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Abstract

A wide range of problems in seismology have a localized nature. Examples include in-
version for time-lapse change, salt boundary position and Amplitude or Phase Versus
Angle (AVA/PVA). With increasing computational power, many inversion procedures
have transitioned away from forward models with simplified physics and now simulate
synthetic wavefields on a model representation of the Earth. These simulated wave-
fields form the basis for the model updates in the inversion. Usually these wavefields
are simulated on the entire computational model, even though the region of interest
and the associated updates of the computational model are localized.

In this thesis I explore ways of making use of the localized nature of the inversion
by limiting the wavefield generation to the region of interest. This shrinking of the
computational domain leads to faster solutions, reducing the time between the start
and finish of the local inversion. This shorter turn-around time facilitates decision
making and improves the interactivity of the inversion procedure. I first introduce
a frequency domain local solver which can generate exactly the same wavefields as a
full domain solver. I then apply this local solver to both a time-lapse problem and
to salt boundary inversion. I then take a step back and look at time-lapse inversion
outside the scope of local solvers. By looking at differences in the Full Waveform
Inversion (FWI) gradient obtained from baseline and monitor datasets I compute a
confidence map of locations likely to contain time-lapse change. This confidence map
is then used to regularize a joint inversion for both the baseline and monitor datasets.
I compare this methodology to other existing time-lapse algorithms on a synthetic
North Sea model. In this study I notice the importance of postcritical reflections
and become aware of their potential for reservoir characterization. Motivated by this
observation I introduce a local solver for simulating elastic reflections in a region of
interest. These elastic reflections can then be used for AVA and PVA to for instance
invert for reservoir characteristics. The wavefield is efficiently propagated through
the overburden using precomputed acoustic Green’s functions obtained from a cheap
acoustic solver.

Thesis Supervisor: Alison E. Malcolm
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Chapter 1

Introduction

Seismic inversion attempts to minimize the misfit between the observed data and the

simulated data on a model representation of the Earth. A classical example of such an

approach is ray-based travel time inversion. Multiple implementations are available,

targeting for instance direct or diving waves (Lytle and Dines, 1980) or reflected waves

(Bishop et al., 1985). What these methods have in common is that they use only a

subset of the data, in this case the arrival times of the selected events. In addition,

these methods are also based on the ray approximation. This approximation is based

on the so-called ’infinite frequency’ assumption, which shrinks the first Fresnel zone

to an infinitely thin ray. However, the observed data for which the methods invert are

finite-frequency and the picked arrival times depend on the velocity away from the

raypath as well as that along it. Therefore ray-based inversion methods inherently

come with inaccuracies, especially when the true Earth is heterogeneous on the scale

of the wave-length.

More accurate inversion methods simulate entire seismic wavefields on a model

representation of the Earth. A notable example of such an inversion method is Full

Waveform Inversion (FWI), which was introduced in the early 80’s by Lailly (1983)

and Tarantola (1984). FWI is the procedure of iteratively finding better Earth models

𝑚, with synthetic wavefields 𝑢(𝑚) which progressively match the observed seismogram

𝑑 better and reduce objective function 𝜒. Often the least-squares objective function
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is used, including all combinations of source 𝑠 and receiver 𝑟.

𝜒(𝑚) =
1

2

∑︁
𝑠,𝑟

(𝑑𝑠,𝑟 − 𝑢𝑠,𝑟(𝑚))2 (1.1)

The advantage of FWI over ray-based tomography methods is two-fold. First, the

entire recorded trace is used as data and not just arrival times of a limited number of

events. Second, the wavefield simulations remove the infinite frequency assumption

with its associated limitations. This allows FWI to invert for more complicated Earth

models. After the initial introduction of FWI, further development and applications

were slowed due mainly to the high computational costs associated with the wavefield

simulations. With increasing computational power, the cost of FWI became manage-

able on 2D models with a notable example given by Pratt (1999). Another decade

later 3D simulations on field data became feasible, see for instance the demonstrations

by Plessix (2009) and Vigh et al. (2010). The computational cost of FWI is primarily

determined by the efficiency of the wavefield simulations of the forward model. Even

though the 3D examples demonstrate the feasibility of FWI, the wavefield simulations

remain very expensive and as a result FWI requires large expensive computational

clusters.

Due to the high computational cost of (1.1) global optimization methods are not

possible and local optimization is necessary. The computational cost of FWI can be

broken up into the following components. In order to evaluate the objective func-

tion (1.1) for the current model estimate 𝑚𝑖 a number of 𝑛𝑠 wavefield simulations

is required, with 𝑛𝑠 representing the number of seismic sources. The next step in-

volves computation of the gradient of (1.1), evaluated at current model estimate 𝑚𝑖.

This step requires an additional 𝑛𝑠 wavefield simulations to compute the so-called

adjoint-wavefields required for the gradient. Depending on the non-linear optimiza-

tion scheme, the search direction is computed by either directly using the negative

gradient or by using it as input to nonlinear-CG or L-BFGS (Nocedal and Wright,

2006a). The next step is to evaluate the objective function (1.1) along this search di-

rection to find a new model 𝑚𝑖+1 with a lower objective function value. Each of these
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objective evaluations along the search direction require a further 𝑛𝑠 wavefield simu-

lations. In the most favorable outcome, when only one evaluation along the search

direction is required, the cost is 3𝑛𝑠 wavefield simulations for each FWI iteration.

Then the model is updated and the procedure repeats for the next iteration. A more

detailed description of FWI is found in Virieux and Operto (2009) and references

therein.

From the analysis above it is clear that the computational cost scales directly

with the number of sources and can therefore become quite large, especially in 3D. In

several problems, like for instance salt boundary inversion and time-lapse inversion,

the model updates are often restricted to a small region of the entire Earth model.

In order to form the FWI gradient and update the model in the small region of

interest we just need the forward and adjoint wavefields there. Propagation through

the unchanged part of the Earth model therefore remains the same. This raises the

question if we can design a wavefield solver which makes use of this observation to

reduce computational cost. In this thesis we design a local solver which generates

exactly the same wavefield as a full domain solver would within the small region of

interest, which we refer to as the ’truncated domain’. We then apply this solver to

salt boundary inversion and time-lapse inversion. Having established the utility of

the local solver for these problems, we then investigate the time-lapse problem and

propose a new regularization method.

While studying the impact of the acoustic approximation on the time-lapse prob-

lem, we observe the significant phase shift of the elastic post-critical reflections in

our study. These phase shifts introduce artifacts in the acoustic time-lapse estimate.

We therefore choose to remove the post-critical reflections in the inversion. Even

though this significantly improves the acoustic time-lapse estimate, we remove useful

information since phase shift depends on the elastic material contrast. An elastic

inversion can be used to match the observed phase shifts, but this is computationally

very expensive. We therefore investigate a local solver which limits the expensive

elastic computations to a small region around the reflectors, where the post-critical

phase shifts are generated. This solver is used to efficiently generate local elastic
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wavefields at a reflector of interest for Phase VS Angle (PVA) inversion.

1.1 Thesis Outline and Summary of Contributions

The chapters in this thesis are laid out in such a way that they form relatively

independent units. Chapters 2-3 form a self-contained unit, so do Chapters 4-5 and

Chapter 6 is the final unit. By laying out the thesis in this way the reader can skip

ahead to the section of interest with hopefully limited problems. As a result of this

layout the reader may find some of the background sections to be redundant.

We first introduce the theory of a numerically exact acoustic local solver. After-

wards we demonstrate its functionality by applying it to the local problems of salt

inversion and time-lapse inversion. We then investigate the time-lapse problem in

more detail and notice the impact of the elastic phase-shift of post-critical reflections

on acoustic time-lapse inversion. The straight-forward approach of muting these post-

critical reflections results in a loss of useful information. For this reason we introduce

a local elastic solver to efficiently model and invert for these phase shifts. Below we

give a brief summary of each chapter of the thesis and the main contributions.

Chapter 2: An efficient numerically exact local solver

In Chapter 2 we introduce an exact acoustic local solver. The local solver shares

many similarities with the local solver of van Manen et al. (2007). We significantly

improve computational feasibility by implementing the local solver in the frequency

domain instead of the time domain. Local solvers usually generate the wavefield

in the truncated domain, potentially on a perturbed local model. They then use a

boundary integral to propagate the scattered field (i.e. wavefield update) to the re-

ceiver locations where they are added to the unchanged background wavefield to form

the perturbed wavefield in the locally perturbed model. We choose a finite difference

implementation of the local solver, which raises the question of how to discretize the

boundary integral. If the goal is to compute exactly the same wavefield as a full
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domain simulation would on the locally perturbed model, this choice of discretization

is important lest we introduce numerical artifacts by using the local solver. It is not

immediately clear how to discretize the corners of the boundary integral and what

normal derivative stencil should be used. We naturally answer these questions by

deriving a discrete analogue of the boundary integral by starting from the Helmholtz

equation and using summation by parts. The local solver generates local wavefields

which are up to numerical precision the same as the wavefields generated by a full do-

main solver and extracted in the truncated domain. By using the properly discretized

boundary integral we can propagate wavefield updates to the receiver locations, eval-

uate FWI residuals and then generate numerically exact adjoint wavefields within

the local domain. Since numerically exact forward and adjoint wavefields are now

available within the local domain we can construct exactly the same FWI gradient

within the local domain as would have been generated with a full domain local solver.

The local solver requires computation of a collection of full domain Green’s functions

before starting the local inversion. After these Green’s functions have been gener-

ated no further full domain simulations are needed during any part of the inversion.

Computation of local wavefields is significantly more efficient than generating full do-

main wavefields. This significantly reduces the computational time of each individual

inversion, which makes the procedure more interactive.

Chapter 3: Application of the numerically exact local solver to

problems with a localized nature

In this Chapter we apply the local solver of Chapter 2 to two local inverse problems.

In the first problem we invert for the salt boundary using the algorithm proposed by

Lewis et al. (2012). It is notoriously hard to image below salt due to its rugosity and

high velocity contrast with surrounding sediments. Despite its difficulty, accurate re-

covery of the salt body is a very important step for sub-salt imaging. We use the local

solver to invert for the salt shape within a region of interest. We then demonstrate

improvements to sub-salt imaging.
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In the second problem we apply the local solver to time-lapse inversion. The

hydrocarbon reservoir normally occupies only a small part of the full computational

model. When geomechanical changes are limited we expect most time-lapse changes

to be restricted to the reservoir area, caused by fluid substitution effects during pro-

duction. By using the local solver we can limit computation of FWI gradients to the

reservoir areas and speed up the inversion accordingly.

Chapter 4: Regularizing velocity differences in time-lapse FWI

using gradient mismatch information

In Chapter 4 we continue to investigate time-lapse inversion by introducing a new

algorithm for inverting for time-lapse changes. This method belongs to the category

of confidence map based time-lapse inversions, pioneered by Yang (2014). Confidence

map methods have in common that they perform a preliminary inversion using the

baseline and monitor data and determine which regions are more likely to contain

time-lapse change. This results in a so-called confidence map, which is used to regu-

larize the model difference in a subsequent joint inversion for the baseline and monitor

data. The method we introduce computes the confidence map by performing a pre-

liminary inversion for an intermediate model which matches both the baseline and

the monitor data. This intermediate model cannot match baseline and monitor data

exactly if there is a physical time-lapse change between two states. Intuitively the

method is based on our expectation that the baseline and monitor gradient try to per-

turb the intermediate model in opposite directions at locations of time-lapse change.

The confidence map is constructed by looking at the gradient sign and (illumina-

tion compensated) gradient amplitude at each pixel. Locations where the baseline

and monitor gradients consistently have opposite sign and the gradient amplitudes

are large are considered to have a higher likelihood of being regions of true time-

lapse change. The resulting confidence map is used to regularize a subsequent joint

inversion. We refer to the method as Gradient Confidence FWI (GC-FWI).
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Chapter 5: Evaluating the performance of acoustic FWI time-

lapse workflows on realistic synthetic data

Wave propagation through the real Earth is governed by complex physics, includ-

ing poro-elasticity and anisotropy for instance. These complicated physics leave an

imprint on the seismic data recorded in the field. While not complete, an elastic

inversion can capture some of this complexity. The elastic simulations required in

such an inversion are computationally expensive. As a result a further simplification

is often made, the so-called acoustic approximation. In this Chapter we study the

effect of the acoustic approximation on both regular FWI and time-lapse FWI. We

study this effect by generating three different ’true’ datasets with increasingly com-

plex physics, starting from constant density acoustic to variable density acoustic and

finally fully elastic. We then invert for these three increasingly complex true datasets

using the acoustic approximation. For the time-lapse part of the study we investigate

parallel FWI, joint FWI and double difference FWI. We demonstrate on our North

Sea synthetic model that the acoustic approximation can cause significant deteriora-

tion of the time-lapse inversion when using elastic true data. We demonstrate that

the inversion result can be improved by removing the post-critical reflections, whose

phase shift we cannot model accurately using an acoustic forward model. We demon-

strate that the time-lapse recovery could be improved further with a better baseline

model. Finally we also include the confidence map from Chapter 4 to regularize the

time-lapse inversion.

Chapter 6: An efficient coupled acoustic-elastic local solver ap-

plied to phase inversion

In Chapter 5 we observed that the phase shift of post-critical reflections negatively

impacts time-lapse inversion when making the acoustic approximation. We therefore

chose to remove them from the inversion. The phase shift of post-critical reflections

depends on the elastic material contrast at the reflector. Instead of discarding this
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PVA) information it is more desirable to use it in an inversion. Zhu and McMechan

(2012) demonstrate that phase has the desirable property that it does not change

significantly while the wavefield propagates through the overburden. This contrasts

with AVA since the amplitude of a propagating wavefield partitions its energy at each

reflector. The most natural forward model for PVA inversion is an elastic wavefield

simulator. But since the reflector occupies only a small portion of the full compu-

tational domain a local solver can be effective. Robertsson and Chapman (2000)

introduce a local elastic solver which accurately models primary reflections within a

truncated domain. Their method requires a significant number of elastic full domain

simulations to compute the required Green’s functions. In this chapter we make use

of the observation of Zhu and McMechan (2012) that propagation of a wavefield does

not significantly impacts its phase. Instead of using elastic Green’s functions we use

constant density acoustic Green’s functions instead since they are much cheaper to

compute. We couple these constant density acoustic Green’s functions to a local

elastic solver to model the elastic phase shift along a reflector of interest. We then

introduce several ways of coupling these different physics together at the boundary

of the elastic local domain and show the respective phase errors of the reflections.

Finally we invert for material parameters at a reflector by minimizing the misfit be-

tween the phase shift of the simulated phase, computed by the new local solver, and

the phase shift of the true data.

Chapter 7: Conclusions and Future Directions

In this Chapter we summarize the major contributions of our work and suggest some

avenues for future investigation.
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Chapter 2

An efficient numerically exact local

solver: Theory

Abstract

In a set of problems ranging from 4D seismic to salt boundary estimation, updates
to the velocity model often have a highly localized nature. Numerical techniques for
these applications such as full-waveform inversion (FWI) require an estimate of the
wavefield to compute the model updates. When dealing with localized problems it is
wasteful to compute these updates in the global domain, when we only need them in
our region of interest. This chapter introduces a local solver that generates forward
and adjoint wavefields which are, to machine precision, identical to those generated
by a full-domain solver evaluated within the region of interest. This means that
the local solver computes all interactions between model updates within the region
of interest and the inhomogeneities in the background model outside. Because no
approximations are made in the calculation of the forward and adjoint wavefields, the
local solver can compute the identical gradient in the region of interest as would be
computed by the more expensive full-domain solver.

2.1 Introduction

Historically, first arrivals and primary reflections have been used to construct in-

creasingly complex velocity models. A stratified velocity model can be obtained by

This chapter is based on Willemsen et al. (2016b)
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applying Dix’s equation (Dix, 1955) to stacking velocities obtained from common

midpoint gathers. Reflection tomography has the potential to give higher resolution

velocity models (Stork and Clayton, 1991) from prestack reflection arrivals. Migra-

tion Velocity Analysis (MVA) (Brandsberg-Dahl et al., 1999) and Wave Equation

Migration Velocity Analysis (WEMVA) (Sava and Biondo, 2004) extract additional

information from the reflections by extending the migrated image in the subsurface

offset or angle domains.

Although the evolution of these reflection-based methods has resulted in velocity

models with increasing resolution, they use only a subset of the recorded seismic data.

FWI, on the other hand, views the entire trace as data. FWI has the potential to

invert for material properties such as the pressure-wave (P-wave) speed, shear-wave

(S-wave) speed and density (Fichtner, 2010). Distributions of these parameters are

useful in resource exploration as well as in whole earth imaging. Monitoring changes

of these parameters over time is useful in reservoir monitoring, where changing fluid

distributions influence the bulk properties of the rock (Arts et al., 2009). The devel-

opment of the theoretical framework of FWI is often attributed to the work of Lailly

(1983) and Tarantola (1984), but the large amount of data contained in the seismic

traces initially made application of the method infeasible. At the end of the 90s some

small-scale 2D tests were performed, most notably those done by Pratt (1999). With

the continuous increase in computational power and algorithmic efficiency, FWI is

now often used in the field. An extensive collection of case studies is available, with

some recent 3D examples given by Plessix et al. (2010), Prieux et al. (2013), and

Bansal et al. (2013). A good overview of FWI, including references to more field

applications, is given by Virieux and Operto (2009).

Additional increases in computational power and further improvements in algo-

rithmic efficiency will continuously enable field data applications of FWI using higher

frequencies and more realistic physics. The algorithmic improvements of FWI can

be grouped into several categories. Some algorithmic studies focus on the inverse

problem to improve the convergence speed (Métivier et al., 2013) or on the objective

function to make the problem less sensitive to incorrect initial models (van Leeuwen
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and Mulder, 2007; Jugnon and Demanet, 2013). Other approaches focus on reducing

the number of wavefield simulations required (Krebs et al., 2009; Herrmann et al.,

2013). Efficient computation of the wavefields is also studied extensively; for instance,

for the frequency domain see the work of Wang et al. (2011) and Zepeda-Núnez and

Demanet (2016). van Manen et al. (2005, 2006) show how interferometric methods

can be used to compute wavefields efficiently. When there is interest in enhancing the

model in a subset of the entire domain, the associated reduction in model size can also

be exploited to increase the efficiency. There are at least two different methodologies

for this. One is redatuming, where the seismic survey is propagated to the region of

interest. This reduces the model space and typically also the amount of data used,

leading to improved speeds. The other approach attempts to generate accurate local

wavefields for velocity updates (scatterers) in the region of interest. These wavefields

can then be used to update the velocity model. The work introduced in this chapter

falls into the latter category. In addition, an interesting procedure for doing local in-

version in many small domains is introduced by Haffinger (2012). He poses the FWI

problem in a novel way that makes possible the subdivision of the global problem

into many small local problems. All of the local domains can communicate with each

other, but the method can only start from a homogenous initial model.

The idea of seismic redatuming is described by Berryhill (1984). It estimates the

measured response between a virtual source and receiver at a datum by trying to

remove the effects of the overburden in the data. Schuster and Zhou (2006) give

an overview of model- and correlation-based redatuming methods. A model-based

redatuming method requires an estimate of the Green’s function. An example is given

by Dong et al. (2009), who use a subsalt datum to improve a Kirchhoff-migrated image

locally. In another example, Yang et al. (2012) use modeled Green’s functions between

the acquisition surface and a datum to localize a 4D seismic survey. In a different

approach, using a modeled direct wave, Broggini et al. (2014) create virtual sources

inside the earth at locations where no source or receiver is present. They then use

a multidimensional decovolution approach to approximate the redatumed reflection

response. By contrast, correlation-based methods do not require an estimate of the
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Green’s function (Schuster, 2009). This is especially useful when the overburden above

the region of interest is complex. An example of a correlation-based re-datuming

approach was given by Byun et al. (2010), in which they cross-correlate recorded

data from surface shots at two horizontal wells. In this way, the receivers in one well

are replaced by virtual sources with receivers in the other well. The virtual data

for waves traveling between the horizontal wells are then used to invert for velocity

changes resulting from CO2 sequestration for instance. The analytical expression for

redatuming the sources and receivers requires an integral over the real source and

receiver positions (Wiggins, 1984). Real surveys have finite spacing between sources

and between receivers, so the integrals turn into summations (Bevc, 1995). The

finite sampling of the integrals and the limited source and receiver coverage introduce

artifacts in the redatumed data, as was demonstrated by Haffinger (2012). Mulder

(2005) expressed the redatuming as an inverse problem where he tried to correct these

artifacts while successfully removing most of the effects of the stripped over-burden.

Tang and Biondi (2011) generated a local dataset for target-oriented MVA by using

a generalized Born modeling approach, which shares similarities with redatuming.

What all of these methods have in common is the fact that they modify the surface

data recordings. In doing so they introduce varying degrees of artifacts. An ideal

approach for local problems would be to compute the wavefield exactly within the

region of interest; this wavefield can then be used to update the velocity model locally.

This is the problem addressed in this chapter.

Several authors have investigated the computation of such local wavefields for

many different model configurations. A special configuration is a model inhomo-

geneity embedded within an infinite homogeneous medium. By using an exact non-

reflecting boundary condition, Teng (2003) generated the wavefield in a subdomain

containing a collection of scatterers. His approach was limited to localized scatterers

embedded in an infinite homogeneous space where waves exiting the scattering region

do not reenter it. Gillman et al. (2013) also investigated the case of a homogeneous

medium with inhomogeneities restricted to a bounded subdomain. They computed

the wavefield by partitioning the inhomogeneous subdomain into a collection of small
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volumes. Impedance-to-impedance maps connect the volumes to their neighbors. The

volumes are merged recursively in a tree-like fashion to generate an impedance-to-

impedance map for the entire subdomain. This impedance-to-impedance map then

connects the subdomain to the homogeneous exterior. Grote and Sim (2011) introduce

an efficient method for solving for the interaction between multiple inhomogeneous

subdomains embedded in a homogeneous infinite space. The non-reflecting nature

of the homogeneous medium gives exact knowledge of the arrival times for waves

leaving one scattering domain and arriving at another. This locality in time makes

an efficient time domain implementation possible when truncating the computational

domain.

The problem with these aforementioned local wavefield generators is that realis-

tic geological media are not homogeneous nor infinite and the background medium

will also scatter. Robertsson and Chapman (2000) approximated the wavefield with

high accuracy within a locally perturbed subdomain of the full domain and then

propagated this to the receivers in the inhomogeneous background model. But their

formulation discarded the perturbed wavefield scattering outside of the region of in-

terest and subsequently reentering the subdomain. A time reversal mirror introduced

by Masson et al. (2013) made the same approximation and therefore did not gener-

ate the exact local wavefield. van Manen et al. (2007) introduced an exact domain

truncation method in the time domain that will work for inhomogeneous background

models. The key property of this method is that it includes waves that leave the sub-

domain where the background model can be perturbed, and then scatter an arbitrary

number of times in the background media before reentering the subdomain. Including

all of these interactions between the subdomain, with its model perturbations, and

the inhomogeneous background model, unfortunately results in a loss of locality in

time. The computational domain is restricted to the subdomain by enclosing it with

a time-dependent Dirichlet boundary condition that exactly matches incoming and

outgoing waves. Each node on this time-dependent Dirichlet boundary depends on

the wavefield at all the subdomain boundary nodes at all past times. This adds a

significant cost to the implementation of the exact nonreflecting boundary condition
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in the time domain. Including these multiple interactions between the subdomain

and the full domain is essential for physical applications (Vasmel et al., 2013) where

waves are expected to exit and re-enter the embedded domain multiple times.

The method that is introduced in this chapter also generates the wavefield exactly

in a locally perturbed subdomain. The approach shares similarities with the work of

van Manen et al. (2007), but implements a boundary condition around the subdomain

in the frequency domain. By using a frequency domain formulation, application of

the boundary conditions is much less computationally intensive than the approach of

van Manen et al. (2007). The boundary condition matches incoming and outgoing

waves exactly and conserves all orders of scattering. Once the local solver is set

up, local wavefield generation and inversion is much faster than doing full domain

solves. The wavefield in the subdomain is, up to machine precision, the same as the

wavefield that is generated by the full domain solver. This makes postprocessing of

a full domain FWI procedure intuitive. Identical wavefields and FWI gradients are

generated within the subdomain as those that would have been generated by the full

domain solver. In this chapter we introduce the theory of the numerically exact local

solver. Then in chapter 3 we demonstrate its functionality by applying it to the local

inverse problems of salt-boundary inversion and time-lapse seismology.

2.2 Theory

In order to minimize the FWI objective function we need to compute the gradient on

the current model estimate. This gradient is computed using full domain forward and

adjoint wavefields. In local inverse problems there is a particular interest in updating a

subdomain of the full Earth model. From now on we refer to this inversion subdomain

as the truncated domain. The most straight-forward way to compute local model

updates in the truncated domain is to extract the local gradient from the full domain

gradient. This local gradient can then be used to update the model in the truncated

domain using a nonlinear optimization algorithm of choice. A computationally more

efficient approach of computing the local gradient generates the forward and adjoint
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wavefields only in the truncated domain. As long as the local forward and adjoint

wavefields are exactly the same in the truncated domain as those generated by a full

domain solver, then the local gradient is exact without using expensive full domain

simulations. In this section we introduce a local Helmholtz solver that is capable of

computing the local forward and adjoint wavefields required for the local gradient.

This local Helmholtz solver requires a number of full domain Green’s functions in

the initial model. The local solver will then generate the exact wavefields when the

model changes are restricted to the interior of the truncated domain. This section

will explain how this is achieved.

Figure 2-1 illustrates the problem, with the truncated domain enclosed by a red

dashed line. The full computational domain Ω is the union of all the domains:

Ω = 𝐴 ∪𝐵 ∪ 𝜕𝐶 ∪ 𝐶. (2.1)

We split the computational grid outside of the truncated domain 𝐶 into regions 𝐴

and 𝐵. This choice will aid the derivations in Appendix A. As long as the boundary

conditions are in region 𝐴 our derivations will not be influenced by their character-

istics. The model perturbations 𝛿𝑚(𝑥) are restricted to 𝐶 (i.e., the yellow nodes),

which is the interior of the truncated domain, i.e.

supp (𝛿𝑚) ⊂ 𝐶, (2.2)

where supp() refers to the support of its argument. The perturbed model 𝑚(𝑥) is

defined as:

𝑚(𝑥) = 𝑚0(𝑥) + 𝛿𝑚(𝑥), (2.3)

where 𝑚0(𝑥) is the background model, which is the initial guess or model in an

inversion context. The model is the squared slowness. We define the scattered field

as:

𝑢𝑠(𝑥) = 𝑢(𝑥)− 𝑢0(𝑥), (2.4)
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where 𝑢(𝑥) is the wavefield in the perturbed model satisfying:

−𝑚(𝑥)𝜔2𝑢(𝑥, 𝜔)−Δℎ𝑢(𝑥, 𝜔) = 𝑓(𝑥, 𝜔), (2.5)

with Δℎ the discrete Laplacian with node spacing ℎ. In this chapter a second-order

accurate stencil is used. The wavefield in the background model 𝑢0 satisfies:

−𝑚0(𝑥)𝜔
2𝑢0(𝑥, 𝜔)−Δℎ𝑢0(𝑥, 𝜔) = 𝑓(𝑥, 𝜔). (2.6)

2.2.1 Numerically exact boundary equation for the scattered

field

An essential component of the method introduced in this chapter is a numerically

exact expression for the scattered field 𝑢𝑠(𝑥) as defined in (2.4) when model pertur-

bations are restricted to 𝐶 (i.e., the interior of the truncated domain). With this

expression we will later truncate the computational domain and efficiently propa-

gate the scattered field 𝑢𝑠(𝑥) to the receiver pixels. For a continuous problem, the

expression for 𝑢𝑠(𝑥) is derived from a seismic reciprocity theorem in the form of a

boundary integral around the truncated domain (Fokkema and van den Berg, 2013).

The boundary integral expresses the scattered field outside the truncated domain in

terms of the perturbed field on its boundary and background Green’s functions from

the boundary to the point where the scattered field is evaluated. Directly discretiz-

ing this boundary integral would leave some open questions. Different choices for

what to do at the boundary nodes and different normal derivative stencils would re-

sult in different 𝑢𝑠(𝑥). Using a discrete derivation and applying summation by parts

(Guenther and Lee, 1988) we answer these questions naturally. By doing this the re-

sulting boundary expression returns exactly the same 𝑢𝑠(𝑥) as the simple subtraction

of wavefields 𝑢(𝑥) and 𝑢0(𝑥) would in the discrete case. This numerical consistency is

important because the ultimate goal is to obtain the same wavefield in the truncated

domain and at the receivers as would have been obtained had we solved on the full

domain. If in an inversion strategy a transition is made from a full domain solver to a
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local domain solver, without this accuracy numerical artifacts in the wavefield would

cause inversion artifacts. The numerically exact boundary expression for the scat-

tered field prevents such possible complications. We derive an expression for 𝑢𝑠(𝑥),

involving nodes on the boundary of the truncated domain, for model perturbations

restricted to 𝐶. Appendix A gives the derivation of the boundary expression for the

scattered field. The resulting expression is:

𝑢𝑠(𝑦, 𝜔) = −
∑︁
𝑥∈𝜕𝐶

1

ℎ2

(︂
𝑢𝜕𝐶(𝑥, 𝜔)𝐺

𝜕𝐶+1

0 (𝑥, 𝑦, 𝜔)

−𝐺𝜕𝐶
0 (𝑥, 𝑦, 𝜔)𝑢𝜕𝐶+1(𝑥, 𝜔)

)︂
, 𝑦 ∈ 𝐵 ∪ 𝜕𝐶. (2.7)

where 𝑢𝜕𝐶(𝑥, 𝜔) and 𝑢𝜕𝐶+1(𝑥, 𝜔) are the perturbed wavefield on boundary node 𝑥 and

one node to the interior, respectively. The background Green’s functions between

the node 𝑦 where the scattered field is evaluated and the node 𝑥 on the boundary,

and one node to the interior are 𝐺𝜕𝐶
0 (𝑥, 𝑦, 𝜔) and 𝐺

𝜕𝐶+1

0 (𝑥, 𝑦, 𝜔), respectively. The

scattered field at any point 𝑦 ∈ 𝐵 ∪ 𝜕𝐶 is expressed in terms of a summation along

the entire boundary 𝜕𝐶, excluding its corner nodes. The wavefield 𝑢𝜕𝐶 on the nodes

𝜕𝐶 is multiplied by the background Green’s function from one node to the interior to

the node 𝑦 where the scattered field is computed. The wavefield 𝑢𝜕𝐶+1 one layer to

the interior of 𝜕𝐶 is multiplied by the background Green’s function from one node to

the interior of 𝜕𝐶 to the node 𝑦 where the scattered field is computed. Equation 2.7 is

similar to a typical reciprocity theorem. Details of the derivation and interpretation

can be found in Appendix A.

Equation 2.7 is used to assemble a system of equations that solves for the exact

wavefield within the truncated domain for the perturbed model 𝑚. This means that

all the orders of scattering between the inhomogeneities in𝑚0 outside of the truncated

domain and the perturbations 𝛿𝑚 inside the truncated domain are computed correctly.
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2.2.2 Computing the perturbed wavefield in the truncated do-

main

In this section, we set up a system of equations to compute the perturbed wavefield

𝑢(𝑥, 𝜔) in the truncated domain, 𝐵∪𝜕𝐶. To do this, we first introduce our node num-

bering scheme. Then we introduce three concepts that relate the perturbed wavefield

in the truncated domain to the perturbed model 𝑚(𝑥) and the scattered wavefield

𝑢𝑠(𝑥, 𝜔). Using the concepts that were introduced earlier we setup the system of

equations needed to compute the perturbed wavefield in the truncated domain. We

then explain how the solution of this system of equations, which is the perturbed

wavefield in the truncated domain, is used to efficiently obtain data residuals at the

receivers. Using these data residuals at the receivers and the previously set up system

of equations, the FWI gradient is calculated within the truncated domain.

The size of the full domain Ω is 𝑛𝑥 by 𝑛𝑧 and that of the truncated domain is 𝑛′
𝑥

by 𝑛′
𝑧. The number of boundary nodes 𝑛′

𝑏 in the truncated domain is, therefore:

𝑛′
𝑏 = 2(𝑛′

𝑥 + 𝑛′
𝑧 − 2). (2.8)

The number of nodes in the truncated domain is 𝑛′
𝑛:

𝑛′
𝑛 = 𝑛′

𝑥 × 𝑛′
𝑧 (2.9)

A spiraling node numbering scheme is used in the truncated domain. The first node

is the top left node on 𝜕𝐶. Node numbering for the truncated domain then continues

in a counter-clockwise inward spiraling fashion. This is illustrated in Figure 2-1. The

scattered field in the truncated domain is found from the following three relations:

List 1.

1. For the nodes on the boundary 𝜕𝐶, the difference between the wavefield in

the perturbed model 𝑢 and the wavefield in the background model 𝑢0 is the

scattered wavefield 𝑢𝑠, i.e. 𝑢𝑠(𝑥) = 𝑢(𝑥)− 𝑢0(𝑥).
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2. Also at each node on the boundary 𝜕𝐶, the scattered wavefield 𝑢𝑠(𝑦, 𝜔) depends

on the perturbed wavefield 𝑢(𝑥, 𝜔) at every node of 𝜕𝐶, excluding the corner

nodes. It also depends on 𝑢𝜕𝐶+1(𝑥, 𝜔) one layer to the interior of 𝜕𝐶. This

relationship is expressed by Equation (2.7).

3. In the interior of the truncated domain, the Helmholtz equation in model 𝑚(𝑥)

describes the relationship between the values of the wavefield at adjacent nodes.

Along with the node numbering scheme, the three relations in list 1 are used to

assemble a system of equations:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−𝐼 𝐼 0

𝐼 𝐺
𝜕𝐶+1

0 −𝐺𝜕𝐶
0

0 −m(𝑥)𝜔2 −Δℎ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

us
𝜕𝐶

u𝜕𝐶

u𝜕𝐶+1

u𝜕𝐶+2

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u0
𝜕𝐶

0

0

0
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.10)

where the two horizontal lines on the right-hand side separate the three relations.

The first and the second relation both result in 𝑛′
𝑏 rows. The third relation, which

is the interior Helmholtz equation, results in (𝑛′
𝑛 − 𝑛′

𝑏) rows, which is the number

of interior nodes. The quantities 𝑛′
𝑏 and 𝑛′

𝑛 are defined in Equations (2.8) and (2.9)

respectively. The unknowns are ordered in a layered fashion because of the spiraling

node numbering scheme. The vector us
𝜕𝐶 represents the scattered field for all of

the nodes on the boundary 𝜕𝐶. Similarly, the vectors u𝜕𝐶 and u𝜕𝐶+1 represent the

wavefield in the perturbed model 𝑚 on 𝜕𝐶 and one layer to the interior, respectively.

The superscript 𝜕𝐶+2 represents the nodes two layers to the interior, etc. The matrix

in Equation (2.10) is composed of block matrices. The block 𝐼 is the identity matrix

and the blocks 𝐺𝜕𝐶
0 and 𝐺

𝜕𝐶+1

0 represent the background Green’s functions, from 𝜕𝐶

and one layer to the interior, respectively, to the node in 𝜕𝐶 where the scattered field

is evaluated. The block 𝐺
𝜕𝐶+1

0 contains the functions 𝐺
𝜕𝐶+1

0 (𝑥, 𝑦, 𝜔) from Equation

(2.7) and the block 𝐺𝜕𝐶
0 contains the functions 𝐺𝜕𝐶

0 (𝑥, 𝑦, 𝜔), where 𝑦 is now the

boundary node where the scattered field is computed. These Green’s function block

45



matrices are the only dense blocks. They are several times larger than the size of the

interior Helmholtz operator in computer memory. 𝐺
𝜕𝐶+1

0 is of shape 𝑛′
𝑏 by 𝑛′

𝑏 and

𝐺𝜕𝐶
0 is 𝑛′

𝑏 by (𝑛′
𝑏 − 8).

The square matrix of size 𝑛′
𝑛+𝑛′

𝑏 in Equation 2.10 is much smaller than the square

full domain Helmholtz matrix of size 𝑛𝑛 = 𝑛𝑥 × 𝑛𝑧. There are far fewer unknowns

to solve for, which makes obtaining the truncated wavefield very fast. For the cases

investigated in this chapter, the speedup factor is between 10 and 30, but the exact

number depends entirely on the size of the truncated domain compared to the size of

the full domain. More details on the cost and benefits can be found in the Discussion

section.

The wavefield 𝑢 in the truncated domain is obtained by solving the much smaller

system of equations (i.e., Equation (2.10)). This wavefield matches exactly what

would have been generated by the full domain Helmholtz solver, as long as the model

perturbations are restricted to the interior of the truncated domain. When we say

exact, we mean that the relative difference between the two solutions is on the order

of 𝜖 ∼ 10−12 − 10−15 when double precision is used, independent of the shape and

amplitude of the model perturbation. We define relative difference as

𝜖 =
|𝑢𝑓 − 𝑢𝑡|2

|𝑢𝑓 |2
, (2.11)

where 𝑢𝑓 is the wavefield generated by a full domain solver, 𝑢𝑡 is the wavefield from

the truncated domain solver generated by solving Equation (2.10) and | |2 is the least

squares norm. This shows that the only difference is caused by rounding errors. All

the orders of scattering between local perturbations in the model and inhomogeneities

outside of the truncated domain are included.

We have now described the computation of the perturbed wavefield in the trun-

cated domain. To compute a model update, either for standard FWI or for the salt

updating scheme discussed in this chapter, we need to compute the FWI gradient.

To obtain the gradient in the truncated domain, the adjoint wavefield is required in

addition to the perturbed wavefield (Virieux and Operto, 2009). The adjoint wave-
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field requires evaluation of the data residuals in the perturbed model 𝑚(𝑥). Once the

wavefield in the truncated domain has been solved for, Equation 2.7 is used to obtain

the scattered field at the receivers. The cost of computing the scattered field at all

the receiver locations is negligible compared to the cost of computing the truncated

wavefield. This remains true for a streamer acquisition instead of the fixed spread

acquisition investigated in this chapter. The precomputed background wavefield 𝑢0 is

added to 𝑢𝑠 to obtain the perturbed wavefield 𝑢 at the receiver locations, as defined

in Equation (2.4). In this way the data residuals and the objective function for the

locally perturbed model 𝑚(𝑥) can be evaluated exactly, using only local solves. With

the numerically exact residuals available, the adjoint wavefield can be specified. For

the least-squares misfit function

𝜒 =
1

2

∑︁
𝑠,𝑟

(𝑢𝑠,𝑟 − 𝑑𝑠,𝑟) (𝑢𝑠,𝑟 − 𝑑𝑠,𝑟), (2.12)

the adjoint wavefield in the frequency domain for a specific shot 𝑠 is defined as:

𝛽𝑠(𝑥, 𝜔) =
𝑛𝑟∑︁
𝑖=1

𝐺(𝑥, 𝑥𝑟, 𝜔) (𝑢
𝑠,𝑟 − 𝑑𝑠,𝑟) , (2.13)

where the bar is complex conjugation and 𝑛𝑟 the number of receivers. The superscripts

𝑠 and 𝑟 are source and receiver indexes. The wavefield 𝑢 in the truncated domain is

already computed through Equation (2.10) and it is desirable to use the same system

of equations to solve for the adjoint wavefield as well. This is achieved by realizing that

the complex conjugate of Equation (2.13) is formed by letting the complex conjugate

of the residuals act as source terms, just like standard FWI. The Green’s functions

that were used to propagate the scattered field from the truncated domain to the

receivers are now used to propagate the contribution of each residual source to the

boundary 𝜕𝐶 at no additional cost. Each residual source adds a contribution to

the right-hand side term u𝜕𝐶
0 in Equation (2.10). Solving the system of equations

now gives exactly the same complex conjugated adjoint wavefield as would have been

generated by a full domain solver. Both the forward and the adjoint wavefields
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have now been efficiently computed in the truncated domain and are combined to

get exactly the same FWI gradient as a full domain Helmholtz solver would have

returned.

2.2.3 Full domain Green’s function precomputation

Before the small system of equations (Equation 2.10) can be solved at high speed,

a set of full domain Green’s functions must be computed. The background Green’s

functions that are required are:

List 2.

1. Between each source and its corresponding receivers.

2. Between each source and the nodes on 𝜕𝐶. This gives u𝜕𝐶
0 in the right hand

side of Equation (2.10) when multiplied by the source wavelet.

3. Between all the node combinations on 𝜕𝐶. This builds the block 𝐺𝜕𝐶
0

4. Between the nodes on 𝜕𝐶 and one layer to the interior. With this 𝐺
𝜕𝐶+1

0 is

constructed.

5. Between the receivers and 𝜕𝐶 and one layer to the interior. With these back-

ground Green’s functions the scattered component of the solution of Equation

(2.10) is propagated to the receiver locations and the adjoint wavefield is sent

from the receivers to the truncated domain.

A greedy algorithm based on source-receiver reciprocity is used to compute the

five sets of Green’s functions listed above. For every node, a table is set up that keeps

track of how many Green’s function connections to other nodes are still left to be

computed. The node with the most remaining connections is then used as the source

in the next Green’s function calculation until all pairs have been computed. The total

number of full domain simulations required is favorable compared to what is required

for normal full domain inversions. A cost analysis is given in the Discussion section.

Future studies should focus on reducing the required number of full domain solves to

further improve efficiency.
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2.2.4 Verification of numerical exactness of the local solver

We are now ready to test the numerical accuracy of the local solver. We implement the

local solver algorithm in the Python Seismic Inversion Toolbox (PySIT) code (Hewett

et al., 2013). Numerical accuracy is tested by generating wavefields on the extended

Pluto velocity model in Figure 2-2, which is perturbed from the true model inside

the truncated domain indicated by the black box. During a typical local inversion,

the model within the truncated domain will change from the initial model on which

the Green’s functions were generated. To simulate this, we investigate the general

case where the model 𝑚(𝑥) in Figure 2-2 differs within the truncated domain from

the initial model 𝑚0(𝑥) on which the Green’s functions are generated. The perturbed

wavefield in the truncated domain 𝑢(𝑥, 𝜔) is obtained by solving Equation (2.10).

Because of the nonzero model perturbation, the solution vector contains a nonzero

scattered field vector us
𝜕𝐶 .

Perfectly Matched Layers (PMLs) are placed on all four boundaries of Figure 2-2,

although this is not required by the local solver. The exactness of the local solver

would continue to hold with free surface or other boundary conditions on any of the

boundaries. Figure 2-3 (a) shows the real part of the wavefield generated on the

velocity model of Figure 2-2 using a full domain Helmholtz solver. Figure 2-3 (b)

enlarges the wavefield within the black box, which represents the truncated domain.

Figure 2-3 (c) shows the result obtained using the local solver. The wavefields within

the truncated region match exactly. The relative difference as defined by Equation

(2.11) is 𝜖 ∼ 10−12−10−16. Even though the model is perturbed from the initial model

within the truncated domain, the local solver still matches the full domain wave solve

exactly. This means that all of the interactions between the locally perturbed model

and the inhomogeneous, but unperturbed, exterior are correctly modeled.

The same accuracy levels are maintained when propagating the solved local wave-

field to the receiver locations. Therefore, data residuals are the same as a full domain

solver would have obtained up to numerical accuracy. These residuals form sources

for the adjoint wavefield. Similar tests show that the adjoint wavefield generated
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by the local solver also matches the full domain equivalent with a relative difference

𝜖 ∼ 10−12 − 10−16. This shows that the local solver introduces no artifacts in the

forward wavefield, objective function evaluation, and adjoint wavefield. Therefore, all

the components for a local inversion are available, but now at increased speed.

2.3 Discussion

In this chapter, we have introduced the theory for a numerically exact frequency

domain acoustic local solver. We also numerically verified that the local wavefields are

computed without error. In Chapter 3 we demonstrate its functionality by applying it

to several problems with a localized nature. The local solver requires precomputation

of a number Green’s functions, which require full domain simulations. All this work

is performed off-line once. After these pre-computations are complete, no further

full domain simulations are required. Each local simulation is significantly faster

than a full domain simulation. Even if the local model is perturbed, the local solver

generates exactly the same wavefields as a full domain solver within the truncated

domain. All interactions between the local model updates and the inhomogeneous

exterior are preserved. Since both the local forward and adjoint wavefields are exact,

the local gradient is also exact and obtained with higher efficiency than when using

a full domain solver. This local gradient is then used to update the model using a

local optimization of choice. The speedup by using a local solver makes the inversion

process more interactive. The time required by the inversion is reduced by the local

solver speedup factor, compared to the conventional approach of using a full domain

solver.

While we derive the fundamental theory using 2D geometries, the idea naturally

extends to 3D. A straight-forward application of the idea on 3D geometries scales

less favorably, as we now demonstrate. Call 𝑁 the node dimension of the full domain

(including PML nodes). In 2D the full domain is (𝑁×𝑁) and in 3D it is (𝑁×𝑁×𝑁).

In 2D the local solver scales desirably. The number of nonzeros in the Helmholtz block

of equation 2.10 is 5 ×𝑀2 The number of Green’s function entries in equation 2.10
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is 2 × (4 ×𝑀)2 = 2 × 16𝑀2 = 32𝑀2, where the multiplier ’2’ materializes because

we need the Green’s functions from the outer layer to outer layer (4×𝑀)2, and from

outer to inner layer which is asymptotically the same number. In comparison to the

number of nonzeros in the local matrix, the full domain helmholtz matrix has (5×𝑁)2

nonzero entries. So for the local solver, the number of matrix entries for local solver

relative to the number of matrix entries of the full domain solver is (37/5)× (𝑀/𝑁)2.

For 𝑀/𝑁 = 10 the local solver has 0.074 times the number of entries in the full

domain matrix. The model space also reduced from 𝑁2 to 𝑀2, a factor of 100 for

𝑀/𝑁 = 10.

In 3D the number of entries in the local solver scales in an undesirable way.

The number of local solver helmholtz entries is 7 × 𝑀3, while the number of local

solver Green’s function entries is: 2 × (6 ×𝑀2)2 = 72𝑀4. Notice the power 4 now,

because there local cube has 6 sides with 𝑀2 nodes all interacting with each other.

In comparison, the full domain helmholtz matrix has 7×𝑁3 nonzero entries. So for

the local solver, the number of matrix entries for local solver relative to the number

of matrix entries of the full domain solver is (72×𝑀/7 + 1)× (𝑀/𝑁)3. Notice that

in front of the (𝑀/𝑁) term there is now a term proportional to 𝑀 . For 𝑀/𝑁 = 10,

𝑀 = 100 and 𝑁 = 1000, the local solver now has 1.02 the number of elements of the

full domain helmholtz matrix. The model space was reduced from 𝑁3 to 𝑀3 , which

is factor of 1000 for 𝑀/𝑁 = 10. So even though the model space reduces enormously

when the local solver is used in 3D, the relative number of matrix entries (local vs

full) scales with a factor (𝑀4)/(𝑁3), which is not desirable. For this 𝑀 , 𝑁 example

the number of matrix entries is approximately equal to the full domain version. And

the explicit storage of 72 × 𝑀4 Green’s functions would be 115GB (for 𝑀 = 100)

in double precision for each frequency. This quartic storage scaling 𝑀4 is also not

desirable.

Given the problems mentioned, two improvements are needed to apply the local

solver to 3D. First the number of Green’s function computations, each requiring a

3D Helmholtz simulation, needs to be reduced significantly from 72𝑀4. Second the

storage cost must be brought down. The small storage cost for the local solver in 2D
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makes it possible to factorize the matrix (2.10) and use direct methods for efficient

computation of multiple solutions. Direct solvers are significantly harder to apply to

large matrices such as full domain Helmholtz matrices or the 3D local solver matrix.

One potential avenue to reduce the number of Green’s function computations and

storage cost is the concept of matrix probing (J.Chiu and L.Demanet, 2012). The

idea of matrix probing starts with a suitably chosen collection of basis matrices. Then

the matrix of interest, in this case the Green’s function blocks of (2.10), is expressed

in this basis. The way this is done is by first computing the interaction of random

vector(s) on the matrix of interest (i.e. probing the matrix). The next step is to find

the coefficients for the basis matrices to represent the matrix of interest. This is done

by setting up a linear system of equations that minimizes the difference between real

(i.e. probed) matrix-vector products and those using the representation in the basis.

In general the matrix of interest is not in the span of the basis matrices and a perfect

representation is not possible.

Each randomized matrix-vector product (i.e. probing) of the Green’s function

blocks is implemented with a single full domain simulation. The randomized vector

is implemented as a corresponding random force vector on the nodes of the boundary

of the local solver. Matrix probing is interesting if the probing approach requires

significantly fewer than the 72𝑀4 full domain simulations of the straight-forward

approach. Whether this is feasible will depend strongly on an appropriate choice of

basis matrices. In addition, if these basis matrices are compressible then the storage

cost of this approach can also be reduced compared to the straight-forward approach

of storing all Green’s functions.

In addition to the complexities extending the local solver to 3D, the local solver

introduced in this chapter also evaluates the Laplacian with second order accuracy.

In order to reduce dispersion effects, it is important to adapt the algorithm to higher

order discretization schemes. Extensions of the local solver to more complicated

physics also requires further investigation. We investigate a local elastic solver in

chapter 6, but relax the requirement of numerical exactness to improve computational

performance.
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2.4 Conclusions

In this chapter we introduced a numerically exact local solver. This local solver

generates exactly the same wavefield as a full domain solver in a computationally

efficient manner. This property is preserved when the model is perturbed in the

interior of the truncated domain. All interactions between model perturbations in

the interior of the truncated domain and the exterior are included automatically.

The local solver computes the local wavefield by solving a relatively small system of

equations. The small size of the matrix before and after factorization may allow for a

direct solver in situations where the full domain matrix cannot be factorized because

of the size of the factors.
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Figure 2-1: The geometrical setup of the problem. Equation 2.1 defines the full
computational domain Ω as the union of 𝐴, 𝐵, 𝜕𝐶 and 𝐶. The truncated domain is
enclosed by the dashed red line. The nodes on the boundary of the truncated domain
are in the set 𝜕𝐶. The interior nodes of the truncated domain are in the set 𝐶. All the
source and receiver nodes are in 𝐵. The size of zone 𝐵 is not limited in any direction.
It is normally much larger than the size of truncated domain 𝐶. The remainder of
the computational domain, including the boundaries, is in set 𝐴. The nodes enclosed
by the dotted black box are used later in this chapter to guide the derivation of the
scattered field.
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Figure 2-2: The 3480 by 600 nodes velocity model on which the wavefields are gener-
ated. The 758 by 133 nodes truncated domain is indicated by the box. Within this
box the model is perturbed from the initial model on which the Green’s functions are
generated, and the wavefields are then compared in this domain.
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Figure 2-3: Verification of the local solver using the Pluto model. (a) Real part of the
wavefield from the full domain Helmholtz solver. (b) The result from the full domain
solver is enlarged within the black box. (c) Real part of the wavefield in the black box
from the truncated solver. An equally good fit is obtained for the imaginary part.
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Chapter 3

An efficient numerically exact local

solver: Verification and application to

problems with a localized nature

Abstract

There are many imaging and inversion scenarios in which we have a particular interest
in a localized region within the Earth. Two examples of such problems are salt
boundary inversion and time-lapse inversion. One way to make use of the local
nature of these problems is to use a local solver. We show that the computations can
be significantly sped up by using the local solver introduced in the previous chapter.
It is well known that an incorrect representation of a salt body in the velocity model
significantly deteriorates a subsalt image. The salt body occupies only a subset of
the full computational domain. In the first local problem we use the local solver to
efficiently generate the FWI gradient at the boundary of a salt body. This gradient
is then used in a level set method to automatically update the salt boundary within
the truncated domain. We then demonstrate the improvement to the sub-salt image.
The second application of the numerically exact local solver is time-lapse inversion.
In the absence of significant geomechanical changes, the time-lapse model change is
most significant in the reservoirs. We therefore use the numerically local solver to
invert for the time-lapse model change in the reservoirs using Double-Difference FWI
(DDFWI)

This chapter is based on Willemsen et al. (2015a, 2016b) and Malcolm and Willemsen (2016)
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3.1 Introduction

In this chapter we implement the local solver of Chapter 2 into the Python Seismic

Inversion Toolbox (PySIT) (Hewett et al., 2013). We apply the local solver to two

local problems and therefore split this chapter into two large sections. We first demon-

strate the functionality of the local solver by applying it to salt boundary inversion.

In the second part of this chapter we apply the local solver the problem of recovering

time-lapse velocity change.

3.2 Application to salt boundary inversion

In this section the local solver is applied to the problem of automatically updating

the shape of a salt body in the velocity model. The salt body is parametrized in an

implicit way using a level set method (Lewis et al., 2012). The work builds on that of

Dorn et al. (2000) and references therein who previously used level set methods for

shape estimation in geophysical inverse problems. In this method the FWI gradient

at the boundary of the salt body is needed to determine the update to the salt

shape. This intuitively makes sense because the gradient contains information about

whether the velocity estimate needs to be increased or decreased, which corresponds

to expanding or contracting the salt respectively. Instead of calculating the gradient in

the entire computational domain, the local solver of chapter 2 is used to generate the

gradient within a subdomain containing a part of the salt boundary. The salt body is

then iteratively updated within this subdomain at high speed. We demonstrate that

improving the salt body estimate locally results in a more accurate subsalt image.

3.2.1 Combining the local solver with the salt boundary in-

version method

Estimating the shape of the salt body in a velocity model is labor intensive (Etgen

et al., 2014) and generally involves the following steps. When an initial estimate

is available, a migration is run on the velocity model. The focusing properties of
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the migrated image contain information about the quality of the salt body estimate.

Interpreters use this information to alter the shape of the salt body in the velocity

model. New migrations are run and this process is repeated iteratively until an

adequate image is obtained. This process can take months because of the manual

guidance that is required and the computational cost of migration. This illustrates

the desirability of an automatic method for determining the correct salt geometry.

Lewis et al. (2012) introduced a method to do this based on a level set approach. The

method requires the FWI gradient at the boundary of the salt as input. Intuitively,

the sign of the gradient tells whether the salt boundary should move outward or

inward. In addition to the sign of the gradient, the salt updating code also uses the

amplitude of the gradient to obtain a search direction for salt body updates. When

performing a line search with this search direction, the method returns a new salt

body shape for every attempted step length. The salt shape resulting in the lowest

value of the objective function is accepted and a new gradient and a new search

direction are computed. By iterating over this procedure the salt body estimate is

expected to converge toward the true shape.

The salt boundary inversion method requires the FWI gradient only at the bound-

ary of the salt, which makes using a local solver desirable. Instead of computing

the full domain gradient and discarding the gradient everywhere except for the salt

boundary, we now have the option to compute the gradient exactly and efficiently

for this desired region with the local solver. For the local solvers used in the salt

updating examples of this section, the speedup factor is between 10 and 30. Larger

truncated domains have a smaller speedup factor, while smaller truncated domains

have higher speedup factors. The speedup from the local solver makes the inversion

much more interactive. For example, instead of having to wait six days, the inversion

finishes in approximately 7 hours on a single core. The short feedback time of the

local inversions and the reduced computational resource requirements make it pos-

sible to investigate many more scenarios. For instance, we can try many different

sets of inversion parameters and also different initial salt shapes to investigate the

robustness of the inversion. In this study we assume that the sediment velocity is
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known accurately enough to focus the gradient with the correct sign at the frequencies

we invert for. Even though we invert only for the salt boundary, the gradient could

simultaneously update the sediment velocity within the truncated domain as well.

In this section we apply the local solver to the automatic salt updating scheme.

The complexity of the salt body inversion is raised incrementally to show its char-

acteristics. A finite difference code is used to generate the data and the background

Green’s functions. No noise is added to the data.

3.2.2 Application to salt boundary inversion

When the initial model differs from the true model only within the truncated domain,

a very good reconstruction is expected for the noiseless case. We investigate this sce-

nario in the extended Pluto model which we introduced in chapter 2 to verify the

exactness of the local solver. The initial model is equal to the true model everywhere

except for the black box in Figure 2-2. A fixed spread acquisition geometry is simu-

lated with 200 equally spaced sources and 500 equally spaced receivers 40 m below the

surface. We perform a frequency sweep with inversion taking place at the frequencies

2.5, 3.0, 3.5, 4.5, 5.5, 7.0, 8.5 and 10.0 Hz. We use the same inversion frequencies in

the other salt boundary inversion experiments of this section. For the Pluto example

we perform five inversion iterations at each frequency. The FWI gradient is generated

within the truncated domain, and this gradient is used by the salt updating code to

generate a search direction. For each step length in the line search a different salt

geometry is suggested. A very simple line search is used in the inversion in order to

minimize the number of evaluations of the objective function. At the start of each

inversion frequency, a step length on the higher end of the scale is used. If this results

in an increase of the objective function, the step length is cut back drastically for the

remaining iterations at that frequency. In this way the number of Helmholtz solu-

tions in most iterations is only three times the number of shots. We do this because

generating the gradient costs two times the number of shots; one forward simulation

and one adjoint simulation for each shot. Only one step length normally has to be

evaluated, at a cost proportional to the number of shots.
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The true local velocity of the Pluto model is displayed in Figure 3-1 (a). Notice

that the transition between the salt and sediment happens in a staircase manner.

The salt updating code will only return models where the transition is a velocity

gradient. Therefore, the inversion cannot give a perfect reconstruction of the true

velocity model with the staircase transition. The initial velocity model in Figure

3-1 (b) contains an oscillatory perturbation of the salt boundary with an amplitude

exceeding 100 m. No updates are performed on the boundary nodes. The local solver

only returns the correct wavefield when model updates are limited to the interior

nodes, so we set the initial velocity equal to the true velocity on the boundary of

the truncated domain. The inversion result obtained after performing the frequency

sweep is displayed in Figure 3-1 (c). Because the differences between the true and

initial model are restricted to the interior of the truncated domain, a very good

inversion result is obtained. The only difference is that the inverted result has a thin

"halo" around the boundary of the salt instead of the pixelated staircase pattern of

the true model.

In a realistic inversion the initial model will differ from the true model everywhere,

and not just in the truncated domain. It is interesting to investigate if the local solver,

in combination with the salt updating code, can enhance the salt boundary estimate

locally, despite the presence of inaccuracies outside of the truncated domain. To

investigate this we use the Sigsbee2b velocity model. The true velocity model is shown

in Figure 3-2 (a). The initial velocity model in Figure 3-2 (b) has the true sediment

velocity replaced by the Migration Velocity Analysis (MVA) sediment velocity. The

top of the salt is correct, but the bottom of the salt is incorrect everywhere and

not just within the truncated domain indicated by the black box. Just as in the

Pluto model, 200 shots are used, but instead of using all 500 equally spaced receiver

locations, only those within a 10 km offset range are used.

We perform three iterations at each inverted frequency. Figure 3-3 shows the

true, initial, and inverted model for this scenario. An increased number of inversion

iterations does not substantially change the resulting velocity model. Unlike the Pluto

test, the initial velocity model now has an incorrect sediment velocity and salt bottom
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perturbations with amplitude larger than 100 m outside of the truncated domain.

Despite these inaccuracies in the initial model, inversion in the truncated domain

still yields a more accurate local velocity model. A thin halo-shaped feature is again

present on the inverted model, which is an artifact of the current implementation of

the salt updating code. Because the salt boundary is only updated in the truncated

domain, a model discontinuity may appear when the salt moves along the truncation

boundary. This can be seen in Figure 3-4, where the truncated inverted model is

embedded in the unchanged full domain initial model. Because of this it is desirable

to let the salt boundary intersect the domain truncation boundary on the sides. This

causes a vertical discontinuity that has a smaller effect on the data than a horizontal

discontinuity would. A horizontal reflector would have been generated had the salt cut

the bottom or top of the truncated domain. In practice the salt boundary should be

tapered to avoid the discontinuity that is observed in Figure 3-4. This can be achieved

naturally in the framework of the salt updating code by increasing the surface tension

near the boundaries of the truncated domain. The current implementation of the code

did not yet allow for spatially varying surface tension.

An improved salt bottom estimate has beneficial effects for sub-salt migration.

Figure 3-5 shows sections of the migrated images in the region below the truncated

domain on the true (a), initial (b), and inverted (c) velocity models, respectively. The

migration in the initial velocity model severely distorts the migrated image. It is very

hard to find any of the features that are present in the true model. The truncated

domain inversion improves the salt bottom estimate locally, which improves the image

so that many of the features in the true model can now be seen. The inverted image

shows the horst-graben structure and most of the deep point diffractors.

3.2.3 Multi domain inversion

In the previous section the assumption was made that the top of the Sigsbee2b salt

body was pixel-perfect in the velocity model. Even though it is much easier to esti-

mate the top of the salt, there will always be slight inaccuracies. These inaccuracies

make accurate reconstruction of the bottom salt a difficult task. Inaccuracies in both
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the top and the bottom will distort the subsalt image. In a scenario where the mi-

grated image needs to be enhanced in a subsalt region, it is desirable to get a good

approximation of the salt body above it. For this purpose, we derive a numerically

exact multi domain extension of Equation (2.10). Details can be found in Appendix

B. This multi domain solver generates the identical wavefield as a full domain solver

would have in multiple disjoint regions, as long as the model is only updated within

those regions. This means that all interactions between (model updates in) the local

domains and the homogeneous exterior are included. There are no restrictions on the

number of domains or on their shape.

Using this multi domain solver, both the top and the bottom of the salt are

inverted in order to create a "window" through the salt. The computational cost of the

multi domain solver is slightly better than the cost of a single domain with the same

number of boundary nodes. The reason for this is that for a fixed number of boundary

nodes the single domain contains more nodes and, therefore, more unknowns. For

this experiment the bottom is perturbed in a similar way to the previous example. In

addition, the top is also perturbed, but less than the bottom to represent that it is

easier to obtain the correct top of salt than it is to obtain the correct bottom of salt.

Figure 3-6 shows the initial geometry with the black boxes indicating the two

simultaneous inversion domains. Individually, both domains are slightly smaller than

the single domain in Figure 3-2 (b), so that the multi domain local solver has a similar

speedup factor over the full domain Helmholtz solver as did the single domain local

solver in Figure 3-2 (b). The two windows are moved eastwards by a small distance

so that they have a relatively large depth separation. In this case the multi domain

inversion has a significant advantage over using a big single domain enclosing both

boxes on the top and the bottom. Such a big single domain would solve for many

unnecessary unknowns, such as the wavefield in the interior of the salt, where no

model updates take place.

We perform ten iterations at each inverted frequency. Inversion takes place simul-

taneously at the top and the bottom. Rather good inversion results are obtained after

only five iterations, with slight improvements continually accruing up to ten itera-
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tions in this noiseless investigation. Differences in illumination between the top and

bottom of the salt can be compensated by applying preconditioning to the gradient

(Shin et al., 2001). The modified gradient has similar amplitude above and below the

salt, promoting salt boundary updates of similar magnitudes. The improvement in

the top domain of Figure 3-6 is seen in Figure 3-7. Just as in the previous inversions,

the halo-like feature around the inverted salt body is slightly too wide. Reinitializing

the implicit function as it evolves periodically may alleviate this problem. Despite

this artifact, the initial model has improved significantly. The inverted topography

on the right half is much closer to the true topography. With the exception of the

left corner, the salt flank on the left has also improved significantly.

The results of inversion in the bottom domain, which are computed simultaneously

with the inversion in the top domain, are shown in Figure 3-8. The bottom domain

initially has larger perturbations of the salt boundary than the top domain. The

multi domain inversion improves the salt bottom estimate significantly even though

the top of salt starts out incorrect everywhere, and is only improved right above the

bottom of salt. The interior of the bottom domain sees the greatest improvement,

although the sides also move in the correct direction.

Many waves corresponding to long offsets travel through the incorrect top of salt

outside of the top window before reaching the bottom truncated domain. Especially

at higher frequencies, their contributions to the gradient may be out of phase and

will not add constructively. The narrow offsets for sources above the domains will

travel through the top domain before reaching the bottom domain. Therefore, they

will benefit more from the improved top of salt estimate and are more likely to add

constructively to the gradient in the bottom domain. It is worth mentioning that the

exact nature of the local solver is very important for this specific problem. Imagine

a wave traveling from a source above the domains to the bottom domain and then

finally to a receiver above the domains. This wavepath is represented by the ray in

Figure 3-6. The wave will first enter the top domain where it experiences the updated

velocity model. It then moves down to the bottom domain, where it is reflected. It

then reenters the top domain before it moves to the receiver. This primary reflection
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on the bottom of salt is influenced by model updates in the top of salt twice. Because

no assumptions are made, these multiple interactions between the waves with the

perturbations in the top domain are handled correctly. Waves can enter and exit

any perturbed domain an arbitrary number of times. Multiples between the top and

bottom of salt are influenced by perturbations as they pass through the salt even

more times, and the local solver still handles these waves correctly.

Figures 3-9 (a) and 3-9 (b) show migration with the initial and the inverted velocity

models. Because now the top of salt also starts out incorrectly and the truncated

domains are narrower than in the “bottom only” scenario, the migrated image is

less accurate. There is still great improvement, with sections of the layers and the

graben structure becoming visible because of the window that is created in the salt

by improving the salt boundary on the top and the bottom simultaneously.

Instead of using the multi domain implementation introduced in this section, we

can also elect a sequential inversion approach. In this approach we first generate

the Green’s functions for the top truncated domain in Figure 3-6. After using this

single domain local solver to update the top salt, we would then generate the Green’s

functions for the bottom domain in Figure 3-6. The bottom salt is then updated,

changing the arrival time of the bottom salt primary reflection in Figure 3-6. If we

would want to invert for the top salt again, now that the bottom salt primary reflection

has changed significantly, we would have to recompute the Green’s functions used by

the top single domain solver. The reason for this is that the salt bottom update

changed the model outside of the top truncated domain. Generating wavefields using

the single domain solver is slightly faster, because the matrix is smaller. But the

advantage of the multi domain solver is that all the offline work of computing the

Green’s functions can be done once, before the inversion starts. All orders of multiple

interactions between model changes in the different subdomains can also be computed

naturally without having to recompute Green’s functions each time a subdomain is

changed.
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3.2.4 Discussion of the local solver applied to salt inversion

Local inversion may not converge toward the true truncated model, even when the

data are noiseless. To see this, assume that the initial model differs from the true

model outside of the truncated domain. The model space is constrained to the trun-

cated domain. Reconstruction of the true model within the truncated domain may

not coincide with a minimum of the objective function. Interactions between the

inverted true truncated model and the incorrect exterior will leave an imprint on the

synthetic data that can not be removed with local updates. Other truncated mod-

els may match the noiseless data better. Despite this problem, the local inversion

experiments on the Sigsbee2b velocity model show significant improvement.

All the inversion results shown started from an initial model that had oscillatory

perturbations. The reason why oscillatory perturbations were chosen is that they are

easy to visualize in plots. We have investigated other perturbations, such as uniform

depth errors in the range of 100 m, and similar results were obtained. As with any

least-squares inversion, there is a limit on how far the initial model can differ from the

true model, as the inversion can get stuck in a local minimum. There are objective

functions that avoid this problem, for example, those based on cross-correlation (Diaz

and Sava, 2013).

The motivation for the combination of the local solver with the salt updating code

is that inverting the salt shape currently requires much manual work. In some of the

examples we tested, the salt shape of the initial model was so far from the correct

model that the migrated images contained clear hints of the correct salt shape, as

can be seen in Figure 3-5 (b). The migrated image shows semi-circular artifacts on

the salt bottom. The perfect top salt in Figure 3-2 would realistically result in a

rather accurate initial estimate for the salt bottom through salt-flooding. The reason

why an unreasonably bad initial model was chosen was to demonstrate the inversion

capabilities of the local salt inversion strategy. The initial model for multi domain

inversion in Figure 3-6 is much more realistic. The incorrect top of salt makes it

harder to estimate the initial salt bottom. The migrated image in the initial velocity
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model in Figure 3-9 still contains hints about the correct salt bottom because the

error is still large. However, salt flooding would not have resulted in a close to perfect

salt-bottom estimate in this case. We have also performed multi domain inversion

on initial models with smaller bottom of salt errors. In that scenario, the migrated

image in the incorrect velocity model did not show clear hints about the true salt

bottom shape. The multi domain inversion still improved the salt body estimate and

the subsalt image.

Cost and benefit

The Green’s functions that must be precomputed are described in the Theory of

chapter 2. In both of the Sigsbee2b tests, the number of Green’s functions that need

to be computed at each frequency is approximately 2500, when using reciprocity

and a greedy algorithm. These precomputations require an equal number (2500) of

full domain Helmholtz solves. The precomputations for all the frequencies can be

performed before the frequency sweep starts.

Figure 3-10 schematically compares the work of the local solver with that of using a

full domain solver to generate the gradients in the regions of interest. The comparison

is made for a single frequency, but the use of multiple frequencies would simply result

in a multiplier on both bars. The precomputation for multiple frequencies can be

done before the frequency sweep starts. The figure compares the cost of running five

inversions with different inversion parameters and initial conditions. Each inversion

performs five iterations, and each iteration requires the computation of the gradient

and the evaluation of the objective function for at least one step length. Generating

the gradient requires two times the number of shots (2 times 200), with the cost split

over forward and adjoint simulations. Evaluating the objective function in the line

search requires another 200 simulations. If all this work is done using a full domain

solver, the total cost would be 5 × 5 × 600 = 15,000 full domain simulations, which

somewhat optimistically assumes that only one objective value had to be evaluated

for each line search. The computational cost of these 15,000 full domain solves is

represented by the large red bar for this conventional approach. The truncated domain
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solvers require approximately 2500 full domain simulations to precompute the Green’s

functions, represented by the smaller red bar. No full domain simulations are required

after the initial setup.

For the Pluto model the local solver is more than 10 times faster than the full

domain solver. The local solves in both the single domain and the multi domain

Sigsbee2b scenarios are slightly less than 30 times faster than using a full domain

solver. The difference in speedup factors is caused by differences in the relative size

of the truncated domain(s) and the full domain. In the comparison in Figure 3-10, an

intermediate speedup factor of 20 is used. Just like the full domain analysis, 15,000

simulations are performed. But these are now much faster. This is represented by the

shorter yellow bar in Figure 3-10. In addition to the decrease in total computation,

the local solver approach has the advantage that the time between the start and the

end of the inversion is 10 to 30 times shorter. The memory requirements are also sub-

stantially lower because of the reduced model space, allowing for more simultaneous

inversions on the same hardware. The full domain Helmholtz equation includes PMLs

on the sides. It is solved using the direct solver package UMFPACK (Davis, 2004),

which is feasible in 2D. The single truncated domain system of equations (Equation

(2.10)) and the multi domain version (B.2) are also solved with UMFPACK. The

memory required for factorizing the local solver matrix (2.10) is much smaller than

for the full domain Helmholtz matrix. This could potentially enable the use of direct

solvers in scenarios where they would otherwise fail due to lack of memory. The ad-

vantage of a direct solver is that the computational cost of computing the wavefield

associated with each source is very small after the factors have been computed.

Similar to the local solver used in this chapter, the time domain local solver of

van Manen et al. (2007) also computes the local wavefield exactly. But the compu-

tational complexity of the domain truncating boundary condition is less favorable in

their implementation. Similar to the frequency domain implementation introduced

in chapter 2, the wavefield at each boundary node depends on the wavefield at all the

other 𝑛′
𝑏 boundary nodes. Both methods therefore scale quadratically with the num-

ber of boundary nodes. The major difference between the two methods is that the
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time domain method also scales quadratically with the number of timesteps 𝑛𝑡. The

reason for this scaling is that at each timestep the results of all the previous timesteps

are required. This scaling can make the time domain local solver inefficient, because

the computational cost of a full domain solver depends only linearly on the number

of timesteps. The frequency domain implementation introduced in chapter 2 depends

only linearly on the number of frequencies 𝑛𝑓 used in the inversion, where 𝑛𝑓 is usually

also much smaller than 𝑛𝑡. The usual difference between time and frequency domain

solvers applies to the computation of the wavefield in the interior of the truncated

domain.

The truncated domains in this study have been rectangular, but this is by no

means necessary. In fact, the domains can have arbitrary shape. The local solver

could have been made even faster for this salt updating application had the salt

boundary been followed more closely, reducing the number of unknowns. Figures 3-3

and 3-8 show that a substantial volume of sediment and salt interior are included

in the truncated domain, while the salt boundary never moved to many of those

locations during the inversion, so the wavefields and gradients were unnecessarily

computed there.

For the experiments in this chapter a fixed grid spacing is used during the fre-

quency sweep. This means that an unnecessarily high number of grid points per

wavelength is used at low frequencies. If the grid density is decreased at lower fre-

quencies, the number of Green’s functions that must be precomputed decreases as

well. This reduces the setup cost of the local solver and makes it more favorable.

The local solver introduced in chapter 2 can be applied to other types of local

problems as well. In the next section we apply it to time-lapse inversion, where we

make use of the observation that the reservoir occupies only a subset of the full Earth

model.
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3.3 Application to time-lapse inversion

The goal of time-lapse seismology is to recover the change in Earth parameters be-

tween an initial (baseline) state and one or more repeat (monitor) states. The conven-

tional time-lapse approach involves comparing baseline and monitor migrated images.

This is based on the concept that velocity changes in the Earth change the travel-

time to reflectors. These time-shifts in the migrated images are then used to invert

for velocity change. Additionally, changes in the amplitude of the reflector between

the baseline and monitor state are also used in conventional time-lapse inversion. In

the last decade there has been a growing interest in using FWI for the time-lapse

problem. A good overview of the time-lapse FWI is presented by Yang (2014) in his

Ph.D thesis. In chapter 5 I demonstrate various time-lapse algorithms on a realistic

synthetic model. The algorithm we use in combination with the local solver in this

chapter is Double Difference FWI (DDFWI).

The DDFWI algorithm is a two-step procedure. The first step is to invert for the

baseline model from the baseline data. For this we use the standard FWI (Lailly,

1983; Tarantola, 1984) objective function

𝜒0(𝑚0) =
⃒⃒⃒⃒
𝛿𝑑(𝑚0)

⃒⃒⃒⃒2
2

(3.1)

=
⃒⃒⃒⃒
𝑑0 − S𝑢(𝑚0)

⃒⃒⃒⃒2
2
, (3.2)

where we use the subscript 2 to show we are using the least-squares objective function

of the residuals 𝛿𝑑. The subscript 0 represents the baseline state of objective function

𝜒0, model 𝑚0 and true observed data 𝑑0. The operator S samples the simulated data

𝑢 at the receiver locations for each source. The baseline FWI inversion of equation

3.2 typically updates the initial model everywhere, which is why this step requires a

conventional full domain wave solver. The second step of DDFWI is another pass of
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FWI using a modified residual 𝛿𝑑,

𝜒1(𝑚1) =
⃒⃒⃒⃒
𝛿𝑑(𝑚1)

⃒⃒⃒⃒2
2

(3.3)

=
⃒⃒⃒⃒
(𝑑1 − 𝑑0)− (S𝑢(𝑚1)− S𝑢(𝑚0))

⃒⃒⃒⃒2
2

(3.4)

=
⃒⃒⃒⃒ ̃︀𝑑1 − S𝑢(𝑚1)

⃒⃒⃒⃒2
2
. (3.5)

The modified residual 𝛿𝑑 in (3.3) is the difference between the observed data difference

and the simulated data difference, as is seen in (3.4). This double difference gives

DDFWI its name. The modified residual 𝛿𝑑 is now a function of only the monitor

model 𝑚1, with baseline model 𝑚0 fixed at the baseline inversion result of (3.2). In

equation (3.5) we group these constant terms into a modified monitor data ̃︀𝑑1. This
makes clear that the second step of DDFWI is just another FWI inversion, now on

the modified monitor data ̃︀𝑑1. The starting model for 𝑚1 is the inverted baseline

model 𝑚0. The time-lapse estimate (i.e. 𝑚1 − 𝑚0) is therefore zero at the start of

the inversion and changes when we update 𝑚1 to minimize the objective function of

(3.5).

Production induced time-lapse change is usually caused by changes in pore fluid

and fluid pressure. These fluid changes are typically confined to the reservoir, which

occupies only a subset of the Earth model. Changes in pore pressure modify the

effective stress and result in volume changes of the reservoir. These effects influence

the stress state of the surrounding rocks and therefore its seismic properties (Tura

et al., 2005) in what is referred to as geomechanical effects. Outside the reservoir,

the Earth model can therefore also change due to production in the reservoir. If

the geomechanical effects are known to be small in the reservoir under investigation,

then we expect the time-lapse changes to be dominant within the reservoir. In this

scenario, the most significant time-lapse change is restricted to the reservoir area and

occupies only a subset of the full computational domain. This observation can be

exploited to obtain computational savings by using a local solver. In this section

we use a synthetic example of this type of time-lapse change to demonstrate the

application of the numerically exact local solver to DDFWI.
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3.3.1 Problem description

We demonstrate the local solver on the Marmousi II velocity model (Martin et al.,

2002). Figure 3-11a shows the true baseline model of this study. Figure 3-11b shows

the true time-lapse change, where the black boxes around the three time-lapse regions

outline the boundary of the multi-domain local solver. The true monitor model is

the true baseline model of Figure 3-11a with the true time-lapse change of Figure

3-11b added to it. The grid spacing of the models is 20.0 m in both the horizontal

and vertical directions. With this discretization, the size of the models is 651 by

176 pixels. We first generate the true baseline and monitor data on the baseline and

monitor models using a fixed spread acquisition with 60 sources and 651 receivers

(i.e. one for each pixel). These sources and receivers cover the surface of the model

with equal spacing. The first step of DDFWI is to invert for the baseline model by

minimizing the FWI objective function of (3.2). For this we start from the heavily

smoothed initial model of Figure 3-12a and do a frequency sweep using a full domain

Helmholtz solver. We invert for one frequency at a time, starting at 3.0 Hz and then

increasing to 4.0 Hz, 5.0 Hz, 6.5 Hz, 8.0 Hz and finally 10.0 Hz. The final inverted

baseline model is plotted in Figure 3-12b. We see that the inverted baseline model

of Figure 3-12b contains many of the features of the true baseline model of Figure

3-11a. The shallow part of the model is recovered particularly well. The deeper parts

of the model, especially those below the high velocity layers are less accurate. For

instance, notice the difference between the true and inverted baseline models in the

bottom black box.

The second step of DDFWI uses this inverted baseline model as an initial model

for the monitor model inversion which minimizes the DDFWI objective function (3.5).

For this step we restrict the model updates to the black boxes of the inverted baseline

model in Figure 3-12b. We use the exact multi-domain local solver to efficiently

generate the exact local forward and adjoint wavefields required for the local gradient.

For this we first compute the required full domain background Green’s functions on

the background (i.e. inverted baseline) model of Figure 3-12b. We then verify that
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the local solver is set up correctly for this multi-domain configuration by comparing

the full domain and local domain wavefields within these black boxes. The wavefields

plotted in Figure 3-13 are computed on a model with an arbitrary simultaneous model

updates in all of the three black boxes. The relative difference as defined in (2.11)

between the full domain and the local domain wavefields is approximately 10−16.

This verifies that all interactions between the truncated domains (including model

updates) and the exterior are computed correctly. The local adjoint wavefields are

also numerically exact. With these tests concluded, we now use the local solver to

simultaneously invert for time-lapse change within the three truncated domains.

3.3.2 Time-lapse inversion

We invert for the monitor model by minimizing (3.5) while using the inverted baseline

model of Figure 3-12b as starting model. We sequentially invert for the frequencies

5.0 Hz, 6.5 Hz, 8.0 Hz and finally 10.0 Hz. The results of this inversion are plotted in

Figure 3-14. We first invert for time-lapse change in the entire computational model,

using a conventional full domain simulation with 16 iterations at each frequency. We

plot the results of this procedure in Figure 3-14a. Even though we only plot the results

within the zoom region, the full domain DDFWI inversion updates the model in the

entire computational domain. Figure 3-14b shows the results when we follow the same

procedure, but reduce the number of iterations to three at each frequency. Finally

Figure 3-14c shows the results when we use the local solver and as a consequence also

limit model updates to the interior of the black boxes.

First of all we see that both the inversions in the full-domain (Figure 3-14a) and in

the truncated domain (Figure 3-14c) are able to recover the time-lapse perturbations

(Figure 3-11b) reasonably well. The shape of the bottom perturbation is inaccurate,

which we suspect is caused by imperfections in the background model. We conclude

this because other parameters (shape, size, velocity contrast) are similar for the other

perturbations, but comparing Figures 3-11a and 3-12b illustrates that there are clearly

some errors in the deeper parts of our estimated baseline model.

In Figure 3-14 we also compare the number of iterations required for the two
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methods to converge. In the full domain many more iterations are required to re-

cover the magnitude of the time-lapse perturbations. Figure 3-14b and 3-14c show

the results for three iterations. We observe that the full-domain solution has not

correctly estimated the magnitude of the perturbations. In the full domain, we need

16 iterations (Figure 3-14a) to achieve results similar to those obtained in the trun-

cated domain with only three iterations. Although we are not certain why this is the

case, we speculate that the reduced model space in the local inversion allows the FWI

algorithm to converge more rapidly, thus further reducing the cost of FWI (though a

reduction in iterations may also be present when using a full-domain solver if model

updates are restricted to a local domain). The benefits of restricting model updates

to the reservoir are also reported by Zhang and Huang (2013), who observe improved

recovery of the time-lapse change. Care must be taken in using the local solver that

the changes across the boundaries are not too abrupt. In this case, if we continue

beyond three iterations we will see artifacts caused by jumps in the time-lapse model

update. This is easily mitigated using tapers and slightly larger domains.

3.3.3 Discussion

Our goal in using a local solver is to both improve the resulting time-lapse estimates

and to reduce computational cost. We compare the cost of a full domain solver with

the truncated solver bearing in mind that each method produces different products.

The full-domain solver gives a model update throughout the domain while the local

solver gives an update only within the truncated domain. To quantify the reduction

in computational cost compared to a global solution over the full domain, we must

consider two aspects of the process. First, there is the cost of computing the back-

ground Green’s functions (approximately 1225 in this example). This is done once

before the processing begins. Second, there is the cost of computing the forward and

adjoint wavefields within the truncated domain. With the number of sources 𝑛𝑠 = 60,

we assume the number of wavefield simulations per iteration is 3.5𝑛𝑠. This includes

𝑛𝑠 forward simulations, 𝑛𝑠 adjoint simulations and an average of 1.5 linesearch trials,

adding the final 1.5𝑛𝑠 wavefield simulations. Together, these two steps make up the
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majority of the computational cost of the algorithm. Although it appears that fewer

iterations are required when using the local solver, we choose to compare the costs of

the two methods with the same number of iterations to obtain a conservative estimate

of the speedup. We show this speedup in Table 3.1, looking at different numbers of

inversions and iterations. We consider multiple inversions because this is done when

refining the inversion parameters and processing multiple monitor data sets. Once

the setup step is done, each iteration is about a factor of 10-15 times faster for the

examples shown in this study (the numbers in Table 3.1 use a factor of 13).

For one inversion with one iteration (first row) the local solver takes about six

times as long as the full domain solver. By contrast, for twenty inversions with

twenty iterations each the local solver takes about nine percent of the time required

by the full-domain solver. This difference accumulates because once the offline work

generating the background Green’s functions is done, each single wave-solve executes

much faster (here 13 times faster). The background work is done only once for the

entire process, before the first inversion is initiated. This speedup could lead to more

interactive workflows and allow the exploration of more inversion scenarios.

Localization in the model space allows us to consider more expensive time-lapse

processing ideas for 4D, such as the alternating FWI suggested in Yang (2014), or cross

updating as proposed by Maharramov et al. (2014). This opens up the possibility of

truly estimating the uncertainty in 4D changes, which as noted in Asnaashari et al.

(2015), is not currently computationally tractable.
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3.5 Conclusion

There are many applications in full-waveform inversion in which we attempt to deter-

mine Earth properties within a subset of the total region of the subsurface sampled

by the data. In these cases, calculating wavefields outside the region of interest at

each iteration of inversion is wasted effort. In this chapter, we show that the work re-

quired for FWI is reduced by locally computing the wavefield only within the domain

of interest. We first combined the local solver with an automatic salt updating code.

The locally improved salt boundary estimate resulted in significant improvements in

the subsalt migrated image. We then applied the local solver to time-lapse inversion.

For time-lapse inversion we observe that in addition to a cheaper forward model, we

also require fewer inversion iterations to converge to an accurate time-lapse estimate

when using the local solver. As a result, velocity estimates can be improved while

76



controlling the computational cost. This is of particular interest and importance for

4D seismic applications in which we are interested in an isolated region of the subsur-

face (the reservoir) and have good knowledge of the properties outside the reservoir,

and do not expect these areas to change between surveys.
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Figure 3-1: Salt boundary inversion results for the Pluto model where the true and
initial model only differ within the interior of the truncated domain. (a) True trun-
cated domain. (b) Initial truncated domain. (c) Inverted truncated domain.
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Figure 3-2: (a) True 3201 by 1201 nodes Sigsbee2b velocity model with a 691 by
221 nodes truncated domain. (b) Initial velocity model with MVA sediment and an
incorrect salt bottom everywhere, not just inside the truncated domain indicated by
the black box. The top of the salt is correct in this example.
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Figure 3-3: (a) True Sigsbee2b truncated velocity model from Figure 3-2a. (b) Initial
truncated model from Figure 3-2b. (c) Inverted truncated model from local solver.
Significant improvement can be observed.
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Figure 3-4: Truncated domain inversion result embedded in the unchanged full do-
main initial model illustrating that abrupt changes can take place at the boundary
of the truncated domain.
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Figure 3-5: Migration in the true, initial and inverted models of Figure 3-3. The
initial model uses an MVA sediment velocity and has a very incorrect salt bottom.
The arrows show the locations of interesting features that appear after the salt bottom
estimate has been improved.
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Figure 3-6: The initial model for the multi-domain inversion. The top truncated
domain is 347 by 91 nodes and the bottom domain is 347 by 111 nodes. The true
model remains the same, shown in Figure 3-2. The white ray shows that a primary
reflection on the salt bottom is influenced by the top domain twice. This demonstrates
that it is important that the local solver correctly accounts for waves reentering the
truncated domain. Waves reflecting multiple times benefit from this even more.
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Figure 3-7: This figure shows the improvement in the top salt estimate. Inversion
takes place simultaneously in both of the truncated domains in Figure 3-6. The
initial and true model differ significantly everywhere. The white line shows the true
salt boundary.
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Figure 3-8: This figure shows the improvement in the bottom salt estimate. Inversion
takes place simultaneously in both of the truncated domains in Figure 3-6. The initial
and true model differ significantly everywhere. The white line shows the true salt
boundary.
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Figure 3-9: Migration artifacts around the salt bottom in the initial model still give
an indication of the correct salt shape. Less distorted initial models have been in-
vestigated where the correct salt bottom was not recognizable from migrated images,
but simultaneous inversion still improved the salt bottom estimate. The large salt
perturbations in Figure 3-7b and Figure 3-8b make it easier to visualize improvements
in the velocity model and the migrated image. Arrows show interesting features. The
location of these arrows is slightly perturbed from those in the true model in Figure
3-5. But they show the same geological features.
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Figure 3-10: Schematic cost comparison for running 5 simultaneous inversions using
different inversion parameters and initial conditions. The length of the bars is to
scale.
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Figure 3-11: Figure 3-11a shows the true Marmousi II baseline model used in this
study. Figure 3-11b zooms in on the white box of Figure 3-11a to show the true
time-lapse change in the three reservoirs. The black boxes surrounding the reservoirs
outline the multi-domain local solver.
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Figure 3-12: Figure 3-12a shows the initial baseline model. Figure 3-12b shows the
inverted baseline obtained at the end of a frequency sweep. The sweep inverts for
one frequency at a time, starting at 3.0 Hz and subsequently inverting for 4.0 Hz, 5.0
Hz, 6.5 Hz, 8.0 Hz and finally 10.0 Hz. The black boxes surrounding the reservoirs
outline the multi-domain local solver and are identical to those in Figure 3-11a.

89



4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5
Horizontal coordinate (km)

1.0

1.5

2.0

2.5

3.0

D
ep

th
 (k

m
)

Real part forward wavefield full domain

−0.0030

−0.0015

0.0000

0.0015

0.0030

In
te

ns
ity

(a)

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5
Horizontal coordinate (km)

1.0

1.5

2.0

2.5

3.0

D
ep

th
 (k

m
)

Real part forward wavefield local domain

−0.0030

−0.0015

0.0000

0.0015

0.0030

In
te

ns
ity

(b)

Figure 3-13: To test the local solver we compare the wavefields from the full domain
solver and the local domain solver and plot the results in the white box of Figure
3-12b. Within the truncated domains (i.e. black boxes) the two wavefields are nu-
merically identical. This means all interactions between the domains, including local
model updates, and the exterior are included. This verifies that the multi-domain
configuration of the local solver is setup correctly for this problem.
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Figure 3-14: DDFWI results when sequentially inverting for the frequencies 5.0 Hz,
6.5 Hz, 8.0 Hz and 10.0 Hz. Compare the inversion results with the true time-lapse of
Figure 3-11b. Figure 3-14a shows the result when inverting for time-lapse change in
the full domain using a full domain solver with 16 iterations at each frequency. Figure
3-14b uses the setup, but reduces the number of iterations to 3 at each frequency.
Finally Figure 3-14c also uses 3 iterations at each frequency but uses a local solver
instead of a full domain solver and only updates the model within the black boxes.
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Number of iterations Number of inversions 𝑡𝑙𝑜𝑐𝑎𝑙/𝑡𝑓𝑢𝑙𝑙
1 1 5.91
8 1 0.81
20 1 0.37
8 8 0.17
20 8 0.11
20 20 0.09

Table 3.1: This table compares the computational cost of using the local solver and
the full-domain solver. We use a speed-up factor of 13, which is what we observe in
the example shown here, i.e. local solves are assumed to cost 1/13 of a full-domain
solve. The computational cost of the local FWI includes both the pre-computation
of (approximately 1225) full-domain Green’s functions (done once) and subsequent
local solves (assuming 3.5 wave solves per source including the line search, for 60
sources this gives 210 wave solves per iteration). We assume that the same number of
iterations are used for each algorithm. The third column shows the ratio of the time
for the local version of FWI to perform the inversion to that of the full-domain solve.
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Chapter 4

Regularizing velocity differences in

time-lapse FWI using gradient

mismatch information

Abstract

In this chapter we present a method for recovering time-lapse velocity changes us-
ing full waveform inversion (FWI). In a preprocessing step we invert for a single
intermediate model by simultaneously minimizing the data misfit in the baseline and
the monitor surveys. We record the individual FWI gradients corresponding to the
baseline and the monitor datasets at each iteration of the inversion. Regions where
these gradients consistently have opposing sign are likely to correspond to locations
of time-lapse change. This insight is used to generate a spatially varying confidence
map for time-lapse change. In a subsequent joint inversion we invert for baseline
and monitor models while regularizing the difference between the models with this
spatially varying confidence map. Unlike double difference full waveform inversion
(DDFWI) we do not require identical source and receiver positions in the baseline
and monitor surveys.

This chapter is based on Willemsen et al. (2015b)
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4.1 Introduction

FWI (Lailly, 1983; Tarantola, 1984; Pratt, 1999) uses the entire seismic record to

invert for subsurface material properties such as seismic velocity and density. When

monitoring a reservoir, the primary objective is to recover changes in the material

properties due to production changes. A straight-forward application of FWI to this

time-lapse problem is to invert for the baseline (i.e., initial) state and the monitor

(i.e., new) state independently. Subtracting these models intuitively approximates

the time-lapse change in material parameters. However, artifacts are also present due

to the nonlinear nature and ill-posedness of the uncoupled inverse problems for the

baseline and monitor models.

In an attempt to overcome some of these problems Watanabe et al. (2004) and

Denli et al. (2009) introduced DDFWI for monitoring production related changes.

In DDFWI the baseline data residual from an initial baseline inversion is subtracted

from the monitor dataset. Conceptually this can be seen as removing a part of the

data that the initial model could not explain. After the monitor model is inverted

from this modified data and the baseline model is subtracted a better time-lapse

estimate is obtained. The data subtraction in DDFWI imposes constraints on the

seismic acquisition. Both the source and receiver locations have to be the same in the

baseline and monitor surveys. Differences are not uncommon in marine surveys as is

illustrated for instance by Eggenberger et al. (2014). These differences will result in

artifacts in the velocity change estimate.

Several methods have been introduced that avoid the requirement of identical

acquisition. Zamanian et al. (2014) invert for the time-lapse change by casting the

inverse problem in a hierarchical Bayesian framework. Maharramov et al. (2014)

circumvent some of the problems of subtracting independent baseline and monitor

inversions by swapping baseline and monitor datasets a fixed number of times. In

a different approach Maharramov and Biondi (2014) introduce a joint inversion in

which Total Variation (TV) regularization suppresses the oscillatory model-difference

artifacts that arise in joint FWI with noisy datasets. Another approach is to itera-
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tively swap baseline and monitor datasets in FWI and record which regions change

consistently as a result. This information can be used to generate a confidence map,

which can regularize the model-difference in a subsequent time-lapse inversion. This

was done by Yang (2014) in a method called Alternating FWI (AFWI). The idea we

introduce in this study is similar to Yang’s approach. Instead of performing a po-

tentially long sequence of expensive full waveform inversions for the confidence map,

we perform a single joint inversion with a single model. In this joint inversion we

minimize both the baseline and monitor data residuals with this single intermediate

model. Regions where the gradient of the baseline data term consistently has a dif-

ferent sign than the gradient of the monitor data term are considered to be potential

regions of time-lapse change. We quantify this principle and construct a confidence

map from the gradient history. Similar to the work of Yang (2014) we use this (dif-

ferent) confidence map to regularize the model difference in a final joint inversion.

4.2 Method

To obtain a confidence map we first minimize the objective function

̃︀𝜒(𝑚(x)) =
1

2
|ℱ0(𝑚(x))− 𝑑0|2𝑑0 +

1

2
|ℱ1(𝑚(x))− 𝑑1|2𝑑1 , (4.1)

where the misfit is ̃︀𝜒 and a single model 𝑚 is used to fit both the baseline data 𝑑0

and the monitor data 𝑑1 through forward model ℱ0(𝑚(x)) and ℱ1(𝑚(x)) respectively.

The baseline and monitor acquisition are not required to be the same. Both the data

norms | |𝑑0 and | |𝑑1 are implemented as the 𝐿2 norm. Model regularization can be

applied to 𝑚 but this is not done in the examples in this study. The gradient of (4.1)

with respect to the model consists of two parts:

𝛿̃︀𝜒
𝛿𝑚(x)

= 𝑔0(x) + 𝑔1(x), (4.2)

where 𝑔0(x) and 𝑔1(x) are the standard FWI gradients of the baseline and the monitor

data terms. The concepts we introduce in this research are applied to constant density
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acoustics, but the ideas extend naturally to different physics. Equation 4.1 can be

minimized with any iterative optimization routine, but in this research we use L-BFGS

(Nocedal and Wright, 2006b). When inverting with the objective function given in

(4.1), we expect to get an intermediate model 𝑚(x) that explains both the baseline

data, 𝑑0, and monitor data, 𝑑1, as well as possible. At locations x where there is a

real time lapse model change we expect that the FWI gradient of the baseline data

term, 𝑔0(x), will have the opposite sign to the FWI gradient of the monitor term,

𝑔1(x). Intuitively this means that in regions of true time-lapse change an inversion

using just the baseline data would move away from intermediate model 𝑚 in the

opposite direction to that an inversion using just the monitor data would move in.

This insight can be used when constructing a confidence map. When inverting for the

intermediate model 𝑚(x) with an iterative inversion scheme we can keep the gradient

history of both the data terms. We now define a confidence map 𝛽𝑔(x) based on the

gradient history,

𝛽𝑔(x) =
𝑛∑︁
𝑖

[︂
|𝑠𝑔𝑛(𝑔0,𝑖(x))− 𝑠𝑔𝑛(𝑔1,𝑖(x))|

×
(︂
1

2
(|𝑔0,𝑖(x)|+ |𝑔1,𝑖(x)|)

)︂]︂
, (4.3)

where 𝑔0,𝑖(x) and 𝑔1,𝑖(x) are the gradients of the baseline and monitor terms at it-

eration 𝑖 respectively. |𝑓(x)| is the absolute value of 𝑓 at each location x and not a

norm. To reduce the effects of differences in illumination we precondition the gradi-

ents using the inverse diagonal of the pseudo-Hessian proposed by Shin et al. (2001).

The confidence map 𝛽𝑔 in (4.3) has high values when the gradient of the baseline and

the monitor term consistently have opposing sign and large amplitude. The reason

for using the entire gradient history instead of the last iteration is to suppress some

of the randomness and the nonlinear effects that take place when minimizing (4.1).

The confidence map 𝛽𝑔(x) is used in a subsequent joint inversion where the fol-

lowing objective function 𝜒 is minimized for the baseline model 𝑚0 and the monitor
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model 𝑚1,

𝜒(𝑚0(x),𝑚1(x)) =
1

2
|ℱ0(𝑚0(x))− 𝑑0|2𝑑0

+
1

2
|ℱ1(𝑚1(x))− 𝑑1|2𝑑1 +

1

2
𝜖

⃒⃒⃒⃒
𝑚0(x)−𝑚1(x)

𝛽𝑔(x)

⃒⃒⃒⃒2
𝑚

. (4.4)

The data norms | |𝑑0 and | |𝑑1 and the model norm | |𝑚 are implemented as the 𝐿2

norm. The scalar 𝜖 weights the model difference regularization term. Depending on

the choice of 𝜖, the model regularization term can be used to strongly suppress model

differences outside the regions with high beta. Additional regularization can be ap-

plied to the individual models, but this is not investigated in this study. Note that

there is nothing in this formulation that requires the baseline and monitor acquisi-

tions to be the same. In the remainder of the study we refer to the process of first

minimizing (4.1) and recording the gradients in (4.2) for confidence map (4.3) and

then solving (4.4) as Gradient Confidence FWI (GC-FWI).

4.3 Numerical investigation

The performance of GC-FWI is compared with DDFWI on a synthetic model under

noisy conditions. We compare using unrealistically favorable conditions for DDFWI.

The source and receiver locations are exactly the same in both surveys and so is

the source wavelet. These tests thus give us a conservative estimate of the expected

improvements from GC-FWI.

4.3.1 Setup of synthetic problem

The model on which the synthetic study is done is the Marmousi model, see Figure

4-1. The model is discretized using 151 nodes in the z direction and 461 nodes in the

x direction. The node spacing is 20 m in both directions. The baseline and monitor

surveys have 19 identical shot locations equally distributed over the surface and 461

identical receiver locations. The source wavelet is a 6 Hz ricker wavelet and is exactly

the same in the baseline and monitor surveys. The same time-domain solver is used
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for generating the data and for solving the inverse problem. The model includes a

Perfectly Matched Layer (PML) on all sides. No model regularization is used on

the individual baseline and monitor models in GC-FWI or in DDFWI. We generate

uncorrelated Gaussian noise in the time-domain and add this to the data. We define

the noise level 𝑟 as the energy of the noise relative to the energy of the noiseless signal

in the entire seismic survey,

𝑟 =

𝑛𝑠∑︀
𝑖

𝑛𝑟∑︀
𝑗

𝑛𝑡∑︀
𝑘

𝑛2
𝑖,𝑗,𝑘

𝑛𝑠∑︀
𝑖

𝑛𝑟∑︀
𝑗

𝑛𝑡∑︀
𝑘

𝑠2𝑖,𝑗,𝑘

. (4.5)

In (4.5), 𝑛𝑠 is the number of sources, 𝑛𝑟 is the number of receivers, and 𝑛𝑡 is the

number of time samples in a trace. For a specific noise level we first invert for the

baseline model starting from a heavily smoothed initial guess. Figure 4-2 shows that

good reconstruction is achieved for 𝑟 = 0.64. When comparing DDFWI and GC-

FWI at a specific noise level 𝑟, the corresponding inverted baseline model is used in

DDFWI and in GC-FWI as the initial guess for 𝑚 in (4.1). Figure 4-3 shows the true

time-lapse velocity change used in this study.

4.3.2 Calculating the confidence map 𝛽𝑔(x)

We perform 20 iterations to minimize (4.1) in a single joint inversion and record the

gradients 𝑔0(x) and 𝑔1(x) for noise levels 𝑟 = 0.04 and 𝑟 = 0.64. The gradients are

preconditioned (Shin et al., 2001) with the purpose of correcting for differences in

illumination. The preconditioned gradient history is then used to obtain the confi-

dence map 𝛽𝑔(x) using (4.3). We normalize the confidence maps by dividing each by

its maximum value. The results are compared in Figure 4-4.

At the locations marked with arrows in Figure 4-4, we plot the evolution of the

preconditioned gradients using matching colors in Figure 4-5. We see that most often

the preconditioned gradients 𝑔0(x) and 𝑔1(x) have opposite signs and large amplitude

at the location marked by to the black arrow. The baseline data term and the monitor

data term try to move the intermediate model 𝑚, computed by minimizing (4.1), in

opposite directions. This is a sign that the baseline and monitor velocities may differ
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and thus a true time-lapse change is likely at this location. Equation 4.3 for the

confidence map therefore assigns a high value of 𝛽𝑔(x) to the location of the black

arrow. At the location of the red arrow the gradients of both data terms are often

small and have the same sign. The low amplitude and the agreement in sign makes it

unlikely that a true time-lapse change is present at this location, because both data

sets agree that the model fits the data well, and if they try to adjust it at all do so

in the same direction. In the preconditioned gradient evolution plot of Figure 4-5

we observe some transient behavior, which is a reason for involving more than one

iteration when computing the confidence map 𝛽𝑔(x) in (4.3).

4.3.3 Comparing GC-FWI and DDFWI

With the confidence map 𝛽𝑔(x) we regularize the model difference in the joint inversion

(4.4). We perform 15 nonlinear iterations and minimize the objective function using

L-BFGS. We compare the results of GC-FWI at noise level 𝑟 = 0.64 with 20 nonlinear

iterations of DDFWI starting from the initial inverted baseline model corresponding

to that noise level. Since the weighing of a regularization term is not trivial we

show the results for three different values of parameter 𝜖, which weights the model

regularization in (4.4).

We display the results of the comparison between GC-FWI and DDFWI in Figure

4-6. We see that the level at which GC-FWI suppresses noise in the time-lapse esti-

mate depends on the model regularization weight 𝜖. At the low end of the investigated

values (i.e., 𝜖 = 10.0) this noise is only slightly less than in DDFWI. At higher values

of 𝜖 the noise in the recovered GC-FWI time-lapse estimates goes down. At the high

end of the investigated values of 𝜖 (i.e., 𝜖 = 1000.0) we observe the strongest noise

suppression, but we also notice that the recovered time-lapse change on the rightmost

perturbation is suppressed below the true value of Figure 4-3.
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4.4 Discussion

In this study we use identical wavelets and identical source and receiver locations

in the baseline and monitor surveys. In reality these conditions are hard to satisfy

and deviations will inherently result in artifacts in DDFWI as is documented by for

instance Yang (2014). Instead of subtracting data, GC-FWI works in the model space

by comparing the stacked gradients of the baseline and monitor survey evaluated at

an intermediate model. It is true that differences in source and receiver locations

in baseline and monitor surveys will change the gradient contributions of the shots,

but the stack of these contributions seems quite robust to changes in source location.

Tests indicate that if the 19 monitor shots are offset from the baseline locations by

half the shot spacing, the largest shift possible, the resulting confidence map 𝛽𝑔(x) is

qualitatively the same. We have not yet investigated how realistic differences in the

source wavelet would influence GC-FWI.

For the example in this study, the cost of GC-FWI is approximately 3.5 times that

of DDFWI. The cost of 𝛽𝑔(x) is 40 standard FWI iterations because each of the 20

iterations of (4.1) is twice the cost of a standard FWI iteration due to the presence

of two data terms. Each of the 15 iterations of the subsequent joint inversion (4.4) is

also twice as expensive as a standard FWI iteration for the same reason. This brings

the total cost of GC-FWI to 70 standard FWI iterations compared to the 20 standard

FWI iterations of DDFWI in this example. In this calculation we do not include the

cost of the initial inverted baseline model that is used in DDFWI and as the initial

guess in (4.1).

Even though GC-FWI significantly reduces the constraints, imposed by DDFWI,

on the acquisition of the repeat survey, current time-lapse datasets have very similar

source and receiver locations. This knowledge can potentially be used to increase

the accuracy of the confidence map 𝛽𝑔(x). Instead of comparing the stacked gradient

of the baseline and the monitor data term in (4.1) we could compare the gradient

history of each shot individually. Since the shot and receiver locations are similar in

the baseline and monitor survey, the major difference in the gradient contribution of
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a shot will be due to noise and time-lapse model differences. Generating 𝛽𝑔,𝑠(x) from

the history of each shot 𝑠 and then stacking the result for the final confidence map

𝛽𝑔(x) may give improved results. If the source and receiver locations in the baseline

and monitor surveys are similar and DDFWI is possible, 𝛽𝑔(x) could also be used to

regularize the model difference in DDFWI. A significant portion of the noise in the

DDFWI time-lapse estimate in Figure 4-6 could be suppressed in this way.

4.5 Conclusion

The method introduced in this study performs an initial inversion where the baseline

and the monitor data misfit are minimized with a single model. By comparing the

gradients of both data terms at each iteration of the inversion we gain insight about

the probability of a time-lapse velocity change in a region. This knowledge is encoded

in the confidence map 𝛽𝑔(x), which is then used to regularize the model difference

in a final joint inversion. This method, which we refer to as GC-FWI, is flexible to

differences in acquisition and shows promising results on synthetic examples.
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Figure 4-1: The true baseline model.
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Figure 4-2: The baseline model inverted from the baseline data using standard FWI
for 𝑟 = 0.64.
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Figure 4-3: The true time-lapse velocity change investigated in this study.
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of the same color in Figure 4-5.
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Figure 4-5: Evolution of the preconditioned gradients of both data terms of (4.1) in
the inversion, at the locations indicated by arrows of corresponding color in Figure 4-
4. True time-lapse regions correspond with gradients of large amplitude and different
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Figure 4-6: Comparison of GC-FWI using three different values of the model-
regularization weighting term 𝜖 with DDFWI for noise level 𝑟 = 0.64. Figure 4-3
shows the true model time-lapse change. At low regularization (top) GC-FWI gives
results similar to those of DDFWI, but as 𝜖 is increased GC-FWI suppresses spurious
changes and results in a more accurate recovery of the time-lapse changes.
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Chapter 5

Evaluating the performance of

acoustic FWI time-lapse workflows on

realistic synthetic data

Abstract

Recently there has been an increased interest in applying Full Waveform Inversion
(FWI) to the time-lapse problem. In this chapter we evaluate the performance of
several time-lapse FWI algorithms on a realistic North Sea reservoir model. Because
full domain elastic wavefield simulations are still expensive in 3D, we focus in this
synthetic example on acoustic inversion for the P-wave velocity time-lapse change
from the recorded data. Since the recorded waves traveled through an elastic Earth,
making an acoustic approximation in the inversion will result in artifacts. We inves-
tigate the impact of these artifacts by using three recorded datasets with increasingly
realistic physics, starting at constant density acoustics and ending at fully elastic.
In these results we observe that the time-lapse estimate contains significant artifacts
because of post-critical reflections. We then evaluate the impact of the initial model
and also apply the GC-FWI confidence map regularization of chapter 4 to constrain
the time-lapse estimate.

This chapter is an unpublished paper, extending Willemsen et al. (2016a)
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5.1 Introduction

Seismic material properties such as density, P-wave velocity and S-wave velocity de-

termine how a wavefield propagates through the Earth. During the lifetime of a reser-

voir, many processes such as hydrocarbon production and water/CO2 injection take

place. These processes may change the pore fluids, pore pressure and effective stress

in the reservoir. Seismic properties of the bulk rock change as a result. Gassmann’s

law (Gassmann, 1951) is often used to estimate the effects of pore fluid substitution

on the bulk seismic velocity and density (Kumar et al., 2006). The bulk modulus and

density and therefore the velocity of oil depend on the pressure, especially when the

bubble point is passed and gas escapes from the oil (Han et al., 2001). Pore pressure

changes in the reservoir change the effective stress field, not only in the reservoir but

also in the surrounding rocks due to geomechanical interactions (Tura et al., 2005).

These changes in effective stress modify the stiffness of grain contacts and can open

or close thin cracks and pores (Johnston, 2013), altering the velocity. In some reser-

voirs a drop in pore pressure can result in reservoir compaction and subsidence of the

overburden (Geertsma et al., 1973). This changes the travel time of the seismic waves

by both changing the velocity and the thickness of the layers (Tura et al., 2005). All

these processes demonstrate that changes in seismic properties are intricately related

to physical processes in the reservoir. Time-lapse seismology attempts to recover the

seismic changes so they can be correlated to these physical processes. Monitoring

reservoir production can help to optimize it. Examples of applications include the

monitoring of injected water (Calvert et al., 2014) and CO2 (Davis et al., 2003; White,

2009; Davis, 2015) during secondary or enhanced oil recovery with the objective of

detecting unswept areas.

Changes in velocity and layer thickness causes time-shifts in recorded traces, and

as a result in time-migrated images. These time-shifts can for instance be computed

by finding the local cross-correlation peak between baseline and monitor images (Rick-

ett et al., 2006). The measured time-shift at a particular location is the sum of all

changes in the traveltime caused by the layers above. A useful indicator for time
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lapse change at a particular location in the Earth is obtained by differentiating this

time-shift. This so-called time strain (Rickett et al., 2006, 2007) is nonzero when

there is a gradient in the time-shift, as is the case when the time-shift at the top of

a layer is different than the timeshift at the bottom of that layer. Landrø and Stam-

meijer (2004) introduce a method for untangling the coupled effect of compaction

and velocity change on the time strain by comparing near and far offset data. They

also introduce another method for untangling compaction and velocity changes by

looking at combined changes in travel time and reflection amplitude. By using a

relation between the vertical strain (i.e. thickness change of layer) and the velocity

change, Røste et al. (2006) and Hatchell and Bourne (2006) show that time-strain

and vertical strain are directly related. Hodgson et al. (2007) uses this observation to

link the 4D observations to pore-pressure changes using a geomechanical model. Ex-

amples of field applications where amplitude changes or time shifts are used to infer

reservoir changes are given by for instance Ghaderi and Landrø (2009), Eggenberger

et al. (2014) and Røste et al. (2015).

The methods presented up until now are based on time-shifts and amplitude

changes, typically of time-migrated images. Inaccuracies in source-receiver repeatabil-

ity impact the images and therefore influence the time-shifts and amplitude changes.

Source-receiver non-repeatability may therefore lead to time-lapse noise, especially in

locations with strong near-surface heterogeneity. In addition, which source-receiver

combinations are repeatable is determined by comparing their impact on migrated

images. The process of selecting repeatable pairs therefore requires frequent migra-

tion and is time consuming. For these reasons, amongst others, there is an interest

in using Full Waveform Inversion (FWI) (Lailly, 1983; Tarantola, 1984) for the time-

lapse problem. FWI is easier to automate than the conventional time-lapse approach.

FWI is also an inverse problem and there are signs that it is better able to deal

with non-repeatable acquisition, for instance by using regularization (Maharramov

and Biondi, 2014; Yang, 2014). The research introduced in this chapter falls in this

category.

An intuitively straight-forward application of FWI to the time-lapse problem is
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simply inverting for the baseline and the monitor models independently and then

subtracting the results. If the baseline and monitor inversions start from the same

initial model this is commonly referred to as parallel FWI. When instead the monitor

FWI inversion starts from the inverted baseline model this is often called sequential

FWI (Maharramov et al., 2014). An example comparing parallel and sequential FWI

is given by Routh et al. (2012). The time-lapse estimate can contain artifacts because

the independent inversions for the baseline and monitor data may converge to dif-

ferent local minima (Mulder and Plessix, 2008). Watanabe et al. (2004) introduced

Double Difference FWI (DDFWI) which subtracts the baseline dataset from the mon-

itor dataset and then inverts for this data difference. The advantage of this approach

is that when the survey repeatability is good, it is possible to directly invert for the

time-lapse change that caused the observed data difference. When the source and re-

ceiver locations are not perfectly repeated or when there is non-repeatable noise, the

data difference will contain effects other than those caused by the time-lapse change.

Other examples of synthetic DDFWI studies include the work of Denli et al. (2009)

and Asnaashari et al. (2011). Yang et al. (2015) compares parallel, sequential and

double-difference FWI and also investigates the robustness of DDFWI in the presence

of noise or imperfect repeatability. Joint FWI is the process where the baseline and

monitor model are inverted for simultaneously. Since no data subtraction takes place,

the baseline and monitor surveys are not required to have exactly the same acquisi-

tion. Regularization of the model difference can be used to mitigate non-repeatability

footprints in the reconstructed time-lapse estimate (Maharramov et al., 2014). Yang

(2014) gives an example of this when he obtains regularization parameters from a

preprocessing step and refers to them as a confidence map. This confidence map reg-

ularization is subsequently used for Joint FWI where the baseline and monitor sources

are displaced by more than a kilometer. Maharramov and Biondi (2014) use Total

Variation (TV) regularization for the model difference in Joint FWI, where they make

use of the idea that the model difference is expected to be localized. Zamanian et al.

(2014) obtains a very accurate time-lapse reconstruction under imperfect repeatabil-

ity by casting the joint inversion in a hierarchical Bayesian framework. Zhang and
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Huang (2013) demonstrate that even when repeatability is good, using regularization

to constrain velocity updates to the reservoir region can significantly enhance the

DDFWI time-lapse reconstruction.

Despite the theoretical work, there is a only limited number of applications of

time-lapse FWI on real data, see for instance the work of Queißer et al. (2010), Yang

(2014) and Maharramov et al. (2015). In these studies the acoustic approximation

is made on field data which inherently contain elastic effects from the elastic Earth.

To the best of our knowledge, there are no studies that investigate how this common

acoustic approximation affects the time-lapse reconstruction using elastic observed

data on a realistic geological model. It is important to build understanding for how

the P-velocity time-lapse estimate is influenced by elastic effects in the data in order to

evaluate field applications. The effect of the acoustic approximation on regular FWI

has been studied by for instance Mulder and Plessix (2008), but the effects on time-

lapse reconstruction have not received the same level of attention. The significance of

this chapter is that we use an approximately realistic acoustic workflow on a geological

model based on a real North Sea reservoir in which we model the data with an elastic

solver and investigate the error in the time-lapse results. In particular we focus

the investigation on the impact of elastic data on the P-wave time-lapse estimate.

The workflow we use is closely related to a standard FWI workflow, although a few

simplifying assumption are made. These simplifications are clearly documented when

they occur.

This chapter is organized as follows. We first introduce the theoretical back-

ground of time-lapse FWI. Then we generate constant density acoustic, variable

density acoustic and elastic data. We use this data in a constant density acoustic

inversion and use a different code to avoid the so-called inverse crime (Colton and

Kress, 1998; Kaipio and Somersalo, 2006). Since this is a synthetic study, we have

perfect knowledge of the true time-lapse change. With this knowledge we can evalu-

ate how increasingly realistic physics will impact the time-lapse reconstruction. We

then propose and demonstrate some techniques to partially overcome the artifacts in-

troduced to the P-wave time-lapse estimate by the elastic data. We recommend that
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time-lapse studies using real observed data should always include a synthetic study

like the one we present. Since the true model is available in such a synthetic study,

there is an opportunity to better understand which factors influence the accuracy of

the inversion. These factors may differ based on the acquisition and the complexities

of the Earth model. Based on the recommendations from the corresponding synthetic

study, the workflow on the real data can then be adapted accordingly.

5.2 Methodology

We study the performance of time-lapse FWI algorithms on a realistic synthetic

model. An internal reservoir simulator provides a 3D cube of approximate seismic

properties of a real North Sea field. A 2D slice is extracted from this cube and will

serve as the true Earth model in this study. We use the same elastic solver from the

commercial code SeisSpace to generate data with increasingly complicated physics

on this 2D slice. Even though the synthetic true data will contain more complicated

physics, we invert for 𝑉𝑝 only. By incrementally adding additional physics to the true

data we investigate how inversion for only 𝑉𝑝 is affected.

5.2.1 Baseline velocity model

Figures 5-1a, 5-1b and 5-1c show the true acoustic velocity 𝑉𝑝, the density 𝜌 and the

shear velocity 𝑉𝑠 respectively. The high velocity layer at depths slightly larger than

3 km represents the fractured chalk reservoir. The top of the anticline at 𝑥 = 3.9 km

and 𝑧 = 2.9 km shows lower 𝑉𝑝 and 𝜌 than the surrounding reservoir due to the

presence of hydrocarbons. The overburden consists primarily of approximately hori-

zontal layers, although some notable square-shaped deviations are visible right above

the anticline. These square-shaped regions have contrasting 𝑉𝑝 and density compared

to the sediments surrounding them. They represent gas clouds above the reservoir,

which have also been observed at other North sea fields (Liu et al., 2012). An eighty

meter deep water layer represents the shallow North Sea.

The original reservoir model contains a shear velocity gradient in the shallow
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sediments at the bottom of the ocean. In this model the shear velocity is zero in

the water layer and approximately 500.0 m/s at a depth of 50 m into the sediment.

Within this 50 m long gradient there are pixels with 𝑉𝑠 very close to zero and very

small corresponding wavelengths. In order to maintain a certain number of grid points

per wavelength, the grid spacing needs to be prohibitively fine. For this computational

reason the 𝑉𝑠 gradient is turned into a sharp jump. In reality a smoother 𝑉𝑠 gradient

will be present in the true Earth than the jump in Figure 5-1c.

5.2.2 Time-lapse perturbation

When producing hydrocarbons the pore fluids change. The pore pressure also changes

due to the extraction of hydrocarbons and the injection of water. Both the changes

in pressure and pore fluid affect the seismic properties 𝑉𝑝, 𝑉𝑠 and 𝜌. The baseline

and the monitor models we consider are separated in time by five years and are

obtained from a reservoir simulator. Figure 5-2 shows a zoomed in image of the true

time-lapse change investigated in this paper. The time-lapse change outside of this

zoomed region is negligible. The largest changes are taking place within the reservoir.

Two artificial elliptical time-lapse perturbations are added at the horizontal locations

4.2 km and 5.9 km. They represent proposed waste-water injection locations and are

added to the reservoir simulator obtained time-lapse change manually. Notice that

these regions have no 𝜌 or 𝑉𝑠 time-lapse change. In reality the injection of waste-water

and the associated pressure change will have an influence on 𝜌 and 𝑉𝑠 as well. A more

realistic time-lapse change is obtained when running the reservoir simulator with the

proposed waste-water injectors. But in the interest of time this is not done, since it

would require another expensive run of the reservoir simulator. Subsidence and the

associated velocity decrease due to overburden stretch is not simulated.

5.2.3 Data generation

We use the same 2D elastic solver from the commercial SeisSpace code to generate

data for three different scenarios.
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∙ Constant Density Acoustic (CDA): 𝑉𝑝(x) model, constant 𝜌, constant zero 𝑉𝑠

∙ Variable Density Acoustic (VDA): 𝑉𝑝(x) model, 𝜌(x) model, constant zero 𝑉𝑠

∙ Elastic (EL): 𝑉𝑝(x) model, 𝜌(x) model, 𝑉𝑠(x) model

with the 2D models displayed in Figures 5-1. This lets us investigate how increasingly

realistic physics influence 𝑉𝑝 only inversion. To limit the number of parameters we

consider we are not including free surface effects. In real North Sea data the shallow

water generates strong multiples, which either have to be removed from the data or

must be matched using the forward model. We also do not include changes in the

velocity and depth of the water column in this time-lapse study. The source is a Ricker

wavelet with a peak frequency of 6.0 Hz. In a real seismic survey higher frequency

sources are typically used. The data is then low-pass filtered and higher frequencies

are slowly added using criteria like those of Sirgue and Pratt (2004) to avoid cycle

skipping. Since such a frequency marching approach would add complexity to the

study, we choose to use the fixed wavelet instead with low enough peak frequency

(6.0 Hz) to converge towards the true Earth model. We simulate 40 shots with 250 m

spacing, covering the entire surface of the model. These shots are fired at a depth

of 12.5 m. There are 405 Life of Field Seismic (LoFS) pressure receivers with 25 m

spacing at a depth of 87.5 m. These receivers represent permanent cables that are

placed on the bottom of the ocean. The sea is 80 m deep in our model, so the

receivers are 7.5 m beneath the surface. This is deeper than for instance the 1.5 m

for the real world LoFS installed at Ekofisk (Bertrand et al., 2013). The reason for

placing the receivers deeper in our numerical study is that it makes them coincide

with the first sediment grid point in the 12.5 m uniformly spaced inversion grid. The

unrealistic burial depth of the LoFS receivers in our numerical study is expected to

have negligible effect, because the dominant wavelength for a 6.0 Hz peak frequency

Ricker wavelet is on the order of 300 m. Unlike streamers, the LoFS receiver locations

do not vary with shot. Because the cables are permanent and there is no subsidence

in this study, the receiver locations in the baseline and monitor surveys are exactly

the same. The grid spacing we use to generate the true data is finer than that of
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the uniform 12.5 m of the inversion grid. Due to the primarily horizontal geology,

the vertical grid spacing is finer than the horizontal spacing in the true model. The

horizontal spacing we use is 12.5 m and the vertical spacing is 2.0 m.

The baseline shot gathers for a source at 𝑥 = 2.0 km for the three different

scenarios are displayed in Figure 5-3. Three prominent events are labeled in the CDA

shot gather. The headwave traveling at the bottom of the ocean is given the number

one. This wave travels with the speed of the shallow sediment, which is slightly less

than 2000 m/s. The event marked with the number two is the direct wave hitting

the ocean bottom at a very flat angle. Due to the large 𝑉𝑝 contrast at the reservoir,

the top of reservoir reflection has a very large amplitude. This is the event marked

with the number three.

For the VDA scenario the variable density of Figure 5-1b is added to the solver.

We see that the VDA shot gather in Figure 5-3b looks very similar to the CDA one

from Figure 5-3a, with most changes being in the amplitude. The event with the

number four for instance has a noticeably different amplitude from the one in the

CDA shot gather. In the CDA shot gather this event is caused by a decrease in 𝑉𝑝

along the entire horizontal extent of the model at 𝑧 = 1.5 km. This decrease in 𝑉𝑝

coincides with the corresponding low density layer in Figure 5-1b, further enhancing

the impedance contrast and therefore affecting the amplitude of event four. Another

important difference between VDA and CDA is that at large offset the direct wave

has a different phase. The direct wave hits the ocean bottom where the receivers

are buried at a post-critical angle and is therefore expected to experience a phase

shift. This phase shift is determined by the contrast in material parameters as is

discussed by Zhu and McMechan (2012) for spherical wavefronts. The addition of the

large density contrast at the ocean bottom in VDA is expected to result in a different

phase shift.

Next we add the variable 𝑉𝑠 from Figure 5-1c to the VDA simulation to get a

fully elastic simulation. The shot gather in Figure 5-3c is markedly different from

the acoustic ones. We see that several slow events are introduced in the fully elastic

simulation. The slowest event marked with the number 5 travels at a velocity slightly
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less than the shear velocity. This event is the Scholte wave, which is also known as

the mud roll. All the post-critical reflections will have their phase shift determined

by the 𝑉𝑝, 𝜌 and 𝑉𝑠 contrasts at layers.

5.2.4 Baseline inversion algorithm

The first step of time-lapse FWI is to invert for the baseline model using FWI (Lailly,

1983; Tarantola, 1984; Pratt, 1999). Because we make the acoustic approximation we

invert for the P-velocity, even if the true datasets contains more complicated physics.

FWI minimizes the objective function

𝜒(𝑚) =
⃒⃒⃒⃒
𝑑− S𝑢(𝑚)

⃒⃒⃒⃒2
2

(5.1)

where 𝑑 is the true data, S is the sampling operator and 𝑢(𝑚) is the wavefield in the

current model estimate 𝑚 and ||.||22 is the squared 𝑙2 norm.

Colton and Kress (1998) use the term ’inverse crime’ when referring to the pro-

cedure of using the same solver to generate the true data and to generate the data

on the current model estimate. They mention that this so-called inverse crime can

lead to trivial inversion and therefore recommend that the solver used in the inversion

should have no connection to the solver used for the generation of the synthetic true

data. By using the Python Seismic Inversion Toolbox (PySIT) for constant density

acoustic inversion of the true data from the SeisSpace code (Figure 5-3), we avoid the

inverse crime and the potentially trivial inversion associated with it.

The amplitude in the EL true data is affected by for instance P-S conversions and

variable density. Because of this we cannot invert directly for the amplitude using

a P-velocity only inversion and so an amplitude normalization operator is added to

(5.1). To do this, at each time sample within a trace we calculate the energy within

a certain time window. We do this for both the true data and for the data on the

current model estimate. We then normalize one to the other by multiplying by this

precomputed energy-ratio trace. This gives a scaling factor that is a function of time

as well as source and receiver positions.
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The objective function in (5.1) can either be minimized in the time or the frequency

domain. In this paper we use the time-domain and avoid cycle skipping by slowly

increasing the time-window of inversion. The source wavelet has a 6Hz peak frequency

and therefore a relatively large wavelength. Real field data is usually recorded using

a higher peak frequency wavelet, but low frequency components can be extracted

through for instance a band-pass filter. The full Newton method (see for instance

(Virieux and Operto, 2009)) solves the following system of equations at each iteration

𝑠𝑘 = H−1
𝑘 𝑔𝑘 (5.2)

where 𝑠𝑘 is the search direction vector, 𝐻𝑘 is the Hessian and 𝑔𝑘 is the gradient

at nonlinear iteration 𝑘. For minimizing (5.1) we use the iterative L-BFGS quasi-

Newton optimization algorithm (Nocedal and Wright, 2006a). This algorithm uses

the gradients from earlier nonlinear iterations to approximate the application of H−1
𝑘

to a vector. It does this without forming the prohibitively large matrix H−1
𝑘 in

memory. Brossier et al. (2009) show an example of an application of L-BFGS to

FWI.

5.2.5 Time-lapse algorithms

In this paper we investigate the performance of the following FWI time-lapse algo-

rithms.

∙ Parallel FWI

∙ Double Difference FWI (DDFWI)

∙ Joint FWI

To the best of our knowledge, there are only very limited field studies of time-lapse

FWI algorithms. For instance, Watanabe et al. (2004) use DDFWI in a cross-well

survey where they invert for changes in acoustic velocity 𝑉𝑝. Yang (2014) uses DDFWI

and Parallel FWI as reference to also obtain changes in 𝑉𝑝 at the Valhall reservoir
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in the North Sea. In both of these examples the field data contain elastic effects

and the inversion is for the time-lapse changes in 𝑉𝑝. It is poorly understood how

the imprint of more complicated physics on the data affect the quality of the these

inversions. In this study we start with CDA data and then gradually transition to

more complicated physics (i.e. VDA, EL) to better understand their impact on the

time-lapse inversion. We use PySIT to avoid the inverse crime for the same reason as

for the baseline inversion. We now introduce the different time-lapse FWI algorithms.

Parallel FWI

Starting from the same initial model 𝑚𝑖, parallel FWI minimizes the following two

FWI objective functions independently for the same number of iterations

𝜒0(𝑚0) =
⃒⃒⃒⃒
𝑑0 − S𝑢(𝑚0)

⃒⃒⃒⃒2
2

(5.3)

𝜒1(𝑚1) =
⃒⃒⃒⃒
𝑑1 − S𝑢(𝑚1)

⃒⃒⃒⃒2
2
, (5.4)

where 𝑑0 is the baseline data and 𝑑1 is the monitor data. The FWI objective functions

follow notation of (5.1). The inverted baseline model 𝑚0 is subtracted from the

inverted baseline model 𝑚1 to obtain the parallel FWI time-lapse estimate. Parallel

FWI is arguably the most straight-forward way to use the entire waveform in a time-

lapse context. However, it is well documented (Maharramov et al., 2014; Watanabe

et al., 2004; Yang, 2014) that the Parallel FWI time-lapse estimate is poor. In the

context of this paper we use it as a benchmark.

DDFWI

Double Difference FWI first inverts for the baseline model 𝑚0 by minimizing

𝜒(𝑚0) =
⃒⃒⃒⃒
𝑑0 − S𝑢(𝑚0)

⃒⃒⃒⃒2
2

(5.5)
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In any nontrivial FWI, a part of the data will remain unexplained after inversion.

This so-called residual is defined as the following for our baseline inversion

𝑟0 = 𝑑0 − S𝑢(𝑚0). (5.6)

We subtract the unexplained 𝑟0 from the monitor data 𝑑1, resulting in modified

monitor data ̂︀𝑑1.
̂︀𝑑1 = 𝑑1 − 𝑟0

= 𝑑1 − (𝑑0 − S𝑢(𝑚0)) (5.7)

We then minimize a standard FWI objective function with ̂︀𝑑1 as the data.
̂︀𝜒(𝑚1) =

⃒⃒⃒⃒ ̂︀𝑑1 − S𝑢(𝑚0)
⃒⃒⃒⃒2
2

=
⃒⃒⃒⃒
(𝑑1 − 𝑑0)− (S𝑢(𝑚1)− S𝑢(𝑚0))

⃒⃒⃒⃒
(5.8)

=
⃒⃒⃒⃒
(S𝑢(𝑚0) + 𝛿𝑑)− S𝑢(𝑚1),

⃒⃒⃒⃒
(5.9)

where (5.8) shows the double difference form and 𝛿𝑑 = 𝑑1 − 𝑑0. We invert only

for 𝑚1 and keep 𝑚0 fixed as the inverted baseline model. The equivalent (5.9) shows

that the initial residual is 𝛿𝑑 if we choose 𝑚0 as initial model for 𝑚1. The DDFWI

algorithm therefore performs data subtraction to focus on the time-lapse signal 𝛿𝑑

in the true data. This data subtraction assumes perfect repeatability of source and

receiver locations and the source wavelet. In reality these conditions will not be met

exactly, resulting in artifacts investigated by for instance Yang (2014).

Joint FWI

Joint FWI differs from Parallel FWI in that it inverts for the baseline and the monitor

model simultaneously instead of independently

𝜒0,1(𝑚0,𝑚1) =
⃒⃒⃒⃒
𝑑0 − S𝑢(𝑚0)

⃒⃒⃒⃒2
2
+
⃒⃒⃒⃒
𝑑1 − S𝑢(𝑚1)

⃒⃒⃒⃒2
2
. (5.10)
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After inversion, the inverted baseline model 𝑚0 is again subtracted from the inverted

monitor model 𝑚1. The global minimum of the Joint FWI objective in (5.10) is equal

to the sum of the global minima of baseline (5.3) and monitor (5.4) of Parallel FWI.

In addition there is no direct cross-talk between 𝑚0 and 𝑚1. Taking the derivative

of (5.10) with respect to 𝑚0 does not involve 𝑚1 and vice-versa. In Appendix C we

demonstrate why Joint FWI results in a better time-lapse estimate than Parallel FWI

despite these similarities.

Confidence map regularization

Recent studies by Yang (2014) and Willemsen et al. (2015b) (i.e. chapter 4) have

investigated confidence maps to regularize the time-lapse inversion. These confidence

maps are computed in the model space and locate regions where time-lapse change is

likely given the baseline and monitor data. The confidence map introduced in chapter

4 minimizes the objective function

̂︀𝜒(𝑚) =
⃒⃒⃒⃒ ̂︀𝑑0 − S𝑢(𝑚)

⃒⃒⃒⃒2
2
+
⃒⃒⃒⃒ ̂︀𝑑1 − S𝑢(𝑚)

⃒⃒⃒⃒2
2
, (5.11)

where we invert for a single model 𝑚, matching both the baseline and the monitor

data. Intuitively we expect the model 𝑚 to be an ’intermediate model’ at locations

where the true baseline and monitor models differ. While iteratively minimizing (5.11)

with a local inversion method of choice, we save the gradients for the baseline term

and for the monitor term. At locations of true time-lapse change, the baseline and

the monitor gradients are likely to have opposing signs evaluated on the intermediate

model. In order words, the baseline and monitor data attempt to perturb the inter-

mediate model in opposing directions at locations of true time-lapse change. This

suspected correlation between conflicting gradient information and regions of time-

lapse change suggests that a confidence map can be obtained by looking at regions in

the model where the baseline and monitor gradients consistently have opposing sign
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during the inversion. One particular choice we look at is:

𝛽𝑔(𝑥) =
𝑛∑︁
𝑖

[︂
|𝑠𝑔𝑛(𝑔0,𝑖(𝑥))− 𝑠𝑔𝑛(𝑔1,𝑖(𝑥))|

×
(︂
1

2
(|𝑔0,𝑖(𝑥)|+ |𝑔1,𝑖(𝑥)|)

)︂]︂
, (5.12)

where 𝛽𝑔(𝑥) is the gradient based confidence map, 𝑔0,𝑖 and 𝑔1,𝑖 are the baseline gradi-

ent and monitor gradient in iteration 𝑖 respectively and 𝑠𝑔𝑛 is the sign function. The

first term within the summation is nonzero only when the gradients have opposing

sign, corresponding to the idea that regions of time-lapse change are likely to have

opposing baseline and monitor gradients when evaluated on the intermediate model.

The second term acts as weighing with the magnitude of the gradient. The sum-

mation stacks over all 𝑛 inversion iterations of (5.11) in order to reduce noise. The

regularization term

𝜖

⃒⃒⃒⃒
𝑚0(𝑥)−𝑚1(𝑥)

𝛽𝑔(𝑥)

⃒⃒⃒⃒2
𝑚

, (5.13)

can be added to (5.10) or (5.9) to regularize the time-lapse inversion. It discourages

updates in regions with low confidence 𝛽𝑔. In practice we use illumination compen-

sation by Shin et al. (2001) to compensate for differences in gradient amplitude due

to different illuminations. We normalize 𝛽𝑔 to have a maximum value of 1.0 and we

determine a minimum 𝛽𝑔 value to avoid instability when dividing by very small 𝛽𝑔.

5.3 Results

We use the CDA, VDA and elastic data generated by the SeisSpace commercial code

as input for the constant density P-wave inversion in PySIT. Figure 5-3 shows selected

shot gathers for one of the sources at 𝑥 = 2.0 km. The inversion grid we use has a uni-

form spacing of 12.5 m in both the horizontal and the vertical direction. Figure 5-1a

shows the reference true P-wave velocity model model. Figure 5-4a shows the initial

model from which we start the inversion. Realistically, the initial model should be

constructed using standard methods for velocity analysis. Instead we heavily smooth
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the true P-wave velocity model while preserving the water layer and average shallow

sediment velocity. It is reasonable to know the depth of the water layer with high ac-

curacy and the P-wave velocity contrast at the ocean bottom. Figure 5-4b shows the

inverse crime results, where we both generate the true data on Figure 5-1a and invert

using the PySIT code. Figure 5-4c displays the inversion results using CDA data

generated by the SeisSpace code. The comparison of Figures 5-4b and 5-4c demon-

strates the impact of the inverse crime on the baseline inversion. When using CDA

data generated by the SeisSpace code we observe minor perturbations around source

and receiver locations, wing-shaped artifacts around the gas clouds, a deterioration

of the reservoir velocity and an over-all noisier velocity reconstruction. Figures 5-4d

and 5-4e show how the addition of extra physics (VDA, EL) impact the inversion for

P-wave velocity. Artifacts around the source and receiver locations increase in ampli-

tude, especially for the VDA data. Due to the shallow ocean and the buried cables

the wavefront comes in at a post-critical angle, resulting in a phase-shift depending

on contrast in P-velocity, S-velocity and density. This phase shift is most prominent

in the direct wave in the VDA shot gather in Figure 5-3b. The addition of variable

density and S-wave velocity also deteriorates the reservoir reconstruction and the gas

cloud outline. But overall the baseline velocity model still contains many of the char-

acteristics of the true velocity model. We notice that the large amplitude shear wave

events in 5-3c do not impact the inversion significantly. The events have a very small

apparent velocity and will therefore not interact constructively with the simulated

wavefield in the current model estimate, resulting in a negligible contribution to the

FWI gradient.

The perturbations at source and receiver locations in Figures 5-4c - 5-4e can be

prevented by masking and tapering the shallow part of the gradient. This prevents

updates in the shallowest part of the model where the initial velocity model is quite

accurate. We performed such a masked inversion but noticed that the overall quality

of the inverted baseline model was slightly reduced. This suggests that the source-

receiver artifacts in Figures 5-4c - 5-4e do not deteriorate the resolution at depth, but

act primarily as fudge factors to compensate for differences in the forward models of
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PySIT and SeisSpace. We decide not to use the masked inverted baseline models.

Ray tracing experiments show that even for large source-receiver offsets the diving

waves are mostly constrained to the overburden sediment. This means that the chalk

layer is predominantly sampled by reflections. We think this explains why the chalk

layer in Figures 5-4b - 5-4e is inverted less accurately than the overburden. The chalk

layer reflections add primarily high-wavenumber oscillatory updates to the smooth

initial model. Without diving waves it is hard to add the larger scale features. With

the baseline models available we now investigate the different time-lapse algorithms.

5.3.1 Parallel FWI

For Parallel FWI we first select an initial model. Here we compare two choices for

the initial model 𝑚𝑖:

1. The smooth initial model from Figure 5-4a

2. The inverted baseline model selected from Figures 5-4b - 5-4e for the corre-

sponding true data

Figures 5-5a and 5-5b show inverse crime results, where the initial model is the

smooth initial model of Figure 5-4a or the inverted baseline model of 5-4b respectively.

As a comparison we also show the CDA data generated by the SeisSpace code. These

results are found in Figures 5-5c and 5-5d. Compared to the true P-velocity time-

lapse in Figure 5-2a we observe a lot of artifacts, especially when we avoid the inverse

crime in Figures 5-5c and 5-5d. This would only get worse when additional physics

(VDA, EL) is introduced. This is no surprise, as mentioned earlier it is well known

that Parallel FWI does not yield desirable results. But since it is a straight-forward

application of FWI to the time-lapse problem it serves as reference. Figure 5-6 shows

the corresponding vertical profiles through the time-lapse sections.
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5.3.2 DDFWI

Figures 5-7a - 5-7d display the DDFWI time-lapse inversion results on their corre-

sponding baseline models from Figures 5-4b - 5-4e. To obtain these results we first

subtract the baseline data from the monitor data to obtain the true time-lapse signal

𝛿𝑑 for each of the four scenarios we investigate. Then this data difference is used in

equation 5.9. Even though we only show the time-lapse results within a zoomed-in

section of the full domain, the inversion updates the full computational model. Figure

5-7a demonstrates the inverse crime DDFWI result. Figures 5-7b - 5-7d demonstrate

the impact of increasingly realistic physics in the true data on the acoustic approxi-

mation. By comparing Figures 5-7a and 5-7b we see that the inverse crime dataset

gives slightly better results than the CDA dataset, but the impact is limited. DDFWI

clearly gives a more accurate reconstruction than the Parallel FWI results in Figure

5-5a - 5-5d.

The VDA dataset adds variable density effects to the CDA dataset. Using this

VDA dataset we obtain the DDFWI results of Figure 5-7c. Finally, when using the

EL dataset we obtain Figure 5-7d. We see that this process of adding physics to

the true data results in a deterioration of the time-lapse estimate using the acoustic

approximation. This is not surprising since the mismatch between the acoustic ap-

proximation and the physics of the true data increases. Vertical profiles through these

Figures tell the same story in Figure 5-8. In this figure we see that the amplitude

of the reconstruction at the depth 2.85 km gradually decreases when transitioning

from inverse crime data to EL data. In the EL DDFWI we also observe that the

positive overshoot at depth of 3.0 km has larger amplitude than the negative velocity

change at the true perturbation at depth 2.85 km. Not only do we significantly un-

derestimate the true time-lapse change, we also introduce an artifact which is more

prominent than this change. Figure 5-7 shows that the time-lapse estimate becomes

more smeared out with increasing data complexity.
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5.3.3 Joint FWI

The Joint FWI (J-FWI) results are very similar to the DDFWI results in this study.

This similarity may be explained by the observation in Appendix C, where we show

that similar to DDFWI, Joint FWI directly inverts for the true time-lapse signal 𝛿𝑑,

at least in the first iteration. Figure 5-9 displays the results for the EL data. We again

observe a highly smeared time-lapse estimate with sidelobes of comparable amplitude

to the estimate at the true reservoir time-lapse change location at depth 2.85 km. A

vertical profile in Figure 5-10 compares the elastic DDFWI and J-FWI. This figure

shows that both algorithms produce estimates that are very similar for the EL data

in this study. Both results significantly underestimate the true time-lapse change at

the reservoir and both produce a very large amplitude artifact directly below it. Both

algorithms started from the elastic baseline model of Figure 5-4e and both use the

same elastic true data. In order to better understand these artifacts due to the elastic

data, we now investigate the impact of both the elastic physics and the quality of the

elastic initial model on the time-lapse estimates.

5.3.4 Elastic data

Comparing Figures 5-7c and 5-7d, we observe that DDFWI deteriorates significantly

when the true data is elastic. A very similar undesirable result is observed when we

use J-FWI on the elastic data. This raises the question if the elastic effects in the

data cause the significant deterioration. To investigate this hypothesis we inspect the

true data more closely.

Figure 5-11a zooms in on a section of the VDA shot gather of Figure 5-3b at

large offset. In this window it is very similar to the CDA shot gather which is

not plotted here. The most prominent event in Figure 5-11a is the top of reservoir

reflection. Similarly, Figure 5-11b is a zoom of the EL shot gather of Figure 5-3c.

When comparing Figures 5-11a and 5-11b we observe a striking difference in the top of

reservoir reflection at this large offset. The polarity appears reversed and the arrival

time of the peak is different. Not visible in this Figure is that at smaller source-
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receiver offsets the CDA and EL top of reservoir reflections gradually become more

similar in both the shape and arrival times of the peak. Within an offset range of

approximately 2.0 km the top of reservoir reflection is virtually indistinguishable in

the CDA, VDA and EL gathers. Ray tracing experiments on the true velocity model

suggest that source-receiver offsets of roughly 3.0 km hit the reservoir at the critical

angle. Zhu and McMechan (2012) demonstrate that spherical wavefronts will start

experiencing phase-shifts at incidence angles before the critical angle. This phase

shift grows and approaches 180 degrees (polarity reversal) at very large (i.e. near-

flat) incidence angles. The transition of approximately identical reflections at near

offset to an approximate polarity flip at large offsets in our data, together with the ray

tracing observations, suggest that the top of reservoir reflections become post-critical.

Figure 5-11c shows part of the VDA time-lapse gather 𝛿𝑑𝑉 𝐷𝐴, where the baseline

P-velocity and density are perturbed by the true time-lapse from Figures 5-2a and

5-2b respectively. Figure 5-11d shows the EL equivalent 𝛿𝑑𝐸𝐿, where in addition

the S-velocity has time-lapse from Figure 5-2c. Notice that the elliptical overburden

perturbations are only present in the true P-velocity time-lapse. Their effect on a top

of reservoir reflection passing through them is a time-delay. Because the postcritical

top of reservoir reflection is not the same in the VDA and EL baseline shot gathers,

delaying it causes the time-lapse shot gathers 𝛿𝑑𝑉 𝐷𝐴 and 𝛿𝑑𝐸𝐿 to be different as well.

In addition, time-lapse changes in the reservoir change the material contrast at the

chalk layer. As a result the amplitude and phase-shift of the post-critical reflections

change in Figures 5-11a and 5-11b, as predicted by the Zoeppritz equations. This

results in an additional difference between 𝛿𝑑𝑉 𝐷𝐴 and 𝛿𝑑𝐸𝐿. For the near-offset top-

of-reservoir reflections where the baseline signals are identical, 𝛿𝑑𝑉 𝐷𝐴 and 𝛿𝑑𝐸𝐿 are

close to identical.

It is important to realize that the norm in the DDFWI objective function in (5.9)

represents integration of the residual over time for each source-receiver combination

and a subsequent summation over all sources and receivers. Figure 5-12 plots the

contribution to the EL DDFWI objective function of each source-receiver combination

before this summation. In the first iteration of DDFWI our starting model is the
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inverted baseline model and the residual is the true time-lapse signal 𝛿𝑑. Figure

5-12 therefore shows that 𝛿𝑑 is particularly large for certain sources around 2 km

and receivers around 8 km and the other way around through reciprocity. The large

amplitude post-critical top of reservoir reflection experiences the time delay of the

large elliptical overburden perturbation on the right and the perturbations at the

reservoir, resulting in large amplitude 𝛿𝑑𝐸𝐿. The left overburden perturbation has a

much smaller velocity change and covers a much smaller area, making its impact on

the reflection travel times relatively small.

The EL DDFWI inversion result, whose zoomed in section is shown in Figure 5-7d,

has a lower objective value (i.e. the sum over all the source-receiver contributions)

than the starting model. This does not imply that the objective function contribu-

tion of each source-receiver combination improved uniformly. Figure 5-13 shows the

logarithm of the relative change of each source-receiver contribution. Source-receiver

combinations represented by red colors have been improved (i.e. decreased objec-

tive value contribution). Blue colors represent source-receiver combinations whose

objective value contribution has actually gone up. We use a logarithmic plot of the

difference, because without it a plot of the difference will be dominated by the im-

provement at the locations of the large amplitude blobs in 5-12. This illustrates the

dominant effect on the inversion of the post-critical reflections experiencing the reser-

voir change and passing through the right elliptical overburden perturbation. We see

that the elastic DDFWI time-lapse estimate corresponding to Figure 5-7d reduces

the initially large objective function contribution of these events by approximately a

factor of 100. But we demonstrate in Figure 5-11 that these events are different in

𝛿𝑑𝐸𝐿 than they are in 𝛿𝑑𝑉 𝐷𝐴 because the phase shift at the reservoir depends on the

elastic parameters. Since the EL DDFWI inversion inverts for these large amplitude

differing events in particular we should expect different results compared to VDA or

CDA DDFWI inversions. This is what we observe when we compare Figures 5-7b

and 5-7c to 5-7d. We also observe in Figure 5-13 that at the end of the inversion

a significant share of the near-offset source-receiver combinations has deteriorated.

This includes a substantial number of source-receiver combinations centered around
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the reservoir time-lapse change between 𝑥 = 3.5 km and 𝑥 = 4.5 km. In other words,

the DDFWI inversion focuses on the large amplitude 𝛿𝑑 events corresponding to post-

critical reflections, but when matching these many near-offset reflections deteriorate.

The negative impact of post-critical reflections on the baseline inversion using the

acoustic approximation has been documented by for instance Mulder and Plessix

(2008). We observe that the impact on the time-lapse inversion is more obvious than

on the baseline inversion in this study.

5.3.5 Limiting the maximum offset

We now use the observation that the near offset 𝛿𝑑 is similar in CDA, VDA and

EL data, unlike the post-critical reflections. This similar 𝛿𝑑 suggests that we should

obtain similar results when inverting for near-offset EL time-lapse data as when using

near-offset VDA or CDA data. Figure 5-14 shows the DDFWI objective function

contribution when inverting for the EL data with max source-receiver offset of 2.0 km.

The initial objective function contributions still correspond to Figure 5-12. We now

only invert for the near-offsets for which 𝛿𝑑𝐸𝐿 is similar to 𝛿𝑑𝑉 𝐷𝐴 and 𝛿𝑑𝐶𝐷𝐴. With

this approach we avoid the post-critical reflections we cannot match with acoustic

physics. In this way we hope to avoid the elastic artifacts which were apparent in the

full offset elastic DDFWI result of Figure 5-7d.

Figure 5-15 shows the EL DDFWI time-lapse estimate when limiting the maximum

offset to 2.0 km. Compared to full offset equivalent in Figure 5-7d we observe an

improved reconstruction at the reservoir. In the full offset DDFWI result of Figure

5-7d we observe that the maximum amplitude in the reservoir region has positive

sign (blue), even though the true time-lapse change at the reservoir in Figure 5-2a

is predominantly negative (red). When we limit the maximum offset to 2.0 km in

Figure 5-15 the largest amplitude is negative (red), as is the true reservoir time-lapse.

Despite these improvements, the reconstructed 𝑉𝑝 still has much lower amplitude than

in the true time-lapse perturbation and the location is also slightly too deep. We also

note that the reconstruction of the overburden time-lapse perturbations deteriorates

in Figure 5-15 compared to when we use all offsets in Figure 5-7d. By limiting
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the maximum offset range we potentially lose diving waves and deeper reflections

passing through the perturbations. Instead of limiting the offset to remove the post-

critical part of the top-of-reservoir reflection, a better approach would be to mute

the post-critical part of the top-of-reservoir reflection. This leaves all other beneficial

large-offset events like diving waves intact. The only reason we limit offsets is that it

is easier to implement in this numerical investigation.

Figure 5-15 marks an oscillatory perturbation by an ellipse. This event is less

pronounced when all offsets are used and our interpretation is that it caused by the

insufficient reconstruction of the right overburden perturbation. For instance, a zero

offset top-of-reservoir reflection will pass through the right overburden perturbation,

hit the reservoir, and will then return to the surface by passing through the overburden

perturbation again. In the true data the right overburden perturbation delays the top

of reservoir reflection right below it by a small amount, resulting in a 𝛿𝑑 concentrated

around an arrival time of the top of reservoir reflection. This will be backpropagated

as a reflector in the time-lapse estimate in the ellipse, unless the right overburden

perturbation would accurately delay the top-of-reservoir reflection on the inverted

baseline model by the required amount. But we observe that this is not the case

in Figure 5-15, because the amplitude of the right overburden perturbation is much

smaller than in the true time-lapse of 5-2a.

5.3.6 Role of the initial model

So far we did EL DDFWI on the EL baseline model of Figure 5-4e. This EL baseline

model is the result of using the elastic data over the full offset range. This EL baseline

inversion of Figure 5-4e therefore includes the post-critical reflections. The acoustic

baseline inversion attempts to match the phase shift and eventually polarity reversal

of the large amplitude top of reservoir reflection at large offsets. Since we make the

acoustic approximation and invert for only 𝑉𝑝, we cannot accurately model the phase

of the post-critical reflection. The result is that the baseline velocity model of Figure

5-4e contains inaccuracies that compensate for this, even if they are not immediately

obvious by just looking at the figure. We therefore want to investigate how this EL
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baseline model affects the EL DDFWI inversion. The way we investigate this is by

replacing the EL baseline model with a better baseline model not polluted by the

post-critical reflections. In this study we choose as this better baseline model the

inverted CDA baseline model of Figure 5-4c. This baseline velocity model can be

seen as the result of a hypothetical scenario where processing perfectly removed the

elastic effects from the baseline model. EL DDFWI on this baseline model is therefore

an indication of the biggest improvement we can expect by using a better baseline

model. With this good baseline velocity model we again investigate DDFWI using

the elastic data. As before we limit the maximum offset to 2.0km to avoid the post-

critical reflections. Figure 5-16 shows that the amplitude at the reservoir is closer

to the true amplitude now. At the same time, the inaccurate event in the ellipse

of Figure 5-4e is still there in Figure 5-16. We interpret this as being caused by the

inadequate reconstruction of the right overburden perturbation, which is still the case

here.

5.3.7 Gradient based confidence map

While not the main objective of this study, regularization is an important component

of a practical time-lapse FWI workflow. In this study we investigate the gradient

based confidence map using the EL baseline and monitor data. We perform 20 inver-

sion iterations on equation 5.11 while starting from the velocity model in Figure 5-4e.

While minimizing the objective function we record the baseline and monitor gradi-

ents at each iteration. Using (5.12) we construct the confidence map whose zoomed

in section is displayed in Figure 5-17 after normalization so that the maximum value

is 1.0. In Figure 5-18 we plot the evolution of the illumination compensated baseline

and monitor gradients at four pixels indicated by four stars with different colors. The

blue star is at a pixel at the top of the reservoir in the large amplitude time-lapse

region. The red star is in the thin and low amplitude left overburden perturbation.

The magenta star is in the right overburden perturbation and the yellow star is in a

region where there is no time-lapse change. The yellow star lies in the region where

and artificial time-lapse reflector is seen in Figures 5-15 and 5-16. Regions of high
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confidence such as the those represented by the blue and magenta stars exhibit large

amplitude gradients with opposite sign as expected. Regions of low confidence (e.g.

red and yellow star) tend to have gradients with low amplitude and the same sign.

We see in Figure 5-17 that we have high confidence that there is a time-lapse

change around the boundary of the reservoir. In addition we have high confidence

at the right overburden perturbation area. We also have high confidence in an in-

correct wing-shaped region that comes in from the top-left to the reservoir and then

moves to the top-right of Figure 5-17. This feature extends for some distance out-

side of this zoomed-in section and moves towards the surface at 𝑥 = 2.0 km on the

left and 𝑥 = 8.0 km on the right. Recall the large amplitude event in Figure 5-12

at 𝑥 = 2.0 km and 𝑥 = 8.0 km which we interpreted as being the post-critical top

of reservoir reflection being perturbed by the reservoir perturbation and delayed by

the right overburden perturbation. The gradient sign is not only opposite at these

true time-lapse regions, but also along the remainder of the first Fresnel zone of the

post-critical top of reservoir reflection. We believe this explains the wing-shaped

high-confidence artifact in Figure 5-17. We also see that the confidence map incor-

rectly gives low confidence at the left elliptical overburden perturbation perturbation

represented by the red star. We invert with a 6.0 Hz peak frequency Ricker wavelet

without frequency marching. The dominant wavelength in the region around the left

overburden perturbation is therefore 350 m - 400 m. The travel time delay caused by

this thin (≈ 25 m) and low amplitude time-lapse change has only a small effect on

these long wavelengths. In the full offset EL DDFWI result of Figure 5-7d we also

observe that the left overburden perturbation is also hard to detect.

Despite the imperfections in the confidence map we use it to regularize DDFWI

through (5.13) using exactly the same setting as we used for Figure 5-16. The zoomed

in section can be seen in Figure 5-19. In the ellipse in the bottom right corner we see

that the artificial event which was present in Figures 5-15 and 5-16 is significantly

weaker. The right overburden perturbation is very weakly recovered, just as in Figures

5-15 and 5-16 when we also limited the max offset to 2.0 km. In Figure 5-20 we plot

vertical profiles through Figures 5-15, 5-16 and the new Figure 5-19 to compare them.
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We see that the addition of the confidence map does not make the time-lapse estimate

in Figure 5-19 differ that much from Figure 5-16 along the vertical profile. The left

overburden reconstruction has slightly deteriorated, but the amplitude estimate at the

reservoir has improved and the positive sidelobe right below it has been truncated.

5.4 Discussion

The results we show demonstrate the effect of more realistic physics in the data on

an acoustic time-lapse inversion. To keep the number of scenarios manageable we

restricted parts of the workflow. For instance, we did not investigate the role of

bandpass filtering the wavelet and the data used in inversion. In all time-lapse inver-

sion results displayed in this chapter we have difficulty inverting for the left elliptical

overburden time-lapse perturbation, even with DDFWI under the ideal conditions of

inverse crime data as can be seen in Figures 5-7a and 5-8. The peak frequency of

our Ricker wavelet is 6 Hz with a corresponding dominant wavelength of more than

300 m in the 2000 m/s sediments. The left elliptical overburden perturbation has a

thickness of approximately 25 m and is therefore much smaller than the dominant

wavelength. In addition to this, the amplitude of the time-lapse change is also very

small. Just as in conventional FWI, a frequency marching scheme where the band-

pass filter is incrementally moved to higher frequencies as the model improves may

be helpful. Moving the bandpass to higher frequencies results in shorter wavelengths

that are more sensitive to travel time delays and thin reflectors. The effects of such

a procedure on the time-lapse inversion results is not included in our analysis.

When limiting the maximum offset to 2.0 km in Figures 5-15, 5-16 and 5-19 we

observe that the reconstruction of the right overburden perturbation deteriorates sig-

nificantly. When limiting the maximum offset we may lose potential diving waves or

deeper reflections in addition to the desired loss of the large-amplitude postcritical

reservoir reflection passing through the right overburden perturbation. Without div-

ing waves and deeper reflections it is harder to accurately reconstruct the amplitude

and shape of this perturbation. A better alternative is to specifically mute the prob-
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lematic post-critical reflection without limiting the overall maximum source-receiver

offset.

The baseline model in Figure 5-4e is obtained using the full offset EL data. The

inversion therefore included the post-critical reflections in the inversion. Figures 5-11a

and 5-11b demonstrate that this top-of-reservoir reflection has a different phase in the

EL data and that the peak is centered around a slightly different time. We therefore

expect that the inverted baseline model contains (potentially kinematic) artifacts.

We demonstrate the importance of the baseline model on DDFWI in Figures 5-15

and 5-16, by exchanging the EL baseline model for a better one. In this study we

choose the CDA baseline model as this better baseline model. The CDA baseline

model represents the optimal baseline model that would (hypothetically) have been

obtained if we had been able to perfectly remove all elastic effects in the baseline

inversion. Using this CDA baseline model, DDFWI inversion of the near-offset EL

data results in a significantly better time-lapse estimate in the reservoir. In reality the

baseline model will always contain some artifacts as a result of the elastic effects in

the data, even if post-critical reflections are carefully removed. But when the baseline

model is closer to what would have been obtained on data with problematic physics

perfectly removed, we demonstrate that better DDFWI results are expected.

The confidence map 𝛽𝑔 we compute was obtained by using the full offset elas-

tic data. It therefore contains the problematic large-amplitude post-critical top-

of-reservoir reflections. This event passes through the right elliptical overburden

perturbation. When minimizing (5.11) we approach an intermediate model whose

top-of-reservoir reflection will be slightly delayed compared to the monitor data and

advanced compared to the baseline data. The baseline and monitor gradients are

therefore of opposing sign in a region more or less surrounding the first Fresnel zone

of the post-critical top-of-reservoir reflection. This causes an artifact in the confidence

map 𝛽𝑔 in Figure 5-17. Despite this artifact, 𝛽𝑔 still has advantages over uniform reg-

ularization corresponding to a confidence map 𝛽𝑔 which is uniformly 1.0 everywhere.

Even though we have confidence in regions where there is no real time-lapse change,

we do exclude many regions where updates might otherwise take place, such as the
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fake time-lapse reflectors in the ellipse of Figure 5-15. A more problematic scenario

takes place when the confidence map assigns low confidence to regions of true time-

lapse change. This is what happens to the left overburden perturbation. The large

dominant wavelength corresponding to the 6 Hz peak frequency Ricker wavelet is not

sensitive enough for the left overburden perturbation with the small velocity change.

Time-lapse regularization is still an active topic of research. In addition to using con-

fidence map based methods it would be interesting to investigate the effectiveness of

Total Variation regularization (Maharramov and Biondi, 2014). This regularization

is very effective in removing oscillatory artifacts in the time-lapse estimate.

The analysis in this chapter is specific to a synthetic representation of a real field

in the North Sea. The observations made in this synthetic study are helpful when

designing an effective study on the real field. Most importantly, in our synthetic study

we see the detrimental effect of the post-critical top of reservoir reflections in the field

we study. Without this knowledge, a straight-forward application of DDFWI with

the acoustic approximation on the associated field data may result in artifacts at the

reservoir. In a real field study, knowledge of the true time-lapse change is not perfect.

We may not be able to identify artifacts for what they are. For instance, the oscillary

event in the ellipse of Figure 5-15 might incorrectly be interpreted as a real time-lapse

change. Our synthetic analysis demonstrated that this event can be caused by the

incorrect recovery of the overburden time-lapse change. By performing a synthetic

time-lapse study before using the field data, we can design a workflow with reduced

artifacts when using the synthetic data. The hope is that these observations would

translate to the real field data.

To get more confidence in our synthetic study, some of the simplifying assumptions

made in this chapter should be undone. For instance, the study should be extended

to 3D. Instead of starting the baseline inversion from a heavily smoothed true model,

the initial model should be obtained from tomography. In this chapter we did not use

a band-pass filter to do frequency marching, which should be done in a more realistic

study. In addition, free surface boundary conditions should be used so the effects of

the shallow water multiples on the time-lapse inversion can be come clear. In reality
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the depth and velocity of the water column may also change between the baseline and

monitor survey. Another way to increase the realism of the synthetic study would be

to add anistropy and attenuation to the true data and investigate their impact on the

time-lapse reconstruction.

5.5 Conclusions

In this chapter we investigated the effects of increasingly realistic data on an acoustic

inversion for the P-wave velocity. The performance of different FWI based time-

lapse algorithms is compared on a realistic geometry. We observe that the time-lapse

estimate deteriorates significantly because of the phase-shift in the elastic post-critical

reflections. By limiting the offset range we exclude these events from the inversion

and obtain a better time-lapse estimate at the reservoir. We then demonstrate that

the importance of the initial model and show how a confidence map can be used

to remove some of the artifacts in this particular model. We also demonstrate the

impact of the inverse crime by comparing inversion for true data generated by the

inversion code (PySIT) with true data generated with a different code (SeisSpace).

5.6 Acknowledgements

The work I present in this chapter is based on my summer internship at Cono-

coPhillips in 2015. Together with Baishali Roy and Jun Cao I compiled the main

observations in an SEG abstract (Willemsen et al., 2016a). I really appreciate their

insightful analysis and also comments about both the science and the presentation.

After the internship finished I independently wrote this chapter to add more the-

ory and background information. Any inaccuracies are solely the result of my work.

I am grateful to ConocoPhillips for permission to publish the work of the summer

internship. I would also like to thank MIT and the ERL consortium members for

funding. In this paper the Python Seismic Inversion Toolbox (PySIT) was used for

the inversion of the true data generated by SeisSpace.

137



0

1

2

3

4

5

D
e

p
th

 (
km

)

P-velocity true

1400

2200

3000

3800

4600

V
 (

m
/s

)

(a)

0

1

2

3

4

5

D
e

p
th

 (
km

)

Density true

1000

1400

1800

2200

2600

D
en

si
ty

 (
kg

/m
3
)

(b)

0 2 4 6 8 10

Horizontal coordinate (km)

0

1

2

3

4

5

D
e

p
th

 (
km

)

S-velocity true

0

650

1300

1950

2600
V

 (
m

/s
)

(c)

Figure 5-1: True models with 2.0 m vertical spacing and 12.5 m horizontal spacing:
(a) 𝑉𝑝 (b) 𝜌 (c) 𝑉𝑠. The black box marks the region on which the time-lapse study
primarily focuses.
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Figure 5-2: True time-lapse zoom corresponding to black box in Figure 5-1a: (a) 𝑉𝑝

(b) 𝜌 (c) 𝑉𝑠.
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Figure 5-3: Baseline pressure shot gathers for a) CDA, b) VDA and c) elastic for a
shot at 𝑥 = 2.0 km. Several events of interest are marked with numbers. 1) The head
wave propagating along the bottom of the ocean. 2) Direct wave. 3) Top of reservoir
reflection. These three events are visible in all three simulations. 4) Reflection on low
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Figure 5-4: Baseline CDA inversion results starting from initial model (a) for different
types of input data. (b) inverse crime data. (c) CDA data. (d) VDA data. (e) EL
data. Figure 5-1a shows the true P-wave velocity.
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Figure 5-5: Parallel FWI for P-wave velocity. (a) and (b) use inverse crime data and
(c) and (d) use CDA data from SeisSpace: (a) and (c) start from the smooth initial
model of Figure 5-4a, (b) starts from Figure 5-4b and (d) starts from Figure 5-4c.
True reference is displayed in Figure 5-2a.
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Figure 5-7: DDFWI results for the inverse crime, and the three SeisSpace datasets
(CDA, VDA and EL) using the corresponding baseline models from Figures 5-4b -
5-4e.
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Figure 5-8: DDFWI depth profiles with labels referring to Figures 5-7a - 5-7d.
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Figure 5-9: Joint FWI for elastic data.
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Figure 5-11: Zoom in on large-offset top of reservoir reflection for earlier pressure
shot gathers in Figures 5-3b and 5-3c. In Figures 5-11a and 5-11b we see that these
events have large differences in phase in the VDA and EL data. We also see that
the time-lapse shot gathers 𝛿𝑑𝑉 𝐷𝐴 and 𝛿𝑑𝐸𝐿 in Figures 5-11c and 5-11d are slightly
shifted in time and have slightly different shape.
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Figure 5-13: Figure 5-12 showed the EL DDFWI objective value contributions of each
source-receiver combination. Here we show the relative change of the objective value
contribution for each source-receiver combination at the end of the inversion, where
the time-lapse estimate is displayed in Figure 5-7d.
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Figure 5-14: Figure 5-12 showed the EL DDFWI objective value contributions of each
source-receiver combination. Here we show the relative change of the objective value
contribution for each source-receiver combination at the end of the inversion when we
limit the maximum source-receiver offset to 2.0 km. The source-receiver combinations
used in the EL DDFWI inversion fall within the two black diagonal lines. The source-
receiver combinations outside these two black lines have offset exceeding 2.0 km. They
are plotted here to inspect how their objective function contribution changes, even
though they are not used in the inversion.
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Figure 5-15: DDFWI with the maximum source-receiver offset limited to 2.0 km. The
ellipse highlights an artifact that was less pronounced when all offsets were used in
Figure 5-7d.
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Figure 5-16: DDFWI with the maximum source-receiver offset limited to 2.0 km
starting on the CDA baseline velocity model of Figure 5-4c.
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Figure 5-17: Zoomed in section of the gradient based confidence map. The four stars
correspond to four points at which we plot the illumination compensated gradient
evolution in Figure 5-18. The blue star (𝛽𝑔 = 0.92) corresponds to the reservoir time-
lapse area. The red (𝛽𝑔 = 0.08) and magenta (𝛽𝑔 = 0.70) stars are in the left and
right elliptical overburden perturbations respectively. The yellow star (𝛽𝑔 = 0.01) is
in the region of Figures 5-15 and 5-16 where and artificial time-lapse reflector is seen.
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Figure 5-18: The squares and circles represent the illumination compensated baseline
and monitor gradients respectively at four pixels of interest. These pixels are indicated
by stars of matching color in Figure 5-17.
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Figure 5-19: Same setting as Figure 5-16. DDFWI with the maximum source-receiver
offset limited to 2.0 km starting on the CDA baseline velocity model of Figure 5-4c.
We use the confidence map from 5-17 to regularize the model difference. The ellipse
corresponds to the incorrect event which was visible in Figures 5-15 and 5-16, but is
attenuated significantly.
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Figure 5-20: Comparing Figures 5-15,5-16 and 5-19 along a depth profile.
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Chapter 6

An efficient coupled acoustic-elastic

local solver applied to phase inversion

Abstract

In characterizing reservoirs, we are often interested in detailed elastic parameters
about only a very limited part of the subsurface. To that end, we introduce a local
solver which uses an acoustic solver to propagate the wavefield to a sub-domain on
which we use a local elastic solver. This avoids the use of an expensive full domain
elastic solver while still incorporating elastic physics in the region where it is most
important. We apply the local solver to modeling phase variation with angle. We
include an inversion example to demonstrate that our recovered phase from the hybrid
solver is sufficiently accurate to recover important subsurface reservoir properties.

6.1 Introduction

When seismic waves reflect from interfaces in the Earth, their reflected amplitude

depends on the incidence angle of the incoming wave. A physical model for describ-

ing the reflection coefficient in terms of the incidence angle is the Zoeppritz (1919)

equations. The Zoeppritz equations and their various approximations (e.g. Aki and

Richards (2002)) assume an incident plane-wave. As a result, the derived Plane-wave

This chapter is based on Willemsen and Malcolm (2016) and currently submitted paper (??)
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Reflection Coefficients (PRCs) are only accurate for plane waves. In most physical

experiments however, waves radiate outwards from point-sources in (approximately)

spherical shells. O’Brien (1963) noted that plane wave theory poorly describes the

reflection coefficient of spherical waves close to the critical incidence angle. This

critical incidence angle is defined as the incidence angle for which Snell’s law pre-

scribes that the refracted wave moves parallel to the interface (i.e. it is a head wave).

Červenỳ (1959) shows that the Spherical-wave Reflection Coefficients (SRCs) are re-

lated to PRCs. This intuitively makes sense, since Fourier analysis shows that a

spherical wavefront can be decomposed into wavenumber vectors, each representing

plane-waves with different incidence angles. The SRC as presented by Červenỳ (1959)

is therefore a weighted integral of PRCs over a range of incidence angles. The specifics

of how the reflection amplitude varies with incidence angle is the subject of study in

AVA (Amplitude Variation with Angle) and AVO (Amplitude Variation with Offset).

The P-velocity, density and S-velocity of the material on both sides of the interface

together determine the particular shape of the reflection coefficient curve when plot-

ted against angle (AVA) or offset (AVO). Since oil and gas influence these seismic

material properties, studying AVA/AVO is an important tool for seismic interpreters.

In addition to AVA, seismic waves also experience Phase Variation with Angle

(PVA). Waves reflecting on the interface at larger (i.e. shallower) incidence angles

than the critical incidence angle are called post-critical reflections. The PRCs of

these post-critical reflections are complex numbers (see for instance Downton and

Ursenbach (2006) for a recent discussion). This complex reflection coefficient results

in a phase-shift of the reflected wave. In contrast, PRCs for incidence angles smaller

than the critical angle have zero phase-shift. It is important to emphasize that in this

chapter we use the term phase-shift exclusively for shifts that change the shape of the

wavelet. Time-shifts are technically also phase-shifts, but these are not the focus of

PVA. Similar to AVA, the characteristics of this PVA curve depend on the contrast in

elastic properties along the interface. This makes PVA a useful quantity for inversion

either by itself or in addition to AVA. It is worth pointing out that AVA and PVA

are observed in multiple types of reflected waves. These effects are not limited to PP
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or SS reflections, but also occur in converted waves like PS and SP reflections. For

instance Gong and McMechan (2016) use both AVA and PVA for the combination

of PP and PS reflections to estimate material properties at an interface. However

in this chapter we focus on PP reflections only, since they are present in both land

and marine surveys and typically have the best signal to noise ratio. Recall that

the SRC for a specific incidence angle contains PRCs of all incidence angles through

a weighted integration. This means that the SRC for a pre-critical incidence angle

already includes a phase shift (Červenỳ and Hron, 1961), unlike the PRC for the

same pre-critical incidence angle. It is worth pointing out that the PP reflection only

experiences PVA when the reflector has a critical angle. If the P-velocity contrast is

insufficient to generate PVA in the PP reflection, then the SP reflection may be used

as alternative since a critical angle will almost always be present (Zhu and McMechan,

2012)

Observations made by Zhu and McMechan (2012) suggest that the phase of the PP

reflection’s wavelet is stable during propagation through a heterogeneous overburden.

This is contrasted by the amplitude of the reflection, which reduces at each interface in

the overburden due to transmission losses caused by energy partitioning. The relative

stability of the phase of the wavelet during propagation makes PVA a useful quantity

to determine material properties at an interface, either by itself or as extra constraint

in addition to AVA. In order to invert for the material properties at a target reflector

we need to setup an inverse problem. In this inverse problem we try to minimize the

discrepancy between the simulated reflection response and the observed one. Several

forward models have been studied for generating these simulated reflection responses.

In this study we focus on the modeling of and inverting for the phase of the reflection.

AVA for pre-critical reflections has traditionally received a lot of attention in the

literature, see Buland and Omre (2003) and Smith and Gidlow (1987) for example.

The analysis by O’Brien (1963) suggests that this modeling will break for more re-

alistic spherical waves in the neighborhood of the critical angle. There are only a

few studies making use of the AVA/PVA response of large-angle reflections for de-

termining material properties at a reflector of interest. One of the issues for such
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studies is the selection of an appropriate forward model. Arguably the most accurate

forward model is a wavefield simulation on an Earth model containing the reflectors

of interest. The amplitude and phase of the modeled reflections can then be com-

pared directly with the observed reflections in the data. In the very least such a

simulation requires P-velocity, density and S-velocity, to include the parameters to

which reflection coefficients are sensitive. The simplest type of wavefield simulation

for reflection modeling is therefore elastic, but these simulations are computationally

expensive. While acoustic simulations are significantly cheaper, they cannot substi-

tute for elastic solvers since phase-shifts of PP reflections are influenced significantly

by shear velocity contrast, as we demonstrate in this chapter. Some studies have used

alternative forward models for the inversion of large-angle reflections. For example,

Zhu et al. (2012b); Zhu and McMechan (2014) use the 𝜏 − 𝑝 transform to decompose

the recorded data into plane waves. A ray tracer is then used to index these plane

waves for multiple reflection angles at reflector locations of interest. From these in-

dexed plane-waves the AVA and PVA of the corresponding PRC is determined. These

PRCs at the reflection points are then compared with PRCs from Zoeppritz modeling

to invert for the material contrast. Since it used a ray-based method, this approach

does not model finite-frequency effects of the wavefield as it propagates through the

overburden. The method also requires the explicit picking of reflectors and their dip

angles from migrated images. Instead of using a ray-tracer to measure PVA inversion,

Zhu et al. (2012a) use a Finite Difference (FD) wavefield simulator to generate Angle

Domain Common Image Gathers (ADCIG) (Sava et al., 2001). (A good overview of

how these ADCIGs are computed and their limitations is given by Jin et al. (2014)).

Zhu et al. (2012a) show that the phase of the imaged reflector varies as function of

reflection incidence angle in these ADCIGs. In theory one would expect that these

observations could subsequently be used to invert for material parameters, although

to our knowledge this has not been done. As with any imaging method, such an

approach is sensitive to defocussing as a result of inaccuracies in the velocity model

used for migration. Both the imperfections in constructing ADCIGs and defocusing

due to inaccurate velocity models are expected to lead to artifacts when used in an
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inversion, which provides the impetus to the development of full-waveform methods

that directly fit the phase of the data themselves, rather than first computing the

ADCIGs.

Both this proposed approach of directly fitting the phase of the waveform and the

ADCIG approach of Zhu et al. (2012a) require a FD wavefield simulator. It is this

FD simulator which results in the largest expense of these methods. There is a lot of

fundamental research to improve their efficiency, see for instance the work of Wang

et al. (2011) and Zepeda-Núnez and Demanet (2016). For the purpose of modeling

reflections there are additional ways to reduce the cost of the wavefield simulation.

Hobro et al. (2014) and Chapman et al. (2014) for instance show that elastic PP

reflections can be approximated using an acoustic FD solver. They do so by adding

additional source terms at layer interfaces. This allows them to match the reflection

response of the elastic simulation accurately up to the critical angle. The cost of this

procedure is only twice that of a regular acoustic simulation, which is significantly

less than the cost of a single elastic wavefield simulation. But the inability of this

method to accurately model post-critical reflections and their associated phase-shifts

makes it less applicable to PVA inversion. An alternative way of bringing down the

cost of the wavefield simulation of the reflection is by using a local solver centered

around the reflector of interest.

While elastic FD simulations accurately model the reflection response for all inci-

dence angles, their high computational cost has been a limiting factor to their appli-

cability to AVA/PVA. Local solvers reduce this computational barrier by limiting the

size of the computational domain to a smaller region of interest. This usually requires

a pre-computation step in which several full domain simulations are performed. Af-

ter these precomputations the local wavefields can be generated at much faster speed

than full domain simulations. These localized wavefields can then for instance be

used for inversions for salt boundary (Willemsen et al., 2016b), time-lapse (Borisov

et al., 2015; Robertsson et al., 2000) (cite our accepted TLE paper here when

published) and reflector properties from PVA as we do in this chapter.

Broadly speaking, local solvers can be subdivided into exact local solvers (van
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Manen et al., 2007; Willemsen et al., 2016b) and inexact local solvers. By relaxing

accuracy constraints, the inexact local solvers attain higher computational efficiency.

The inexact (potentially anisotropic) elastic local solver formulation of for instance

Robertsson and Chapman (2000) allows the model to be perturbed within the local

domain. Computational gains are achieved by discarding waves scattering from those

perturbations that exit the local domain, scatter in the inhomogeneous background

model and subsequently reenter the local domain. Primary PP reflections used in

the AVA/PVA analyses are waves that by their very nature reflect only once. They

therefore do not reenter a local domain centered around a reflector and are accurately

modeled by this local solver, and thus modeling primary reflections with this type of

inexact local solver will not result in significant accuracy loss. This makes it possi-

ble to change the elastic material properties around the reflector and still accurately

model the reflection response we are interested in for inversion. The elastic local solver

of Robertsson and Chapman (2000) requires many elastic full domain Green’s func-

tion computations to connect the local domain and the acquisition. In this chapter we

try to reduce the computational cost of this step by making a physical simplification.

This simplification is motivated by the objective of this chapter to accurately model

the PVA of PP reflections with the aim of using it in an inversion. Recall the observa-

tion of Zhu and McMechan (2012) that the phase of PP reflections is approximately

unchanged by propagation through an elastic overburden. This raises the idea of us-

ing acoustic Green’s functions instead for propagating the PP reflection through the

overburden. Both Elastic and Acoustic propagation are expected to leave the phase

approximately unmodified. Since elastic simulations are significantly more expensive

than acoustic simulations (see for instance Hobro et al. (2014)) this approach has

the potential to reduce the precomputation cost of the local solver while still accu-

rately modeling the phase of the reflected wave. The acoustic approximation is not

always good as Cance and Capdeville (2015) demonstrate. When the elastic medium

contains significant heterogeneity with typical length-scale much smaller than the

dominant wavelength effective anisotropy is induced. Using the same heterogeneous

P-velocity and density in an acoustic simulation does not reproduce this anisotropy.
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This difference in effective anisotropy experienced in acoustic and elastic simulations

results in predominantly arrival time differences. Figures 4b and 5b in the work of

Cance and Capdeville (2015) demonstrate that even with highly heterogeneous elastic

models, acoustic propagation gives wavelets of similar shape although they have mi-

nor arrival time differences. We therefore expect that for the purpose of propagating

the local elastic reflections through the overburden, acoustic propagation is sufficient

for preserving the shape of the wavelet we invert for. The local solver we introduce

in this chapter therefore mixes physics by using an acoustic solver to propagate the

wavefield through the overburden to a local elastic solver around the reflector, where

the elastic behavior determines the phase shift of interest. While focusing on PVA

inversion in this chapter, potentially combining this with AVA better constrains the

inverse problem for the elastic material contrast. Zhu and McMechan (2014) show in

their example that even when not accurately modeling overburden amplitude losses,

the addition of amplitude information helps better constrain P-velocity and density.

There are a few other seismic studies in literature where different solvers are

combined. Monteiller et al. (2013) for instance use an efficient spherically symmetric

wave solver to propagate teleseismic body waves through the Earth. Only in the

relatively small region of interest they are coupled with a 3D heterogeneous solver.

Capdeville et al. (2003) use a similar approach, where the Earth is again separated

into two parts. Deeper parts of the Earth are assumed to be spherically symmetric,

making efficient solutions possible. Only the top shell has 3D heterogeneity. This

approach again limits the expensive solver to a small region, using a simplified solver

for the exterior. Finally Yu et al. (2016) derive a coupled acoustic-elastic set of

equations to aid elastic reverse time migration using ocean bottom geophones.

6.2 Methods

In this chapter, we adapt the local solver of Robertsson and Chapman (2000) to

reduce the computational cost of the phase modelling necessary for PVA inversion.

Specifically, we substitute computationally efficient Constant Density Acoustic (CDA)
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Green’s functions for Elastic (EL) Green’s functions to couple the local solver to the

acquisition. Observations by Zhu and McMechan (2012) suggest that phase of the

seismic wave is relatively insensitive to the material through which it propagates,

motivating this computationally efficient substitution.

6.2.1 Local solver

The local solver used in this study is a modification of the local solver introduced by

Robertsson and Chapman (2000). This local solver generates an approximation of

the scattered field due to a model perturbation within the local domain. The only

component of the wavefield discarded by the local solver is the wavefield scattering on

the perturbation, leaving the local domain, and then reentering before propagating

to the receivers (i.e. long-range interactions). Such a discarded event is displayed in

gray in Figure 6-1.

As mentioned above, if we use an efficient scalar CDA solver instead of an elas-

tic solver to propagate the wavefield through the overburden, the observed phase is

expected to be similar. The elastic material parameters are most important at the

reflection point, where their contrasts determine the phase shift of the postcritical

reflection. We thus use the elastic local solver around the reflector of interest and

propagate the PP reflection to the acquisition using efficiently generated CDA Green’s

functions.

6.2.2 Standard elastic local solver

Before discussing the CDA modifications we first introduce the framework in which

Robertsson and Chapman (2000) introduce the elastic local solver. In their approach

both the full domain Green’s functions and the local wavefields are computed using

the same elastic staggered grid implementation. In this study we use the algorithm

introduced by Levander (1988) for elastic wavefield simulations. The equation of
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motion in 2D is

𝜌
𝜕𝑣𝑥(x, 𝑡)

𝜕𝑡
=

𝜕𝜏𝑥𝑥(x, 𝑡)

𝜕𝑥
+

𝜕𝜏𝑥𝑧(x, 𝑡)

𝜕𝑧
(6.1)

𝜌
𝜕𝑣𝑧(x, 𝑡)

𝜕𝑡
=

𝜕𝜏𝑧𝑥(x, 𝑡)

𝜕𝑥
+

𝜕𝜏𝑧𝑧(x, 𝑡)

𝜕𝑧
(6.2)

and the constitutive equations for an isotropic elastic medium are

𝜕𝜏𝑥𝑥(x, 𝑡)

𝜕𝑡
= (𝜆(x) + 2𝜇(x))

𝑣𝑥(x, 𝑡)

𝜕𝑥
+ 𝜆(x)

𝑣𝑧(x, 𝑡)

𝜕𝑧
(6.3)

𝜕𝜏𝑧𝑧(x, 𝑡)

𝜕𝑡
= (𝜆(x) + 2𝜇(x))

𝑣𝑧(x, 𝑡)

𝜕𝑧
+ 𝜆(x)

𝑣𝑥(x, 𝑡)

𝜕𝑥
(6.4)

𝜕𝜏𝑥𝑧(x, 𝑡)

𝜕𝑡
= 𝜇(x)

(︂
𝑣𝑥(x, 𝑡)

𝜕𝑧
+

𝑣𝑧(x, 𝑡)

𝜕𝑥

)︂
(6.5)

A bold font is used to represent vector quantities. Specifically the 2D position vector

x = (𝑥, 𝑧). Because of symmetry of the stress tensor 𝜏𝑥𝑧 = 𝜏𝑧𝑥. The elastic solver

updates the velocities and the stresses in a turnwise manner. First the velocities in

(6.1)-(6.2) are updated. These are then used to update the stresses in (6.3)-(6.5).

Equations 6.1-6.5 are solved on a staggered grid with second order accuracy in time

and fourth order accuracy in space.

We use the framework introduced by Robertsson and Chapman (2000) to create a

local solver for an isotropic elastic medium, but it can be extended to anisotropy and

attenuation as well. Before introducing the local solver, we first define the following

terminology

∙ Background wavefield: The wavefield in background model 𝑚0(x)

∙ Perturbed wavefield: The wavefield in the perturbed model 𝑚(x)

∙ Scattered wavefield: The difference between the perturbed and the background

wavefield, caused by model update Δ𝑚(x) limited to the interior of the local

solver domain

For the 𝑧-component of the velocity for example, the notation we use is respectively

𝑣0𝑧(x, 𝑡), 𝑣𝑧(x, 𝑡) and 𝑣𝑠𝑐𝑧 (x, 𝑡).
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Figure 6-2 shows a section of a staggered elastic grid zoomed in on part of the top-

right boundary of the local solver. The four different symbols represent the locations

where the elastic wavefield quantities from (6.1)-(6.5) are evaluated. On this staggered

grid these wavefield components are evaluated at different physical locations. The

black grid lines create grid cells, each including the four staggered grid symbols. The

legend in Figure 6-2 makes clear which elastic wavefield component is computed at

which symbol. The local solver computes the perturbed wavefield within the interior

of the truncated domain. The transition between the interior and the exterior is

represented by a magenta line. This magenta line intersects grid cells on the boundary

by design. The model perturbations Δ𝑚(x) are restricted to the inside of the inner

red line, inside truncated domain. At the shaded symbols outside of the truncated

domain the scattered wavefield quantities are computed instead of the perturbed

wavefield quantities. These scattered wavefields become nonzero only when Δ𝑚(x) is

nonzero. The local solver of Robertsson and Chapman (2000) requires storage of the

background wavefields at all locations between the two red lines, as we explain soon.

Finally, the two bold yellow lines represent the locations between which the acoustic

Green’s functions need to be stored in the algorithm introduced later in this chapter.

These acoustic Green’s functions only require storage of a single pressure field in each

cell, unlike the 5 fields required by the elastic solver.

The spatial derivatives in (6.1)-(6.5) are evaluated with fourth order accuracy on

a staggered grid, although extensions to different orders of accuracy are straight-

forward. As a concrete example of how this equation is discretized on the staggered

grid we now give the update equation for the perturbed z-component of the velocity

in (6.2). Graphically this is represented by the left-most blue stencil in Figure 6-2,

which is centered around the unfilled (i.e. perturbed) 𝑣𝑧 symbol. For now ignore

that this particular update stencil involves some shaded symbols and simply assume

all of the symbols are unfilled. In other words, assume for now that the stencil only

involves perturbed wavefield components. We update the velocity

𝑣𝑧(x(𝑖,𝑘), 𝑡) = 𝑣𝑧(x(𝑖,𝑘), 𝑡−Δ𝑡) + Δ𝑣𝑧(x(𝑖,𝑘), 𝑡) (6.6)
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using

Δ𝑣𝑧(x(𝑖,𝑘), 𝑡) =
Δ𝑡

𝜌

[︂
𝑐1
Δ𝑥

(︂
𝜏𝑧𝑥(𝑥𝑖+1, 𝑧𝑘, 𝑡−

1

2
Δ𝑡)− 𝜏𝑧𝑥(𝑥𝑖, 𝑧𝑘, 𝑡−

1

2
Δ𝑡)

)︂
+

𝑐2
Δ𝑥

(︂
𝜏𝑧𝑥(𝑥𝑖+2, 𝑧𝑘, 𝑡−

1

2
Δ𝑡)− 𝜏𝑧𝑥(𝑥𝑖−1, 𝑧𝑘, 𝑡−

1

2
Δ𝑡)

)︂
+

𝑐1
Δ𝑧

(︂
𝜏𝑧𝑧(𝑥𝑖, 𝑧𝑘+1, 𝑡−

1

2
Δ𝑡)− 𝜏𝑧𝑧(𝑥𝑖, 𝑧𝑘, 𝑡−

1

2
Δ𝑡)

)︂
+

𝑐2
Δ𝑧

(︂
𝜏𝑧𝑧(𝑥𝑖, 𝑧𝑘+2, 𝑡−

1

2
Δ𝑡)− 𝜏𝑧𝑧(𝑥𝑖, 𝑧𝑘−1, 𝑡−

1

2
Δ𝑡)

)︂]︂
. (6.7)

Notice how the staggered spatial derivatives are evaluated at the staggered time-step

(i.e. 𝑡 − 1
2
Δ𝑡). In equation 6.7, the fourth order accurate staggered grid coefficients

𝑐1 and 𝑐2 are 9
8
and − 1

24
respectively. The subscript on the position vector x(𝑖,𝑘)

represents the corresponding location of the wavefield quantity in cell number 𝑖, 𝑘.

On the right hand side the vector x is decomposed in its 𝑥 and 𝑧 coordinates in this

2D example. Extensions to 3D are trivial. An update equation completely analogous

to (6.7) can be derived for the propagation of the scattered 𝑣𝑠𝑐𝑧 in the shaded region.

This analogous update equation replaces all perturbed wavefield quantities with their

scattered counterparts. Update equations for elastic wavefield quantities other than

𝑣𝑧 use analogous derivative stencils to those shown in Figure 6-2.

Sufficiently far away from the magenta boundary in Figure 6-2 the update equa-

tions for the perturbed and scattered wavefields are trivial to compute. But within

the two red lines, the derivative stencils cross the magenta line separating the loca-

tions where the perturbed and scattered wavefields are computed and stored. The

update equations for nodes between the red lines therefore require a modification.

We now go back to the specific case of the leftmost stencil in Figure 6-2. In our ear-

lier discussion of equation 6.7 we made the assumption that the perturbed wavefield

quantities were available at all required locations. With 𝑖, 𝑘 centered at the central

cell of the stencil, observe that the update stencil accesses the scattered 𝜏 𝑠𝑐𝑧𝑧 at the

shaded symbols in cells 𝑖, 𝑘 and 𝑖, 𝑘 − 1 instead of the required perturbed 𝜏𝑧𝑧. By

adding the background field 𝜏 0𝑧𝑧 to the scattered 𝜏 𝑠𝑐𝑧𝑧 at these locations, we obtain by

definition the perturbed 𝜏𝑧𝑧 and consequently the update Equation 6.7 can be evalu-
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ated correctly. This background field 𝜏 0𝑧𝑧 is obtained by convolving the precomputed

𝜏 0𝑧𝑧 Green’s function with the source wavelet for the particular source we simulate

locally. Applying this correction procedure to all nodes between the red boundaries

automatically introduces the background wavefield into the local domain in case there

are no model updates Δ𝑚(x).

Similarly, the second stencil in Figure 6-2 has the opposite problem when updat-

ing 𝑣𝑠𝑐𝑧 at the shaded symbol. Part of its stencil crosses the magenta line and accesses

the perturbed field 𝜏𝑥𝑥 stored at the unfilled symbols. At these locations we need to

subtract the background wavefield from the perturbed wavefield so we can correctly

evaluate the stencil for updating the scattered wavefield at the shaded symbol. In

case the model is updated with Δ𝑚(x) in the unshaded region this correctly com-

putes the perturbed fields at the unfilled symbols and the scattered field at the filled

symbols. Multiple scattering between the background model at the shaded nodes

and the potentially perturbed model at the unfilled nodes is computed correctly. By

definition, when we talk about the local domain in this chapter we mean the entire

local solver grid. Therefore the local domain is the combination of the shaded and

unshaded nodes, surrounded by its PML boundary condition outside the outer yellow

line.

To this point, we have discussed the mechanisms for computing the elastic wave-

field locally using precomputed background Green’s functions to inject the wavefield

into the local domain. In any seismic inversion we need to compare the simulated

wavefield with the observed one. This requires propagation of the elastic wavefield

from the local domain to the receiver locations, typically on the surface or in a bore-

hole. Robertsson and Chapman (2000) use a boundary integral to propagate the

elastic scattered field from the local solver to the physical receiver locations. This

requires an additional set of full domain elastic Green’s functions.

The elastic local solver is the combination of the shaded and unshaded regions

together with a PML surrounding the ensemble. The number of nodes included in

the local solver is typically a fraction of that of the full computational domain, leading

to substantial savings. As illustrated in Figure 6-1, the only wavefield component that
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is discarded in this approach is a scattered wave leaving the local domain, scattering

on a background inhomogeneity and then reentering. In this chapter we choose the

shaded region to be approximately 5 layers thick for reasons which will become clear

soon.

6.2.3 CDA coupling

As discussed above, a straight forward implementation of the algorithm of Robertsson

and Chapman (2000) would use expensive elastic Green’s functions to propagate the

wavefield between the boundary of the local domain and the acquisition surface. In

this section, we discuss how these can be replaced with CDA Green’s functions. This

replacement is motivated by the observation of Zhu and McMechan (2012) that the

phase of a PP-reflection is primarily affected by scattering at the reflector and less so

by propagation through the (heterogeneous) elastic overburden. We expect that this

observation remains valid when restricting ourselves to heterogeneous overburdens

without density and shear velocity contrasts (i.e. a CDA simulation). We there-

fore define the background model as CDA and use the associated background CDA

Green’s functions to propagate the wavefield through the overburden. The scalar

CDA solver from the numerical code PySIT (Hewett et al., 2013) is used to compute

these Green’s functions. Concretely, the CDA background Green’s functions are ob-

tained by defining the background model 𝑚0(x) as exactly the background P-velocity

on the full computational domain

𝑚0(x) = {𝑉𝑝,0(x)}. (6.8)

We then solve the equation

1

𝑉𝑝,0(x)2
𝜕2𝑝(x, 𝑡)

𝜕𝑡2
−∇2𝑝(x, 𝑡) = 𝑓(x, 𝑡) (6.9)
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with the source defined by Dirac delta functions for the Green’s function computa-

tions.

𝑓(x, 𝑡) = 𝛿(x− x0)𝛿(𝑡− 𝑡0). (6.10)

As is typical for the scalar wave equation, PySIT solves (6.9) on a regular Finite

Difference (FD) grid.

The elastic local solver is second order accurate in time and fourth order accurate

in space. We match these orders of accuracy in PySIT when solving for the CDA

background Green’s functions. The algorithm we introduce in this chapter can be

expanded to higher orders of accuracy without difficulty.

CDA propagation on the background model𝑚0(x) physically corresponds to prop-

agation through a constant density liquid (i.e. no shear velocity). Elastic model up-

dates Δ𝑚(x) to this liquid background state should be restricted to the interior of the

truncated domain. The result is that the material properties at the boundary of the

elastic local solver remain CDA, ensuring physical consistency with the injected CDA

wavefield. But inside the local domain, away from the boundaries, the perturbed

model 𝑚(x) is elastic:

𝑚(x) = {𝑉𝑝(x), 𝜌(x), 𝑉𝑠(x)}. (6.11)

Figure 6-3 schematically shows the combination of the CDA full domain with the

EL local solver. The pink layers represent Perfectly Matched Layer (PML) boundary

conditions, although free surface conditions are also possible on the full domain. The

PML around the elastic local solver is in this chapter much thinner than the one

surrounding the full computational domain. The red boundary corresponds with

the injection region between the red lines in Figure 6-2. Within the blue boundary of

Figure 6-3 the model update is the elastic region we want to model, for the purposes of

this chapter it contains the reflector whose PP reflection we want to model. Between

the blue and red boundaries the material gradually transitions from a fully elastic

medium to the CDA state of the exterior over a taper with size proportional to the

dominant wavelength. The star and triangle symbols represent a source and receiver

respectively. The lines connecting these to the red boundary represent background
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CDA Green’s functions. With the geometry defined, we are now ready to discuss how

the CDA field is injected on the staggered EL grid of the local solver.

Injecting the CDA field in the EL local solver

The regular grid nodes where the pressure fields are computed in the CDA solver

spatially coincide with the normal stress location (i.e. squares) of the elastic grid in

Figure 6-2. The elastic local solver requires the background elastic wavefield computed

on the symbols inbetween the two red lines. One approach to obtain the required

injection velocities from the pressures is to compute them on the fly at the required

locations when solving (6.9) for the CDA background pressure Green’s functions.

Even though in a CDA simulation we only update pressures at the regular nodes, we

can still evaluate (6.1)-(6.2) for the velocities at the staggered grid locations between

the red lines in Figure 6-2 by using the following CDA properties

𝜏𝑥𝑥 = 𝜏𝑧𝑧 = 𝑝 (6.12)

𝜏𝑥𝑧 = 0. (6.13)

This is justified because at the boundary where we compute the velocities, the model

is still the CDA background model. Recall that the (in this case elastic) model update

Δ𝑚(x) is limited to the interior of the inner red line in Figure 6-2. The velocities

we compute this way can be stored during the precomputation step. They are then

available for injection in the local solver subsequently. With CDA material properties

at the red boundary in Figure 6-3 and fully elastic material properties within the

blue box in Figure 6-3, an undesirably large contrast in 𝜌 and 𝑉𝑠 can occur across

the CDA-EL taper zone. In the next section we therefore advocate a more flexible

approximate approach which allows injection of the pressure wavefield on a material

with spatially variable 𝜌(x) and 𝑉𝑠(x).
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6.2.4 New approximate injection approach for variable 𝜌/𝑉𝑠

along the boundary of the local domain

The approach used above to couple the acoustic and elastic solvers is intuitive and

works well when we taper the local elastic model to constant density and zero S-

velocity. But it is important to realize that the properties (6.12) and (6.13) do not

hold for a P-wave propagating through an elastic medium. The normal stresses 𝜏𝑥𝑥

and 𝜏𝑧𝑧 are in general not the same and the shear stress is nonzero. These effects must

be accounted for when injecting the P-wave on an elastic medium with potentially

spatially variable 𝜌(x) and 𝑉𝑠(x). We therefore propose a new approximate approach.

Instead of pre-computing and storing the velocities at the boundary as in the

previous approach, we store the CDA Green’s functions at several extra layers. Using

these extra layers of stored Green’s functions we can evaluate the spatial derivatives in

(6.1)-(6.2) to obtain the injection velocities offline. Then with these layers of velocities

we can evaluate the spatial derivatives of (6.3)-(6.5) to get the associated stress field

offline.

The main advantage of this new approach is flexibility. When the material at the

injection boundary in the local solver is CDA, we get the same injection stresses and

velocities as the approach in the previous section. But this new method can also be

used to determine the stresses and particle velocities needed to approximately inject

the precomputed CDA wavefield on an arbitrary elastic model of choice outside the

local domain. No CDA Green’s functions need to be recomputed when injecting on

a model with a different choice of 𝜌(x) and 𝑉𝑠(x).

Injecting on a medium with varying 𝜌(x) and 𝑉𝑠(x) along its boundary makes it

possible to reduce the contrast in 𝜌 and 𝑉𝑠. For instance, by no longer tapering to

𝑉𝑠 = 0 across the taper zone in Figure 6-3, the contrast across the taper is reduced

and a more accurate simulation of the elastic PP reflection is expected. Alternatively

we can also reduce the size of the taper zone for higher computational gains. Because

the background Green’s functions were computed on a CDA model, we can only

approximately compensate the amplitude of the injected wavefield for density and S-
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velocity at the injection points. The injection approach we now introduce is heuristic

when the boundary of the local solver is not CDA. Specifically, the steps of the

approach are:

∙ In a precomputation step, store the CDA pressure Green’s functions on the 9

layers between the two yellow lines in Figure 6-2.

∙ First compute both velocity components by evaluating (6.1) and (6.2), using

the density 𝜌(x) of the elastic model and (6.12) and (6.13). Since (6.1) and

(6.2) require the evaluation of derivatives, we cannot compute the velocities at

all the 9 layers. The reason is that at some locations we do not have access to

the full derivative stencil. The velocity components will therefore be available

at fewer than the 9 layers where the CDA pressure is available.

∙ Using the velocity components computed in the previous step and the elastic

material properties around the injection boundaries, evaluate (6.3) - (6.5). This

will naturally result in 𝜏𝑥𝑥 ̸= 𝜏𝑧𝑧 and 𝜏𝑥𝑧 ̸= 0 when 𝑉𝑠 ̸= 0. Just like for

the velocity components, equations (6.3) - (6.5) require evaluation of derivative

stencils. The shear stresses can be computed exactly at the three layers between

the red boundaries in Figure 6-2.

With this scheme we turn the 9 layers of precomputed CDA background pressures

into the velocity and stress tensor at all the required injection locations for the elastic

local solver. Even though the CDA Green’s function is stored along 9 layers, it

requires less storage than the full elastic injection wavefield on the three layers between

the red lines. The latter would require 5 quantities for each cell, resulting in a

storage cost proportional to 15 layers of the pressure wavefield. In addition, the

stored elastic wavefield may not be consistent if the local model changes along the

injection boundary (i.e. trying a different shear velocity taper). Instead the procedure

we introduce is flexible in that the elastic injection fields can easily be recomputed if

the elastic properties along the boundary of the local solver are modified.

The background Green’s functions are computed on a medium with no density or

shear velocity variation. Even smooth variation in S-velocity and density influences
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the amplitude of a P-wave. When injecting a CDA wavefield on a material with

varying S-velocity and density we therefore want to ’correct’ its amplitude by using

compensation factors. This brings the amplitude of the injected wavefield closer to

the pressure we would have simulated had we used an elastic background simulation.

Appendix D derives the amplitude compensation factors for this approximate algo-

rithm. The factors 𝑙𝑖𝑛𝑗𝜌 (x) and 𝑙𝑖𝑛𝑗𝑉𝑠
(x) compensate for smooth variation in density and

S-velocity respectively. They only account for the instantaneous effect of the density

and shear velocity at the injection point. They do not compensate for transmission

losses which are observed if an elastic solver is used for the background Green’s func-

tion computations. We apply term 𝑙𝑖𝑛𝑗𝜌 (x) to the 9 layers of CDA Green’s functions

before starting the injection procedure. The scaling 𝑙𝑖𝑛𝑗𝑉𝑠
(x) is applied automatically

during the injection procedure through (D.1), as is seen by comparing the amplitude

when 𝑉𝑠 is zero (CDA) and when it is nonzero.

6.2.5 Exact boundary integral

The local solver computes a wavefield within the local domain, corresponding to the

perturbed model 𝑚(x). In general, for an inversion the wavefield is also required

at the receiver locations where it is compared with observed data. We use Green’s

functions between the boundary of the local solver and the receivers, shown with gray

lines on Figure 6-3, to propagate the scattered wavefield to the receiver locations. This

is done by evaluating a boundary integral. We first address the scenario where the

model update Δ𝑚(x) at the boundary is zero, preserving the CDA properties there.

In this scenario the boundary integral along the red box in figure 6-3 also assumes

the standard CDA form

𝑝𝑠𝑐(y, 𝑡) =

∫︁
𝑆

[︂
𝐺0(x,y, 𝑡) *

𝜕𝑝𝑠𝑐(x, 𝑡)

𝜕xn

− 𝑝𝑠𝑐(x, 𝑡) * 𝐺0(x,y, 𝑡)

𝜕xn

]︂
𝑑𝑆𝑥, (6.14)

where * is convolution and the surface integral is over coordinate x. 𝐺0(x,y, 𝑡) is

the background CDA Green’s function between boundary position x and evaluation

position y by using (6.10) in (6.9) with x0 = y. We denote receiver locations with
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indexed y throughout. The boundary integral in (6.14) accurately propagates the

scattered field as long as the elastic model updateΔ𝑚(x) is restricted to the interior of

the integration boundary. In this chapter we choose to evaluate the normal derivatives

in (6.14) using a fourth order discretization to match the discretization order of the

finite difference stencils. The integral boundary goes through the shaded area in

Figure 6-2 and all around the local domain where the local solver computes the

scattered wavefield to be evaluated in (6.14). The particular cells through which the

boundary integral goes is determined by how we discretize the normal derivative. To

implement a fourth order inward derivative stencil, the boundary integral is evaluated

one cell interior to the outer yellow line. In this chapter, we use a central derivative

stencil in which we center the boundary integral 3 cells interior to the outer yellow

line. It evaluates the Green’s function and normal derivative at the square symbols

on two grid cells on either side.

6.2.6 Approximate boundary integral for variable 𝜌/𝑉𝑠 along

the boundary of the local domain

As mentioned when introducing the injection routine, we are interested in relaxing

the constraint that the perturbed model should taper to CDA propagation along

the injection boundary. Similarly we still want to evaluate the pressure boundary

integral of (6.14), even though the requirement of restricting Δ𝑚(x) to the interior of

the integral is no longer honored and the wavefield is now elastic. When injecting the

pressure wavefield we modified the amplitude of the CDA pressure Green’s function

to closer mimic how the amplitude would have reacted in an elastic solver due to

the difference in density and S-velocity between the source pixel and the evaluation

pixel. This was done through the scaling factors 𝑙𝑖𝑛𝑗𝑉𝑠
(x) and 𝑙𝑖𝑛𝑗𝜌 (x) respectively. Now

we apply the same principle to the CDA Green’s functions used to propagate the
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wavefield to the receiver locations in (6.14) to get

𝑝𝑠𝑐(y, 𝑡) =

∫︁
𝑆

𝑙𝑟𝑒𝑐𝜌 (x)𝑙𝑟𝑒𝑐𝑉𝑠
(x)

[︂
𝐺0(x,y, 𝑡) *

𝜕𝑝𝑠𝑐(x, 𝑡)

𝜕xn

− 𝑝𝑠𝑐(x, 𝑡) * 𝐺0(x,y, 𝑡)

𝜕xn

]︂
𝑑𝑆𝑥,

(6.15)

where 𝑙𝑟𝑒𝑐𝜌 (x) and 𝑙𝑟𝑒𝑐𝑉𝑠
(x) are approximately inverses of the injection compensation

factors. The pressure at location x is affected by the density and S-velocity at location

x. The factors 𝑙𝑟𝑒𝑐𝜌 (x) and 𝑙𝑟𝑒𝑐𝑉𝑠
(x) approximately restore amplitude of the elastic

pressure wavefield back to the amplitude under CDA conditions. Equation 6.15 is

just the standard CDA boundary integral (6.14) on this CDA corrected pressure

wavefield.

The scattered pressure wavefield computed at the receiver locations through (6.15)

is then added to the background wavefield to obtain the perturbed wavefield. The

background wavefield is obtained by convolving the background Green’s function be-

tween source and receiver pixel with the source wavelet. We must also correct the

amplitudes of the scattered and perturbed wavefields for differences in density and

S-velocity between the source and receiver pixels. For the scattered wavefield these

scalar compensation factors are folded into compensation factors 𝑙𝑟𝑒𝑐𝜌 (x) and 𝑙𝑟𝑒𝑐𝑉𝑠
(x).

As a result the boundary integral automatically takes care of this for the scattered

field. For the background wavefield we multiply the Green’s functions between source

and receiver with the scalar 𝑙0(xs,xr). Finally both wavefields are also compensated

for S-velocity at the source pixel by 𝑙𝑖𝑛𝑗𝑉𝑠
(xs). All these amplitude compensation fac-

tors, together with a schematic overview, are found in Appendix D.

6.2.7 Phase measuring

In order to measure the phase of a wavelet, we follow Fomel et al. (2010) who use

the observation that a zero-phase wavelet has maximum correlation with its envelope.

To measure the phase in this way, we use a grid-search procedure, with a grid over

phase. We shift the wavelet in 1 degree increments and compute the correlation with

the envelope of this shifted wavelet. The phase angle that gives the largest correlation

is then the phase-shift of the input wavelet. This algorithm is summarized by Zhu
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et al. (2011).

6.3 Results

Only when we taper to constant density and zero S-velocity along the boundary of the

local solver do we satisfy the theoretical requirements that make the boundary integral

and injection exact. We first investigate the local solver in this condition and verify

its exactness on a simple two-layer model. We then apply the same configuration

to a more realistic Earth model with varying elastic material properties around the

boundary of the local solver. After that we will also empirically investigate the effect

of tapering to nonzero S-velocity. We then show the results for removing the taper

altogether and injecting on a variable density and shear velocity medium. Finally we

show synthetic phase inversion results using the local solver.

6.3.1 Two layer example

We now investigate the local solver on a simple elastic two-layer model. In the

local solver we taper the elastic true model to constant density and S-velocity at its

boundary. For the local solver to be correctly implemented it needs to exactly match

the wavefield generated by the full domain elastic solver on this tapered model. Finally

we also want to verify that the phase of the reflection in this tapered simulation is

similar to that of the true elastic model.

The true elastic model is shown in Figure 6-4, with source location at 𝑥 = 1.0 km

and 𝑧 = 0.1 km. The receivers are placed along the entire horizontal extent of the

model at the same depth as the source at 𝑧 = 0.1 km. The red and blue boxes

in the P-velocity model correspond to those in Figure 6-3. The elastic material

parameters of the two layers are summarized in Table 6.1. A Ricker wavelet with peak

frequency of 25.0Hz is used as source. We use a grid spacing of 3.25 m to prevent any

appreciable dispersion induced changes in the phase of the wavelet while it propagates

through the model shown in Figure 6-4. In this way we can focus entirely on phase

changes due to reflection. The entire model is surrounded by Perfectly Matched Layer
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(PML) boundary conditions to make individual events on the shot gather easier to

distinguish.

The model in Figure 6-4 is considered the ’true’ model in this experiment. We

now investigate whether we can correctly model the elastic PP reflection at the layer

boundary while tapering the density and S-velocity to CDA properties. Figure 6-

5 shows the tapered density and S-velocity models in this test; the P-velocity is

unchanged from Figure 6-4. Within the blue box the full elastic model (i.e. all three

panels of Figure 6-4) are used in the local solver. We implement an exponential taper

in the region between the blue and red boxes to transition from the EL model in the

blue box to the CDA model in the red box and the exterior. The size of the taper is

the same on all sides and is chosen conservatively as 240 m, which is three times the

peak wavelength in the top layer. Table 6.2 shows all scaling terms, which are usually

functions of position but for this simple experiment they are constant. Before the

local solver can be used, we first compute the required background Green’s functions

using the CDA solver on the P-velocity model of Figure 6-4a. These CDA Green’s

functions are convolved with the source wavelet, multiplied by scalar constants 𝑙𝑖𝑛𝑗𝜌

and 𝑙𝑖𝑛𝑗𝑉𝑠
and then injected in the local EL solver. The local solver computes the local

elastic wavefield resulting from this injected wavefield, and the scattered pressure

component is saved along its boundary. This scattered pressure along the boundary

is then used in the boundary integral of (6.15) to compute the scattered wavefield at

the receivers due to the elastic model update. The background wavefield is computed

by convolving the background Green’s function with the source wavelet and then

multiplying the result with the scalar 𝑙0(xs,xr) from equation D.6. Since the P-

velocity, density and S-velocity do not vary between source and receiver locations

these scaling constants evaluate to 1.0. This background wavefield is added to the

scattered wavefield from the boundary integral to obtain the perturbed wavefield at

the receiver locations.

Figure 6-6a shows the pressure shot gather computed with the full domain elastic

solver using the true model in Figure 6-4. Figure 6-6b shows the shot gather computed

using the full domain elastic solver and the P-velocity model of Figure 6-4a and the
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tapered density and S-velocity models of Figure 6-5. Finally Figure 6-6c shows the

shot gather on the same tapered model using the CDA-EL coupled local solver. Both

the full domain tapered shot gather and the local shot gather are multiplied by the

scalar 𝑙𝑠𝑟𝑐𝑉𝑠
(xs). This compensation factor is needed since the S-velocity at the source

location in the true model is non-zero. This reduces the amplitude of the wavefield

in this simulation through the S-velocity scaling of (D.1). In both the tapered full

domain simulation and the local solver simulation the S-velocity at the source pixel

is zero because we are using the CDA approximation outside the local domain. As a

result, the amplitude of the entire shot gather is larger than it should be. We correct

this by multiplying by the scaling factor 𝑙𝑖𝑛𝑗𝑉𝑠
(xs) as we explain in Appendix D.

The different events in Figure 6-6a are easy to distinguish due to the simplicity of

the true model. The event marked with the number 1 is the direct wave. Event 2 is

the reflection on the layer boundary 1.0 km below the source position. Event 3 at the

horizontal coordinate 𝑥 = 3.0 km shows the head wave separating from the reflection.

This head wave is generated at the critical incidence angle, which is 30 degrees in

this model. At larger horizontal coordinates (i.e. larger offsets) the reflection is post-

critical and a noticeable phase-shift is observed. Using the full domain Elastic solver

but replacing the true density and S-velocity models with their tapered equivalents

introduces several extra events in Figure 6-6b. The density taper value is equal to

the density of the top layer. As a result the top taper in Figure 6-5 only contains an

S-velocity contrast. At horizontal coordinate 𝑥 = 1.0 km, just below the source, the

reflection of the incident P-wave on the S-velocity taper is negligible. The reflection

on the top taper only becomes significant at grazing incidence angles as indicated by

event 4. Just below the desired reflection two other minor reflection events can be

seen, both crossing the arrow for event 2. These events are reflections on the left

and bottom of the taper. In contrast to the reflection on the top taper, the bottom

taper reflection happens at normal incidence angles as well since it includes a density

contrast. Since the material properties in the bottom layer are larger than those of

the top layer but we taper to the same density and S-velocity on all sides, the taper

contrast is larger on the bottom. In addition the P-velocity in the bottom layer is twice
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as large as in the top layer. While the size of the taper is three peak wavelengths on

top, it is therefore only half that on the bottom. Despite these reinforcing factors the

amplitude of the bottom taper reflection is relatively small compared to the reflection

event 2 we want to model. In Figures 6-7 and 6-8 we investigate whether the taper

reflections influence the reflection event whose phase we aim to model.

Figure 6-7 shows a trace at 𝑥 = 3.67 km. The black, blue and red curves plot

the traces of the full domain true, full domain tapered, and local domain simulations.

Since there are no waves leaving the local solver and subsequently reentering in the

simple 2-layer model, the elastic solver of Robertsson and Chapman (2000) does not

discard any events. It correctly computes the wavefield resulting from the injected

CDA background wavefield scattering on the elastic model updates. The boundary

integral (6.15) is in theory also exact. That the red and blue curves in Figure 6-7

almost perfectly overlap is therefore not a surprise. It only demonstrates that the

local solver is correctly implemented, at least for this geometry. The next thing to

notice is that the black curve of the simulation is also matched quite accurately. The

only appreciable deviation happens at 𝑡 ≈ 1.6 s. Looking at 𝑥 ≈ 3.7 km and 𝑡 ≈ 1.6 s

in the shot gathers in Figure 6-6, this deviation appears to happen at the intersection

between the head wave and event 4 (i.e. the top-taper reflection). Event 4 is not

present in the true simulation since there is no taper, so it is not surprising that the

black curve differs from the blue and red at this particular location.

In the flat two-layer example the arrival time of reflection event 2 is known exactly.

We use a 0.15s window and measure the phase of the reflection in the true simulation,

the full domain tapered simulation and the local simulation. Figure 6-8 shows that the

phase of the true simulation is quite accurately matched by that of the local domain

simulation. On the horizontal axis, we convert the horizontal coordinate to incidence

angle. This conversion is trivial in this flat 2-layered example. The three colors

correspond to those in Figure 6-7. The solid curves represent the measured phase of

the windowed reflection. They start at a phase of ≈ 315∘ degrees, or equivalently

≈ −45∘ due to wrapping. This ≈ −45∘ for the zero offset reflection is the well-

known phase shift in 2D simulation where effectively an infinitely long line-source is
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simulated. From these three solid curves the dashed phase shift curves are obtained

by subtracting the zero incidence angle phase and removing the 360∘ phase wrapping.

The tapered full domain simulation and the local domain simulation differ by at most

1 degree, which is not surprising due to the almost perfect match of the shot gathers

in Figures 6-6b and 6-6c and the red and blue traces in Figure 6-7. The phase of

the true simulation is also matched quite accurately with a maximum error of four

degrees and average error of two degrees. We used the same material properties in our

two layer study as Zhu and McMechan (2012) and our results show good agreement

with the simulations in Figure 1b of their paper.

The size of the local elastic solver grid compared to the full elastic grid in this

example is significant. The computational cost of a local elastic wavefield simulation

is approximately half that of the elastic full domain simulation. This does not justify

the cost of the 186 acoustic full domain simulations for the required Green’s functions

and the associated storage cost. We simply chose this large domain to demonstrate

the principles behind the local solver. In the next section we use a smaller local

domain solver in a more complex geometry. By no longer tapering to CDA material

properties we can reduce the size of the taper and improve the accuracy of the phase

of the modeled reflection.

6.3.2 Synthetic North Sea model

The synthetic model we focus on in this section has features similar to what is observed

in the North Sea. A chalk layer with velocities sometimes exceeding 5000 m/s (Japsen,

1998) generates post-critical reflections. In this section we investigate whether we can

correctly model these post-critical reflections with acceptable accuracy. Figure 6-9

shows the P-velocity, density and S-velocity whose combination we consider to be

the true elastic model for this study. The high velocity layer at a depth slightly

below 3.0 km represents the chalk layer. This chalk layer is composed of two regions,

each with its own uniform P-velocity, density and S-velocity. One region is the bulk

chalk and the other region centered around 𝑥 = 5.75 km is a small (potentially

hydrocarbon bearing) anomaly. The top 80.0 m of the model is sea with zero S-
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velocity. The density is derived from the P-velocity model using the relation from

Gardner et al. (1974). The S-velocity is obtained from the P-velocity assuming a

Poisson solid. The only deviations from these relations are present in the ocean (no

solid), top 700 m sediment (low 𝑉𝑠, unconsolidated) and the potential hydrocarbon

bearing anomaly. For the latter we reduce the P-velocity and S-velocity by 300.0 m/s

and 200.0 m/s and the density by 200.0 kg/m3 compared to the bulk chalk. The grid

spacing used in this study is 10.0 m in both coordinate directions. We use a relatively

low frequency wavelet of 6.0 Hz to prevent any appreciable dispersion. In practice

an elastic solver with higher order accuracy would be used and the frequency of the

modeled wavelet can then be increased. PML boundary conditions are placed on all

sides of the model for simplicity. Sources and receivers are both placed at a depth of

10.0 m. We model six sources with locations 2.0 km, 2.5 km, 3.0 km, 3.5 km, 4.0 km

and 4.5 km. Receivers are continuously placed between 𝑥 = 5.0 km and 𝑥 = 12.0 km.

With this geometry for the sources and receivers, any chalk reflection will happen

within the fully elastic blue box of Figure 6-9. Figure 6-10 shows the true shot gather

simulated on the full elastic model of Figure 6-9 for a shot at 𝑥 = 2.5 km. The blue

lines window the top of reservoir reflection whose phase we want to model using the

local solver. The red box highlights the region we zoom in on in later Figures for

more detailed comparisons.

We first investigate whether the local solver can still accurately model the local

reflection, with emphasis on phase modeling. We investigate multiple taper configu-

rations to determine which one gives the most accurate response. Then as a demon-

stration of the value of post-critical reflections we perform a simple phase inversion

using the local solver. The different local solver configurations ’Local A’-’Local D’ are

introduced gradually in this section. Table 6.3 serves as summary of their different

taper configurations. The first configuration ’Local A’ is the same configuration as

in the two-layer example, where we taper to constant density and zero S-velocity.

We use the amplitude compensation factors from the theory section for all four local

solver configurations, but the values will differ for each configuration. In the two-layer

case of Table 6.2 almost all of them evaluated to 1.0 for for Local A, the same is true
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for Local A on the North Sea model of Figure 6-9. In the two-layer example only

𝑙𝑠𝑟𝑐𝑉𝑠
(xs) was unequal to one because the S-velocity at the source pixel was nonzero.

In the North Sea example this final compensation factor evaluates to 1.0 since the

source is in the sea with zero S-velocity.

Local A: Tapering the local model to CDA

In this section we investigate configuration Local A. Just as in the two-layer exper-

iment, the background velocity model is CDA. The perturbation to this CDA back-

ground model is the elastic model in the blue box of Figure 6-9 including the elastic

taper towards CDA properties along the outer red box, which is also the boundary of

the local solver in this experiment. The boundary integral for the acoustic scattered

field (6.15) outside of the outer red box (e.g. receiver locations) is again evaluated

using the scattered field on the same outer red box. Since the model perturbation is

entirely on the inside of the boundary integral, (6.15) is exact provided the scattered

field on the boundary is so as well. We expect that the primary reflection of the

wavefield on the chalk is modeled exactly the same using a full domain solver on the

tapered model and using local solver configuration Local A on the tapered model

with the boundary integral (6.15), because we satisfy all of the assumptions of the

local solver for these events.

In Figure 6-10 we show the full domain elastic simulation on the true elastic

model. The region in the red box is expanded in Figure 6-11a. Figure 6-11 shows

shot gathers for different simulations for source position at 𝑥 = 2.5 km. Figure 6-11b

shows the full domain elastic simulation on the model which is fully elastic in the

blue box and is tapered towards CDA on the outer red box. Figure 6-11c shows the

coupled CDA-EL local solver on the same model within the outer red box. Figure

6-11d shows the full domain elastic simulation on a CDA model using the true P-

velocity from Figure 6-9a with constant density and shear velocity. Arrow 1 shows

the position of the top of reservoir reflection. Arrow 2 shows the location where

the head-wave and the reflection separate. Arrow 3 shows the horizontal coordinate

along which traces are extracted for comparison. Figure 6-12 plots traces extracted
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from Figure 6-11 at 𝑥 = 8.0 km and displays them in the same order. Notice how,

as expected, the full domain tapered result is the same as the ’Local A’ result, just

as in the 2 layer scenario. The ’Local A’ simulation quite accurately models the

top of reservoir reflection, although some small differences are visible, particularly

in amplitude. Comparing with the CDA simulation in green it is clear that using

the elastic properties in the region of interests improves the accuracy of the modeled

reflection

Heuristical approach

For the Local A simulation we used the region between the blue box and the outer

red box in Figure 6-9a to taper the elastic model to the CDA model. The size of the

taper substantially adds to the size of the local domain, reducing the computational

benefits. Also in Local A the S-velocity is tapered from approximately 1300 m/s

for the overlying sediment in the blue box to 0.0 m/s for the CDA properties at

the outer red boundary. While we expect that the effect of tranmission on phase is

small, it is not zero especially when the taper contrast is large. In this section we

investigate the three local solvers with different taper configurations to address these

issues, Local B, Local C and Local D. None of these configurations taper to CDA zero

S-velocity anymore, reducing the contrast across the taper. The background model

on which the Green’s functions are computed is still CDA. This means that the elastic

model perturbations to the CDA background now intersect with the boundary of the

local solver. This causes inaccuracies both when injecting the pressure wavefield from

the CDA Green’s function and when extrapolating the scattered pressure field to the

physical receivers using the boundary integral (6.15). When injecting the wavefield in

the local solver the constants 𝑙𝑖𝑛𝑗𝑉𝑠
(x) and 𝑙𝑖𝑛𝑗𝜌 (x) are no longer constants but vary in

space. These scaling factors approximately compensate for smooth variations of their

respective material properties. This scaling is not perfect, in particular when there are

lateral variations in these constants along the injection boundary. In addition there

are some inherent inaccuracies when transforming the pressure field stored at 9 layers

around the boundary of the local solver into a velocity field and stress tensor with
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with 𝜏𝑥𝑥 ̸= 𝜏𝑧𝑧 and 𝜏𝑥𝑧 ̸= 0 when 𝑉𝑠 ̸= 0. By no longer tapering to CDA the model

perturbation to the CDA background model is no longer limited to the interior of the

boundary integral (6.15) as is required by theory. In addition to inaccuracies in the

injected wavefield there is also an inaccuracy in propagating the scatterered pressure

wavefield of the chalk PP-reflection from the local solver to the receiver locations. By

modeling the chalk PP-reflection in configurations Local B, Local C and Local D we

investigate the impact for the model in Figure 6-9. Further theoretical developments

are needed to quantify the errors in injection and extrapolation in general models.

First, the only difference between Local B and Local A is that Local B tapers to

𝑉𝑠 = 1300 m/s instead of 0.0 m/s. Using a fixed nonzero 𝑉𝑠 and varying 𝑉𝑝 along

the injection boundary results in spatially varying 𝑙𝑖𝑛𝑗𝑉𝑠
(x) and 𝑙𝑟𝑒𝑐𝑉𝑠

(x) from (D.2) and

(D.4). Configuration Local C uses no taper at all and the blue box in Figure 6-9a is

the local solver. It is worth noting that since the Earth in Figure 6-9 is a Poisson solid

along the boundary of the blue box, the amplitude compensation factors 𝑙𝑖𝑛𝑗𝑉𝑠
(x) = 2

3

and 𝑙𝑟𝑒𝑐𝑉𝑠
(x) = 3

2
are constant. Configuration Local D only uses the thin horizontal

taper on either sides of the blue box in Figure 6-9a and tapers to the same material

properties as Local B. So the factors 𝑙𝑖𝑛𝑗𝑉𝑠
(x) = 2

3
and 𝑙𝑟𝑒𝑐𝑉𝑠

(x) = 3
2
along the blue

portion of the top boundary, while they spatially vary along the red portions of the

boundary due to the tapering of the S-velocity. The density amplitude compensation

factors again vary less than those for the S-velocity.

Figure 6-13 shows the shot gathers for this heuristic approach, plotted in the same

window as those in Figure 6-11. The three simulations in Figure 6-13 look similar

both to one another and to the Local A simulation in Figure 6-11c. One noticeable

difference is an artificial high amplitude scatter event for the Local C simulation in

Figure 6-13b, marked with a red arrow. At larger 𝑥 coordinates outside the Figure

it asymptotically merges with the chalk reflection. A similar event with apex at

𝑥 = 3.0 km is present as well outside the plotting window. The location of these

events coincides with the 𝑥 coordinates of the left and right boundaries of the blue

box, which is the boundary of the taperless solver Local C. Later we investigate this

observation in more detail.
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Figure 6-14 shows traces extracted at 𝑥 = 8.0 km from the simulations in Figure

6-13. The vertical scale is different than in Figure 6-12, but the true trace in black

is exactly the same. We see that at 𝑥 = 8.0 km the top of reservoir reflection

is computed almost identically in the Local C and Local D configurations. This

agreement is observed everywhere, except for 𝑥 much smaller than 3.0 km or much

larger than 8.0 km when the high amplitude scatter event asymptotically merges with

chalk reflection. Similar to Local A, the three traces in 6-14 also match the chalk

reflection quite accurately. In order to quantify the match we measure the phase of

the reflection within a 0.2 s window, marked by the blue lines in Figure 6-10. The

five extracted gathers are plotted in Figure 6-15. Notice how at 𝑥 ≈ 9.5 km for

Local C the high amplitude scatter event comes into the window and merges with the

reflection.

For each trace in the windowed shot gathers of Figure 6-15 the phase is determined

by using the algorithm of Fomel et al. (2010), summarized by Zhu et al. (2011). Figure

6-16 shows the correlation coefficients, with the solid red line following the maximum

correlation in the individual plots for each receiver coordinate. Similar to Figure 6-8

the receivers nearest to the source at 𝑥 = 2.5 km have measured phase close to 315∘.

This −45∘ shift for near offset is the result of 2D effects. At certain offsets, events

intersect with the chalk reflection and as a result the solid red line oscillates rapidly.

See the region between 𝑥 = 8.25 km and 𝑥 = 9.75 km for instance in all five plots.

At these locations the combination of the direct wave and ocean bottom reflection

intersects with the chalk reflection. The ocean bottom reflection is different in the

true simulation where it is affected by the elastic contrast at the ocean bottom and

in the local simulations where the ocean bottom reflection is CDA. The superposition

of this event with the chalk reflection will have a different picked phase than that of

the chalk reflection alone. But additionally this change will not be reproduced by the

local solver since the ocean bottom reflection has different physics than in the true

simulation. Another example is the region between 𝑥 = 5.0 km and 𝑥 = 5.5 km for

the true simulation. Here a surface wave intersects the chalk reflection, perturbing

the picked phase. One approach to remove some of these oscillations is to enforce
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smoothness on the picked curve using regularization (see Fomel et al. (2010) for

more details). Instead we decide to mute certain positions where events crossing the

chalk reflection perturb its phase measurement. The mute windows for the source at

𝑥 = 2.5 km are shown with gray shading in Figure 6-17a. A more desirable option

would be to use processing to remove these events, but this is outside the scope of

this chapter.

All of the five curves of Figure 6-16 are merged into Figure 6-17a. In order to get

the phase shift of the reflection as a function of position, approximately 45∘ needs to

be added to correct for 2D effects. Including this shift, at large offsets (large incidence

angles) the phase shift approaches 180∘. At intermediate angles the shift is more than

180 degrees. This very large phase shift is caused by the presence of two critical angles.

The first critical angle originates from the P-velocity in the chalk which is larger than

the that overlying sediment. In addition the S-velocity in the chalk is also larger than

the P-velocity in the overburden. This causes the second critical angle, now for the

PS converted wave. This angle also influences the phase of the PP reflection we focus

on. Figure 6-17b shows the absolute (wrap corrected) phase error with respect to the

true phase for the different simulations. Notice that Local C becomes worse at offsets

larger than approximately 9.5 km because the scatter artifact merges with the real

postcritical reflection due to the relatively long dominant period of the wavelet.

Table 6.4 contains the measured error for the several source locations. The chalk

reflection window and the mute windows differ for each source location but are the

same for all simulation methods. The average is the arithmetic average of the phase

error at all the source locations. The average does not take into account that the

number of acceptable (i.e. non-muted) phase picks varies with source location. Based

on this average the ranking of the methods, in ascending order, is Local B, C, A and

then Local D. While Local C performs slightly worse than Local A, the computational

domain for Local C is much smaller than for Local A which makes it more desirable.

But the high amplitude artificial reflection event in Local C negatively impacts the

measured phase. This event is investigated in Appendix F. Local D has a slightly

larger computational domain than Local C, but avoids the artificial scatter event and
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has the overall highest accuracy. Local D is also computationally more efficient than

the large taper tests of Local A and Local B. Because of the high observed accuracy

and small size of the computational domain we prefer Local D for the particular model

we study here. This is the local solver we use in the inversion experiment.

6.3.3 Inversion

We now investigate whether the phase of the reflection event, generated by the local

solver, can be used to invert for material properties at a reflector of interest. We do

this by minimizing the least squares misfit

𝜒(m) =
1

2
⟨d− u(m),d− 𝑢(m)⟩ = 1

2
⟨r(m), r(m)⟩ (6.16)

between observed phase vector d and simulated phase vector u. The simulated phase

u is a function of the model parameters m. The phase residual r(m) is corrected for

phase wrap to get absolute phase differences. Figure 6-17b shows the phase residual

for a source at 𝑥 = 2.5 km where the model m on which u is simulated is the true

model. Because none of the local solvers models the reflections exactly, there is a

phase residual even on the true model. Phase residuals in the muted regions are

not included in the vector r(m). The non-muted phase residuals for all sources are

concatenated to form the vector r(m).

The question of how to parametrize the model is important. Zhu and McMechan

(2012) show that in general the amplitude and phase of a reflection depend on 4

ratios of material properties at a reflector. Since the full elastic material contrast at a

reflector is defined by 6 quantities (P- and S-velocity and density on both sides of the

reflector), at least two of them need to be fixed. Zhu and McMechan (2012) fix the P-

velocity and density in the upper layer and demonstrate that the method is sensitive

to bias in these picks. In this study, we assume the overburden is known and invert

only for the material properties of the bulk chalk and the potentially hydrocarbon

bearing anomaly at 𝑥 = 5.75 km. Both these regions are defined by P-velocity, density

and S-velocity, so the model vector m contains six elements. In each iteration 𝑖 we
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form the normal equations

J𝑇
𝑖 J𝑖p𝑖 = −J𝑇

𝑖 r𝑖 (6.17)

for current model estimate m𝑖 in order to minimize (6.16). Here 𝑝𝑖 is the search

direction we want to obtain. The Jacobian matrix J𝑖 is evaluated discretely using

6 forward models. In each forward model, we perturb one material parameter by a

small amount (e.g. we find 25.0 works well both for velocities in m/s and density in

kg/m3) and then obtain one of the six columns of J𝑖. The search direction is then

obtained by inverting the small six by six matrix J𝑇
𝑖 J𝑖

p𝑖 = −
(︀
J𝑇
𝑖 J𝑖

)︀−1
J𝑇
𝑖 r𝑖 (6.18)

With this search direction a line-search is initiated where we update model m𝑖 to

m𝑖+1

m𝑖+1 = m𝑖 + 𝛼𝑖p𝑖 (6.19)

Since a Newton method is used to compute the search direction p𝑖 in (6.18), we first

attempt step length 𝛼𝑖 = 1.0. If this does not decrease objective function (6.16),

then the step length is reduced and (6.16) is evaluated again. This continues until

an improved model m𝑖+1 is found. Based on the performance observations in Table

6.4 we use the Local D solver in the inversion. Local D generates the local wavefields

from which we extract the simulated phases u(m). Six sources are used spaced equally

between 2.0 and 4.5 km, each with their respective mute windows.

Table 6.5 shows the initial, inverted and true model parameters for the potentially

hydrocarbon bearing anomaly and the bulk chalk. The evolution of the model m𝑖 as

a function of iteration number 𝑖 is plotted in Figure 6-18. Each curve is normalized

by the true value, so all curves should approach 1.0 in case of a perfect inversion. The

subscript 1 refers to the material properties of the potentially hydrocarbon bearing

anomaly in the chalk anticline at 𝑥 ≈ 5.5 km and subscript 2 refers to the bulk chalk.

The first 5 iterations show large and sometimes oscillatory updates. In particular the

density appears to diverge at the start. But during later iterations the convergence
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behavior becomes very smooth and incremental.

Figure 6-19a shows the evolution of the phase for a collection of selected iteration

numbers. Figure 6-19b shows the wrap corrected phase residuals of Figure 6-19a for

the same iterations. These figures also show the phase curve for the Local D simulation

on the true local model. The simulation on the true local model is the same as in

Figure 6-17a and 6-17b. We see in Figure 6-19b the phase residual progressively

gets smaller and smaller as the inversion progresses. We do not expect to get a

perfect model recovery, since we have not perfectly matched the phase when using

the acoustic/elastic coupled solver. As a result of this mismatch, we find models that

fit our modeled data better than the true model. This is seen in Figure 6-20 where we

plot the objective function during inversion and mark the objective function on the

true model with the dashed black line. Continuing the inversion beyond 23 iterations

will therefore never result in the true model, since this has a higher objective value

associated with it. Despite these inaccuracies we see in Table 6.5 that all the model

parameter estimates at iteration 23 have errors of less than 4%.

6.4 Discussion

The local solver introduced in this chapter is based on an elastic solver which is fourth

order accurate in space. Such a low order stencil is not effective at preventing grid

dispersion. As a result we used more points per wavelength than is customary in

practice. For instance for the two layer example the peak frequency of the Ricker

wavelet is 25 Hz. The P-velocity in the top layer is 2000 m/s so the peak wavelength

is 80.0 m. With the used grid spacing of 3.25 m the number of points per wavelength

is approximately 25. This small grid spacing increases computation time of the solver

and also increases the storage cost for the Green’s functions. With higher order

accuracy stencils or other dispersion optimized stencils the number of points per

wavelength can be reduced, but stencil evaluation may be more expensive. Depending

on the particular implementation this may reduce the time required for computing the

full domain Green’s functions and performing the local solves. The increase in grid
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spacing and time step can will both reduce the storage cost for the Green’s functions,

but more than 9 layers of CDA Green’s functions will need to be stored around the

boundary of the local solver. Whether the overall approach is more efficient will

depend on the stencil size with respect to its dispersion behavior.

In its Local A configuration the local solver generates exactly the same results as

a full domain elastic solver on the same tapered elastic-CDA model. The amplitude

compensation factors are all constants and the boundary integral in equation 6.15

is just a scalar multiplied version of the exact CDA integral in equation 6.14. The

amplitude compensation factors only scale the resulting wavefield to approximately

compensate for elastic properties at the source and receiver locations in the true

model, since those affect the pressure through the smooth scaling factors given in

equations D.2 and D.3. The S-velocity scaling factor in equation D.2 naturally follows

from the governing equations of the elastic solver in equation D.1. We derive the

density scaling factor (D.3) in Appendix E by making the plane-wave approximation.

Empirically we observe the same scaling when using point-sources. The wavefields

generated by Local B, C and D no longer correspond to equivalent full domain elastic

simulations on some tapered model. They manipulate the injected wavefield on a

pixel by pixel basis through the amplitude compensation factors in equations D.2

and D.3. When extrapolating the wavefield back to the receivers they use similar

spatially varying amplitude compensation factors within the boundary integral of

(6.15). Both the scaled injection and extrapolation are not exact. For the particular

North Sea model of Figure 6-9 we observe a good result for Local D, but without a

rigorous theoretical framework it is hard to predict whether the Local D configuration

transfers well to other models. Based on observations in this chapter we do have

preliminary empirical guidelines in the absence of theoretical justification.

Based on the observations of Local C it appears that strong contrasts in elastic

properties along the boundary generate artificial scatter events with diffraction-like

behavior. The artificial scatter event happens when the downgoing wave hits the

intersection of the local solver boundary and the reflector. Since the artificial scatter

event is generated on the reflector of interest it will merge with the real reflection
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event at a particular position, 𝑥. This merging with the target reflection event is

what should be avoided since it affects the measured phase. Therefore it is advisable

to taper the density and S-velocity in the direction of the reflector. With this taper

the reflector no longer has a contrast in density and S-velocity at the boundary and

the artificial scatter event is prevented in Local D in contrast to Local C. While we

expect that other untapered elastic reflectors which intersect the boundary of the local

solver will also cause diffraction events, those should not merge with the reflector of

interest since they originate from a different reflector. While these events will not

merge with the reflection of interest, they can still cross it and affect the phase at

that crossing. In general it is important to avoid jumps in elastic material parameters

along the boundary. We choose to prevent strong elastic contrasts by a suitable choice

of tapers. An alternative approach is to pick the local solver boundary along a contour

where it does not intersect layers with strong elastic material contrasts. Perhaps a

more generally applicable routine would be to smooth the entire P-velocity, S-velocity

and density models except for the reflector of interest.

It should be noted that the chalk reflection is in fact the combination of the top-

and bottom chalk reflection with the 6 Hz Ricker we use. From a practical point

of view this superposition does not matter to our approach. Both the true data

and the simulated data contain this superposition. When minimizing the misfit in

phase in the inversion we observe in Figure 6-18 that the P-velocity and density

are not as well recovered as the S-velocity. This good recovery of the S-velocity

may be helped by the chalk layer having a PS-critical angle. Zhu and McMechan

(2014) observes something similar and show that a combined inversion using both

amplitude and phase information gives slightly better results. Intuitively it makes

sense that amplitude information helps constrain the P-velocity and density through

the impedance. Using amplitude information also makes better use of near-offset

reflections, whose negligible phase shift is hard to use in a phase only inversion. It

is hard to accurately model the amplitude of a reflection since you need to model

the (elastic) transmission losses in the entire overburden. But Zhu and McMechan

(2014) show that despite these inaccuracies the addition of amplitude to the inversion
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does give a better model estimate. In Figure 6-14 we see that the modeled amplitude

of the Local D trace is close to that of the true trace. It should be noted that the

overburden sediment in this chapter includes several layers, but that the contrast at

these layers is weak. Most variation in material parameters happens smoothly within

these sediments. Future studies focusing more on the amplitude should investigate

whether the amplitude of the local reflection remains relatively accurately modeled

in a more heterogeneous overburden. Hobro et al. (2014) introduce a method for

compensating the amplitude in acoustic simulations for elastic effects like transmission

loss, which may help with amplitude inversions. While outside the scope of this

chapter, it would be interesting to include the amplitude modeled by the local solver to

the current phase-only inversion. Another effect worth studying is when high-contrast

layers in the overburden become post-critical. This may limit the incidence angles that

are able to pass this reflector and will consequently influence the incidence angles at

the reflector of interest. The effects of a potentially reduced range of incidence angles

on the stability of the inversion is a subject if future work.

In this chapter we have investigated coupling a CDA background model to a local

elastic model. The reason for doing this is to reduce the cost of precomputing the

Green’s functions by leveraging highly efficient CDA wavesolvers. The price we pay

for this is that the tapers make the local domain slightly larger than the region of

interest (i.e. the blue box in Figure 6-9), which makes the local solves more expensive.

In addition there is a small reduction in accuracy. An intermediate approach would

use Variable Density Acoustic (VDA) Green’s functions, which increases computa-

tional cost but potentially also the accuracy because no density compensation factors

are required anymore. If precomputing a large set of full-domain elastic Green’s func-

tions is not a problem then the alternative is to implement the original local solver

introduced by Robertsson and Chapman (2000). Since the background model and the

local (potentially perturbed) model are both elastic they can be seamlessly connected.

As a result the local solver will generate the primary reflection of interest with the

same accuracy as the full domain solver. Since no tapers are needed the local simula-

tions are also slightly faster. This approach may be less beneficial if no detailed elastic
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overburden model is available. If many small scale perturbations with respect to the

wavelength are present in the true Earth, then the effective anisotropy this induces

cannot be accurately modeled using an acoustic solver (Cance and Capdeville, 2015).

In those cases the Green’s functions should be computed using an elastic solver. If

the true Earth has inherent anisotropy parameters as well then an elastic solver may

also be mandated. Whether it is possible to link anisotropic pseudo-acoustic Green’s

functions to a local elastic solver has not been investigated yet.

The computational cost of advancing the local solver one time-step is cheaper

than advancing the full domain solver. The speedup factor is proportional to the

difference in the size of the full domain and the local domain. An additional cost

saving is available to the local solver since the reflection of interest won’t enter the

local domain until some time 𝑡0 > 0. In theory we only need to model between this

time 𝑡0 and the time 𝑡1 that the wavefield leaves the local domain. While this is

not done in this chapter, this approach would improve the computational benefits of

the local solver even more. The cost of extrapolating the wavefield to the receivers

is determined by the cost of evaluating the convolutions through the FFT in the

boundary integral.

More theoretical work is needed to understand the range of conditions to which

the empirical amplitude compensation factors apply. We provide empirical guidelines

for how to taper the local model to avoid artificial scatter artifacts in the boundary

integral. But theoretical developments would give more confidence about to what

degree the observations on the models in this chapter translate to arbitrary models.

If finite frequency effects in the overburden are insignificant it would be interesting to

investigate whether the local elastic solver can be coupled to the acquisition using a

ray based approach. Not only would this drastically reduce the precomputation cost,

but it would also reduce the storage cost significantly. Also it would be interesting

to use phase measurements in time-lapse applications. In this chapter we use only

phase to invert for material parameters in one state. But in a time-lapse setting

we could use the observed phase at two or more moments in time and then invert

for associated time-lapse reflector change. One way of doing this would be by using
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a double difference approach to potentially reduce the effect of inaccuracies in the

baseline reflector on the inversion. Using amplitude together with phase will further

constrain the inversion. Finally other versions of the weighted boundary integral can

be investigated as well, for instance by first scaling the wavefield before evaluating

the normal derivatives.

6.5 Conclusions

In this chapter we introduce a mixed local solver where CDA Green’s functions are

used to couple a local elastic solver to the rest of a larger model. We first investigate

this method on a simple two-layer model where this mixed local solver matches the full

domain elastic reflection response almost perfectly. After this we try the local solver

in several different configurations, with different tapers and associated accuracies

and computational costs, on a more complicated heterogeneous velocity model. The

Local A configuration directly corresponds to an equivalent tapered elastic full domain

simulation. The other three configurations have no full domain equivalent and are

heuristic in nature. For these configurations we use spatially varying empirical scaling

factors to make the reflection response from the mixed local solver approximate the

full domain elastic response. We observe that the Local D configuration, in which

we use tapers only on the vertical boundaries of the local domain, is computationally

efficient and that it also models the reflection of interest with higher accuracy than

others. By studying the artifacts introduced in Local C we observe that the presence of

elastic contrasts along the interface introduces artificial scatter events, which reduces

the accuracy of this local solver. In Local C this event is caused by the intersection of

the untapered reflector of interest with the boundary of the local solver. This scatter

event merges with the real reflection we want to model, impacting the measured phase

adversely. We therefore suggest tapering the density and S-velocity along the reflector

of interest. We show that for a phase-only inversion we are able to quite accurately

retrieve the model parameters at the reflector of interest. In combination with the

computational efficiency of the local solver this demonstrates the potential of this
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approach.
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Figure 6-1: Schematic drawing of a local solver (red box) within a full domain solver
(black box). The local solver used in this study is a modification of the local solver
introduced by Robertsson and Chapman (2000). It discards waves scattering on local
model updates Δ𝑚(𝑥), which then exit and subsequently reenter the local domain,
like the gray event.
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Figure 6-2: Staggered elastic grid around the top-right boundary of the elastic local
solver. The various colored lines are used at different points in the chapter, where
their purposes are also described.
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Figure 6-3: Schematic of the local solver. The gray lines represent the required
background CDA Green’s functions between the sources, receivers and boundary of
the local solver. The model update within the local solver is elastic, with the region
between the red and the blue line representing a 𝜌 and 𝑉𝑠 taper. The blue box contains
exactly the part of the elastic model we want to model.
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Top layer Bottom layer
𝑉𝑝 (m/s) 2000.0 4000.0
𝜌 (kg/m3) 2000.0 2300.0
𝑉𝑠 (m/s) 880.0 1540.0

Table 6.1: The elastic material parameters for the two-layer example.

202



0.0

0.5

1.0

1.5D
ep

th
 (
km

)

P-velocity full

1000
2000
3000
4000
5000

V
 (
m

/s
)

(a)

0.0

0.5

1.0

1.5D
ep

th
 (
km

)

Density full

1800
1975
2150
2325
2500

D
en

si
ty

 (
kg

/m
3
)

(b)

0 1 2 3 4 5 6

Horizontal coordinate (km)

0.0

0.5

1.0

1.5D
ep

th
 (
km

)

S-velocity full

0
500

1000
1500
2000

V
 (
m

/s
)

(c)

Figure 6-4: True elastic model, with the source at 𝑥 = 1.0 km and 𝑧 = 0.1 km. Density
and S-velocity models are tapered from fully elastic inside the blue box to CDA at
the red box in Figure 6-5. Material properties of the two layers are summarized in
Table 6.1.
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Figure 6-5: Tapered density and shear velocity models from Figure 6-4. Inside the
blue box the models are fully elastic and the same as in 6-4. Between the two boxes
the model is tapered towards CDA material properties, which implies the 𝑉𝑠 taper
value is 0.0 m/s. We choose the constant density taper value 𝜌 = 2000.0 kg/m3,
which is equal to the density of the top layer in the full elastic model of Figure 6-4.
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Scaling terms for two layer example
Scaling factor Value

𝑙𝑖𝑛𝑗𝜌 (x) 1.0
𝑙𝑖𝑛𝑗𝑉𝑠

(x) 1.0
𝑙𝑟𝑒𝑐𝜌 (x) 1.0
𝑙𝑟𝑒𝑐𝑉𝑠

(x) 1.0
𝑙0(xs,xr) 1.0
𝑙𝑖𝑛𝑗𝑉𝑠

(xs)
20002−8802

20002
= 0.8064

Table 6.2: All scaling factors used in the experiment defined by Figures 6-4 and 6-5.
For this particular experiment they reduce to constants.
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Figure 6-6: Gathers. The number 1 marks the direct wave. The number 2 marks the
reflection. The number 3 marks the location where the headwave peels off and where
we clearly enter the postcritical regime (to the right, larger offset). The number 4
marks the reflection of the incident pressure wavefield on the top taper boundary.
This event is not present in the true simulation because there is no taper. The same
amplitude clipping is applied to all three simulations so the color scales correspond.
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Figure 6-9: True 𝑉𝑝, 𝜌 and 𝑉𝑠 for the North Sea model. The image of 𝑉𝑝 is the
background velocity model on which the CDA Green’s functions are computed. The
outer red box and inner blue box correspond with those in Figure 6-3. The lines
connecting the outer red box and inner blue box are used in subsequent tests where
parts of the taper are eliminated.
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Figure 6-10: Shot gather for a source at 𝑥 = 2.5 km with the red box indicating the
zoomed region shown for the local solvers in Figure 6-11. This gather is generated
on the true elastic model. The blue line represents the window later used to measure
the phase of the reflection.
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Taper Sides
Solver Top Bottom Left Right
Local A 𝜌: 2100.0 kg/m3 𝜌: 2100.0 kg/m3 𝜌: 2100.0 kg/m3 𝜌: 2100.0 kg/m3

𝑉𝑠: 0.0 m/s 𝑉𝑠: 0.0 m/s 𝑉𝑠: 0.0 m/s 𝑉𝑠: 0.0 m/s
Local B 𝜌: 2100.0 kg/m3 𝜌: 2100.0 kg/m3 𝜌: 2100.0 kg/m3 𝜌: 2100.0 kg/m3

𝑉𝑠: 1300.0 m/s 𝑉𝑠: 1300.0 m/s 𝑉𝑠: 1300.0 m/s 𝑉𝑠: 1300.0 m/s
Local C N/A N/A N/A N/A
Local D N/A N/A 𝜌: 2200.0 kg/m3 𝜌: 2200.0 kg/m3

𝑉𝑠: 1300.0 m/s 𝑉𝑠: 1300.0 m/s

Table 6.3: Table summarizing the taper properties for the four local solver configura-
tions. Entries for 𝜌 and 𝑉𝑠 indicate the taper end value at the boundary. The entry
’N/A’ means that the particular taper is not present in this configuration. Local A
and Local B taper to the outer red boundary in Figure 6-9. Local C directly injects
on the blue box with 𝜌(x) and 𝑉𝑠(x). Local D only retains the horizontal tapers.
Graphically this corresponds to the thin red box connected extending sideways from
the blue box in Figure 6-9.
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Figure 6-11: Sections of shot gathers for a source at 𝑥 = 2.5 km in four different
scenarios, within the region marked with the red box in Figure 6-10. The horizontal
axis is the receiver coordinate. Three different locations of interest are marked. 1:
The top of reservoir reflection. 2: The head-wave separating from this reflection,
marking the transition to the post-critical regime. 3: Location where the traces are
plotted in Figure 6-12. The phase has obviously rotated with respect the nearer offset
reflections before the critical angle. The amplitude scale is the same in all Figures.

212



4.
0

4.
1

4.
2

4.
3

4.
4

4.
5

4.
6

Time (s)

0.006

0.004

0.002

0.000

0.002

0.004

0.006

0.008

0.010

A
m

p
lit

u
d
e

Traces at receiver x=8.0km

Full EL true

Full EL taper

Local A

Full CDA
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Figure 6-13: This figure plots the wavefield simulations for configurations Local B,
Local C and Local D respectively. Similar to Figure 6-11 the source is placed at
𝑥 = 2.5 km. The red arrow in Figure 6-13b points to an artificial high amplitude
scatter event. The amplitude scale is the same in all Figures.
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Figure 6-16: Correlation values obtained when rotating each windowed trace and
then correlating it with its envelope for a source at 𝑥 = 2.5 km. This is done at
each receiver coordinate for the windowed gathers in Figure 6-15. The peak of this
correlation is plotted with the red line and this is used as the phase of the reflection.
At some receiver coordinates we observe overall lower correlation values .
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Figure 6-17: a): Comparing the selected phases from Figure 6-16. Intersecting events
cause abrupt deviations from a smooth phase transition. We therefore choose to mute
the gray regions. b):Plotting the difference with the ’true’ phase for all simulations in
Figure 6-17a. The phase difference is corrected for phase wrapping. Average misfits
in the non-muted regions: Local A: 10.07∘, Local B: 6.69∘, Local C: 9.84∘ and Local
D: 2.67∘.
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Table of average phase error
source x (km) 𝐴 𝐵 𝐶 𝐷

2.0 7.19∘ 9.41∘ 8.48∘ 6.38∘

2.5 10.07∘ 6.69∘ 9.84∘ 2.67∘

3.0 10.26∘ 14.65∘ 11.83∘ 4.04∘

3.5 7.18∘ 15.78∘ 6.94∘ 3.55∘

4.0 9.45∘ 8.47∘ 3.77∘ 3.10∘

4.5 9.43∘ 5.03∘ 12.53∘ 4.80∘

Average 8.93∘ 10.01∘ 8.90∘ 4.09∘

Table 6.4: Average phase error (degrees) for each of the four local solver modeling
cases for each of the selected sources, not including muted regions due to interacting
events. Errors for each source are influenced by the picking of the window and mute
ranges. The same windows and mutes for each source are used by all the local solver
configurations. The average in the bottom row is just the arithmetic average of the
numbers for the individual shots. This does not take into account that not every
source has the same number of non-muted phase measurements.
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Figure 6-18: Normalized model evolution during inversion. ’1’ refers to the potentially
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Hydrocarbon anomaly True Initial Inverted
Value Error Value Error

𝑉𝑝 (m/s) 5000.0 4200.0 16.0% 4862.1 2.8%
𝜌 (kg/m3) 2350.0 2000.0 14.9% 2314.4 1.5%
𝑉𝑠 (m/s) 2860.0 2200.0 23.1% 2832.3 1.0%

Bulk chalk True Initial Inverted
Value Error Value Error

𝑉𝑝 (m/s) 5300.0 4200.0 20.8% 5485.9 3.5%
𝜌 (kg/m3) 2650.0 2000.0 24.5% 2721.6 2.7%
𝑉𝑠 (m/s) 3060.0 2200.0 28.1% 3056.4 0.1%

Table 6.5: The P-velocity, density and S-velocity for the potentially hydrocarbon
bearing anomaly and the bulk chalk. The initial guess is improved significantly during
this phase-only inversion.
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Figure 6-19: Phase for source at 𝑥 = 2.5 km for selected inversion iterations. The
grayed out region is muted and the phase does not influence the inversion. Figure a)
shows phase and b) shows the difference (i.e. residual).
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Chapter 7

Conclusions and Future Directions

7.1 Summary of main contributions

In this thesis we investigated multiple seismic inverse problems with a local nature.

For this reason we developed the numerically exact local solver in Chapter 2. We

obtain large computational savings by restricting the generation of wavefields to the

small region of interest. Since both the forward and adjoint wavefields are computed

without error, the local gradient is numerically exact. This exact local gradient is

then available for a local optimization routine of choice, such as for instance nonlinear

CG or L-BFGS. Before the local solver can be used, a number of full domain Green’s

functions are computed in the offline stage. After these full domain Green’s functions

are computed, no further full domain simulations are needed. The local solver signif-

icantly accelerates the inversion procedure, compared to the conventional approach

of using a full domain solver. This reduces the computational time of an inversion,

making the procedure more interactive.

In Chapter 3 we demonstrate the functionality of the local solver by applying it

to two local inverse problems. We first use it to update the boundary of a salt body,

using FWI and a level set parametrization of the salt boundary. Accurate estimation

of salt shape in the velocity model is very important for subsalt imaging. The local

solver is efficient for this task because the salt body occupies only a subset of the full

computational model. We demonstrated how the local solver updated the salt bound-
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ary and how this resulted in an improved subsalt image. The second local problem

we investigated was time-lapse inversion. In the absence of significant geomechanical

effects, we expect the time-lapse changes to be primarily in the neighborhood of the

reservoir. We use a multi-domain local solver and DDFWI to efficiently estimate the

time-lapse change in multiple reservoirs. In addition to the faster forward model, we

also observe a reduction in the number of required FWI iterations when restricting

the model updates to the reservoir neighborhoods. In both local inversion examples

we demonstrate that the local solver efficiently updates the velocity model.

We then propose a new time-lapse algorithm in Chapter 4. Similar to the AFWI

algorithm introduced by Yang (2014), we also compute a confidence map in a pre-

processing step. In this step we invert for both the baseline and monitor data using

a single model. Since this model has to fit both baseline and monitor data, we sus-

pect that, at least for small time-lapse perturbations, this model has values between

those of the true baseline and monitor models. While updating the intermediate

model we record the baseline and monitor gradients at each pixel. At regions of true

time-lapse change, we suspect that the baseline and monitor gradients have relatively

large amplitude and want to update the intermediate model in opposite directions.

We therefore interpret regions where the baseline and monitor gradients have oppo-

site sign and large amplitude to be more likely to contain time-lapse change. At each

pixel we therefore compute a heuristic confidence value based on the gradient history.

The resulting confidence map is used to regularize a subsequent joint inversion. We

demonstrate that this confidence map is good at limiting the effect of noise on the

time-lapse estimate.

At this point there are not many published examples of time-lapse FWI applied to

field data. The few published studies make the acoustic approximation when inverting

for this field data. It is not well understood what the impact of the acoustic approxi-

mation is on the time-lapse estimate. In Chapter 5 we investigate this question on a

realistic elastic synthetic North Sea model. We demonstrate that the phase-shifts of

post-critical reflections in the elastic data negatively impact the acoustic time-lapse

estimate. When removing these post-critical reflections from the elastic data, the
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acoustic time-lapse estimate improves. In addition we demonstrate the importance

of the initial model. Finally we include the time-lapse regularization algorithm from

Chapter 4.

In Chapter 5 we decided to remove the post-critical PP reflections because their

phase shifts cannot be modeled accurately using an acoustic forward model. These

phase shifts depend on the elastic material contrast at the reflector and therefore

contain useful information to constrain an inversion. Instead of removing these post-

critical reflections, we introduce in Chapter 6 a new algorithm for modeling them

efficiently. We make use of the observation that the reflector of interest usually oc-

cupies a subset of the full computational domain. We therefore introduce an efficient

elastic local solver to model local PP reflections and their phase shifts. Zhu and

McMechan (2012) demonstrate that phase of a reflection is largely unaffected by

propagation through the overburden. Instead of using expensive elastic Green’s func-

tions we therefore use cheap constant density acoustic Green’s functions. Both types

propagate the PP reflections through the overburden with only limited impact on

the phase. We demonstrate that the coupled acoustic-elastic local solver accurately

computes PP reflections on the reflector of interest. We then use the phase of these

reflections to invert for material properties.

7.2 Directions for Future Work

The local solver methods we introduce in this paper can be improved in many ways. In

order to make the exact local solver of Chapter 2 applicable to field studies several

things need to happen. First of all, the current implementation is second order

accurate in space. This low order of accuracy will introduce numerical dispersion

effects to the solutions. Extending the approach to higher orders of accuracy is

therefore very important. We suspect that numerical exactness can be preserved for

higher orders of accuracy as well, but the derivations may be more complicated. One

avenue of efficiently extending the local solver to arbitrary orders of accuracy is by

better understanding a possible connection with the Schur complement. The Schur
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complement provides a general procedure for computing a subset of a solution vector

when solving a system of equations. For the Helmholtz problem, which describes

wave propagation in the frequency domain, this corresponds to computing the exact

local wavefield in potentially multiple local domains. In order to obtain these exact

local wavefields, the Schur complement requires a partial inverse of the full domain

Helmholtz matrix. The columns of this partial inverse matrix can be expressed in

terms of Green’s functions, which were also the central component of the local solver

approach we introduced in Chapter 2. The wavefields can naturally be evaluated

at the receivers by including their locations in the choice of the local domain. This

wavefield at the receivers is required for objective function evaluation, and to turn

the receivers into adjoint sources. Since the Schur complement is a general tool,

it would naturally describe how to implement a numerically exact local solver for

any order of spatial discretization. The exact local solver we introduce is also only

valid for constant density acoustic physics. Extending the approach to include more

realistic physics is important. Extensions to more complicated physics may also be

derived more naturally using the Schur complement. Finally, direct application of

the idea to 3D problems introduces unfavorable scaling in the number of required full

domain Green’s function computations and associated the storage cost. In Chapter

2 we quantify this scaling and propose an approach using matrix probing that can

potentially alleviate some of these issues. We believe that a computationally efficient

extension of the solver to 3D would be a great step forward.

The confidence map we introduce in Chapter 4 is based on a fundamental as-

sumption. We intuitively suspect that in the preprocessing step the baseline and

monitor gradients try to perturb the single model in opposite directions. In the ex-

ample we show this assumption seems to result in a confidence map which is aligned

with the true time-lapse change. We did not mathematically quantify the conditions

under which we can expect this behavior. We suspect that there is a threshold for

the amplitude and extent of the model perturbations for which the gradient based

confidence map will give desirable results. For instance, when the time-lapse change

becomes too extensive, the simulated data on a single ’intermediate’ model will be-
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come too far from both (cycle skipping) the true baseline and true monitor data. The

gradient based confidence map for such significant time-lapse change may therefore

not be accurate. More study is needed to quantify the limitations of the gradient

based confidence map.

In Chapter 6 we make use of amplitude compensation factors to inject a con-

stant density acoustic wavefield directly on a varying elastic local model. The inverse

of this procedure is used in the boundary integral. In this step we use amplitude

compensation factors to revert the pressure on the varying elastic local model back

to constant density acoustic pressure. Both these dynamic rescaling processes are

inherently heuristic. By trying different solver configurations and investigating the

boundary integrand in Appendix F we build some understanding for when this pro-

cedure works. A more rigorous treatment of the error that is introduced in these

heuristic steps would help quantify under which conditions we expect the method

perform well. In addition, there may be alternative scaling approaches we have not

investigated yet. If finite frequency effects are limited in the overburden, it is inter-

esting to investigate whether the local solver can be coupled to the acquisition using

a ray-based approach, instead of constant density acoustic Green’s functions. We ex-

pect the computational savings from such a modification to be large. Not only would

this reduce the offline computational burden of the full domain simulations, but the

storage cost would also be reduced significantly. Finally it is interesting to use the

phase measurements of the post-critical reflections in the time-lapse inverse problem

of Chapter 5.

In this thesis we demonstrate the potential of a local solver for speeding up the

inversion of the salt boundary, time-lapse model change and PVA/AVA. The main

benefit of this speedup is that it makes local workflows more interactive by reducing

the computational time between start and finish. This has implications for any in-

verse problem where the cost of the forward model is currently the limiting factor.

In addition to the problems we describe in this thesis, we see multiple other avenues

where an efficient local solver can transform current workflows. First, the significant

reduction in computational cost of the forward model opens up the opportunity for
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more continuous time-lapse inversion. This is especially interesting in those locations

with permanent monitoring systems, where new data vintages can be acquired at

low cost, either by reshooting with just a source vessel or potentially even by cross-

correlating noise traces (de Ridder et al., 2014). With the more efficient local forward

model it may be feasible to invert for more than two data vintages simultaneously,

which opens up new ways of regularizing reservoir change as function of time. Sec-

ond, local solvers may find applications outside of oil and gas, including for instance

the monitoring of structures, environmental engineering, medical imaging and nonde-

structive testing. An example of an environmental engineering application could be

the monitoring of pollutants, since their source is sometimes localized. Depending on

the particular pollutant, non-seismic detection methods may be more efficient. For

instance, materials with different resistivity than the surrounding soil may be easier

to detect using resistivity methods and would therefore warrant development of local

electric modeling methods. A critical component for the adoption of local solvers

is that they must scale efficiently in 3D. For the local solver of Chapter 2 we have

for instance suggested potential pathways to reduce the storage cost and the number

of required full-domain Green’s functions. Third, if the computational cost of these

steps is brought down significantly, it would potentially open up a new approach in

which the full computational domain is partitioned (potentially hierarchically) into a

continuous collection of adjacent local domains. The wavefield can be computed in

any of these local domains or even in a collection of these local domains by using the

multi-domain version of the local solver. The model can then be efficiently updated

in this collection of local domains. The scattered field from this model update can

then potentially be used to update the background Green’s functions for the other

local domains which were not involved. This gives the user the freedom to change the

selection of local domains after any model update. A big advantage of breaking up

the full domain in a collection of small domains is that at any moment the user can

decide to focus on any subset of the Earth model and speed up the forward model

accordingly. The user no longer needs to fix beforehand the boundaries of the local

domains, unlike the more rigid approach in for instance chapter 2.
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Appendix A

Derivation of numerically matching

scattered field

Model perturbations 𝛿𝑚 act as scattering sources in the Lippmann-Schwinger equa-

tion (Keys and Weglein, 1983) for the scattered field 𝑢𝑠. Equation 2.2 shows that the

model perturbations 𝛿𝑚 are limited to domain 𝐶. Therefore, outside of 𝐶, the model

is the background model and the scattered wavefield is sourceless:

−𝑚0(𝑥)𝜔
2𝑢𝑠(𝑥, 𝜔)−Δℎ𝑢𝑠(𝑥, 𝜔) = 0, 𝑥 ∈ Ω ∖ 𝐶. (A.1)

Recall that the model is unperturbed on the boundary 𝜕𝐶 of the truncated domain.

It is also known that the numerical Green’s function in the background model 𝑚0

satisfies

−𝑚0(𝑥)𝜔
2𝐺0(𝑥, 𝑦, 𝜔)−Δℎ𝐺0(𝑥, 𝑦, 𝜔) = 𝛿(𝑥− 𝑦), 𝑥, 𝑦 ∈ Ω. (A.2)

Multiplying Equation (A.1) by 𝐺0(𝑥, 𝑦, 𝜔) and subtracting Equation (A.2) multiplied

by 𝑢𝑠(𝑥, 𝜔) gives

−𝐺0(𝑥, 𝑦, 𝜔)Δℎ𝑢𝑠(𝑥, 𝜔) + 𝑢𝑠(𝑥, 𝜔)Δℎ𝐺0(𝑥, 𝑦, 𝜔) =

− 𝑢𝑠(𝑥, 𝜔)𝛿(𝑥− 𝑦), 𝑥 ∈ Ω ∖ 𝐶, 𝑦 ∈ Ω. (A.3)
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Both sides of Equation A.3 will be summed over the nodes in 𝐵 ∪ 𝜕𝐶 to get a

convenient expression for the scattered field 𝑢𝑠. Summation by parts is used to turn

Equation (A.3) into an expression resembling a boundary integral.

To make the rest of the derivation easier to follow, a 1D version of Equation (A.3)

is first summed along a line. The Laplacian operator Δℎ becomes the three-point

second-order derivative stencil in 1D. The left-hand side of equation Equation A.3

centered around node 𝑖 is 𝑑(𝑖) and in 1D becomes:

𝑑(𝑖) =−𝐺
(𝑖)
0

𝑢
(𝑖+1)
𝑠 − 2𝑢

(𝑖)
𝑠 + 𝑢

(𝑖−1)
𝑠

ℎ2

+ 𝑢(𝑖)
𝑠

𝐺
(𝑖+1)
0 − 2𝐺

(𝑖)
0 +𝐺

(𝑖−1)
0

ℎ2
, (A.4)

where for notational convenience the dependence on 𝑥,𝑦, and 𝜔 has temporarily been

dropped. The detour through the 1D case will be useful when finding an expression

for the 2D summation of Equation (A.3) with the five-point Laplacian stencil. Figure

A-1 shows the 1D setup of the problem. This figure corresponds to the dotted black

box in Figure 2-1. Equation A.4 is first written in a more convenient way:

𝑑(𝑖) = −𝐺
(𝑖)
0

(︀
𝑎(𝑖+1) − 𝑎(𝑖)

)︀
+ 𝑢(𝑖)

𝑠

(︀
𝑏(𝑖+1) − 𝑏(𝑖)

)︀
, (A.5)

with the coefficients 𝑎(𝑖) and 𝑏(𝑖) defined as:

𝑎(𝑖) =
𝑢
(𝑖)
𝑠 − 𝑢

(𝑖−1)
𝑠

ℎ2
, 𝑏(𝑖) =

𝐺
(𝑖)
0 −𝐺

(𝑖−1)
0

ℎ2
(A.6)

Using summation by parts to sum 𝑑(𝑖) over its domain of definition (i.e., the red and

black nodes in the 1D version of 𝐵 ∪ 𝜕𝐶 in Figure A-1), the following expression is

obtained:
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𝑛∑︁
𝑖=𝑚

𝑑(𝑖) =−
[︁
𝐺

(𝑛+1)
0 𝑎(𝑛+1) −𝐺

(𝑚)
0 𝑎(𝑚)

]︁
+

𝑛∑︁
𝑖=𝑚

𝑎(𝑖+1)
(︁
𝐺

(𝑖+1)
0 −𝐺

(𝑖)
0

)︁
+
[︀
𝑢(𝑛+1)
𝑠 𝑏(𝑛+1) − 𝑢(𝑚)

𝑠 𝑏(𝑚)
]︀

−
𝑛∑︁

𝑖=𝑚

𝑏(𝑖+1)
(︀
𝑢(𝑖+1)
𝑠 − 𝑢(𝑖)

𝑠

)︀
(A.7)

If we recognize that
(︁
𝐺

(𝑖+1)
0 −𝐺

(𝑖)
0

)︁
= ℎ2𝑏(𝑖+1) and

(︁
𝑢
(𝑖+1)
𝑠 − 𝑢

(𝑖)
𝑠

)︁
= ℎ2𝑎(𝑖+1), the

sums cancel. With this simplification Equation (A.7) becomes:

𝑛∑︁
𝑖=𝑚

𝑑(𝑖) =−
[︁
𝐺

(𝑛+1)
0 𝑎(𝑛+1) −𝐺

(𝑚)
0 𝑎(𝑚)

]︁
+
[︀
𝑢(𝑛+1)
𝑠 𝑏(𝑛+1) − 𝑢(𝑚)

𝑠 𝑏(𝑚)
]︀

=
1

ℎ2

[︁
𝑢(𝑛)
𝑠 𝐺

(𝑛+1)
0 −𝐺

(𝑛)
0 𝑢(𝑛+1)

𝑠

]︁
+

1

ℎ2

[︁
𝑢(𝑚)
𝑠 𝐺

(𝑚−1)
0 −𝐺

(𝑚)
0 𝑢(𝑚−1)

𝑠

]︁
(A.8)

Equation A.8 can be manipulated to show that
∑︀𝑛

𝑖=𝑚 𝑑(𝑖) can be rewritten in terms

of weighted normal derivatives on both boundaries:

𝑛∑︁
𝑖=𝑚

𝑑(𝑖) =
1

ℎ2

[︁
𝑢(𝑛)
𝑠

(︁
𝐺

(𝑛+1)
0 −𝐺

(𝑛)
0

)︁
−𝐺

(𝑛)
0

(︀
𝑢(𝑛+1)
𝑠 − 𝑢(𝑛)

𝑠

)︀]︁
+

1

ℎ2

[︁
𝑢(𝑚)
𝑠

(︁
𝐺

(𝑚−1)
0 −𝐺

(𝑚)
0

)︁
−𝐺

(𝑚)
0

(︀
𝑢(𝑚−1)
𝑠 − 𝑢(𝑚)

𝑠

)︀]︁
(A.9)

We now use Equation (A.8) in the following derivation for the 2D summation of

Equation (A.3). The left hand side of Equation (A.3) is called 𝑑(𝑖,𝑗) with index 𝑖
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referring to the grid row and index 𝑗 referring to the grid column.

𝑑(𝑖,𝑗) =(︃
−𝐺

(𝑖,𝑗)
0

𝑢
(𝑖+1,𝑗)
𝑠 − 2𝑢

(𝑖,𝑗)
𝑠 + 𝑢

(𝑖−1,𝑗)
𝑠

ℎ2

+𝑢(𝑖,𝑗)
𝑠

𝐺
(𝑖+1,𝑗)
0 − 2𝐺

(𝑖,𝑗)
0 +𝐺

(𝑖−1,𝑗)
0

ℎ2

)︃

+

(︃
−𝐺

(𝑖,𝑗)
0

𝑢
(𝑖,𝑗+1)
𝑠 − 2𝑢

(𝑖,𝑗)
𝑠 + 𝑢

(𝑖,𝑗−1)
𝑠

ℎ2

+𝑢(𝑖,𝑗)
𝑠

𝐺
(𝑖,𝑗+1)
0 − 2𝐺

(𝑖,𝑗)
0 +𝐺

(𝑖,𝑗−1)
0

ℎ2

)︃
(A.10)

The elements of the five-point Laplacian stencil have been ordered in such a way that

the first line of Equation (A.10) contains all the vertical derivatives and the second

line contains all the horizontal derivatives. It is important to notice that both lines

resemble Equation (A.4). When finding a simplified expression for the 2D summation

of Equation (A.10) over 𝐵 ∪ 𝜕𝐶, it is useful to investigate the summation over both

lines of Equation (A.10) individually.

First we will focus on the 2D summation of the first line of Equation (A.10) over

the domain 𝐵 ∪ 𝜕𝐶 (i.e., the black and red nodes). We compute this 2D summation

within a column and then add all of these column sums. The sum over all the elements

within a column is expressed in terms of nodal contributions at the top and bottom

boundary of the mesh in Figure 2-1. This is visualized in the left blue box in Figure

A-2 (a) and follows from the 1D derivation that the first line of (A.10) has the form

of (A.4). Summation over columns crossing 𝐶 is handled using the same logic from

the 1D derivation. The column sum is split into two parts, which are represented

by the two other blue boxes in Figure A-2 (a). The first part is summation over

the top subcolumn extending from the top of the full mesh to the node on the top

boundary of the truncated mesh. The second part is summation over the bottom

subcolumn extending from the bottom node on the truncated mesh boundary to the

bottom of the full mesh. Summation over both subcolumns is also expressed in terms
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of weighted normal derivatives at their boundaries. Adding all these weighted normal

derivatives, indicated by arrows in Figure A-2 (a), equals a sum over all grid points

of the first line of Equation (A.10).

The same idea can be repeated with the second line of Equation (A.10). But now

summation is over all the rows. Rows intersecting 𝐶 are split into two subrows whose

contributions are added. The summation over a row or subrow is again expressed in

terms of weighted normal derivatives as in the 1D version Equation (A.8). Therefore,

summation of the second line of Equation (A.10) over 𝐵 ∪ 𝜕𝐶 results in horizontal

normal derivatives that are added to the vertical normal derivatives of Figure A-2

(a). The summation of Equation (A.10) over 𝐵 ∪𝜕𝐶 is the combination of both lines

of the equation. Therefore, it includes the horizontal and vertical normal derivatives

on the boundaries, as is illustrated in Figure A-2 (b). One important observation is

that the corner nodes of 𝜕𝐶 do not contribute.

Summing the right hand side of Equation (A.3) over the volume 𝐵 ∪ 𝜕𝐶 gives

−𝑢𝑠(𝑦, 𝜔) for 𝑦 in 𝐵 ∪ 𝜕𝐶. Therefore, the summation of all the weighted normal

derivatives in Figure A-2 (b) gives the scattered field:

∑︁ 1

ℎ2

(︂
𝑢(𝑛)
𝑠

(︁
𝐺

(𝑛+1)
0 −𝐺

(𝑛)
0

)︁
−𝐺

(𝑛)
0

(︀
𝑢(𝑛+1)
𝑠 − 𝑢(𝑛)

𝑠

)︀)︂
= −𝑢𝑠(𝑦, 𝜔), 𝑦 ∈ 𝐵 ∪ 𝜕𝐶, (A.11)

where the summation is over all non corner boundary nodes and the superscript 𝑛 is

the value on the boundary, and the subscript 𝑛+ 1 one node to the exterior from 𝐵.

One problem with this boundary summation is that it requires explicit knowledge of

the scattered wavefield. There is an analogous derivation for the background field 𝑢0,

which is generated by a source in 𝐵. The left-hand side turns into a weighted normal

derivative summation with 𝑢0 replacing 𝑢𝑠, and the right-hand side is zero. Adding
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that expression to Equation (A.11) and using 𝑢 = 𝑢0 + 𝑢𝑠 gives:

∑︁ 1

ℎ2

(︂
𝑢(𝑛)

(︁
𝐺

(𝑛+1)
0 −𝐺

(𝑛)
0

)︁
−𝐺

(𝑛)
0

(︀
𝑢(𝑛+1) − 𝑢(𝑛)

)︀)︂
= −𝑢𝑠(𝑦, 𝜔), 𝑦 ∈ 𝐵 ∪ 𝜕𝐶, (A.12)

where the scattered field in 𝐵 ∪ 𝜕𝐶 is now expressed in terms of the total field 𝑢 at

the boundaries. A more detailed investigation would show that the weighted normal

derivatives on the outer boundary sum to zero. Therefore, the summation in Equation

(A.12) can be limited to the boundary of the truncated domain, where the reader is

reminded that the corner nodes are not involved as can be seen in Figure A-2 (b).

The derivation in this appendix can easily be extended to 3D.
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Figure A-1: Zoomed in section of the black dotted box in Figure 2-1.
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Figure A-2: (a) The summation of the first line in (A.10) results in weighted normal
derivatives indicated by orange arrows. The left blue box represents a column not
intersecting 𝐶. Summation over this column results in weighted normal derivatives at
the top and bottom of the full mesh. The two smaller blue boxes represent subcolumns
whose summation also result in weighted normal derivatives at the endpoints. (b)
Additional summation over the second line adds the horizontal normal derivatives to
the vertical ones of a. The contribution on the outer boundary adds up to zero and
can therefore be neglected.
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Appendix B

Numerically exact multi domain

solver

It is possible to solve for the identical wavefield a full domain solver would have gen-

erated in an arbitrary number of disjoint truncated domains. The derivation of this

multi-domain local solver is analogous to the single truncated domain case. Instead of

having a single truncated domain interior 𝐶 with boundary 𝜕𝐶, there is now a collec-

tion of truncated domain interiors 𝐶1, 𝐶2, . . . , 𝐶𝑁 with boundaries 𝜕𝐶1, 𝜕𝐶2, . . . , 𝜕𝐶𝑁 .

The difference in the wavefield due to model perturbations inside the truncated do-

main interiors is again called 𝑢𝑠. Performing a derivation entirely analogous to the

one in Appendix A, the scattered field is expressed using Equation (2.7). In this case,

the summation takes place along the boundaries of all the truncated domains, again

excluding their corner nodes. This means that Equation 2.7 uses the total wavefield

both at the boundaries of the truncated domains and one layer to the interior, and the

Green’s functions from those nodes to any node not in the interior of the truncated

domains to get the scattered field at that location. With this expression a system of

equations similar to Equation (2.10) is derived to truncate the computational domain.

As before, a spiraling node numbering scheme is used with node numbering start-

ing in the top left and increasing counterclockwise. The vector us
𝜕𝐶𝑗 refers to the

scattered field on the boundary nodes 𝜕𝐶𝑗. The wavefield on the boundary nodes

𝜕𝐶𝑗 in the background model 𝑚0 is u0
𝜕𝐶𝑗 . The total field at the same boundary is
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u𝜕𝐶𝑗 . The total field 𝑘 layers to the interior is u𝜕𝐶𝑗,+𝑘 . Just like in the single domain

case, a system of equations is assembled.

𝐴x = b (B.1)

with matrix 𝐴 defined in (B.2)

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−𝐼 0 0 𝐼 0 0 0 0 0 0 . . .

0
. . . 0 0

. . . 0 0 0 0 0 . . .
0 0 −𝐼 0 0 𝐼 0 0 0 0 . . .

𝐼 0 0 𝐺
𝜕𝐶1,+1

0,→𝜕𝐶1
. . . 𝐺

𝜕𝐶𝑁,+1

0,→𝜕𝐶1
−𝐺𝜕𝐶1

0,→𝜕𝐶1
. . . 𝐺𝜕𝐶𝑁

0,→𝜕𝐶1
0 . . .

0
. . . 0

...
...

...
... 0 . . .

0 0 𝐼 𝐺
𝜕𝐶1,+1

0,→𝜕𝐶𝑁
. . . 𝐺

𝜕𝐶𝑁,+1

0,→𝜕𝐶𝑁
−𝐺𝜕𝐶1

0,→𝜕𝐶𝑁
. . . 𝐺𝜕𝐶𝑁

0,→𝜕𝐶𝑁
0 . . .

0 −m(𝑥)𝜔2 −Δℎ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(B.2)
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and

x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

us
𝜕𝐶1

...

us
𝜕𝐶𝑁

u𝜕𝐶1

...

u𝜕𝐶𝑁

u𝜕𝐶1,+1

...

u𝜕𝐶𝑁,+1

u𝜕𝐶1,+2

...

u𝜕𝐶1,+𝑀1

...

u𝜕𝐶𝑁,+2

...

u𝜕𝐶𝑁,+𝑀𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

b =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u0
𝜕𝐶1

...

u0
𝜕𝐶𝑁

0

...

0

0

...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B.3)

where the number of layers in truncated domain 𝑗 is 𝑀𝑗. The Green’s block 𝐺𝜕𝐶𝑖
0,→𝜕𝐶𝑗

contains the Green’s functions from the boundary 𝜕𝐶𝑖 to the boundary 𝜕𝐶𝑗 where the

scattered field is computed. Similarly the block 𝐺
𝜕𝐶𝑖,+1

0,→𝜕𝐶𝑗
contains Green’s functions

between nodes one layer to the interior of 𝜕𝐶𝑖 to the nodes on the boundary of 𝜕𝐶𝑗.

The 0 subscript emphasizes that the Green’s functions correspond to the background

velocity state.

The multi-domain matrix in Equation (B.2) has a similar structure as the single

domain case of Equation 2.10. In fact, it reduces to Equation (2.10) when 𝑁 is set to

one. The multi-domain analogy of the relations in List 1 is used when constructing

Equation (B.2). Horizontal lines in Equation (B.2) and in vector b in Equation (B.3)

divide the matrix in three sections which are not drawn to scale. These sections are

not related to the sections in vector 𝑥 in Equation (B.3). The first section expresses

that the difference between the perturbed and the background wavefields is the scat-
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tered wavefield on the boundary of every truncated domain. The second section

expresses that the scattered field on boundary nodes of any domain is expressed in

terms of Equation (2.7), with summation now following the boundary of all domains

as explained at the start of this appendix. The third section expresses that in the

interior of every domain the regular Helmholtz equation holds.

Solving Equation (B.1) for arbitrary model perturbations in 𝐶1, 𝐶2, . . . , 𝐶𝑁 gives

in every truncated domain the identical local wavefields a full domain solver gives,

with relative differences defined by Equation (2.11) in the order of 1𝑒−12 to 1𝑒−16

regardless of the size of the perturbations. Because this local solution is numerically

equal to the full domain solution, it means that all interactions between the trun-

cated domains are included, in addition to the interactions with the unperturbed

background model. The cost of solving Equation (B.1) is similar to the cost of the

single domain case of Equation (2.10) as long as the total number of boundary nodes

in the multi-domain case is similar to the number of boundary nodes of the single

domain. The single domain case will be slightly slower, because for an equal number

of boundary nodes a single domain has more total nodes. Qualitatively, the matrices

in equations (B.2) and 2.10 are otherwise the same.

After the local wavefields are obtained through Equation (B.1), the scattered

wavefield is propagated to the receiver locations through the multi-domain version

of Equation (2.7). The residuals are then obtained and the adjoint wavefields are

computed locally. Cross-correlation with the local wavefields gives the local gradients,

which exactly match the gradients obtained from a full domain solver. This makes it

possible to do simultaneous inversion in multiple disjointed domains.
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Appendix C

Parallel FWI vs Joint FWI

In Parallel FWI we invert separately for the baseline and the monitor data by min-

imizing (5.3) and (5.4) independently. In Joint FWI we minimize the sum of both

the baseline and monitor objective functions as is shown in (5.10). After minimiz-

ing we subtract the baseline model from the monitor model to obtain our time-lapse

estimate.

Both Parallel FWI and Joint FWI minimize the same two objective functions

and have the same global optimal models 𝑚0 and 𝑚1. The only difference between

these techniques is that you either minimize the objective functions independently or

at the same time. Taking the derivative of the Joint FWI objective function (5.10)

with respect to the baseline model shows that this gradient does not depend on the

monitor data. The same is true the other way around when taking a derivative with

respect to the monitor model. This means that in Joint FWI there is no cross-talk

between the two terms of (5.10) from which we might benefit when inverting for them

simultaneously. In Figure 5-5d we see that the parallel FWI reconstruction is already

quite inadequate for CDA data. Joint FWI on the other hand appears to give very

similar results to DDFWI on the EL data as can be seen by comparing Figures 5-9

and 5-7d. This raises the question about why Parallel FWI and Joint FWI have such

different characteristics despite their apparent similarities.

To investigate this we run Parallel FWI and Joint FWI on CDA data, both start-

ing from the inverted CDA baseline model 𝑚0 corresponding to Figure 5-4c. The
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baseline gradient 𝑔0 is defined as the zero-lag cross-correlation between the second

time derivative of the incident wavefield and the adjoint wavefield 𝑞:

𝑔0(𝑥) =

∫︁ 𝑡𝑚𝑎𝑥

0

𝜕2𝑢(𝑚0)

𝜕𝑡2
(𝑥, 𝑡)𝑞0(𝑥, 𝑡)𝑑𝑡. (C.1)

The monitor gradient 𝑔1 is defined as

𝑔1(𝑥) =

∫︁ 𝑡𝑚𝑎𝑥

0

𝜕2𝑢(𝑚0)

𝜕𝑡2
(𝑥, 𝑡)𝑞1(𝑥, 𝑡)𝑑𝑡, (C.2)

where I use 𝑢(𝑚0) in the definition of 𝑔1 because the baseline and monitor start from

inverted baseline model𝑚0. We obtain the adjoint wavefields by solving the backward

wave equation with zero final conditions. The adjoint wavefield 𝑞0(𝑥, 𝑡) satisfies:

L𝑞0(𝑥, 𝑡) =

(︂
S* (𝑑0 − S𝑢0)

)︂
(𝑥, 𝑡) =

(︂
S*𝑟0

)︂
(𝑥, 𝑡) (C.3)

where L is the wave equation operator, S is again the sampling operator and S* is

its adjoint which places the traces on the grid as forcing term at the corresponding

receiver locations. The baseline residual 𝑟0 is defined in (5.6). Similarly, the adjoint

wavefield 𝑞1(𝑥, 𝑡) satisfies:

L𝑞1(𝑥, 𝑡) =

(︂
S* (𝑑1 − S𝑢0)

)︂
(𝑥, 𝑡) =

(︂
S* (𝑑0 + 𝛿𝑑− S𝑢0)

)︂
(𝑥, 𝑡) =

(︂
S* (𝑟0 + 𝛿𝑑)

)︂
(𝑥, 𝑡)

(C.4)

Subtracting (C.3) from (C.4) yields

L(𝑞1(𝑥, 𝑡)− 𝑞0(𝑥, 𝑡)) = L𝛿𝑞(𝑥, 𝑡) =

(︂
S*𝛿𝑑

)︂
(𝑥, 𝑡) (C.5)

with this we see that the monitor gradient in (C.2) consists of two parts

𝑔1(𝑥) =

∫︁ 𝑡𝑚𝑎𝑥

0

𝜕2𝑢(𝑚0)

𝜕𝑡2
(𝑥, 𝑡) (𝑞0(𝑥, 𝑡) + 𝛿𝑞(𝑥, 𝑡)) 𝑑𝑡

= 𝑔0(𝑥) +

∫︁ 𝑡𝑚𝑎𝑥

0

𝜕2𝑢(𝑚0)

𝜕𝑡2
(𝑥, 𝑡)𝛿𝑞(𝑥, 𝑡)𝑑𝑡 = 𝑔0(𝑥) + 𝛿𝑔(𝑥), (C.6)
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where 𝑔0(𝑥) is the gradient contribution of the baseline residual and 𝛿𝑔(𝑥) is the

gradient contribution due to the time-lapse perturbation in the recorded monitor

data.

Both the models and the gradients in our simulations are based on squared slow-

ness. In Figure C-1 we convert the square slowness gradients in the first FWI iteration

to velocity gradients to aid interpretation for CDA example. We notice that the base-

line gradient 𝑔0 induced by the residual 𝑟0 features a large amplitude reflector at depth

3.0km. The starting model 𝑚0 corresponding to Figure 5-4c does not match the very

sudden velocity jump at the reservoir boundary, which causes this residual 𝑟0. We no-

tice approximately the same reflector in the monitor 𝑔1, because the monitor data 𝑑1

includes the baseline residual as can be seen in equation C.4. The difference between

the search directions is displayed in Figure C-1c, and corresponds to the backpropa-

gated data difference 𝛿𝑑 in our example with perfect source and receiver repeatability,

as is seen in equation C.6. A small component of the reflector remains. The time-

lapse velocity change delays the boundary reflection, resulting in a 𝛿𝑑 with recorded

time similar to the boundary reflection. We interpret that this is backpropagated as

a time-lapse reflector, just like we observe in the ellipse in Figure 5-15.

In Joint FWI the model vector is the concatenation of the baseline and the monitor

components. In the first iteration where the equations above are valid (since 𝑚0 =

𝑚1), gradient descent in Joint FWI uses the following joint update vector

⎛⎝Δ𝑚𝐽𝐹𝑊𝐼
0

Δ𝑚𝐽𝐹𝑊𝐼
1

⎞⎠ = −𝛼

⎛⎝ 𝑔0,𝑖

𝑔0,𝑖 + 𝛿𝑔

⎞⎠ (C.7)

Where the difference between the monitor stepΔ𝑚𝐽𝐹𝑊𝐼
1 and the baseline stepΔ𝑚𝐽𝐹𝑊𝐼

0

can be interpreted as a time-lapse step Δ𝑚𝐽𝐹𝑊𝐼 .

Δ𝑚𝐽𝐹𝑊𝐼 = Δ𝑚𝐽𝐹𝑊𝐼
1 −Δ𝑚𝐽𝐹𝑊𝐼

0 = −𝛼(𝑔0 + 𝛿𝑔) + 𝛼𝑔0 = −𝛼𝛿𝑔 (C.8)

We see that in the first iteration JFWI moves down the direction 𝛿𝑔, which is the

backpropagated data difference 𝛿𝑑 according to (C.6). In Parallel FWI we invert
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independently for the baseline and the monitor step

Δ𝑚𝑃𝐹𝑊𝐼
0 = −𝛼0𝑔0 (C.9)

Δ𝑚𝑃𝐹𝑊𝐼
0 = −𝛼1(𝑔0 + 𝛿𝑔) (C.10)

The independent inversions each choose their own step length which result in a de-

crease of the objective function. Therefore step lengths 𝛼0 and 𝛼1 are in general

different. The difference between the two updates can again be interpreted as a

time-lapse step time-lapse step 𝛿𝑚𝑃𝐹𝑊𝐼

Δ𝑚𝑃𝐹𝑊𝐼 = Δ𝑚𝑃𝐹𝑊𝐼
1 −Δ𝑚𝑃𝐹𝑊𝐼

0 = −(𝛼1 − 𝛼0)𝑔0 − 𝛼1𝛿𝑔 (C.11)

We see in (C.11) that the time-lapse update contains a contribution from the incom-

plete cancellation of the baseline residual gradient 𝑔0. The reason is that when doing

the inversion for the baseline and the monitor independently, different step lengths

can be used. In Joint FWI we concatenate the baseline and monitor components

of the models and the gradients into vectors in equation C.7. When doing gradient

descent we use a single step length 𝛼 to add the concatenated gradient to the con-

catenated model, with 𝛼 selected to decrease the joint objective function of (5.10).

By using the same step length 𝛼 for the baseline and monitor step we observe in (C.8)

that the baseline residual component 𝑔0 cancels out in the time-lapse step Δ𝑚𝐽𝐹𝑊𝐼 .

Figure C-2a shows the time-lapse update step Δ𝑚𝑃𝐹𝑊𝐼 in the first iteration of

our example. A careful reader may notice that the update step in this first gradi-

ent descent iteration is relatively small in amplitude due to design choices made in

PySIT. Larger update steps are used in subsequent inversion iterations when L-BFGS

is used, although these subsequent iterations are not investigated in this Appendix.

In Figure C-2a we see that a there is a relatively large time-lapse reflector update

which does not correspond to the physical 𝑉𝑝 time-lapse in 5-2a. As argued before

this time-lapse reflector is the result of the baseline residual 𝑟0 which is not canceled

out in parallel FWI due to the different step lengths in the baseline and the monitor
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inversions. In the next iterations of FWI leading towards the final parallel estimate

of Figure 5-5d, similarly undesirable updates appear to get worse. In the joint FWI

update step in Figure C-2b we see that the step taken is just a scalar multiple of 𝛿𝑔

in Figure C-1c. We completely removed the influence of the backpropagated baseline

residual 𝑔0 in this example with perfect source/receiver repeatability. As a result we

reduce the undesirable time-lapse reflector update, compared to Δ𝑚𝑃𝐹𝑊𝐼 in Figure

C-2a. Only a small reflector component remains as we explained earlier in this Ap-

pendix. This observation illustrates how Joint FWI outperforms parallel FWI despite

their apparent similarities by enforcing the same step length for the baseline and the

monitor update.
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Figure C-1: Velocity update directions corresponding to the squared slowness gra-
dients on the CDA data with 𝑚0 corresponding to Figure 5-4c. Figures C-1a, C-1b
and C-1c correspond to the gradients 𝑔0, 𝑔1 and 𝛿𝑔 defined in (C.1), (C.2) and (C.6)
respectively.
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Figure C-2: Velocity steps taken in Parallel inversion and Joint inversion with velocity
update directions corresponding to 𝑔0, 𝑔1 and 𝛿𝑔 given in Figures C-1a, C-1b and C-1c
respectively.
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Appendix D

Heuristic amplitude compensation

factors

In this section we introduce the heuristic amplitude compensation factors which are

required when 𝜌(x) and 𝑉𝑠(x) are variable along the injection boundary, or between

source and receiver locations.

D.1 Injection compensation factor 𝑉𝑠(x)

When injecting the wavefield on a model with nonzero S-velocity, the injected wave-

field’s pressure may be lower than that of the precomputed CDA pressure. This is

easily seen by adding (6.3) to (6.4) and using that the average of the normal stresses

equals the pressure.

𝜕𝑝(x, 𝑡)

𝜕𝑡
= (𝜆(x) + 𝜇(x))

(︂
𝑣𝑥(x, 𝑡)

𝜕𝑥
+

𝑣𝑧(x, 𝑡)

𝜕𝑧

)︂
= 𝜌(x)

(︀
𝑉 2
𝑝 (x)− 𝑉 2

𝑠 (x)
)︀(︂𝑣𝑥(x, 𝑡)

𝜕𝑥
+

𝑣𝑧(x, 𝑡)

𝜕𝑧

)︂
(D.1)

Equation (D.1) clearly shows that the amplitude of pressure of the injected P-wave is

proportional to 𝑉 2
𝑝 (x)−𝑉 2

𝑠 (x). It is therefore lower when the shear velocity along the

boundary of the local solver is unequal to zero. This proportionality factor will need

to be compensated for later so that the background CDA wavefield between source
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and receiver and the scattered wavefield from the elastic solver are scaled consistently.

We can use this scaling factor to approximately correct the amplitude of the CDA

wavefield for smooth variation in 𝑉𝑠. The amplitude of the P-wave in the elastic

simulation scales with
(︀
𝑉 2
𝑝 (x)− 𝑉 2

𝑠 (x)
)︀
. But a CDA simulation has 𝑉𝑠 = 0 and this

scaling term evaluates to 𝑉 2
𝑝 (x). The amplitude compensation factor is therefore the

division of these terms.

𝑙𝑖𝑛𝑗𝑉𝑠
(x) =

𝑉 2
𝑝 (x)− 𝑉 2

𝑠 (x)

𝑉 2
𝑝 (x)

, (D.2)

This factor compensates the CDA simulation where 𝑉𝑠(x) = 0 for the now elastic

state where it is nonzero.

D.2 Injection compensation factor 𝜌(x)

In addition to 𝑉𝑠 scaling we also observe that in a model with constant 𝑉𝑝 but smoothly

varying 𝜌, the amplitude of the pressure wave scales proportionally as

𝑙𝑖𝑛𝑗𝜌 (x) =

√︃
𝜌(x)

𝜌(xs)
(D.3)

A derivation of this scaling is found in Appendix E. The density at the source 𝜌(xs)

is obtained from the elastic model where we want to approximate the P wavefield

using the CDA model.

D.3 Remaining compensation factors

In order to propagate the scattered wavefield to the receiver locations in an elastic

model we use the weighted boundary integral (6.15). In this boundary integral we
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use the compensation factors

𝑙𝑟𝑒𝑐𝑉𝑠
(x) =

𝑉 2
𝑝 (x)

𝑉 2
𝑝 (x)− 𝑉 2

𝑠 (x)

𝑙𝑖𝑛𝑗𝑉𝑠
(xr)

𝑙𝑖𝑛𝑗𝑉𝑠
(xs)

, (D.4)

𝑙𝑟𝑒𝑐𝜌 (x) =

√︃
𝜌(xr)

𝜌(x)
(D.5)

The first factor in (D.4) is the inverse of (D.2). It brings back the scattered wavefield

to a S-velocity state corresponding to the CDA model. Similarly, factor 𝑙𝑟𝑒𝑐𝜌 (x) ap-

proximately corrects the pressure from a variable density state to a constant density

state. The weighted boundary integral in (6.15) therefore approximately uses a CDA

representation of the pressure field along its boundary. We now need to compensate

for differences in the 𝑉𝑠 compensation factor 𝑙𝑖𝑛𝑗𝑉𝑠
between source and receiver pixel.

This amplitude variation due to interactions between P-velocity and S-velocity is not

in modeled by the CDA Green’s functions. The second fraction in (D.4) takes care

of this.

The wavefield in the perturbed model at the receiver locations is the sum of

the background wavefield and the scattered wavefield. The scattered wavefield is

computed using the procedure above. The same scaling needs to be applied to the

background wavefield for this addition to be consistent. This will compensate for

the amplitude variation that would be observed in the elastic model if the wavefield

would smoothly transition from the source density and shear velocity to the that at

the receiver. This compensation factor is,

𝑙0(xs,xr) =

√︃
𝜌(xr)

𝜌(xs)

𝑙𝑖𝑛𝑗𝑉𝑠
(xr)

𝑙𝑖𝑛𝑗𝑉𝑠
(xs)

, (D.6)

where the density and shear velocity values at the sources and receivers are extracted

from the elastic model we want to approximate the pressure wavefield.

So far we have compensated the amplitude of the perturbed (i.e. background

+ scattered) wavefields for contrasts in density and S-velocity between source and

receiver pixels. In the elastic solver we use (Levander, 1988), the amplitude of the
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perturbed wavefield scales directly with the value of (D.2) at the source pixel. So the

last amplitude compensation multiplies the perturbed gather by 𝑙𝑖𝑛𝑗𝑉𝑠
(xs). The total

workflow is plotted in Figure D-1.
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Figure D-1: Workflow of the proposed algorithm. Step one computes CDA Green’s
functions, which is the only time we use a full domain solver. Step two uses injection
scaling factor (D.2) and (D.3). Step four uses (D.4) and (D.5) for propagating the
wavefield to the receivers. Step five scales the background wavefield to compensate for
differences in 𝑉𝑠 and 𝜌 between the source and receiver location, as defined in (D.6).
Finally step six scales the wavefield for the shear velocity at the source location with
𝑙𝑖𝑛𝑗𝑉𝑠

(xs).
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Appendix E

Wavefield amplitude scaling due to

smooth density variation

In this appendix we justify the density scaling term (D.3). We derive the scaling

term using the 2D continuous equations of (6.1) - (6.5) To simplify the derivation we

investigate the scenario where the model is invariant in the 𝑥 direction. Furthermore,

we investigate the propagation of a plane wave, instead of a cylindrical wavefront

originating from a point source. We first investigate a simple scenario with constant

material parameters 𝜌0, 𝜆0 and 𝜇0. Fourier transforming equations 6.2 and 6.4 and

eliminating terms with derivatives in the 𝑥 direction, we obtain

𝑣(0)𝑧 (𝑧, 𝜔) =
1

𝑖𝜔𝜌0

𝜕𝜏
(0)
𝑧𝑧 (𝑧, 𝜔)

𝜕𝑧
(E.1)

𝜏 (0)𝑧𝑧 (𝑧, 𝜔) =
𝜆0 + 2𝜇0

𝑖𝜔

𝜕𝑣
(0)
𝑧 (𝑧, 𝜔)

𝜕𝑧
, (E.2)

where the superscript “(0)” is used to make clear this equation is valid on the constant

model. A simple second order ODE is obtained by inserting (E.1) into (E.2)

𝜏 (0)𝑧𝑧 (𝑧, 𝜔) = −𝜆0 + 2𝜇0

𝜔2𝜌0

𝜕2𝜏
(0)
𝑧𝑧 (𝑧, 𝜔)

𝜕𝑧2
(E.3)
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A general solution of this equation is

𝜏 (0)𝑧𝑧 (𝑧, 𝜔) = 𝑎1(𝜔) exp

[︃
𝑖

(︃√︃
𝜔2𝜌0

𝜆0 + 2𝜇0

𝑧 + 𝑎2(𝜔)

)︃]︃
, (E.4)

where 𝑎1 and 𝑎2 are potentially functions of 𝜔. We now investigate a second scenario

for which we use the “(1)” superscript. In this scenario density varies linearly with

depth

𝜌(𝑧) = 𝜌0 (1 + 𝑐𝑧) (E.5)

While varying density, we keep the P-velocity and S-velocity fixed. As a result the

elastic moduli 𝜆(𝑧) and 𝜇(𝑧) have the same linear scaling as 𝜌(𝑧). The following

equations are obtained for 𝑣(1)𝑧 and 𝜏
(1)
𝑧𝑧

𝑣(1)𝑧 (𝑧, 𝜔) =
1

𝑖𝜔𝜌0 (1 + 𝑐𝑧)

𝜕𝜏
(1)
𝑧𝑧 (𝑧, 𝜔)

𝜕𝑧
(E.6)

𝜏 (1)𝑧𝑧 (𝑧, 𝜔) = (1 + 𝑐𝑧)
𝜆0 + 2𝜇0

𝑖𝜔

𝜕𝑣
(1)
𝑧 (𝑧, 𝜔)

𝜕𝑧
, (E.7)

Where the (1 + 𝑐𝑧) scaling in E.7 originates from the elastic moduli 𝜆(𝑧) and 𝜇(𝑧).

Inserting (E.6) into (E.7) we obtain the following ODE

𝜏 (1)𝑧𝑧 (𝑧, 𝜔) = −(1 + 𝑐𝑧)
𝜆0 + 2𝜇0

𝜔2𝜌0

[︃
1

(1 + 𝑐𝑧)

𝜕2𝜏
(1)
𝑧𝑧 (𝑧, 𝜔)

𝜕𝑧2
− 𝑐

(1 + 𝑐𝑧)2
𝜕𝜏

(1)
𝑧𝑧 (𝑧, 𝜔)

𝜕𝑧

]︃
(E.8)

Reorganizing terms we get

𝜕2𝜏
(1)
𝑧𝑧 (𝑧, 𝜔)

𝜕𝑧2
− 𝑐

(1 + 𝑐𝑧)

𝜕𝜏
(1)
𝑧𝑧 (𝑧, 𝜔)

𝜕𝑧
+

𝜔2𝜌0
𝜆0 + 2𝜇0

𝜏 (1)𝑧𝑧 (𝑧, 𝜔) = 0 (E.9)

Where we recognize that the first derivative term has a varying coefficient. ODE’s

with varying coefficients are often solved using power series methods. We choose to

use Mathematica to obtain the following solution for 𝜏 (1)𝑧𝑧 (𝑧, 𝜔).

𝜏 (1)𝑧𝑧 (𝑧, 𝜔) = 𝑘1(𝜔)(1 + 𝑐𝑧)𝐽1

(︂√︀
𝑑(𝜔)

(1 + 𝑐𝑧)

𝑐

)︂
+ 𝑘2(𝜔)(1 + 𝑐𝑧)𝑌1

(︂√︀
𝑑(𝜔)

(1 + 𝑐𝑧)

𝑐

)︂
(E.10)
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where 𝐽1 and 𝑌1 are the first order Bessel functions of the first and second kind

respectively. We simplify notation by using

𝑑(𝜔) =
𝜔2𝜌0

𝜆0 + 2𝜇0

. (E.11)

Intuitively it is to be expected that reflection of the incident plane-wave on the sloping

density is insignificant when density variation is small over a wavelength. When the

density difference across a wavelength is small (i.e. small slope 𝑐 or large 𝜔) the

argument of the Bessel functions in (E.10) becomes large. Using their respective

asymptotic expansions we see a complex exponentials arise.

𝜏 (1)𝑧𝑧 (𝑧, 𝜔) ≈
√︃

𝑐(1 + 𝑐𝑧)

𝜋
√︀

𝑑(𝜔)
𝑚1(𝜔) exp

[︂
𝑖

(︂√︀
𝑑(𝜔)

(1 + 𝑐𝑧)

𝑐
− 3

4
𝜋 +𝑚2(𝜔)

)︂]︂
. (E.12)

We now absorb all terms independent of 𝑧 into 𝑚1(𝜔) and 𝑚2(𝜔) to get.

𝜏 (1)𝑧𝑧 (𝑧, 𝜔) ≈
√︀

(1 + 𝑐𝑧)𝑚1(𝜔) exp

[︃
𝑖

(︃√︃
𝜔2𝜌0

𝜆0 + 2𝜇0

𝑧 +𝑚2(𝜔)

)︃]︃
, (E.13)

where we also used (E.11). Equation E.13 shows that the amplitude scales directly

with the dimensionless contrast 𝑐𝑧. Finally we multiply (E.13) by
√︁

𝜌0
𝜌0
and use (E.5)

to obtain a solution involving density

𝜏 (1)𝑧𝑧 (𝑧, 𝜔) ≈

√︃
𝜌(𝑧)

𝜌0
𝑚1(𝜔) exp

[︃
𝑖

(︃√︃
𝜔2𝜌0

𝜆0 + 2𝜇0

𝑧 +𝑚2(𝜔)

)︃]︃
. (E.14)

The leading square root term was obtained by using (E.5) on the leftover term
√
1 + 𝑐𝑧

after absorbing constants into 𝑚1(𝜔) and 𝑚2(𝜔). We now compare the constant

medium plane wave solution 𝜏
(0)
𝑧𝑧 (𝑧, 𝜔) of (E.4) with the depth dependent density

plane wave solution 𝜏
(1)
𝑧𝑧 (𝑧, 𝜔) of (E.14). At depth 𝑧 = 0 the density 𝜌(𝑧) is equal to

𝜌0 and the leading square root term in (E.14) is just 1. At this depth we obtain the

same solutions by setting 𝑎1(𝜔) = 𝑚1(𝜔) and 𝑎2(𝜔) = 𝑚2(𝜔). If we then divide (E.14)

by (E.4), we observe that the difference due to the sloping density and constant P-
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velocity and S-velocity is
√︁

𝜌(𝑧)
𝜌0
. This is exactly the square root density scaling we use

in (D.3). While this density scaling is contingent on the asymptotic approximation

of the Bessel functions in (E.12), we numerically observe similar scaling over a wide

range of contrasts 𝑐. This remains the same in our numerical studies when using a

point source instead of the plane-wave used in this Appendix.
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Appendix F

The high amplitude artificial scatter

event in Local C

The artificial scatter event in Local C originates from the boundary integral. For each

receiver location, boundary integral equation 6.15 is evaluated. Figure F-1 plots the

boundary integrand for the receiver at 𝑥 = 8.0 km and source at 𝑥 = 2.5 km. Three

vertical striped blue lines segment the boundary integrand into four sections. These

sections are the top, right, bottom and left boundary of Local C (i.e. blue box in

Figure 6-9a). Similar to the ordering of the sides, the nodes are also numbered in a

clockwise manner. Figure F-1 zooms in on the red box of Figure F-1. Two vertical

arrows indicate the node locations for the top chalk reflector and the bottom chalk

reflector on the right side of the local domain respectively. At these locations there

are spiky discontinuous features in the boundary integrand. Summing the boundary

integrand along the magenta line, also outside the zoom region, and multiplying with

the grid spacing performs the integral for 𝑡 = 4.85 s. This gives the scattered field

𝑝𝑠𝑐 at 𝑡 = 4.85 s at receiver location 𝑥 = 8.0 km. Adding this scattered field to

the background field 𝑝0 gives the perturbed field plotted at that time and receiver

coordinate in Figure 6-13b. We see that at this location the artificial scatter event is

visible. We thus conclude that it originates from integration along the magenta line.

In Local C the integrand does not cancel along the horizontal magenta line and this

generates this event. Visually we see there is more black polarity than white polarity
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along the magenta line. In addition to the mostly black area around the top chalk

node, it also goes through a smaller black area at the bottom chalk, all contributing

to the amplitude of the artifact by not canceling out.

We now study the boundary integrand of Local C to determine which physical

event corresponds to the integrand at the intersection of the magenta line and the

top chalk in Figure F-2a. To do so we first look at Figure F-1. Around boundary

node 300 and 𝑡 ≈ 4.15 s we see the apex of a hyperbolic event, and a smaller events

separates towards to top right. The latter has an apex around 𝑡 ≈ 4.0 s and boundary

node number 380. The 𝑝𝑠𝑐 trace is formed by summing over the node numbers and

multiplying by the grid spacing. Each apex is a ’stationary zone’ for the integral

because summation is constructive and both appear at the top boundary for a source

at 𝑥 = 2.5 km and receiver at 8.0 km. Comparing these times with the perturbed

shot gather in Figure 6-13b we see that the thinner event with stationary zone at

𝑡 ≈ 4.0 s corresponds to the head-wave and the one with stationary zone at 𝑡 ≈ 4.15 s

corresponds to the reflection. Following the latter in Figures F-1 and F-2a we see

that this event is the one that generates the artifacts. Therefore we believe the large

amplitude artificial reflection is caused by the incoming wave reflecting on the chalk

right where the boundary integral crosses the fully elastic chalk in Local C.

The scatter event for Local C is not visible in the shot gather for Local D in Figure

6-13c. Figure F-2b shows a zoomed in section of the boundary integrand for Local D,

again for source at 𝑥 = 2.5 km and receiver at 𝑥 = 8.0 km. The node numbering

scheme is the same as for Local C, but the exact node numbers differ. The reason is

that Local D adds a horizontal taper, which changes the number of nodes in the local

domain. Just as in Figure F-2a, the left red arrow is aligned with the node at the top

chalk and the right red arrow is aligned bottom chalk on the right side of the local

domain. In this case the integrand passes beyond the top chalk very smoothly, no

spiky phenomena appear. If the same artifact would be generated by Local D then

we suspect the apex would be above the right boundary at 𝑥 = 9.0 km in this case.

It would also originate at a later time than in Local C since it the right boundary is

further away from the source. Since we plot the integrand for a receiver at 𝑥 = 8.0 km,
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which is 1.0 km away from the apex of this already delayed hypothetical artifact, the

event should arrive at an even later time. In Figure F-2b for Local D we therefore

observe that the boundary integrand crosses the chalk layer around 𝑡 = 5.4 s instead

of 𝑡 = 4.85 s. Unlike the integrand for Local C, there are no artifacts at the chalk

crossings marked by the red arrows in Figure F-2b. Visually we can already see that

integration along the magenta line is more balanced than for Local C. Black and white

patches are more evenly distributed and no noticeable scatter event is generated for

Local D. We emphasize that even though Figure 6-13c only shows Local D up to

5.0 s, no event is visible at later times either. This absence of the scatter event is not

simply caused by extending the right boundary outwards. Had we changed Local C

by moving the right boundary to 𝑥 = 8.0 km instead of 𝑥 = 9.0 km then a similar

scatter event would have been generated, but with an apex close to 𝑥 = 9.0 km.

But for Local D with right boundary at 𝑥 = 9.0 km no scatter event is generated.

In Local D we have no S-velocity and density contrast along the interface. This

apparently makes a big difference here, even though in both cases we technically

violate the restriction of not updating the CDA background model at the integration

boundary. In Local C, the reflection at the intersection of the chalk and the right

boundary encounters a contrast in P-velocity, density and S-velocity. We suspect that

the violation of the rule of perturbing the model only on the inside of the boundary

integral is too strong here. The fully elastic material contrast fundamentally changes

the reflection behavior compared to the CDA background state. And the artifact is

generated as a result. While all based on heuristics, we attempt to limit (strong)

elastic material contrasts from intersecting the boundary.
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Figure F-1: Boundary integrand of (6.15) for Local C for a source at 𝑥 = 2.5 km and
receiver at 𝑥 = 8.0 km. From left to right, the three vertical dashed blue lines repre-
sent the transition from the top→right, right→bottom and bottom→left boundary.
Node numbering is also clockwise. The red box is a zoom region.
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Figure F-2: (a) shows a zoom in on the red box in Figure F-1. The dashed blue lines
are the same. The two vertical arrows indicate locations where the boundary integral
passes the reflector, which is fully elastic in Local C since there is no taper. Notice
the spiky features at the vertical arrows. When summing over all nodes along the
horizontal magenta line we obtain the scattered field at 𝑡 = 4.85 s. (b) is similar to
(a), but now for Local D. The boundary node numbers are slightly larger because
a horizontal taper is now used. When the boundary integral crosses the top of the
reflector at the left arrow we observe that the transition in the integrand is very
smooth. Because of this no scatter artifact is generated like we saw in Local C.

265



266



Bibliography

Aki, K., and P. G. Richards, 2002, Quantitative seismology: 1.
Arts, R., M. Trani, R. Chadwick, O. Eiken, S. Dortland, and L. van der Meer, 2009,
Acoustic and elastic modeling of seismic time-lapse data from the sleipner co2
storage operation: State of the science: AAPG Studies in Geology, 59, 391–403.

Asnaashari, A., R. Brossier, S. Garambois, F. Audebert, P. Thore, and J. Virieux,
2015, Time-lapse seismic imaging using regularized full-waveform inversion with a
prior model: which strategy?: Geophysical prospecting, 63, 78–98.

Asnaashari, A., R. Brossier, S. Garambois, F. Audebert, P. Thore, J. Virieux, et al.,
2011, Sensitivity analysis of time-lapse images obtained by differential waveform
inversion with respect to reference model: Presented at the 2011 SEG Annual
Meeting, Society of Exploration Geophysicists.

Bansal, R., J. Krebs, P. Routh, S. Lee, J. Anderson, A. Baumstein, A. Mullur, S.
Lazaratos, I. Chikichev, and D. McAdow, 2013, Simultaneous-source full-wavefield
inversion: The Leading Edge, 32, 1100–1108.

Berryhill, J., 1984, Wave-equation datuming before stack: Geophysics, 49, no. 11,
2064–2066.

Bertrand, A., P. Folstad, A. Grandi, G. Jeangeot, H. Haugvaldstad, B. Lyngnes,
R. Midtun, and N. Haller, 2013, The ekofisk life of field seismic (lofs) system-
experiences and results after two years in operation: Presented at the 75th EAGE
Conference & Exhibition incorporating SPE EUROPEC 2013.

Bevc, D., 1995, Imaging under rugged topography and complex velocity structure:
PhD thesis, Stanford University, Stanford, California, USA.

Bishop, T., K. Bube, R. Cutler, R. Langan, P. Love, J. Resnick, R. Shuey, D. Spindler,
and H. Wyld, 1985, Tomographic determination of velocity and depth in laterally
varying media: Geophysics, 50, 903–923.

Borisov, D., S. C. Singh, and N. Fuji, 2015, An efficient method of 3-d elastic full
waveform inversion using a finite-difference injection method for time-lapse imaging:
Geophysical Journal International, 202, 1908–1922.

Brandsberg-Dahl, S., M. V. de Hoop, and B. Ursin, 1999, Velocity analysis in the
common scattering-angle/azimuth domain: SEG Technical Program Expanded Ab-
stracts 1999, 1715–1718.

Broggini, F., R. Snieder, and K. Wapenaar, 2014, Data-driven wavefield focusing and
imaging with multidimensional deconvolution: Numerical examples for reflection
data with internal multiples: Geophysics, 79, WA107–WA115.

Brossier, R., S. Operto, J. Virieux, et al., 2009, Two-dimensional seismic imaging of

267



the valhall model from synthetic obc data by frequency domain elastic full-waveform
inversion: Presented at the 2009 SEG Annual Meeting, Society of Exploration
Geophysicists.

Buland, A., and H. Omre, 2003, Joint avo inversion, wavelet estimation and noise-
level estimation using a spatially coupled hierarchical bayesian model: Geophysical
Prospecting, 51, 531–550.

Byun, J., J. Yu, and S. Seol, 2010, Crosswell monitoring using virtual sources and
horizontal wells: Geophysics, 75, SA37–SA43.

Calvert, M., L. Vagg, K. Lafond, A. Hoover, K. Ooi, and I. Herbert, 2014, Insights
into sweep efficiency using 4d seismic at halfdan field in the north sea: The Leading
Edge, 33, 182–187.

Cance, P., and Y. Capdeville, 2015, Validity of the acoustic approximation for elastic
waves in heterogeneous media: Geophysics, 80, T161–T173.

Capdeville, Y., E. Chaljub, and J. Montagner, 2003, Coupling the spectral element
method with a modal solution for elastic wave propagation in global earth models:
Geophysical Journal International, 152, 34–67.
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