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Abstract

Innovations in electric power systems, such as renewable energy, demand-side partic-
ipation, and electric vehicles, are all expected to increase variability and uncertainty,
making stability verification more challenging. This thesis extends the technique of
robust stability analysis to large-scale electric power systems under uncertainty. In
the first part of this thesis, we examine the use of the technique to solve real prob-
lems faced by grid operators. We present two case studies: small-signal stability for
distributed renewables on the IEEE 118-bus test system, and large-signal stability for
a microgrid system. In each case study, we show that robust stability analysis can be
used to compute stability margins for entire collections of uncertain scenarios.

In the second part of this thesis, we develop scalable algorithms to solve robust
stability analysis problems on large-scale power systems. We use preconditioned
iterative methods to solve the Newton direction computation in the interior-point
method, in order to avoid the O(n®) time complexity associated with a dense-matrix
approach. The per-iteration costs of the iterative methods are reduced to O(n?)
through a hierarchical block-diagonal-plus-low-rank structure in the data matrices.
We provide evidence that the methods converge to an e-accurate solution in O(1/+/e)
iterations, and characterize two broad classes of problems for which the enhanced
convergence is guaranteed.
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Chapter 1

Introduction

The U.S. electric power grid is remarkably reliable, despite its massive size and com-
plexity. The grid serves more than 143 million residential, commercial, and industrial
customers through more than 6 million miles of transmission and distribution lines
owned by more than 3,000 highly diverse investor-owned, government-owned, and
cooperative enterprises. Yet power interruptions occur just 1-2 times a year, with all
incidents combined to last 30 seconds to 5 minutes in urban centers [1].

Much of the reliability is achieved through a preventative paradigm. Potential
major issues are forecast far in advance, and large safety factors are built into every
aspect of system planning, design and operations. Such an approach is inherently
pessimistic—not all issues can be predicted—but the pessimism has generally proved
to be manageable in practice. Decades of operating experience, on the same systems
and using the same equipment, have allowed grid operators to streamline the cost-
reliability trade-off.

Today, the preventative paradigm is being actively challenged by the prolifera-
tion of new technologies, like renewable energy, electric vehicles, and demand-side
participation. Grid operations are evolving towards a reactive paradigm, in which
potential issues—big and small—are identified as they arise, and remedial actions are
devised and enacted in real-time. Much of this transition is borne out of the need
to accommodate for increasing variability and uncertainty: the output of wind and
solar generators changes considerably over time and is imperfectly predictable; elec-
tric vehicles, demand response, and energy efficiency efforts can all greatly increase
load variability, potentially boosting demand during select hours of the year. Under
a preventative paradigm, holding the grid operator to the same reliability standard
would cause electricity costs to escalate to unreasonable levels.

An essential requisite for grid operations under a reactive paradigm is the ability
to verify stability under uncertainty. Existing stability techniques are deterministic;
their sampling-based approach to uncertainty introduces a level of subjectivity that
naturally lends to operations under a preventative paradigm. Instead, we examine
robust stability analysis techniques, which explicitly treat uncertainty, and are able
to make conclusive guarantees.
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1.1 Stability under Uncertainty

A power system is said to be stable if, following a disturbance, it is able to recover to
an acceptable equilibrium [2]:

e (Rotor angle stability) The generators connected to the system will remain in
synchronization;

e (Voltage stability) The system voltages will recover to within a tolerance band
of their nominal magnitudes; and

e (Frequency stability) The system frequency will remain within a tight bound of
the nominal 60 Hz value.

Stability is always prioritized before economic considerations, because an unstable
system has the potential to “run-away” or “run-down”, possibly escalating into cas-
cading outages and eventual shutdown of a major portion of the system.

Existing techniques for stability analysis (which we review in Chapter 2) are in-
herently deterministic. When presented with a large, possibly infinite, number of
uncertain scenarios, it becomes necessary to select a subset of representative scenar-
ios—to sample—using a mixture of experience, engineering intuition, and statistical
arguments. Every power system is subject to an infinite number of load-generation
profiles throughout a given year. However, for stability analysis, only characteristic
profiles can be considered, typically the peak and light load conditions in summer and
winter, perhaps with certain large generators out-of-service or important transmission
lines congested.

Such a sampling-based approach to uncertainty is inconclusive and subjective by
its very nature, but decades of operating experience have given engineers the deep
intuition required to interpret the results meaningfully. Unfortunately, the introduc-
tion of renewables, electric vehicles, and demand-side participation erodes away much
of this intuition. Stability issues are becoming more commonplace in areas with high
penetrations of renewable energy like Texas [3-5] and Ireland, despite the extensive
stability studies done on these systems [6-8].

At any rate, the credibility of stability analysis results still rests on the accuracy
and faithfulness of the models considered. Historically, these models were often inac-
curate. After the catastrophic WECC blackout of August 10, 1996, it was discovered
that the recorded observations could not be recreated in simulation using the same
models previously used to perform stability analysis; everything from the steady-
state equilibrium to the dynamic behavior showed serious discrepancies with what
was actually observed [9]. Today, high fidelity measurement units have been used to
calibrate generation and transmission models, possibly in real-time [10], but load and
renewable models remain over-simplified and inaccurate [3].

1.2 Robust Stability Analysis

Robust stability analysis is a set of techniques used to conclusively verify, or certify,
the stability of models subject to uncertainty. A prominent example is the quadratic
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stability test. Consider the linear parameter varying (LPV) model

Calt) = AGW), 60 €A, (11)

in which the uncertain variable ¢ can take on any waveform that satisfies 0(t) € A
for all time ¢. By construction, the LPV system has a single equilibrium at the origin
x = 0. If we can find a symmetric positive definite coefficient matrix P that satisfies
the convex constraint

A(8)T' P + PA(0) is negative definite for all § € A, (1.2)

then, by Lyapunov’s Theorem, the LPV is stable under uncertainty or robustly stable:
the solution z(t) is guaranteed to converge to this equilibrium, starting from any initial
condition x(0), and over every time-varying parameter 6(¢) € A. The search for P—
known as the quadratic stability certificate—can often be solved in polynomial time
using an interior-point method.

The uncertain variable § can be used to capture everything from modeling error,
uncertain operating conditions, and nonlinearities. In all cases, the existence of a
stability certificate guarantees stability under uncertainty. The conclusiveness of the
approach explains its widespread use in diverse applications ranging from aerospace,
automotive, defense, manufacturing, to other industries [11-14]. Building on top of
this framework, controller tuning and synthesis can be performed by optimizing over
all of the instances that are certifiably stable.

Robust stability tests are conservative by their nature, meaning that they can
fail to certify a robustly stable model as being so. The conservatism arises in three
components:

1. (Sufficiency) Robust stability tests are usually sufficient but not necessary for
robust stability. For example, the existence of a quadratic stability certificate—a
symmetric positive definite P satisfying —is proof for robust stability, but
the model may still be robustly stable even if such a P does not exist. Many
explicit examples exist; Boyd et al. give a 2 x 2 case in |15, p.73].

2. (Reformulation) Robust stability tests are often posed in forms that cannot be
directly verified. For example, the quadratic stability condition involves
an infinite number of constraints; it is impossible—except under very special
circumstances—to verify whether a given P simulataneously satisfies all of these
constraints. In some cases, the robust stability test can be reformulated into a
finite number of constraints. These reformulations are usually sufficient condi-
tions: they guarantee the stability test to hold true whenever a feasible point
is found for the reformulation, but the stability test may hold true even if a
feasible point does not exist.

3. (Uncertainty model) The uncertain model may capture more uncertainty that
needed, and the additional uncertainty makes it more difficult for it to remain
robustly stable. For example, the LPV model in (I.1)) allows the uncertain
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parameters J(t) to vary arbitrarily quickly with time, but such rapid transitions
in §(¢) may not be physically realizable.

The simple quadratic stability test described above has a reputation for being con-
servative |16-18]. More sophisticated tests, ranging from parameter-dependent Lya-
punov functions to matrix sum-of-squares, offer better trade-offs between the three
sources of conservertism, but at the cost of significantly increased computation. (The
interested reader is referred to [12}/19] for surveys.)

Unfortunately, all robust stability tests scale poorly with the size of the models
considered. Power system models are often considerably larger than those found
in other applications, and from a practical perspective, robust stability analysis is
computationally intractable. Even the simple quadratic stability test in has a
time complexity of O(n®) for a state-space model with n state variables, meaning that
ten-fold increase in the number of state variables results in a million-fold increase in
the amount of time required to verify its stability. Suppose it took just 1 second to
solve on an airplane model containing n = 30 state variables. Then it would
take 24 hours to solve the same problems on a reduced-order model of a power system
with n = 200 state variables, and 240 days to solve on a more realistic model with
n = 500.

1.3 Main Contributions

In this thesis, we will focus our attention on a specific LPV model structure known
as the polytopic LDI (linear differential inclusion)

d

G20 =Ma(t), M€ conv{M, ..., My}. (1.3)

As before, we will denote the number of state variables in ((1.3)) as n. It is well-known
that the quadratic stability test in (1.2)) can be reformulated into the problem of
finding a symmetric positive definite matrix P satisfying

M P + PM,; is negative definite for all i € {1,...,m}, (1.4)

and solved using an interior-point method in O(n% + mn®) time and O(n*) storage.
This resulting convex feasibility problem is often referred to as the Lyapunov inequal-
ities problem.

In the first part of this thesis, we use the polytopic LDI framework to analyze the
stability of power systems under uncertainty. Two case studies are considered. In
the first case study, we examine the small-signal stability of an IEEE 118-bus model
under the uncertainty of distributed renewables. More specifically, we retire 30% of
the conventional generation, and replace their output by PV inverters installed at
each of the 118 buses in the network. The PV output is left to be uncertain, and
we use local optimization and quadratic stability tests to show that sampling-based
statistical analysis can be remarkably misleading in characterizing the stability of a
system under high dimensional uncertainty.
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In our second case study, we use the same techniques to verify the stability of a
microgrid subject to large-signal intermittency from a PV panel. We develop a suit-
able LPV model and derive large-signal stability margins for which stability would
be guaranteed. In the process, we show that eigenvalue analysis—widely used to
study stability under small-signal intermittency—is overly optimistic when the inter-
mittency becomes large-signal.

In both case studies, the polytopic LDI framework is found to be a surprisingly
effective tool for robust stability, in spite of its conservative reputation. The primary
bottleneck is the computational power required to solve . This finding motivates
us to investigate theoretical and computational methods to scale the same theory to
larger, more realistically-sized problems.

In the second part of this thesis, we develop mixed first-second order methods to
solve the Lyapunov inequalities problem (1.4)) with worst-case complexity of O(m?n*+
(1/4/€)mn3) time and O(m?n?logn) storage, where the accuracy tolerance € is a
measure of the difficulty of the feasibility problem. In practice, the algorithm has an
average complexity closer to O(n*+ (1/y/€)y/mn?) time and O(n? logn) storage. Our
method is driven by two important insights. First, all first-order method solution
of requires the solution of a system of equations with the following coefficient
matrix

H=> (Mi®I+IeM)" (M;®I+1M) (1.5)
i=1
at every iteration. When the data matrices My, ..., M,, arise from linearizations of
time-domain power system models, we show that they display a hierarchical structure
that is then inherited by H. In turn, the matrix can be factored in O(n?) time and
the inverse applied in O(y/mn?) time, thereby also reducing the per-iteration cost of
first-order methods to O(y/mn?).

Second, we show that first-order methods can be optimally accelerated using a
Krylov subspace method when their update equations are linear, and that this mo-
tivates the use of a Krylov-accelerated first order method for the solution of the
Newton subproblems associated with any interior-point method. We prove that both
GMRES-accelerated ADMM and conjugate-gradients-accelerated projected gradient
descent are consistently able to solve the j-th Newton step in O(1/,/€;) iterations,
where ¢; is the duality gap at this step. Amortized over all Newton steps, these meth-
ods are first-order methods that converge at the accelerated error rate of O(1/k?) at
the k-th iteration.

1.4 Thesis Outline

In Chapter 2, we review classical power system models, and stability analysis tech-
niques based on steady-state analysis, time-domain simulations, and eigenvalue anal-
ysis.

In Chapter 3, we review the theory of robust stability analysis, and apply it to
two case studies.
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In Chapter 4, we review interior-point methods and first-order methods, and sug-
gest the use of Krylov subspace acceleration to accelerate the convergence of first-
order methods. We prove an improved convergence rate for the accelerated version
of a simple projected gradient descent algorithm.

In Chapter 5, we describe the hierarchical solver used to factorization and solve
).

In Chapter 6, we prove a result on the convergence rate of the Krylov subspace
accelerated version of ADMM.

Finally, in Chapter 7, we summarize our findings and discuss directions for future
work.

1.5 Notation

Vector spaces. We use R" and C" to denote the space of size-n column vectors with
real and complex coefficients, respectively. We use S", S%, S" | to denote the space
of n X n real symmetric matrices, positive semidefinite matrices (real symmetric with
positive eigenvalues), and positive definite matrices (real symmetric with nonnegative
eigenvalues), respectively.

Matrix inequalities. We use X > Y to mean that the matrix X —Y is positive
definite, and X > Y to mean that the matrix X — Y is positive semidefinite .

Concatenation. Row and column concatenation are denoted using the comma
and the semicolon, respectively, as in

[a,0) =[a b],  [a;b] = m

Direct sum. Given two matrices A and B, their direct sum is written

A 0
)

Vectorization & Matricization. Given the m x n matrix X, we define its
vectorization as the familiar “column-stacking” operator

T
vec X = [Xl,la-'->Xm,17X1,2a--'7Xm,2>---aX1,na---7Xm,n] .

and we define X = mat z as the inverse operator.
Kronecker product. The Kronecker product is defined given the n x ¢ matrix
A and the m x p matrix B as the nm X pg matrix as

A B - Ay,
A® B = : :
B

n7q

AB - A
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Chapter 2

Power System Stability Analysis

The electric power system consists of generation units where primary energy—ifrom
fossil or nuclear fuels, or from wind, solar, geothermal, or hydro energy—is converted
into electric power, high-voltage transmission networks that transport the bulk power
to low-voltage local distribution networks, and consumers or loads where power is
used; this division is illustrated in Fig. 2-1} System operators—sometimes affiliated
with a particular utility or sometimes independent and responsible for multiple utility
areas—manage the flow of electricity in a power system. Operators commit generators
and transmission lines to be available on specific days, and dispatch instructions in
real-time in order for supply and demand to be balanced at the lowest cost.

It is the grid operator’s job to guarantee power system stability under uncertainty.
Historically, the dominant concern was transient stability |2]—the ability of a system
to recover to safe operating conditions following a large disturbance, such as the loss
of an important transmission line or the short-circuiting of a major generator. The
industry is standardized around the N — 1 criterion, stating that the power system
should remain stable following the loss of any one component. Reflecting the needs
of the grid operator, the classical tools for stability analysis are primarily based on
recreating transient events within numerical simulations.

2.1 Power System Models

The emphasis on simulation-based transient stability analysis has given rise to a
particular modeling philosophy. From decades of operating experience, engineers
have found the largest destabilizing forces in a power system to have electromechanical
origins. As a consequence, generators are always modeled in great detail, while the
loads and the network itself are only coarsely modeled. It is generally argued that
electromagnetic phenomena like propagation delay, standing waves, and harmonics,
are relatively insignificant for stability.
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Industrial Load

Residential Load

Commerdial Load

Figure 2-1: The power system and its form major divisions: generation, transmission,
distribution and loads. Source: [1].

2.1.1 Mathematical Framework

Mathematically, power systems are flow networks, i.e. undirected graphs labeled with
potential variables at its nodes and flow variables at its edges. In a power system, the
vertices are known as buses, the edges as branches, the potential variables as voltages,
and the flow variables as currents.

The voltages and currents in a power system are defined in a number of WayEE]. The
instantaneous description assigns a time-dependent voltage variable to each system
node, and a time-dependent current variable to each system branch. Power systems
are three-phase, meaning that power is carried along three lines, with each phase
at a nominal 120 degree shift from the other two phases. Conventional labels for
these three phases are “a”, “b”, and “c” respectively. Hence, in an n-bus, m-branch
power system, the instantaneous voltages v.p.(t) € R3*" and instantaneous currents
iape(t) € R3™ may be written

Va (1) ia(t)
Uabc<t) = Ub<t> ) Z.abfz(t) = ib(t)
Ve(t) io(t)

In a real power system, these instantaneous voltages and currents can be directly
measured by field workers, using voltage and current probes and a multimeter or
oscilloscope.

However, the instantaneous description is cumbersome for stability analysis. Clas-
sical techniques analyze systems that converge towards a fixed, unchanging steady-

LA more detailed exposition can be found in most power systems textbooks, e.g. [20].
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state, but power systems are designed to oscillate even at equilibrium. Instead, the
phasor description addresses this issue by defining the instantaneous values as the
projections of rotating complex phasors Og.(t) € C3" and ig.(t) € C3™

Vabe(t) = Re{Oape ()70}, igbe(t) = Re{igpe(t)e?0!}. (2.1)

The constant wy = 27 - 60 is the nominal system angular frequency. In a stable
power system, the phasor quantities will converge towards constant values while their
instantaneous counterparts may continue to oscillate. No information is gained or
lost in converting instantaneous quantities to the phasor counterparts. However,
to measure phasors directly requires an accurate, synchronized time reference. An
important recent development is the phasor measurement unit (PMU), which obtains
a synchronized time reference using satellite GPS.

Finally, three-phase power systems are always designed and operated to be bal-
anced under normal conditions; they tend to be well-approximated as balanced even
when an imbalance does occur.

Assumption 1 (Three-phase quantities are balanced). Three-phase voltages and
currents are sinusoidal and balanced: given the quantities for one phases, those same
quantities are replicated and shifted by 120 degrees in the other two phases. Three-
phase admittances and impedances are also balanced: each resistor, inductor and
capacitor connected to one phase is perfectly replicated at the other phases in either
a Y- or A- connection.

Assuming balance, the three-phase system may be reduced to an equivalent single-
phase system, known as the positive sequence description. Rewriting each three-phase
phasor triple as shifted versions of a single phasor,

Ba(t) o(t) ia(t) i(t) A
@b(tg = [e*2IB5(t) | = U,d(t), w(t) | = et?il3i(t) | = Upi(t), (2.2)

672773‘/3@(75) io(t) 6—27rj/3%(t)

the number of variables has also been reduced by a factor of three. Mathematically,
this is a simple projective model order reduction via the linear basis blkdiag(U,,, U,,).
The reduction is only an approximation for imbalanced systems—where Assump-
tion [1| fails to hold—and the imbalance information is irreversibly lost.

2.1.2 Network Equations

Transmission systems are usually modeled using a simple admittance model. In sys-
tem with ¢ buses, this is the algebraic equation

Yii -0 Yig| [wi(t) s (t)
Yo Yoo | [vq(t) it (t)



where for each k-th bus, vy () € C is the voltage phasor at the k-th bus, i2"(t) € C
is the nodal current injection phasor, and the governing sparse matrix has the same
sparsity pattern as the underlying system

v nonzero bus ¢ connects to bus j
ij = .
0 otherwise.

The matrix is usually (but not always) complex symmetric, i.e. Y;; =Y.
The model is written more succinctly as the matrix equation

Yv(t) = Ibus (t)7 (2'3)

and the admittance Y matrix can be assembled directly using sparse matrix tech-
niques (see e.g. [21} Sec.3]). But to understand the simplifying assumptions associated
with the model, let us derive from first principles. We begin by assuming the
transmission network to be linear, thereby neglecting a number of nonlinear branch ef-
fects, including transformer and series-connected reactor saturation, series-connected
grid-level power electronics devices (i.e. “FACTS”), and a variety of thermal effects.

Assumption 2 (Network is linear). The transmission system is a linear network, i.e.
comprised only of resistors, inductors and capacitors.

Converting transmission lines and transformers into simple Pi models and applying
the standard technique of modified nodal analysis from circuit analysis [22], we obtain
a system of equations of the following form

S )l (S R[] =[] e

abc

in which r4.(t) denotes nodal current injections, the capacitance matrix Cgp. and
conductance matrix G are in graph Laplacian form, the inductance matrix L.
and resistance matrix Ry, are diagonal, and F,. is a directed incidence matrix for
the resistor-inductor branches in the system. The model rewritten for the phasor
quantities, by applying the product rule to ,

Cabc 0 g ?abc(t) + jWOCabc+Gabc Fabc ?abc(t) _ fabc(t)
0 Labc dt iabc(t) _Fz:bc jWOLabc—'—Rabc Z.abc(t) 0 '

Next, we assume that the three-phase network is balanced (Assumption . The
assumption allows us to reduce the network model (2.5 by a factor of three in size,
to the positive-sequence model

C 0| d [o() n JjwoC + G F ot)]  [7(®) (2.6)

0 Lj|dt|i(t) —F* jwoL +R| [2(t)| ’ ‘
where C = U;‘lCabCUn1 L = U} L,.U,,, and similarly for F,G,R. The positive
sequence phasors 0(t),i(t) and the basis matrices U,,U,, were defined earlier in
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2.

Finally, to emphasize electromechanical interactions over electromagnetic ones,
the network dynamics are assumed to be negligible.

Assumption 3 (Network experiences no transients). The network is in permanent
60 Hz sinusoidal steady-state. If a perturbation causes this to be affected, then a
new steady-state is instantly established, without going through the electromagnetic
transients in between.

Assumption [3| artificially sets $9(t) and %%(t) to zero in 1) thereby yielding
the algebraic relation

52 ][] 9]0

Eliminating the branch current variable %(t) using Gaussian elimination yields an
admittance relationship

[(jwoC + G) + F(jwoL + R)'F*] 6(¢) = Yo(t) = #(¢),

as desired.

2.1.3 Generator equations

Generators are modeled as voltage-driven current sources: given a voltage phasor
vin(t) € C, the model responds with a current phasor io, () € C. The most important
aspect of the model is the electromechanical coupling, which is modeled using the
Lagrangian

Z(q,1,0,w) = %iTL(H)i + %MwQ, L(0) & 7 Loe™"°
where 6 € [0,27) is the machine rotor angle, i € R? is the current injection phasor,
and w = df/dt and ¢ = fot i(t)dt are their respective dual variables. The skew-
symmetric matrix J is used to generates a rotation e’? upon the current injection
phasor, corresponding with the physical rotation of the machine rotor. Applying the
Euler-Lagrange equations, and introducing forcing terms u, ¢ and damping terms
R, D yields

d .
E(ﬁ +Jp+ Ri=e (2.7)
d .
M€%+Dw:ﬂ7¢+m

¢ = Lot

in the machine inertial fram with ¢ = e 7% and ¢ = e .

2 Assuming that the damping matrix R commutes with J, i.e. RJ = JR.
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One of the most common generator models is the round-rotor model “GENROU”,
originally developed for the Siemens software PSS/E. In its simplest form, GENROU

is an implementation of (2.7) with|

;o [La 0O s 0 —diag(1,0,0)
0710 L, "~ |diag(1,0,0) 0 ’
T

U= [Re(vin) vrg 0 Im(vi) O 0}
1= [Re(iout) id? id3 Im@.out) iq? Z.qS]T

and L4, L, are 3 x 3 dense symmetric positive definite matrices. The calculations
needed to populate the matrices Ly, Ly, R, and constants M, D using field measure-
ments can be found in most standard textbooks [23}24], and also in IEEE standard
115. Other generator models differ from GENROU primarily in the number of state
variable considered. The salient-rotor “GENSAL” is essentially the same as GEN-
ROU, but with one fewer state variable.

The generator model is completed by incorporating an exciter model, and op-
tionally a governor and stabilizer model. The machine exciter is a control loop that
actuates the field excitation (the element vq in ) in order to maintain the bus volt-
age magnitude |vg| to a given setpoint. The machine governor model is a control loop
that maintains a constant machine speed w, by actuating mechanical torque 7,,. The
stabilizer is a control loop that senses the machine speed w and actuates a counter-
signal to the exciter in order to dampen potential oscillations. Standardized models
for each of these components are described in the IEEE standards 421 and 1100.

2.1.4 Load Equations

Loads are most commonly modeled using the ZIP model. Given a voltage phasor
vin(t) € C, the ZIP model responds with a current phasor iy (t) € C via the algebraic
relation

1 S
ot (t) = |Y + + vin(t), (2.8)
o ()] o (@)
and the model parameters are the constant admittance Y € C, the constant current
phasor I € C, and the constant complex power S € C. Let us emphasize some

important facts about the model:

1. The output is linear with respect to its parameters Y, I, .S;
2. The output is nonlinear with respect to its input, except when [ = .S = 0;

3. The output is invariant with respect to the input phase. Rotating the input
voltage phasor by # will simply rotate the output current current phasor 6.

The ZIP model is commonly specified using a total complex power consumption and
a “ZIP ratio”, such as 10%-20%-70%. This simply means that, at nominal voltage,

S3GENROU further incorporates the two simplifications described in Section 5.1 of Kundur [23],
as well as a mechanism to model the effects of magnetic saturation.
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the total complex power is distributed as 10% over the admittance-like portion of the
load, 20% over the constant-current-like portion, and 70% over the constant-power-
like portion.

2.1.5 Steady-State Model

The steady-state model for a power system is commonly known as the powerflow
equations. In a system with ¢ buses, we begin by taking a nominal voltage magnitude
and complex power production / consumption pair at each of its buses

{Vk, P —i—ij} ke {1, - ,q}.

These can be considered as the “ideal”; or “set-point” quantities for our power system.
In practice, their values are dispatched by the operator while considering regulatory
limits, actual load consumption, and dispatched generation production. The gener-
ators and loads in a power system attempt to achieve these nominal values, while
subject to the physical limitations of the network.

Writing vy, ix € C as the actual steady-state voltage and current injection pha-
sors at the k-th bus, three standard constraints are used to model a single lumped
generator or load at steady-state:

e The PV constraint, used to model generators. The actual voltage magnitude
and real power produced are constrained to match the nominal, as in

Re{ifv,} = P,  vivp,=V?2,  VkePV. (2.9)

This behavior closely matches the control action of a typical generator at steady-
state, which outputs a fixed amount of real power, and whatever reactive power
necessary to maintain a constant voltage magnitude at the generator bus.

e The PQ constraint, used to model loads (and generators subject to reactive
power limits). The real and reactive power produced or consumed are con-
strained to match the nominal, as in

e The slack constraint, used to model the generator providing regulation services.
The actual voltage magnitude is enforced to match the nominal, and the phase
angle is set to be zero, as in

Re{vi} = V4, Im{v;} =0, Vk e S. (2.11)

This way, the generator outputs whatever real and reactive power necessary to
make system-wise production equal to consumption plus losses.

Imposing one of these models at each bus, and enforcing the network model Yv =1
completes the model. After some minor algebraic manipulation, these can be posed
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as a system of 2n real quadratic equations over 2n real variables, and solved using
Newton’s method.

2.1.6 Time-Domain Model

Time-domain models of the power system are constructed by interconnecting gen-
erator and load models—one model per bus—to the network model. Due to the
inductor-like nature of real generators and loads, these models are voltage-driven
current-sources. At the k-th bus, we use the nonlinear function pair fi(-,-) and
gk(+,+) to implement a nonlinear state-space model

D) = Fulanlt), v(8)), i) = gl o), (212)

dt
with state variables xy(t) € R". The model takes the k-th voltage phasor v, (t) € C as
the input of the model, and returns the k-th nodal current injection phasor ix(t) € C
as the output.

The steady-state model, described in the previous subsection, is used to initialize
the time-domain models. At time ¢ = 0, the voltage and current injection phasors
at the k-th bus vi(0), ix(0) are assumed to take on their steady-state values, and
an initialization procedure—specific to the exact generation / load model—is used to
select the initial values for the state variable x(0) in order to satisfy fi(zx(0),v£(0)) =
0 and gi(zx(0), vk(0)) = ix(0).

Finally, enforcing the relationship between voltage and current injection phasors
via the network model yields the complete time-domain model

d z1(1) fi(zi(t),v1(t)) Yio o0 Yig| |vi(?) g1(x1(t), v1(t))

Y] | e, v @) Yo o Y| [oa®] | galaal®)0n(0))

which is written more succinctly as

Salt) = falt)u(e),  Yult) = g(e(t) u(t)). (213)

Note that communication between the different buses is entirely facilitated through
the admittance matrix; if this matrix were diagonal, then the system model would
decouple into ¢ independent models.

2.2 Classical Stability Analysis

Power system engineers typically classify stability analysis techniques into three cat-
egories:

e Voltage stability (Steady-state analysis). Given a certain steady-state profile,
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verify that all voltage constraints are satisfied. Proportionally increase the
steady-state load, in order to compute the margin to collapse.

e Transient stability (Simulation-based analysis). Simulate the loss of generation
or a fault on a transmission line, and verify that the system is able to recover
to an acceptable steady-state.

e Small-signal Stability (Eigenvalue-based analysis). Given a certain steady-state
profile, linearize the time-domain equations, and verify that the eigenvalues of
the Jacobian are sufficiently stable.

These classical analyses are performed using the deterministic model derived in the
previous section. Each analysis is repeated over numerous different load / generation
profiles, as well as different loss-of-generation or loss-of-transmission contingency sce-
narios. In essence, the engineer construct a large, high-dimensional uncertainty set
based on engineering intuition and operating experience, and then attempts to vali-
date the stability of the uncertainty set by sampling individual individual scenarios.

Let us formalize the idea using parameterization, by introducing the parameter
variable 6. We restrict § to lie within an uncertainty set A, defined to encompass a
range of load / generation profiles, and the enumerate all of the important contin-
gency scenarios. In principle, we can define A in a way to include both time-varying
uncertainty (e.g. the output of a solar panel) and time-invariant uncertainty (e.g.
the inertia of a particular machine). Parameterizing the deterministic model in the
previous section over J yields an uncertain model

%x(t) = fla(t),v(t),06(2), Y1) v(t) = gs(x(t), v(t),6(t),  &€A. (2.14)

Let us proceed to examine stability analysis for the uncertain model ([2.14)).

2.2.1 Steady-State Analysis

In order to establish whether an acceptable steady-state exists for every uncertain
parameter choice § € A, we implicitly define steady-state functions xy(9), vo(d) to
satisfy

f5(20(0),00(0)) =0, gs(w0(0), v0(0)) = Y (6)vo(9)-

We can then perform steady-state analysis by examining the individual elements of
x0(9) and vg(d). For example, we may attempt to enumerate the elements in vy(9),
and verify that each satisfies the appropriate constraints.

The main difficult is in the evaluation of the implicitly defined steady-state func-
tions z(d) and vg(d). If the uncertain conditions they describe are well-conditioned,
then they may simply be implemented via the basic Newton powerflow procedure
described in Section However, as the system approach collapse, the Newton
system becomes singular, and Newton’s method begins to fail. Sophisticated tech-
niques have been developed to address this issue. Continuation power flow schemes
are homotopy methods, designed to evaluate a collapsing condition by slowly ramping
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up from a well-conditioned initial point. More recently, techniques based on analytic
continuation and

Ultimately, the existing methods are based on sampling elements from A, which
is inconclusive by its very nature. There have been many attempts to capture the
image of these mappings as convex sets

Xo D {x0(0) : 0 € A}, Vo 2 {x0(0) : 6 € A}.

If a tight description could be constructed, then it would be possible to exhaustively
and conclusive establish the feasibility of each element, i.e. to valid that every element
satisfies a set of constraints. The engineer would then be able to conclusively establish
voltage stability under uncertainty.

2.2.2 Simulation-based Analysis

To establish whether the system can converge to an acceptable steady-state, we select
a choice of §(t) and integrate the differential-algebraic equations using a time-
stepping rule, starting from ¢t = 0 and ending at some termination time 7. If we
observe, at any time t € [0, 7], that the state variables are diverging away from the
intended steady-state (or failing to satisfy constraints), then we may terminate the
simulation and mark that choice of §(¢) as being unstable. If the system does not
become unstable for a sufficiently large T', then we may mark this particular choice
of §(t) as stable.

The simulation-based approach is inherently inconclusive, and suffers from three
characteristic issues. First, the simulations must always end at a finite time horizon,
so we can never be sure whether the system may eventually become unstable at
some distant time in the future. Second, it is heavily dependent on the accuracy
and faithfulness of the models. Third, the time-stepping itself introduces error to
the simulation; it is possible for a numerical instabilities to cause a stable scenario
to become unstable, or more worryingly, to dampen an unstable scenario enough to
make it stable.

Today, the grid operator manages these three issues by increasing the computa-
tional power used to perform the simulations. The termination time 7T is extended
far into the future, highly detailed models are incorporated, and conservative param-
eters are chosen for the time-stepping rule. Unfortunately, these modifications low
the simulations, limiting them to off-line analysis.

Direct stability methods have been proposed to speed up and potentially replace
simulation-based analysis. These methods work by analytically constructing a Lya-
punov function, and using it to compute the region-of-attraction for a particular
stable equilibrium, or at least a conservative, inner approximation of the region-of-
attraction. Given a transient stability scenario and an associated stable equilibrium,
we may simulate the scenario, and terminate as soon as the system falls within the
region-of-attraction [25|. If our estimation of the region-of-attraction is not too con-
servative, then very little simulation is actually required to determine stability. If
our estimation of the region-of-attraction were exact, then it may also be used to
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determine instability: the system is immediately unstable as soon as it exits the
region-of-attraction.

The core idea of direct methods dates back to the 1940s |26,27]; the main difficulty
persisting to this day is constructing an estimation of the region-of-attraction that is
large enough to be useful. Early techniques, such as the “nearest unstable equilibrium
method”, proved to be far too conservative [28,29]. More recent techniques found
success by computing the region-of-attraction of a simplified model, and using this
to inform properties of the original system [25,28|30]. All of these techniques are
based on analytical arguments, and cannot be easily extended to arbitrary nonlinear
models.

2.2.3 Eigenvalue-based Analysis

Small-signal stability analysis (also known as eigenvalue analysis) makes stability
predictions under the assumption of small-signal disturbance. We state this loosely
for the purpose of exposition.

Assumption 4 (Small-signal disturbance). Decompose the state variable x(t), the
algebraic variable v(t) and the parameter variable 6(¢) into a constant bias and a
time-dependent perturbation, as in

2(t) = zo+ Ax(t),  v(t) =vo+Av(t),  6(t) = by + AS(L).

Then the time-dependent perturbations Az(t), Av(t), and Ad(t), are sufficiently small
as to be considered negligible.

Under this assumption, the nonlinear stability of a system within a small-signal
neighborhood of a given operating point § = {xq, vo, do} can be analyzed by examining
the stability of its linearization. Defining suitable Jacobian matrices, the model ([2.14))

can be put into the form

d

d—f = A(@)x + B(0)v,  Y(0)v = A@B)z + BO)w,

and reduced to the state-space model
dx N

5 = M)z, M(6) = A@9) = BO)[D(6) =Y (9)]'C(0).
If this state-space model is stable, then we may conclude that the nonlinear model is
small-signal stable, i.e. stable when confined within a neighborhood of the operating
point. Given a collection of operating points # € O, possibly constructed using
the steady-state procedure described earlier, we may repeat this analysis for each
possible operating point in order to establish the small-signal stability of the model
under uncertainty.

In turn, the stability of each linearized state-space model can be analyzed by
examining its eigenvalues. Labeling the k-th eigenvalue of M (6), two common metrics
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Figure 2-2: Small-signal stability on the complex plane. Every eigenvalue A\, = —a+
jJwr placed in the shaded region will satisfy the decay rate constraint
Qg > amin and the decay ratio constraint ag /| Agx| > Cuin.

of stability are the damping ratio,
(= min{—Re A /[Ax[}, (2.15)

and the decay rate,
a= mkin{—Re e} (2.16)

A power system is said to be small-signal stable (about its equilibrium xg) if its decay
rate and damping ratio satisfy certain thresholds:

g Z Clim « Z Alim - (217)

From a control theory perspective, these stability criteria form a trapezoidal envelope
on the complex plane, as shown in Fig. In order for the linearized system to be
deemed “sufficiently stable”, all of its eigenvalues must lie within this envelope. For
large power networks, minimum damping ratios are usually specified to exceed 3% to
5%. Low-frequency oscillations may be required to have damping ratios as high as
15% [13]. Minimum decay rate ares are typically 0.05 to 0.1 per-second.
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Chapter 3

Extending Robust Stability Analysis
to Power Systems

In this chapter, we review the theory of robust stability analysis, and apply these
techniques to two power systems case studies. Our objective is to investigate the
possible applications of robust stability for the power systems application, and to
summarize the overarching implications for the grid operator. At the same time, we
wish to expose the underlying mathematical structure of robust stability analysis.

In the first case study, we examine the impact of generating 30% of the power
in the IEEE 118 bus test network with 118 distributed renewable sources. High
penetrations of distributed renewables can dramatically increase uncertainty in the
transmission system, making small-signal stability verification far more challenging.
We show that multipoint local optimization can find less stable scenarios that are
easily missed by sampling. In addition, we show that robust stability analysis is
computationally tractable, but as yet, only by linearizing and dimension-reducing
the parametric variation.

In our second case study, we give an illustrative example of a microgrid that is
guaranteed to be stable under small-signal intermittency, and show that it can be
made unstable when the intermittency becomes large-signal. The classic approach
of small-signal stability analysis may lead to overly optimistic conclusions, because
it implicitly assumes that the intermittency is small-signal in nature. Instead, ro-
bust stability analysis can be used to provide large-signal stability guarantees that
overcome this limitation. We compute large-signal stability margins, and show that
the small- and large-signal stability margins are related by the maximum allowable
slew-rate of the intermittency.
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3.1 Stability Certificates for LPV Models

Most of modern control theory is developed for models placed in linear parameter
varying (LPV) forny']
i) = AGM)(),  6(t) € A, (3.1)

in which A(-) is a continuous matrix-valued function, §(¢) is a list of time-varying
parameters, and A is an uncertainty set. LPV models are essentially LTI models
placed under time-varying uncertainty: its coefficient matrix is not precisely known
and may possibly vary with time. The LPV form is naturally suited for modeling
uncertain systems, as well as capturing the inherent imperfections in deterministic
systems, such as modeling errors, imprecise physical measurements, and model order-
reduction. As we will show in Section linearized uncertainty can also be used to
encompass the effects of deterministic but nonlinear dynamics.

By construction, the LPV system has a single equilibrium at the origin x = 0.
We say that the LPV is robustly stable if, starting from any initial condition x(0),
the solution x(t) converges to this equilibrium for every valid choice of 6(t). Clearly,
classical stability analysis techniques can never be use to establish robust stability.
The uncertain time-varying parameter §(t) can take on any of a continuous range
of values at any point in time for all time, and it is impossible to simulate even a
representative set of instances, let alone an exhaustive one. Whereas an eigenvalue-
based analysis can, to an extent, analyze entire sets of time-varying parameters, it
additionally requires the time-varying component to be “small-signal” relative to the
time-invariant offset.

Instead, robust stability can be verified using a certification-based approach.
These methods reformulate robust stability analysis into a convex feasibility prob-
lem; any feasible point is a numerical proof of robust stability known as a stability
certificate. The simplest of such methods is the quadratic stability test.

Definition 5 (Quadratic Stability). The LPV (3.1) is said to be quadratically stable

if it there exists a quadratic stability certificate, i.e. a matrix P > 0 that satisfies
A(0)'P + PA(S) <0 forall § € A. (3.2)
Theorem 6. Every quadratically stable LPV is also robustly stable.

The theorem easily established by using V(z) = 27 Pz as a Lyapunov function.
For the sake of exposition, however, let us give a more intuitive argument using a
simple change-of-variables.

Proof. Given a quadratic stability certificate P, let U be any invertible matrix satis-
fying UTU = P. (For example, we may pick U to be the upper-triangular Cholesky
factorization of P.) We claim that the transformed state variable y(t) = Ux(t) has
a squared Euclidean norm |y(¢)||* = y?(t) + - -- + y2(t) that strictly dissipates with

1Slight modifications of the LPV description are known in a number of other names, such as the
linear differential inclusion (LDI), and the linear time-varying (LVT) model.
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time, i.e. decays monotonically to zero, irrespective of the choice of §(¢). To see this,
note that its rate-of-change satisfies the following

%Ily(t) I =9 y(t) +y(@) 9(t) = y(&)" [UTTAG) UT + UAG)U ] y(t)

[U~y(®)]" [AGB®)TP + PAG®)] [U y(t)]
al|y(t)||* for all §(t)

IN

where the constant « is negative (i.e. a < 0) by virtue of the negative definiteness in
(3.2). Integrating this relation yields [|y(t)[|? < |ly(0)||>e®, so the transformed state
variable y(t) must converge to the zero vector as t — oo. Since our original state
variable can be recovered z(t) = U~ 1y(t), it too must converge to the zero vector. [

Quadratic stability is a simple but relatively conservative test for robust stability.
It is only a sufficient condition: an LPV can be robustly stable without being quadrat-
ically stable (see e.g. [15, p.73]). Moreover, our notion of robust stability itself can be
overly pessimistic when the waveforms taken on by the parameters §(t) are restricted
in some sense, e.g. they are time-invariant or only slowly varying. These shortcom-
ings of quadratic stability are significant motivation for more sophisticated stability
tests |17,|19], but the associated feasibility problems also become more difficult to
solve.

The search for a suitable quadratic stability certificate is a convex feasibility prob-
lem subject to an infinite number of linear matrix inequality (LMI) constraints. Un-
der certain restrictions on the matrix-valued function A(-) and the uncertainty set
A, however, this search can be reformulated into a finite number of constraints, and
solved using standard techniques. In the remainder of this section, we will review two
prominent cases where this is possible.

3.1.1 The linear fractional representation (LFR)

If the individual elements of the matrix-valued function A(d) can be expressed as
rational functions of the uncertain parameters € R™, then there exists a choice of the
coefficient matrix M = [1\]‘/4[; %;z} and a vector of positive integers r = [r1,...,rp]7

such that
A(5> = Mll + MlgD([ - MQQD)ilMgl where D = diag(&frl, c. 7(5m[7”m)'

The coefficient matrix M and the vector r combine to form a linear fractional repre-
sentation (LFR) for the matrix-valued function A(J).

If the uncertainty set is given as the unit hypercube A = [—1,1]¢ then the
quadratic stability condition can be relazed by introducing the multiplier vari-
ables S, G, as in

MZLP + PMy, + MESMy  PMyy + MELSMsy + MEG

MLP + MLSMy, — GMyy MESMy — S + MEG — GMyy| =0 (33)
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subject to the structure conditions
S=5T"=0 G=-G" S, G block-diagonal with block sizes 71,... 7. (3.4)

We refer the reader to [31] for a derivation, and [19}32] for a more general exposition of
the underlying proof techniques. This reformulation is a generalization of the classic
quadratic stability test for diagonally norm-bound LDIs [15, p.64], and is closely
associated with structured singular value analysis (p-analysis) [11]. Note that (3.3))-
(3.4) is only a sufficient condition for quadratic stability, which by itself is already a
relatively conservative test for robust stability.

The vast majority of physical models can be written in terms of rational matrix-
valued functions A(¢); those that cannot can still be approximated to high precision
using one, e.g. with Padé approximants. Hence, at least in principle, the LFR frame-
work should be widely applicable to all applications. The weakness of the approach,
however, is that it requires explicit expressions for the matrix-valued function A(-).
It cannot directly accommodate data-driven models, nor models whose A(+) function
is given as a black box.

The LFR framework is also one of the few tractable formulations for high-dimensional
uncertainty sets and / or highly nonlinear models. The computational bottleneck is
the LMI constraint , which is of the same size as the coefficient matrix M. The
size of this matrix scales linearly with the dimension of the uncertainty set, when the
maximum order of the element-wise rational functions (i.e. the “degree” of nonlin-
earity) is fixed. The incremental cost of each additional dimension of uncertainty is
modest, and the LFR approach is often used to analyze systems subject to tens or
even hundreds of dimensions of uncertainty.

Computational effort can be reduced by using a minimal realization of A(J), i.e.
an LFR that minimizes the size of its coefficient matrix M. Given a rational matrix-
valued function, computing a minimal realization or a lower-order approximation is a
well-studied problem, closely related to the theory of minimal realizations and model
order reduction for state-space models; there are several MATLAB toolboxes available
to perform this task automatically [33}34].

3.1.2 The polytopic representation

Suppose that the matrix uncertainty set A(A) were a polytope, meaning that it can
be written as the convex hull of a finite number of vertices

A(A) = conv{ My, My, ..., M},

then the semi-infinite quadratic Lyapunov LMIs (3.2)) is equivalent to the Lyapunov
inequalities
MI'P+PM; <0  Vie{l,...,m}. (3.5)

The reformulation is often known as a vertex-based test, and LPVs with such a struc-
ture are known as polytopic LPVs, polytopic LDIs or matrix polytopes. The power
of the polytopic representation lies in its ezactness: the constraints (3.5)) alongside
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P > 0 are both necessary and sufficient conditions for quadratic stability.

The uncertainty set A is often provided as a polytope in practice. For example, it
is common for each uncertain parameter were specified within a fixed interval, then
the corresponding uncertainty set A = {§ : §; < &; < 6;} is a hypercube, and hence
also a polytope. If additionally, the matrix-valued function A(-) were affine, meaning
that it can be written as the sum

A(§) = Ao+ 01 A1 + 00 Ay + - + 0 A, (3.6)

then the matrix uncertainty set A(A) must also be a polytope.

If A(-) is nonlinear, then the image set A(A) is not usually a polytope. Never-
theless, the vertex-based test can be used to perform stability analysis in a heuristic
manner. One approach is to simply linearize the parameter dependence about an
expansion point § = b , as in

1o 0A
S

Then, defining the linear approximation 121(5) = Ay + > 8;A;, the vertex-based sta-
bility test (3.5)) can be applied to the polytope A(A) One advantage of this approach
is that it works even when A(-) is provided as a black-box function, since the partial
derivatives may be computed using finite difference. A significant drawback, however,
is that it makes no guarantees in either direction—it may mark a stable system as
unstable, and an unstable stable as stable.

Alternatively, we may sample a finite number of elements from the continuous
set, Ayg C A, and to apply the polytopic stability test the vertex-based stability
test to the convex hull convA(Aj). For example, when A is provided as a
hypercube A = [0, 1]¢, the samples may be selected from a uniform grid, or sampled
from a uniform distribution. The resulting stability test is a necessary condition:
convA(Ap) must be quadratically stable in order for A(A) to be quadratically stable.

Unfortunately, most polytopes have an exponential number of vertices for their
given dimensionality. To give an illustration, the d-dimensional hypercube [—1,1]¢
is a polytope with 27 vertices, and every additional dimension of uncertainty would
double the number of constraints considered. As a consequence, the practical use of
the vertex-based test is typically limited to models with a small number (e.g. less
than 10) dimensions of uncertainty.

3.2 Certifying Nonlinear Models

Much of the motivation for LPV robust stability analysis comes from the fact that
they can be used to certify the stability of nonlinear systems. Consider the nonlinear
state-space model

B(t) = flz(t),  z(t) € X, (3.7)



Let us assume without loss of generality that the origin is an equilibrium, i.e. f(0) =0
and 0 € X. Then we say that the nonlinear model is globally stable if every solution
satisfying x(t) € X for all time would also converge to this equilibriumﬂ. Global
stability of the nonlinear model can be certified by analyzing the stability of a
related LPV model.

3.2.1 Quasi-LPV

In the quasi-LPV approach, we define a matrix-valued function A(-) such that
A(z)x = f(x) holds for all x € X.

Then every trajectory z(t) satisfying is also a trajectory of the LPV model
z(t) = A(O(t))x(¢) i(t) € X, (3.8)

since enforcing the equality constraint 0(¢) = z(¢) would make the two models equiva-
lent. Accordingly, the nonlinear model is globally stable whenever the associated
LPV is stable; a stability certificate for the LPV is also a global stability cer-
tificate for the nonlinear model.

The quasi-LPV approach is conservative, as there are many trajectories of the LPV
that are not trajectories of the original nonlinear system. Put in another way, a stable
nonlinear system may produce an unstable quasi-LPV description. Conservatism can
be reduced in two ways.

First, any nonlinear system may admit a number of LPV descriptions, some of
which can be less conservative than others. In essence, we would like the size of the
image A(X) £ {A(6) : 6 € X} to be as small as possible. Quite a lot is known about
how to make these models less conservative. By exploiting domain expertise and
problem structure, it is possible to construct a description that is less conservative.
Constructing the most accurate LPV representation of a nonlinear system remains
an open problem and the topic of active research [35.36].

Second, conservatism may be reduced by reducing the size of the uncertainty set.
For example, if the rate of change for each x(t) can be bounded a priori, then we may
consider the rate-limited LPV model

i(t) = A(6()z(t)  st)ex  o(t) eV,

with much fewer trajectories than before. Rate-limited quadratic stability certificates
are not too much more difficult

In all cases, the quasi-LPV approach is inherently intrusive, since it requires ex-
plicit expressions for the nonlinear function f(-). Its effective use requires considerable
domain expertise.

2Not all solutions starting from an initial point inside X are guaranteed to remain inside & for
all time. Our notion of stability applies only to those solutions that do remain inside X.
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3.2.2 Global Linearization

Where only a black-box description of f(-) is available, we may adopt the global lin-
earization approach, by defining a space of Jacobian matrices Vf(X) £ {Vf(z) : x € X}
and considering a special LPV known as a linear differential inclusion (LDI)

£t) = AE(),  A(t) € convV F(X). (3.9)

The Jacobian can be computed numerically using finite differences. Again, it can be
shown that every trajectory of the nonlinear system is also a trajectory of the
LDI |15, p.55], so a stability certificate for the LDI is also a global stability certificate
for the nonlinear model.

Global linearization is conservative for the same reason that quasi-LPV is conser-
vative. Whereas quasi-LPV can be made less conservative by reformulation, there’s
nothing we can do about global linearization. Whenever f(-) is highly nonlinear, then
the space of Jacobian matrices is “large”.

3.2.3 Local Linearization

Finally, we may also use LPV techniques to certify the local stability of the nonlinear
model (3.7). Given a known trajectory Z(t) € X that satisfies the equation (3.7),
we say that the the nonlinear model is locally stable about Z(t) if every trajectory
satisfying x(t) & Z(t) converges onto Z(t), i.e. z(t) — Z(t) with t — oo. For example,
the simplest trajectory is to fix the state variable at the equilibrium, #(¢) = 0. Making
a first-order expansion yields the linear time-varying model

£(t) ~ A(@(1))E(1) (3.10)

in which we have defined the Jacobian matrix-valued function A(5) = % s and

the deviation term &(t) = z(t) — (t). Certifying to be stable using the same
LPV techniques discussed above also certifies the nonlinear model to be locally stable
about Z(t).

Local stability certification tends to be considerably less conservative than global
stability certification (i.e. it gets closer to being necessarily and sufficient). On the
other hand, its guarantees should be interpreted with care, since they are valid only
within a local neighborhood of the intended trajectory. The local stability approach
forms the basis for a class of nonlinear controller design techniques known as gain

scheduling [37}38].

3.3 Case Study: Robust Small-Signal Stability

Our first case study is an example of the robust small-signal stability problem: certi-
fying the stability of the LPV model

%x(t) — AG@)e(), s eA,  §(t) =0
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in which 0 is high-dimensional and fixed-but-uncertain. We use the quadratic stability
test to analyze robust small-signal stability, and a branch-and-bound strategy to
reduce conservatism. Our results find this combined approach to be surprisingly
effective, at least for this particular problem.

3.3.1 Motivation

High penetrations of renewable energy resources will introduce unprecedented uncer-
tainty to the power system, making stability analysis considerably more challenging.
Previous studies have generally concurred that—assuming that sufficient inertia re-
mains on the system—high penetrations of renewables generation would not signifi-
cantly worsen small-signal stability in the average-case scenario |39,40]. Considerably
less is known in the worst-case scenario, whether it is possible for renewables to sig-
nificantly impact stability, and how might such issues manifest.

One popular approach is to apply statistical, or “Monte Carlo” techniques, to the
study of small-signal stability in the presence of uncertainty [41,42|. By sampling the
stability of selected or random scenarios, and by assuming a particular underlying
distribution, a prediction interval can establish that stability is ezpected for, say, 99%
of all possible scenarios. However, such predictions can often mislead if the impact of
significant outliers are not adequately considered.

In this section, we present a case study based on the IEEE 118-bus test system,
in which 30% of the power is generated by distributed renewable generation added to
each of the 118 buses, in order to highlight the challenge presented by outliers, and the
importance of a certification approach. First, three conventional generators (located
at buses 10, 25 and 89) are retired from the system. Then, the displaced generation
capacity (around 1,277 MW) is compensated by installing renewable generation at
each of 118 buses throughout the system. In the “base case” scenario, the amount
of distributed generation allocated to each bus is proportional to the size of the
existing load, in order to reflect the fact that larger load centers tend to accrue more
renewables.

Statistical analysis shows the system to be stable and unassuming on average,
with the boundary to instability located more than 6 standard deviations away. But
using local optimization, we were able to find 100 unstable or nearly unstable scenar-
ios, suggesting that outlier scenarios may be far more common than first appeared.
Finally, a stability certificate for a low-dimensional, linearized version of our system
model is computed, bounding the worst-case instability by a figure that is not too
much worse than the unstable scenarios found via local optimization.

3.3.2 System Description

The IEEE 118-bus model is a classic test case, containing 118 buses, 186 lines, and 54
generators. Descriptions of the system are widely available, e.g. from [43]. The system
contains a large number of generators, but only 17 of which are actively generating
more than 10 MW power. To simplify the analysis, the remaining 37 generators are
taken out of service, but their respective buses are left intact. Each time power flow
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is solved throughout the system, reactive power limits at each generator are enforced
to prevent the obvious instability caused by sinking too much reactive power into a
generator.

The base power for each machine is computed by taking the P .y, Qmax and Qumin
figures quoted in the power flow case file, and assuming that the capability of each
machine is to produce up to 1.0 per-unit real power, 0.8 per-unit reactive power in
over-excitation, and 0.6 per-unit in under-excitation. These are typical figures for
large, transmission-level synchronous machines [44].

The dynamical model for each generator is constructed from a standard round-
rotor generator model (GENROU), a standard DC exciter model (DC1A [45, Sec.
5.1]), alongside a suitably designed voltage compensator [45, Sec. 4|. Governors
are generally considered to be too insensitive to initiate small-signal events, so are
not modeled for this study. Identical per-unit parameters are rescaled to different
machine base powers.

Loads are modeled as a mixture of 70% constant-impedance and 30% constant-
current, with negligible dynamics. The constant-impedance portion models lights,
heaters and appliances, as well as the various transformers and lines in the conduc-
tion path, while the constant-current portion models induction motors, which are
widespread for industrial loads.

The renewable generation at each bus is modeled using ZIP models as 90% real
power injections and 10% direct-axis current injections. The vast majority of renew-
able resources interface with the power system through power electronics, which have
near-instantaneous dynamics that can be neglected for the purposes of a transmission-
level simulation. In the presence of power-point tracking mechanisms, these renew-
ables will act as constant real power injections; without power tracking, they will
behave like direct-axis current sources. Since there is no mandate in the U.S. for
small, distribution-level renewables to provide reactive support, we simply assume
that their reactive power contributions are negligible.

3.3.3 LPYV Formulation

The objective of our study is to simulate the uncertainty associated with renewables
generation, and to quantify its impact on system-wide small-signal stability. To this
end, we define the uncertain set as an 118-dimensional hypercube A = [0, 2]'8. Each
i-th parameter variable §; is assumed to have a fixed-but-unknown value, acting as
a “multiplier” for the production at the corresponding bus. For example, a value of
05 = 1.2 would set the renewable generation at bus 5 to output 20% more power than
its nominal amount in the “base case”, whereas a value of d,g = 0 would shut off the
renewable generation at bus 20 altogether.

Our LPV model is constructed using the “parameterized linearization” approach.
We begin with the standard differential algebraic model of the power system described
in the previous section,

#(t) = flz(),y(t),0),  0=g(z(t),y(t),0), (3.11)



Table 3.1: Decay rate sample statistics (units of 1072 /s)

Sample size \ Mean \ Median \ Mode \ Std. Dev. \ Min \ Max

60 3.05 3.13 3.87 0.433 1.81 | 3.86
600 2.99 3.02 4.28 0.421 1.43 | 4.28
6000 2.98 3.00 4.32 0.439 0.900 | 4.32

60,000 2.99 3.00 4.63 0.437 0.746 | 4.63
360,000 2.99 3.00 4.64 0.437 0.584 | 4.64

Table 3.2: Decay rate prediction intervals (units of 1072/s)

Sample size Prediction Confidence
99% | 99.9% [ 99.99% | 99.999%
60 [1.89, 4.21] [ [1.54, 4.56] | [1.23, 4.87] | [0.94, 5.16]
600 [1.90, 4.08] [ [1.60, 4.38] | [1.34, 4.64] | [1.11, 4.87]
6000 [1.85, 4.11] [ [1.54, 4.42] | [1.27, 4.69] | [1.04, 4.92]
60,000 | [1.86, 4.12] | [1.55, 4.43] | [1.29, 4.69] | [1.06, 4.92]
360,000 | [1.86, 4.12] | [1.55, 4.43] | [1.29, 4.69] | [1.06, 4.92]

in which x(t), y(t) are state and algebraic variables, and f, g are nonlinear but smooth,
differentiable functions, and ¢ is the vector of fixed-but-unknown parameters. Using
an underlying power flow model, we define the functions z((J) and yo(d) to parame-
terize a set of equilibrium points satisfying

f($0<5),y0(5)) =0, 9($0(5),yo(5)) =0

for every § € A. Linearizing the nonlinear system about the each equilibrium xy(9),
yo(0) yields the descriptor space

E(t) = A(B)E(t) + BO)m(t), 0= C(8)E(t) + D(8)(t), (3.12)

where £(t) = x(t)—x0(0) and n(t) = y(t)—yo(9), and the matrices A(¢), B(d), C(9), D(9)
are the Jacobians of the functions f and g evaluated at (z4(0),y0(d),d). The matrix
D(0) is nonsingular except in cases of voltage collapse; eliminating the variable 7(t)
yields the LPV model

E=M©O)E, €02

where M(5) 2 A(8) — C(8)D(8) " B(6).

3.3.4 Statistical Analysis

In comparing the relative stability of different scenarios, it is often helpful to quantify
the stability of the system with a number. For this case study, we use the decay rate,
in units of “fraction reduction per second”, which refers to the exponential damping
rate for the lightest-damped eigenmode of a linear system. Specifically, given the LTI
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togram in log scale; (¢) cumulative probability distribution.
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system @ = Mz, the damping rate, «, is defined as

a(M) =— max Re\{M}. (3.13)

With a positive decay rate, i.e. (M) > 0, the LTI system will decay exponentially
towards steady-state as ~ exp(—ta(M)). For a nonpositive decay rate, i.e. a(M) <0,
the LTT system is unstable.

Our objective is to analyze the worst-case decay rate over all possible choices of
the uncertain parameter 0. Defining the set of all possible decay rates as

2 = {a(M(5)): 6 € A} C R, (3.14)

the worst-case decay rate is the minimum of this set, i.e. min Z. Unfortunately,
solving this minimization is, in general, nonconvex and NP-hard.

However, sampling from & is relatively straightforward. With enough samples,
quantitative statements about stability can be made using statistical analysis, and
a prediction interval can be made for the worst-case decay rate. Table [3.1] shows
the results obtained by sampling § from an 118-dimensional uniform distribution.
The histogram / cumulative distribution function for the largest sample size is shown
in Fig. [3-1] Assuming an underlying normal distribution, prediction intervals are
computed for each sample size and shown in Table [3.2]

The results suggest that an “average” uncertain scenario is relatively unassuming,
admitting a decay rate of ~3% per second, corresponding to a damping ratio of around
1-2%. On average, a high penetration of distributed renewables does not appear
to significantly impact system stability, at least within the modeling assumptions
contained in this paper. This result concurs with studies performed on real power
systems [39,46].

All five intervals predict around a 1 in 100,000 chance for a scenario to admit
a decay rate being below 1% per second. However, examining the statistics closer
suggests that the assumption of a normal distribution may be overly optimistic. There
is considerable skew and kurtosis (i.e. “long-tailed-ness”) in the distribution, and the
mode differs considerably from the mean and median for all sample sizes in Table 3.1]
Scenarios with decay rates below 1% per second are found in practice within just 6000
samples. While the distribution may appear to be normal at first glance, the results
show that outlier cases are far more common, and this can lead to large errors when
making predictions.

3.3.5 Unstable Scenarios via Local Optimization

While the minimization problem for the worst-case decay rate

min 7 = %réig a(M(9)) (3.15)

is generally intractable, finding locally optimal solutions is easy: a strictly feasible
initial point can be incrementally improved, e.g. using a trust-region quasi-Newton’s
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method, until no further progress can be made. Since the problem is highly noncon-
vex, we would expect numerous local minima to be found, so the procedure should
be repeated with different, randomized initial points.

Any unstable or insufficiently stable scenario found through local optimization
immediately tells us that not all uncertain scenarios are acceptable; the worst-case
is at least as bad the one found through optimization. The corresponding choice of
0 can be thought of as a “suboptimal but good enough” solution to the optimization
problem , because it allowed us to draw a definitive conclusion. The use of local
optimization to look for “suboptimal but good enough” solutions to highly noncon-
vex problems is ubiquitous in applications ranging from controller synthesis [47] to
machine learning.

However, failure to find an unstable scenario does not mean that one does not exist.
We can only increase our chances of catching the worst-case by restarting the search
at different initial points. And even if the worst-case scenario were found, it would
be indistinguishable from a locally least-stable scenario. While local optimization
is an effective heuristic for stability analysis, it cannot be relied upon for stability
guarantees.

Statistical approaches can never be conclusive about worst-case behavior, but in
this case study, local optimization shows that the statistic approach is surprisingly
misleading. After 100 runs of local optimization performed using fmincon in MAT-
LAB, 100 locally least-stable solutions are found. These solutions are visualized in
Fig. as the 0%, 25%, 50%, 75% and 100% quantiles for the 0 values allocated
to each system bus. The solutions span a wide combined range, but many of them
are closely gathered towards a median “bad-case scenario”. As shown in Fig. [3-3] all
100 scenarios are considerably less stable than those sampled in the previous section,
deviating a remarkable 6-7 standard deviations from the mean.

It is important to validate that the instabilities found correspond to real, physical
phenomena, and are not simply a manifestation of the optimizer exploiting modeling
errors. We provide an illustration for the most unstable of the 100 solutions, which
has an eigenvalue pair at A = 0.002+3.95125. The instability would manifest as a 0.6
Hz oscillation that grows in magnitude at a rate of 0.2% per second, or about 12%
per minute. Computing the participation factors [48| reveals that only machine rotor
speeds and rotor angles participate in the unstable modes. The most affected ma-
chines at bus 25 and bus 111, which are located at opposite extremes of the network.
These are all tell-tale signs of interarea oscillation; indeed the suspicion is confirmed
using time-domain simulation, as shown in Fig.

3.3.6 Stability Guarantees via Stability Certification

In the previous subsection, local optimization was successful in catching several un-
stable or nearly-unstable outlier scenarios. But both local optimization and statisti-
cal analysis will inevitably fall short in making conclusive predictions about the true
worst-case scenario. Both methods leave us wondering whether there is a significantly
less stable scenario that is simply overlooked.

Instead, we may quadratic stability certificates to produce lower-bounds on the
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worst-case decay rate. If this lower-bound is positive and sufficiently large, then we
may conclude our stability analysis with the knowledge that the worst-case scenario
is guaranteed to be sufficiently stable.

Proposition 7. Chose A € R to make the identity-shifted LPV
E(t) = [M(5(t) + MJE(E) (1) € A (3.16)

quadratically stable (Definition @ Then X is a strict lower-bound on the worst-case
decay rate, i.e. A < mingea (M (0)).

Proof. We claim that the worst-case decay rate of this identity-shifted model must
be strictly positive, i.e. mingea a(M(J) + AI) > 0. Suppose that this were not
the case, i.e. there exist some §* such that a(M(6*) + AI) < 0. Then selecting
the parameter to be time-invariant §(¢) = ¢* would make the LPV unstable,
thereby contradicting the premise that is quadratically stable. Next, applying
the algebraic identity a(A + M) = a(A) — A yields

I&Iélgla(M(é) + M) >0 = min a(M(6)) > A,

so we find that \ serves as a lower-bound on the worst-case decay rate of the original
model. O

Maximization over all valid choices of A yields classic LMI-based decay rate lower-
bound [15, pp.66-67]

an (M, A) = sup {\ : (3.16)) is quadratically stable} . (3.17)
AER

The conservatism of this bound may be reduced by partitioning the uncertainty set.
More specifically, let us partition A = AjUA;U---UA,. Then it is possible to show
that

ap(M,A) < min  ap(M,4A;) < mina(M(6)). (3.18)

i€{l,....p} sen

As the partitions are made smaller, the second inequality in approaches an
equality, and the corresponding lower-bound approaches the true global minimum [49].
This sort of partitioning may be incorporated into a branch-and-bound framework to
yield a global optimization algorithm, as was done in [50,51].

Evaluating the lower-bound requires us to solve a quasi-convex optimiza-
tion problem using the bisection method. Each iteration fixes the value of A and
attempts to compute a quadratic stability certificate for . In order to perform
the quadratic stability test using standard techniques, the individual elements of the
matrix-valued function M (J) should be given as rational functions of §. Unfortu-
nately in our case, M (§) does not even admit a closed-form solution, since a part of
its evaluation requires solving the power flow equations using Newton’s method.

Instead, viewing M (J) as a black-box model, we can approrimate M () using a
polynomial matrix-valued function M (0), e.g. by collocation at a finite number of
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Figure 3-5: Progress of branch & bound as applied to the linearized model. Each
iteration took between 2,000-4,000 s on a 16-core Intel Xeon E5 CPU.

points {xy,...,z,} = A, C A. Such an approach is well-known and widely adopted.
For this case study, we chose M (d) to be an affine function

M(8) = Mo+ 6; My + -+ + d11sMys,

and select the collocation points A, to lie within a neighborhood of the worst locally-
unstable scenario found earlier via local optimization. In effect, we are constructing
the first-order expansion for M (J) about this locally-unstable scenario. The physical
intuition is to replace the a.c. power flow equations with the “d.c. power flow”
analog; this approach is sometimes used to formulate optimal power flow [52] and
unit commitment [53| problems as linear and mixed integer programs.

The resulting affine matrix-valued function is a function of 118 uncertain pa-
rameters, but most of these are redundant in describing the underlying uncertainty.
Applying order reduction, we find that just 7 dimensions of uncertainty (i.e. principal
components) are needed to capture the behavior of the LPV model to an approxi-
mation error of below 1%. The vertex-based formulation in Section |3.1.2] is used to
compute quadratic stability certificates for this reduced model, and a branch-and-

bound scheme similar to the one in [50] is used to refine the conservatism of the
bound.

The final result is shown alongside the decay rates of the unstable scenarios found
via local optimization in Fig.[3-3] The certificate predicted a decay rate lower-bound
of —0.0124/s, suggesting that the worst-case scenario should not be too much worse
than the outlier scenarios already found using local optimization. Despite the use
of a reduced-order approximation, each stability certificate still required a significant
amount of computational effort. Branch-and-bound converged in 19 iterations (shown
in Fig. , but each iteration required the solution of a conic optimization problem
with 972 = 9409 primal decision variables and 27 - 972 ~ 1.2 x 10° dual decision
variables. This took around an hour each time, even when using application-specific,
custom-tailored codes on expensive hardware, and the combined running time for all
19 iterations was around a full day.
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3.4 Case Study: Robust Large-Signal Stability

Our second case study is an example of the robust large-signal stability problem:
certifying the stability of the LPV model

d
Zalt) = ABM)(t),  3(t) €A,

in which (¢) is time-varying and may vary arbitrarily quickly. We use quadratic sta-
bility as a proxy for robust large-signal stability. While the approach has a reputation
for being conservative, our results find it to be surprisingly effective.

3.4.1 Motivation

The uptake of high penetrations of renewable energy raises concerns that their second-
to-second variability in power output, which we refer to as intermittency, may cause
the power system to become unstable [39,42,54]. A common approach to certifying
stability is via small-signal stability analysis, in which a detailed, nonlinear model of
the system is linearized, and the locations of its eigenvalues used to guarantee stability.
But the approach hinges on two implied assumptions: that the models are sufficiently
accurate to capture the desired modes of instability, and that the intermittency itself
is small-signal with respect to the greater power system.

Both assumptions hold up well in the context of large transmission networks with
low to moderate penetrations of renewable energy. Synchronous machines models
are mature, and although not always precise, their limitations and predictive powers
are well-quantified and well-understood from decades of experience. Also, renewable
intermittency really does appear as small-signal in a transmission network, due to
geographical diversification, which tends to “average out” the magnitude and rate-of-
change associated with network-wide intermittency [55],56].

Unfortunately, neither assumptions are particularly realistic for smaller systems
like distribution networks and microgrids. Here, the generator, solar panel, and load
models are often novel and nonstandard, and the localized renewable penetration can
often be high enough to subject large-signal intermittency to the rest of the system.
Insisting on the use of small-signal stability analysis can lead to overly optimistic
conclusions.

In this section, we illustrate the limitations of small-signal stability analysis for
large-signal intermittency, and the use of a computational approach to Lyapunov func-
tions to overcome these limitations. We examine a simple microgrid whose operating
point is kept (approximately) constant using a fast-acting energy storage unit. We
compute stability margins for the example system based on eigenvalue analysis, and
show that the system can nonetheless be destabilized under large-signal intermittency
from a solar panel. Then, we derive stability margins using Lyapunov analysis that
remain valid regardless of the nature of the solar panel output. Finally, we show that
the small- and large-signal stability margins are related by the maximum allowable
slew-rate of the solar panel output.
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Figure 3-6: Schematic of the microgrid under study at nominal 1 p.u. bus voltage.
Pyen =1 p.u., Qgen = —0.3 p.u.

3.4.2 System Description

Our goal in this case study is to compare the small- and large-signal stability certifi-
cation approaches on a microgrid that is simple enough for the corresponding results
to be intuitive. To this end, let us consider a system containing just three distinct
elements: a diesel generator, a solar panel connected to the system via an inverter,
and a load, buffered by a rapid-responding form of energy storage, such as a battery
bank or a flywheel. The energy storage is used to provide regulation against load
variations, and against the possibly intermittent output of the solar panel, so that
the diesel generator may approximately operate in steady-state. The arrangement is
shown in Fig. [3-6| Under ideal conditions, i.e. with nominal bus voltage magnitude,
the net load seen by the diesel generator would remain perfectly constant, irrespective
of the solar panel output.

We use algebraic impedance-current-power (ZIP) models to represent the load-
storage combination and the solar panel inverter, without any associated dynamics.
Since both elements would be realized using power electronics, it is reasonable to
assume that their behavior would be sufficiently fast as to be considered instanta-
neous, at least from the perspective of the diesel generator. The ZIP ratio for the
load-storage combination is set to 100% impedance, to reflect the voltage droop char-
acteristic typically used to enhance small-signal voltage stability. The inverter ZIP
ratio is set to 100% power, to capture the presence of a maximum power-point track-
ing controller. Small-scale solar panel inverters are very rarely configured to provide
reactive power support, so we assume that only active power is produced.

We use standard models to represent the diesel generator. More specifically, the
classic round-rotor model GENROU is used to model the magnetic circuit and swing
behavior, and the IEEE DC1A exciter model and a suitably tuned voltage compen-
sator are used to model the automatic voltage regulator. Governors and prime-movers
are too slow and too insensitive to participate in the instabilities of interest in this
case-study, so are not modeled; the machine rotor speed variable is simply initiated
at its nominal values and left uncontrolled. The system is configured so that the net
load seen by the diesel generator is Pyen = 1.0 p.u. and Qgen = —0.3 p.u. (at nominal
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conditions of 1 p.u. voltage and frequency).

3.4.3 LPV Formulation

At time t, let the real vector z(t) € R™ contain the generator state variables, let the
complex scalar v(t) € C describe the voltage phasor at the interconnecting bus, and
let the real scalar 0 < wu(t) < umay describe the solar panel inverter active power
output in per-unit. We use a differential-algebraic model of the microgrid, cast into
nonlinear descriptor state-space form

Ey(t) = f(y(t),u(?)), (3.19)
in which FE is the singular matrix
I, 0
E=|"
o)
the vector y(t) = [z(t);v(¢)] is the generalized state variable.
We use ynom to refer to the system’s nominal operating point. At the nominal
system conditions of 1 p.u. voltage and frequency, we assume that the regulation
from the energy storage system is sufficiently fast and accurate as to decouple the

operating point from the inverter output u(t). Mathematically, the energy storage
system is modeled to allow the point 4., to solve the steady-state conditions

0= f(ynoma u(t)),

for every choice of u(t). Hence, every choice of y(t) = ynom and u(t) yields a valid
solution for . Or physically, starting perfectly at the operating point, y(0) =
Ynom, the system would remain fixed at the equilibrium, with y(¢) = yyom, irrespective
of the solar panel output wu(t).

We develop two LPV models in this case study. Our first model, named the
nominal operating point model, is obtained by linearizing about all trajectories about
the system’s nominal operating point. This is done by setting the uncertain parameter
as the solar panel output, 6(¢) = u(t), and defining the matrix-valued function

Mo (u(t)) £ %

y:ynomyu:u(t)
to yield the LPV model
€ = Muom(6(1))E, 0 < 6(t) < Umax, (3.20)

where £ = y(t) — Ynom- It is worth noting that the matrix-valued function M (6(t))
is affine by construction, meaning that it can be written

Mnom(é(t)) = AU + 5(t)A17
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Figure 3-7: Root locus plot for the 4 least stable poles of the system. The markers
show 1y = 0, and each arrowhead increments uy by 2. The poles reach
the imaginary axis at ug = 9.8347.

where Ag = Muom(0) and A; = Myom(1). The physical explanation is simply that
the admittance of a ZIP load is, by definition, linear with respect to its designated
impedance, current, and power values (controlled by w), and nonlinear only with
respect to the bus voltage (controlled by y).

Unfortunately, stability guarantees developed for the nominal operating point
model are only valid when the system operating point is within a small-signal neigh-
borhood of the nominal. Our second LPV model, named the uncertain operating
point model, performs global linearlization over an entire uncertainty set of operating
points. To do this, we define the uncertainty parameter to incorporate the 5 elements
of y that affects the Jacobian %:

e The generator direct- and quadrature-axis flux variables, with default values of
¢q = 0.862 p.u. and ¢, = —0.507 p.u.

e The generator rotor speed and rotor angle, with default values of w,,; = 1 p.u.
and 0., = 30.4 degrees.

e The interconnecting bus voltage magnitude, with default value of |v| = 1 p.u.

Setting § = [Pa, Pgs Wrot, Orot [V], u]T, defining M (S(t)) = % and the uncertainty set

Yo to enforce the bounds ¢, € [0.77,0.94], ¢, € [—0.56, —0.45], wyex € [0.95,1.05],
drot € [25,35], and |v| € [0.95, 1.05] produces our LPV model

€= M(@5(t))E, 5(t) € Vo X [0, Unmax]- (3.21)

3.4.4 Eigenvalue analysis

We begin by examining the small-signal stability of the system at the nominal operat-
ing point over a range of solar outputs. In other words, let us fix yg = ynom and sweep
the value of ug upwards from zero. Plotting the trajectory of the least-stable eigenval-
ues of By = f(y,u) at y = yo and u = wg yields the root locus plot shown in Fig. |3-7]
The eigenvalues remain in the left-half of the complex plane for all 0 < ug < 9.8347.
Hence, we conclude that, subject to the assumption of small-signal disturbance and
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perfect regulation from the storage unit, the system can accommodate for up to
9.8347/(9.8347 4+ 1) = 90.770% ~ 90.8% solar penetration.

Next, we recompute the small-signal stability margin while allowing the operating
point to (slowly) vary within an uncertainty set, )y, containing the nominal operating
point. We sweep the value of vy upwards from zero, while validating that that system
Ey = f(y,u) at y = yo and u = wug has eigenvalues in the left-half plane for every
Yo € Yo. This eigenvalue check over all infinite choices of the operating point yy € Vo
is approximated by sampling over a 5-dimensional, uniformly spaced Cartesian grid,
with 7 points per side for a total of 16,807 samples. We find that the system remains
stable under uncertainty for all 0 < wug < 3.8402 p.u. This corresponds to a solar
penetration of 3.8402/(3.8402 + 1) = 79.34% ~ 79.3% solar penetration, which is
considerably reduced from the figure in the previous subsection.

3.4.5 Limitations of Eigenvalue Analysis

The central weakness of an eigenvalue-based analysis, however, is its reliance on the
small-signal disturbance assumption, which often causes its predictions to be too
optimistic for practical use. Let us examine an example choice of u(t) that satisfies
the stability margin computed in the previous subsection, but actually causes the
system to be unstable. To keep the example relatively simple, we will fix the system
initial state y(0) within a small-signal neighborhood of its nominal operating point,
Ynom -

Consider switching the solar output u(t) between the values of 0 and 9 p.u. with
50% duty cycle and a period of T'= 0.21 second,

0 kT <t< (k+3)T,
u(t) =9, )
(k+3)T <t<(k+1)T,

for all k € {1,2,...}, as shown in Fig. 3-8h. The small-signal dynamics of this system
are governed by the nominal operating point LPV model

EE(t) = Myom (u(t))E(1) + w(t). (3.22)

Essentially, the LPV model switches between the two linear time-invariant (LTI)
models, FE(t) = Muom(0)E(t) and FE(t) = Mpom(9)E(t), at the prescribed period and
duty cycle. Each instantaneous value of u(t) satisfies the stability margin computed
in the previous subsection, so the eigenvalues of each LTT model reside strictly in
the open left-half of the complex plane. We may be tempted to conclude that the
switched system is also small-signal stable.

Yet the small-signal disturbance assumption is violated, since the time-varying
component of u(t) is much too large to be considered negligible. And as shown in
Fig. and Fig. 3-8, the switched system is not stable. Starting with an initial
point y(0) that is a small-signal perturbation (with relative Euclidean norm of 107°)
away from y,om, we discover a nonlinear “mode” that accumulates and destabilizes the
system. This mode of instability persists into the original nonlinear model in ;
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Figure 3-8: An unstable choice of 0 < wu(t) < 9.8: (a) The choice of u(t), switching
between 0 and 9 p.u. with a period of 0.21 s, and the resulting system
response; (b) The unstable response over the first 10 seconds; and (c)
Over the first 30 seconds.
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we see an excellent agreement between the LPV model and the fully nonlinear model
in the small-signal regimd’]

Note that we are able to induce this instability despite a number of simplifications
and idealizations intended to stabilize the model:

e Perfect regulation from the energy storage unit, which decouples the nominal
operating point from the instantaneous solar panel output;

e The initial condition is confined within a small-signal neighborhood of the nom-
inal operating point;

e The large-signal behavior is confined to the solar panel output, and not the
generalized state variables.

In practice, these idealizations are unlikely to hold, and this would only further ex-
acerbate potential instabilities. For example, without perfect regulation from the
energy storage unit, we may expect rapid, switching behavior to occur in both u(t) as
well as y(t). This would further invalidate the small-signal disturbance assumption,
and suggests that the more conservative stability margin in the previous subsection
may still be too optimistic for practical use.

3.4.6 Lyapunov Analysis

Lyapunov analysis overcomes many of the limitations of eigenvalue analysis for non-
linear systems. It certifies nonlinear stability in the presence of large-signal inter-
mittency, by demonstrating the existence of a Lypuanov function. Historically, the
analytical difficulties in deriving the Lyapunov function have prevented the approach
from seeing widespread use. Instead, an optimization approach can be used to shift
the analytical burden to a computational one. By formulating the Lyapunov func-
tion candidate as a generic polynomial function, its polynomial coefficients may be
obtained by solving a convex optimization problem.

First, we attempt to compute a quadratic Lypuanov function of the form V(y) =
y' ET Py for the nominal operating point LPV model . If it exists, then the
original nonlinear model is guaranteed to be stable for arbitrarily large changes in
u(t) € [0, Umax], so long as y(t) remains within a small-signal neighborhood of ¥,om-
The candidate V' (y) is a Lyapunov function if and only if its coefficient matrix P
satisfies the LMIs

ETP=P'E =0, (3.23)
Mo ()P + PT Mo (6) < 0, (3.24)

for all 0 € {0, Uumax }. We use the YALMIP parser [57] to set up these three constraints,
and the MOSEK interior-point solver [58] to find a feasible point.

3The same simulation was repeated using two different integrators (ode23t and odel5s) and over
a wide range of error tolerances, to ensure that the instability is not caused by numerical errors.

o4



Repeating the above procedure with incrementing u,,.x, we find that the nominal
operating point is large-signal stable for up to up., = 5.9713 p.u. Hence, we conclude
that, assuming perfect regulation from the energy storage unit, and that the system
is initialized within a small-signal neighborhood of the nominal operating point, the
system can accommodate for up to 5.9713/(5.9713 + 1) = 85.655% ~ 85.7% solar
penetration, regardless of the nature of the solar output.

Next, we repeat the same approach for the uncertain operating point LPV model.
The resulting stability guarantee is valid for arbitrarily large changes in wu(t) €
[0, Umax|, SO long as y(t) is constrained to lie within the uncertainty set )y as de-
fined earlier. Again, V' (y) is a Lyapunov function if and only if P satisfies

E'P=P'E >0, (3.25)
M(§)TP+ PTM(5) <0, (3.26)

for all 6 € A. The matrix-valued function M (J) is not affine, nor rational, so the
semi-infinite constraint over § cannot be easily reformulated or relaxed into a finite
number of constraints. Instead, we take a gridding approach, similar to that of [59],
in which we enforce the semi-infinite LMI constraint over a finite number of grid
points Ay C A. The associated feasibility problem is an optimistic underestimate,
but asymptotically approaches exactness as the number of grid points is increased.
In other words, this procedure will overestimate the stability margin compared to the
true, underlying value, but the overestimation gap approaches zero as the number of
samples are increased. We again use YALMIP and MOSEK to solve the problem.

Incrementing ., and performing this procedure with 15625 samples collected
along a six-dimensional grid, we find that the nominal operating point is large-signal
stable under uncertainty for up to tuma., = 2.9727 p.u. We make the optimistic con-
clusion that the same system can accommodate for up to 2.9727/(2.9727 + 1)
74.828% =~ 74.8% solar penetration, when the generalized state variable vector y(t)
is restricted to lie within the uncertainty set ).

3.4.7 Slew-rate Analysis

Small-signal stability analysis and Lyapunov analysis have produced two different sets
of stability margins. In this subsection, we will show that the stability margins are
related by the maximum rate-of-change in the solar output, i.e. the slew-rate of the
intermittency. The more optimistic stability margins computed in Section are
applicable at the zero-slew limit, when the solar output u(t) changes slowly enough
to be considered constant by the rest of the system. The more pessimistic stability
margins computed in Section [3.4.6] are applicable at the infinite-slew limit, when the
solar output wu(t) is allowed to change arbitrarily quickly.

To make the connection between the two stability margins, we perform a slew-
rate limited Lyapunov stability analysis using a parameter-dependent Lyapunov func-
tion. We will attempt to construct a quadratic, parameter-affine, Lyapunov function
V(y,d8) = yT ET(Py+dP,)y for the nominal operating point LPV model subject

to the slew-rate limit |0(t)] < wmax. If it exists, then the original nonlinear model
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Figure 3-9: Solar output stability margin vs output slew-rate.

is stable for all §(¢) subject to the same conditions, so long as y(¢) remains within a
small-signal neighborhood of y,om. A sufficient condition for V' (y, #) to be a Lyapunov
function is if its coefficient matrices F,, P, satisfy

ETP(§) = P(§)"E = 0, (3.27)
wET Py + My(0)" P(8) + PT(5) My(8) < 0, (3.28)
GT'P, + PG =0, (3.29)

for all combinations of § € {0, Umax }, W € {—Wmax, Wmax }-

Performing this Lyapunov function test while sweeping the values of ., and
Wiax yields the plot shown in Fig. 3-8d. We see that for small slew-rate limits, the
small-signal intermittency assumption remains valid, and that the stability margin
of 0 < u(t) < 9.8347 p.u. concurs with our previous results in Section [3.4.4 But
as the slew-rate is allowed to increase, the system transitions into a regime of large-
signal intermittency. In the limit of arbitrarily fast slew-rates, the size of the stability
margin is reduced to 0 < wu(t) < 5.9713 p.u., which is the same result as that for
classic Lyapunov analysis.

3.5 Conclusions

In this chapter, we used the quadratic stability test to analyze the robust small-signal
stability of a transmission system with distributed renewables, and the robust large-
signal stability of a microgrid system connected to an intermittent solar panel. More
specifically, we used vertex-based quadratic stability tests, written

find P = 0 such that M;" P + PM; < 0 holds for all i € {1,...,m}, (3.30)

which is the necessary and sufficient condition for the quadratic stability of the poly-
topic LPV model

Sal) = M(Hal),  M(2) € conv{My,., My}
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In order to apply the technique to nonlinear problems, we use the linearization and
grid-based sampling heurstics described in Section |3.1.2]

Quadratic stability has a reputation for being conservative and inflexible, but
in our results, we found that it worked surprisingly well. Combining the quadratic
stability test with a bisection-based partitioning strategy allowed a remarkably high-
dimensional uncertainty set to be established as being robustly small-signal stable in
just 19 branching steps. The gridding-based quadratic stability test was able to com-
pute useful stability margins for a microgrid system under large-signal intermittency.

Conservatism aside, the primary bottleneck for the approach is the solution of the
linear matrix inequality feasibility problem . In the transmission problem, each
instance of the problem took around an hour to solve, and so the 19 iterations of the
branch-and-bound algorithm took a full day to solve. Further progress in theoretical
and computational methods are needed to scale theory to realistic-sized problems,
which may contain tens of thousands of buses and thousands of generators. This is
an important area of future research.
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Chapter 4

Algorithms for Large-Scale Lyapunov
Inequalities

In Chapter 3, the vertex-based quadratic stability test was found to be surprisingly
effective for robust stability analysis on power systems. The key computation for
the stability test is a linear matrix inequality (LMI) problem, which can be solved
using an interior-point method. Unfortunately, the associated O(n®) time complexity
restricts the approach to small, artificial models, containing no more than 150 state
variables.

This chaper is motivated by the desire to extend the vertex-based quadratic sta-
bility test to large-scale problems. In applications like image processing and machine
learning, the poor scalability of interior-point methods is commonly overcome using
of first-order methods. When the objectives are smooth (or can be decomposed into
a smooth component), then accelerated first-order methods can converge at the rate
of O(1/k?) objective error at the k-th iteration. Unfortunately, our application has
a nonsmooth objective, and first-order methods converge at the much slower rate of
O(1/k).

In this chapter, we investigate accelerating the converge of first-order methods
using Krylov subspace methods like conjugate gradients (CG) and GMRES. We show
that when first-order methods are used to solve the Newton subproblem of interior-
point methods, that Krylov subspace acceleration allows the overall method to achieve
an error rate of O(1/k?), matching the fastest first-order methods for smooth opti-
mization.

4.1 Introduction

Given m square matrices M, ..., M,,, each of dimension n X n, the linear matrix
inequality (LMI) feasibility problem

Y =0, MY+YM'<0foralliec{l,...,m}, (4.1)

lies the heart of classical robust controls. The matrix Y—when it exists—is used
as a stability certificate, a Lypuanov function, and a starting point for controller
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synthesis [12/15]. Its eigendecomposition can be used to highlight the dominant modes
of the system, and the associated orthogonal projectors are often used for nonlinear
model order reduction [60]. If Y fails to exist, then the matrices X7, ..., X,, satisfying
the Lagrangian dual,

dwrXi=1, Y (M/X;+X;M) =0, X;=0forallic{l,....m}, (42)
=1

i=1

are guaranteed to exist; these serve as proof for the inexistence of Y, and are known
as the infeasibility certificate for (4.1]).

The linear matrix inequality is a conic feasibility problem. The standard
approach is to embed it into a (slightly larger) primal-dual linear conic optimization
pair

minimize b’y s.t. ATz =c¢, z € K, (4.3)
maximize ¢’y s.t. Ay+s=b, s€ K,

posed over the self-dual cone of positive semidefinite matrices K, and to apply a
feasible interior-point method. It is a famous result that no more than O(y/mn)
interior-point iterations are required to solve to machine precision; in practice,
no more than 50 iterations are required [61,62].

The main computation at each interior-point iteration is the solution of the New-
ton search direction

0 AT 0] [Ay T
A 0 I| |Az| = |r4], (4.4)
0 I Dj |As r

c

with the positive definite scaling matrix D, and the residuals r,, r4, 7. changing on
every iteration. The equation is commonly solved by forming its Schur complement,

(ATDA)(Ay) = rp— AT[r, — Dry, (4.5)

and back-substituting As = ry — AAy, Az = r. — DAs. When K is chosen to be
the positive definite cone, the scaling matrix D is fully dense. Despite any sparsity
structure originally present in the data matrix A, the system of equations is
also fully-dense. All popular interior-point solvers for semidefinite programs solve
the dense system by explicitly forming and factoring the dense Hessian matrix in
. Given that y represents a matrix variable with n? degrees of freedom, the cubic
complexity of dense Cholesky factorization results in O(n%) time per interior-point
iteration.

4.1.1 First-Order Methods

The O(n®) time complexity of interior-point methods restricts the use of Lyapunov
inequalities—and the classical techniques of robust control associated with Lyapunov
inequalities—to medium-scale problems, with no more than n < 150 state variables.

60



This chapter is motivated by the desire to extend these techniques to large-scale power
systems. A typical model of a realistic-sized power system may have on the order
of a thousand state variables (i.e. n ~ 1000), far outside the capabilities of modern
solvers. Suppose it took just 1 minute to solve the n = 100 problem using SeDuMi or
MOSEK; then it would take 694 days to solve the n = 1000 problem using the same
software.

Similar scaling issues with the interior-point solution of large-scale semidefinite
programs also frequently arise in signal processing, machine learning, and related
fields. For example, the nuclear-norm regularized optimization problems, which
include matrix completion [63] and sparse principal component analysis [64], are
semidefinite programs where the value of n can easily reach thousands. Semidefinite
relaxations of graph theoretic problems, such as the Lovasz 6-function and MAX-
CUT [65], also suffer from similar scaling issues.

A popular and widely successful approach to large-scale semidefinite programs
is to adopt a suitable first-order method. By avoiding the dense second-order in-
formation, first-order methods have very low per-iteration costs, that can often be
custom-tailored to the problem structure of a specific application. In the case of the
Lyapunov inequalities (4.1]), we show in Section that the per-iteration cost can be
reduced to O(n?), after an initial factorization step of O(n?*), by exploiting a certain
hierarchical structure.

Unfortunately, first order methods converge significantly slower than interior-point
methods. The standard first-order algorithms (which we review in Section are
only able to converge to an e-accurate solution in O(1/e¢) iterations, for an error rate of
O(1/k) at the k-th iteration. In practice, this means that only low-accuracy solutions
can be obtained over thousands of iterations.

4.1.2 Main Result

Instead, we investigate the ability to accelerate the convergence of first-order methods
by reusing the information collected in previous iterations. When the optimization
problem at hand is a quadratic minimization subject to equality constraints, the
information collected in previous iterates can be optimally used to accelerate converge,
using a Krylov subspace method like CG or GMRES.

First-order methods developed for cannot be accelerated using a Krylov
subspace method. However, these same methods become compatible when they are
applied to the Newton subproblem associated with the interior-point solution of .
In this Chapter, we show that, under the assumption of strong complementary slack-
ness and low-rank solutions, the preconditioned conjugate gradients (PCG) solution
of the Schur complement equation (4.5) with (ATA)~! as a preconditioner is able to
converge in O(/i}:)/A‘) iterations, for a square-root factor improvement over the basic
first-order method. Given that kp scales with the inverse-square of the duality gap e,
this implies that an interior-point method based around the method would converge
to an e-accurate solution in O(1/4/€). This is an entire square-root factor better than
the standard first-order methods. Later, in Chapter 6, we prove a similar fourth-root
result for the GMRES-accelerated version of ADMM.
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4.1.3 Notation

Throughout the chapter, we use the integer n to refer to the size of the matrix variable,
Y, and the integer m to refer to the number of Lyapunov inequalities in our original
problem ({4.1)).

In order to avoid burdensome notation, we use vec (X) and ® to denote the reg-
ular, or nonsymmetric, vectorization operator and the Kronecker product, previously
defined in Chapter 1. The former is defined to satisfy the inner product identity
tr XTY = (vec X)T(vecY), while the latter is defined to satisfy the Kronecker iden-
tity,

(A® B)vec X = vec (BXAT).

All of our results remain valid for the symmetric vectorization operator (see [66,67]),
which captures the degrees of freedom in a symmetric n X n matrix

svec X = [X1,1, \/§X2,17 s \/an,l, X2,27 \/§X3,27 s \/§Xn,27 .- -]Ty

while also satisfying tr XY = (svec X)T (svecY'), so long as we substitute the symmet-
ric Kronecker operator, which is implicitly defined to satisfy a symmetric Kronecker
identity

1
(A ®s B)svec X = gsvec (BXAT + AXB")

for both symmetric and nonsymmetric n x n matrices A, B. The only difference in
our bounds is a factor-of-two reduction in the number of degrees of freedom, from n?
in vec X to n(n+1)/2 in svec X.

4.2 Interior-Point Formulation

4.2.1 Preprocessing

We begin with two preprocessing steps to filter out trivial problem instances, and
to simplify the remaining Lyapunov inequality problem. Our first test filters out
problems that are “obviously feasible”, by attempting to present Y = [ as a solution
to the Lyapunov inequalities . This test is implemented by forming the Hermitian
matrices —(M; + M) and verifying their positivity using the Cholesky factorization.
If the positivity test passes for all M;, then the choice of Y = I is feasible, and we
may terminate immediately.

Our second test is designed to filter out problems that are “obviously infeasible”,
based on the notion of Hurwitz stability.

Definition 8. The matrix M is said to be Hurwitz stable if all of its eigenvalues lie
in the open left-half plane, i.e. the condition ReA(M) < 0 is satisfied.

Proposition 9. Let Y satisfy M;Y + YMF <0 for alli € {1,...,m}. ThenY = 0
if and only if each of the matrices My, ..., M,, is Hurwitz stable.
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Proof. We recall a classic result from control theory: given any S > 0, the Lyapunov
equation M P+ PM? + S = 0 solves with a unique solution P = 0 if and only if M
is Hurwitz stable. The “if” part follows by independently applying this statement to
each Lyapunov equation M;P; + P;M! + S; = 0, while the “only if” part follows by
noting that all of these solutions coincide with Y, i.e. wehaveY =P, =--- = P,,. [

Accordingly, we may proceed to verify whether each of the matrices My, ..., M,,
is Hurwitz stable. This test is implemented by performing a nonsymmetric eigende-
composition on each M;. If we find a choice of M, that is not Hurwitz stable, then
the Lyapunov inequality is infeasible, and we may terminate immediately.

After validating that all m matrices My, ..., M,, are Hurwitz, the positivity con-
straint Y > 0 may be dropped. Solving the reduced LMI problem

MY +YM!I <0forallie{l,...,m}

would always produce a solution Y > 0 in view of Proposition [9] This seemingly
minor detail plays a surprising role in the remainder of this chapter; we will return
to the point in the computational results.

4.2.2 Feasible Optimization Formulation

After the preprocessing step, the Lyapunov inequalities feasibility problem (4.1)) has
been reduced to the primal-dual feasibility pair

find Y such that A(Y) < 0, (P)
find X > 0, X # 0 such that A7 (X) =0, (D)

rewritten in standard form as

find y such that Ay +s=0, s € K, (P)
find = # 0 such that ATz =0, 2 € K, (D)

over the self-dual cone K =8} x --- x 8%, the direct sum of m semidefinite cones of
order n. For future reference, we will write N = mn as the order of the cone /.

The linear matrix-valued function A encodes the problem data. It is a map from
the space of n X n matrices to the space of block-diagonal matrices with m blocks of
size n X n matrices:

A Y = (MY +YMD) @ (MyY +YMI) @ --- @ (MY +YM"). (4.6)

Its adjoint is the matrix-valued function

AT X1 0 X @ ® X Y (M X; + X;M;). (4.7)

i=1
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The vectorized version of A is the mn? x n? matrix

My@IT+1®M
My I +1® M,

(4.8)
My, @1 +1® M,

All classical interior-point methods begin with a strictly feasible primal-dual initial
point, but such a point does not even exist for the conic feasibility —@ pair.
Following a standard technique often known as the “Big-M” method (see e.g. [62]),
we embed the feasibility problems within slightly larger optimization problems for
which strictly feasible initial points are easy to find

maximize — yo such that A(Y) < yol, —tr A(Y) <1, (P')
minimize xo such that A7 (X — 2¢l) = 0,tr X =1, X = 0,7 > 0, (D)

rewritten in standard form as
i [o] B[ XL [ [ e emoe).
(i ] L ][] [) mrenns) o

using the mn? x 1 identity vector 1 = [vecI;...;vecI]. An example strictly-feasible
primal-dual pairis yg = N,y =0, zo = 1, and x = %1.

Since Slater’s condition is satisfied, strong duality holds, and the primal and dual
objective coincide. Feasibility of the original problems —@ is determined by the
sign of the optimal primal-dual objective: if it is strictly positive, then the primal
solution for yields a feasible point Y* for ; if it is zero, then the dual solution
@ is an infeasibility certificate X7, ..., X} for @ Note that the objective cannot
be negative, since the zero vector is already a feasible point for the primal problem
).

The problems —@ are closely related to the homogenous self-dual embedding
of Ye et al., which is the technique used by SeDuMi and MOSEK to transform the
feasibility problem (]ED—@ into an optimization problem with feasible points. Al-
though we will not repeat the derivation here, we note that @—@ are actually
equivalent to the self-dual embedding of —@ with the same initial points.

4.2.3 Interpretation of accuracy

The previous subsection uses an optimization problem to solve an underlying feasibil-
ity problem. Accordingly, the solution accuracy required to find a feasible point can
be viewed as a measure of difficulty. For example, an “obviously feasible” problem
may only require a coarse duality gap in its corresponding optimization problem, one
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that is easily achievable using a simple first-order method. On the other hand, a “bor-
derline feasible” problem may require such a small duality gap in the optimization
problem that it is only be solvable using an interior-point method.

In this subsection, we establish a link between the accuracy of the optimization
problem and the difficulty of the feasibility problem. We begin by converting the
primal optimization problem into an eigenvalue optimization problem

maximize Apin(S) subject to trS <1, S e

using an epigraph argument to eliminate the variable y,. Here, o/ is the range of
the matrix-valued map A. Since S = 0 is always a valid solution, the actual optimal
point S* will always be (at least) positive semidefinite. Enforcing this constraint to
yields

maximize

min(5) subject to S € &/, S =0,
trS

whose optimal objective coincides with that of (P). In order to make sense of the
solution, let us define the optimal condition number over the feasible set as the fol-
lowing

kp 2 msin{)\maX(S)/)\mm :Sed, S0},
Then the optimal objective for is bound

1 L1
<SPS —
NKJF REp

via the trace inequality Apax(S) < trS < NAnax(S). Hence, we see that the feasibility
problem is “hard” if the optimal condition over the feasible set is large, and “easy” if
it is small. In particular, the feasibility problem is the easiest if there exists a choice
of Y satisfying A(Y') = I, because it would set kp = 1.

In all cases, assuming that the original Lyapunov inequalities problem is indeed
feasible (i.e. kp is finite), then we can expect to start finding a feasible iterate Y
satisfying

AY) <0, cond(A(Y)) < kp. (4.9)

when the absolute duality gap € drops below 1/k. Conversely, since the value of £ is
unknown in practice, the current duality gap € serves as a lower-bound kp > 1/(Ne).

4.3 First order methods

In the literature, first-order methods are generally classified into gradient methods
and proximal methods. Methods in the former class are based on approximating a
nonlinear objective using local gradient or subgradient information |68, Sec.1.3], and
work best for smooth objective functions with Lipschitz continuous gradient functions.
Those in the latter class are based on proximal operators, which can be interpreted as
the solution to a trust-region subproblem |69, Ch.3|, and tend to work better when the
proximal operators can be efficiently evaluated, possibly in closed form. While having
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very different motivations and derivations, the two classes are remarkably similar in
practice, both in the actual operations carried out at each iteration as well as the
convergence rate of the iterates.

In this section, we develop a projected gradient method and a proximal point
method for the feasible optimization formulation , posed as a maximum-eigenvalue
minimization

minimize Ap.x(Z) subject to Z € H, (4.10)
over the space of matrices,
HE2{ZeSN AY)=2Z,~trZ <1} (4.11)

Our first-order methods closely follow the style of the most popular algorithms for
large-scale machine learning and image processing (specifically, NESTA [|70] / FISTA |71]
and ADMM |[72]), converging at the error rate of O(1/k) at the k-th iteration. At
each iteration, both methods perform the following two operations: 1) an eigende-
composition of the matrix Z, a size-mn block-diagonal matrix of size-n blocks, for a
cost of O(mn?); and 2) a projection onto the space of matrices H in , which
can be evaluated using an active-set algorithm.

Algorithm 10 (proj, ). Input: Any symmetric N x N matrix Z
Output: A choice of Y to satisfy A(Y) = proj,(Z) £ argmin{||S — Z||% : S €

1. (Initial projection) Compute y = (ATA) ' ATvec Z, and write Y = mat y.

2. (Active set) If —tr A(Y") < 1, return Y. Otherwise, go to Step 3.
3. (Rank-1 update) Compute u = AT1, v = (ATA) 1y, and Ay = v(uTv)7H(1 +

u’z). Return Y/ = mat (y + Ay).

The projection onto H at each iteration is the computational bottleneck for both
methods. Each call requires solving the same size-n? system of equations

m

(ATA)Ay= Y (M@ I+1® M) (M;eI+1®M)|Ay=f, (4.12)

i=1

for one or two new right-hand sides. The coefficient matrix is dense whenever the
data matrices My, ..., M,, are dense, so a solution via Cholesky factorization requires
O(n®) factorization time, and each subsequent right-hand side requires O(n?) time to
solve.

Alternatively, the first-order method may still converge when is solved ap-
proximately, e.g. using an iterative method like conjugate gradients (CG). Unfortu-
nately, most convergence theorems do not hold, and we often observe dramatically
slowed convergence in practice [72,/73]. In particular, Devolder, Glindeur & Nes-
terov |74] showed that with inexact oracles, fast gradient methods (which underpins
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one of our first-order methods) must necessarily suffer from error accumulation; they
may converge slower than naive gradient methods.

Of course, it is also possible to develop a first-order method for (4.10) without
solving (4.12)). For example, reformulating in terms of the matrix variable Y yields

minimize Apax(A(Y')) subject to —tr A(Y) < 1. (4.13)

First-order methods developed for require only matrix-vector products with A
and AT, and also converge at the O(1/k) error rate. Unfortunately, the actual con-
vergence rate of these methods becomes heavily influenced by the condition number
of the matrix A. Many first-order methods developed for problems of the form (4.13)
assume a well-conditioned A, but this is too strong of an assumption for problems
arising from stability analysis.

In Chapter 5 of this thesis, we show that if the data matrices M, ..., M, arise as
the linearization of power system models, then the system of equations factored
in O(n"), and each right-hand side is solved in O(n?) time. The key insight is a
hierarchical structure in each data matrix, due to the property of bounded tree-width
in power systems. At least for the power systems application, we may proceed by
assuming the existence of an efficient oracle for matrix-vector products with (AT A)~1.

4.3.1 Projected Gradient Method

The max-eig objective in is neither smooth nor strongly convex. A common
approach is to minimize a smooth approximation ®,(Z) ~ Anax(Z) developed using
Nesterov’s smoothing method [75|. Given the N x N real symmetric matrix Z, let
us compute the eigenvalue decomposition Z = Y. A\;v;v], and define the smoothed
max-eig objective [76] as

N
®,(2) 2 pilog Z e/,
i=1

with the smoothing parameter > 0. The smoothed max-eig objective bounds the
original max-eig objective from above and from below

(I)M(S) - :ulogN S /\maX(S> S (I)M(S)a
and its gradient function

N
Vo, (2)= (Z 6)\i/“> Z i/ rpT
i=1 i=1

is Lipschitz continuous with respect to the Frobenius norm
1
[VE,(X) =V, (Y)|r < ;IIX —Y||F.
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Indeed, the smoothed version already finds a wide range of applications in large-
scale optimization. The same smoothing technique is also widely popular for ¢;-
norm and nuclear-norm objectives, particularly in LASSO and matrix completion
problems [69,(70].

Replacing the nonsmooth max-eig objective with its smooth approximation
minimize ®,(Z) subject to Z € H, (4.14)

we may apply an accelerated projected gradient descent method [68,70,71}75,77]. For
example, FISTA [71] is defined by the sequence starting given ¢; = 1 and any Z, and
U=2Zy fork=1,2,...

Zy = proju(U — uV,(0)) (115)
1+ 4/1+ 467
0k+1 == f)
0, — 1
U=2,+ — (Zk — Zi-1),
ket 1

with step-size p coinciding with the inverse of the gradient Lipschitz constant. The
resulting sequence satisfies a famous convergence theorem.

Theorem 11 (FISTA |71, Thm.4.4]). The sequence in converges

2|\ Zo — Z*|I%
p(k +1)?
where Z* is the solution set for the problem .

O, (Zisr) — u(2%) < VZ* e Z*

Let us use Theorem [11] to estimate the number of iterations needed to obtain an
e-accurate solution to the original problem (4.10). We set u = ¢/(2log N), in order
to allow ®,(Z*) to be within €/2 of the true optimum. Then, to achieve the error
estimate ®,(Z) — ®,(Z*) < ¢/2, Theorem |L1| estimates k iterations, where

V8 Y

The O(1/¢) iterations needed to converge to an e-accurate solution implies an error
rate of O(1/k) at the k-th iteration. Note that the bound is relatively sharp, since
value of || Z*||r will never be very large once ¢ becomes small, since its largest eigen-
values are bound A\pyax(Z2*) < ©,(Z*) < €/2 from above, while its trace is bound
tr Z* > —1 from below, by virtue of Z* € H.

4.3.2 Proximal-Point Method

We begin by noting that the proximal operator associated with \,.x can be evaluated
efficiently. Given the N x N matrix Z, let us compute its eigendecomposition Z =
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S vl = VAVT. Then we have, via a change-of-basis

) 1
P10, (5) £ v { 1 = 21+ phu(5) }
1
= Varngin {§||D — A”%’ + M/\maX(D>} VT
= Vdiag(d*)V7,

in which d* evaluates the proximal operator for the maximum function,
* : 1 2
d* = arg min §||d—/\|| + pmaxd; o . (4.16)

This latter optimization (4.16) can be efficiently solved using the bisection formula
in |69, Sec.6.4.1].

Accordingly, (4.10) may be put into a composite function form
minimize Apax(2) + Iy(—2) (4.17)

in which 75 is the indicator function for H

{0 SeH,

400 otherwise,

and solved using an operator-splitting method. In this section, we use ADMM (see |72]
and the references therein), which is one of the most popular algorithms. The method
converts (4.17)) into the consensus problem

minimize Apax(Z) + I3(S) subject to Z 4+ S =0, (4.18)

constructs an augmented Lagrangian with parameter ¢
t
L(Z,8,X) = Anax(Z2) + In(S) + tr X (Z + S) + §||Z + S||%,

and performs the alternating direction minimization:

Zp41 = arg mZin.i”t(Z, Sk Xk)
SkJrl = alrg m‘s‘l,nﬁ(ZkJrla Sa Xk)
X1 = Xi + t(Zys1 + Sk41)

Redefining the dual variable X < (1/t) X} reveals the following sequence, after some
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manipulations

Ziy1 = PTOXAmx/t(—Sk - Xk),
Sk+1 = Projy (—Zp1 + Xi),
X1 = X + (Zis1 + Sks1)s

The sequence is guaranteed to converge for any fixed step-size t, but its exact choice
will greatly influence the speed of convergence in practice.

Unfortunately, it is difficult to bound the convergence rate of ADMM. Neither
objective functions in is smooth nor strongly convex, so most of the existing
bounds do not apply (see |78] and the references therein). We only know that the
sequence converges with objective error O(1/k) in an ergodic sense |79, and this
suggest that an e-accurate solution can be obtained in O(1/e¢) iterations. In practice,
the ADMM method performs comparably to the projected gradient descent method
derived above.

4.4 Krylov Subspace Acceleration

Iterative methods can often be accelerated by reusing past information. For example,
it is well-known that the basic gradient method for convex optimization

Tpi1 = Tp + alAxy, (4.19)

cannot minimize the objective error faster than O(1/k) at the k-th iteration. But by
reusing the last search direction, in a scheme often described intuitively as adding
“momentum”,

Tpp1 = T + @Az, + [AT, 1. (4.20)

it is possible to achieve an objective error of O(1/k?). Indeed, this is the underly-
ing principle behind Nesterov acceleration [80], as well as other accelerated schemes
like heavy-ball [81]. While both methods share same search oracle and the same
objective function, the accelerated method is able to converge an entire order-
of-magnitude faster by reusing past information.

This idea of accelerating convergence by reusing past search directions in ({4.20))
can be generalized. Consider the affine search space

Xy £ 19 + span(Axg, Ay, ..., Axy) (4.21)

in which Ax; is the current search direction as computed by an oracle, and each
Axg, Axy,..., Az is a previous search direction. Combined, X, contains all of the
information gathered up to the k-th iteration. Ideally, we would select the optimal
element within the entire search space 7, € A}, at the k-th iteration. An iterative
method based on this principle is not only accelerated, but also necessarily optimal:
fixing the objective function and search oracle, no iterative method can produce a
sequence that converges more quickly.
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Unfortunately, the problem of optimizing over A} is intractable in all but two
special cases. The first is the unconstrained minimization of a quadratic objective
q(z) using its gradient function as the search oracle. The conjugate gradients (CG)
algorithm solves the minimization problem of ¢(z) over X}, at each iteration

T = argmin{q(x) : x € Xy}, Axpi = Va(Tgs1),

and can be viewed as an optimally accelerated version of gradient descent. The second
is the acceleration of the linear fixed-point iterations x,,; = T'(x). The GMRES
algorithm forces the sequence to converge in the Euclidean norm via

Ty = argmin{||lx — T(z)|| : © € X}, Axpy = T(Tpi1) — Thot,

and can be viewed as an optimal version of relaxation. These two methods work
because, under their respective special conditions, the search oracle is affine, and the
space X reduces to a Krylov subspace. The corresponding optimization problems
over Krylov subspaces can be efficiently solved using the Lanczos or the Arnoldi
algorithms. The actual implementation details of CG and GMRES are standard, and
we refer the reader to classic texts [82,83]. We only emphasize that the dominant cost
per-iteration is the evaluation of the search oracles: Vq in CG and T in GMRES.

This section is motivated by the optimality of CG and GMRES. Neither algo-
rithms can be directly applied to our standard form optimization problems (P')-(D)),
nor to the first-order methods derived in the previous section. However, they are
indeed applicable for the Newton subproblem, which is a simple equality-constrained
quadratic program, but also the most computationally expensive part of interior-point
methods. Since every interior-point method converges in around 50 iterations, the
ability to solve the Newton subproblem efficiently immediately translates into the
same thing for our original problem.

In this section, we show that when an efficient matrix-vector product is available
for (ATA)~!, that an interior-point method based on a Krylov subspace solution of
the Newton subproblem can, under certain circumstances, converge to an e-accurate
solution in O(1/+/e) iterations, for an error rate of O(1/k?) at the k-th iteration. This
is an order-of-magnitude acceleration over the first-order methods in the previous
section.

4.4.1 The Newton Subproblem

The dominant cost of each interior-point iteration is the computation of the Newton
equations
0 AT 0] [Ay T
A 0 I| |Ax| = |rd], (4.22)
0 I DJ| |As Te
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which can be viewed as the Karush—-Kuhn—Tucker conditions for an equality-constrained
quadratic program which we name the Newton subproblem

1
minimize §ASTDAS —rlAs —r] Ay, (4.23)
subject to AAy + As = ry.
The Newton equations (4.22) are usually solved via the Schur complement equation
(ATDA)(Ay) =71, — AT[r. — Dry], (4.24)

and back-substituting As = ry — AAy, Ax = r. — DAs. These can be viewed as the
normal equation to the unconstrained problem

1
minimize §A(7“d — AAY) " D(ry — AAY) + (ATr, —1,) Ay, (4.25)

and can also be obtained by eliminating the variable As = r; — AAy in (4.23]). The
matrix ATDA in (4.24]) is commonly known as the Hessian matrix.

The dense positive-definite scaling matrix D is providedﬂ in a convenient Kro-
necker product form

D=W, W)W, @ W) @& (W,, ® W,), (4.26)

motivating solution using a first-order method. Gradient evaluations require matrix-
vector products with D, and these can be efficiently performed in O(mn?) time via
the Kronecker identity (W; @ W;)vec X; = vec (W;X;W;) for each i € {1,...,m}.
Also, as we will show in Chapter 6, the proximal operator for %STDS can also be
performed in O(mn?) time.

When a first-order method is used to solve either the constrained problem (4.25)) or
the unconstrained problem (4.23)), the number of iterations to converge to d objective
error is bound O(,/kplogd~!), where kp is the condition number

)\max(D)

It is a folklore theorem from the study of interior-point and barrier methods that,
close to a solution, this condition number scales kp € O(N?/e?), where N is the order
of the convex cone and € is the current duality gap; see [84,85| for the barrier method,
and |66,86/87] for the more general statement for primal-dual interior-point methods.
Hence, the Newton subproblem of an e-accurate Newton step will require O(1/e)
first-order iterations to solve in the worst case, which is the same as the first-order
methods derived in the previous sections.

! Assuming that the primal-scaling, dual-scaling, or primal-dual Nesterov-Todd (NT) scaling is
used for the underlying interior-point method
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4.4.2 PCG-Schur

We begin by revisiting an old idea—using CG to solve the unconstrained problem
(4.25)). Within the framework of Krylov subspace acceleration, we may say that CG
is used to optimally accelerate the convergence of the gradient method. This approach
can be traced all the way back to Karmakar’s original paper [88]. In exact arithmetic,
CG solves an k-dimensional problem in £ iterations, and this can be used to derive an
interior-point method with worst-case time complexity of O(n®*m!?), and an average
complexity closer to O(n*m!?) [89).

Unfortunately, the naive CG approach is not robust in practice, and an interior-
point method based on CG is only able to compute low-accuracy solutions. Instead,
a CG-based interior-point method is considerably enhanced by preconditioning. In
the context of semidefinite programming programming problems, diagonal or block-
diagonal preconditioners have been empirically shown to be highly effective for low-
accuracy problems. Incomplete factorization preconditioners, which had been highly
successful in the context of linear programming, have been less effective for semidef-
inite programming, due to the density of the scaling matrices. More recent precon-
ditioners are based on eigenvalue deflation of the scaling matrices [90,91]; these are
highly effective, but very computationally expensive to construct and apply.

Motivated by the first-order methods in the previous section, let us consider using
the matrix P~' £ (ATA)™! to precondition the Hessian H 2 ATDA. In other
words, we use the preconditioned conjugate gradients (PCG) algorithm to solve the
preconditioned problem

(PV2PHP /%) Ay =P~ 1/?, (4.28)

Each PCG iteration incurs a single matrix-vector product with P~! and H, for the
same complexity as a single iteration of either of the two first order methods derived
in the previous section.

However, we will prove in this section that the PCG solution of the Schur com-
plement equation, which we name PCG-Schur, converges at a much faster rate. More
specifically, under certain assumptions upon the original semidefinite program, we
show that the method solves in O(/f}:)/A‘) iterations, where kp was previously
defined in . Given that kp € O(1/€?), this implies that an interior-point method
based around PCG-Schur converges to an e-accurate solution in O(1/4/e€) iterations,
for an error rate of O(1/k?) at the k-th iteration.

Assumption 12. Let y, Y*and zj, X7,..., X} be the solution to (P)-(P’), and
write s§ = 1+tr A(Y™), and Sf = yiI — M;Y*—Y*M} as the optimal slack variables.
Define X* = i@ X7 @--- @ X}, and define S* = s ST@--- S}, Then we assume:

e (Strong complementary slackness)

rank(X™) + rank(S*) = N + 1.
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e (Low-rank dual solution) There exists an absolute constant ¢ such that

rank(X;) <c¢  Vie{l,...,m}.

Theorem 13. Consider solving a problem satisfying the conditions in Assumption |13
using a primal-scaled, dual-scaled, or NT-scaled interior-point method. Let D be the
scaling matrix at an interior-point iteration with a sufficiently small duality gap. Then
conjugate gradients with preconditioner (AT A)™! solves (ATDA)x = b to §-residual
in O(m + /-{}3/4 log 1) iterations.

For further reference, we define the matrix Q = A(A”A)~/2 as the orthogonal
matrix spanning the range of A. We prove the theorem by bounding the distribu-
tion of eigenvalues in Q7 DQ, and heuristically solving an eigenvalue approximation
problem.

Theorem 14 ( [92, Lem.6.28]). Given the n x n symmetric positive definite system
of equations Hx = g, symmetric positive definite preconditioner P, and the initial
point 0 conjugate gradients generates (in exact arithmetic) an iterate %) at the
k-th iteration satisfying

2™ — 2*|le .
2@ = 2*¢ < fginlgllaxn P& (i)l

where Ay, ..., \, are the eigenvalues of G & P~V2H P12 x* & H~1q is the exact so-
lution, ||z||¢ = VaT Gz is the G-norm, and the minimum is taken over all polynomials
pr of degree k or less with pr(0) = 1.

Only in very rare cases is an explicit closed-form solution known, but any heuristic
choice of polynomial p(-) will provide a valid upper-bound. We also state a famous
closed-form solution attributed to Chebyshev.

Theorem 15. Let T denote the interval [c —a, c+a] on the real line. Then assuming
that +1 ¢ I, the polynomial approximation problem has closed-form solution

1 Vi —1\"
min max [p(2)| = ———= < 2 (KJ—) : (4.29)
Igf)lpkl 2€T |Tk(T)| N i 1

p =

where Ty (2) is the degree-k Chebyshev polynomial of the first kind, and k; = (|1 —c|+
a)/(|1 —c| —a) is the condition number for the interval. The minimum is attained by
the Chebyshev polynomial p*(z) = Tj,(32) /| Tk (9)|.

Proof. See e.g. |93]. O
Let us now bound the distribution of eigenvalues in D.

Lemma 16. Ezcept for O(m) outliers, the eigenvalues of D are distributed over an
interval with condition number O(\/kp).
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Proof. Let us define p = ¢/N as the central path parameter of the interior-point
method, and use ¢ as the maximum rank of each X, as defined in Assumption [12]
Repeating the same analysis as in |84, Lem.3.1,3.2,Thm.3.1,3.3] for the slack and
primal variables, we see that each WW; has n — ¢ small eigenvalues of ©(1) and ¢ large
eigenvalues of ©(u™1). Accordingly, each W; @ W; has ¢? large eigenvalues of ©(u2),
and the remaining eigenvalues are spread within an interval of Q(1) and O(p™!), for
a condition number of O(pu~!). Repeating this for each Wy, ..., W,,, we find that D
has condition number of ©(u ™) due to the presence of mc?® outliers; its remaining
eigenvalues lie within an interval of condition number O(p~') = O(y/kp). O

Applying Theorem [I5|to this outliers-plus-interval structure then yields the second
square-root factor.

Proof of Theorem[13 Applying the Cauchy interlacing eigenvalues theorem to our
previous Lemma shows that the spectrum of QT'DQ is comprised of O(m) large
outliers and an interval of condition number O(y/kp). Now, consider solving the
polynomial approximation problem in Theorem , using the first O(m) zeros to
cancel the outliers, and the remaining zeros spread over the O(,/kp)-conditioned
interval, according to Theorem The approximation error arises entirely due to
the interval, and hence the polynomial achieves linear convergence O(/<;}3/4 logd—1)
after the initial O(m) iterations. The optimal polynomial used by CG must converge
at least as quickly as this polynomial. O]

4.4.3 ADMM-GMRES

Alternatively, let us attempt to use ADMM to solve the original Newton subproblem.
Introducing the augmented Lagrangian

1 t
Zi(s,y,x) = §STDS —rls — Tgy + 2T (Ay+5—r1y) + §||Ay + 5 =14|)?

with step-size t, we again perform the alternating minimization in ADMM to yields
the steps

1 t
Sp41 = argmin ésTDs —rlc+ §||s + Ay, — rq + 1%,
. T t 2
Yerr = Argmin =1,y + oflsp + Ay — 7o + 2%,
Tpy1 = T + (Spe1 + Ayp — 1a),

which reduces to the update equations

-1

Skt1 t7'D+1 0 0 0 —A I t~1r,
Yk+1 | = AT ATA 0 0 0 —AT|+ t_lrp ,
Th+1 1 A -] 0 0 —1I rq
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which we can write as
Wet1 = G(t)wg + u(t) (4.30)

on the iterates wy = [sg; yx; xx]. This sequence can be forced to converge (in the Eu-
clidean norm) using GMRES. Essentially, this entails tasking the GMRES algorithm
with the fixed-point equation

I — G(t)]w = u(t). (4.31)

The algorithm performs a single matrix-vector product with the matrix [I — G(t)] at
each iteration, and this has the same cost as a single iteration of ADMM. In Chapter
6, we prove that, with the parameter choice t = \//\maX(D))\min(D), the GMRES-
accelerated version of the ADMM method in is often able to produce an iterate
satisfying ||[I — G(t)|wr — u(t)|| < €|u(t)] in

0(534 log e !) iterations.

Again, considering that kp € O(1/€?), the fourth-root iteration bound implies that an
interior-point method based around ADMM-GMRES also converges to an e-accurate
solution in O(1/+/€) iterations, for an error rate of O(1/k?) at the k-th iteration.

4.5 Computational Results

In order to test our results in a realistic environment, we develop a simple interior-
point method in which PCG-Schur is used to compute its Newton search directions,
and use the resulting method to solve Lyapunov inequalities posed on the IEEE 118-
bus example presented earlier in Chapter 3. More specifically, the n x n data matrices
M, ..., M, have sizes

n € {34,41, 48,55, 62, 69, 76, 83,90, 97}.

The number of state variables n is modified by taking some of the generator models
offline. For each n, m = 20 data matrices are generated by randomizing the load
patterns in the system network. For each pair of n,m, 30 trials are performed. This
means we solve a total of 300 randomized problems, of varying n, all posed on the
same [EEE 118-bus system.

4.5.1 An Example Barrier Method

Our barrier method is essentially identical to the fixed-step method described in [94].
Beginning with the primal problem , we replace the inequality constraints by
scaled self-concordant logarithmic barrier functions

o(t,y) = tyo — logdet [yoI — A(Y)], —log[1 +tr A(Y)], , (4.32)
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where y = [yo; vec Y| and [-], denotes restriction onto the positive semidefinite cone.
We then proceed to compute, using Newton’s method, a sequence of approximate
solutions y*(t) = arg min (¢, y) that approach the true solution as t — co.

Algorithm 17 (Barrier method). Input: Data matrices {M, ..., M,,}; absolute
duality gap tolerance egpp; algorithm parameters a € (0,0.5), 8 € (0,1), €een > 0, and
v > 0.

Output: Lyapunov function Y or eg,p-accurate infeasibility certificate X1, ..., X,,.
Initialization: Set the initial point y(®) = [1;0], t = N, k = 0, and select an outer-
loop duality gap reduction 7 such that n — 1 —logn = v/(N + 1).

1. (Duality gap reduction) Set t < nt.

2. (Analytic centering) Solve arg min, (¢, y)

(a) (Newton subproblem) Compute the Newton direction Ay and the Newton
decrement A

Ay = [Vao(y")] Vet y™)],
A= (Ay) T [Vyep(t,y™)].

(b) (Backtracking line search) Increment ¢ = 0,1,2,... and stop on the first
value that satisfies the sufficient decrement condition

o(t,y®) — B AY) < p(t,y™) — apia.

Accept the step by setting y*+Y = y*¥) — 3Ay and incrementing k < k+1.

(c) (Early termination) Decompose y* = [yo; vec Y]. If 3o < 0, then exit, and
return Y as a feasible point for the original problem.

(d) (Centering check) If the Newton increment is below tolerance, i.e. A\ < €qep,
then go to Step 3. Otherwise, go to Step 2a).

3. (Dual variables) Update the dual variable = = [zo; vec X| using the newly com-
puted primal variable y*) = [yo; vec Y] via

o = %[1 P AY)T, X = %[1 A

4. (Duality gap check) If (N 4 1)/t < €gap, then terminate and output the current
value of X as an infeasibility certificate for the original problem. Otherwise, go
to Step 1.

In a practical implementation, the outer-loop duality gap reduction 7 is picked
directly. The implicit definition -y is only useful in order to prove the classic iteration
bound. Typical values for the algorithm parameters are o = 0.01 and g = 0.5,
€cen = 1073, and 1 = 100.
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Proposition 18 ( [94]). Algorithm |17 terminates within O(y/mnlog(1/egp)) Newton
iterations.

At each iteration, the Newton subproblem in Step 2a) is solved using the PCG-
Schur algorithm described in Section 4.4.2] to a relative residual value between 107
and 10712,

4.5.2 Schur-PCG solution in O(/@},M) iterations

The fourth-root result for the PCG-Schur algorithm (Theorem is the key step that
proves the O(1/4/€) iteration bound. However, recall that the result was contingent
on the dual Lyapunov inequality problem having low-rank solutions (Assumption .
In this subsection, we show that the Assumption holds up well, at least for the IEEE
118-bus problems that we have considered.

Figure shows the number of PCG iterations with the (AT A)~! preconditioner
to solve each Newton system to machine precision plotted against xp, for all ~ 50
Newton iterations of the 270 test problems described above. An “exact” precondi-
tioner is used in Fig. , meaning that the matrix (AT A) is explicitly formed and
factorized using dense Cholesky factorization. The expected O(ﬁlDM) trend can be
readily observed. The hierarchical preconditioner from Chapter 5 is used in Fig. [
[Ib. The factorization is constructed with two levels of hierarchy, and compressed
using an aggressive tolerance of 1072, Nevertheless, the O(/{lDM) trend is preserved,
albeit with a few more iterations than the exact case.

4.5.3 Overall error rate of O(1/k?)

Given that the PCG-Schur algorithm converges in 0(534) iterations, and that the
condition number rp itself scales O(1/€?) with respect to the objective error, we
would expect convergence to an e-accurate iterate in O(1/4/e) PCG iterations, or
equivalently, an error rate of O(1/k?) at the k-th PCG iteration.

Figure shows the accumulated inner PCG iterations over all outer interior-
point iterations, plotted against the (absolute value of the) primal objective. In this
problem, the primal objective is also an upper-bound on the objective error, since the
dual problem is always feasible with objective zero. Again, an “exact” preconditioner
based on Cholesky factorization is used in Fig. [f-2h, and an “approximate” precondi-
tioner based on the hierarchical decomposition in Chapter 5 is used in Figure [i-2p.
Note that the barrier method does not monotonously decrease the primal objective,
so the relationship between the primal objective and k has the shape of a staircase,
rather than a straight line. Nevertheless, an O(1/k?) error rate is observed in both
figures.
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Figure 4-1: Solving the Newton system (ATDA)Ay = r using PCG with the precon-

ditioner (ATA)™1: (a) “exact” preconditioner via Cholesky factorization;
(b) “approximate” preconditioner via hierarchical decomposition.
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Figure 4-2: Overall error rate of O(1/k?) for the PCG-Schur interior-point method
over all PCG iterations: (a) “exact” preconditioner via Cholesky factor-
ization; (b) “approximate” preconditioner via hierarchical decomposition.
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Chapter 5

A Hierarchical Direct Solver for
Lyapunov Least-Squares

In Chapter 4, we saw that first-order methods for the Lyapunov inequalities problem
solved a particular matrix least squares problem for one or two new right-hand sides at
each iteration. Naively solving the least squares problem using Cholesky factorization
would incur O(n®) factorization time and O(n?') time per right-hand side. A first-
order method implemented in this manner has the same time complexity figure as an
interior-point method, but takes many more iterations to converge.

In this chapter, we show that when the data matrices are provided as the lin-
earizations of time-domain power system models, that the time complexities can be
reduced to O(n*) factorization and O(n?) per right-hand side. The insight is to ex-
ploit an underlying hierarchical structure, which arises due to the bounded tree-width
property of power system networks.

5.1 Introduction

Given the n x n matrices My, ..., M,,, the Lyapunov inequalities problem,
find P = 0 such that M; P + PM; < 0 for alli € {1,...,m}, (5.1)

is a semidefinite feasibility problem fundamental to the field of robust control. When
a first-order method is used to solve (5.1)), the computational bottleneck is the n* x n?
symmetric positive definite linear system system of equations

m

Hr= | (M;@I+I1@M) " (M;@I+I1®M)|z=f (5.2)

i=1
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which must be solved at each iteration with different right-hand sides. Since ((5.2)
can be viewed as the normal equations for the matrix least-squares

1 m
minimize — tr F7 X + 3 Z | M; X 4+ XM (5.3)

i=1

with £ = vec X and f = vec F', we we will refer to as the Lyapunov least-squares
problem.

It is common to solve (5.2]) using a direct method like Cholesky factorization.
After computing and storing the Cholesky factor in an initial factorization step, all
subsequent solves for different right-hand sides are made cheap by reusing the stored
factorization. Unfortunately, when the data matrices My, ..., M,, are fully dense, the
initial factorization step also has a time complexity of O(n%). A first-order method
implemented this way can never be too much faster than interior-point methods.

To avoid the prohibitive factorization step, an iterative method like conjugate
gradients (CG) can be used to solve (5.2)). Exploiting the Kronecker structure in the
coefficient matrix, the matrix-vector product with H at each CG iteration costs just
O(n®m) time. Most implementations restrict the maximum number of CG iterations
(per first-order method iteration) to a fixed constant, noting that does not have
to be solved exactly in order for the underlying first-order method to converge. Unfor-
tunately, the resulting convergence rate is often dramatically slowed when compared
to a method implemented with an exact solution.

5.1.1 Main Result

Our n x n data matrices M, ..., M,, arise as linearized time-domain models of the
power system. We show in Section that the data matrices are hierarchical when-
ever the power system has a bounded tree-width. Loosely speaking, it means that
each of these matrices can be permuted into a block-diagonal-plus-low-rank form, as
in

A1 L1
PTMQ = + || KV [Ry -+ Ry,
AP Lp
and the blocks A, ..., A, can be recursively permuted and decomposed in the same

manner. We show that this hierarchical property is inherited by the Hessian matrix
H in in Section [5.3|

Hierarchical matrices are well-known in the study of partial differential equations.
It is known that an implicit, hierarchical representation of the matrix inverse may be
constructed, and matrix-vector products with the matrix inverse can be performed at
a cost significantly less expensive than a naive dense matrix-vector product [95-100].

Based on these ideas, we develop a hierarchical algorithm in Section [5.5] that
will factorize the matrix H in O(n*m? + n®m?) time and O(m?n?logn) storage, and
apply the inverse in O(mn?® + m?n?logn) time. Alternatively, the algorithm factors
and solves an e-approximation of H with O(y/mn* + mn?®) factorization time and
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O(y/mn?) per application of the inverse.

5.1.2 Notation

Throughout the chapter, we use the integer n to refer to the size of the matrix variable,
P, and the integer m to refer to the number of Lyapunov inequalities in our original
problem (j5.1)).

The number of columns in a matrix A is denoted ncols(A). Given the n x n matrix
B and a subset of indices Z,J C {1,...,n}, we use the notation B[Z, 7] to refer to
the submatrix generated by restricting B to the rows indicated by Z and columns
indicated by J.

5.2 Hierarchy in Power System Matrices

As a consequence of the power system application, each of our data matrices is pro-
vided in a Schur complement form

M=A-B(D-G)'C,

and each of the constituent matrices itself inherits a specific structure. More specif-
ically, for a given block partitioning, the matrices A, B, C', D are block-diagonal,
and the matrix G has a block-sparsity pattern corresponding to the graph of the
underlying power system.

In this section, we will show that if the underlying power system has a graph with
bounded tree-width, then M is hierarchical.

Definition 19 (Separability). The m X n rectangular matrix M with m > n is said
to be f(n)-separable into p parts, or simply separable, if:

1. It can be written in the form

My 0 0
0 M 0

M=[Qn Q - Q) b P P - P —LEK'R
0 0 M,

=QMP" — LK 'R.

2. The matrix K and the zeroth subblock satisfy

ncols(K) < f(n), ncols(A4p) < f(n).

3. The subblocks ¢ € {1,...,p} satisfy

M; has full column rank and ncols(M;) < n/p.
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Definition 20 (Hierarchy). The N X n rectangular matrix A with N > n is said to
be f(n)-hierarchical into p parts, or simply hierarchical, if:

1. n < f(n); OR

2. Ais f(n)-separable into p parts and each subblock {A4;,...,A4,} is itself f(n)-
hierarchical into p parts;

In fact, the assumption of a small, bounded tree-width is always true for real
life power systems. While not usually characterized in this manner, the implications
have been known for a long time. More specifically, power system sparse matrices
are well-known to have extremely efficient LU factorizations, with fill-in factors never
exceeding more than 10-20 times. It is a folklore theorem amongst graph theorists
that small fill-in factors imply an underlying graph with small tree-widths [101-103).
Recently, the tree-widths for classic test cases have been explicitly computed |104].
It was found that most standard IEEE test cases have tree-widths of no more than
10, and even the large-scale 3000-bus Polish system test cases have tree-widths of no
more than 24.

5.2.1 Time-Domain Models of the Power System

Electric power systems are networks in the graph theoretical sense; their vertices
and edges are respectively known as buses and branches, and each vertex label is a
time-dependent complexity quantity v;(¢) € C known as the bus voltage phasor.

The classic time-domain model for ¢g-bus system is a set of differential algebraic
equations (DAE)

%I(t) = f(z(t),v(t),  Youv(t) = g(x(t), v(t)), (5:5)

in which f, g are composed from ¢ independent state-space models, and communica-
tion between the independent models is entirely facilitated by an algebraic equation
relating the voltage phasors, as in

q r1(t) Ji(z1(t),v1(2)) Yii - Yig| [wi(t) g1(z1(t),v1(2))
W] | neamon@]  [Ya - Y] [0®]  |alea®.0)
(5.6)

By construction, the bus admittance matrix Y}, € C?%? has the same nonzero struc-
ture as the graph of the underlying power system, meaning that

nonzero bus ¢ connects to bus j
Yij = .
0 otherwise

The matrix is usually (but not always) complex symmetric in practice, i.e. Y5 = YL .
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Each of our data matrices arises by linearizing (5.6 around a specific operating

point, and reducing to the canonical state-space form Lx(t) = Mx(t). To do this, we

evaluate the component-wise Jacobians

_ afi _ [ 9f; dfi
Ai N 836/ BZ N _8(Re Ui) 8(Im Uz') ’
d(Re g;) [O(Reg;) O(Reg;)
o ox; _ | 9Rev;) I(Imuy;
Ci= O(Img;) | D= GEImgi) 8§Imgi§ ’
Oz; | O(Rewv;) O(Imuw;)
and define a real embedding for each Y; ; and v;(t)
G _ ReY;; —ImY;; (1) = Re v;(t)
P ImY;;  ReYi; |? S | TImo(8) |

Putting the matrices together yields a real, linearized version of ([5.6)

d T (t) Al 0 Tt (t) Bl 0 U1 (t)
zq(t) 0 Aq] (1)) | 0 By| [vq(t)]
(5.7)
Gu - Gyl [m®)] [a 0] [z:6)]  [Ds 0] [sn(®]
T = N ey Ry :
qu . qu yq(t)_ i 0 Cq_ _{L‘q<t>_ L 0 Dq_ _yq(t)_

Eliminating the algebraic variable y;(t) reduces (5.7) to the canonical form $x(t) =
Mz(t) where

-1

A 0 B, 0] [Di=Gu -+ =Gy Cy 0
M= . - - : - : -

0 A, 0 B,| | =G4 - Dy— Gy 0 c,

(5.8

=A-B(D-G)'C.

As illustrated in , the matrices A, B, C, D are block-diagonal, and the block
sparsity pattern of GG coincides with the graph of the underlying power system. Let us
state these two ideas more rigorously. We define the block index partitions 7, ..., Z,
as the location of each block z4(t), ..., z,(t) within the vector concatenation z(t), and
J1, - .., Jq as the location of each block y; (¢), . . ., y,(t) within the vector concatenation

y(t).

Definition 21 (Block-diagonal). Given a partitioning of the indices {1,...,n} =
ZyU---UZ;and {1,...,v} = J1U---UJ, each into ¢ possibly empty parts. We say
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that the matrices A € R™", B € R™, C € R"*" D € R"*¥ are block-diagonal if
all off-diagonal blocks are zero, i.e. if A[Z;,,Z;] =0, B[Z;, J;] =0, C[J;,Z,;] = 0 and
D|J;, J;] = 0 for all ¢ # j with Z; and J; both nonempty.

Definition 22 (Block-sparsity graph). Given a partitioning of the indices {1, ..., n} =
Z; U---UZ, into ¢ nonempty parts. Let G = {V, E} be an undirected graph defined
on q vertices. We say that G is a block-sparsity graph for the matrix G € R™™ if the
matrix G has zero blocks for every vertex pair in G not adjacent to each other, i.e. if
G[Z;,Z;] = 0 and G[Z;,Z;] = 0 for all 7, 5 such that v;,v; € V and {v;,v;} ¢ E.

5.2.2 Bounded Tree-width & Nested Dissection

A central insight throughout this chapter is that power systems admit graphs with
small tree-widths. Loosely speaking, these are graphs that can be recursively bisected,
each time by removing no more than a small constant number of vertices. A precise
definition is technical, and we refer the reader to e.g. [102}/105] for a more thorough
exposition.

Definition 23. An a-vertex separator of W C Vin G = {V,E} isaset S C V of
vertices such that every connected component of the graph G’ = G[V — S|, obtained
by removing S from G, contains at most « - |W| vertices of W.

Lemma 24 ( [102, Lem.6|). Let G = {V, E} be a graph with tree-width < 7. Let
W C V. Then there exists a %—vertex separator of W in G of size at most T + 1.

The classical application of vertex separators is in the nested dissection solution
of sparse symmetric positive definite systems [106]. Let D = DT be any n x n
symmetric positive-definite matrix with G as its sparsity graph. The complexity of
solving the system Dx = b depends entirely on the number of nonzeros in the Cholesky
factorization UTU = D.

Suppose that G has bounded tree-width. Then by there exists a vertex separator
S C V that divides V\S into two disconnected partitions, X and Y. Defining IT as
the reordering {X,Y, S} — V reveals a familiar “arrow” structure,

Dx 0 Dxg
O'DII=| 0 Dy Dyg
D)T(s Dfos DS

where the block Dy is “small”, and the blocks Dx and Dy are each no more than half
the size of D. Reordered this way, the matrix can be factored

I 0 0] [Dx 0 0 I 0 01"

7' DII = 0 I 0 0 Dy 0 0 I of ,
DY¥sDy' DIDSY 1| | 0 0 K| |DY¥sDy' DLyDy? I( |

5.9

where K = Dg— D% ¢Dy' Dxs — DY gDy Dyg. Put in another way, the factorization
of D contains the factorization of two of its submatrices, each of half its size, plus a
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further O(n) nonzeros. Since each of these subblocks Dx and Dy can be recursively
treated in the same manner (i.e. the “nested” part of nested dissection), the combined
factorization of D can be shown to contain no more than O(nlogn) nonzeros. In fact,
this figure is within O(logn) of the best possible.

Nested dissection is closely related to the idea of hierarchical matrices. Loosely
speaking, if a nested dissection ordering exists for the matrix D, then the inverse D1
is hierarchical. To show this, let use invert the factorized form in ([5.9))

1 0 —Dy'Dxs] [D¥ 0 0 1[I 0 —Dy'Dxs]”
DT = |0 I —Dy'Dys 0 Dyt o1 0 I —Dy'Dys
0 0 I 0 0 K'f]00 I
D 0 0] [-Di'Dxs —Dy'Dxs]"
=1 0 Dy' 0|+ |-Dy'Dys| Kt | =Dy'Dyg|
0 0 0 I I

to reveal the familiar block-diagonal-plus-low-rank structure, suggesting that D! is
separable. Repeating the same argument for each subblock Dx and Dy, we find that
D=1 is also hierarchical.

The fact that every nested dissection matrix admits a hierarchical inverse is a
folklore theorem well-known in the numerical solution of partial differential equa-
tions [107]. In many cases, D is the finite difference / finite element discretization
of a differential operator, and D! is a discretization of the corresponding integral
operator. While D! is fully dense, its hierarchy allows a data-sparse representation
to be constructed, and matrix-vector products with D~! may be performed at just
O(n) or O(nlogn) complexity.

In order for the twin ideas of nested dissection and hierarchical matrices to be ex-
tended to nonsymmetric and symmetric indefinite matrices, we must have the strong
factorizability property.

Definition 25 (Strongly block-factorizable). Given a partitioning of the indices
{1,...,n} =7, U---UZ, into ¢ nonempty parts. We say that G € R™*" is strongly
block-factorizable if every symmetric block-permutation of G is block-factorizable.

5.2.3 Hierarchy of the data matrix

Let us now formalize the intuition in the previous subsection, and extend it to the
block-matrix case for M = A — B(D — G)~'C.

Theorem 26. Given a partitioning of {1,...,n} =7, U---UZ, into q equally-sized
parts, and a partitioning of {1,...,v} = J1 U---UJ, into q equally-sized parts. Let
Ae R BeR™W, C &R, and D € R"" be block-diagonal, let G € R"*" be
such that D —G 1is strongly block-factorizable, and let G be a block-sparsity graph for G
with tree-width < 7. Then the matric M = A— B(D — G)~'C is y(7 + 1)-hierarchical
into 2 parts, where v = maxi<;<,{|Z|, | Ji| }-
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Let us fix some notation before proceeding with the proof. We identify the ¢ ver-
tices in G with the ¢ index partitions Z;, . ..,Z, and the ¢ index partitions i, ..., J;.
Given a set of vertices X C V, we use the notation Zy = Uiex Zi and Jx £ Uiex Ji
to refer to the union of the corresponding index partitions. Given two sets of vertices,
X,Y C V, we use the notations Ax = A[Zx,Tx] and Axy = A[Zx,Ty] to refer to the
corresponding submatrices of A, and similarly for the submatrices Bxy = B[Zx, Jy],

Cxy £ C[jX7IY]a Dxy £ D[jxyjy], and Gxy £ G[an jY]~
Proof. We will show that every
My = Ay — By (Dw — Gw) 'Cw

is hierarchical. We begin by showing that My, is separable. Again, the key step
is to use Lemma [24] to select the vertex separator S C W and two disconnected
partitions X, Y for W\S. Define II as the reordering {Zs,Zx,Zy } — Zy and ® as
the reordering {Js, Jx, Jy } = Jw. Then each submatrix is given

(A 0 0 [Bs 0 0
Ay =110 Ax o0 |17, Byw=I|0 Bx 0]|®T,
0 0 Ay |0 0 By
[Cs 0 0 Ds— Gs  —Gsx ~Gxy
Cw=®|0 Cx O0|IIY, Dy—-Gw=9| —Gxs Dx—Gx 0 i
i 0 0 Cy | —Gyg 0 Dy - Gy

Applying the Sherman—Morrison—Woodbury formula to (Dy — Gy ) ™! reveals a block-
diagonal-plus-low-rank decomposition

As 0 0
My =110 My 0 IO
0 0 My
Bs o !
+ 11 BX(Dx—Gx)_IGXS K1 C)J;(Dx—Gx)_TGEX g
By(Dy — Gy)_lGYS C;(Dy — Gy)_TGgy

where
K=Gs—Dg+ Gsx(DX — Gx)_lGXS —+ Gsy(Dy — Gy)_les.

The block Ag is at most size |Zg| < (7 + 1), the matrix K is at most size |Js| <
(7 4+ 1), and the blocks My and My are at most size max{|Zx|, |Zy|} < |Zw|/2.
Hence, My, is (7 + 1)-separable into two parts. Inductively repeating the same
argument for the blocks Mx and My, we find that My, is actually (74 1)-hierarchical
into two parts. []

Remark 27. We would like our matrix D — G to be strongly block-factorizable. One
case where this is definitively true is when Y, is complex symmetric, Re Y}y is

88



symmetric positive definite, and D = 0, since it would make G quasi-definite |108].
Physically, this is a power system containing only generators, simple branches (i.e.
transmission lines and simple transformers), and constant-impedance loads. For more
general power systems with directional branches and constant-current / constant-
power loads, however, strong factorizability is only an assumption.

5.3 Hierarchy in the Hessian Matrix

Now, consider a set of m matrices M;, ..., M,,, each n x n and of the form M; =
A; — B;(D; — G;)7'Cy, with A;, B;, C;, and D, block-diagonal, D; — G, strongly
block-factorizable, and all G; sharing a common block-sparsity graph G on ¢ vertices,
with tree-width 7. By Theorem [26] in the previous section, each of these matrices is
v(7 + 1)-hierarchical into 2 parts. In this section, we will show that the mN x N

rectangular matrix
My@I+1®M

A= (5.10)

M, @1 +1® M,

is O(my/ N)-hierarchical, which immediately implies the same statement for H =
ATA via the expansion

ATA = (QAPT — BD'C)'(QAPT — BD™'0)
BTB DT

= P(ATA)P" — [(AQ)TB (7] { D o

-1
} [(AQ)TB CT]", (5.11)
and recursive application of this expansion to each subblock of ATA.

5.3.1 Shared hierarchy and compression

By the conditions stated at the start of this section, each of our data matrices can be
written in the form

M; = TIM;IT" — L;K; 'R,

using the same permutation matrices II, and sharing the same block divisions in

Ay, ..., A, Then, vertically stacking these matrices,
M, il 0] [ L 0] [k, 0] R
M=|:|= S :
M, 0 | | M, 0 Ln| |0 K, R,

we find that M is O(m)-hierarchical. The O(m) factor here greatly inflates the
complexity of hierarchical algorithms designed to invert the normal matrix M* M.
Instead, we may construct an e-accurate O(1)-hierarchical approximation of M.
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Consider performing a singular value decomposition on the perturbation term, and
partitioning the singular values into a larger set ¥, and a smaller set ¥, as in

—1pT
R B e e e T
: = S XV = : : |- (5'12)
0 Xl |V,
LmKWZIRﬁ Un Um,a Um,b
Truncating the smaller singular values yields an approximation
I o] [ Uta
M: HT_ Za [VaT] )
0 | |, Un.a

satisfying the error bounds )

[M = M| = [[%s]]
The matrix M is yr-hierarchical, where r = rank(3,) € {1,...,m(7 + 1)} is just the
number of singular values remaining in ¥,. It is always possible to pick r € O(1),
for some sufficiently large choice of €, in order to make the resulting approximation
is O(1)-hierarchical. In practice, we often found that » € O(1) even when ¢ is set to
zero, due to a level of low-rank redundancy in the matrices Ry, ..., R,.

The singular value decomposition in (5.12)) can be efficiently performed in O(m?72n+

m373) time and O(m?rn) memory by exploiting the low-rank structure of each sub-

. -1
matrix Bij C;.

Algorithm 28 (Low-rank SVD). Input: matrices {Ly,..., Ly}, {K1,..., K}, and

{Ri1,...,Rn}.
Output: the singular value decomposition {Uy, ..., Uy}, ¥, and V, satisfying (5.12)).

1. Perform m size n x (7 + 1) QR decompositions for each LjKj_1 = ij/j.

A

2. Perform a single size n x m(7 + 1) QR decomposition of [Ry;...; R,,] = RPT.

3. Compute the size-m(7 + 1) singular value decomposition

A

Ly
R = oxu”

L
and partition the rows ® = [®y;...; D,,] into m blocks of 7 + 1.

4. Form U; = Q;®; and V = PV and return.
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5.3.2 Hierarchy of the matrix M @ I + I ® M

After the singular value decomposition step in the previous subsection, our a set of
m hierarchical data matrices M, ..., M,, now satisfy

M; =M1 — B;D~'C,

where the matrices C'; D are now commonly to all m matrices.
Let us consider the hierarchy of the N x N matrix A; = M; ® I + 1 ® M;,

A =M’ (M; @I+ 1o M)(IIeII)

DI 0 ] '[CceI
0 IeD| |IecC

—(Me M (M;I+1 M)(IeIl) - B,D'C.

—[B;®I 1® B;] { (5.13)

The matrix ]\ij RI+T® Mj is not block-diagonal, but as we will show below, there
always exists a permutation matrix ¥ to make it block-diagonal. The resulting block-
diagonal-plus-low-rank decomposition is

A, =PA,PT -B,D"!C (5.14)

where P = (IT@ IV and A; = U (M,; ® I + I ® M;)¥. Accordingly, we have shown
that A, as defined at the start of the section in ([5.10)), is hierarchical.

To illustrate the choice of the permutation W, let us consider a simple block-
diagonal matrix D = diag(D;, D). Applying the Kronecker identity (A® B)vec X =
vec (BX AT) yields

D1X11 + XllDf D1X12 + Xlng

(D®1+1® D)vec X = vec {Dgxﬂ + XDl DyXop + Xon D

with the appropriate block-divisions. If we define U as the block-vectorization per-

mutation
vec X1 1

oc X1 X s vec Xop
v Xgl ng vec X12 ’
vec X22

then the permuted matrix 7(D ® I+ I ® D)W is block-diagonal. It is easy to extend
these arguments to the p-block case.

Lemma 29. Given the ny X ny, a-separable matriz A into py parts, and the ny X na,
B-separable matrix B into py parts. Define the product N = nyny and the aspect ratio
r =max{®, 22} Then the N x N matrict M = A® I,,, + I,, ® B is (o« + B)VrN-

ng’ ni
separable into p1po parts.

Proof. By definition, we have A = PllelT — LK 'RT and B = PQBQg — LyK,'RY
with block diagonal A = @}, A; and B = P2, B;. Then some simple algebraic
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manipulations yields

M = PMQ” + LK 'R

where, letting ® be a suitable block-vectorization permutation, we have

P=(P® P, Q= (Q1®Qy)?,

M=d"(A®I,, + I, ® B)®, L=[Li®l, I,®L),
Ky @1, 0  [RieI,

x=|“0" e Ro|neR]

The matrix M = @", "20(Ai® [+ 1 ® By) is block-diagonal with (p1 +1)(p2 + 1)
blocks. Grouping the blocks associated with the zeroth blocks reduces this into p;ps+1

subblocks

p1 P2
M = M, & (@@M”) where

i=1 j=1

p1 D2
M, = <@Ai®]+I®BO> @ (@A0®I+I®Bj> and

=0 Jj=1

M;; =A@+ B;

Both the blocks My and D are at most size n; + any, while each subblock M, ;
is at most size (dids)/(p1p2). Since max{ni,no} < VrN, we have fn; + any <

(a+ B)VrN. 0

An equivalent hierarchy statement is more difficult, because the aspect ratio
r = max{t, 72} tends to become worse with each additional level of hierarchy. To
illustrate, suppose that A were an a-hierarchical n x n matrix with p parts. Then by

definition, there exists the decomposition

Ay O 0
A=Q 0 A ) 0 PT — LK'R,
0 0 | A,
where Ay is as large as «, and each of the subblocks A;,..., A, can be as large as

n/p. Since the size of these subblocks must add up to the size of the original matrix
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A, this also implies a lower-bound
P
ncols(A;) = ncols(A) — Z ncols(A;) — ncols(Ay)
i=2

zn[1—(p—1>ﬂ —a

=——aq.
p
The gap between and the upper- and lower-bound is a constant «, but the block sizes
have become smaller.
At the next level, each i-th submatrix A; is itself a-hierarchical into p parts

Ao; O 0
0 Ay 0| . 1
0 0 Ay,
where Ap,; is again as large as «, and each A;;,...,A,; is as large as ncols(A4,)/p.

Using the same logic as before we find that

P
ncols(A; 1) = ncols(A;) — Z ncols(A; 1) — ncols(Ao.1)

=2
1

> ncols(A;) {1 —(p— 1)—} -«
p

_ncols(4)) n o« o
p P op

Hence, while the blocks have gotten another factor of p smaller, the upper-lower-
bound gap has gotten slightly bigger. Extending these statements by induction to
the k-th level yields an expression for the upper-lower-bound gap at the k-th level.

Lemma 30. The size of the k-th level hierarchical subblock of A is bound

d d
Z? —ca < ncols(4;_ 1) < ﬁ, (5.15)
where ¢ =1/(1—1/p).

Hence, the ratio between the upper- and lower-bounds bounds the aspect ratio
encountered by a hierarchical expansion of A® I + I ® A at the k-th level

n
Tkg PN
n—cprao

is a strictly increasing function of k. Bounding the maximum ratio yields to our main
result for this section.
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Theorem 31. Given the a-hierarchical n x n matriz M with into p parts. Let p > 2,
and a/2 < n. Then the N x N matrit M = M @ [ + 1 ® M is av/8N -hierarchical
into p? parts.

Proof. Suppose we chose the maximum number of levels ¢ to satisfy cp’a < n/2. Then
our aspect ratios are bounded r, < 2 for all k£ € {1,...,¢}, and we may recursively
apply Lemma [29] to establish the second clause in Definition 20} Let us show that the
(-th level have sizes smaller than a/8N. First, solving for equality yields

=105, (52) = 1og5 8 (50
=log, (—) = og|—]).
& \2ca logngCa

Next, the (-th level has matrix size at most N/p?* = (2ca)?. Sincec=1/(1—1/p) < 2
[

.....

5.4 Direct Solvers for Hierarchical Matrices
Finally, we describe direct methods for solving the system of equations
Az = f, (5.16)

when A is a square, invertible matrix that is f(n)-separable with parameters {p, N}.
By definition, there exists a choice of the matrices Q, P, L, K, R and block-diagonal A
such that A = QAPT — LK'R. Viewing A as the Schur complement of an enlarged
matrix, we may rewrite into the following

{Q[T(L RAP} {P%m} - [Q(T)’ f} » (5.17)

which has the familiar “arrow” structure, due to the block-diagonal structure of A,

'L Ay | 0 - 0 ||ATx| |QIf
QTL 0 | A Plz| = |Q1f
Q7L 0 A, | |Pre] QTS

In effect, we have written the inverse of the fully-dense matrix A as a submatrix of
the inverse of a larger but sparser matrix in (5.17)).

Proposition 32. Given the f(n)-separable matriz A, the matriz in 15 invertible
whenever A is invertible.

Proof. Let us denote the matrix in (5.17) as B. Performing block elimination, we
havedet(B) = det(K)det(A — QTLK'RP) = det(K)det(A). The matrix K is
invertible by construction, so det(M) = 0 if and only if det(A) = 0. O
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Defining P= [O P} and Q = [O Q] as zero-padded versions of P, (), the above
statement implies A~' = PB~1QT.

5.4.1 Explicit Matrix Scheme

If each block matrix within A is also hierarchical, then the same expansion in ([5.17])
can be recursively applied to each subblock in , thereby converting the dense
system of equations into a larger, and ultimately, sparse system of equations.
Furthermore, this larger sparse matrix can be factored into sparse triangular factors.
Our proof is constructive, and produces an efficient algorithm.

Algorithm 33 (Explicit-matrix Factorization). {®, W, S™! T, ¥} = ExpFac(A)
Input: invertible n x n matrix A that is f(n)-hierarchical into p partitions according

to (5.4);
Output: unit-diagonal triangular factors W, T, block-diagonal S~!, and rectangular
permutation matrix ® satisfying A=t = &7 (W ST)~ 1.

1. (Subproblems) For each i € {1,...,p}, compute a factorized representation of
the A; ' subblock via the recursive call {®;, W;, S; ', T;, ¥;} = ExpFac(A;).

2. (Master problem) Form the Schur complement

p
Ko=K =Y RPO[T'S;'W,'W,QfL, Sy = {

=1

K, RP,
QL Ao

3. (Output) Form the block-diagonal matrix S~!, and the triangular factors W,

T, via

o=[0 P P --- B (5.18)
[1 0 RPT{'S;Y -+ RBT;'S)
01 0 = 0

Ww=1(00 Wi 0 (5.19)
0 0 0 W,

St=S'teste oS! (5.20)
[ I 0 0 0]

0 I 0 0

T=|STWQIL 0 T 0 (5.21)
SWNQTL 00 T,

V=100 Q Q@ - Q)" (5.22)

Remark 34. The call {®, W, S~} T, ¥} = ExpFac(A) converts the smaller, dense
problem Az = f into the larger sparse problem (W ST)(®x+z2) = (¥ f) with &7z = 0,
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in exactly the same process as previously outlined in (5.17). The resulting sparse
triangular factors can be used to apply the inverse A~! at a lower cost than the naive

figure of O(n?).

Let us outline the steps for complexity analysis, given an arbitrary n x n matrix
A that is f(n)-hierarchical into p parts. In the ensuing discussion, we denote sol(n)
as the cost to apply the size-n hierarchical matrix inverse, and nnzg(n), nnzy(n)
as the number of nonzeros in each size-n factors S, W, T respectively, and fac(n)
as as the cost to apply ExpFac to a size-n hierarchical matrix.

Since the factorization step calls upon the solution step, let us begin by estimating
sols(n). Given explicit factors W, T, and S!, the cost of applying the inverse
A7 =T71S11/~1 is the same order of magnitude as the number of nonzeros in the
factorization, as in

soly(n) ~ nnzg(n) + nnzyr(n).

Examining (5.19)-(5.21) and counting the number of nonzeros yields a recursive

expression

nnzg(n) ~ pnnzg(n/p) + f(n)?,

nnzyr(n) ~ pnnzyr(n/p) +nf(n),
for each level of hierarchy in Algorithm [33] After ¢ levels of recursion, we have

(-1

nnzg(n) ~ pgnnzs(n/pg) + Zpkf(”/pk>2a
k=0
-1

nnzyr(n) ~ p'nnzwr(n/p’) +n Y f(n/p").

The factors at the (-th level are stored as dense matrices, with nnzg(n/p‘) ~ (n/p%)?
and similarly for W and T'. Substituting yields the following expression

-1
nnzs(n) ~n®/p' + Y pf(n/p"), (5.23)
-1
nnzyr(n) ~ n?/p’ + nz f(n/p"). (5.24)
k=0

Accordingly, we see that the efficiency of the algorithm is driven in part by the depth
of the hierarchical expansion—there is an optimal choice of ¢ that minimizes ([5.23))

and (5.24]) for each given f(-).

Finally, let us consider the cost of calling ExpFac, which is divided between
the formation of the Schur complement and its factorization. The former requires
the explicit formation of the matrix L, the factorization and application of each
ATt A, ! to this rectangular matrix, and the matrix-vector product of the resul-
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tant with R. Combined, we have the recursive expression
faca(n) ~ pfaca(n/p) + f(n) [n+psola(n/p) + f(n)n+ f(n)?*], (5.25)
which expands after ¢ levels of hierarchy to the following
fac,(n) ~ p‘faca(n/p’)

£ 37 1R 1) [0/8 + psola(n/p) + Fn/oF) nfi + Fnf")?] . (5.26)

The matrices at the (-th level are factored as dense matrices. Assuming (n/p*)? work
to form these matrices and (n/p®)® work to factor them yields

fac,(n) ~ n?/p*

/-1
+ > " f(n/p*) [n/pF + psola(n/p*™) + f(n/p*)n/p* + f(n/p*)’] . (5.27)
k=0

Again, we see that the number of levels ¢ must be carefully chosen to minimize (5.27)).
In practice, the cost of forming these dense matrices may at times surpass the cost of
the ensuing factorization, so for a given f(n), the corresponding complexity analysis

should begin at ((5.26)).

5.4.2 Implicit Matrix Scheme

At the same time, note that the enlarged “arrow” matrix in (5.17)) is sparse, with a
block-triangular factorization given in closed-form,

[ Ky RPy|RP, --- RP, ][ I 0[0 -+ 0]

Q'L Ay | 0 -+ 0 0 I/0 - 0
M=| 0 0] 4 ATTQTL o1

00 A, | | AQFL 0 I |

where Ko = K —>_0_ | RP,A;'QT L. If matrix-vector products with the side matrices
L, R are available, then the triangular factorization may be applied without even
forming them.

Algorithm 35 (Implicit-matrix Factorization). S™' = ImpFac(A)

Input: invertible n x n matrix A that is f(n)-hierarchical into p partitions according
to (5.4));

Output: factorized representation of A~1.

1. (Subproblems) For each i € {1,...,p}, compute a factorized representation of
the A; ' subblock via the recursive call S;' = ImpFac(A;).
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2. (Master problem) Form the Schur complement
P
Ky RP
. A-1OT _ 0 0
Ko=K ;1 RP,A;Q; L, So {Q(?L Ag } ,

using X = ImpSol(4;, S; ', F) to implement each X = A;'F. Compute inverse
Syt
3. (Output) Form the block-diagonal matrix S~ = diag(S; ", 57", ...,5,7).
Algorithm 36 (Implicit-matrix Solution). x = ImpSol(A, S~!, f)
Input: invertible n x n matrix A that is f(n)-hierarchical into p partitions according
to (5.4)); factorized representation S~! = ImpFac(A); right-hand side f.
Output: the solution z = A7 f.

1. Identify the subblocks S~ = diag(S; ", S1 ', ..., S, ") such that S; ' = ImpFac(A;)
holds for each i € {1,...,p}

2. Compute temporary variables

u = ATQTf vie{l,...,p}, (5.28)
[vl] N {KO RPO] ! {— v Rﬂu] (5.29)
Uy QYL Ay QL fi ’ '

using ImpSol(A;, S; ', QT f) to implement each A;'QT f in (5.28)) and (5.30)),
and Sy to solve ((5.29). Output the solution

P
r = Pyvy + Z Piw;.

i=1

Let us again outline the step for complexity analysis, given an arbitrary n x n
matrix A that is f(n)-hierarchical into p parts. In the ensuing discussion, we denote
sol4(n) as the cost to call ImpSol with a size n x n matrix, and mvp; z(n) the cost
to apply either L or R, possibly in a matrix-implicit manner, and facs(n) as as the
cost to call ImpFac.

The cost of solution at each level is two matrix-vector products with each A;*, ..., A L
one matrix-vector product with each L and R, and a single matrix-vector product
with the Schur complement inverse S;*. Each level of hierarchy yields the following
expression,

sol(n) ~ 2psola(n/p) + mvp,p(n) + f(n)*
which expands after ¢ levels of hierarchy to

/-1

sola(n) ~ (2p)‘sola(n/p") + > _(2p)* [mvp g(n/p*) + f(n/p*)?].
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Treating the /-th level as dense yields the following estimation

-1
sol(n) ~ 2'n?/p" + Y " (2p)" [mvp,p(n/p*) + f(n/p*)?] . (5.31)

In particular, we see that we must have p > 2 for the implicit matrix algorithm to
have a lower complexity than simple matrix-vector product with the dense matrix
inverse.

The cost for the factorization is divided between the formation of the Schur com-
plement and its factorization. The former requires the explicit formation of the matrix
L, the factorization and application of each A", ... Ay ! to this rectangular matrix,
and the matrix-vector product of the resultant with R. The latter is the factorization
of an f(n) x f(n) symmetric indefinite matrix. This yields the order-of-magnitude
expression

faca(n) ~ pfaca(n/p) + f(n) [n+psola(n/p) + mvp x(n) + f(n)?],

which expands to
fac,(n) ~ p‘faca(n/p’)
-1
+ > 0" f(n/p*) [n/pF + psola(n/p*™) + mvp (n/p*) + f(n/p*)?] (5.32)
k=0

at the (-th level.
Finally, the storage requirement is limited to the nonzeros of S—!, which is given
using the same analysis as the explicit-matrix version as

nnzg(n) ~ n?/p’ + ipkf(n/pk)Q, (5.33)

after ¢ levels of hierarchy.

5.5 A Direct Solver for Lyapunov Least Squares

We are finally ready to present our solver for the Lyapunov least squares problem.
For the following discussion, we will define the matrix

m

H2Y (MieI+1eM)" (M®l+1 M)

=1

as the coefficient matrix for the Lyapunov least squares problem. Two versions of the
algorithm are possible: an explicit-matrix version and an implicit-matrix version.

Algorithm 37 (Lyapunov Least Squares). Input: Compression tolerance €, size
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n x n data matrices M, ..., M,,, each O(1)-hierarchical; and size-n? right-hand sides
T, ..., Tg

Output: size-n? solution vectors xy, ..., z,, each satisfying ||Hzy — 7¢|| < €||lzx]| for
all k€ {1,...,q}.

1. (Compression) For each i = 1,...,m, define the truncation tolerance

€

A
T S min{ | M][, eymlogy n

For each level of hierarchy in M; = PZT]\%QZ + LiKi_lRi, use Algorithm to

compute the singular decomposition L;K; 'R; = U;ZV7T. Truncate all singular
values smaller than 7; in order to form the approximation M,;.

2. (Construct decomposition) For each i = 1, ..., m form the hierarchical represen-
tation of M; = M; @ [+ 1 ® M, using ([5.13 5.14. Then, form the hierarchical
representation of H = 3> M7 M, using (5.11).

Explicit-matrix version:

3. (Factorization) Compute the factorization {W,S~',T} = ExpFac(H) using
Algorithm [33]

4. (Solution) For each j =1,...,¢, evaluate z; = T-1S~ W~ 1r;.
Implicit-matrix version:
3. (Factorization) Compute the factorization S~ = ImpFac(H) using Algorithm

4. (Solution) For each j = 1,..., ¢, evaluate z; = ImpSol(H, S~', ;) using Algo-
rithm

Let us write N = n?. The first two steps of Algorithm [37]are designed to construct
a approximation H that is O(mv' N )N—hierarchical into 4 parts, while satisfying the
spectral approximation bound |H — H|| <e.

Theorem 38. The explicit method computes the factorization in O(m*n*+m?®n®log® n)
time, solves each right-hand side in O(mn® + m*n?logn) time, and uses O(mn3 +
m?2n%logn) memory.

Proof. Substituting f(N) € O(mv/N) and ¢ = log, N into and yields
nnzg(N) € O(m*Nlog N) and nnzy7(N) € O(mN'5). The cost of applying the
factorization is the same order as the number of nonzeros in the factorization, i.e.
soly(N) € O(mN' + m?Nlog N). Similarly substituting f(N) € O(mv/N) and
sols(N) € O(mN'® + m?N log N) into yields

-1
fac,(N) ~ pgfacA(N/pZ) + Z [T)"LQNQ/pO'BHO'5 + m3N15 log N} ,
k=0
~ N3 /p** + mN?/p* + m*N? + tm> N5 log N,
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where we note that the cost of explicitly forming a size-(N/p’) block matrix is ~
m(N/p*)? via the expansion

m

S (M@I+I1@ M) (M;®I+10 M),

=1

= MIM;®I+1® MM+ M @M+ M &M

i=1

while the cost of explicitly factoring the same matrix is ~ (N/p‘)3. Again, setting
{ =log, N yields faca(N) € O(m*N? + m3N'*log® N) levels. Substituting N = n’
completes the proof. O

By chosing a sufficient aggressive e, it is possible for H to be O(V/ N)-hierarchical,
independent of m. Accordingly, the dependence on m in the factorization and solution
steps is entirely removed.

Corollary 39. Suppose that ¢ were chosen sufficiently large for the approzimation H
to be O(\/N)-hiemrchical, independent of m. Then the explicit method computes the
factorization in O(n) time, solves each right-hand side in O(n®+n?logn) time, and
uses O(n® + n*logn) memory.

In order to analyze the complexity of the implicit method, we must note that the
cost of each matrix-vector product with the low-rank basis is mvp; z(N) ~ mN.

Theorem 40. The implicit method computes the factorization in O(m?n* + m3n?)
time, solves each right-hand side in O(mn?) time, and uses O(m?*n?logn) memory.

Proof. Substituting f(N) € O(mv/N) and mvp;, € O(mN) into (5.31) yields the

expression

/—1
sol4(N) ~ 2N?/p + m*N ) 2",
k=0

Since p = 4, setting { = log,(m ' N?) levels minimizes the exponent of this expres-

sion, yielding soly(N) € O(mN'5). Similarly expanding (5.32)) yields

-1
faca(n) ~ pzfacA(N/pé) + Z [p_0'5m2N2/p’“ + m3N1.5/po_5k] 7
k=0
~ N/p* +mN?/p* + m*N? + m*N*'*

and when ¢ is set as above, we have facs(n) € O(m?N? + m3N'%). The number
of nonzeros in S~! is the same as the explicit matrix method. Finally, substituting
N = n? completes the proof. O

Corollary 41. Suppose that € were chosen sufficiently large for the approzimation H
to be O(v/ N)-hierarchical, independent of m. Then the explicit method computes the
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factorization in O(y/mn*+mn?) time, solves each right-hand side in O(y/mn3) time,
and uses O(n?logn) memory.

Proof. Repeat the above proof with f(N) € O(V'N), mvp;r € O(mN) , and ¢ =
log, (m =95 N02), O

5.6 Computational Results

In order to benchmark the per-iteration time of realistic examples, we consider the
Lyapunov inequalities on the IEEE 118-bus system as previously considered in Chap-
ter 4. More specifically, we consider the n x n data matrices M, ..., M,,, with

n € {34,41,48,55,62,69,76,83,90,97},  m = 20.

For each pair of n, m, 30 trials are performed.

Figure [5-1] shows the factorization and solution times using the implicit-matrix
algorithm, with the O(n*) and O(n?®) trends superimposed in the background. The
results confirm the expected trends. They also exhibit a staircase-like shape, since
the number of levels of hierarchy can only increase by one at a time. For n < 41, no
hierarchy is used; for n € {48, ...,90}, one level of hierarchy is used, and for n = 97,
two levels of hierarchy are used.

To show that the results extend to larger problems, we also consider a larger
example on the IEEE 300-bus system, with n = {40,178,253,375} and m = 3.
Figure shows the factorization time using the implicit-matrix algorithm, plotted
against the O(n?) trend. We see that the n = 375 case is factored in around 1300
seconds, or about 22 minutes.
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Figure 5-1: The hierarchical solver for different values of n: (a) Factorization times,

plotted against O(n?); (b) Solution time per right-hand side, plotted
against O(n?).
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n. The dotted curve plots O(n?).
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Chapter 6

ADMM-GMRES Convergence in
O(kY/*log e~ 1) Tterations

This chapter investigates the generalized minimum residual method (GMRES) in its
ability to accelerate the convergence of the alternating direction method-of-multipliers
(ADMM). We provide evidence that ADMM-GMRES can consistently converge to
an e-accurate solution for a s-conditioned problem in O(k/*loge™!) iterations, and
characterize two broad classes of problems for which the enhanced convergence is
guaranteed. At the same time, we construct a class of problems that forces ADMM-
GMRES to converge at the same asymptotic rate as ADMM. To demonstrate the
enhanced convergence rate in practice, the accelerated method is applied to the New-
ton direction computation for the interior-point solution of semidefinite programs in
the SDPLIB test suite.

6.1 Introduction

The alternating direction method-of-multipliers (ADMM) solves problems of the form

minimize flz)+g(2) (6.1)

T,z

subject to Arx+ Bz =c

with variables x € R™ and z € R™ and constant data A € R™*" B € R"™*"=
and ¢ € R™. Beginning with a choice of the quadratic-penalty / step-size parameter
B > 0 and initial points {z(?, 2 ¢©1 the method generates iterates

1
Local variable update: **Y = arg min f(x) + gHAx + Bz —c+ Ey(k)HQ,

1
Global variable update: z**Y = arg min g(z) + §||Ax(k+1) +Bz—c+ By(k)Hz,

Multiplier update: y**) = y®) 4 g(Az*+D 4 B+ _ )
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that are guaranteed to converge under mild assumptions. The method finds a wide
range of applications in statistics, machine learning, and related areas; cf. [72]| for an
extensive review.

Existing use of ADMM is mostly limited to applications where solutions of mod-
est accuracy would be adequate. The reason is that, as a first-order method, it is
subject to a fundamental trade-off between convergence speed and the smoothness
of the underlying problem. A classic complexity result due to Nesterov [109, Thm.
2.1.13] asserts that, given constants 0 < m < ¢ < oo, no first-order method can mini-
mize every convex objective, with gradient Lipschitz constant ¢ and strong convexity
parameter m, to e-accuracy with an iteration bound better than

O(v/kloge™) iterations, (6.2)

where the condition number is defined k = ¢/m. ADMM is known to attain
with the right choice of 8 and under various regularizing assumptions [110H112], but
even in these cases, convergence is usually not fast enough to be competitive for
high-accuracy applications.

This chapter is motivated by a surprising observation. When ADMM is accelerated
using the generalized minimum residual method (GMRES), e-accurate solutions are
consistently produced in just

O(/ﬁ log e ') iterations. (6.3)

ADMM can take thousands of iterations to converge on examples where ADMM-
GMRES converges in just tens of iterations. Our main results characterize two broad
classes of problems, i.e. choices of objective functions and constraint matrices in
, that are guaranteed to enjoy this enhanced convergence, both in theory and in
practice. At the same time, we show in Section that one can construct problems
for which ADMM-GMRES will converge no faster than the estimate in (6.2)), and
so Nesterov’s complexity bound is not violated. To demonstrate the effectiveness of
ADMM-GMRES in applications, we use it to solve the Newton direction subprob-
lems associated with the interior-point solution of large-scale semidefinite programs
in Section [6.8

6.1.1 ADMM for quadratics and a surprising observation

The general convergence properties of ADMM are most commonly analyzed using the
theory of maximum monotone operators (cf. [72, Sec. 3.5] for a historical review). One
may establish that ADMM converges to the solution from every initial point |72,(113],
with error that scales O(1/k) or O(1/k?) at the k-th iteration [79}114], and error that
scales O(e™*) at the k-th iteration under strong convexity assumptions [115-H118].
The local convergence properties are best understood by modeling the objectives
as quadratics, and applying classic techniques from spectral analysis. In particular,
existing parameter selection and convergence rate results have mostly been derived
within this context, including the variations of ADMM that attains the bound in
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Iterations [#]
6kl\)

Condition number k

Figure 6-1: Given the same 1000 randomly-generated problems and using the same
parameter choice § = v/mf, ADMM (circles) converges in O(y/k) iter-
ations while GMRES-accelerated ADMM (crosses) converges in O(k1)
iterations. The problems have random dimensions 1 < n, < 1000,
1 <ny, <ng, 1<n, <n, Primal-dual residual tolerance is € = 107,

(L1150, 120).

In this chapter, we will restrict our attention to the quadratic-linear objectives,

1
f(@) = geDe+ple,  g(2)=q'z, (6.4)
alongside the following strong convexity assumption, which guarantees that the error
will scale O(e~*) at the k-th iteration [115].

Assumption 42 (Strong convexity). The matrix D is symmetric positive definite,
the matrix B has full column-rank, i.e. BT B is invertible, and the matrix A has full
row-rank, i.e. AAT is invertible.

Defining the associated strong convexity parameter m and the gradient Lipschitz
constant ¢ respectively

m = Amin(D), { = Amax(D), D& (AD7TAT) Y, (6.5)

the complexity lower-bound in is attained for every problem with the parameter
choice B = v/ml; the leading constant in the estimate can be further improved by
introducing over-relaxation |110-112].

In the context of quadratic objectives, GMRES can be applied to accelerate
ADMM in a largely plug-and-play manner, to yield a consistent and significant speed-
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up over regular ADMM. Figure makes this comparison for 1000 problems in which
the A, B, D matrices are randomly generated by selecting random orthonormal bases
and random singular values from a log-normal distribution.

6.1.2 Main results

For the objectives in (6.4]) alongside Assumption , the unique solution is specified
through the Karush-Kuhn-Tucker (KKT) conditions,

D 0 AT] [a* —p
0 0 BT |y|=|-¢ & Mu* =r. (6.6)
A B 0 z* c

Accordingly, ADMM reduces to linear fixed-point iterations, and GMRES convergence
analysis reduces to a polynomial approximation problem over the eigenvalues of the
corresponding iteration matrix. We will refer to the Euclidean norm of the KKT
residual in dealing with notions of convergence.

Definition 43 (Residual convergence). Given the initial and final iterates u(® =
[2(9; 20: O] and u® = [2®) () ()] we say e residual convergence is achieved in
k iterations if || Mu®™ —r|| < ¢||[Mu® —r||, where M and r are the KKT matrix and

vector in .

We show in Section that the additional square-root factor arises from a Cheby-
shev polynomial approximation applied to the purely-real eigenvalues of the ADMM
iteration matrix. This is precisely the same mechanism that gives conjugate gradients
the same square-root factor speed-up over gradient descent [121, Ch. 2-3|. However,
our iteration matrix is non-normal, so our statement requires the normality qualifier in
Assumption [58 The assumption is standard within this context and not particularly
strong in practice; cf. Remark

Theorem 44 (Dimension-based estimate). For any A € R™>*"= B € R™*": ¢ €
R™, p € R™, ¢ € R™, and D € R"*"= satisfying Assumption @ define D =
(AD7'ATY™ m = Apin(D), £ = Anax(D), and

kO = Zmax{nz,ny — nz}, kmax = Ny.

Then with the fixed choice of 8 = vVml, GMRES-accelerated ADMM solves with
f, g defined in to € residual convergence in

2 + min {kmax, ko + ’V]{Zolii log k + K log(cmpmxefl)_‘ } iterations,

where the condition number is k = {/m, the matriz normality term rx is defined in
Assumption [58, and the scalars c1,kp are defined in Lemmas [53 €[50

Proof. The proof is provided in Section [6.4] m
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Remark 45. The scalars c¢; and kp are relatively benign bookingkeeping terms, with
values that grow no faster than polynomial with respect to the conditioning of the
data matrices A, B, D and the choice of the parameter 5. Even very large values
have relatively little theoretical impact: suppose cikp = 10'? at the limits of double
precision; then our iteration bound for an € = 1075 accurate solution is only increased
by a multiplicative factor of 3.

Theorem guarantees the enhanced convergence rate when ky < kpax, i.6. when-
ever the matrix B is very thin or almost square, subject to BT B being nonsingular.
Such problems arise, e.g. during the active-set solution of quadratic programs, which
is the subject of the convergence analysis in [111].

But Theorem [44] fails to explain the computational results seen in Figure [6-1}
In almost every one of the 1000 problems, kg is on the same order as kp.., and
for a few select problems, they are equal. In Section [6.5] we explain this puzzling
phenomenon by observing that the eigenvalues with nonzero imaginary parts, which
we name complicating eigenvalues, are often much better conditioned than the purely-
real ones. This observation allows us to derive our second iteration estimate.

Theorem 46 (Coherency-based estimate). Let A, B, D,c,p,q,m,{, k, and (3 be the
same as in Theorem[{4} Define dy, as in

1 - 5lb - [)\max{HB(+H)HB} + Amax{Hé(_H>H§}] ) (67)

N —

where the two projectors are llg = B(BTB)™'BT and 1l = I — 11, and the sym-
metric indefinite matrix

VE+1 1 T A\=1 AT
H:\/E_l[%l(ﬂ D+ ATA) AT — 1] (6.8)

satisfies |H|| = 1 by definition. Then GMRES-accelerated ADMM solves with
f, g defined in to € residual convergence in

1

(co + 5“_31)(%4 +1)
262 + ((51@‘41%)71

log(2c1kprxe )| iterations,

where ¢ = 1/[41log(1 4 +/2)] is an absolute constant. The matriz normality term kx
is defined in Assumption [58, and the scalars ci,kp are defined in Lemmas [55 €[50

Proof. The proof is provided in Section [6.5 O

Remark 47. Loosely speaking, Theorem [40] predicts convergence to an e-accurate

1 1
solution in O(8,' x4 loge™) iterations, or O(y/kloge™!) iterations if 6" ¢ O(k7),
c.g. if 51]0 = 0.

Remark 48. The exact value of dy, is driven by the mutual coherency between the
eigenspace of D and the column-space of B, and by the decay of eigenvalues in

109



D = (AD7'AT)~'. Consider substituting ||H|| = 1 into (6.7) and rewriting
20y, > | H|| - min {|Q"HQ|, |P"HP]},

\/E"—l —1 -1 -1 -1y, T
H:WV[W A+ D)V = (BA D)V,

where VA™'VT = AD AT is the eigendecomposition for D!, and @, P are any
orthogonal matrices satisfying QQT = Il and PPT = 1I§. If V, Q and P are
mutually incoherent (e.g. in the sense defined by Donoho & Huo [122]), then we
should expect the gap between ||H|| and min{||QT HQ||, ||PT HP||} to be nonzero in
general. If the singular values of H also decay quickly, then this gap should be large,
and dy, should be bounded away from zero.

For the the set of 1000 random problems shown in Figure [6-1] the sample mean for
O, is 0.3, and the sample minimum is 0.05. Hence, Theorem [46| sufficient to explain
the enhanced convergence rate.

Finally, in Section [6.6] we show that there are problem constructions that force
ADMM-GMRES to converge in O(y/k log e™!) iterations. In particular, we show that
in the worst-case, the optimal polynomial that bounds the convergence of GMRES
is precisely the polynomial associated with over-relaxed ADMM. In other words,
ADMM-GMRES converges at the same rate as over-relaxed ADMM in the worst-
case.

6.1.3 Application Example: Interior-point Newton direction
for SDPs

The interior-point Newton direction problem for semidefinite programs (SDP) is a
challenging environment where highly-accurate solutions are desired for dense, large-
scale, and extremely ill-conditioned quadratic problems [89-H91]. As progress is made
and the duality gap is reduced, the system of equations becomes increasingly ill-
conditioned. The condition numbers routinely grow as large as x ~ 108, and the
equations must be solved to a sufficiently high level of accuracy to guarantee quadratic
converge in the underlying Newton’s method.

The Newton direction problem provides a realistic scenario to benchmark the
performance of GMRES-accelerated ADMM. In Section [6.8, we compare the perfor-
mance of ADMM and GMRES-accelerated ADMM in their ability to recompute the
Newton directions as generated by SeDuMi [123|, a popular, open-source, MATLAB-
based linear conic programming solver. More specifically, problems selected from the
SDPLIB test suite |124] are pre-solved using SeDuMi, the Newton step problems at
each interior-point step are exported, and ADMM and ADMM-GMRES are used to
recompute the solution.

Our results show that ADMM-GMRES converges in O(k1 log e™!) iterations over
each of 1038 Newton problem considered. Many of these problems fit within the
two characterizations described in this chapter, and the enhanced convergence rate
is explained by Theorems [44] & For many others, the enhanced convergence rate
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is observed even when neither theorems are applicable. The result suggests further
improvements to be made to the characterizations presented in this chapter.

6.1.4 Future work

The theoretical and empirical results in this chapter hint that e-convergence to a k-
conditioned problem in O(/ﬁ log €71) iterations may be the average-case behavior for
ADMM-GMRES, at least in the context of the quadratic objectives of the forms in
(6.4) and the associated regularity assumptions. An important next step is to make
this observation more precise. One possible way to do this is to introduce a statistical
framework, in order to study the probabilistic distribution of dy, in Theorem [46] As
we had noted in Remark [48] the quantity is closely associated with the idea of mutual
coherency, so it may be possible to adopt existing results from compressed sensing
and related fields for this analysis.

6.2 Preliminaries

6.2.1 Definitions & Notation

Our notations are standard: upper-case Latin letters for matrices, and lower-case
Latin and Greek letters for scalars and vectors. The set of real numbers is denoted R,
and the set of complex numbers is denoted C. A complex number with zero imaginary
component is said to be purely-real.

Given a matrix M, we use \;(M) to refer to its i-th eigenvalue, and A{M} to
denote its set of eigenvalues, including multiplicities. If M is singular, then the nota-
tion A,.{M} C A{M} is used to refer to its nonzero eigenvalues. The spectral radius
is the supremum of the eigenvalue moduli, and is denoted p(M). If the eigenvalues
are purely-real, then Ay.x (M) refers to its most positive eigenvalue, and Ay, (M) its
most negative eigenvalue. We will often refer to an eigenvalue with nonzero imaginary
parts as a “complicating eigenvalue”, for reasons made clear in Section [6.4]

Let || - || denote the Iy vector norm, as well as the associated induced norm, also
known as the spectral norm. We use 0;(M) to refer to the i-th largest singular value.

Finally, in describing the number of iterations to solve a x-conditioned problem
to e-accuracy, we will often refer to an estimate of the form O(y/kloge™!) as simply
O(y/k), with the implicit understanding that its relationship with e is logarithmic.

6.2.2 ADMM as linear fixed-point iterations

Since the KKT conditions are linear, the ADMM update equations are also linear,
and can be written in the form

ut D = Gap(B)u™ + b(B), (6.9)

upon the vector of local, global, and multiplier variables, u®) = [2(*); z(®); y(*)] Fixing
the value of § further reduces to linear fixed-point iterations, whose convergence
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properties are entirely determined by the spectral properties of the iteration matrix,

Gan (D).

Following this framework, a number of previous authors have shown that, with a
well-chosen value of 3, ADMM is able to converge in O(y/k) iterations [111,/112]. In
this chapter, we state an explicit iteration bound, and provide a proof for complete-
ness.

Proposition 49. For any A € R”yxnz B e RWw*™ cecR™, peR"™, ¢gcR", and

D € R"=*"= gsatisfying Assumptzon e ne m, { according to m Then ADMM
with fixed parameter § = v/mt solves 6 1) with f,g defined in to € residual

convergence in
2+ [(VE+1)log(cikme™ )] iterations,

where the condition number is k = {/m, the scalar ¢y is defined in Lemma and

kar = || M|||M 7Y with M defined in (6.6).

Proof. The proof is provided in Appendix [6.9} O

Furthermore, they show that over-relaxed ADMM can often improve convergence
rates. Over-relaxation makes the substitution

Az Az (1 — ) (B2 — ¢),

in the global variable and multiplier updates (steps 2 & 3), and setting the relaxation
parameter w € (0, 2] to the value of ~ 1.5 [72]. If we write Gap(3,w) as the iteration
matrix associated with over-relaxed ADMM, with parameters $ and w, then the
nonzero eigenvalues of Gap(5,w) are related to those of Gap(f) via the relation (cf.

Corollary E|

AnAGap(B,w)} = w A {Gap(B)} + (1 —w).

Therefore, it is reasonable to expect that further reductions in the spectral radius
and the spectral norm may be achieved by a well-chosen, fixed value of w.

Proposition 50. Let A, B, D, ¢, p, q, m, £, k and /3 be the same as in Proposition[4d.
Then over-relaxed ADMM with fized B and fixed over-relaxation parameter w = 2
solves to € residual convergence in

1
2+ {5(\/E +1) log(cm(—:_l)-‘ iterations,

where the scalar ¢y is defined in Lemma and ryr = || M||||M 7| with M defined

Proof. The proof is provided in Appendix [6.9] ]

!Ghadimi et al. [111] also proved a version of this statement.
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6.2.3 Sequence acceleration via GMRES

It is natural to ask: what further speed-ups are achievable by varying the over-
relaxation parameter w between iterations, and possibly also allowing it to become
complex? For example, given the iterations, u**t?) = Gu®) + b, one may consider
cycling through a sequence of relaxation coefficients wg, w1, ws, .. ., in a scheme some-
times known as a “high-order” over-relaxation scheme

u* ) = (1 — wp)u® + w, G (L™ +b). (6.10)

In fact, no choice of relaxation coefficients, fixed or varied, complex or real, can
converge faster than GMRES, at least in the specific sense of step convergence.

Definition 51 (Step convergence). Given the sequence u(®, u, ... u®) (k“) We
say € step convergence is achieved at the k-th iteration if ||u( (1) _ uF) || < e||u .

To sketch this characterization, we define the step-size at the k-th step as Au¥) &
(Gu™ + b) — u® and rearrange (6.10) to reveal,

k—1

Ay = [H((l —wi) I +w;G)

=0

r© = p(G)Au?, (6.11)

The role of each relaxation coefficient w; is to define a zero for the matrix polynomial
p(+), and to rescale it to satisfy p(1) = 1. The optimal polynomial for step conver-
gence is the minimizer of the step-size [|Au®|| = ||p(G)Au®||. This is precisely the
optimization problem solved by GMRES.

Proposition 52 (Saad & Schultz [125]). Given the linear fized-point iterations, u =
Gu+b, and the initial point uV. Let u'®) be the iterate generated at the k-th iteration
of GMRES for the fixed-point equation u = Gu + b. Then the following bounds hold

Ay . Q) Au®

|20 = pebe AU " per,
p(1)=1 p(l):l

where Au® = (Gu®) 4+ b) — u®) and P}, denotes the space of order-k polynomials.

In the context of ADMM, the notion of step convergence is closely related, but
not identical to that of residual convergence in Definition The step-size and the
residual norms are connected via a condition number, defined in Lemma SO con-
vergence in one notion can be used to imply convergence in the other. Alternatively,
in a right-preconditioned problem, the step-size coincides with the residual norm, so
the two notions of convergence become identical. A right-preconditioned ADMM is

developed in Section

113



6.3 ADMM as a Block Gauss-Seidel Method

Consider the augmented Lagrangian to (6.1)),

L, z,y) = f(x) +g(x) + y"(Az + Bz —¢) + §||A:E + Bz — ¢|)?, (6.12)

whose saddle-point is determined by the augmented Karush-Kuhn-Tucker (KKT)
equations
D+ BATA BATB AT [« BATc —p
BBTA BBTB BT| |z| = |BBTc—q| . (6.13)
A B 0 Yy c

The iterates generated by ADMM have a convenient interpretation as a block Gauss-
Seidel matrix-splitting of (6.13)), as in

D+ BATA 0 0 x 0 —BATB —AT] [« BATc —p
BBTA  pBTB 0 2| = |0 0 —BT| |z| 4+ |BBTc—q¢q
A B —%I Y 0 0 —%I Yy c

In turn, the convergence of the iterates is dictated by the ADMM iteration matrix,
Gap(p), defined

-1

D+ BATA 0 0 0 —BATB —AT
Gap(B)=| BBTA  BB'B 0 o o0 -BT|. (6.14)
A B =3I 0 0 —51

The three pivot blocks correspond to the three steps of the ADMM algorithm: the
local variable update is performed by inverting the block (D + BATA), the global
variable update is performed by inverting the block SBT B, and the gradient ascent
step scales the “constraint violation” by  and accumulates it within the variable.

Alternatively, note that the augmented KKT equations (6.13) may be obtained
from the unaugmented KKT equations by a left- multiplication with a (-
dependent shear transformation matrix

BAT
B

Toug(8) = 5. (6.15)

O O N~
O~ O

Therefore, ADMM may be also be viewed as a preconditioner matrix-splitting of the
unaugmented KKT equations (6.6)), using the ADMM preconditioner matriz, Pan (),

D —BATB AT [z] [0 —BA™B 0 7 T[z] [—p
0 0 BT | |z| = |0 0 0 | |z| + |—¢
A B —%] y 0 0 —%I y c
& Pap(B)u=[Pap(B) — Mlu +r. (6.16)



Note that the corresponding iteration matrix for (6.16)) coincides with Gap(3) defined
earlier in (6.14)).

6.3.1 Basic spectral properties

A key feature of ADMM is that dual feasibility is satisfied at every iteration. More
specifically, when the gradient ascent step-size is chosen to coincide with the scaling
of the quadratic penalty in the augmented Lagrangian, 3, the following condition is
satisfied at every k-th iteration with & > 1,

BTy® 4 ¢ =0, (6.17)

which is the second block-row of . Dual feasibility is an important clue that
hints at an eigendecomposition. Returning to the interpretation of ADMM as linear
fixed-point iterations, the condition can only hold if [0,0, BT] spans the left
nullspace of the iteration matrix Gap(8). Defining an orthogonal transform based on
this insight reveals a block-Schur decomposition of Gap(/53).

Lemma 53. Define the QR decomposition B = QR with Q) € R™*™ and R € R™*"=
and define P € RP*("w="2) 45 its orthogonal complement. Then defining the orthogonal
matriz U and the scaling matriz S(B),

I.,| 0 0]0 ﬁénz 5(?}%8 8
U=| 011, 0[]0 ], S(B) = (6.18)
0|0 rlo 0 0 1|0
0 0 01,
yields a block-Schur decomposition of Gap(53)
On, | G12(8) | G13(B)
UTGap(B)U = S71(B) | _0 | Ga(B) | Gs(B) | S(B), (6.19)
0 0 On,
where the size ny X n, inner iteration matriz Go(3) = 31+ 3K () is defined in terms
of the matrix
T ~ ~
k@) = | G| epr -0 P e

and D = (AD7'AT)~1.

Proof. The proof follows from routine computation and applications of the Woodbury
identity; cf. Appendix [6.10] O]

We conclude that the ADMM iteration matrix, Gap(/), has n, +n, zero eigenval-
ues and n, nonzero eigenvalues, all of which exactly coinciding with the eigenvalues
of the inner iteration matrix G ().
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Corollary 54 (Disk enclosure). The nonzero eigenvalues of Gap(3) are enclosed
within the disk on the complex plane,

Loy 1 JE-BB-m

2| = 2 (+p5 B+m]) ]
Proof. The nonzero eigenvalues of Gap () are related to the eigenvalues of K () via
AnAGap(B)} = AMGa(B)} = L + sA{K(8)}. We use the spectral norm of K(f3)

D(ﬁ):{zeC:

to enclose its eigenvalues. Obviously, ||K(3)| = (3D + 1) — (BD~' + I)7';
substituting ¢ = Apax (D) and m = Ay (D) yields the desired result after some minor
manipulations. [

After two ADMM iterations, the convergence behavior of ADMM becomes entirely
dependent upon the inner iteration matrix.

Lemma 55. For any B and any polynomial p(-), we have

Ip(Gan(8)) Gap(B)]| < cr(B)[Ip(Ge2(B))]],

where ¢1(B) is defined in terms of the matrices in Lemma as in

a(B) = ISBIISBIIGan(B)I*.

Proof. The following is a standard identity for matrices with nilpotent blocks

On, | Gia | Gis 1" [ Gue
0 | Gao | Gos = | G G'Sg [ 0 ‘ Gas ‘ Goas }
0] 0 |0, 0

and holds for any k£ > 0. Applying this identity to each monomial of p(-) yields the
desired result. O

Setting 5 = v/m/{ minimizes the radius of the disk in Corollary which in turn

minimizes an estimate of the spectral norm for the inner iteration matrix, Gas.

6.3.2 Different notions of convergence

In the literature for ADMM, convergence is most commonly measured using the
Euclidean norms of the primal and dual residuals,
B = A+ B . 1D, AT o0

In fact, this notion of convergence is identical to that of residual convergence defined
in Definition . To see this, consider the fixed-point equation in (|6.16), and note
that our definition of € residual convergence is equivalent to the stopping condition

k) 2 (k) 12 < 2
17 primatll” + [17quall® < €.

primal
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To convert between the notions of step convergence in Definition 1] and residual
convergence in Definition [43], we use the following statement, which is self-explanatory
via ((6.16]).

Lemma 56. Let M, r be the KKT matriz and vector defined in (6.6), and let
u®) u*D be two consecutive iterates generated by ADMM with parameter 3. Then
the step-size and the residual norms are related

1 [IMu® — |
kp = [u+D — B = kp

where kp = ||Pap(B)||[|Pxp(B8)|| and Pap(B) is the ADMM preconditioner matriz as

defined in (6.16).

Remark 57. Given any ¢, define ¢ = 6/4;131. Lemma [56| says that ¢ step convergence
implies € residual convergence, and ¢ residual convergence implies € step convergence.

6.4 GMRES-Accelerated ADMM Converges in O(/{éll)
Iterations

In order to use Proposition to derive convergence estimates for GMRES, it is
common to reduce the polynomial norm-minimization problem into a polynomial ap-
proximation problem over the complex plane. For ADMM, this requires the following
normality assumption, which is standard within this context.

Assumption 58 (ky is bounded). The ADMM inner iteration matrix Gao(3), defined
in Lemma is diagonalizable at 8 = vm{ with eigendecomposition, Gn(p) =
XAX~!. Furthermore, the condition number for the matrix-of-eigenvectors, Ky =
| X ]| X 1|, is bounded from above by an absolute constant.

Remark 59. Assumption [58]is implicitly evoked whenever a spectral radius estimate
is used to study the convergence rate of ADMM in the Euclidean norm (cf. [121}|126]
for a detail discussion). Hence it is also present in much of the existing literature on
the convergence of ADMM within the quadratic setting [111},/119,/120]. The consider-
able predictive power of these existing results suggests that the assumption is not a
particularly strong one in practice.

Accordingly, convergence analysis for ADMM-GMRES is reduced to an eigenvalue
approzimation problem over the eigenvalues of the ADMM inner iteration matrix,

min G < i A 6.21
min [p(Gap)|| < cifix min Aerg{%;}@( ), (6.21)
p(1)=1 p(1)=1

where the scalar ¢; is defined in Lemma[55] In this section, we establish the following
upper-bound to (6.21)), and use it to prove our first main result.
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Lemma 60. Let 8 = vVml and ko = 2min{n,,n, —n.}. Then for all k > ky, we

have
T k—ko
4 J—
min  max [p(\)] < xFo/? Iil . (6.22)
p%lﬂzk_lz AeA{G22} K1 + 1
p =

Proof. After introducing the necessarily preliminaries in Section the proof is
provided in Section [6.4.2] O

Proof of Theorem[{4 GMRES must terminate in kyax = 2 + n, iterations, because
the characteristic polynomial x(-) for Gy is at most order n,. Applying Lemma
to x(+) yields

|Gap X(Gap) Gapll < allx(Ga2)|| =0, (6.23)

and substituting into Proposition [52| yields convergence in k., iterations.

To derive the non-trivial estimate, we apply Lemma [60] to the eigenvalue ap-
proximation problem in . Converting the residual tolerance e to the step-
size tolerance € = exp' via Lemma taking logarithms, and applying the bound
(1 + )7 <log(l+ x) < z yields our desired result. O

6.4.1 The Chebyshev approximation

Upper-bounds to the eigenvalue approximation problem can be obtained by
heuristically approximating an outer enclosure over the eigenvalues. More specifically,
given any outer enclosure S C C satisfying S O A{Gs} and any heuristic order-k
polynomial ¢(-) satisfying ¢(1) = 1, an upper-bound on is established via the
inequality chain

i < 1 < . .
,Izré)ﬁwf e (V)] < ]rzgfgkl max [p(z)] < max|q(2)| (6.24)
p(1)=1 p(1)=1

Clearly, any valid choice of outer enclosure § and heuristic polynomial ¢ will yield
upper-bounds. However, better bounds are generated by tighter enclosures and opti-
mal approximations.

Let us begin by considering the disk-shaped enclosure D D A{G2,} in Corollary .
The polynomial approximation problem over a disk has a well-known closed-form
solution [93].

Theorem 61 (Circle approximation). Let D denote the disk on the complex plane,
centered at ¢ € C with radius a € R, and let v € C\D. Then the polynomial approxi-
mation problem has closed-form solution

k k
. a kp — 1
min max [p(z)| = —— | = :
pEPL  2€D |’7 — C’ Kp + 1
p(7)=1

where kp = (|y — ¢| + a)/(|y — ¢| — a) is the condition number for the disk. The
minimum is attained by the monomial p*(z) = (2 — ¢)* /|y — c|*.
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Figure 6-2: Nonzero eigenvalues (crosses), field of values (dashed), and predicted disk
(solid) of ADMM with 5 = v/m/ for two randomly generated problems:
(a) n, = 500, n, = 200, n, = 400; (b) n, = 500, n, = 50, n, = 400.

Plugging 8 = v/m/ into Corollary |54 yields a condition number of kp = /K, and
applying Theorem [61| produces the upper-bound

92 k
I N <|1- : 6.25
L A s (1-72) (6.2
p =

Repeating the steps in the proof of Theoremusing the upper-bound produces
an iteration estimate of O(y/k). This is the best iteration estimate achievable using
the disk enclosure D, but the result is trivial; we have already established that ADMM
(with our specified choice of ) will converge in O(y/k) iterations on its own, and
GMRES-accelerated ADMM will always converge faster than ADMM.

A better iteration estimate requires a tighter enclosure over the eigenvalues of Go,.
An important observation is that the eigenvalues tend to be purely-real, and that the
number of eigenvalues with imaginary parts is correlated with the problem dimensions.
To illustrate this point, two random problems with different problem dimensions are
shown in Figure . The distribution of eigenvalues are typical; fixing n,, n,, n, and
randomly generating new matrices will recover essentially the same plot every time.

Purely-real eigenvalues spread over an interval is a particularly desirable structure
in eigenvalue approximation problems, due to the existence of a closed-form optimal
solution attributed to Chebyshev [93].

Theorem 62 (Interval Approximation). Let Z denote the interval [c — a,c + a] on
the real line, and let v € R\Z. Then the polynomial approzimation problem has
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closed-form solution

min max |p(z)| =
et e PN = e = o7a
p(7)=1

! <2<—\/’€—1_1)k,
VEr+1

where Ty (2) is the degree-k Chebyshev polynomial of the first kind, and k; = (|y—c|+
a)/(|y — ¢| — a) is the condition number for the interval. The minimum is attained
by the Chebyshev polynomial p*(z) = Tp.(%°)/|Tk(*=°)|.

Suppose that, in addition to Corollary [54] we have a priori knowledge that all
of our eigenvalues were purely-real. Then there exists a real interval Z D A{G2}
satisfying k; = kp = /K (e.g. the projection of D onto the real line), and Theorem
assures us that there exists an order O(/ﬁ log 1) polynomial to reduce the eigenvalue
approximation error associated with Z to below €. In turn, GMRES will converge in
O(/ﬁ), which is an entire square-root factor better than ADMM on its own.

6.4.2 Annihilating the complicating eigenvalues

In practice, it is very rare for all of our eigenvalues to be purely-real, i.e. there usually
exists a number of eigenvalues with nonzero imaginary parts. These eigenvalues
prevent the Chebyshev approximation from being directly applicable, so we refer to
them as complicating eigenvalues. Fortunately, the number of such eigenvalues can
be explicitly bounded through the problem dimensions.

Lemma 63. The ADMM iteration matriz Gap(f3) has at most 2min(n,,n, — n,)
eigenvalues with nonzero imaginary parts, counting conjugates, for every choice of

8> 0.

Proof. Recall from Lemma that Gap(B) has n, + n, zero eigenvalues and n,
nonzero eigenvalues, and that the nonzero eigenvalues are shifted-and-scaled from
the eigenvalues of the matrix K (), defined in (6.20). Define the symmetric matrix
K(B)=('D+1I)""—(BD~'+1)~", and note that K () as the following structure

[ QUE(B)Q @Tfj«mp] _ { X(8) Z(ﬂ)} (6.26)
~PTR(3)Q PTR(B)P|  [~Z7(8) Y(B)" |

where X = X7 € R»*" and Y = Y7 € Rw—m)x(w=n2) = A matrix of this form
is known as “J-symmetric”, because it satisfies the symmetry condition JK () =
K™ (B)J with the matrix J = blkdiag(/,., —I(s,-n,))- An immediate consequence of
this J-symmetry is that K () must have at most 2min(n,,n, —n,) eigenvalues with
nonzero imaginary parts, counting conjugates [127, Prop. 2.3]. O

K(p)

Suppose that the iteration matrix has ko complicating eigenvalues. Then, we may
expend the first kg zeros of our polynomial (i.e. the first &y iterations of GMRES) to
annihilating these eigenvalues. Once the complicating eigenvalues are removed from
consideration, the Chebyshev approximation theorem can be applied to the remaining
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eigenvalues, which are all purely-real. Putting these pieces together with a formal
iteration bound proves the desired upper-bound on the polynomial approximation
problems.

Proof of Lemma[60. Let us label the ko complicating eigenvalues as the set C = {\ €
A{G} : ImX # 0}, and the projection of D in Corollary [54] onto the real line as
Z. Then the union of the two regions must satisfy C UZ D A{Gy}. For a heuristic
solution to the accompanying approximation problem, consider the product of the
order (k — ko) Chebyshev polynomial alongside ko zeros placed at the complicating

eigenvalues, as in
Ty ((z=¢)/a) y7 (2 =)
Ty (1 = ¢)/a) Ea (1=2)
1 1v/k—1

where ¢ = 5 and a = 3 VTl are the center and the radius of Z. Clearly, p(1) =
1, and the polynomial is zero at every eigenvalue with a nonzero imaginary part,
i.e. maxyec|p(z)| = 0. The maximum modulus then occurs over the purely-real
eigenvalues, which is bound

p(z) =

—A) Jrp — 1\ ko
max [p(z)| < —1maXH (= — : <2(kp)"™ (ﬁ) ;

2€T Th_ ko T 2€T

since max, yep }E ;} < kp. Substituting kp = /K yields the desired result. O

6.5 A Sufficient Condition for Convergence in O(K}%)
Iterations

In the previous section, we showed that the additional square-root factor speed-
up achieved by GMRES arises from a Chebyshev polynomial approximation of the
purely-real eigenvalues of the ADMM iteration matrix. Intuitively, we would expect
to see the speed-up only in cases where the vast majority of the iteration matrix
eigenvalues are purely-real. Yet in our empirical results, e.g. those shown in Fig-
ure we observed the speed-up over all problems, even in those that do not admit
any purely-real eigenvalues.

Upon closer inspection, we find that the iteration matrix eigenvalues with non-zero
imaginary parts, which we named complicating eigenvalues, are commonly bounded
away from the constraint point z = +1; an illustration of this description is shown in
Figure[6-3] Loosely speaking, the complicating eigenvalues are better conditioned than
the purely-real eigenvalues; instead of precisely annihilating them, it may be sufficient
to simply “dampen” their effect with a number of fixed-point iterations. Then, the
Chebyshev approximation can be used to approximate the remaining purely-real but
poorly-conditioned eigenvalues.

Exploring this alternative eigenvalue approximation strategy, we arrive at a con-
siderably less conservative heuristic solution to the eigenvalue approximation problem
that is independent of the exact number of imaginary eigenvalues.
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Figure 6-3: Illustration of the distribution of real and complex eigenvalues in the
rescaled matrix K/||K||. The complicating eigenvalues are bounded away
from the right-side of the disk by the distance 9.

Lemma 64. Let 3 = vm/l, and define K 2 K(B)/||K(8)|| as the rescaled version of
matriz defined in . Define § > 0 as the distance from the right-most complicat-
ing eigenvalue of K to the boundary of the unit disk, as in

§ = min{l — ReX : A € A{K},Im{\} # 0}. (6.27)

Then the polynomial approximation problem over the eigenvalues Off( 1 bound

1" 2 \*
i < 1———= l1——F- 2
we e, b1 =2 (- 5ms) () - o
p(1)=1
where ¢y = 1/[41log(1 + v/2)] and
1 625
1 [c25+1-" : L25+1J (6.29)
Proof. The proof is provided below in Section [6.5.1] O

The definition of § is illustrated in Figure [6-3] We will also prove the following
statement, which says that the ¢y, as stated in Theorem [46|is a lower-bound on 4.

Proposition 65. Let §, 8 and K be as in Lemma @ and the orthogonal matrix
[Q, P] according to Lemmal[53. Define the scalar by, as

1 — by = % [AmaX(QTKQ) + )\max(—PTK"P)] .

Then 5lb < 0.

Proof. Recall from the proof of Lemma [63] that K is J-symmetric. For matrices with
this structure, Benzi & Simoncini [127] used a field-of-values type argument to show
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that if A € A{K} and Im{\} # 0, then

! Amin(X) + Amin(Y)] < Red <

; Pmax(X) + Amax(Y)]

DN | —

Substituting the definitions of §, X, and Y results in the desired bound. O

Our second main result in this chapter, i.e. the iteration bound in Theorem [46]
is established by solving the eigenvalue approximation problem in (6.21]) using the
alternative heuristic solution in Lemma, [64]

Proof of Theorem[{6 Repeating the same steps as in the proof of Theorem (4] but
using the bound in in Lemma yields an iteration estimate in terms of 9.
Since A(B7'D + ATA)T'AT = (B7'D + I)™', it is easy to verify that the matrix
H in Theorem satisfies QTHQ = QTKQ and PTHP = PTKP. The iteration
estimate is monotonously decreasing with respect to ¢, and substituting oy, < ¢ from
Proposition [65 yields the desired iteration estimate. O

6.5.1 Damping the complicating eigenvalues

We begin by converting the eigenvalue approximation problem over G5, to an equiv-
alent problem over K.

Lemma 66. Define K as in Lemma and Gay = Goo(5) as in Lemma with
fized 8 = /ml. Then

min  max Z)| = min max |p(z
pEPL 2zeA{G22} |p< ) | pEP ZEA{R} |p( ) |
p(1)=1 p(y)=1

where v = (Ve + 1)/ (/& — 1).

Proof. By definition, we have K = K/| K| and Goy = ;I1+1K. Hence, the statement
follows from the existence of a linear bijection between A{Ga} U {1} and A{K} U
{n}. O

Let 6 be as defined in Lemma , and consider the enclosure S(6) UZ > A{K?},

where
S0)={z€C:|z| <1,Re{z} < 0}, I={z€eR:|z| <1} (6.30)

This enclosure is shown in Figure[6-3] The crux of our argument is a heuristic solution
for the approximation problem over S(§) UZ of the form

_ (2w T(2)
plz) = <7+w) Te(v)’ (6:51)

with polynomial orders chosen to satisfy n+& = k. As before, we expend & zeros (hence
¢ iterations of GMRES) in the Chebyshev polynomial T¢(z), in order to approximate
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the purely-real eigenvalues, and to produce the desired O(/{i) factor in the iteration
estimate. But the innovation is in the 7 iterations of over-relazation, (z+w)"/(y+w)",
which are used to resolve the complicating eigenvalues that prevent the Chebyshev
approximation from being applicable. As we will soon show, the quantity d—! serves
as a “condition number” over the region S(9). Reducing relative error to € over every
point A € 8(§) requires n € O(6 'loge™!) iterations of over-relaxation, independent
of the exact number of complicating eigenvalues and the exact value of v > 1.

Lemma 67. Define S(9) as as in , and let v > 1. Then an over-relazation
solution to the complex polynomial problem yields,

min maX Ip(2)] < (1 - —> ,

PGPk 2€8(8) 2
p(7)=

using the polynomial p(z) = (1 + 2)*/2%.

Proof. Define the over-relaxation polynomial, p(z) = (2 + w)¥(y + w)™* to satisfy
p(y) = 1. For any choice of w > 0, the maximum is attained with the choice of v =1
and z = (1 —0) £ j/1—(1—0)2%, as in max.csw) [p(2)] < [1 — 20w(1 —i—w)*Q]k/Q.
Picking w to minimize the convergence factor yields w = 1, which we use as the
desired estimate. O

Remark 68. The order [46 'log(e™')] € O(6!) over-relaxation polynomial satisfies
the conditions max.cs() [p(2)| < € and p(y) = 1.

Now, we return to the issue of the Chebyshev polynomial. Recall we had claimed
in the previous section that the Chebyshev approximation is not (directly) compat-
ible with eigenvalues with nonzero imaginary parts. The reason is that, with every
increment in &, the maximum value of |T¢(z)| over these eigenvalues is increased by
a multiplicative factor.

Lemma 69. The mazimum modulus of the n-th order Chebyshev polynomial is bound
within the disk centered at the origin with radius 1,

max |T,(z)| < T,(v2) < (1 +V2)", (6.32)

l2|<1
and the first inequality is tight for n even.

Proof. The maximum modulus for 7,,(z) over the ellipse with unit focal distance and
principal axis a > 1 are attained at 2n points along its boundary the points [93,|125]

zk—acos( )—i—j\/a2 1sm( ) k=1,...,2n.
n

The ellipse with @ = v/2 is the smallest to enclose the unit disk, and if n is even, then
2y /2 also lies on its boundary. The second bound follows by definition, e.g. [125, Eqn.
6.111]. O
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Examining our heuristic polynomial construction in , Lemma |69 says that
every increment in the Chebyshev polynomial order ¢ provides a O(/@i)—type global
error reduction, but at the cost of locally increasing the error about S(6). Fortunately,
this error increment is a fixed constant, so may be reverted with O(6~!) iterations of
over-relaxation. Alternating between unit increments of £ to reduce the global error
and O(67!) increments of 7 to reduce the local error completes our main argument.

Proof of Lemma[6]]. Define the regions S(9) and Z as in ((6.30). Suppose we can
establish that

3
' 2(1- 120+ 1) 6.33
%%ﬂze?(%ﬁz‘p(z)‘—( )L 20D (6.33)
p(v)=1

where k; = (v + 1)/(v — 1) is the condition number for the interval. Then setting

v = (vk +1)/(y/k — 1) and substituting (6.33) into Lemma |66 proves the desired
statement. Beginning with p(z) defined in (6.31]) with w = 1, the maximum modulus

over §(§) UZ is the greater of the two quantities

<2V ) (1+v2)f (6.34)

v+1 Te()

ol 2 maxb = (1) 7 <2 (1) (B Y)Y e

where the estimate in (6.34)) adopts the bound in Lemma |69, We will pick the ratio
n/& to guarantee ||p(2)|z > Hp( 2)|ls(), so that (6.35) may serve as the global error
bound in (6.33)). Referring ) and - this means to choosing the ratio n/¢ to

satisfy
5\ 7/(26) 1
1—= < : 6.36
( 2) T 1+V2 (630

Viewing 1/ as an “iteration estimate” to guarantee a relative error reduction of 1/(1+

V/2) over S(6), we apply Lemmaﬂ and Remark . 68| to obtain 7/¢ = 4log(1 +/2)/6.
This choice yields (|6 after rounding. O

Ip(2)llsee) = max p(2)] <
z€S(d

6.5.2 Explaining the empirical results

Earlier in Figure [6-1, we presented a comparison between ADMM and GMRES-
accelerated for 1000 problems. Each of these problems were constructed in the manner
described in Construction @ below. The dimension parameters n,, n,, n, were
uniformly sampled from n, € {1,...,1000}, n, € {1,...,n,}, and n, € {1,...,n.},
and the log-standard-deviation uniformly swept within the range s € [0, 2].
Construction 70. Begin with nonzero positive integer parameters ng,, n, < n,,
n, < n, and positive real parameter s.

1. Select the orthogonal matrices Uy, Ug € R™*™ V4, Up € R X" Vg € R™>"=
i.i.d. uniformly from their respective orthogonal groups.
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Figure 6-4: Statistics for § (cf. Theorem [46)) and its lower bound (cf. Proposition
for 1000 randomly-generated problems: (a) scatter plot; (b) empirical
CDF.

2. Select the positive scalars 01(41), e ,O'I(:y), ag), . ,crglz), and o) () §5.d.

Dy Op
from the log-normal distribution ~ exp(0, s%).

3. Output the matrices A = UAdiag(aS), . ,agl”))VAT, B= UBdiag(aS), . ,ailn”))Vg,
and D = Updiag(ay, ..., ot UT.

To check whether Theorem {6 explains the O(f-ﬁ) behavior seen in problems gen-
erated via Construction [70, we compute the value of ¢ for each problem considered.
Figure shows the distribution of § with respect to the condition number x for
the 1000 problems previously examined in Figure [6-1, The smallest value of § is
0.07, with mean and median both around 0.6. The associated cumulative proba-
bility distribution is shown in Figure [6-4b. An exponentially decaying probability
tail can be observed. The rapid roll-off in probability tail is a signature trait for
concentration-of-measure type results, such as the following statement.

Conjecture 71. Fix the values of the parameters ng, ny,n., s, and select the random
matrices A, B, D via Construction[70. Then there exists an absolute constant o > 0
such that

Pr{o,' >tEs '} <e @V w> 1

Assuming that E6~! does not become too large, the conjecture suggests that
GMRES converges in O(mi) iterations almost surely, because it would be extremely
unlikely for a random problem generated by Construction [70] to produce a value of
67! so large as to invalidate Theorem [46]

6.6 Worst-case Convergence in O(y/k) Iterations

When the number of complicating eigenvalues k, approaches the total number of
eigenvalues kpyax in Theorem [44] and when the ratio § approaches zero too quickly in
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Theorem [46], both of our characterizations break down, and fail to predict convergence
1

in O(k1) iterations. Using only the disk characterization in Corollary , the optimal

polynomial given by Theorem |61] is

pH(2) = (z — %>k — (22 — 1)k, (6.37)

which is precisely over-relaxation with the relaxation parameter set to w = 2. Its
associated iteration estimate coincides with over-relaxed ADMM in Proposition [50]
up to a logarithmic factor, and supersedes the estimate in Theorem 46| with § = 0.

In fact, this result is sharp. In this section, we provide a class of problems (sat-
isfying kg = kmax and § = 0) that forces GMRES to converge at the same rate as
over-relaxed ADMM, attaining convergence in O(+/k) iterations. Since GMRES must
converge in at most O(y/k) iterations to match the convergence of the usual ADMM,
these problems represent the worst-case scenario for GMRES.

6.6.1 An explicit worst-case construction
Consider the following choice of A, B, D for any choice of condition number k.

Construction 72. Begin with nonzero positive integer parameter n, and nonzero
real positive parameter k > 1.

1. Output A as the size-2n identity matrix, and D = blkdiag(/ﬁ_%fn, m%[n).
2. Output B € R?™ ™ in terms of the size-n diagonal matrix O,

~ |sin®

B= {COS@}, @:fdiag(1,3,5,...,2n—1).
n

We will show that the optimal polynomial for this particular construction is the
over-relaxation polynomial in (6.37)).

Proposition 73. Chose A, B, D according to Construction and set B = vVml.

Then for all k < 2n,
L k
k2 —1
min G = ,
min ()| ( . 1)

p(1)=1

and the optimal polynomial is p*(z) = (22 — 1)k,

Despite the optimality stated in Proposition we should still expect to GMRES
converge in fewer iterations than over-relaxed ADMM, as shown in Figure [6-5| The
discrepancy arises because GMRES optimizes convergence for a specific initial vec-
tor, while the polynomial in optimizes convergence for the worst-case initial
vector. More specifically, GMRES minimizes |p(Ga2)Au®||/[|Au®]| (cf. Proposi-
tion [52), while over-relaxed ADMM minimizes ||p(Ga2)||. The latter upper-bound is
indeed sharp, and there does exist an initial vector for which the iterates generated
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Figure 6-5: The problem construction in Section places eigenvalues in a circle,
so ADMM-GMRES convergences at the same asymptotic rate as over-
relaxed ADMM with w = 2.

by GMRES and over-relaxed ADMM will coincide. However, in a “typical” instance,
GMRES will tend to converge in slightly fewer iterations [121,126, Ch. 3].

The key step to establish Proposition is to show that the eigenvalues of K
lie equally spaced on a circle. Under these circumstances, the optimal polynomial is
known explicitly to be the over-relaxation polynomial.

Claim 74. The matrix K £ K(B)/||K (8| is normal, and its eigenvalues are the
(rotated) 2n-th roots of unity,

A =w? diag(1,w,w?, ..., w*"1)

. w=e"m (6.38)

Proof. The construction yields D = (AD'AT)"! = D and 8 = vVml = 1. Let us
define J = blkdiag(/,, —1,) and W = [Q P]. We begin by noting that

D+ = (D41t = % []O _(}n] = || K|

Hence, the renormalized matrix is simply K = JWTJW. Since Q is defined to span
the column space of B, and P to be its orthogonal complement, there must exist
orthogonal matrices (), P satisfying

Wo— cos® —sin® Q 0
"~ |sin® cos© 0 Pl
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Using the fact that J commutes with blkdiag(@, ]5), we have

ja QT 0 7 cos® sin©® 7 cos® —sin® Q 0
~lo PT —sin® cosO sin® cos® | |0 P
_ [QT 0 } {cos 20 —sin 2@] {Q O}

0 PT| |sin20 cos20 0 P (6.39)

As shown, K is unitarily similar to blkdiag{exp(2j0), exp(—2j0)}. Hence it is nor-
mal, and its eigenvalues are given as A in (6.38)). ]

Proof of Proposition[73. Since K is normal, Goy = I+ %HKHK is also normal, and
the following holds exactly,

[p(Gaz)|| = \ax Ip(N)].

As we have shown the eigenvalues of K to be the roots of unity, the eigenvalues
A{Gs,} are 2n points equally spaced along the disk D from Corollary 54l The closed-
form solution is known via the discrete analog of Theorem [61] (cf. [93]) to be p*(z) =
(z—3)F/1—3F = (22 — 1)k O

6.6.2 General trends that causes slow-down to O(\/k)

The above is a rather artificial construction that spreads the eigenvalues of K evenly
spaced around the unit circle, which causes GMRES to lose its extra square-root
factor and converge in O(y/k) iterations. But this “slow-down” can be induced under
more general circumstances. For example, consider making a change-of-basis in D,
and replacing the carefully chosen B matrix with any random matrix of the same size
as follows.

Construction 75. Begin with nonzero positive integer parameter n, and nonzero
real positive parameter x > 1.

1. Output A as the size-2n identity matrix.

2. Select Up € R**2" uniformly from the size-2n orthogonal group, and output

H_%In 0 T
D:UD{ 0 /@+§IJ Up

3. Select B € R* " randomly, independent of Up, from any desired distribution.

With overwhelming probability, GMRES will also require O(y/k) iterations to
solve a problem from Construction . The cause is almost identical to that of
Construction the eigenvalues of K are “smeared” around the unit circle, and the
optimal polynomial for the unit circle is over-relaxation. In this latter construction,
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the eigenvalue distribution around the circle is not completely uniform, but this is
1
not necessary for the O(k1) factor to be lost.

As a general trend, we expect GMRES to converge in O(y/k) iterations whenever
the complicating eigenvalues of K spread into a ring of radius &~ 1, since the opti-
mal polynomial under these conditions is over-relaxation. But if this distribution is
not sufficiently “spread-out”, then GMRES will be able to exploit clustering, and the
O(/ﬁ) factor can often be recovered. A precise characterization of “boundary prob-
lems” at the edge of the slow-down remains unknown, and is the subject of future
work.

6.7 Left- and Right- Preconditioning

In the presence of finite precision, GMRES may prematurely terminate before finding
a sufficiently accurate solution, in the sense of the KKT residual norm in Definition [43]
The reason for this is the factor of kp that links step convergence with KKT residual
convergence, described earlier in Lemma [56] GMRES must terminate once the step-
size reaches machine precision, but this does not guarantee that the KK'T residual
norm has also reach machine precision, particularly once the value of kp grows to be
large.

Recall from (6.16)) in Section that the fixed-point equation for ADMM may

be written as
u= P B)[P(B) — Mu+b & P YB)[Mu—r1] =0, (6.40)

where P() is the ADMM preconditioner matrix. This is simply a left-preconditioned
version of the KKT equation Mu = r. Note that its own residual vector coincides
with our usual definition of the step vector. Its residual norm then coincides with our
usual definition of the step-size.

Instead, consider the right-preconditioned system,
o= [P(B) — M|PY(B)a+r & MPY(B)i—r=0, (6.41)

whose solution satisfies P(5)u = 4. The eigenvalues are clearly the same for both
and , and their norms are related by the factor kp. However, note that
residual vector for the right-preconditioned system coincides with the residual of the
original KKT system. In other words, consider the iterations

a* ) = [P(B) — M]P7Y(B)a™ +r, (6.42)

and observe that its step vector, AG®) = ¢*+1)_g(*) isidentical to the residual vector
in Definition[43] So if GMRES applied to terminates at machine precision, then
we can be sure that the solution vector, u = P~1(3)1, also satisfies the KKT equation
up to machine precision.
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6.8 Application Example: Interior-Point Newton Di-
rection for Semidefinite Programs

In this section, we compare the performance of ADMM and GMRES-accelerated
ADMM in their ability to recompute the Newton steps as generated by SeDuMi [123]
over 80 problems in the SDPLIB suite [124]. All 80 problems are semidefinite pro-
grams (SDP), which are given in linear conic programming form as the primal-dual
pair

Primal: minimize ¢’y subject to BTy =d, y € K, (6.43)

Dual: maximize d” z subject to Bz +x =¢, z € K",

with K = IC* set to a Cartesian product of semidefinite cones. The Newton direction
at each iteration is defined as the solution to

D 0 I Az Te
0 0 BT| [Az| = |r]|, (6.44)
I B 0 Ay Tq

where B is the (usually) sparse data matrix, D is the (usually) dense scaling matrix
specific to the interior-point method, and r.,7,, r4 are residual vectors. SeDuMi uses
primal-dual Nesterov—Todd (NT) scaling, alongside the Mehrotra predictor-corrector
method to minimize the number of interior-point steps taken. For our purposes, this
means that two Newton direction subproblems are solved per interior-point step: a
predictor step and a corrector step. The data matrix B is fixed for all steps, the scaling
matrix D varies between steps but remains fixed between the two subproblems, and
the residual vectors 7, r, and r4 varies between steps and also between subproblems.

The actual semidefinite programs considered are the 80 problems in the SDPLIB
test suite with less than 700 constraints, i.e. with n, < 700. For each of these
problems, the predictor and corrector step subproblems are extracted, alongside the
solutions computed by SeDuMi. As expected, the scaling matrix D became pro-
gressively ill-conditioned as the interior-point method progressed, with the condition
number x reaching machine precision within approximately 10 steps. In total, 1038
Newton direction problems had x < 10%, all of which we would expect GMRES to
solve on the order of hundreds of iterations.

Note that the application of ADMM to semidefinite programs is not new. A
number of previous authors have applied ADMM directly (i.e. without the second-
order interior-point layer) to solve semidefinite programs [65,128]. The use of ADMM
to solve the Newton step problem was considered in [129}/130]. Finally, the Newton
system can be viewed as a generic saddle-point problem, and in this greater
context, preconditioned Krylov-subspace iterations are widespread; cf. [131] for an
extensive review.
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(b) lower bounds on ¢ via Proposition
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6.8.1 Efficient implementation of ADMM

A direct solution of the Newton direction via dense Cholesky factorization of the Schur
complement has cubic complexity of O(n?/ “n. + nyn? + n?). In order for ADMM to
be competitive with the direct method, the parameter choice § and each iteration
update, written

-1

Ag(+D) D+BI 0 0 0 —BB —I7 [Az® T
A0 = gBT  BBTB 0 0 0 =BT |A2D| + [r,| ],
Ayl+D) I B —3 0 0 —5I] |Ay® T4

must all be available at less than cubic complexity. To be more specific, we require
the following three key ingredients at subcubic complexity:

1. Access to the extremal eigenvalues of D = D, written m = Apn(D), ¢ =
Amax(D), in order to determine the parameter choice 8 = vVmt.

2. Matrix-vector products with (D + SI)~! for the local variable update.
3. Matrix-vector products with (BT B)~! for the global variable update.

In fact, within the context of the Newton direction for interior-point methods, the first
two ingredients are always always available at subquadratic complexity of O(ni’/ 2).
To be more specific, assuming that the primal-scaling, dual-scaling, or primal-dual
Nesterov-Todd (NT) scaling is used for the underlying interior-point method, the
matrix D will be provided in the Kronecker product form

D= blkdlag(W1 X W1, W2 X WQ, cey WN X WN)

Each of these constituent matrices, Wy,..., Wy, is size—O(ng/ 2) symmetric positive
definite, so diagonalizing them requires just O(ng/ 2) operations. Let us write each

W, = ViAiViT, and define the matrices

A:blkdlag(/\l ®A1,A2®A2,...,AN®AN),
V., =blkdiag(Vi @ [,Vo @ I,...,Vy ®I),
V, = blkdiag(I @ V1,1 @ Vo, ..., I ® Vi).

Then the eigendecomposition for D is given,
D=V VAAVIVE (D + B = VVi(A+ BD)* VTV

Matrix-vector products with V, and V; (as well as their transposes) each requires
O(ni/ 2) operations. Furthermore, the extremal eigenvalues of D are easily accessible
once each A; is known

m= min_||[A;7Y7? (= min _||A]%
e{1,...,N} ie{1,...,.N}
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Access to the third ingredient, i.e. an efficient matrix-vector product with (BT B)~1,
is much more problem specific. In semidefinite relaxations of combinatorial optimiza-
tion problems, the matrix-vector product may be available at linear complexity of
O(n.), because BT B is often either diagonal or the identity matrix by construc-
tion. But for more general problems in which the matrix B is fully dense, computing
its Cholesky factorization requires cubic complexity of O(n,n?). We note for these
problems that the B matrix does not vary between interior-point steps, so once the
Cholesky factorization of BT B is precomputed once, the factorization may be reused

for all subsequent steps at quadratic complexity of O(n?).

6.8.2 Newton steps for problems in the SDPLIB suite

The 1038 Newton direction problems with £ < 10® are solved using standard ADMM
and ADMM-GMRES with right-preconditioning, both to an accuracy of 10~° relative
residual for the system (6.44). The maximum number of iterations for all three
methods is capped at 500. The number of iterations to convergence are shown in
Figure [6-Gp.

The results validate the O(y/) figure expected of ADMM, and the O(x1) figure
expected of GMRES. In fact, the multiplicative constants associated with each appear
to be very similar to the results shown earlier in Figure [6-1] However, examining the
values of dy, in Figure , we find that Theorem (46| is unable to explain the O(/ﬁ)
convergence rate in all of the problems. Two such cases are given as examples in the
discussion below. This result suggests future work to improve the characterization
in Theorem [46], in order to explain the enhanced convergence rate in these other
problems.

6.8.3 Example 1: 5th predictor step of control3

In this first example, we consider the fifth predictor step for the SDPLIP problem
“control3d”, with 1126 decision variables and 136 constraints, and a condition number
of kK = 4.505x107. With n, = 1126 and n, = 136, the value of ky = 136 does not allow
Theorem |44] to predict an enhanced convergence rate. Computing ¢ yields a bound of
6.11 x 1075 and an actual value of 1.19 x 1073, so Theorem 46| predicts convergence
in around O(/i%) iterations. However, the actual convergence performance is closer to
O(/ﬁ). Explicitly forming and computing all 1126 eigenvalues of (G95 reveals that all
of the eigenvalues are close to being purely real. Hence, we may consider Theorem
to take into effect with kg = 0.

6.8.4 Example 2: 7th predictor step of hinfl4

In this second example, we consider the seventh predictor step for the SDPLIP prob-
lem “hinf14”, with 421 decision variables and 73 constraints, and a condition number
of k = 3.114 x 10%. With n, = 421 and n, = 73, the value of ky = 73 does not allow
Theorem [44] to predict an enhanced convergence rate. Computing ¢ yields a bound
of 1.636 x 10~* and an actual value of 4.301 x 107*, so Theorem [46| also indicates
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convergence in O(m%) iterations. Again, the actual convergence performance is closer
to O(k1). Explicitly forming and computing all 421 eigenvalues of Gao shows that
the conservative value of § is a “false” estimate, because the associated complicating
eigenvalue has an imaginary part that is only on the order of 107°. Eliminating that
eigenvalue, e.g. with a single zero of the polynomial, the value of § is increased to
~ 0.1. In this latter case, we may consider Theorem to take into effect after a
certain number of iterations to improve the value of 4.

6.9 Convergence rates for ADMM and over-relaxed
ADMM

For completeness, we present short proofs for Propositions A9 & [50] i.e. that both
ADMM and over-relaxed ADMM converge in O(y/k loge™!) iterations. We begin by
proving the case for ADMM, using the much of the existing machinery throughout
this chapter. We then make some minor adjustments to this machinery in order to
extend the proof to over-relaxed ADMM.

Proof of Proposition[{9. Recall that ADMM generates iterates via the ADMM iter-
ation matrix Gap(f) defined in (6.14]),

uF ) = Gap(B)u® + b, (6.45)
where u®) = [2(); 2(0); ()] "and that e residual convergence is achieved if
IMu® — || < e Mu® —r],

where M and r are the KK'T matrix and residual in .

Denote the fixed-point of the sequence as u*. By definition, u* satisfies both
u* = Gap(P)u*+ b as well as Mu* = r. Subtracting u* from each side of yields
the error update equation and the residual update equation

(" —u*) = Gap(B) () —u?) (6.46)
Mu Y —p = [MGap(B)M ] (Mu® —r). 47)
Inductively repeating this argument the relative residual at the k-th iteration
[Mu® — ] N k
o = < MMM < s[GBIl (6.48)

where #y; = || M]||||M~"||. To resolve this last bound we use |Gk (8)| < 1]/ Gy 2(B)]|
from Lemma and substitute f = vm/ into Lemma [53| to produce ||Ga2(5)]|| to
yield

- 1 k=2
(6-48) < crhml||Go2(B)|F 72 < c1bm (1 - m) : (6.49)
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Solving for € using x(1+z) ! < log(1+x) < x yields the desired iteration estimate. [

To proceed, we will write Gap(f,w) as the iteration matrix associated with over-
relaxed ADMM with parameter w. To extend the same proof to over-relaxed ADMM,
we will need the following Lemma, which very slightly extends Lemma

Lemma 76. Define Q, P, R,U, S(B) as in Lemma . Then the matrix U produces a
block-Schur decomposition of Gap(B,w)

On, | G12(B,w) | G13(B, w)
UTGap(B,w)U = S71(B) | 0 | Go(B,w) | Gas(B,w) | S(B), (6.50)
0 0 0,

z

where the size ny, X n, inmner iteration matriz s defined in terms of D= (AD 1AT)"!

Gul®) = (1-2) 1+ 5 [ Gl 67D+ 07— 07 4 e £ @)

Corollary 77. Let A,.{-} denote the nonzero eigenvalues of a matriz. Then

ApAGap(B,w)} = wApA{Gap(B)} + (1 —w).

Proof of Proposition[50. Repeating the same argument as the proof of Proposition 49
but replacing all instances of Lemma [53] with Lemma [76], we arrive at

[Mu® — ]|

[Mu© —r|

k—2
_ W
< c16ur||Gaa(B,w) |72 < 1k (1 — m) ; (6.52)

where iy = |[|[M||||M 7] and ¢; < ||STHB)Gap (B, w)||[|Gap(B,w)S(B)]|. Solving for
e using z(1 +2)~! <log(1 + x) < z yields the desired iteration estimate. O

6.10 Proof of Lemmas 53 &

We will only consider the over-relaxed case Lemma [70], since the case of regular
ADMM in Lemma[53]is an immediate corollary obtained by fixing w = 1. Substituting
the definitions in Section [6.2] yields the iteration matrix

-1

D+ BATA 0 0 0 —BATB  —AT
Gap(B,w)= | wBBTA BB 0 0 (w—1)8B"B —BT|. (6.53)
wA B —%3[ 0 (w-1B —%I

Multiplying by U, UT, then factoring from the right by S(3) yields

0] Gia(B,w) | Giz(B,w)
UTGAD(ﬁ)U :Sil(ﬁ) 0 GQQ(/B,(U) GQg(ﬂ,Oj) S(ﬁ), (654)
0 0 0
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where the sub-blocks are respectively

Gi2(B,w) = —(B7'D+ A"A) AT [Q P, (6.55)
Gi3(B,w) = —(B7'D + ATA)"TATQ, (6.56
Ga(B,w) = {(1 _0“)1 ﬂ +w [_Q;T] AB'D+ATATTAT[Q P],  (6.57)
Gy(B,w) = [_%TQ] +w {_QPTT] AB'D + ATA)TTATQ. (6.58)

We will make the following claim to simplify the expressions
Claim 78. Let AAT and D be invertible. Then

ABID+ ATA) AT = (' D+ 1)
where D = (AD~1AT)1,

Proof. The factorization arises from two applications of the Woodbury formula,
A(BTID + ATA) AT = BADT'AT + BADTTAT(BAD AT + )T pAD T AT
— 8D+ 8D (8D + 1)'BD"!
=(B'D+ 17"
Finally, the Woodbury formula gives I — (87'D 4+ I)~' = (D' + 1)~

Applying the above then yields

Galp) = (1-5) 1+ 2| ] D+ 07 - 8D+ [@ 7] (639

which completes our proof of Lemmas [53] & [76]
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Chapter 7

Conclusions and Future Work

This thesis began by examining robust stability analysis for power systems from an
engineering perspective. In Chapter 3, we presented two realistic case studies to show
how robust stability analysis may be used to provide situational awareness to the grid
operator. The technique simultaneously guaranteed many uncertain scenarios to be
stable all at once. In the IEEE 118-bus test case, we identified and bounded the
worst-case scenario (in terms of the decay rate), and in the microgrid test case, we
computed stability margins in terms of renewable penetrations.

Our computational results found robust stability analysis to be computationally
intensive. Using an interior-point method, the time complexity of the technique scales
O(n%), where n is the number of state variables in the system. This put realistic-sized
power systems entirely out of reach.

The second part of this thesis re-examined robust stability analysis from a com-
putational perspective. In Chapter 4, we developed first-order methods and mixed
first-order / interior-point methods, and showed that they can be used to perform
robust stability analysis on large-scale systems. Our key insight was to relate the
bounded tree-width property of power systems to a certain hierarchical structure in
its Jacobian matrices. In Chapter 5, we used this hierarchy to reduce the per-iteration
cost of first-order methods to O(n?®). This was the core mechanism that allowed us
to extend the techniques to large-scale power systems.

7.1 Engineering Applications

The natural next step is to apply these techniques to real-life power systems. Our
research code was able to compute Lyapunov functions for a size n = 375 problem in
a few hours. With some further development, our techniques can be extended to real-
life power systems, with n = 1000 state variables. It remains to be confirmed whether
robust stability analysis will continue to be useful when used on these systems.
Robust analysis of any type is naturally conservative. In this thesis, we took
on a largely model-agnostic approach, working with generic sets of matrices. This
was motivated by the desire to encompass a wide range of models, without being
restricted to a particular structure. On the other hand, much of the existing work
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on direct energy methods (which uses a similar Lyapunov-based approach to robust
stability analysis) are formulated for specific models in order to reduce conservatism
considerably below that of generic approaches. The best trade-off between modeling
flexibility and conservatism will likely come from a mixed approach.

At a minimum, this thesis showed robust stability analysis to be an invaluable
extension for small-signal stability analysis on large-scale power systems. Our second
case study also investigated its use for large-signal stability analysis, for a small
microgrid model. At least in principle, the same strategy can be extended to large-
scale systems, and used to analyze stability problems traditionally considered using
simulation-based transient stability analysis.

7.2 Computational Considerations

The crucial insight of Chapter 5 is that the bounded tree-width property of power
systems naturally imply a certain hierarchy in the linearized matrices. The hierarchy
in this thesis can be improved in a number of ways. A two-level hierarchical structure
in Chapter 5 is of the form

[Ml 01 0 {Ul} 0 {Vﬂ 0 Us Uu11"

v L0 M L Vs | LU U,

i {Mg o} 0 {Ug] N {Vg} U U- ’
0 M, U, 1A Us Us

and this yields a typical O(nlogn) complexity in e.g. the storage requirement. This
can be improved to O(n) using a telescoping formulation (see [97,/100])

I
0 [Eff] J\gzj [V } !
) @ AR )

potentially reducing the complexity of the first-order methods from O(n?*) factoriza-
tion and O(n?) per-iteration to O(n?) factorization and O(n?logn) per iteration. If
this were achieved, then the solution of the Lyapunov inequality will become compa-
rable to that of Lyapunov equations.

Finally, one of our algorithms (PCG-Schur) experienced an enhanced rate of con-
vergence due to a low-rank property in its dual matrix variables. Future work should
look to exploit such a low-rank structure more directly. For example, it is possible to
forgo convexity altogether, and to reformulate the problem into a smooth nonconvex
optimization upon a low-rank Riemann manifold. These techniques have the poten-
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tial of reducing the complexity below O(n?). If such an approach is successful, then
the speed of robust stability analysis can be dramatically improved.
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