Dysthe et al., 2008; Wu & Yao, 2004;
Merkoune et al., 2013; White & Fornberg, 1998; Lavrenov & Porubov, 2006; Lavrenov,
1998; Smith, 1976), and the incidences happening at the Agulhas current (Mallory,
1974) are largely attributed to this effect. In addition, the nonlinear focusing by
Benjamin-Feir instability has also been shown to significantly contribute to rogue wave
occurrence (Dysthe et al., 2008; Xiao et al., 2013). Notwithstanding, studies combing
these two effects are rare, with the exception of Onorato et al. (2011); Hjelmervik &
Trulsen (2009), which consider the nonlinear generation of rogue waves on an opposing
current in the context of a Schrédinger equation. In spite of several physical findings,
the validity of Schrédinger equation is limited for a narrow-banded spectrum, which
can be violated for significant modulation of wavenumber by current. It is expected
that the numerical simulation described in this chapter is especially useful to consider
this problem involving both current-modulated Benjamin-Feir instability and current-

focused wave groups.

8.3.4 wave-current interaction

Instead of a prescribed steady current field, it is desirable to develop a method
which incorporates fully nonlinear wave-current interactions. This can be obtained
by coupling the HOS solver for surface dynamics and a Navier-Stokes solver for
underlying current field (see Appendix F for the detailed coupling algorithm). The
developed approach can be used to understand the generated flow/vortex pattern
beneath surface waves (e.g. Punzmann et al., 2014; Constantin, 2015; Filatov et al.,
2016). In particular, the phenomenon, described in Punzmann et al. (2014), of wave-
driven surface flows is worthwhile for a detailed study, which may enable us to engineer

a new device for generation of inward and outward surface jets.
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8.4 Summary

We have developed the framework for the simulation of a wave field superposed on
a prescribed steady slowly-varying current field. The governing equations for waves
are derived respectively for a current field with negligible vorticity and a generally
rotational current field. The obtained equations for the former are converted to the
Hamiltonian formulation, from which we show the quantity conserved in the equations
is total (coupled) energy of wave and current. Numerical simulation is conducted
with respect to a realistic current field obtained from a MSEAS simulation of ocean
surface. We consider three cases: (1) wave without current; (2) wave following current;
and (3) wave opposing current. From the results of these simulations, we observe
that waves passing a following current field are stretched and lowered, while waves
passing an opposing current field behave oppositely. Physical interpretations for
these phenomena are discussed in terms of simplified collinear wave and current,
from the principle of conservation of apparent frequency and wave action. Other
possible physical applications of the developed approach are discussed, and numerical
formulation for a method incorporating fully nonlinear wave-current interactions is

proposed.
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Chapter 9

Conclusions and future work

9.1 Conclusion

The major topic of this thesis is the study of weak turbulence theory (WTT) of
capillary waves. On the theoretical aspect, we re-formulate the derivation of the
stationary solution of the inertial-range capillary wave spectrum, starting from the
primitive Euler equations. This leads to a theoretical surface elevation spectrum I, =
2rC P2k, with theoretical values of & = ay = —19/4 and Kolmogorov Constant
C = Cy =6.97. In particular, the value of Cj is updated, due to our correction of two
inconsistencies in the original derivation (Pushkarev & Zakharov, 2000), respectively
regarding the normalization of energy flux P and the evaluation of a key integral.
In order to conduct direct numerical investigation of this problem, we develop
an efficient solver for the primitive Euler equations based on a High-Order Spec-
tral (HOS) method, with a modification for capillarity. Two different numerical
formulations of the capillarity term are developed, which are respectively consistent
with the framework of Dommermuth & Yue (1987) and West et al. (1987) for the
rest part of the equations, and are expected to be used accordingly. While these
two formulations can be used interchangeably for general purposes, their practical
difference is discussed. The validity and accuracy of the developed approach is
benchmarked with an analytical Crapper wave solution. The Courant condition for

the simulation is obtained through a linear stability analysis, where it is shown that

179



capillarity appreciably limits the time step size in simulation of a wave spectrum. To
alleviate this situation, we develop an implicit 4th-order Runge-Kutta scheme (IRK4)
for time integration, which combines the explicit Runge-Kutta scheme and a linear
propagator method. The newly-developed IRK4 method is shown to be linearly stable
and exact, and its efficacy when applied to nonlinear equations is demonstrated in
the Crapper wave simulation, with the limitations illustrated. We end the numerical
formulation by presenting the 2/3 spatial de-aliasing rule, which is more efficient than

the previous 1/2 de-aliasing rule used in Dommermuth & Yue (1987).

The developed numerical method for the primitive Euler equations is then applied
to study the capillary wave turbulence. The objective of this simulation is to obtain a
clear development of the power-law spectrum and unambiguous evaluation of energy
flux, for which a direct comparison to the WT'T theory can be performed. To this end,
we consider the free-evolution of a capillary wave spectrum, starting from a somewhat
arbitrary isotropic spectrum. As the evolution reaches the quasi-stationary state, we
measure the spectral slope o of the power-law spectrum, and the energy flux P
directly from the energy dissipation rate. We also seek to uncover the physics for a
long range of P to establish the scaling between I,, and P. This can be accomplished
by starting the simulations from different nonlinearity levels (wave steepness), and
measuring o and P as the power-law spectrum manifests itself in the simulation. This
methodology allows us to confirm the WTT I, ~ P'/2 scaling over a broad range of
P. For sufficiently large P, i.e., nonlinearity level, we find that a = ap = —19/4
is recovered with high accuracy, and the Kolmogorov constant is evaluated to be
C = 9.9, with reasonable error, to be explained, compared to the theoretical value
of Cy = 6.97. As P decreases, i.e., lower nonlinearity level, deviations of @ and C'
from there theoretical values are observed, and shown to be a direct result of finite
box effect. The current results reinforce WTT as an effective model for stationary
inertial-range capillary wave spectrum, and illustrate the limitation of the theory for

the spectrum developed in a finite domain.

We further present a study regarding discrete capillary wave turbulence in the

framework of the Kinetic Equation (KE). In cases of discrete turbulence in a finite
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domain where energy transfer is sustained by quasi-resonant interactions, the KE is
not directly applicable, and further development requires a quantitative understand-
ing of the mechanism of nonlinear broadening. This is obtained using data from the
simulation of the primitive Euler equations. It is found that higher nonlinearity level
is associated with larger nonlinear broadening, which reaches an upper limit with
the increase of nonlinearity level in the weak turbulence regime. Guided by these
findings, we develop a quasi-resonant kinetic equation (QRKE) for discrete capillary
wave turbulence, by introducing a non-dimensional parameter x governing the ratio of
nonlinear broadening and wavenumber discreteness. In simulation of the QRKE, we
find that the obtained values of o and C are functions of k only. As kK = ko = 0.02, the
theoretical values of ap and Cj are simultaneously recovered, indicating an upper limit
of energy flux by quasi-resonance approaching that of exact resonance in theoretically
infinite domain. For Kk < ko, the simulation results replicate those with insufficient
nonlinearity level, namely the steepened spectral slope and reduced energy flux. As
a justification of the established QRKE, the parameter k is confirmed to be linearly
correlated with the nonlinear broadening in Euler equations. A key difference between
the two is, however, also revealed. It is shown that the nonlinear broadening obtained
in the Euler equations is increasingly weakened as the wavenumber k increases. This
effectively limits the energy transfer even for the highest nonlinearity that can be
simulated in HOS, and provides an explanation of the deviation of obtained value of

C from Cj in the simulation of the Euler equations.

The last topic in the field of weak turbulence is on the decaying capillary wave
turbulence. This can be considered as an extension of WT'T, where the turbulence is
allowed to evolve freely in the presence of physically broad-scale dissipation and finite
box effect. Our simulation through the primitive Euler equations replicates many
experimental observations, including the variation of spectral slope «, and decreasing
of the cut-off wavenumber k. with the decay. Based on our numerical data, we obtain
a generalized equation which describes the free decay of a capillary wave spectrum
under different dissipation magnitudes 7. Over the range of v, that we consider, we

further show that the inertial-range spectral slope depends only on the nonlinearity
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of the spectrum, irrespective of 7y, i.e., 7o determines only the magnitude of the
modal decay rate. The decay of spectral energy is shown to be consistent with the
prediction from our generalized spectral equation. These results provide a substantial
generalization to the theory of Falkovich et al. (1995), where the role of finite box
effect and broad-scale dissipation to the actual physics is highlighted.

The last two chapters of this thesis are devoted to the simulation of long-short
wave and wave-current interactions. For long-short wave interactions, we illustrate
the ill-conditioning of the boundary perturbation method used in HOS to solve the
boundary value problem (BVP) regarding the field potential ¢. This is shown to
result from the divergent terms proportional to the multiplication of the short-wave
wavenumber and long-wave amplitude (ksar), especially for simulation of a wave
field with largely disparate wavelength ratio (y = ks/kr > 1). Although these terms
are shown to cancel one another theoretically (for which we provide the first general
proof), they amount to calculation of small number as difference of very large numbers
in numerical simulation. This is demonstrated in detail in numerical analysis, along
with a proposition of a criterion for the numerical ill-conditioning. We further propose
a mapping scheme which effectively remedies this ill-conditioning, with the cost of
increased computational complexity. The effectiveness of the developed approach
is illustrated by solving a prescribed BVP relevant to long-short wave interactions,
where it is shown that the performance in solving a wave field with v > 1 is much

improved compared with the boundary perturbation method.

For wave-current interactions, we develop the framework for simulation of the
evolution of nonlinear waves superposed on a prescribed steady slowly-varying cur-
rent. The formulation is obtained for both a rotational and irrotational current field.
We derive the Hamiltonian formulation for the former, where we show that the total
coupled wave-current energy is conserved. We demonstrate the simulation by studying
the evolution of a wave field superposed on a realistic current field obtained from the
MSEAS analysis. It is observed that waves passing a following current are stretched
and suppressed, while waves passing an opposing current behave oppositely. The

physical explanation for these phenomena are provided, in terms of the conservation
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of apparent frequency and wave action.

9.2 Future work

There are much remaining to be done in the field of wave turbulence. We list a few

in the followings.

9.2.1 Quantitative criterion for the cut-off wavenumber

The mechanism for the formation of cut-off wavenumber k. is discussed in Kolmakov
et al. (2004), which is shown to be a result of balance between viscous dissipation
and nonlinear energy transfer. Despite the qualitative description, the quantitative
criterion is yet to be established, which is possibly derivable from the principle of
balance. This should then be confirmed by our numerical simulation. It serves as the

counterpart for Kolmogorov scale in the field of weak turbulence.

9.2.2 MMT spectrum

It is shown in Majda et al. (1997); Cai et al. (1999, 2001) that the Majda-McLaughlin-
Tabak (MMT) spectrum can form in a one-dimensional model of wave turbulence with
a prescribed dynamical equation. The MMT spectrum can be derived by replacing
the closure model for high-order cumulant (counterpart of (2.57)) by a MMT closure
(Majda et al., 1997). It is shown that spectral bifurcation exists for the prescribed
dynamical equation. In particular, for de-focusing nonlinearity with random forcing,
MMT spectrum is obtained as the stationary solution. While for focusing nonlinearity,
WTT spectrum forms in the stationary state, with MMT spectrum present as a
transient state. In spite of these numerically observed behavior, the theory that leads
to the bifurcation is not clear (It is proposed that the coherent structures in the wave
field can be a cause of the MMT spectrum (Zakharov et al., 2004)). In addition, the
MMT spectrum has not been observed and discussed in any realistic wave field. It is

worthwhile to study the presence of MMT spectrum for, say, capillary waves.
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9.2.3 Gravity wave turbulence

The framework of gravity wave turbulence is established in Zakharov & Filonenko
(1966), where it is shown that the gravity wave spectrum exhibits a stationary solution
of I,, ~ CPY3k~"/2 for the direct cascade. This solution, in terms of the k~7/2 scaling,
has been extensively studied both numerically (Onorato et al., 2002; Dyachenko et al.,
2003; Pushkarev et al., 2003) and experimentally (Falcon et al., 2007; Denissenko
et al., 2007; Deike et al., 2015). The Kolmogorov Constant C (as well as the P/?),
however, is much less understood. Theoretical and experimental studies regarding the
value of C' are only recently conducted in Zakharov (2010) and Deike et al. (2015).
While they do not reach consistency, it is desirable to re-formulate the theoretical
derivation and perform numerical study on the problem. A preliminary study which

includes the procedure on theoretical evaluation of C' is presented in Appendix G.

9.2.4 WTT spectrum vs. Phillips spectrum

The WTT spectrum and Phillips spectrum (Phillips, 1985) are derived based on differ-
ent physical assumptions. While the former is based on an inertial-range consideration
free of external forcing, the latter considers a spectrum where the energy transfer from
large scales are balanced by the energy dissipation due to wave breaking. As a result,
the Phillips spectrum, with a wavenumber scaling of I, ~ k™*, behaves differently
from the WTT spectrum. Detailed numerical studies on understanding the physical
mechanisms of these spectra are still lacking. An exception is Korotkevich (2008),
which, in the framework of primitive Euler equations, shows that the WTT spectrum
can transform to Phillips spectrum as the wave steepness increases. Nevertheless,
more convincing numerical evidences are still desirable, and this may ultimately

require the simulation using the Navier-Stokes equations.

9.2.5 Wayve turbulence in the strong turbulence regime

The studies in this thesis are confined to wave turbulence under weak turbulence

regime. This allows perturbation analysis to be used in derivation and numerics, and
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serves as the key for the validity of WTT and HOS. As nonlinearity level further
goes up, dynamics reaching the strong turbulence regime remains elusive. The weak
nonlinearity assumption and random phasing assumption assumed in WTT can be
violated, as coherent structures (non-Gaussian statistics, such as wave breaking, rogue
wave, etc) emerge in the wave field. In theory, the spectrum under this regime
remains unsolved (the Phillips spectrum can be a typically simplified model for gravity
waves). In numerics, this requires the simulation of the Navier-Stokes equations. The
elucidation of these dynamics is, however, particularly desirable as it improves the
understanding of wave turbulence, and may further shed light on the clarification of

the intermittency phenomenon in general flow turbulence.

9.2.6 Wayve turbulence under the background of current/long

wave

Understanding the capillary wave spectrum in the real ocean requires the study
of wave turbulence superposed on the background of current or long waves. The
addition of the background flow to this dynamical system introduces two elements
of difficulty in analysis. (1) A current or long wave can effectively modulate the
nonlinear wave interactions (e.g. Olmez & Milgram, 1995b; Gerber, 1987). (2) The
directionality of the background flow breaks the assumption of isotropy of the wave
turbulence spectrum. Extending the theory requires incorporating both mechanisms

in the derivation.

9.2.7 Spectrum of gravity-capillary waves

There is no general theory for the spectrum of gravity-capillary waves. Connaughton
et al. (2003) suggest that two sub-regions respectively corresponding to gravity and
capillary wave power-law solution exist in the spectrum, and the two sub-regions can
connect for sufficiently large forcing. This is experimentally confirmed in Falcon et al.
(2007), where it is shown that the spectral slope of the capillary region agrees with

the theory, while the spectral slope of the gravity region only approaches theoretical
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result with the increase of the forcing. A numerical study with consideration of both
gravity and surface tension is useful in elucidating the physics regarding the forcing,
spectral slopes and the connection of the gravity and capillary sub-regions.

Finally, future work for long-short wave interaction and wave-current interaction

is respectively discussed in sections 7.5 and 8.3.
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Appendix A

Proof of (2.40)

We first express < 7(k)7*(k’) > in its Fourier transforms:

< T (K) > — —— < /_ " p(x)exp(—ik - x)dx / ) eap(ik' - xX')dx' >

472 00 —00
=i // exp(—ik - x + ik’ - x') < n(x)n(x') > dxdx’
Let
/
X=x—-%, XOZX;X. (A.2)

Substituting (A.2) into (A.1), which involves

:X+2X0 X/ZZXO—X
2 ’ 2 ’
: A . n X e
—tk-x+1ik'-x :—z(k+k)-5+z(k — k) - xo,

X

dxdx' = dxodX,

and assuming homogeneity, we obtain

< AT (K) >= 75 / " emp[—i(k — ') - xoldxo
o < (A.3)
/ exp[—i(k + k') - %] <n(x+ X)n(x) > dX.

—00
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Invoking (2.4) and (2.36), we obtain

2(k) = /oo exp(—ik - X) < n(x + X)n(x) > dX.

—00

Under the assumption of ergodicity, equation (A.4) can be re-written as

I,(k) = / " op(—ik - X)(x T X)nx)dX.

—00

Comparing (A.5) and (2.39), we obtain (2.40).
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Appendix B

Solution of (2.56) following Janssen

(2003)

The equation (2.56), as a first-order Ordinary Differential Equation with respect to

t, can be solved directly:
Jklg = Joeleut — Z/ Aklg(T)e_lem(T_t)dT. (Bl)
0

where J° depends on the initial solution at ¢ = 0. Under the assumptions of long-term
evolution (t — oo0) and slow spectral evolution (A ~ constant), equation (B.1) can

be reduced to

Jriz = Apa—=——. (B.2)

Equation (B.2) is then substituted into (2.56), which yields

on o0
8—tk =— 2// [AkquuRi(ka;t)5k—k1—k2 — A2 Vika Ri (k2 1) 0ky —k—ks
—o0 (B.3)
— Az Vit R (Dn1, )0 11, | dca s
where
()
Ry(Q,t) = Smg() 23 (B.4)
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For t — oo,

lim R;(2,t) = mo(2),

t—o00

and (B.3) reduces to (2.60).

190



Appendix C

Determination of linear solution of 7
and 5‘9 from a capillary wave

spectrum I~77(w, 0)

We consider a general capillary wave spectrum I~n(w, 6), say, in the JONSWAP form

2 (w—w2)
~ ag D, Wp 4 ewP[— 5 2] 9 T T
I - 20 wp 4 _ < — '1
= —eap| 4(_w) ] —cos 0, 5 0 < 5 (C.1)

where 0 is the spreading angle. For isotropic spectrum, the factor cos? can be set to

be a constant.

We first convert the spectrum from frequency-angle domain to wavenumber do-

main. Using the relation
(ku, k) = w?*(cosh, sind), (C.2)

we obtain

Oky  Oky 207 Y8¢cos —w?3sinb
ke, dk, = [ D 00 ] dwdf — [ 3% “ dwdf — §w1/3dwd9.

Y dky Ok 2 —1/3.; 2/3
y y 2, ,—
e 5o sw sinfd  w?°cosb

(C.3)
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Then, according to I, (w, 0)dwdd = I, (k,, k,)dk,dk,, we have
~ 3 17
Iy (Ko, ky) = % I;(w,0) (C.4)

Invoking the definition of wave spectrum 7)(k,, k,)?/2 = IN,,(kw,ky)AkwAky, we

obtain

(ks ky) = \/3w—1/3f,7(k3w, ky) Ak, Ak,. (C.5)

Equation C.5 is applied to all wavenumbers k,, k, in the computational domain,
with the phases obtained from a uniform random distribution in [0,27). With
N(ks, k) specified for each wave mode, the corresponding surface potential 55 can
be obtained from the linear solution:

~ W

(bs(km ky) = _?ﬁ(kwv ky)' (C‘G)
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Appendix D

Scale invariance of the quasi-resonant

kinetic equation (QRKE)

While the continuous kinetic equation (KE) is shown to be scale-invariant under

power-law form solutions (Pushkarev & Zakharov, 2000), it is not clear if the quasi-

resonant KE (QRKE) remains this property. For this purpose of investigation, we

re-write the QRKE (only the first term is maintained for illustration), by eliminating

the delta function on wavenumber:

9
e | / 5y(Q = wy, — wy — wiem) F(k, Ky, k — ko, g )dk,
ot " )y,

~ (k, ki, k—k Ak
ZW,BQ—I-QQ 1 lank) 1

where 8 = kAkkY2. Defining Q = QAkkY/2, we obtain

Ony k 1

~ -1/2 -1
ot 7T/<52—|—Q Fk, ki, k — ki, m )k~ /2Ak™ Ak;.

(D.1)

(D.2)

It has been shown that the function F(k,k;,k — k;,nyx) is homogeneous under

isotropic power-law solutions of ny. Therefore, the key for determining whether (D.2)

is scale-invariant is the parameter (). With sufficient number of the grid in summation,

it is only relevant to consider the Probability Distribution Function (PDF) of {2
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N k kix

where () takes non-zero value

Figure D-1: resonance curve Q) =0 in the grid for a particular k.

adjacent to the resonance curve (see the sketch of figure D-1), which dominates (D.2).
We shall numerically show that Q is similarly distributed for different k, and thus

(D.2) is scale-invariant upon summation of sufficient grid points.

For this purpose, we set k.. = 32 and Ak = 0.05 (we use relatively smaller Ak
to calculate the PDF of  more accurately). We plot the PDF (histogram) of € (for
the grid adjacent to O = 0) in figure D-2 for respectively k =10, 15, 20, 25 and 30.
It can be seen that they resemble one another. This means that a single value of
works for any k, i.e., the whole spectrum. It also means that the PDF is independent
of the grid size, because by scaling, doubling the grid number for £ = 5 is equivalent
to evaluating the PDF for £ = 10 on the same grid. This explains the scale invariance
of the QRKE on power-law spectrum, and the independence of the solution to the

grid size.

We further verify the (continuous) theoretical scaling of On/dt ~ k~7/2 using (D.2)
with kK = Ko, as this is the key for the theoretical power-law spectrum to be realized
for a range of k. We plot the value of On /0t obtained from (D.2) with the theoretical

—7/2

scaling in figure D-3. Indeed, the & is realized, which justifies the validity for
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Figure D-2: PDF (histogram) of € (for the grid adjacent to = 0) for respectively
k = (a) 10, (b) 15, (c) 20, (d) 25 and (e) 30.
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o

k

Figure D-3: Value of On/dt obtained from (D.2) (o) with the theoretical scaling of
on/ot ~ k=72 (—).

formation of the power-law spectrum using the QRKE.

We finally mention that the fluctuations in figure D-3 are due to two sources:
(1) The similarity of PDF of Q is only approximate, as we have finite number of
points for all k. (2) The fact that On/dt ~ [ F(k;)d,(Q)dk; disturbs the PDF of €.
Rigourously, we should look at the PDF of F(k;)d,($2). The factor F(k;) modifies
the similarity of PDF of 6,(f2) at each k, resulting in fluctuations of the final scaling,

These issues can potentially cause the fluctuation of the power-law spectrum, and

requires further investigation.
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Appendix E

Derivation of governing equations of
waves superposed on a general

(rotational) current field

In this appendix, we derive the governing equations, in Zakharov form, of gravity
waves superposed on a general (rotational) current field. The derivation is in essence
similar as that in Nwogu (2009), but obtained from a different path.

We consider the decomposition of the total velocity field:
VTOT(Iazyt) = V¢($,Z,t> + (U7 W)(.’IJ,Z), (El)

Assumptions are placed on the current field (U, W)(z, 2):

1. U/0x + OW/0z = 0, i.e., the flow is incompressible.

2. Analytical continuation is valid near the surface, i.e., quantity on the wave

surface can be obtained by Taylor expansion.

3. The horizontal length scale of current is much larger than that of the wave, i.e.,

L.> L,

Instead of assumption 4 in Chapter 8, we allow general rotational flow motion in

(U,W)(z, 2).
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The kinematic boundary condition can be obtained similar as that in Chapter 8:

on o900, 9¢

— + (5 f——]"=0. E.2

ot T ar\ag TUN W= =0 (E2)
where |* = |,—, denotes the evaluation of the preceding term on the free surface.

For the dynamic boundary condition, we cannot use the unsteady Bernoulli’s
equation as in Chapter 8, as the flow is rotational. Instead, we need to start from the

Euler’s equation, evaluated on the free surface:

9(Vo)
ot

*=-V|[= (U+%)

0., D’ ———s
w2 v V() + Vior <a', (B3)

where F~ denotes a formulation F evaluated on the surface. This is used wherever
necessary to avoid the confusion that can be caused by |°. In (E.3), V = (9/0x,0/0%),
and

w=V X VTOT; (E4)

is the vorticity.

Multiplying (E.3) by the unit tangential vector on free surface

1 T]w
1= lw,ly = ) ) '
(sl (\/1+773 \/1+77£) ()
we obtain
0Dy w5 2= viw+ Py (W+g—¢>] 1=l 4+ Vror xw' -1,

(E.6)
We now seek to express (E.2) and (E.6) in surface variables. The connection of

field and surface variables can be established via

¢S(I7 t) = ¢(1’777($7t)>t) = (b(il?, Zﬂt)|z=m (E7)

and
¢:1°(,1) = ¢-(z,1(2, 1), 1) = B(, 2, 1) ] .=- (E.8)
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Other necessary transformations are derived as follows:

¢:a = (bw'S + ¢z|577w = ¢w|s = ¢; - ¢z|s77w; (Eg)
¢Z|; = ¢zx|s + ¢zz|s77w = ¢zw|s = ¢z|; - ¢zz|s77w; (EIO)
Dro = Pual” + Guzl N + B2[200 + G2l Moo
(B.11)
:>¢mv|s = Qpe — 277$¢2|asc + ni@zls - nww¢z|s;
(Ve 1) a(Ve-l), a—s
- %P + nt(¢wZ|slw + ¢ZZ|SZZ) (E.12)
(Ve -1,
T| +77tl ¢z|w7
Vo -T = ¢l + ¢l = LogS; (E.13)
(E.12),(E.13) =
oVe-1),,  0O(dzls) .

Substituting (E.9), (E.10), (E.11) and (E.14) to (E.2) and (E.6), we obtain

M= Uy — ¢ + 0201 + 6" + W*, (E.15)
and
o2l — s Ol 1 3 -
(%2 2 gl + V- ——v[ (U @2)? + 5(W+¢.)*] -1=L+Vror xw -1
(E.16)

Now let’s transform (E.16) term by term:

Mele®sls = lod: |5 (—Une — $ine + 120 |° + ¢.|° + W)
= L (=Unag.|3 — G:1505m0 + 02020215 + 20215 + Woe.[);

(E.17)
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—s Ol
V¢ : a = ¢w|slmt + ¢z|slzt

- lw(z);nwnwt(l + 773)_1 + ZW( - Uw|s77w¢2|s + ¢Z|SUZ|S77920 - Usnww¢2|s - ¢;wnw¢Z|s

- ¢ZIS¢Z779M + znwnww¢Z|S¢Z|s + 773¢z|§¢z|5 + ¢Z|S¢Z|i + les(bz + WZISHW¢Z|S)§
(E.18)

:lw (USUw|3 + USUZ|S77x + Us¢:m - Usnww¢Z|s - Usnw¢Z|; + Uw|s¢; + UZ|S7790¢2
+ ¢;¢;w - nm¢Z|S¢; - nw¢;¢2|; - Uw|s¢2|s77w - UZ|S77§¢Z|S - ¢z|377w¢§w
+ NN ®: = |° + o005 + W WL + WW_[*n, + W26

+ ¢Z|3Ww|s + ¢Z|SVI/Z|S?7m + ¢Z|S¢Z|;)7

(E.19)
Vror Xw -1= (U+¢w7w+¢z70) X (Oa()?Ww - UZ)D -1
=[(W +¢. )W, —U.) ,—(U +¢,) (W, — U.) ] -1
[ ] (E.20)
=l (WWo|* + . UU.|* + U2, — W2ULP + Wol*¢:|° — U.[*¢.|°
— U Wl = Wl ¢5 + e Wal*¢: " — mzU-|"¢:%);
0 0e; 2y-1
— (o xz) — lx = — @ xl|xtbx 1 . :

Substituting (E.17), (E.18), (E.19), (E.20) and (E.21) to (E.16), we obtain

8 s
% = = 1o + Moo= *0:1° + (1 +02)b.* (8215 + Wa|* — U.[)
(E.22)

— (U + @) (Ual* + 9% + 1 Wal*) = WP (U-I* — Us[*na).
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This can be shown equivalent to

00: _ 0 1 _ o Lists L e — Ut — Lot - 114 Db o0 I¢
o =an |1 UV WAW®) — U6, — 2 + (14 1) 6.1 0 ]

+ (L +m)e:l*(Wol* = UI") = Une(Wol* = U.I") = mudpy (Wel* = ULI%)
+WE(W,[° = U.P).

(E.23)

To summarize, we have the following governing equations, in Zackharov form:

Me=—Ue = @3 + 1z0:|" + .| + W, (E.24)
ops 0 1 1 1 ,
.’1::_ _ __USUS WSWS _US S__ S S _1 ZS ZS
o =po [ 1= (U U+ WW?) = UG, — 602 + 5 (1 + ) s "6 |°] s
+ [+ 02)@ul* — Una — 1o + W7o,
where
w* = Wo|" = U.|". (E.26)

The first part of (E.25) is the same as the z-derivative of (8.5), and the influence
of vorticity on waves is reflected by terms involving w®. To proceed, we can expand

U?®, W?¢ and w?® by Taylor series based on z = 0. The procedure is similar as that in

Chapter 8, and is not repeated here.
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Appendix F

Algorithm for simulation of fully

nonlinear wave-current interactions

In this appendix, we develop the framework for the simulation incorporating the fully
nonlinear wave-current interactions. This is obtained by coupling the HOS solver
for surface dynamics and a Navier-Stokes solver for underlying current field, and
requires the decomposition of the total velocity field into a potential flow field and a
rotational flow field. We consider a 3D flow field vertically from z = —h to z = 7,
with horizontally periodic boundary condition, for the following formulation. Two
cases are discussed: (i) A general approach with a unique decomposition of the total
velocity field, which is similar as that in Dommermuth (1993); (ii) A modification
of the decomposition in (i) which is particularly suitable for wave-current interaction

where the length scale of wave is much smaller than that of the current.

F.1 Governing equations

We first present the governing equations of the problem.
In the limit of high Reynolds number, the flow field is governed by the (non-

dimensionalized) Euler equation

Ou 1
E%—u-Vu— —Vp — it (F.1)
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where u is the total velocity, normalized by a characteristic velocity U.. p is the total
pressure normalized by pU?. Fr = U./+/gL. is the Froude number with L. being the
characteristic length. 2 = (0,0,1) denotes that the term 1/Fr? applies only on the
vertical direction.

On the surface z = 7, we apply the pressure boundary condition
p=PF,, (F.2)

where P, is the atmospheric pressure. On the bottom z = —h, we apply the slip
boundary condition

u-z2=0. (F.3)

F.2 The general approach

F.2.1 Decomposition of the field equations

We start by applying the Helmholtz decomposition to the total velocity:
u=Vo+U, (F.4)

where ¢(z,y, 2,t) is a velocity potential which describes the irrotational flow and Y

is a solenoidal field which describes the vortical flow such that
Vi =0, (F.5)

VU =0. (F.6)

Note that & may contain a portion of irrotational field depending on the boundary
conditions, described in section F.2.2. This is a freedom of the current approach,
use of which is also made when dealing with the particular wave-current interaction
problem (see section F.3).

Depending on the Helmholtz decomposition of the velocity field, we decompose
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the pressure field accordingly:

p= Pr+ Py, (F.7)
where Py is the rotational pressure, and

dp 1 1
P[——a—EV(ﬁ'V(ﬁ—F—T&Z, (FS)
is the irrotational pressure.
Substituting (F.4) and (F.7) into (F.1) gives

% (U+VE)- VU A+ U-V)Vé = —V Py (F.9)

Divergence of (F.9), with the substitution of (F.5) and (F.6), gives the governing
equation for Pg, written in the form of a Poisson equation (for clarity, Einstein

notation is used.)
ou; oU; 28Uj ¢

2
Pp=— .

(F.10)
Equation (F.10) is subject to, due to the divergence theorem, a solvability condition:

OPp _ oU; OU; ou; 9%¢
s On V(axi a1 +23xi 81113-8%‘)’ (F.11)

which places a restriction in specifying the boundary conditions. In (F.11), V' is the
volume of fluid, S is the surface bounding the volume, and n is the outward-pointing

normal vector on the surface.

F.2.2 Boundary conditions

For the Helmholtz decomposition (F.4) to be unique, an additional boundary condi-
tion is required. An expedient choice that can be specified, for which the evolution
equation of surface elevation is most simplified, is that the normal component of the
rotational velocity is zero on the free surface:

—Une — Vi + W
N (R L (12
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We note that only one component of Y can be specified as boundary condition,
otherwise the decomposition of an arbitrary flow field (F.4) results in two boundary
conditions for ¢ on the free surface in solving (F.5). For example, Y = 0 cannot
be specified here. The choice of other forms of boundary condition for U results in
different evolution equation for n (cf. (F.13)). In particular, (F.12) means that the
evolution of free surface is entirely determined by the irrotational velocity, specified

by potential ¢, as follows:

on  Ondp  Ondp 0p
ot Towor Tayay 9V (F-13)

The evolution of potential ¢ can be obtained from (F.8), as

9¢

1
8t + V¢ V¢+—z—PR P (F14)

with P, being the atmospheric pressure. Evaluation of (F.14) on the free surface
z =1, and specifying P, = 0, gives
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ot + V¢ Vo +

F7‘2n = PR. (F15)

We now write (F.13) and (F.15) in Zakharov form (¢*(z,y,t) = ¢(x,y,n(x,y,t),t)):
e+ Vx@d® - Vi — (1 + Vi - Vxn)g, = 0, (F.16)

1 1
¢+ Fant V@ Vg™ = 5(1+ Vs Vyn)$? = Pr, (F.17)
where Vy = (0/0z,0/0y).

The Poisson equation (F.10) for rotational pressure requires a boundary condition
on the free surface. This can be specified by evaluating the momentum equation (F.9)

on the free surface and then multiplying n, which gives

629% R % —n- (U+Ve)-VIU—-n-U-V)V. (F.18)
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The first term on the right hand side of (F.18) can be simplified as

ou o(n-U) On dn-U) N dn-U) On

oo YaT T a e e
g, at’

where we have applied (F.12) and d/dt is the total derivative following the free surface.
Substituting (F.19) into (F.18) gives

OPy U . n

where

On _ (—Mettly — Mot + NellyThyts —yillz — Tyt + oy oty —Thallet — ThyTlyt)
ot (2 + 2 + 1)

. (F21)

With n, specified by (F.16), equation (F.20) defines a Neumann boundary condition
for (F.10). We note that (F.20) also guarantees that (F.12) is satisfied as the velocity
field is updated by (F.9), i.e., the role of (F.20) to (F.12) is the same as (F.10) to

continuity.

Up to now we have not specified the bottom boundary condition. A convenient
choice for current problem is the slip boundary condition for both the potential and

rotational flow components. We can thus specify

8¢/0z = 0, (F.22)

and

U-5=0, (F.23)

on z = —h.

The specification of boundary conditions for this problem is now complete.
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F.2.3 Initial conditions

With (F.9), (F.16) and (F.17) being the evolution equation, we need to specify
Uo(z,y,2) =U(2,y,2,t = 0), no(z,y) = n(z,y,t = 0) and $(z,y) = ¢*(z,y,t = 0)
as initial conditions. We consider this specification in the case that we are given
a general initial flow field with known no(z,y) and ug(z,y, z). Our task is thus to
decompose uo(z,y, 2) into ¢o(z,y, 2) and Ug(x,y, 2) that satisfies (F.12). This can
be obtained by solving (F.5) subject to (F.22) on the bottom and

090 _

on 110(.’1,', Y, Z) -, (F24)

on the free surface. Up(z,y, z) can then be obtained as the difference of Vo (z,y, 2)
from uo(x, Y, Z) and (bS(‘/E? y) specified as ¢0($7 Y, 770(x; y))

F.2.4 Solution procedure

Given Uo(z,y, 2), ¢§(x,y) and no(z,y), the solution procedure is as follows:

1. Solve (F.5) with prescribed ¢*(x,y) and (F.22) at 2 = —h. The solution can be
obtained by using the boundary perturbation method in HOS.

2. With ¢, determined, update n by (F.16).

3. Solve (F.10) subject to (F.20) at z = 1 and a bottom pressure boundary
condition obtainable from (F.23). The solution can be obtained by a mapping

scheme which maps the free surface to a flat surface (see Dommermuth, 1993).
4. Update ¢° by (F.17).

5. Update U by (F.9). We note that this should also be conducted in the mapped
domain (with (F.9) transformed to the mapped domain), such that oU /0t on
the surface of the mapped domain corresponds to dld /dt in the original physical

domain.
6. Repeat steps 1~ 5.
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F.3 Modification for wave-current interaction

We consider a simplification for a particular wave-current interaction problem, where
the length scale of wave is much smaller than that of current. We further assume
that the small-scale flow feature is completely governed by the potential-flow wave
motion, and keeps irrotational in the time-dependent solution. As a result, the total
velocity field can be decomposed into two components: the small-scale potential-
flow wave motion and the large-scale rotational current motion, which are simulated

respectively on a fine and coarse grid.

Suppose we are given an initial solution specified by separated current and wave
fields. In the initial velocity decomposition, we need to make sure that all small-
scale flow features are contained in V¢q, with an arbitrary addition, as needed, of the
large-scale irrotational flow field. The remaining large-scale flow features are specified
by Uy. For this purpose, the boundary condition (F.12) has to be abandoned, as it
results in a unique decomposition which may violate this required rule. Indeed, the
most straightforward decomposition in this case is to assign directly the wave field to

Vo and the current field to Uo.

As (F.12) is abandoned, we need an alternative pressure boundary condition on

z = 1), instead of (F.20). This can be conveniently assigned as

Pr = 0. (F.25)

In fact, arbitrary value of Pr can be specified, as (F.9) and (F.15) ensure that the
addition p = Pr + P; = P, at the free surface. This means that the addition U + V¢
keeps the same for different specifications of Pg, with a different partition between U
and V¢. Since Pg contains only large-scale flow features, the variation of Pr does not
affect small-scale flow feature, i.e., variation of Pg only assigns different part of large-
scale flow features to V¢, with U + V¢ unchanged. Furthermore, equation (F.13)

should be modified to include the effect of Y, which results in a different evolution
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equation for 7, instead of (F.16),
e+ Vxd® - Vi — (1 + Vxn - Vxn)o, + Uny + Vi, — W = 0. (F.26)

With (F.26) being the evolution equation for 7, the evolution equation for ¢°
should be modified accordingly to maintain the Hamiltonian structure for wave mo-
tion. Physically, this guarantees that the energy of wave motion is conserved, though
modulated by the current. To this end, we should start by modifying (F.8). Following

the formulation in section 8.1.1, this is modified as

0 1 1 1
P[:——¢——V¢-V¢—ﬁ

5 3 57— U U UV, (F.27)

Note that the role of P; within the computational domain is to ensure the conti-
nuity of the potential-flow field (F.5). The formulation (F.27) leaves the remaining

part of (F.1), governing the rotational current field, as

U (V<) + (V6 VU~ VU V)6 = TPy (F.28)

with the Poisson equation for the rotational pressure field, as

ou;, ¢  O°U; 9 OU; 0o

2
Pr — —

U 1
0U; 0U: 1y

507 2 . (F.29)

Finally, the evolution equation for ¢* can be written as
s 1 1 s s 1 2 s 1
¢t+F—r2n+§vx¢ V¢ —5(1+Vx77-vx7))¢z+(U, V)-Vxo +§(U-U) = Pgr. (F.30)

The specific solution procedure is similar as that described in section F.2.4, with
(F.20), (F.16), (F.8), (F.9), (F.10) and (F.17) respectively replaced by (F.25), (F.26),
(F.27), (F.28), (F.29) and (F.30).
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Appendix G

Derivation of weak turbulence of

gravity waves

We start from the kinetic equation for gravity waves (refer to Chapter 2 for variable

definitions):

dn(k,t)
dt

. / / / e, iy dis| Ty 20 (k + Ky — Ky — k)
(G.1)

d(w 4 w1 — we — ws)(Nanan + nansng — nning — NNN3).

This equation can be derived from the primitive Euler equations for gravity waves.
This is first obtained in Hasselmann (1962). In spite of the general applicability of
(G.1) for predicting wave field evolution, the specific form of the kernel Tj;53 remains
controversial due to its inherent complexity. Relevant considerations include Crawford
et al. (1980); Stiassnie & Shemer (1984); Krasitskii (1994); Zakharov (1999). We leave
this as future work to determine the correct form of T}93.

No matter which form we take, Ti123 holds certain properties of homogeneity and
symmetry:

T’(Gk7 le, €k2, €k3) = €3T(k, kl, kg, kg), <G2)
Th123 = Tikes = Traz2 = Tozpa- (G.3)

We change the integration in (G.1) into polar integration, and multiply both sides

211



with kdk/dw to keep the symmetry. This gives

dk dn k t) dk dky dk, dks 2
———— |1
kd /91 /«92 /93 /w1 /402 /w3 kk1/€2/€3dw oy dion dwgl k123

k—|—k1 —k2 —k3)(5(w+w1 — Wy —wg) (G4)

(n2n3n + NoNgNy — NN Ny — nn1n3)dwgdw2dw1d93d92d91.

We define N(w) = 27k - (dk/dw) - n(k), and transforms (G.4) to

—I /// w, w1, W, wg)(ngngn + NaNaNy — NN1Ng — nnlng)
dt (G.5)

d(w 4 w1 — wy — w3)dwydwadws,

where

U(w, Wi, Wa, w3) = 1287’(’2 /// |Tk123|2(5(k + k1 - k2 — kg)(kk1k2k3)3/2d91d92d93.

(G.6)

The function U has the same symmetric property as T, and holds the homogeneous
property:
U(Ek,€k1,€k2,€k3) = GQOU(k,kl,kQ,k3). (G?)

Equation G.5 can be re-arranged to eliminate the variable w;:

= // dwgdng(w, Wo + w3 — W, Wy, w3)n2n2+3_0n0n3(n51 + TLQ__&3_O - n;l — 713_1)
Q
(G.8)
where 2 is the plane for ws > 0 and wz > 0, but without the lower left corner

wa + ws —w < 0 (see figure G-1) to ensure that w; = wy + w3 —w > 0.

We divide the region (2 into four sub-regions I, II, IIT and IV, as shown in figure
G-1, and write I(w) = I1(w) + Ir1(w) + Irr(w) + Iy (w).

For sub-region II(wy > w, w3 > w), we define the Zakharov transformation:

/ /
g = 22— Y (G.9)

/ / ) / /
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w3

w32

Figure G-1: The division of region €2 into four sub-regions I, II, III and IV.

Equation G.9 transforms the region (we > w, w3 > w) to (0 < W) < w, w — wh <
ws < w). The transformation of (G.8) from wy and ws to wh and wj requires the

change of integration variables:

d[(wwh)/(whtewh—w)]  d[(wwh)/(@h+ws—w)]

_ ’ r_ duwh, dwf / /
duondion = |T|dundids = 11 gfiuugy ahrugw)] - afl/hroyw] | 190205
3
= d 5 dwiyduwsy.

(wp + ws — w)

Substituting (G.9) and (G.10) into (G.8) (and n(w) = Aw®) for sub-region II, we

obtain
w w 2 / /
w ww ww
_ / / 2 3 3
I (w) —/ de/ dws - U(w, — - ,— - ,— ; )A
0 " Wy + W —W Wy +ws—wW Wy +wz—w
wWwh _ w? wwh w?

(

)~ (

)~

w wwh

)* = (

)—w

wwh

(W) + wh — w)?

)]

wh + wh —w

)* =

whtwh —w’ wh+wh —w

[ww—l—(

wh+ wh —w wh+ wh —w wh 4+ wh —w

(G.11)

This can be simplified by using the homogeneity of U and the symmetric property
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Up123 = Ulg2s, which gives (by dropping the primes)

I (w) :/ dwg/ dwsU (w, wa + w3 — w, wa, w3) A® [wgw(wg 4+ w3 — w)w3} -
0 w—w?2

x o z __ x __ ,x w 233z
[w” + (w2 + w3 — w)* — w} w3}(—w2+w3—w) .
(G.12)
For sub-region I, we apply the following Zakharov transformation
w? w(wi + wh —w
Wy = —, W2 = ( 3 /2 ), (G13)
wh wh

which transforms the region (0 < we < w, ws > w) to (0 < Wh < w, W —wh < wh < w).

The change of integration variables takes the form:

dw(wh+wh—w)/wh]  dfw(whtwh—w)/wh]

dw), dw',
dwydwz = |J|dwydwy = | ATty I |dwsydws
] du (G.14)
3
w
= Fdwédwg.

2

Making use of the symmetric property Upioz3 = Usgp; and its homogeneous prop-

erty, (G.8) for region I can be transformed to (by dropping the primes)

I(w) :/ dwg/ dws - U(w, wa + wz — w, wy, ws) A®
0 w—w?2 (G15)

[(W2 + w3 — w)wngw} o [w;” +wy — (w3 +wy —w)® — w”] (i)23—3m‘

A similar Zakharov transformation can be applied to I;y. This leaves I(w) =

I1(w) + I11(w) + I1r(w) + Irv(w) as

I(w) :/ dw2/ dwsU (w, ws + w3 — w, wa, w3) A®
0 w—w2

[wa(wg 4wy — w)w3] o [w” + (wo + w3 —w)” —wj — wz,”f] (G.16)
w w w

1 23-30 _ (W y23-30 _ (W 23307

[ + w2+w3—w) (wg) (CU3) }
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There are four solutions of x to the equation I(w;z) =0: z =0,z =1, z =
23/3, and x = 8. The former two solutions correspond to the thermodynamically
equilibrium distribution of a flux-less spectrum; and the latter two correspond to
the Kolmogorov-Zakharov spectrum. Specifically, z = 23/3 corresponds to an inverse
wave action cascade (Zakharov et al., 1992), and x = 8 corresponds to a direct energy

cascade which we next analyze in detail.

The energy flux for the direct energy cascade can be determined from the spectral

energy balance equation:

de, OP
A T | 1
ot " ow (G.17)
which, upon integration along w, gives
1 [ ON(w) [
P= 17, " dw = 17 ), wl(w; z)dw. (G.18)

We now write I(w;z) in normalized form:

I(w; ) :W22_3m/0 dés /1—6 d&sU (L1, & + & — 1,6, &) A° [5253(52 +&— 1)]_96

[1 + (52 + 53 - 1)x - E;” — 539,6} [1 + (52 + 53 _ 1)396—23 _ 5390—23 . gm_23},

(G.19)
and (G.18) becomes
1 (¢ 1 wvtt
- -y -

P e ), w¥J(y)dw oy J(y), (G.20)

where y = 3x — 23, and

1 1 234y
J(y) :/ d52/ dEU(1, 60+ & — 1,65, &) A% [G&3(& + & — 1)] 7

0 16 (G.21)

234y 23+y 23+y

[1+(§2+f3—1) 3 _EzT_f?,T}[1+(f2+§3—1)y_53_fg}-
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For x =8, y = 1, L’Hospital’s Rule can be used in evaluating (G.20), as

1 1 1 1
P gl et =g [ e || de(.6 61,6604

[5253(52 + & — 1)} -8 [1 b+ &—1)8 - §§] (G.22)

[(62+ & — 1)log (&2 + & — 1) — &alogés — Eslogés].

The integral in (G.22) can be evaluated numerically, where the only difficulty lies
in the evaluation of U(1,& + & — 1,&,&3) (see (G.6)). We show that the integral
involved in function U can be reduced to numerical summation of integrals in the
form of (2.68), and is thus also subject to numerical evaluation.

In evaluation of U(1, &+ &3 — 1, &2, &3), we consider a Cartesian coordinate system
with the abscissa coinciding with the k vector, and the angles 6, 6, and 63 are
measured with respect to the chosen abscissa. We then define k' = k +k;, as a result
k' depends only on #; (and values of & and & which we consider as constants in a

particular evaluation of U). Therefore, U(1,&; + & — 1,&2,&3) can be written as

UL 6+61,60.6) = 128 Y [ [ i P5(0(0) kK (kb 20 1
61

(G.23)
where k, ki, ko and k3 are connected with 1, & + &3 — 1, & and &3 by the dispersion
relation of gravity waves. The double integral in (G.23) can be evaluated in a similar
way as that of (2.68), with the difference that, in this case, vectors k', k; and ks are
not necessarily always able to form a triangle.

The above procedure can be straightforwardly performed once the proper form of
T}123 is determined. The derivation of gravity wave turbulence, including the value

of Kolmogorov Constant C (after (G.22) is evaluated) can then be complete.
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