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Abstract

This paper proposes a rigorous and systematic approach to analyze the systolic wave al-
gorithms described by data flows and local interactions in a regular multiprocessor ar-
ray. We formulate basic equations called space-time-data (STD) equations to describe
the motion of a single data element in particular, and of a whole wave in general. Us-
ing this approach, we prove the correctness of the matrix multiplication algorithm on a
hexagonal array. Then, the general specification and verification procedure is present-
ed. Finally, the computational wavefront method is explained from this new point of
view, and its limitations are discussed.
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1 Introduction

Systolic arrays were first proposed by Kung and Leiserson in 1978 [1]. In their paper,

they used a graphical approach to show how their ideas work. The examples they con-

sidered included matrix-vector multiplication, matrix multiplication on a hexagonal array,

LU decomposition of a matrix, convolution, etc. Although these algorithms are correct, no

formal mathematical proof was given. It was only in 1982 that a proof of the correctness

of the matrix multiplication algorithm was given by Chen and Mead [2]. They expressed

the algorithm as a recursive space-time program, and then applied inductive techniques to

verify this program. This approach seems tedious and complicated. In addition, it is

difficult to understand its relation with the graphical approach. It is surprising that intui-

tively obvious results such as systolic algorithms cannot be proved in a straightforward

way. One important reason is that we lack suitable tools to describe data flow phenomena

in multiprocessor arrays. Several researchers have made efforts in this direction. One

popular approach is known as the computational wavefront method [3] [4]. However, to

our knowledge, this approach does not provide a verification method either.

One important class of systolic algorithms can be characterized by regular data flow

through a multiprocessor array of regular geometry. We call this type of algorithm a sys-

tolic wave algorithm. In this paper, we propose a simple approach to analyze the matrix

multiplication algorithm in particular, and other systolic wave algorithms in general.

Specification and verification procedures can be stated in a systematic way. In addition, we

formulate the concept of 'wavefront" in a mathematically rigorous way. In Section 2, we

consider the algorithm of matrix multiplication on a hexagonal array as an illustrative

example; then the general specification and verification approach is described in Section 3.
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Finally, we use our model to interpret the wavefront concept in Section 4.

2. Matrix multiplication on a hexagonal array - an example

Kung and Leiserson's algorithm is described in Fig 1. The first observation is that a

hexagonal array can be described as the superposition of two rectangular grids with the

same spacing ( h,h 2 ), and with origins at (0,0) and at ( hi, - h 2 ). Therefore, the

2 2coordinates of the processors are either (nlhl,n2 h2 ) or (nlhl +. hi,n2 h 2 + h2 ),

where n1 and n2 are integers. In fact, h1 and h2 are related to the physical space only and

are not essential in our discussion, so that we denote the coordinates of the processors as

the ordered pair (n ,n 2 ). We may redraw the picture in the (nl,n2) coordinates as

shown in Fig 2.

For convenience, we use a(i ,j ), b(i ,j ), and c(i ,j ) to denote the entries of

matrices A, B, and C, and the systolic algorithm shown in Figs. 1 and 2 is used to perform

the matrix multiplication A B = C. The origin of the coordinates ( n I, n2 ) is chosen to be

the point at which a ( 1,1 ), b ( 1, 1 ), and c( 1,1 ) coincide with each other. We use k to

represent the global clock, which takes nonnegative integer numbers. Initially, for k =0,

I 1 1we assume that a ( 1,1 ), b ( 1,1 ), and c ( ,1 ) are located at ( - - d , 2 d ), ( - d ),2 '2 2 '2

and ( -d , 0 ) respectively; where d is an arbitrary positive integer number. At each time

step, all a( i , j )'s move to the right one half unit and move down one half unit, so that

we may describe this motion with a velocity vector ( 1 )2 Correspondingly, the vel 2
2 2

city vectors of b(i ,j ) and c(i ,j ) are( 2 ) and(, 1). The components of the

same matrix retain their relative position when they are shifted because they have the
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same velocity. We may call the motion of the entire group a wave. For the matrix multi-

plication case, there are three waves, called wave A, wave B, and wave C. The position

f unction of some component, say a ( i ,j ) at time k, expressed as P. ( i j ), is defined to

be the coordinates of the processor where a(i,j ) arrives at time k. Therefore,

Po ( i ,j ), P ( i, j ), and Po (i , j ) represent the initial configurations of waves A, B,

and C respectively. In order to specify the motion of waves A, B, and C, we must specify

pi (i j ), P(i i j ),and P ( i ,j ). These can be expressed as follows:

P ; Cpo1 1
P(i )=Pi )+(2 ' 2 (21a)

) 2 (2 b)

p (i j )=pO(ij )+(0,1)k . (21')

Let n 1, n2 represent the processor coordinates of data a ( i , j ) at time k. Usually, the

processor array has only finite size. However, for convenience, we may assume it extends

in a regular manner to infinity in all directions.

From Fig 3, it is not hard to see that the relation between the data indices (i , j ) and

the initial processor coordinates P, ( i ,j ) = ( n ,n 2 ) for wave A is:

nh+n 2 =-i +j k =0 , (22a)

3 nl-n 2 =-2d -3(i +j -2) k =0 . (22b)

Solving equation (22), we get

n=-_ (2i +j +d -3) k =0 (23a)
2

= (3j +d -3) k =0 (23b)
2

Therefore, we have



P (i j)=(_ 2i+j +d-3 3j +d-3 ) (24)
2 2

and from (21la) and (2.4), we get

P.(i , )=(n2)=( 2i + +d -3-k 3 +d-3-k 5)2'( 22 25)

From above, we can derive two basic equations relating the processor coordinates n, n2,

the time index k, and the data indices i ,j of matrix A , which is called, therefore, the

Space-Time-Data (STD) equations of wave A. They are

2n1 +2i +j +d -3 -k =0 , (2.6a)

2n2 -3j -d +3 +k 0 . (2.6b)

The motion of wave A is totally specified by its STD equations. The variable d is deter-

mined by the initial relative positions of these three waves, so we may regard it as a con-

stant in the following discussion.

There are two equations and five variables to describe the motion of wave A. If i ,j

are fixed, then n and n2 can be represented as functions of k, which represent the locus of

the motion of the component a( i ,j ) in a two dimensional plane. Furthermore, if k is

chosen to be some specific value, the position of a ( i , j ) is uniquely determined. This is

defined as the position function P. ( i, j ) before. On the other hand, we may fix n 1 and

n2 and view i , j as functions of k. We define the wave A component of the memory f unc-

tion of the processor ( n I, n2 ) at time k as

Mk (n,n2)=(i ,j ), (2.7)

ie, ( i ,j ) is the index of the element of wave A contained in processor ( nl, n2 ) at time

k. The memory function tells us what component is stored within a specific processor at a

specified time. Rearranging equation (26), we obtain
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3n, +n 2 +d -3-k 2n 2 -d +3+k 

3 3

For fixed nl, n2 and k, the computed data indices i and j of wave A are not neces-

sarily integers. If they are not integers, where a (i ,j ) cannot be defined, we may assign

M ( n 1 , n2 ) the value 'nil'. In fact, it is not hard to see that each processor contains "nil'

values for two succesive time steps in k, then gets a new value of a(i ,j ) on the third

time step.

Wave B and C can be treated similarly. Looking at Fig 4 and using the same

approach, we get the STD equations for wave B

2n l -i -2j -d +3 +k =0 , (29a)

2n 2 -3i -d +3 +k =0 . (29b)

The corresponding position function and memory function are

pk (i , ) i +2j +d -3-k 3i +d -3 -k (210)
2 ' 2

and

(nl n2) =-( 2n2-d +3 +k 3nl-n 2 -d +3 +k (2
3 3

Similarly, from Fig 5 and using the previous procedure, we find the STD equations of wave

C

2n! +i -j =0 (212.a)

2n2 +3i +3j -6 +2d -2k =0 . (212b)

The position function and memory function are

P(i j )=( -i+ + 3i +3j -6+2d -2k )(2)
C 2 2 ld~~~~~~~~~(2.13)2 2

and
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MI(nln2)=_3nl +n 2 -k +d -3 3nl-n 2 +k -d +3

3 3.

respectively.

In order to prove the components relationship for the matrix multiplication, ie.

N

c (i , ) a (i ,p )b (p ,j ) , (2.15)
p -I

All we have to do here is to guarantee that the suitable data will come to the same proces-

sor at the right time. So let us keep track of the locus of motion of some arbitrary com-

ponent of the matrix C, say c( i , j ), and see what components, which belong to other

waves, are within the same processor at the same time. This statement can be described

precisely by two compound functions: 4 k ( P ( i, ) ) and M (P (i, $ ) ). Using (23),

(211), and (2.13), we can evaluate the values of these two compound functions and get

MI (Pk f i, j ) ) = ( i,p ( k ) ) (2.16a)

(Pk (i ,j ))=(p (k),j ) (216b)

where

p ( ) =-i -j +3 +k -d . (217)

If k < i +j +d -3 ,then p (k ) s O. However, a(i ,j ) and b(i ,j ) are defined only

when i and j are positive integers. That means the component c( i ,j ) has not yet

encountered the other two waves. If k - i +j +d -2, then p (k ) is monotonically

increasing from 1 with the time clock until the upper bound, which is determined by the

size of the input matrix A (or B), say N here. Let us take a simple case, say, i = 1 and

j =- 1. When k =d , these three components, ie, a( 1,1 ), b( 1,1 ), and c( 1,1 ) meet one

another at the processor ( O, O), which equals Pa ( 1 ,1). This satisfies our original assump-

tion. When k =d +1, a ( 1,2), b(2,1) and c(l,l) coincide at the processor (0,1),

which is P +1 ( 1,1), and so on. Therefore, we prove the correctness of the systolic matrix
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multiplication algorithm.

3. The Specification and Verification of General Systolic Wave Algorithms

In general, to specify a systolic wave algorithm precisely requires knowledge of pro-

cessor coordinates, the action of each processor, the data wave values and their physical

locations as a function of time. First, assume that there is a fixed network of processors at

"coordinates" n. These coordinates may be the physical location of each processor in

space, or they may just be a convenient index. Let us also assume that the data flowing

through the network may be partitioned into N 'waves' of data a 1 i),...,an (), where

each a, () is the j k set of data indexed by coordinate i. As the computation proceeds, the

value of each element in the wave will change, so let us call aj(j) the value of the itk ele-

ment of wave j at time k.

As the data flows through the network of processors, differing elements of each wave

will be located in different processors at different times. We assume that this data flow is

independent of the values calculated by the processors. Let i =Mk(I) be the element of

the j 'A wave which is located in processor n at time k. We assume that at most one ele-

ment from each wave may be located in a single processor at any one time. If no element

of the j oh wave is at n at time k, we will say that the value of the "memory function'

Mk(n) is nil, and the values aj (nil) and Mk(nil) we define to be nil. It is convenient to

define the "position function' Pk(Qj) as the inverse of Mk(f); it. n =P(iL) is the processor

containing element i of the j ' wave at time k. This function will have value nil if the

element i is not assigned to any processor at time k. (The equations n =P(,z) form the

STD equations of section 2).
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Finally, suppose that each processor at time k takes the N values a, .... ,a, located in

that processor from each data wave, and computes new values for the corresponding ele-

ments of each data wave. Let a+') =Gja(a v ....,aN) be the new value of the i? element

of the j 'A wave computed in processor n at time k given data values a, ... ,aw. If no ele-

ment of wave j is located at processor n at time k, ie. if MA (.%) =nil, then we assume that

Gjk(a , ... ,as,) is also nil. If at time k an element of a wave ajfk) is not located in any

processor, P(f ) =nil, then we treat the element as if it were in a temporary storage cell

during this clock period, and set a +t) =af(t).

Now to verify a systolic algorithm, we start with some assumed initial values for all

the waves of data, a(Q), ... ,a °(), compute the values for all data waves at all times k as

the data flows through the processors, and verify that the final values a(j), ... ,a,7Q() are

the desired results. This verification needs to iterate over all processor nodes n, all waves

j , all wave elements i, and all time i, and can be organized in a variety of ways. The sim-

plest approach is to track the activity of every processor as a function of time:

For all time k =0,1,2,

For all processor nodes n:

h -Miff) for j =l,...,N

a'L+( ) = G a ( 0 .... a ) for j =1,...,N

This procedure simply duplicates the calculation of every processor node over time, and

thus precisely simulates the network. An alternative verification method which is more

similar to that used in the matrix multiplication example above, is to track each wave of

data through the array:
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For all time k =0,,2,

For each wave J =1, .. ,N

For all elements i:

= =M=n) for m =1...,N

This approach may be more efficient in cases such as matrix multiplication where elements

are only sparsely distributed through the processor array, so that M,() has many nil

values.

Note that this approach also covers networks in which each processor is a finite state

machine with state x_ k ) at time k. Simply add a new "data wave' ak +10() whose value is

the state and whose position does not change with time.

4. Computational Wavefronts

In special cases, the waves of data flowing through the processor array can be treated

as if they were waves propagating through a homogeneous medium. This will be the case

if each wave a)(t) retains its "geometric shape' as it flows through the network. More

rigorously, we will say that the processor array has 'wavefront" behavior if the position

and memory functions Pk(t) and Mk(n) are linear functions of the time and wave indices:

j(n) = *j n + k i whenever PM () nil

where Aj and WFl are matrices, and where y can be interpreted as the "physical wavefront

velocity vector", and i can be interpreted as the 'data wavefront velocity vector'. In the



- 10-

matrix multiplication case, for example, the physical velocity of wave A was , =(Y,-),

I 1and the data velocity vector of wave A was f, =( ).
3 3

Note that wave-like behavior can only occur on a processor network with the

appropriate 'shift-invariant' geometric regularity. Namely, there must be processors

n =O i +k y for every i, j, k for which Pk( ) *nil.

Although this geometric regularity does not necessarily imply that all processors com-

pute the same function Gj,(a ...,aN ), the wavefront behavior is particularly useful if the

processors do all compute the same function at each time k, so that Gki, is not a function

of n. Assume that Pk(i±) has no nil values, and is linear in k and i. In this case, it is easy

to show that the mapping from the waves a;(i) to aj +t) is spatially invariant, and thus

that the final data wave values ariL) are a spatially invariant mapping from the initial

values af(j). This is the case, for example, in the matrix multiplication example of section

2. For such systems, our second verification procedure is particularly easy since we need

only track a single element i of each wave through the processor network as time evolves,

and verify that a7(f) obeys the correct mapping from the initial data wave values. Spatial

invariance then guarantees that all data values will be correct.

By analogy with wave propagation through a medium, we might define a 'computa-

tional wavefront' for each wave of data as the set of processors n located in a hyperplane

'orthogonal' to the velocity vector, {n IVn =constant 1. This implies a corresponding

wavefront of data elements / which flow through these processors at time k, whose coordi-

nates can be derived from the position function:



constant thonh = (erTOes )i +k Ih.s Jr c (42)

Since the wave moves as a unit through the processor array, these wavefronts can never

cross.

While this 'wavefront' idea is rather elegant, unfortunately, it has some technical

problems. Most importantly, if data elements are kept in temporary storage and are not

used on every cycle, then the position and memory functions PSAL) and MQ() have

numerous nil values. As a result, the data flow cannot be spatially invariant, and a simple

'velocity' vector will not properly describe the behavior of this data flow. Another prob-

lem is that defining the 'angle' between processors or data paths is a rather arbitrary con-

cept. Thus the choice of which processors belong on a 'wavefront' is rather arbitrary. In

short, for systolic networks which are not spatially invariant, the existence of computa-

tional wavefronts may be intuitively pleasing and may simplify the synthesis of systolic

algorithms, but it does not significantly simplify our procedure for proving correctness of a

systolic algorithm.

5. Conclusion

In this paper we have used a new approach to describe data flow phenomena in sys-

tolic arrays. It is easy, rigorous and systematic. We have also clarified the concept of a

'computational wavefront'. Kung mentioned two open problems in [5]: one is the

specification and verification of systolic algorithms, and the other is automatic algorithm

design. We have solved the first problem for an important class of systolic algorithms.

However, if the geometry is not very regular or the flow pattern is extremely complicated,

it will not be easy to analyze the systolic algorithm. In this case, it may be preferable to
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start with a simple implementation of the desired algorithm which can be easily proved

correct, and then systematically transform it into a parallel and pipelined form. Thus, we

come to the second problem mentioned in [5] - automatic systolic algorithm design. This is

still an open area of research.
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Figure Captions

Fig 1. Systolic matrix multiplication on a hexagonal array

Fig 2. Systolic matrix multiplication rearranged in (n , n2 ) coodinates

Fig 3. Initial configuration of wave A

Fig 4. Initial configuration of wave B

Fig 5. Initial configuration of wave C
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