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Abstract

Spinal stimulation experiments were recently undertaken in an attempt to elucidate
the coordinate transformations being performed by the frog spinal cord (Bizzi, et al,
1991; Giszter, et al, 1993; Loeb, et al, 1993; Saltiel & Bizzi 1994). These experi-
ments have demonstrated that the spinal cord of the frog contains a limited number
of “modules”. That is, we measured the hindlimb forces evoked by spinal interneu-
ronal stimulation, and observed that the evoked forces occurred in a few discrete
clusters of orientations. This result is unexpected because forces which result from
random activation of the frog’s hindlimb muscles do not fall into discrete clusters.
The structure of the hindlimb musculature does not, therefore, predict the striking
regularity we have observed after thousands of microstimulation experiments. The
small number of force patterns suggests that the spinal cord preferentially represents
a limited number of classes of muscle combinations. We theorize that the limited
number of spinal modules serve as the basic building blocks of posture and movement
(Mussa-Ivaldi, 1992). Descending fibers from supra-spinal structures could conceiv-
ably activate simple combinations of the spinal modules in order to produce forces
that are not directly represented as modules.

My thesis is devoted to formulating and preliminarily executing a statistical test of
that theory. We can stimulate supra-spinal descending axons in order to elicit muscle
contractions in the leg, and try to explain the forces resulting from those contractions
as being produced by the spinal modules. If we can explain what happened using just
the spinal modules, then we cannot rule cut the hypothesis that the spinal modules
are acting as building blocks. If, however, the rnuscles provide a significantly better
explanation than do the spinal modules, we will have evidence that the spinal modules
are being bypassed somehow by the supra-spinal systems, and thus are not acting as
building blocks.

The body of the thesis is organized as a march up the neuroaxis. In order to enable
computations involving the muscles and the spinal modules, I built computer models



of them. [ did this by stimulating isolated muscles and spinal cords in order to ohserve
the effects of activation of the muscles and the spinal modules. [ then confirmed that
the spinal modules could be found in decerebrate animals by stimulating the spinal
cords of decerebrate animals and verifying that the computer models were still valid in
that context. Finally, I present the promising preliminary results of the supra-spinal
stimulation experiment.

Thesis Supervisor: Dr. Emilio Bizzi
Title: Professor
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Chapter 1

Introduction

The control of movement, like most functions of the brain, appears by introspection
to be easy but is revealed by science to be tremendously difficult. Because we move
our hands in straight-line paths, the angles of the joints in our skeletons sometimes
must change in counter-intuitive ways, and the way that the muscles contract to
perform these movements is almost incomprehensibly complex (see part VI of Kandel,
Schwartz, and Jessell, 1991). It is not unreasonable to think the spinal cord heips to
simplify the problems of movement by providing the rest of the brain with abstractions
for the control of movement: everything we do is done by the muscles, which are
controlled by the motor neurons, which receive the vast majority of their inputs from
spinal interneurons. Recently a series of experiments in which the spinal cord was
examined for its role in the simplification of movement was initiated by Emilio Bizzi
and colleagues. Bizzi, et al. (1991) have found that the spinal cord contains a limited
number of “modules” (see below). Because these modules could be added together in
simple ways to produce new modules, Bizzi, et al have hypothesized that the modules
are the building blocks of movement provided by the spinal cord to the rest of the
brain.

My thesis is devoted to formulating and preliminarily executing a test of that
hypothesis. The test appears to be easy: I stimulate supra-spinal descending axons
in order to elicit movements of the leg. I can then try to explain those movements

as being produced by the spinal modules. If I can explain what happened using just
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the spinal modules, then I cannot rule out the hypothesis that the spinal modules
are acting as building blocks. If, however, the muscles provide a significantly better
explanation than do the spinal modules, I will have evidence that the spinal modules
are being bypassed someliow by the supra-spinal systems, and thus are not acting as
building blocks.

In this introduction, [ describe the key concepts of coordinate transformations,
basis functions, and the results of our previous spinal stimulation studies. The body
of the thesis is organized as a march up the neuroaxis (figure 1-1). In order to enable
computations involving the muscles and the spinal modules, [ built computer models
of them. I did this by stimulating isolated muscles and spinal cords in order to observe
the effects of activation of the muscles and the spinal modules (chapter 2). [ confirmed
that the spinal modules could be found in decerebrate animals by stimulating the
spinal cords of decerebrate animals and verifying that the computer models were still
valid in that context (chapter 3). In chapter 4, I present the promising preliminary

results of the supra-spinal stimulation experiment.

Coordinate Transformations

One can not get anywhere in motor control without understanding coordinate trans-
formation. A coordinate transformation is a mapping from one coordinate system,
such as cartesian coordinates, to another coordinate system, such as polar coordinates.
A simple experiment demonstrates the importance of coordinate transformations in
the control of movement. Tilt your head, rotate your eyes in their sockets, and focus
on some object within reach. Now close your eyes and touch the object. You may
not hit it exactly, but you will probably be close. Your brain had to perform several
coordinate transformations in order to do this. The location of the object in space
has to be computed from its location on your retinas, the rotation of your eyes in
their sockets, and the tilt of your head. For the sake of argument, suppose that the
representation in your brain of the location of the object is a cartesian grid. The

position of your finger when it touches the object is given by the (x, y, z) location
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of the object. Getting your finger to that point required coordinate transformations
from the (x, y, z) location of the object to the angles of your shoulder, elbow, wrist,
and finger joints, and then from these angles into the lengths of all the muscles in your
back, shoulder, arm, and hand. Thus, we can recognize several distinct sensory and
motor coordinate systems needed to perform the seemingly simple task of touching
an object.

The same coordinate transformations that allow us to determine how to touch
an object also allow us to compute the static forces needed to maintain the arm’s
posture against the force of gravity. The transformation from hand positions to the
angles of the arm joints is important in converting between forces on the arm and
torques about fhe joints. The coordinate transformation from the angles of the arm
joints to the lengths of the arm muscles is important in converting between torques
around the joints and the tensions in the muscles. These conversions, which depend

on the principle of virtual work, are employed throughout this thesis.

The Principle of Virtual Work

The principle of virtual work states that changing the coordinate frame does not
change the total work of a system. The work is always computed from the force
multiplied by the displacement in a given coordinate frame. By the principle of
virtual work, these products must be equal across all coordinate frames. Thus from
the coordinate transformation between the frames, we can find simple relationships
between the forces in different coordinate frames. I will demonstrate this concept in
a simple system, and then apply it to the arm.

Figure 1-2 shows a water wheel with three connected one-dimensional (one vari-
able) coordinate frames. The three coordinate frames are the height of the paddle
(cartesian), the angle of the wheel (polar), and the length of the spring (muscular).
One kilogram of water is striking the wheel. The force exerted by the water is one
Newton (one kilogram in gravity). The instantaneous cartesian displacement is an
infinitesimal, Ay, where y is the height of the water wheel paddle. Work is force times

displacement, so the work done by the water in the cartesian coordinate system is 1
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Newton Ay Newton-meters. We can also describe this system with the polar coordi-
nate system: namely, the torque about the center of rotation of the water wheel and
its angular displacement. The angular displacement is A8, where § is the angle of the
water wheel. The coordinate transformation between the two systems is y = Rsin(8).
For more simplicity [ will use a small angle approximation to write y = R#, because

I have chousen 8 = 0° when the paddle is perpendicular to the flow of water.

Force to Torque

We can use the polar-to-cartesian coordinate transformation to translate between
forces and torques. By the principle of virtual work, the work done by the water

must be the same no mater which coordinate system we use,
torqueAd = 1NewtonAy = Ay(in Newton-meters)

or

torque = % (1.1)

Equation 1.1 is as simple a demonstration of the relationship between coordinate
transformations and force conversions as one could hope to find. According to this
equation, the torque in the water wheel is given by the derivative of the function
relating the height of the paddle to the angle of the wheel. That function is a coordi-
nate transformation between the two systems. It is clear that the derivative of y with
respect to 8 is R, so the torque in the water is i. Newton-meters per degree. We have
computed this torque from the cartesian force and from the derivative of the cartesian
system’s variable with respect to the polar system’s variable. The principle of virtual
work lead directly to our computing the force conversion from the derivative of the

coordinate transformation.

Torque to Tension

I have drawn the water wheel in figure 1-2 with a spring attached to it, because the net

system of water force, wheel torque, and spring tension is a one-dimensional analogy
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Figure 1-2: A Simple System with Coordinate Transformations In this figure a wa-
terfall strikes a water wheel that has a spring attached to one of its spokes. The height
of the paddle, y, is one coordinate system. Y is zero when the paddle is perpendicular
to the flow of the waterfall. The angle of the water wheel, 0 is another coordinate
system. 8 is 0° when the paddle is perpendicular to the flow of the waterfall. The
length of the spring, L, is the third coordinate system. The length of the spring is LO
wheny=0=0. A1Kg(l liter) drop of water is hitting the wheel at a radius of R.
The radius of the attachment of the spring to the water wheel is R,. The spring is
attached so that it is perpendicular to the spoke of the water wheel when y = 0 = 0.
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to the multi-dimensional system of gravitational forces, joint torques, and muscle
tensions that define many problems in limb control. The waterfall is like the force of
gravity, the torque in the wheel is like the torque around your elbow or shoulder, and
the tension in the spring is like the tension in your muscles.

Again using the principle of virtual work, I will derive the tension in the spring.

We use the principle of virtual work to equate the work in the two coordinate systems:
tensionAL = torqueAd

so that

tension = torque—

AL

Once again we need to compute the derivative of a coordinate transformation in order
to convert between the forces in those two systems. In this case, we want to know
ﬁ, the derivative of wheel angle as a function of spring length. The length of the

spring, L, is given by
L = L0 + R, sin 8approzL0 + R,0, for small 8

so that

In these equations, R, is the radius of the attachment point of the spring on the spoke
of the water wheel. Again, from the derivative of the coordinate transformation we

can compute the tension in the spring:
. 1
tension = torque(Newton-meters/ degree)i(degrees/ meter)
3

Knowledge of the coordinate transformations between the length of the spring, the
angle of the wheel, and the height of the paddle allows us to convert freely between
the force on the paddle, the torque about the center of rotation of the wheel, and the

tension in the spring.
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Coordinate Transformations and the Skeletal-Muscular Sys-
tem of the Arm

The preceding arguments can be applied almost exactly to the analysis of the skeletal-
muscular system of the arm. The only difference is that there are many positions,
many angles, and many spring-like muscles in the arm. This does not change the
arguments tremendously: we simply need to be careful to multiply the forces and
displacements in such a way as to produce a single scalar value for the coordinate-
invariant work. For example, if forces are written as a row vector, then displacements
should be written as a column vector and they should post-multiply the forces. This
is because one multiplies vectors by going across the first one and down the second

one:
T

[a,=btc] y | =az+by+cz

2

When we divide two vectors, each element of one gets divided by each element of
the other, producing a matrix. For example, a Az vector divided by a AB vector
produces a matrix, called the Jacobian of 5(5) The components of the Jacobian are

simply the individual division terms of the components of the two vectors: g—’of;.

Force to Torque

Let us now apply the principle of virtual work to the analysis of the skeletal system.
Figure 1-3 diagrams two gravitational force vectors being exerted on the arm of a stick
figure person. The gravitational forces are acting on the center of mass of the forearm
and the center of mass of the upper arm. We can convert those forces into torques
about the shoulder and the elbow. To do this we need to know the transformation
from the joint angles to the (x, y) positions of the two centers of mass at which the
forces are acting. For the upper arm center of gravity the x location is given by
Rcos(0) and the y location is given by Rsin(6), where 6 is the angle of rotation of
the shoulder in the plane of the page, and R is the distance from the shoulder to the
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Figure 1-3: A Simple Stick Figure in Gravity In this figure we see a schematic person.
The cartoon’s arm is held out from its body. The force of gravity acts on the center
of mass of each skeletal segment of the arm. One coordinate frame for this system
is the (x, y) coordinates of points on the arm. Another coordinate frame is in the
angles of the joints. Still another coordinate frame is in the lengths of the muscles
that are holding up the arm.

center of mass of the upper arm. Thus, by the derivation we used for the water wheel,

the work done by gravity acting on the upper arm is

Ax
[F:, F)] = torque,, Af
Ay

Dividing both sides by Af# we can compute the torque on the shoulder due to gravity

acting on the upper arm

R cos(8)
torque,, = [F;, F}] (1.2)
—Rsin(0)
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Once again, knowledge of coordinate transformations has allowed us to convert
between the force and torque. We also learn from the coordinate transformation
eq1ations that the gravity acting on the upper arm never produces an elbow torque.
Since the elbow angle is not needed to compute the (x, y) location of the center of
mass of the upper arm, the derivatives corresponding to the elbow torque will be zero.

We can verify with a simple experiment that static forces on the upper arm turn
into torques at proximal joints but not at the elbow. Keep your right arm steady in
the posture of figure 1-3 while your laboratory assistant pushes down steadily - not
suddenly - on your upper right arm. The static force on your upper arm is equivalent
to a torque at your shoulder. You should feel your shoulder muscles tensing but
not your elbow muscles. The static force is also transmitted through the mechanical
linkages of your skeleton into torques in your back, your hips, and your leg joints. As
your assistant pusﬁes harder on your upper arm, you should feel your muscles in all
these joints tensing, but your elbow can remain relaxed and easy to move. No thought
is required to set up the right counterbalancing contractions in the muscles around
the proximal joints. Whatever your body is doing to figure out the magnitudes of the
muscle tensions, it has to « ..tain something functionally equivalent to the coordinate
transformations being described here.

We can also compute the shoulder and elbow torques produced by the forearm
gravitational force. There is more trigonometry needed for this computation because
both joint angles are needed to determine the x and y coordinates of the forearm
center of gravity. Nevertheless, these equations can be easily written and solved.
Because both joint angles are used in the coordinate transformation from joint angles
to the x and y coordinates of the forearm center of gravity, the force on the forearm
will produce a torque at the shoulder. The total torque at the shoulder is the sum of

the upper arm and forearin gravitational torques.

Torque to Tension

It should be clear now how to convert the gravitational torques in the shoulder and

elbow to the gravitational tension in each of the muscles. We begin by equating the
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work in the two coordinate frames:

AL,
A,y AL, M
(Tshs Ters) = [tensiony, tensiony, - - - , tension | ' = z tension; AL,
elb : i=1
] ALy ]

In this equation, 7,5 is the shoulder torque, 7. is the elbow torque, 8, and 8., are the
shoulder and elbow angles. The tension and length of muscle k are given by tension
and L; respectively. It is an important fact about biological systems that the number
of muscle§ always exceeds the number of joints, but for now let us just consider how

to compute the gravitational tension in a single muscle:

A8
aLx
A,
al

In order to compute the gravitational tension in muscle K, we need to know how

tensiong = (754, Tets)

the joint angles will change in response to small changes in the length of muscle K.
This computation would tell us how much muscle K would have to be activated to
maintain the arm in the current posture. So, the coordinate transformation from
muscle lengths to joint angles is needed.

We can easily figure out the coordinate transformations between cartesian coor-
dinates and joint coordinates from simple trigonometric relations, but how can we
find the coordinate transformations between joint coordinates and muscle lengths?
By analogy to the water wheel example above, we could examine cadavers to find
the exact attachment points of the muscles on the skeleton. In fact, that is what
most researchers have done. One of the major contributions of this thesis is to use
the ideas of coordinate transformations to bypass the laborious, messy, unpleasant,
and inaccurate task of approximating muscle length functions from cadaver measure-
ments. In equation 1.2 the Jacobian of the coordinate transformation for the upper
arm is expressed as a function rather than as numbers. At any given posture, 8 takes

on a particular value, and the Jacobian becomes a particular vector of numbers. In
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other words, the Jacobian, is itself a function of joint angles. In the simple stick
figure example we can write exact equations for the way the Jacobian changes as the
arm moves, but in more realistic problems this is not possible. Rather than attempt-
ing to find explicit equations for the coordinate transformations between joint angles
and muscle length with joint angles (as is done when researchers measure cadaver
muscles), we will instead approximate the Jacobian function using statistical mod-
elling techniques. In particular, we choose a parametric representation of Jacobian
functions, and then use data to find the parameter values of the Jacobian function of
each muscle. In the example of the Jacobian for the upper arm, we might use as a

parametric representation

P1 cos(P28,, + P30.1)
P4 sin(P26,, + P30.;)

In this example of a parametric representation, P1, P2, P3, and P4 are parameters.
0,r, and 0., are the angles of the shoulder and elbow, respectively. We can use
statistical modelling techniques to find values for parameters P1 through P4 from
many examples of gravitational shoulder torques at different values 6,, and 0.;. The
correct values of P1 through P4 are P1 = R, P2 =1, P3 = 0, and P4 = -R. Once our
statistical modelling program (Becker, et al, 1988) has found these parameter values
for the Jacobian function, we can work backwards (integrate) to find the coordinate
transformation from joint angles to the (x, y) coordinates of the center of gravity of
the upper arm.

* I have shown above that there are two distinct reasons that the nervous system
must keep track of coordinate transformations. Each patch of skin on the arm resides
at a location in space which moves around as the angles of the joints in the arm are
changed. In order to be able to scratch a patch of skin, its location in space should
be represented somehow. We do not know exactly what coordinate systems are used
to do this, but we do know that the ability of people and animals to scratch arbitrary
patches of skin on their arms indicates that the coordinate transformations between

muscle lengths, joint angles, and skin location are contained in the system. There are
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also pressure sensors under each patch of skin. We are able to respond to pressure
on the arm with counter-acting tensions in the joints of the arm, back, and legs.
This ability again requires that the system somehow represent the Jacobians of the

coordinate transformations involving each patch of skin.

Kinematics and Dynamics

The ideas and derivations developed above are encompassed by the concept of kinematics.
As defined by Hollerbach (1990), “kinematics is concerned with the geometry of the
external world, the geometry of a limb, and the transformations between them.” 1
have extended this definition to include the transformations between the limb ge-
ometry and the muscle lengths. The forward kinematics of an arm is defined as the
function. that maps joint angles to arm positions. The forward kinematics of an arm
is well-defined and trivial to compute: given the angles of each of the joints we can
compute the position in space of any part of the arm. The inverse kinematics of an
arm is a mapping from positions to joint angles. The inverse kinematics mapping
of an arm is almost always multi-valued, because there are infinitely many possible
configurations for most positions of any particular point on the arm. For example,
the position of an elbow can be changed independently from the angle of the elbow.
Thus, the inverse kinematics mapping from the position of the elbow to the elbow
angle would be ill-defined. Similarly, you can put your finger on an object and leave
your finger there approximately motionless while changing the angles of joints in your
arm. Given enough positions of points on the arm, however, the mapping from those
positions to joint angles is completely specified For example, given the position in
space of the elbow and of the wrist, there is at most one vector of shoulder and el-
bow angles that could bring the wrist and elbow simultaneously in line with those
positions.

Kinematics is clearly an important idea in motor control. Understanding the
kinematics of the arm and muscles allows us to compute static inter-conversions be-
tween forces on the arm, torques about the joints, and tensions in the muscles. To

fully -understand the problems of motor control, however, we must also consider the
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dynamics of the muscles, the limb, and the world. Unfortunately, “dynamics” is a
general word used to describe two different parts of the motor control problem. The
first sense of the word is that the forces, torques, and muscle tensions in the arm are
altered by movement of the arm. The second sense of the word is that forces, torques,
and muscle tensions produced all have temporal characteristics that must be consid-
ered. Ultimately, both senses of the word are united in the common mathematical

framework of state space equations (see Craig, 1986).

Dynamics as Movement

A simple experiment demonstrates a role of movement dynamics in motor control.
Hold your right arm in front of you in the posture illustrated in figure 1-3. Keep your
muscles relaxed (your body will automatically tense them just enough to counter
gravity, possibly using the calculations desciibed above). Now use your left hand to
push down suddenly enough on your right upper arm to cause it to move. Your upper
arm will drop and your elbow will fold. You could keep your elbow from folding by
tensing your muscles, but please don’t do that. The point is that your elbow does
fold, even though we have shown above that the force exerted on the upper arm does
not produce any torque at the elbow. The question is, why does the elbow angle
change when you push on your upper arm? What is the source of the torque causing
the elbow angle to change?

The answer is clear: the unexplained torque in the elbow is simply due to the
movement of the elbow. Movement results in torques that cannot be understood
from the static analysis alone. When the upper arm is moved, the elbow accelerates.
The acceleration of the elbow is translated into a force — and a corresponding torque
- on the forearm.

Converting the acceleration of the elbow into a force on the forearm requires
knowledge of the actual mass of the skeletal segments. In figure 1-3 we did not need
to know the mass of the upper arm or the forearm to compute the translation between
forces and torques. Computing the effects of movemehts, however, requires that we

know the actual physical parameters (mass and distribution of mass) of the arm.
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Another cemplication that movement brings to the analysis of the arm is that
the kinematics keeps changing. In the case of the arm we have aiready described the
Jacobian of the coordinate transformation from shoulder angle to the center of mass
of the upper arm. That Jacobian function will not change as the arm moves, but at
each new position of the arm the values of the Jacobian will change.

The dynamics of movement also come in to play when considering the functioning
of muscles. Muscles have moving parts in them. Each muscle is attached to the
skeleton by a tendon, and each muscle contains 1.26 gazillion actin and myosin fibers.
The tendon acts as a separate spring and prevents the muscle from getting damaged
by sudden external forces. When the skeleton is moved by a force, the resulting
tension in the muscle-tendon system is transmitted to the muscle by the tendon.
Conversely, when the muscle contracts, the tension is transmitted from the muscle to
the tendon to the skeleton. The problem of movement causing a change in coordinate
transformation affects the muscle-tendon system because tendons often wrap around
bones that move. For example, the tendon of the triceps (the muscle on the back part
of the upper arm) wraps around the bony point of the elbow. As a result, movement
affects the translation between the coordinate system representing the length of the
tendon and the coordinate system representing the length of the muscle.

By experimental design, I have avoided the problem of the dynamics of movement
entirely in my thesis work. [ have measured the forces at the ankle produced by
the torques at the joints produced by the tensions in the muscles that result from
stimulation of the spinal cord. To construct the muscle models I made these measure-
ments while stimulating individual muscles rather than the spinal cord. In the final
chapter I describe how I made these measurements while stimulating supra-spinal
structures. In no case have I measured torques or forces in moving limbs. I also have
not modelled how the muscle torques might act on the limb in motion. I have avoided
the problem of motion within the muscles by using the peak forces generated by the
musculo-tendon system to represent muscular contractions. At the peak force, the
tendon and muscle have presumably equilibrated so that they are not moving with

respect to each other.
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Dynamics as Temporal Properties

The term “dynamics” is also used to describe the temporal variations in forces,
torques, and muscle tensions. In figure 1-2 we see a 1 liter drop of water (1 Kg)
hitting the spoke of the water wheel. A few moments after the snapshot in figure 1-2,
the water will splatter all over the wheel. The function describing the force exerted by
the water with respect to time will look quite different from the function describing
the force exerted by a 1 Kg bowling ball. The water itself has dynamics in the same
time frame as the system of concern.

We are aware of the dynamics of forces in the world whenever we move our arms.
For instance, you would be quite clear about the difference between catching a 1
Kg ball as opposed to catching a half-full 2 liter bottle of Diet Pepsi. Although
both objects would have approximately tlie same mass, there would be complicated
temporal variations in the magnitudes and orientations of the forces exerted on your
hand by the bottle of caustic liquid.

The temporal variations in the joint torques of the arm are mostly due to the
relative motion and inertia of the upper arm and the forearm. We described these
phenomena in the previous section as the dynamics of movement. There is almost
no friction or viscosity in the joints of healthy arms. Consequently, the physical
properties of the arm are well approximated by an idealized stick figure with the
mass of each limb segment attached. The approximation fails when the joints reach
their limits (note, for example, that the elbow locks when it is fully extended). In my
work, therefore, I have explicitly excluded those configurations from consideration.

Temporal variations in the properties of muscles arise because muscles are living
tissue. A spring is a good approximation of a muscle at any moment in time, but
the springiness of muscle is controlled by neural impulses. The tension produced in
a muscle by a single impulse is a function of, inter alia, the length of the muscle, its
temperature, its fatigue, and its current tension level. These temporal variation in
the properties of the muscle occur in the same time frame as the motion of the limb.

Dynamics as temporal properties have played only a small role in my thesis work.

I have measured forces by holding the frog’s hindlimb fixed in a force sensor. As a
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result, the world has exerted forces on the frog equal and opposite to those forces
the frog has exerted on the force sensor. 1 will argue in chapter 2 that our spinal
stimulation results add further evidence in favor of the hypothesis that the spinal cord
models and inverts (see below) the dynamics of the muscles. In the final chapter, |
will describe current efforts to add muscle activation dynamics to the muscle models

described in chapter 2.

Representations

There are good reasons to think that the frog’s spinal cord contains something func-
tionally equivalent to the mathematics of coordinate transformations. The spinal frog
can use a hind limb to wipe a noxious stimulus from any part of its body. The frog
whisks the stimulus away by placing its foot to one side of the stimulus and then
pushing the stimulus away with the foot. The placement of the foot varies linearly
with the position of the stimulus on the back(Giszter, et al, 1989). If the stimulus
is on the frog’s forelimb, then the spinal frog is able to place its hind foot on the
forelimb no matter what posture the forelimb is in (Fukson, et al., 1980). Thus, the
spinalized frog is able to translate pain in a patch of forelimb skin into the lengths
of the hindlimb muscles needed to bring the foot into contact with the patch of fore-
limb skin. We have seen that this behavior requires “knowledge” of the forelimb
kinematics, the hindlimb inverse kinematics, and the hindlimb inverse dynamics.
Ideally we could relate these observations about coordinate transformation to the
spinal circuitry. I think it ultimately will be possible to identify in the operation
of spinal circuits the mathematical constraints given in the preceding section, but
that achievement will depend on careful consideration of the “what” and the “how”

of the data “representations” in the spinal cord. The use of the word representation

indicates the needed distinction between the observed features of a computing system
and its logical/mathematical purpose. Illustrations of the concept of representation
are given below.

The best-known and simplest example of a representation is the use of voltage
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levels to represent TRUE and FALSE in computer circuits. The binary values, TRUE
and FALSE, are implemented as voltage levels of approximately 5 volts and 0 volts
in digital circuits. An important aspect of this representation is that a continunum of
voltage values is mapped onto a single logical/symbolic value. Therefore, these many
different voltage alues have the same functional impact on the computer circuitry.
For example, the infinitely-many values between 3.5v and 6v all have the same effect
on the circuitry as 5v, and therefore, they all map to TRUE. It is important to
understand both what is represented (TRUE, FALSE) and how (high voltages, low
voltages) in order to make sense of the computer circuitry. That is, if we were to
perform physiology on the computer with an oscilloscope, it would be hard to interpret
the circuitry without knowing that 4v and 5v were equivalent.

Figure 1-4 illustrates two levels of representation. In panel A, we start with a
hypothetical computer chip which has a single input wire and a single output wire.
The ouput voltage is a cleaned-up version of the input voltage. The logic levels of the
output voltages are shown for each of eight time points according to the rule indicated
above: 3.5+ volts is TRUE and less than 3.5 volts is FALSE. Continuous voltages
having discrete logical meanings is a simple example of a representation. In panel B,
we have a more complicated computer chip. This chip has two input wires and two
output wires, each like that in panel A. The logic levels of the two outputs are again
shown in a table at eight time points. In the table shown at the output of the chip, the
columns are output values at a given time point and rows are the output for a single
output wire. At any given time point, the two outputs are interpreted as a binary
number following some conversion rules. The interpretation of the table of outputs
is, therefore, a second level of "representation” in this computer chip. Not only are
voltages on the output wires interpreted as TRUE and FALSE, but the collection of
outputs at each point in time is interpreted as a number. At the bottom of figure 1-
4B the interpreted output values are plotted vs. time point in graph 1. Graph 2
shows the plot of the interpreted output values when a different conversion table is
used to interpret the output data. This demonstrates that there is an element of

interpretation in the meaning of “representation”. Just as 5v corresponds to TRUE
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because the computer circuitry is built to work that way, the numerical values of the
chip's output depend on the conversion table being used.

There may be a correlate of the TRUE and FALSE of digital circuits in the
action potentials of neurons. Neurons have a voltage across their membranes. The
mernbrane potential is set by pumps that maintain sharp ionic gradients across the
membrane. Inputs to the neuron cause non-random fluctuations in the memkrane
potential. When it reaches a critical level, the conductance to pumped ions increases.
As a result, the charged ions fall down their concentration gradients, causing a rapid
decrease in the magnitude of the membrane potential. At another critical level,
the conductance is shut off and the ions are again pumped out and in to reset the
membrane potential (see Keynes & Aidley, 1991). All of these mechanisms operating
together allow the neuron to transmit a 1 msec spike of voltage that may in essence be
a binary value. In order to determine if the spike acts as a binary value, researchers
examine the impact of the spike on the receiving neuron. In other words, by direct
analogy to figure 1-4B, we need to know the translation table in order to know how
to interpret the output of neurons. The translation tables, however, are embedded in
the operation of the pre- and post-synaptic tissue that receives the spike. The how of
the action potential representation is well understood. What spikes represent is one
of the central questions of any neuroscientific investigation.

Figure 1-5 illustrates three levels of representation in the motor neurons. In panel
A, we show a motor neuron by way of analogy to the chips of figure 1-4. The membrane
potential of the neuron is analogous to the voltage in the output wires of the chips. In
this figure the membrane potential is being monitored by a cartoon oscilloscope. The
membrane potential is being read during three different active states of the motor
neuron. In state 1, the membrane potential fluctuates as a result of synaptic inputs
on the dendrites (which are analogous to the input wires in figure 1-4). When the
membrane potential crosses the threshold (0mV), the cell begins to emit spikes. The
spikes are drawn as vertical hash marks on the action potential trace. The frequency
of firing is given by the amount that the membrane potential exceeds the threshold

(which is in turn dictated by the magnitude of the synaptic currents). In state
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Figure 1-4: Multiple levels of representations in a simple chip This figure illustrates
two distinct meanings of “representation” in the context of simple hypothetical com-
puter chip. I take “representation” to indicate the needed distinction between the
observed, physical properties of a computational system and the meaning of those
properties within the context of the computations being performed. (A) The voltage
levels on input and output wires of chips can be measured, but those physical volt-
age levels also have a meaning that is given by the chip. Most chips use 5 volts to
represent a binary TRUE value and 0 volts to represent a binary FALSE value. Not
all chips work that way. Five volts is five volts, but the meaning of the voltage level
deperds on the chip. In this figure the TRUE/FALSE values are shown at 8 time
points. (B) Collections of voltage levels can be measured on several wires, but the
meanings of those collections depends entirely on the way those wires are hooked into
the chips. In this example I have shown two different conversion tables that might
be used by a chip receiving the two outputs of the pictured chip. The two different
conversion tables lead to two different functions of chip output value vs. time point.

36



2. the same synaptic inputs cause the same membrane potential fluctuations, but
the function relating the rate of firing to the membrane potential has been changed
(possibly by serotonin, (Binder, et al, 1993). In state 3, the same synaptic inputs cause
similar membrane potential fluctuations, but these fluctuations simply modulate a
steady rate of firing (possibly induced by a pulse of afferent activity combined with
descending-tract serotonin signals, Hounsgaard, et al, 1987).

The motor neurons perform at least two layers of computations. The spiking
behavior of the neuron is an example of the conversion of noisy analogue voltages
into binary (TRUE, FALSE) values. The rate of firing of the neuron is an example
of the use of binary values to construct a number system. The number system in
figure 1-4B was constructed from the vector of all of the chip's (two) outputs. The
number system in figure 1-3A is constructed from a single output, ! but a third
level of representation in the biological system, shown in figure 1-5B, uses a vector of
outputs. In figure 1-5B we show that each motor neuron in the spinal cord has a state
(as shown in figure 1-5A) in addition to a firing rate. The states of the motor neurons
are almost certainly controlled by the spinal interneuronal circuitry (just as are the
firing rates), so this extra representational power of the motor neurons is an important
thing to keep in mind in interpreting our spinal stimulation results. In particular,
we do not know if the interneuronal systems we are stimulating reflect inputs to the

motor neurons, per se, or rather controllers of the states of the motoneuronal systems.

Basis Functions

A central concept to my thesis work is the idea of basis functions. Basis functions
are a level of representation like figure 1-4B and figure 1-5B. For example, the spinal
cord receives a vector of thousands of numbers (thousands of firing rates of thousands

of sensory fibers) for each muscle: what can it do with that information? The idea

Chips are designed to operate at discrete points in time so that there is no timing information in
the bits (binary values) it operates on. As a result, the only way to build a numerical representation
out of the chip’s output is to use several outputs together, as shown. The neuron does not operate
at discrete times. The timing of spikes carries information, and so it is possible to build a numerical
representation that depends on the intervals between spikes.
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Figure 1-5: Multiple levels of representations in a motor neuron Just as the chips in
the previous figure had several different levels of representation to consider, so do
neurons. (A) A motorneuron is illustrated. We can measure the potential across the
cell membrane, but the meaning of that physical voltage will depend on the state
the neuron is in. I have shown three states. In states 1 and 2 the neuron responds
to the same variations in its membrane potential with different rates of firing. In
state 3, the cell responds to the same inputs with a different membrane potential due
to some plateau potential (in a dendritic tree, for example). This example collapses
together both (A) and (B) of the chip: the membrane potential is translated into
TRUE/FALSE values (spikes) and the conversion is determined by other inputs to
the cell (ie, the conversion table can be changed). (B) Because each motor neuron can
be switched into a variety of different states, the state of each neuron in a population
is itself another physical value that can be measured. The meaning of the physical
states depends entirely on the way that the neurons are wired togther.
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of the conversion table shown in figure 1-4B comes into play because the meaning of
these numbers will depend on their role in the spinal cord’s computations. There are
two ways the numbers can be used in computations. In the first way, the numbers are
information in and of themselves. For instance, each firing rate is itself an estimate of
the length of a muscle. In addition, the firing rates of length sensitive fibers from one
muscle could all be averaged together to form a reliable estimate of the current length
of that muscle. In the second use, the numbers are not answers in and of themselves
but rather, are parameters of a basis function. In this scheme, the numbers are
informative only in the context of all the other numbers. As a result, the information
they convey is implicit in their interpretation. This type of usage is a basis function
interpretation of the numbers.

A set of basis functions defines a coordinate system for representing functions (see
figure 1-6A for a simple coordinate system of functions). Just as we normally view
points according to their (x, y, z) cartesian coordinate representation, we normally
view functions according to a standard set of basis functions called delta functions
(see below). Recall that there were some added complexities when we moved from the
one-variable coordinate systems of the water wheel (figure 1-2) to the two-variable
coordinate of the arm (figure 1-3). Here too there are additional complexities to the
coordinate systems for functions, because functions have infinitely many dimensions.
Instead of Jacobians and matrix multiplication, the coordinate systems of functions
are transformed with densities and integrals. The integral of a function with respect
to a density is like the inner product of an infinite dimensional vector with one row
of a Jacobian. The important point to remember is simply that basis functions are
the means by which infinite dimensional coordinate systems can be defined.

In any discussion of basis functions the word “approximation” is necessary. If I told
you my elbow was at (x, y, z) = (3, 5, 4) and it turned out on closer examination to he
at (3.3, 4.8, 4.1), then the total error of (\/(-.32+.22+.12)) 0.37 would not, presumably,
be a tremendous problem. A component-wise error of similar magnitude, however,
would really add up over infinite dimensions. In an infinite dimensional problem, the

function to approximate is like the finite-dimensional position of the elbow in space
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and the basis functions are like the (x,y,z) dimensions. The goodness of a set of
basis functions is judged on its ability to reproduce a function of interest with high
accuracy. High accuracy alone is not enough, though; we could have represented the
location of the wrist with respect to the moon in section 1, but we would have needed
15 significant digits in each of the (x, y, z) coordinates to get reasonable accuracy.
Similarly, with enough coordinate values, most sets of basis functions can give 'high
accuracy. Thus, a really good set of basis functions will reproduce a function of
interest with high accuracy and use only a few coordinate values.

My work depends on the concept of basis functions, because the spinal cord may
represent (as in instantiate) for the brain the coordinate transformations between
muscle lengths, joint angles and skin locations. Those coordinate transformations
and their Jacobians are functions. Functions can be represented efficiently with a few
numbers (neural activation levels) if the right coordinate system - ie. the right set of

basis functions - is used.

Examples of Basis Functions

Figure 1-6 is designed to clarify several different, important points about basis func-
tions. Figure 1-6 shows a cartoon graph (the heaviest line in figure 1-6A, B, C, and
E) and several linear (figure 1-6A, B, C) and non-linear (figure 1-6D, E) methods
of using basis functions to approximate the graph. Because the cartoon graph could
easily be something important for the nervous system, such as the muscle tension vs
time needed for a particular task, it is essential that the nervous system be able to
represent the graph with the firing levels of a finite number of neurons.

Figure 1-6A shows a series of boxes, each of which approximates the output value
of the graph. Each box is a different basis function. The basis functions are identical
except for their location along the Input dimension. If these boxes were infinitely thin,
they would be the standard set of basis functions called delta functions. The heights
of the boxes in figure 1-6A are the coordinates of the graph in this box coordinate
system. In the coordinate system defined by the box-shaped basis functions, the

coordinates of the dark-lined graph in figure 1-6A are (5.1, 5.4, 5.0, 3.0, 2.5, 2.1, 2.3,
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Figure 1-6: Representations of Functions Functions can be thought of as points in a
coordinate system. Several examples of coordinate systems for functions are shown.
(A) Box coordinate system. Each box is a basis function. The coordinates of the
dark-lined graph in the box coordinate system are (5.1, 5.4, 5.0, 3.0, 2.5, 2.1, 2.3,
3.0). (B) Gaussian coordinate system. Each parabolic bump is a basis function. The
coordinates of the dark-lined graph would be given by the heights of the bumps. (C)
Sinusoidal coordinate system. The dotted line shows the function given by a Fourier
approximated to the dark-lined graph. The Fourier decomposition of a function is
used to determine the function’s coordinates in the Fourier coordinate system. The
basis functions of the Fourier coordinate system are sinusoids. (D) Shape-changing
coordinate system. The made-up function in this figure changes shape dramatically
as the “height” parameter is changed. (E) Muscle tension coordinate system. The
firing rate of a motor neuron would give the coordinates of the dark-lined graph in
this coordinate system.
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3.0).

Figure 1-6B is like figure 1-6A, except the boxes are smeared together. Each of
the bumps is again a different basis function, and they again are only distinguished by
their location along the Input dimension. This style of basis functions, known as radial
basis functions, has been explored extensively in the neural network literature (Poggio
& Girosi, 1990). A few heavily overlapping basis functions can form surprisingly
accurate approximations. For instance, the models used to produce the force fields of
figure 1-7 are constructed from radial basis functions. I believe the spinal force fields
are analogous to radial basis functions. The spinal force fields overlap a great deal
and a few of them can be added together to produce a surprising range of force fields.
In other words, the spinal force fields themselves form a new coordinate system for a
representing force fields in the spinal cord.

Another important feature of basis functions is that a good set of basis functions
can capture most of the important behavior of a function with only a few numbers.
Figure 1-6C shows the approximation given by the first two terms of a discrete Fourier
transform of the graph. This approximation is contained in three numbers: the mean
value of the graph, the amplitude of the single-cycle sine wave shown in the figure,
and the phase (locations of the zero-crossings) of the sine wave. With these three
nu'mbers and the sinusoid functions, the dark-lined graph is approximated fairly well.

The basis functions of figure 1-6A,B,and C are used in linear approximations to
the graph. This means that the height of all of the basis functions are added together

at each Input value to produce the approximation:

N
Output(Input) = Y _ height; * Basis Function;(Input)

i=1

The linearity of the basis functions is tremendously valuable for use and learning.
Because the height of each linear basis function can be easily computed from the
graph being approximated, new graphs can be represented, learned, or controlled
in a linear basis function coordinate system. For example, in the finite-dimensional

coordinate systems, the height of each basis function is the projection of the point to
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be represented onto that dimension, so a cartesian coordinate like (3, 4, 5) expresses
the fact that the point at (x, y, z) projects onto the x axis as a vector extending out
3 units. The height of the boxes in figure 1-6A are, similarly, the projection of the
dark-lined graph onto each box/dimension/basis function.

The key feature of the linear basis function sets is that they do not change shape: 3
* basis = basis + basis + basis. If the output range of the dark-lined graph in figure I-
6 is on the order of 1 million physiologically relevant units, then the bumps in the
graph span thousands of units and therefore are probably important. In this case, we
want to increase the accuracy of the approximation by the basis functions, because
errors in the representation are probably physiologically significant. If, however, the
output range of the graph in figure 1-6 is only 1 or 2 relevant units, then the smaller
bumps span a negligible number of units and are therefore unimportant. Thus, as the
multiplier of the basis function (the coordinate value) increases, the output range of
the approximated graph is increased and new, previously negligible, details become
more important. For these reasons, it might be desirable to forgo linearity in favor of
shape-changing basis functions that change shape as their heights increase.

In figure 1-6D I have illustrated four levels of a single hypothetical non-linear basis
function. The panel shows one basis function that changes shape when its multiplier
changes from 1 to 4. When the multiplier is 4, the shape of the basis function is exactly
the same as the graph being approximated in figures 1-6A,B,C,E. We could not easily
find the height coefficients for basis functions like this: it is hard to determine the

right values for the coordinates (heights) in the non-linear equation

N
Output(Input) = Y _ height; » Basis Function;(height;, Input)

=1

The non-linear approximation has a benefit, however, in that the complex graph we
are trying to approximate has a simple representation in any set of basis functions
(coordinate system) that contains the basis function shown in figure 1-6D. For exam-
ple, if we use a coordinate system comprised of the box basis functions of figure 1-6A

and the shape-changing basis function of figure 1-6D, then the boxes would not really
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be needed to represent the dark-lined graph. We could set those coordinates to zero
and the complex function would have the simple representation (..., 0, 0, 0, 4, 0,
0, ...). This example is like representing the point (3, 4, 5) in a coordinate system
made of up (x, y, z) and another vector, Q, that points to (3, 4, 5). The (x, y, z, Q)
coordinates of the point (3, 4, 5) are be (0, 0, 0, 1).

In figure 1-6E shows a specific hypothetical example of a basis function repre-
sentation in the spinal cord. I have explicitly labeled the complex graph as Tension
vs Time. The basis functions in this panel are the kind of shape-changing tension
responses that muscles produce when activated by action potentials from motor neu-
rons. The vertical hash marks along the bottom of figure 1-6E indicate the timing
of hypothetical action potentials from the motor neuron which kick the muscle into
action. I have attempted to illustrate the importance of spike timing and frequency
on the tension output of the muscle.

The non-linearities of the basis functions in figure 1-6D,E are important to the
simulation results of chapter 2, in which I add together the forces produced by many
muscles. In other words, I model the muscles as linear basis functions, and the muscle
activation levels are the basis function multipliers. It is reasonable to add together
the torques produced by the muscles, because the torques sum at the joints. However,
the tension output of each muscle is a function of its activation level (see figure 1-6E,
or Partridge and Benton (1981)) so that a muscle force field as a basis function should
be more like the basis function of figure 1-6D than it is like the radial basis functions
of figure 1-6B. For simplicity, I have explicitly assumed that the muscle force fields
and the spinal force fields can be treated like the radial basis functions of figure 1-
6B. Current work is aimed at quantifying the errors introduced by that assumption

(Galagan, et al, 1995).

Computations in the Spinal Cord

The coordinate transformations and their Jacobians are matrices. It is easy and

common to think of values of a matrix as synaptic weights. The transformations

44



and Jacobians change with each change in limb pcsition. Synaptic weights could he
modified to reflect these changes in the transformations, but the known mechanisms
for rapid changes in synaptic weights involve inputs from other cells. Thus, the
coordinate transformations can be represented as matrices of values particular to the
current limb position, but the changes in those matrices would require some separate
representation of the coordinate transformation function. (Windhurst, et al, 1991)
The description of the state of each of the motor neurons is itself another repre-
sentation. In figure 1-5A we see that each motor neuron’s translation from input to
output is affected by the operating state. Some inputs change the cell’s states and
others affect its firing rate. The overwhelming majority of inputs to motorneurons
come from spihal interneurons (see Windhurst, et al, 1991). These interneurons can
control both the states of the motor neurons and the membrane potentials of the
motor neurons. In a sense there are two separate (at least) representations of mo-
torneuronal firing to be expressed in the interneuronal firing (Binder, et al, 1993). We
do not know yet if interneuronal stimulation is having its effects by imposing state

changes or membrane potential changes or both of these on the motor neurons.

Inverse Dynamics

Yet another aspect of dynamics is the problem of inverse dynamics. I define the

inverse dynamics of an arm as a function that maps a desired trajectory of the arm

toa séquence of neural impulses to the muscles. Returning to the example of reaching
out to touch an object, it is apparent how impossibly difficult the inverse dynamics
problem is. In order to get the hand to move along a trajectory from its starting
point to the object, a sequence of neural impulses must be sent to the muscles. As
the muscles contract they pull on the tendons which induce torques in the arm. As
the arm begins to accelerate, new interaction torques arise. Those interaction torques
and the changing configuration of the arm impose new conditions on the muscular
contractions needed to accelerate the arm along its path to the object. The muscles
are also changing length during this process, so the tension produced by impulses

going to the muscles are not what they were at the beginning of the problem. Despite
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this complexity, we are able to move.

It is not yet clear if the nervous system actually solves the inverse dynamics
problem. An alternative possibility is that we are only able to perform a restricted
sub-class of trajectories. [refer to representations in sentence here] The only hope for
distinguishing these possibilities is to observe regularities in the things the nervous
system can not do. Given a theory of how the nervous system represents its solution
to the inverse dynamics problem, failures can be interpreted as being consistent with
that theory or not. Ultimately, a representation of inverse dynamics that minimally
explains the capabilities of a nervous system can be examined with the question, “does
this representation restrict the system’s performance?” That question can be asked
of a mathematical/scientific model. It can not be asked of data. The performance
can only be used to build a model. My thesis is centered on testing an equilibrium

point theory (see below) of the representation of inverse dynamics.

An Equilibrium Point Theory

The idea behind the equilibrium point theory is that muscle tensions of opposing

muscles can be set to counterbalance each other, yielding an equilibrium posture
or position. A simple demonstration shows that we are capable of producing such
counterbalanced muscle contractions. Hold your arm out from your body with your
muscles relaxed. Now tense the muscles of your arm around one or more joints without
moving your arm. The fact that you can do this without the arm moving indicates
that you can increase the tension of many muscles acting on the arm in such a way
that the sum of the increased torque at each joint is zero. In other words, the current
position is maintained as an equilibrium point of the system.

As a theory of movement, the equilibrium point theory supposes that moving from
the current position involves commanding a new set of muscular contractions that
yield an equilibrium at the desired new position. Eventually, the arm will respond
to the new muscle tensions by accelerating in the general direction of the desired
new position and coming to rest in its general vicinity. To get a sense of this theory,

hold your arm out from your body and tense your muscles as before. Your arm is at
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equilibrium at position A. Now relax your muscles, move your arm to a new position,
B, and tense your muscles. The equilibrium point theory of movement states that
you moved from A to B by tensing your muscles as if you were maintaining position
B while you were still at A. The result was that your arm moved from A to B.

The equilibrium point theory of movement as expressed above is demonstrably
false. We move our wrist or fingers in straight cartesian lines throughout most of
our workspace. The equilibrium point theory predicts a circuitous cartesian route for
the arm, for several reasons. Setting the muscle tensions to a new level given by the
new position will produce torques that are proportional to the difference (between
the current and desired positions) in joint angles. All other things being equal, such
torques will move the arm in a straight line in joint space, which is quite distinct from
a straight line in cartesian space. We have also seen that accelerating the shoulder
causes torques at the shoulder from the relative motion of the forearm. In fact,
the way to move an arm in a straight line is to produce shoulder torques that look
roughly like a full cycle of a sine wave: it is necessary to pull first one way and then
the other. Such torques can not be produced by a simple, time-invariant energy well
at the desired final position. The dynamics of the arm are not such that the wrist
will be made to move easily in a straight line. The fact that we move in straight lines
demonétrates that we, somehow and to some level of accuracy, invert the dynamics
of the skeletal apparatus. Since, in its original form, the equilibrium point theory
was intended as an explanation of how the brain could avoid computing the inverse
dynamics of the arm, it cannot be correct.

It appears that most of the pieces of the solution to the inverse dynamics of the
arm are available to the brain. The fact that we move in straight lines indicates that
we invert the dynamics of the arm. I will present work in chapter 2 that adds support
to the notion that the spinal cord inverts the activation dynamics of the muscles. If
we can assume for the sake of argument that the spinal cord also inverts the velocity
dependence of the muscles, then every piece of the inverse dynamics puzzle is in place.
If indeed the brain does compute the inverse dynamics of the arm, then the question

becomes, how does the brain represent the solution to the problem?
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My thesis supports a more sophisticated version of the equilibrium point theory
in which the representation (see below) of the solution to the inverse dynamics of the
arm is constructed from simple combinations of equilibrium points. In the ecuilib-
rium point theory described above, the muscles act as a source of forces independent
from the arm. The 1act that the forces are being provided by the muscles does not
matter to the arm. We can retain this feature of the original equilibrium point theory.
Accordingly, the inverse dynamics preblem is divided up into inverse muscle dynam-
ics, inverse arm dynamics, and inverse world dynamics. Each part of the problem
requires some neural representation of the computed solution. [ provide results that
indicate that discrete classes of muscle combinations (that lead to particular equilib-
rium points) can be found in the spinal cords of decerebrate frogs. I will end with
preliminary results indicating that the forces produced by activation of some brain
regions can be expressed as combinations of the equilibrium points represented in the

spinal cord.

Overview of Previous Results from Spinal Micro-
Stimulation of Spinalized Frogs

Spinal stimulation experiments were recently undertaken in an attempt to elucidate
the coordinate transformations being performed by the frog spinal cord (Bizzi, et al,
1991; Giszter, et al, 1993; Loeb, et al, 1993; Saltiel & Bizzi 1994). These experiments
have demonstrated that the spinal cord of the frog contains a limited number of
“modules”. That is, we measured the hindlimb forces evoked by spinal interneuronal
stimulation, and observed that the evoked forces occurred in a few discrete clusters
of orientations (see figure 1-7). This result is unexpected because forces which result
from random activation of the frog’s hindlimb muscles do not fall into discrete clusters.
The structure of the hindlimb musculature does not, therefore, predict the striking
regularity we have observed after thousands of microstimulation experiments. The
small number of force patterns suggests that the spinal cord preferentially represents

a limited number of classes of muscle combinations. We theorize that the limited
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number of spinal modules serve as the basic building blocks of posture and movement
(Mussa-Ivaldi, 1992). Descending fibers from supra-spinal structures could conceiv-
ably activate simple combinations of the spinal modules in order to produce forces
that are not directly represented as modules. My thesis is devoted to formulating and
preliminarily executing a statistical test of that theory.

Figure 1-7 summarizes several years of spinal stimulation work performed by
several people. This section is an extended description of figure 1-7 and will dis-
cuss: force fields, the relationship between spinal loci and forces, force field equi-
librium, total force vs. active force, and our theory of force field summation. In
conclusion, I will discuss our efforts to relate the force fields of figure 1-7 to mus-

cle activations, which leads to the formulation of the statistical test of our theory.
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Workspace Distribution of 284 Spinal Equilibria

Spinal Force Field Models
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Figure 1-7: The five types of Force Field evoked by Spinal Microstimulation
The five types of Force Field evoked by Spinal Microstimulation We have generally
found that spinal microstimulation results in one of a few types of force field. In
this figure we see model force fields produced from 284 data force fields evoked by
spinal microstimulation (see chapter 2 for details on the construction and interpreta-
tion of this figure). The outlined regions are ellipses in joint space, centered at the
mean, and one standard deviation wide. The whale-like outlines in each of the plots
is the boundary of the workspace of the right hindlimb: it is a square in joint space
from hip = —110° to hip = 80° and from knee = 0° to knee = 180°. “Hip”, “Belly”,
and “Nose” are used to indicate the direction that the frog’s body is oriented. The
X and Y axes are in units of millimeters. The frog’s hip is located at 110, -140, and
the link lengths are thigh=60, calf=60. These were the-somewhat arbitrarily chosen
parameters of a standard frog. Since our force field models were always expressed as
torques, we were able to convert them to any link lengths for any frog. (A) Rostral
Flexion. There are 21 force fields of this type in the database. (B) Body Flexion.
This is the most common type of spinal force field. There are 135 force fields in the
database of this type. (C) Wipe. There are 36 force fields of this type in the database.
Two of these 36 force fields were evoked by electrically stimulating the ankle of the
contralateral hindlimb. Both skin-stimulation force fields “look like” spinally-evoked
Wipe force fields, and they correlate best with the Wipe aggregate force field (the
force field shown here). The field correlation coefficients are 0.8 and 0.9. (D) Lateral
Extension. There are 57 force fields of this type in the database. (E) Caudal Exten-
sion. There are 30 force fields of this type in the database. (F) The full distribution
of all of the spinal equilibria in our database. Each equilibrium point is marked with
the letter of its classification.
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Force Fields

Panels A through E in figure 1-7 show force fields. A force field is a vector-valued
function relating force to limb position. Each arrow in figure 1-7A-E represents a force
at a limb position. We measure force fields by stimulating at a single location with the
frog’s hindlimb held successively at several different positions by a force sensor. Force
fields can be accurately approximated with measurements of hindlimb forces only if
the same behavior can be repeatedly evoked with the hindlimb in different positions
This generally seems possible: when we have measured forces at large numbers of limb
positions, the observed force fields have been smooth - meaning that neighboring limb

positions yield nearly identical evoked force measurements (Loeb, et al. 1993).

Spinal Loci of the Force Fields

The force evoked by micro-stimulation depends on the the location of the stimulating
electrode. We are investigating the fine structure of the map relating electrode loca-
tion to evoked force (for lumbar spinal loci: Giszter, et al, in preparation; for cervical
spinal: Galagan, unpublished observations; for supra-spinal loci: Loeb, et al, 1995
and chapter 4). We can generally evoke forces in extension by stimulating caudally
in the interneuronal grey matter of the lumbar spinal cord. We can evoke flexion
forces with rostral lumbar interneuronal electrode placements. Different subtypes of
force field (see figure 1-7) are evoked by rostrocaudally oriented stripes in the spinal
cord. OQur low current stimulation would not be expected to activate an entire strip.
By observing the uptake of an activity-dependent dye during stimulation at a single
locus, Giszter, et al (1993) found that the activated interneuronal volume appears to
correspond to a rostro-caudal strip. This finding underscores our interpretation of

the anatomical strips as the neuronal basis of processing modules of some kind.

Force Field Equilibria

Figure 1-7C is a particularly striking example of a force field with an equilibrium

point. We can see that this force field has an equilibrium point because all the forces
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point toward the same place, the “W”. It is important to know the locations of force

field equilibria, because an equilibrium point represents the location towards which

the ankle would tend to evolve under the influence of the force field.

Resting, Evoked, and Total Forces

In analyzing force fields, we distinguish between total force, resting force, and evoked
force. The resting force is the force field measured without any stimulation. The
total force is the actual force measurement before and during stimulation. The
evoked force = total force — resting force. This definition is reasonable, because
at any given limb position the resting force returns to the same baseline level on
successive trials (Loeb, et al. 1993). The evoked force field is more reliable measure
for quantification than total force field for several reasons. The resting forces include
uninteresting variable factors like occasional force exerted by the frog’s toes on the
experimental apparatus. The resting forces often are not repeatable from trial to
trial. The evoked forces are remarkably repeatable. Furthermore, the evoked forces
tend to rise and diminish in magnitude along a single orientation, so that the evoked
force field at time 1 is proportional to the evoked force field at time 2. As a corollary
of that observation, the total forces rotate during a trial: the total force initially
points in the direction of the resting force, then rotates toward the peak evoked force,
then rotates back to the resting force. Thus, the evoked forces can be more easily
summarized than the total forces. Increasing the stimulation strength increases the
magnitude of the evoked force but generally does not change its angle. Thus, an
evoked force field at one stimulation strength is a multiple of the evoked force field
at a different stimulation strength (but same electrode location). Because this is true
of the evoked forces it can not be generally true of the total forces. The discrete

patterns of forces shown in figure 1-7 are evoked forces.

Force Field Summation

The force fields evoked by focal stimulation of the spinal cord follow a principle of

vector summation. If FF1(x) is the evoked force field from spinal site number 1, and
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FF2(x) is the evoked force field from spinal site number 2, then the force field evoked
by stimulating spinal site 1 and spinal site 2 simultaneously will be highly similar
to FF1(x) + FF2(x) (Mussa-Ivaldi, et al, 1994). The sum of force fields is given by
the sum of the component forces at each limb position, x. The functional implication
of force field summation is that all non-linearities are either eliminated or carefully
organized by the spinal modules to preserve linearity. It is easy to concoct examples of
plausible non-linearities. For example, if FF1 inhibited some of muscles of FF2, then
the forces produced by FF2 under co-activation with FF1 would generally not have
the same orientation as the forces of FF?2 alone. Thus, inhibition of motorneurons -
a common spinal phenomenon - can interfere with force field summation. The fact
that we observe summation suggests that the spinal cord is specifically organized to
support it.

The surprising fact of linear superposition of spinal force fields leads to the hy-
pothesis that the spinal force fields are the basic elements of posture and movement.
According to this hypothesis, the few active force fields represented in the spinal cord
are motor primitives which are combined through linear superposition to fashion other
postures and complex movements. An important prediction of this hypothesis is that
the behavibrs of intact frogs should be restricted to actions that can be decomposed
into spinal force fields. I have constructed statistical models of the spinal force fields
(figure 1-TA-E) that will be helpful in identifying specific aspects of the hindlimb
movement “incompetence” that intact frogs should exhibit if our theory is correct.
That is, simple simulations can help identify the movements or postures that are

theoretically impossible.

Relationship to Behavior

The spinal force fields of spinalized frogs are strikingly similar to the behaviors pro-
duced by spinalized frogs. Figure 1-7A summarizes Rostral Flexion force fields. These
force fields appear to drive the hindlimb into the preparatory stance that the frog as-
sumes prior to wiping noxious stimuli from its back or head. Figure 1-7B summarizes

Body Flexion force fields. These force fields appear to drive the hindlimb into the
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neutral posture that spinalized and intact frogs maintain at rest. Figure 1-7C sum-
marizes Wipe force fields. These force fields appear to drive the hindlimb to the
position behind the body that both hindlimbs go to when one limb is needed to wipe
a noxious stimulus off of the other. Figure 1-7D summarizes Lateral Extension force
fields. These force fields appear to drive the hindlimb toward the power portion of
its stroke during swimming. Figure 1-7TE summarizes Caudal Extension force fields.
These force fields appear to drive the hindlimb behind the body in jumping and
swimming.

It is not yet clear what conclusions should be drawn from the similarities between
spinal force fields and the behaviors of spinalized frogs. I show in chapter 2 that
the spinal force fields are also similar to the force fields produced by the muscle
combinations that are least altered by changes in the balance of the muscle activations.
In other words, there are some combinations of muscles that produce nearly the same
force field no matter how much the different muscles in the combination are activated.
I suspect that this biomechanical fact is related to the behavioral needs of the animal:
the common behaviors that the animal produced became stable points of the co-
evolving muscular system. Are the force fields underlying those behaviors also used
as building blocks by the rest of the brain? My preliminary results suggest that in
fact the spinal force fields are used building blocks (chapter 4). The most reasonable
alternative is that we are activating behavioral subsystems witkin the spinal cord.

There is a precedent for a behavioral circuit in the spinal cord being selectively
used as a component in a different behavior. The C3-C4 interneuronal circuits for
reaching and retrieving have been described in the cat spinal cord by Alstermark and
colleagues (Alstermark & Lundberg 1992). The two spinal circuits can be differen-
tially isolated from descending control and differentially lesioned. The authors have
shown that one spinal circuit is necessary for the cat to perform a precision reach
for food. Significantly, these two circuits have been shown to be distinct from the
spinal locomotion generators: when cats walk normally, the C3-C4 interneurons are
not active. However, when cats walk on horizontal ladders (a task which requires

something like a precision reach at each step) the C3-C4 interneurons are active.
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Muscle Force Fields

The force fields of muscles were measured by stimulating the muscles directly (Giszter,
et al, 1993). In these experiments, forces were measured at the same 9 limb positions
during stimulation of each of 11 muscles in turn. Because the same 9 positions were
used, the force fields resulting from random muscle activations could be be computed
at those 9 positions. The force fields predicted by these random muscle combinations
rarely (8%) converged to equilibrium points within the workspace. I repeated these
random simulations (and the muscle stimulations)- with similar results - in chapter 2
using statistical models of the muscle force fields constructed from more data collected
over a larger portion of the workspace.

The advantage of using muscle models rather than actual muscle stimulation data
is that the models can be sampled at any workspace location. This advantage thus
allows more sophisticated questions to be addressed with simulations. It also allows
the models themselves to be rigorously tested and improved. For example, it is
desirable to know how well a model generalizes. In order to find that out we have to
be able to form predictions at new limb positions; otherwise we are simply measuring
the repeatability of the underlying data. By measuring the ability of a model to
predict new data, I measured the model’s success at generalizing from the available
data. I subsequently used the types of muscle models that best predicted new data.

The original point of the computer simulations of muscle combinations was to rule
out random muscle combinations as a source of the regularity in our spinal stimulation
results. A question remains, however: do the biomechanics of the hindlimb dictate
our results and to what extent are the results imposed by the neural circuitry. This
is a difficult question to address, because the spinal circuitry presumably co-evolved
with the hindlimb musculature.

In chapter 2 I present simulation evidence to suggest that the spinal force fields
are dictated in part by biomechanical preferences of the skeletal muscular system. |
measured the two-dimensional area in the workspace that each possible combination
of muscles (each synergy) covered with equilibrium points. The synergies that covered

the smallest area covered places in the workspace like those shown in figure 1-7. This
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is my favorite result of the thesis. It suggests that the spinal force fields are related

to the combinations of muscles that are most robust in the face of noise.

Tests of the Force Field Summation Theory of Supra-Spinal

Control

Descending fibers from supra-spinal structures could conceivably activate simple com-
binations of the spinal modules in order to produce forces that are not directly rep-
resented as modules in the spinal cord. One problem for this theory is that the
observed spinal modules could be artifacts of spinalization, since our data on spinal
modules were collected by stimulating spinal cords that were surgically isolated from
the rest of the brain. To address this issue directly, I stimulated the spinal cords of
decerebrated, deafferented frogs in order to determine if modules are observed in the
presence of supra-spinal descending fibers (chap 3). I found at least one example of
each of the force field types shown in figure 1-7, indicating that these modules are
not artifacts of spinalization.

Another way to test this theory is to decompose supra-spinal force fields into
spinal force fields. The summation theory predicts that much of the variance in supra-
spinal evoked force fields should be accounted for by the spinal force fields. In order to
determine how much “much of the variance” is, we can compare the decomposition by
spinal force fields to a decomposition by muscle force fields. This comparison asserts
a simple null hypothesis: supra-spinal force fields are the result of the activation of
motorneurons. The alternative hypothesis that we wish to test is that supra-spinal
force fields can only activate the muscles through a particular intervening structure
imposed by the spinal cord. I have performed this test on approximately 30 supra-
spinal force fields. These preliminary data indicate that there are some supra-spinal
regions that recruit motor neurons and others that operate through the intermediaries
of spinal force fields. We can eventually compare these results to the known anatomy

as an independent assessment of the validity of this test.
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Chapter 2

Muscle Model Force Fields and
their Application to the Problem
of Understanding Muscle

Synergies

Introduction

Recent experiments have shown that the hindlimb endpoint force evoked by micro-
stimulation in the interneuronal grey of spinalized frogs vary in predictable ways
with the stimulation locus and the hindlimb posture (Bizzi, et al, 1991; Giszter, et al,
1991; Loeb, et al, 1993). The spatial variations in the forces have been summarized as
“force fields”. A force field is a vector-valued function relating force to limb position.
We approximated force field functions by measuring hindlimb endpoint forces evoked
at different limb positions through micro-stimulation at a single spinal interneuronal
locus. We found that there were a small number of different force fields (FF's) that
could be evoked at different spinal loci (summarized in figure 1-7). We have also found
that the FF's resulting from micro-stimulation at multiple spinal sites is predicted by

the vector sum of the spinal FF's associated with each of the stimulated spinal loci.
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These results suggest that supra-spinal circuits could control the limb by activating an
appropriate relative balance of spinal FF's (Mussa-Ivaldi, 1992). Indeed, I have found
that supra-spinal sites can be stimulated to produce FF's unlike those observed during
spinal stimulation, and the FFs evoked by spinal micro-stimulation in deafferented,
decerebrate frogs are not altered by spinal transection (see chapter 3). To test the
possibility that supra-spinal FFs are produced through simple linear combinations
of spinal FFs, I built muscle model force fields (muscle FFs) for each of the frog’s
hindlimb muscles. If spinal FF's suffice to predict supra-spinal FFs, then a decompo-
sition of any supra-spinal FF into spinal FFs should be statistically indistinguishable
from its decomposition into muscle FFs. This chapter describes the muscle model
force fields and the uses I made of them.

I used models to obtain simple, analytic functions for each muscle. A muscle
model force field is a summary of the position-dependent endpoint forces - the force
field - resulting from the activation of a single muscle. Any muscle model that
can predict the muscle torques or endpoint forces at arbitrary limb postures can be
visualized as a force field. Muscle modelling is typically separated into two problems:
modelling muscle moment arm, v(6) as a function of joint angles, 8, and modelling
the magnitude of muscle tension, M(, i,a,t), as a function of the muscle length,
[, muscle activation, a, and time, ¢t (Loeb, et al., 1989, Zajac and Winters, 1990).
Fitted parametric models of M(l, [, a, t) have typically been combined with geometric
estimates of v(f) to estimate net joint torques from EMG signals (Buchanan,et al,
1986; Granata and Marras, 1993; Hof and Ven Den Berg 1977, 1981a-c; Cholewicki
and McGill 1994). In this work I have for simplicity used a static model of the
muscle tension, M(!), and combined it with a novel fitted parametric model of v(8).
Well-understood dynamic models of the muscle tension can be added to this model
(Galagan, et al, 1995). My approach to modelling v(6) is novel, because parametric
techniques have not previously been used to find v(0), and because the structure of
my model mimics the structure of the muscles, yielding an estimate of muscle length
as a by-product. Muscle length is generally estimated as a hidden state variable

of dynamic muscle models, or else determined experimentally through dissections
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(Buchanan,et al, 1986; Granata and Marras, 1993; Palmer 1990; Hof and Van Den
Berg 1981). The typical approach of estimating v(8) from geometric principles and
from cadaver measurements of muscle geometric parameters is a potentially large
source of noise in many muscle models (Winters and Stark 1988). Because of the
complex connective geometries of muscles, the geometric parameters are difficult to
measure, and the application of geometric principles is either difficult or inaccurate.

There is a recognized need for more studies of the mechanical effects of muscle
synergies and their uses by the spinal cord (Buchanan, et al., 1986; Loeb, 1987). Dy-
namic optimization is considered to be the best available approach for using muscle
models to understand muscle synergies (Zajac and Winters, 1990). Dynamic opti-
mization is an expensive computation, however, that requires researchers to limit the
problems they study - by only considering, for example, how to stabilize a single
posture (Loeb, et al, 1989). Furthermore, even if a particular optimization provides a
good match to available data, it does not necessarily imply anything about the spinal
circuitry (Hardt, 1978). A computationally cheaper method of using muscle models
to formulate inférences about spinal circuitry would be desirable. In this chapter I
describe Monte Carlo simulations (Press, et al, 1992) used infer the range of possible

actions that each muscle synergy could perform.

Methods

Data Collection

Surgeries

24 healthy adult bullfrogs (Rana Catesbiana) were anesthetized with 0.5 - 1.5 cc
tricaine and spinalized anterior to the first vertebra. The right hind limb was skinned
and coated with vaseline to keep the muscles moist. Superficial fascia were cut to
allow access to deep muscles and nerves. All large nerves were cut and removed to
sever the reflex arcs and to prevent the stimulus applied to one muscle from spreading

along the nerves to other muscles.
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Pre-experiment Preparation

Spinalized frogs were placed on a moistened molded plastic frame and secured in place
by clamps attached to the hip and spinal column. The position of the frog’s hip in
the apparatus and the length of its right hind limb segments were measured. The
right ankle was attached to a movable force sensor (figure 2-1A and 2-2A) by a cuff
capable of rotating about the Z axis, or of being secured in place so that it could not
rotate. The force sensor is attached immediately above the frog’s ankle; the sensor

coordinates correspond to ankle positions.
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Figure 2-1: Processing Sequence for Force Data

This figure illustrates the processing steps taken to convert the force data from muscle
stimulation trials into torque data. (A) A frog is drawn with its hindlimb at a hip
angle of —36° and a knee angle of 87°. A hip angle of 0° would cause the thigh to be
parallel to the x axis. These joint angles bring the ankle to the location (110, -30) in
the workspace. Ankle positions are measured in millimeters relative to the base of the
force sensor apparatus. The spring symbol is meant to represent a muscle. The large
arrow indicates that the muscle is stimulated. A force sensor attached at the frog’s
ankle records the translational (x,y,z) forces resulting from the muscle stimulation.
(B) The (x, y) force traces recorded during muscle stimulation are displayed. I have
not analyzed the z forces in this work. Forces are sampled every ten milliseconds.
The force values are translated into hip and knee torques, using the the derivatives of
the functions relating the (x, y) location of the ankle (that’s (110,-30) in this figure)
to the angles of the hip and knee joints (that’s (—36°,87°) in this figure).
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Figure 2-2: Measuring a Torque Field to Fit a Muscle Model

This figure illustrates the processing steps taken to convert the data from muscle
stimulation trials into a force/torque field. (A) A frog is drawn with its hindlimb
at a hip angle of —26° and a knee angle of 58°. These joint angles bring the ankle
to the location (117, -33) in the workspace. The spring symbol represents the same
muscle as shown in figure 2-1. Note that at this new limb position, the length of
the spring/muscle has changed from its length in the previous figure. The large
arrow indicates that the muscle is again stimulated. A force sensor attached at
the frog’s ankle records the translational (x,y,z) forces resulting from the muscle
stimulation. (B) The recorded (x,y) force traces and corresponding (hip, knee) torque
traces are here plotted as sequences of vectors. These vectors are “active” or “evoked”
forces and torques, in that their baseline levels prior to the onset of stimulation was
subtracted away. The vector with the peak magnitude in each of the two sequences
is highlighted. (C) By collecting together the peak force (torque) vector at each limb
position (posture), a force (torque) field is constructed. The highlighted peak vector
from part (B) is also highlighted in the two fields. The force field (and corresponding
torque field) are the actual data measured during Semimembranosus stimulation in
eight frogs, also displayed in figure 2-12.
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A pair of “fishhook electrodes” (stainless steel wire threaded through a syringe,
with exposed wire at the tip bent back to form a hook. (Crago, et al. 1980)) were
placed in each muscle under a dissecting microscope. Stimulus voltage was set at the
start of the experiment to evoke a visible, sub-maximal muscle contraction without
causing contractions in any other muscles: the surgical isolation of the muscles made
it possible to verify isolated responses visually. Other stimulation parameters were

fixed at 0.6 msec pulses width, 600 msec train duration, and 40Hz.

Recording Force Fields

We measure muscle force fields by stimulating one muscle with the hind limb in each

of many positions. Thus we followed this simple procedure:
1. Secure the ankle cuff in the force sensor.
2. Stimulate the cord while measuring force.
3. Release the ankle cuff for rotation and move the limb to a new posture.

4. Repeat procedure at the next limb posture.

The force sensor was attached immediately above the frog’s ankle, so the sensor’s
(x,y) coordinates correspond to the frog’s right ankle position. I did not change the
z coordinate of the ankle in this experiment. As the muscle contracts and relaxes
in response to stimulation, the force sensor records x, y, and z forces as functions
of time. A measured force field consists of 3 force traces per ankle position together
with the (x,y) location of the ankle at the time the forces*were measured (see figure 2-

1A and 2-2A).

Force Filtering

Data from a single trial consisted of three force traces (x, y, and z vs. time) from one
muscle at one position as a result of one stimulus train. Every force trace had two
parts: “resting” and “active”. Because we always begin collecting the force traces

before the stimulus onset, the first 50 to 100 milliseconds of the force traces represent
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an estimate the resting (baseline) force levels. We compute the active force traces by
subtracting the resting force level from the total force evoked by the stimulation of
the muscle. For example, the active y-force trace for a muscle was its total y-force
trace minus its resting y-force value. Forces were digitized and recorded in units of
0.00125 Newtons.

The (x,y,z) active forces form a time-varying 3-dimensional force vector, the Active
Force Vector, AFV(t). The time-varying force vectors sampled at each of the limb
positions form a time-varying Force Field, FF(x, y, t). During muscular stimulation,
the time-varying forces always rise and fall along a single orientation, so that AFV(tl)
x AFV(t2). Therefore, FF(x, y, t) can be well-approximated by FF(x, y), a time-
invariant force field !. At each sampled position, I used the peak of the time-varying
force vector at that position, max; || AFV(t)||, as the force vector in the time-invariant
force field, FF(x, y) (see figure 2-2C). Although the forces of FF(x, y) are three-

dimensional, I only consider the two-dimensional (x, y) forces in this chapter.

Conversion to Torques

In order to compare the results of muscle stimulation across animals, the measured
forces were converted to joint torques. Expressing the endpoint forces as joint torques
removed the component of variation due to the inter-frog differences in leg lengths.
Consider figure 2-3, which displays force fields corresponding to constant joint torques.
Variations in the forces in figure 2-3 are strictly due to variations in the position-
dependent translation from torques to forces. The forces resulting from hip torques
lie along the direction of the calf. The forces resulting from knee torques lie along

the line connecting the hip and the endpoint.

! We generally find that the latency to peak force is nearly constant across the workspace. Force
fields produced by sampling the data at a single latency applied across the workspace (eg, FF(x,
y) = FF(x, y, t0)) are similar in most cases to those achived with the peak-force method described
here. In other words, FF(x, y, t) may be decomposed as FF(x, y) * G(t).
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Figure 2-3: Force fields resulting from Constant Torques Four force fields are shown.
A force field is a vector-valued function relating force to limb position. Each arrow
represents an endpoint force. The base of each arrow is at the workspace location
of the vector-valued function. The size of the arrowheads are proportional to the
size of the force. Each arrowhead is on the side opposite the base of the arrow - ie
these are not pin cusion diagrams. These force fields were generated by (A) constant
knee flexion torque, (B) constant knee extension torque, (C) constant hip flexion
torque, and (D) constant hip extension torque. Thus, the arrow at each x,y location
in these four panels indicates the magnitude and orientation of the force resulting
from a given amount of single joint torque, which is constant over the entire plot.
Because the torque is constant, and force is the product torque and the Jacobian of
the mapping from joint space to cartesian space, the magnitude changes across the
workspace are due only to the changes in the determinant of the Jacobian. Note that
the forces resulting from hip torques lie along the direction of the calf. The forces
resulting from knee torques lie along the line connecting the hip and the endpoint.
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Models of the Force Fields Produced by Muscles

The rationale for establishing model muscles rests upon the need to obtain for each
muscle simple functions that can be manipulated analytically. In order to find simple,
accurate functions, I fit statistical models to the data. There are infinitely many
possible parameterized model types one might use, and each model type can have
infinitely many different parameter vectors. For a given model type, I found a good
parameter vector by adjusting parameters so as to minimize the total error between

the model-predicted values and the experimentally-observed values (see figure 2-4b).

Choosing the Right Model Type

I wished to find a model type that could produce muscle models that would predict
the results of muscle stimulation in a new, previously un-observed frogs. To test the
generalizability of a model type I used the Jackknife technique (Efron and Tibshirani,
1993), on a data set of force fields observed during Semimembranosus stimulation in
10 frogs. The Jackknife technique involved computing the parameters for a model
type under consideration from the force data of 9 of the 10 frogs. Computing the
parameters resulted in a muscle model of the Semimembranosus muscle, from which I
computed the prediction error on the Semimembranosus force data of the remaining
frog. These two steps were performed 10 times (once for each frog in the database)
to compute the average prediction error over the dataset.

Table 2 shows the prediction errors for several muscles and model types. The
prediction errors are measured as root mean square errors and as correlations. Small
root mean square errors and large correlation values indicate that a model generalizes
well over new data. The virtual work muscle model is described in detail below.
Table 2 shows that the virtual work model can be expected to have the smallest

prediction error on new force fields evoked from new frogs.
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Figure 2-4: Steps involved in statistical modelling (A) Tkere are infinitely many pos-
sible model types. Each model type performs a different computation as a function of
its inputs and its parameters. Each model type can be used to implement infinitely
many different computations, or models, by supplying different sets of parameters.
(B) For a given model type, a good set of parameters can be determined by adjusting
- the parameters so that the input-output behavior of the model most closely approx-
imates some desired input-output behavior. The behavior of a hypothetical model
X is displayed at 2 values (1 and 7) of its parameter and at 4 values of the input
variables, hip angle and knee angle. The desired behavior of the model is shown in
the left-most section of the table. The top line shows that the desired output at Hip
angle = 30° and Knee angle = 90° is Hip Torque = 150. When the model parameter
is 1, the Hip Torque at (Hip, Knee) = (30°,90°) is 120, for an error of 30. When the
model parameter is 7, the Hip Torque at (Hip, Knee) = (30°,90°) is 170, for an error
of -20. The sum of the square errors over all 4 limb positions is the error criterion that
we try to minimize by adjusting the parameters. In the table, 7 is a better parameter
than 1, because 1550 < 4650. The next step in the process would be to compare the
total error around 7, say at parameter = 4.5 and at parameter = 9.5. By continually
moving the parameters in the direction that reduces the total error, we ultimately
arrive at a local minimum in the total error.
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Muscle | N Mean Torque FF Linear Torque FF 9 Gaussians Gated Experts  Virtual Work
SM 9 4.32 (66%) 3.87 (68%) 467 (T7%)  2.55 (79%) 2.27 (87%)
SA 9  4.45 (73%) 3.73 (73%) 3.69 (78%) = 2.65 (76%) 2,49 (79%)
ST 5 2.22(72%) 2.85 (83%) 2.41 (87%) - 1.56 (83%)
AD 7 6.29 (T1%) 6.2 (67%) 4.16 (69%)  1.66 (66%) 1.59 (68%)
VI 8  2.88 (59%) 3.36 (52%) 3.5 (65%) - 2.13 (55%)
P 6  2.85 (44%) 3.27 (51%) 2.78 (58%) - 2.71 (57%)
VE 6 3.57 (82%) 3.63 (75%) 2.25 (78%) 2.5 ("8%) 2.45 (80%)

Jackknife errors for 5 Model Types: Root mean squared error and mean force field correla-

tion (see below) are displayed for seven hindlimb muscles. The force field correlation of field
A and B will be the correlation value for the vectors (z14,224,...2N4,yl4,¥24, - yN4)
and (zlpg,z2pg,...zNB,ylp,y2B,---yNp), where xi, is the x component of the force at
position i of field A. The force field correlations are shown in parenthesis. Good general-
ization is indicated by low squared errors and high force field correlations. For example,
the Mean Torque FF model type would be expected to have a root mean square prediction
error of 4.32 on new Semimembranosus force field data, whereas the Virtual Work model
(described below) would be expected to have an error of 2.27 on the same data. The Mean
Torque model predicted joint torques as the mean of the observed joint torques. The Linear
Torque model predicted torque as a linear function of the joint angles. The 9 Gaussians
model (Mussa-Ivaldi, 1992) and the Gated Experts model (Jacobs, et al, 1991) are described
elsewhere.

I approximated muscles as single force fields throughout this work, because I was
unable to distinguish functional sub-units in any muscles. I examined the force fields
evoked by stimulating different portions of muscles BI, GA, PE, RA, SA, SM, and
VE (Biceps Femoris, Gastrocnemius, Peroneus, Rectus Anticus, Sartorius, Semimem-

branosus, and Vastus Externus, respectively).

The Virtual Work Model Type

I used a virtual work model to compute muscle length as a function of limb position
(Mussa-Ivaldi, 1992). A virtual work model finds parameters for a muscle length
function so that the spatial gradient of that function best predicts the observed joint

torques. The spatial gradient of muscle length is related to jeint torques because

69



torques and forces are locally linearly related by the first derivative of the intervening
coordinate transformation. This linear relation can be derived from the invariance of

work (force times displacement) with respect to coordinate transformations:

muscle work = muscle tension Al = skeletal work = 7T 9 (2.1)

T = (%)Ttension = (Volength(6))Ttension = Jm(0)Ttension = v(@)M(l, i,a,t)(2.2)
In equations 2.1 and 2.2, 8! is an infinitesimal change in muscle length and 89 is an
infinitesimal change in the angles of the skeletal joints. 7 (and 77) is the vector of
joint torques at the skeletal Joints. J.,(0), is the 1x2 vector of partial derivatives of
the scalar length(6) function with respect to the vector of joint angles, 4. Jm(0) is
also written above as the gradient of the length function: (Velength(6))T. As before,
v(0) and M(l,1 a, .t) are the moment arm and tension magnitude of the muscle,
respectively.

The coordinate transformation for a muscle is the function, length(6), that com-
putes the length of the muscle from the joint angles, 6. The first derivative of the coor-
dinate transformation, Jm(8), is the 1x2 vector of partial derivatives of the length(6)
function. Jn(9) is a 1x2 vector because length is a one dimensional quantity, and
there are two joint angles (hip and knee) in the 6 vector in this experiment.

I modeled the muscle length as a function of § and model parameters, p. I was able
to compute J,,(6) symbolically at all joint angles, 4, from the values of the parameters
of the length model. I also computed a value for the muscle tension from the length
function. So, the parameters, p, produced a length function, length( | p) from which
I computed JZ (6 | p) * tension(length(9 | p)) at all samyled values of 4. The errors in
the equations

torque = JI(0 | p) tension(length(9 | p))

were then used to update my parameters for the length(8 | p) function. This general

approach could be used with any number of different parameterized length(6 | p)
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functions. I used a sinusoidal length(8 | p) model (Lieber & Showmaker, 1988a,b):

length(hip angle, knee angle) =

LO + Ap * cos(freqy, * hip + phip) + Ay * cos(freqy * knee + phiy)
tension(hip angle, knee angle) = scale * sigmoid(length)

There are 8 parameters in this length model: LO, Ay, freqy,, phiy, Ay, freqy, phi,
and scale. The sigmoid in the tension function approximates the known length-
tension properties of muscles (Rack and Westbury, 1969). The parameters with the
“h” subscript refer to the part of the length function that depends on the hip angle.
The parameters with the “k” subscript refer to the part of the length function that

depends on the knee angle. The parameters are adjusted until

Torquehip = tension * al;;lig;h = —tension * Ay, * freqy, * sin(freqy, * hip + phiy,)
Torquey oo = tension * a‘;er:iih = —tension * Ay * freqy * sin(freqy * knee + phiy)
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Table 2 shows the fitted values for 17 muscles in the frog hindlimb.

Muscle | L0 A freqx phi, Ay freqy phi,, scale
AD -0.36 2.71 -0.894 0.826 5.37 0.702 -1.07. 1060

ADI -1330 0.353 1.48 -2.5 1330 0.023¢ 0.061 2720

BI 2790 3340 0.14 2.14 -160  2.09 3.65 3.47

GA 140 4.87 -1.64 2.62 153 0.0658 2.73 454

[P 246 -1.04 199 -1.1 10.4  0.634 1.43 969

PE 239 7.25 -0.888 2.43 386 0.613 255 1050

PT -604 782 -0.0286 -0.0912 527 0.042  0.0.046 3540

PY 1380 1570 0.0186  6.16 2950 0.0228 3.2 99.5

QF -10.1  0.789 -1.06 3.18 -0.486 0.612  4.18 1.73e+08
RA -4940 0.459 -1.1 -2.94 4930 0.0153 0.03 4.69e+06

RI 394 .13 -1.13 0.832 403 0.0371 -2.91 5570
RIm -149  -156  -0.0626  3.22 -7.64 -0.657 -0.908 1100

SA -5.74 0.149 1.08 -0.591  0.263 0.912  2.07 5.54e+06
SM 656 1.88 1.6 2.45 -841  -0.0146 5.59 1610

ST 1.51 0.956 1.45 -1.06 145 0.85 -1.5 4250

VE -22 32.6 0.272 5.35 237 -1.03 -1.98 820

VI -4180 -4170 -0.00772 3.17 1.61 0451  2.73 9.64e+06

Virtual Work Muscle Model Parameters for 17 Frog Hindlimb Muscles The muscle abbre-

viations are AD = Adductor Magnus, ADl = Adductor Longus, BI = Biceps Femoris, EC
= Extensor Cruris, GA = Gastrocnemius, IP = Ilio-Psoas, PE = Peroneus, PT = Pec-
tinius, PY = Pyriformis, QF = Quadratus Femoris, RA = Rectus Anticus, RI = Rectus
Internus, RIm = Rectus Internus Minor, SA = Sartorius, SM = Semimembranosus, ST =
Semitendinosus, VE = Vastus Externus, and VI = Vastus Internus. The subscripts “k” and

“h” refer to parameters of the sinusoids in the knee angle and hip angle, respectively.
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Muscle Models used to Predict Forces from EMGs Evoked
by Spinal Microstimulation

In previous work we have described the forces and force fields measured during spinal
micro-stimulation (Bizzi, et al; Giszter, et al; Loeb, et al). The methods used to
record the force fields evoked by spinal stimulation are the same as those described
above for recording the force fields evoked by muscular stimulation. During spinal
microstimulation we also recorded EMG signals from the hindlimb muscles. We have
found that spinal micro-stimulation in the interneuronal layers of the frog spinal cord
evoke a small number of different force field shapes, shown in figure 1-7. The whale-
shaped boundaries in figure 1-7 are squares in joint space indicating the limits of the
reachable workspace.

I refer throughout this chapter to two databases of force and EMG data measured
during stimulation of spinalized frogs. The Mapping Database, used for validating the
muscle models (see below), consists of 3036 stimulation trials evoked at 759 different
loci in the interneuronal grey of 4 spinalized frogs with the limb held at a single posture
(hip=—45°,knee=70°). Each spinal locus was stimulated at 1, 2, 4, and 8 guAmps,
but I only make use here of the forces and EMG data observed at 8 pAmps. (see
Giszter, et al. 1995). The Force Field Database, used to construct models of spinal
force fields (see below), consists of 344 force fields (approximately 3100 stimulation

trials, at 9 trials per force field) evoked at 93 loci in 27 frogs.

73



EMG Signals recorded during spinal stimulation
multiply the force vectors predicted for the corresponding muscles
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In order to validate the virtual work muscle force field models described in the
previous section, I used the models to predict the endpoint forces in the spinal stim-
ulation Mapping Database from their associated EMG signals.. [ used these EMG
signals that were evoked at a single limb posture during stimulation at many spinal
loci to predict the forces. I predicted observed forces in order to quantify the overall

accuracy of the force field muscle models. Thus, I made the simplifying assumption
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Figure 2-5: Reconstructing Forces from EMGs

Force prediction is almost as simple as multiplying model-predicted force vectors by
their respective EMG signals and then adding up all those products. The three boxes
in the top part of the figure show for three muscles the steps that we performed for
all of the muscles. The rectified and filtered EMG signals for Rectus Internus (RI),
Sartorius (SA), and Semimembranosus (SM) are shown in the top part of the boxes.
The EMG signals are multiplied by experimentally-determined EMG weighting fac-
tors, which are computed by performing the sequence of steps illustrated in this figure
many times until the weightings are found that minimize the squared error between
the predicted and actual forces (see text). Once weighted, the EMG signals scale the
magnitude of the forces of their corresponding models. The three models are shown
as separate boxes within their larger boxes. The models take the current hip angle
and knee angle as inputs, and return a force vector. The force vectors returned by my
models of muscles RI, SA, and SM are shown in their respective boxes. These are the
force vectors for the three models at the limb posture (hip=—45°,knee=70°), which
was the limb posture at which the EMG data and the force data in this figure were
collected. The products of the weighted EMG signals and the model force vectors
are shown in the force time traces at the bottom of the three large boxes. Forces
traces such as these from all the muscles are then simply added together to produce
the predicted force trace shown at the bottom of the figure. For example, the X
component of the predicted force trace at time T is the sum of the X components
at time T of each of the muscle force traces. The predicted force appears to capture
the orientation and some magnitude variation of the actual force, but the timing of
the two traces is not aligned. The predicted force changes direction at the end of the
trace, while the actual force does not. The EMG signals for muscles SM and RI also
vanish after time 60 (600 msec): my static muscle models do not predict any force
from these muscles after time 60, although they were probably still producing force
at least until time 80.
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that accuracy at one limb posture could be translated into accuracy at another limb
posture. Figure 2-5 shows the steps involved in predicting force vectors from a col-
lection of EMG signals. The EMG signals are weighted (see below) and then used
to construct a predicted force according to the simple formula (see Hof and Ven Den
Berg 1977):

force(t, hip angle, knee angle) =

Z Model(muscle, hip, knee) * weight(muscle) * EMG(muscle, t) (2.3)

muscles

Equation 2.3 is meant to be read as English. The Muscle models (Model(muscle,
hip, knee)) are each weighted by a muscle-specific weight factor (weight(muscle), see
below) and by the associated EMG signal (EMG(muscle, t)). The weighted muscle
models are added together to give a force estimate at each limb posture (force(t, hip,
knee)). |

Figure 2-6 shows how entire force fields are constructed from either observed EMG
signals or hypothetical muscle activations. A force field constructed from observed
EMG signals can be compared to the observed force field to assess prediction accuracy.
Large numbers of force fields constructed from hypothetical muscle activations can be
examined to assess the range of behaviors likely to be subserved by different muscle

synergies. This latter computational method is described in more detail below.

EMG Filtering

Rectified EMG signals were filtered with a 50Hz low-pass filter, and downsampled
to 100Hz. I Iow-pasé filtered the downsampled signals with a causal filter that in-
troduced a 50ms delay at 25Hz in order to offset the effects of muscle rise-time.
Low-pass filtering smoothed the EMG signals and, consequently, the estimated force
traces. The processing details were probably not important: in a re-implementation
of this system, somewhat different filtering methods were used without altering our

prediction accuracy in any appreciable way (Giszter, personal communication).
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Figure 2-6: Constructing Force Fields from Activation Patterns Force Field construc-
tion simply involves multiplying muscle model force fields by their respective activa-
tion values and then summing the activation-weighted force fields vectorially. In this
figure the activations are (random values) 1.75 for muscle Sartorius (SA), 0.927 for
muscle Semitendinosus (ST), and so on. When a force field is multiplied by a value,
V, each force vector in the force field gets scaled in magnitude by V. The indicated
combination of muscles SA, ST, IP, and SM produce the force field at the bottom of
the figure. Note that the force field has an equilibrium point, the location of which
can be stored as a point in the workspace that can be stabilized by these four muscles.
When the activation values are given by observed EMG signals, the resulting force
field is time varying.
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Computing EMG Weighting Factors

Several factors effect the translation from an EMG signal to a muscle force - the
EMG amplifiers can have different gains, the EMG electrodes can have different
transduction efficacies, the muscles can have different balances of fiber types, and so
on. [ lumped these factors into a single EMG-force weighting factor that [ estimated
for each muscle of each frog. I used least-squares estimation to find the best collection
of weighting factors for a small subset of each frog’s trials called the training set. The
weighting factors were optimized to give the least square force prediction error over all
of the trials in the training set. The weighting factors were constrained to be positive
and not too large (max / min < 20 in my objective function) (see Cholewicki and
McGill, 1994). Graphically, the steps in figure 2-5 were performed repeatedly, until
the eleven weighting factors (one for each muscle) minimized the total squared error
between the all predicted and actual force traces in the training set. The trials used
to compute the weighting factors - the training set - were removed during subsequent

statistical tests.

Statistical Tests

In order to perform numerical comparisons of predicted and actual forces, such as
those shown in figure 2-5, I needed to pick two forces to compare. Although one
gets a qualitative sense of a good match in figure 2-5, the time mis-alignment of
the two force traces makes that qualitative similarity difficult to capture. I used the
angle between the Actual Force Vector, AFV(tl), and the Predicted Force Vector,
PFV(t2), to quantified goodness of fit. I used two methods of selecting (the time
indexes for) these force vectors: the “first predicted peak” method and the “best
prediction” method.

For the “first predicted peak” method I used the largest magnitude actual force,
AFV(t.max), for comparison with the selected predicted force, PFV(t.fp). The
selected time index, t.fp was the time of the largest magnitude predicted force,
PFV(t), such that the orientation of PFV(t.fp) was within 45° of the first magni-
tude peak, PFV(tl). The first predicted magnitude peak, PFV(t1) occurred when
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IPFV(t1)]| > |[PFV(tl - 1)]] and J|PFV(tl)|j > ||IPFV(tl + 1)||) The first predicted
peak method was preferable to simply comparing the orientations of the peaks of the
actual and predicted forces, because the predicted forces were often accurate, but
then rotated away and became inaccurate during the later portions of the predicted
force trace (as can be seen in figure 2-5).

The “best prediction” method selected for comparison the best correlated pair,
AFV(tk)and PFV(tk) within 100 msec of the peak magnitude actual force, AFV(t.max).
The best prediction method made use of the actual forces in finding the predicted
force, and thus, to some extent, made up for the missing information about muscle
dynamics that was lost in constructing the static muscle models.

In figure 2-5, the time of the actual peak, t.max, is approximately 55. The time
of first predicted peak, t1, is about 42. The next predicted peak occurs at about 65
and then another peak occurs at about 90. The orientation of the predicted force,
PFV(65) is within 45° of the orientation of PFV(42), but PFV(90) is more than 45°
from PFV(42). Thus, the time of the first predicted peak, t.fp, is 65. The orientations
of the actual peak, AFV(55) and pfv(65) would be the values used for statistical
comparisons using the first predicted peak method. For the best prediction method,
the correlations of AFV(t) and PFV(t) are examined over indexes t.max +10. The
best correlated pair occur at tk = 46, so the orientations of AFV(46) and PFV(46)
would be used for a statistical comparisons using the best prediction method of the

predicted and actual traces in figure 2-5.

Force Field Muscle Models and Muscle Synergies

[ used the force field muscle models to examine the properties of all muscle synergies. |
define a muscle synergy as a binary vector: each muscle is active or not. An activation
pattern is a positive real-valued vector. An activation pattern conforms to a synergy
if it is zero when the synergy is zero and positive when the synergy is one.

For each muscle synergy of interest, I used Monte Carlo simulation techniques
(Press, et al. 1992) to learn about the range of possible equilibrium configurations

at which the muscle synergy could stabilize the limb. I generated a large number
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Figure 2-7: Monte Carlo simulation analysis of a muscle synergy A muscle synergy is
a binary vector: muscles are active or not. An activation pattern is a positive real-
valued vector. An activation pattern conforms to a synergy when muscles have zero
activation if and only they are not active in the synergy. Three activation patterns
conforming to the BI4+RI+ST+35A synergy are shown, along with the force fields
resulting from those activation patterns. The displayed force fields “converged”, in
that the force fields each had some posture towards which all the forces/torques point.
66% of the activation patterns in the BI+RI+ST+SA synergy lead to convergence.
2000 activation patterns in this synergy were sampled, and the XY locations of the
equilibrium points of the 1322 convergent force fields were used to compute the dis-
tribution shown. The stick-figure leg is shown with its ankle at the centroid of the
distribution. The banana-like shape is an ellipse in joint space with major and minor
axes given by twice the standard deviation of the hip and knee angles of the 1322
computed equilibria. The outline is a square in joint space from hip = —110° to hip =
80° and from knee = 10° to knee = 170°. Equilibria falling outside these boundaries
were discarded.
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(thousands to millions) of random activation patterns conforming to the synergy in
question. Figure 2-7 sketches the sequence of computations performed in my Monte
Carlo simulations. Each synergy-conforming random activation pattern produced a
force field, which was the sum of activation-weighted muscle model force fields. |
stored each random activation pattern and the equilibrium posture of the resulting
force field when it converged (see below). I was thus able to compute the distribution

of equilibrium postures that could be produced by each muscle synergy.

Computing Force Field Convergence

A stable posture is a posture towards which all the torques point. I use the terms “con-
vergent” and “stable” interchangeably. I computed an equilibrium (stable) posture of
simulated force fields by following the force field gradient from a starting position of
60° hip flexion and 30° knee extension. I considered a force field to be convergent only
if the limb reached a stable posture (see below) within pre-determined boundaries:
(—150° < hip < 80°, 10° < knee < 170°). A posture was considered stable if the
torque magnitude was near zero at that posture and both joint torques reversed sign
within five degrees deviation from that posture: %g'—:%;} < 0. In other words, once the
simulated limb had come to rest at a posture with near zero torques, I sampled the
torques at each of four new postures: hip angle £5° and knee angle £5°. The hip
and knee torques both had to reverse sign across these deviations.

Some equilibrium points lay on saddle points: both torques reversed sign as a
result of deviations of one joint from saddle point equilibria, while the torques were
nearly zero and appfoximately unchanged as a result of deviations of the other joint.
I ignored the saddle point equilibria in this work, and I do not discuss them any

further in this thesis.

Robust Synergies

Some muscle synergies that had the property that no matter how the muscle acti-
vations were changed, any equilibrium points of the force fields they produced fell

in roughly the same place. I called these synergies “localized”. I quantified each
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synergy’s localization with the two-dimensional area of its distribution of convergent
equilibrium points. Some muscle synergies had the property that no matter how the
muscle activations were changed, they produced a force field with a convergent equi-
librium point somewhere within the workspace. I called thesie synergies “reliable”.
I quantified each synergy’s reliability with the percentage of random activation pat-
terns that produced convergent equilibrium points. I called the muscle synergies that
were both localized and reliable, “robust”, because they could produce a convergent
equilibrium point in approximately the same workspace location without regard to

activation noise in the muscles.

Results

In subsection 2 I describe the force field muscle models (FFMM) used for each of 17

hindlimb muscles. The key points in this section are
1. The FFMM fall into a few easily-recognizable categories.
2. Some muscles produce nearly zero force over large portions of the workspace.

3. No muscle shows a clear reversal of joint torques. This means that no single

muscle can stabilize the limb.

In subsection 2 I describe statistical validation of the FFMM. I used EMG signals to
weight the muscle models. The EMG-weighted surn of FFMMs predicted the forces
and force fields observed during the stimulation trials that produced the EMG signals.

In subsection 2 I describe some uses of force field muscle models. The key points

in this section are

1. Random combinations of FFMMs generally have a stable point. Most of the
stable points lie in a band within the workspace at approximately 140° knee en-
tension. The continuous distribution of computed stable points does not match
the punctate distribution of observed stable points evoked by interneuronal

micro-stimulation of spinalized frogs.
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2. The punctate distribution of stable points evoked by interneuronal micro-stimulation
of spinalized frogs is approximately matched by the workspace locations of the
stable point distributions of the muscle synergies that had the most robust and

localized stable point distributions.

Force Field Muscle Models

The force fields for most of the frog’s hindlimb muscles are shown in figures 2-8-2-13.

[ have grouped the muscle force fields by eye into six types. Figure 2-8 shows the
“Hip Extensor/Knee Flexor” muscie type. This muscle type includes AD, RI, RIm,

and ST. The “flexor” muscles (figs. 2-9-2-11) flex the hip and/or the knee: the “Body

Flexor” type muscles (BI and SA, fig. 2-9) consist predominantly of knee flexion; the
“Rostral Flexor” muscle type (IP and PT, fig. 2-10) flexes both the hip and the knee;

and the “Half Flexor” muscle type (ADl, GA, and RA, fig. 2-11) produces no force
when the hip is flexed. The “Hip Extensor” type muscles (PY, QF, and SM, fig. 2-12)

have explosive-looking force fields. The “lateral Extension” muscle type (PE, VE,

and VI, fig. 2-13) flexes the hip and extends the knee, producing force fields that point

laterally away from the body mid-line?. To understand the relative proportions of the

hip and knee torques of these muscle types , and how they ~".ange with limb posture,

it is helpful to consider figure 2-3. Forces that point along the line connecting the

workspace position to the hip are due to knee torques, and forces components off that

line are due to hip torques.

In each muscle group, one or more muscles displays near-zero forces in the part of

the workspace towards which its forces point. In these muscles the general flow of the

muscle’s force field appears to move the ankle to a part of the workspace where the

magnitude of the muscle’s force becomes negligible. All of the half flexors (ADI, GA,
and RA, figure 2-11) have this property, as do RI, RIm, SA, and VI. Clearly, such

muscles could be used by the spinal circuitry to selectively modulate force fields in

2Muscles EC, TP, and TA are also all knee extensor muscles. I have removed these muscles from

further consideration, because they were too small and weak to permit reliable isolation for the
stimulation experiments.
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Hip Extensor/Knee Flexor Muscles

Model Force Fields Data Force Fields
Torque(8) = Tension(Length(6)) * dLength/o0

Adductor Magnus

Figure 2-8: The Hip Extensor/Knee Flexor Muscle Type Muscles Adductor Magnus
(AD), Rectus Internus (RI), and Semitendinosus (ST) all function as hip extensors
and knee flexors. The force fields on the left in each pair is the model force field,
while the force fields on the right in each pair is the data from which the model was
formed. The model forces are displayed at each sampled workspace point at which
there is data in the data force field. The flow of the model force fields in this figure
are reminiscent of the wiping behavior of the spinalized frog, but unlike the behavior
and the spinal force field, there is no stable point in the muscle force fields. Note
muscle RI has a large zero-force region toward which its forces point. The magnitudes
of the forces diminish to negligible levels as the ankle move to extension behind the
body. Muscles Rectus Internus Minor (RIm) also falls into this class of muscles, but
is not shown. The mean force field correlations of the models with the force fields of
each contributing frog are 0.76 (AD, 7 frogs)), 0.85 (RI, 6 frogs), 0.87 (ST, 5 frogs),
and 0.91 (RIm, 3 frogs).
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“Body Flexor Muscle" Force Fields
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Figure 2-9: The Body Flexor Muscle Type Muscles Biceps (BI) and Sartorius (SA)
function predominantly as knee flexors. The relative proportion of hip torques and
knee torques varies in these muscles. The hip action of both muscles is more pro-
nounced when the hip is in extension, but the proportion of hip to knee torque at
extension is greater in Bl than in SA. The relative proportions of the him and knee
torques can be inferred by comparing the force fields in this figure to four kinds of
pure torque field. Sartorius appears to be predominantly a knee flexor through most
of the workspace, with some hip flexion action when the hip is in extension. Biceps
appears to have a component of hip extension when the hip is in extension but to be
predominantly a knee flexor otherwise. The shapes of these force fields are reminis-
cent of the flexion withdrawal behavior of the spinalized frog, and thus we term these
“body flexor muscles”. Displays are as in the previous figure. The mean force feld
correlations of the models with the force fields of each contributing frog are 0.81 (BI,

8 frogs)) and 0.85 (SA, 9 frogs).
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"Rostral Flexor Muscle" Force Fields
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Figure 2-10: The Rostral Flexor Muscle Type Muscles Ilio-Psoas (IP) and Pectinius
(PT) function as hip flexors. The shapes of these force fields are reminiscent of the
preparatory phase of the back wiping behavior of the spinalized frog, and tkus we
term these “rostral flexor muscles”. The mean force field correlations of the models
with the force fields of each contributing frog are 0.78 (IP, 5 frogs)) and 0.90 (PT, 3
frogs).
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"Half Flexor Muscle" Force Fields
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Figure 2-11: The Half Flexor Muscle Type Muscles Rectus Anticus (RA), Gastroc-
nemius (GA), and Adductor Longus (ADI) all function as hip or knee flexors. All
three muscles have vanishing moment (zero forces) when the hip is flexed. The mean
force field correlations of the models with the force fields of each contributing frog

are 0.90 (RA, 6 frogs)) 0.84 (GA, 8 frogs), and 0.72 (ADI, 4 frogs).
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Figure 2-12: The Hip Extensor Muscle Type Muscles Semimembranosus (SM), Pyri-
formis (PY), and Quadratus Femoris (QF) function as hip extensors. The mean force
field correlations of the models with the force fields of each contributing frog are 0.89
(SM, 8 frogs)) 0.93 (PY, 3 frogs), and 0.83 (QF, 4 frogs).
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“Lateral Extension Muscle" Force Fields

Model Force Fields Data Force Fields
Torque(8) = Tension(Length( 8)) * Length/36

Figure 2-13: The Lateral Extension Muscle Type Muscles Peroneus (PE), Vastus In-
ternus (VI), and Vastus Externus (VE), function as knee extensors. Muscles VE and
VI also act as hip flexors. Note in the data force field for muscle VI that it has a
large zero-force region toward which its forces point. -'he model for muscle VI does
not capture this feature of the data. Muscles Extensor Cruris (EC), Tibialis Posticus
(TP), and Tibialis Anticus (TA) fall into this class but were not used. These muscles
were too small and weak to merit further consideration. The mean force field corre-
lations of the models with the force fields of each contributing frog are 0.78 (PE, 5
frogs)) 0.62 (VI, 8 frogs), and 0.90 (VE, 6 frogs).
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some parts of the workspace. For example, muscle RA (fig. 2-11) could be activated
in a limb-position-independent manner to provide flexion-restoring forces in response
to any hip-extending limb perturbations without altering forces in any hip-flexed
postures.

In figures 2-8-2-13 we see that no muscle model displays torque reversals around
both joints: ie there are no stable muscles. Similarly, none of the measured muscle
force fields was stable, in that there were no positions in the workspace surrounded
by forces pointing back to that position. Recall that a muscle’s torque vector is
proportional to the gradient of its length function. Therefore, a stable muscle would
have to have a local minimum in its length function at a stable posture. It may be
mechanically impossible for a skeletal muscle length function to reach a local minimum
in the workspace, in which case no skeletal muscle in any animal of any species is

stable.

Muscle Models are used tc Predict the Spinal Force Fields
Evoked by Spinal Microstimulation

We microstimulated (2 - 10 uAmps) spinal interneurons in spinalized frogs (Bizzi,
et al, 1991; Giszter, et al, 1993; Loeb, et al, 1993), while recording endpoint forces
and the EMG signals from 11 hindlimb muscles. Spinal microstimulation typically
activated 5 - 8 of the recorded hindlimb muscles. I used the EMG signals in a linear

predictor of muscle force (see Methods):

force(t, hip,knee) = )  Model(muscle, hip, knee)*xweight(muscle)*EMG(muscle, ¢)
muscles

Predictions of Force Traces

Figure 2-14 shows four representative examples of observed endpoint forces, EMGs,
and predicted endpoint forces. The four sets for force vectors point in different di-
rections. The same EMG weightings were used in all four examples. This figure

demonstrates that it is possible to use EMG-weighted muscle models to match the
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endpoint force traces evoked by spinal microstimulation. Note that many (but not
all) of the same muscles are active in all four exan '~s shown in fig 2-14a-d. The
observed force traces result from the co-contraction ot several of the muscle types
shown in figures 2-8-2-13. There is some activation of at least one muscle of each of
the five types of muscles sampled in the experiment. None of the “Rostral Flexion™
type muscles (figure 2-10) were sampled in this experiment. The EMG activity of
muscles of the same type do not necessarily covary. In fig 2-14c the Biceps (BI) and
Sartorius (SA) are active to quite different extents, although both muscles are “Body
Flexors” (see fig. 2-9). | appear to have captured the subtle balance that causes the
resulting endpoint force to point one way or another. The next step was to quantify
the goodness of fit of these models.

Figure 2-15 shows the predicted and actual endpoint force orientations at peak
magnitude for 244 spinal stimulation trials from three animals. Both of the plots of
predicted orientations vs. actual orientations are statistically significant linear rela-
tions (R?=0.539, F(33, 160)=9.6, p=0. in fig. 2-15a and R?=0.864, F(33, 160)=36.9,
p=0 in in fig. 2-15b). There are 33 free parameters in the F statistics because 11
EMG weightings were computed for each of the three animals in the dataset. 82%,
of the trials in fig. 2-15a and 95% of the trials in fig. 2-15b have a prediction error
strictly less than 45°.

Force Predictions and Muscle Dynamics

The difference between the two plots in fig. 2-15 can serve as a crude estimate of the
improved prediction accuracy that could be achieved by including muscle dynamics
in the muscle models. In figure 2-15a I am using the “first predicted peak method”
(see methods and figure inset) to compare predicted and actual peak forces directly.
In figure 2-15b I am compare the peak actual force to the best matching predicted
force within 100m (the “best prediction” method)s. I infer from the differences in
the R? values that another 1 of the variance in the force orientations could be ac-
counted for by models which also represent muscles’ dynamics. If our models of the

muscles’ contraction dynamics were accurate then there should not be a systematic
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Figure 2-14: Four Spinal Stimulation Trials with Predicted Forces Four spinal stim-
ulation trials from a single frog and the predicted forces are shown. In (A) - (D)
the traces along the top row are (from left to right) the observed XY forces, the
predicted XY forces, and the filtered, weighted EMG signal from muscle Rectus An-
ticus (RA). The remaining traces in (A) - (D) are the other filtered weighted EMG
signals and the stimulus trace. The four trials were chosen at random by a program
written to find four different directions of force traces. The traces and EMG signals
are representative of the database. The EMG signals arc all normalized to the same,
arbitrary scale for display. The force vectors were normalized to the peak in each
trace for display. The time axes are all aligned and measured in 10s of msec. Five of
the six muscle classes are sampled in this experiment: Half Flexors (Rectus Anticus
(RA), Gastrocnemius (GA)), Wipe muscles (Rectus Internus (RI), Adductor Mag-
nus (AD), Semitendinosus (ST)), Jump muscles (Semimembranosus (SM)), Lateral
Extensors (Vastus Internus (VI), Vastus Externus (VE), Peroneus (PE)), and Body
Flexors (Biceps Femorus (BI), Sartorius (SA)). The Rostral flexor muscles were not
sampled in this experiment. The Semitendinosus (ST) signals were zeroed out due to
excessive noise throughout this experiment.
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Figure 2-15: Summary Statistics for Force Predictions from a Large Database 244
trials from 3 animals that were thoroughly mapped via spinal ustimulation (Giszter,
et al 1994) were used to test the accuracy of force predictions from EMG signals.
15% of the trials from each animal were used to create EMG weighting factors, and
the remaining 200 trials were used to test the EMG-weighted muscle model force
predictions. The trials are labeled “4”, “5”, and “6” after their animal labels. (A)
Feedforward test. We used the “first predicted peak” method (see Methods) to com-
pare the predicted force orientaticn to the actual force orientation. This comparison
does not rely on any prior knowledge of the correct forces. The individual R? val-
ues for these animals were 0.443, 0.752, and 0.391 for animals “4”, “5”, and “6"
respectively. (B) Pseudo-dynamics test. We used the “best prediction” method (see
Methods) to compare the closest matching pair of actual force orientation and pre-
dicted force orientation within a 100 msec window to either side of the actual peak
force. The individual R? values are 0.863, 0.835, and 0.898 for animals “4”, “5”, and
“6" respectively.
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time misalignment between the predicted and actual force traces. Since the best pre-
diction method used in fig. 2-15b is correcting for the time misalignment (without
overcorrecting by finding a best overall match), the R? value of fig. 2-15b is approx-
imately what one could expect from force field muscle models that included muscle
contraction dynamics.

The variations in the EMG signals appear to be produced to counteract the ac-
tivation dynamics of the muscles. The magnitudes of the actual forces usually rise
and fell over a 300 - 500 msec time course, but the orientations of the actual forces
remain nearly constant (Loeb, et al 1993, and see fig. 2-14). The predicted force
orientations are more variable than those actual force orientations. The spread of the
predicted force orientations in the 100 msec surrounding the peak predicted force is
an average of 21° greater than the spread of the observed force orientations around
their peak (t = 8.1, df=243, p=0). This is important, because the orientation of
the actual endpoint force is determined by the muscle-tension-weighted sum of the
component muscles endpoint force vectors. We know the muscle tensions must be
changing in time because the endpoint force is rising and falling. We can assume that
the moment arms (the orientations of endpoint forces) do not change. Therefore, the
constancy of the actual endpoint force orientation implies that the relative balance of
the rising and falling muscle tensions is nearly constant. The fact that the predicted
forces do not have constant orientations, even in the few samples surrounding their
peak magnitude, indicates that the proportional constancy of the muscle tensions is
not simply due to a proportional constancy of the EMG signals. In other words, the
fluctuations in the EMG signals that give rise to non-constant predicted orientations

appear to be specifically tuned to the activation dynamics of the muscles.

Predictions of Spinal Force Fields

Figure 2-16 shows five force fields evoked by micro-stimulation at five spinal loci of
a single animal and the force fields predicted by the corresponding observed EMG
signals (see Methods). The overall shape of each spinal force field is captured by the

corresponding sum of EMG-weighted muscle models. Some of the subtle features of
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the force fields are not captured. For example, in fig. 2-16¢c the force reversal in the
rostral part of the force field is not predicted. To measure the force field reconstruction
accuracy we use the correlation of the X and Y components. Specifically, let a force
field be (x1, x2, x3), (y1, ¥2, y3) where x; is the x component of the force at position
i, and y, is the y component of the force at position i. The field correlation of field
A and B will be the correlation value for the vectors (x14, x24, X34, yl4, ¥24, y34)
and (xlg, x2g, x3g, ylg, y28, y3g). The mean correlation value over 68 tested force
fields is 66%, and 78% of the correlation values were greater than 50%. Force fields
that correlate at 50% and higher appear similar. At correlation values above 80% it
becomes difficult to distinguish the two fields. Figure 1-7 shows the five types of force

field most commonly evoked by spinal microstimulation in spinalized frogs.

Force Field Muscle Models and Muscle Synergies

Figure 2-17 shows two two-dimensional histograms of the end-point locations of the
stable points | found with a simulation of “all possible” activation patterns in all
possible muscle synergies. In practice, I stepped through the possible activation
patterns at a coarse grain: using activation values of 0, 0.5, and 1.0 for each muscle.
The simulation considered a larger portion of the workspace than previous simulations
that have been performed of this kind (Giszter, et al., 1993). In the previous work the
authors found that only 15% of the simulated EMG patterns led to equilibria within
the workspace. My simulation resulted in 90% equilibria within the workspace, but
again approximately 15% fell within the portion of the workspace covered by the
previous simulation.

The distributions in figure 2-17 do not predict the regularity indicated by fig-
ure 1-7. The distributions do not have five peaks, and the peaks do not fall in the
equilibrium locations of the spinal force fields (outlined in green). Note also that the
most common spinal force field type in figure 1-7, the Body Flexion force field, has its
equilibrium region in the least likely region of figure 2-17. There is presumably some
method of choosing random muscle activations under which the results of figure 1-7

can be reproduced, but I was not able to repeat the result of five peaks (much less
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Figure 2-16: Spinal Stimulation Force Fields and Predictions Five spinal stimulation
force fields from a single frog and the predicted force fields are shown. In (A) - (E)
the vectors shown are the peak forces and peak predicted forces for the trial-by-trial
observed forces and forces predicted from the EMGs. The forces are predicted from
the EMG-weighted sum of muscle models. The field correlation values in (A) - (E)
are 0.932, 0.89, 0.882, 0.727, and 0.814 respectively.
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their locations) under any of the reasonable assumptions that [ tried®. Figure 2-17a
was computed with each muscle being stepped through the same [0, 0.5, 1.0] range.
In fig. 2-17b 1 pre-weighted each muscle model with the EMG weightings that were
determined by my least-squares procedure for animal SGM4 in figure 2-15. By pre-
weighting each muscle [ warped the activation space that was sampled with the (0.
0.5, 1.0] stepped activation patterns. Thus, figure 1-7 is not predicted by random

muscle activations.

3[n addition to the mcthods shown here, I tried normalizing the muscles so that they all were
equally strong. With the normalized muscles [ stepped through the activation levels for 16 muscles
as well as the 11 main muscles of fig. 2-17. I also tried choosing random activation levels for each
muscle type and then dividing those activations equally across all the muscles of the sam2 type. For
example, muscles Bl and SA are of the Body Flexor class. If the random level for the Eody Flexor
class were set at 0.48, then Bl and SA would each be activated at 0.24. After each muscle's activation
level was chosen in this way, the force field was synthesized, its equilibrium point computed, and
the location of the equilibrium point (if any) was stored as one data puint for the histogram.

97



G T A.' '

i
w H,I I
" 3.,")‘

Lo TIE N f

LINCYE T I ¢

4

e e T




Figure 2-17: Histogram of Simulated Equilibrium Positions

Histogram of Simulated Equilibrium Positions Equilibrium points were found hy
starting with the limb at the positions shown - 60° hip flexion and 30° knee flex-
ion. The limb then followed a simulated torque gradient until it reached a reversal
point in both joint torques. Equilibria outside the boundaries shown were discarded.
(A) 4" EMG patterns (4,194,304 = 4 states - 0, .33, .66, 0.99 - for cach of 11 muscles
- AD, BI, PE, RA, RI, ST, VI, SM, VE, SA, IP) were tested to find their equilibrium
points within a large workspace. Each of the 4'' patterns corresponded to a simu-
lated torque gradient, given by the pattern-weighted sum of muscle model force fields.
The workspace boundaries are drawn at hip = (75°, -110°) and knee = (30°, 150°).
These limits were chosen arbitrarily. With these limits we found that 90.86% of the
EMG patterns led to equilibria within the workspace boundaries. [t was possible to
extend the simulation closer to the limb singularity: an outer knee limit of 170° led
to 99% within-boundary equilibria. The locations of the equilibria of the five spinal
force field types are shown in green superimposed on the histogram. (B) Same sim-
ulation, except each muscle was pre-weighted with the EMG weighting factors used
for animal SGM4 of the Mapping Database: RA = 1.32, SM = 2.4, Bl = 11.7, SA =
2.6, other muscles = 1. The pre-weighting changed the distribution from which the
muscle activations were drawn.

As a side effect of the simulations for figure 2-17, [ was able to construct lists
of activation patterns giving rise to stable points at each workspace location. | had
originally intended for these lists to assist in the decoding of EMG patterns. However,
there were many different patterns (hundreds to over 100,000) that produced each of
the spinal force field types. This result indicates that the EMG signals one observes
could well be context-dependent. There are thousands of different EMG patterns
that have the same functional significance. This multiplicity of muscle activations,
known as motor equivalence, is probably an important feature of the skeletal-muscular
system for the control of movement.

The locations of the spinal force field equilibria (the ellipses in figure 1-7) were
reproduced by the equilibrium points of the muscle synergies that had the property
that any equilibrium points they produced fell in roughly the same place. A mus-
cle synergy is a binary vector: each muscle is either active or not. An activation
pattern is a positive real-valued vector. An activation pattern for a synergy has
nonzero activation on all and only the muscles that are active in the synergy. Some

muscle synergies had the property that no matter how the muscle activations were
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changed, they produced a convergent equilibrium point somewhere in the workspace.
[ called these synergies that usually produced equilibrium points “reliable”. Some
muscle synergies had the property that they could only produce equilibrium points
in some small region of the workspace - usually near to a workspace boundary. |
called the synergies that produced equilibrium points only in some restricted part of
the workspace “localized”. Figure 2-18a shows the equilibrium point distributions of
the synergies that were most localized and most reliable. Each of the 100 boxes in
figure 2-13a represents the range of workspace locations of the simulated equilibrium
points for one muscle synergy. The individual boxes are hard to see because these
localized equilibrium point distributions (each produced by a different set of muscles)
are heavily overlapping. Note that the locations of these localized, reliable distribu-
tions resemble the locations of the spinal force field stable points shown in figure 1-7.
These plots are not sensitive to the parameters | used: as more distributions were
added by plotting less localized or less reliable synergies, the added distributions
accumulated at the five workspace locations typical of spinal equilibria. I call the
synergies that are both reliable and localized “robust”, because they must produce
the same equilibrium points despite a broad range cf noise in the muscle tensions.
The spinal force fields appear to be related to the robust muscle synergies.

The quantification of muscle synergy localization points to a fundamental tradeoff
between robustness and modifiability. Figure 2-17b shows four representative dis-
tributions from among the least localized synergies. There are many non-localized
distributions like those shown in figure 2-17b, and every muscle contributes to sev-
eral different non-localized synergies. Figure 2-17b demonstrates that it is possible
to construct a tiling or covering of much of the workspace with only a few muscles.
Non-localized synergies have the desirable property that small modulations of muscle
activations can produce large changes in forces. For example, at the center of any one
of the distributions in figure 2-17b the forces must change orientation by about 180°
as modulations in the muscle activations of the muscles in the synergy shift the equi-
librium point from one end of the distribution to the other. Because these synergies

are non-localized, they can not be robust in the face of activation noise. Fluctuations
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Figure 2-18: Localized and Reliable Distributions of Equilibrium Points The conver-
gent equilibrium point distributions of the most “reliable” muscle synergies are shown.
I define a muscle synergy as a binary vector: each muscle is active or not. An acti-
vation pattern is a positive real-valued vector. An activation pattern conforms to a
synergy if it is zero when the synergy is zero and positive when the synergy is one.
Synergies were reliable if a high percentage of random muscle activation patterns
conforming to the synergy produced force fields with convergent equilibrium points
within the workspace. Synergies were localized if their equilibrium point distribu-
tions covered a small area of the workspace. (A) The equilibrium point distributions
of the most localized and reliable synergies from a large-scale simulation. Each joint-
space box represents the minimum and maximum hip and knee angles observed in
50 random activation patterns for one muscle synergy of all 2'® =65535 synergies
of 16 muscles (I did not use muscle Pyriformis in this simulation). I plot here the
boxes of the 100 most reliable (> 10% in this simulation) and maximum localization
(box area <100 square degrees) amongst all 65535 synergies simulated. (B) Four of
the least localized distributions from a fine-grain simulation. Each joint-space ellipse
represents one standard deviation of the hip and knee angles observed in 500 - 1000
random activation patterns for one muscle synergy of 2!> =4096 synergies of the 12
most powerful muscles. I plot here four of the most reliable (> 90% in this simula-
tion) and minimum localization (ellipse area >1000 square degrees) amongst all 4096
synergies examined. The muscles producing each of the distributions is shown to the
side.
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in the tension output of the component muscles of a non-localized synergy will lead 1o
changes in the endpoint forces, while the robust synergies pictured in figure 2-17a will
produce the same endpoint forces despite fluctuations in the component muscles’ ten-
sions. It will be interesting to find out how the synergies actually represented in the
spinal cord make use of this design tradeoff between synergies that are non-localized

and modifiable versus synergies that are localized and robust.

Summary

[ have shown force field muscle models for most of the frog’s hindlimb muscles. The
force field muscle models fall into a few easily-recognizable categories, but no muscle
shows a reversal of joint torques. Thus, no single muscle can stabilize the limb. [ used
EMG signals to weight the muscle models. The EMG-weighted sum of muscle model
force fields predicted the time course and orientation of observed forces and force
fields with surprising accuracy. Finally, random combinations of muscle model force
fields were used to estimate the distribution of workspace stable point available to the
frog. Most of the stable points lie in a band within the workspace at approximately
140° knee entension. The continuous distribution of computed stable points does not
match the punctate distribution of observed stable points evoked by stimulation of
spinalized frogs. The punctate distribution of stable points is approximately matched
by the locations of the equilibrium point distributions of the most robust muscle

synergies.

Discussion

I first discuss my force field muscle models, which were computed as the spatial gra-
dients of hidden models of muscle length. I note that none of the muscle force fields
were mechanically stable, while spinal force fields typically are. I then discuss the
validation of my force field muscle models through prediction of observed endpoint
forces from observed EMG signals. The observed EMG fluctuations appear to he

turied to the dynamics of the corresponding muscles. Finally, I describe some of the
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possible uses of force field muscle models. I found that the punctate distribution
of equilibrium points observed during spinal micro-stimulation was not matched by
simple random combinations of muscles, but it was matched by the model muscle
combinations that produced the most reliable and localized scatters of equilibrium
points under random activation. This suggests that robustness under activation noise
may be an important criterion by which muscle synergies are chosen for spinal rep-
resentation. I conclude by describing how force field muscle models can be used in

statistical tests of hypothesized descending recruitment of interneuronal systems.

Force Field Muscle Models

I have demonstrated a novel technique for constructing muscle models, whereby |
construct a hidden parameterized function, a length(8) function, relating joint angles
to muscle length. Length(6) is used to compute the joint torques resulting from mus-
cle activation. This technique works because torques and forces are locally linearly
related by a Jacobian, which is the first derivative of the coordinate transforma-
tion, length(#). The muscle Jacobian, J,(6), is the 1x2 vector of partial deriva-
tives of the length(8) function of muscle m. Muscle tension = J,,(8) * joint torques,
joint torques = JT(#) * muscle tension, and endpoint force = J.(6) * joint torques.
Je(0) is the 2x2 matrix of the partia' derivatives of the functions relating endpoint X
and Y coordinates to the joint angles, 8 (see section 1). [ have used these equations by
measuring the endpoint forces, converting those forces to joint torques (using J.(8),
which I can compute from observable quantities). I used the joint torques as target
values to be matched by the parameterized models of JT(6) * muscle tension. [ was
able to compute J,(8), the partial derivatives of my model of length(8), at all joint
angles, 8, because I chose an easy-to-differentiate parameterization of length(8). I
also computed the muscle tension as a function of the estimated muscle length in
a straight-forward way based on known physiological relations (Rack & Westhury,
1969). In summary, the model parameters produced a length(8) function from which
I computed JT () * muscle tension at all sampled values of §. The errors in the equa-

tions “torque = J7 () * muscle tension” were then used to update the parameters for
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the length(8) function.

An advantage to modelling observed muscle torques with the spatial gradient of
estimated muscle length is that an estimation of muscle length is needed by dynamic
muscle models to compute the linear tension exerted by the muscle (Loeb, et al, 1989,
Zajac and Winters, 1990). If the parameters of muscle geometry do not generalize
across subjects (Buchanan, et al., 1986; Winters and Stark, 1988; Zajac and Winters,
'1990; Wickland, et al., 1991), then accurate modelling work will require length(9)
functions to be computed or measured for each muscle of each subject. It would
certainly be much easier to infer length(d) from muscle stimulation data in a new
subject (and to correct those estimates for the effects of reaction torques) than it
would be to measure all the muscle geometric parameters for each of the subject’s
muscles. Any muscle model that can predict the muscle moment arm at arbitrary
limb postures can be visualized as a force field, however, so my method of determining

the moment arm from length functions is distinct from the use of force fields.

Length function estimation isolates the Biomechanics Problem

I have modelled the muscle moment arm, (@), with the spatial gradient of an es-
timated length function rather than with the typical approach of computing v(0)
directly from the combination of cadaver data and simplifying assumptions about the
muscle geometry. I have thus avoided the difficult problem of understanding how the
complex muscle geometry relates to the observed joint torques. Other groups have
constructed their estimates of v(6) from measurements in cadavers of features such
as muscle volume and attachment points (Loeb, et al., 1989; Wickland, et al., 1991)
without verifying the estimated moment arm. I have instead measured v(8) almost
directly by recording the endpoint forces, and hence the joint torques, resulting from
the stimulation of individual muscles at many joint angles, 8. It will ultimately be
important to understand how the complex geometry of muscles is related to joint
torques. Our empirical estimates of v(#) can be used both to refine the understand-
ing of subtle muscle geometric factors, and to build accurate joint torque models of

muscles. In other words, empirical estimates of v(8) divide the problem domain into
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two distinct components, rather than allowing the intricacies of muscle geometry to

act as a source of error in joint torque muscle models.

Stability

None of the muscles in the frog hindlimb appear to be stable, but the force fields
evoked by spinal micro-stimulation are almost always stable, Because the torques
produced by a muscle always points down the gradient of the muscle’s length(6)
function, contraction of a muscle could only produce a stable equilibrium at a local
minimum of the muscle’s length function. At a local minimum of length(8) the spatial
gradient of length(6) will be zero, and the gradient of length(6) will point back towards
the local minimum at nearby values of 8. I do not know if it is mechanically possible
for a skeletal muscle to be stable. Such a muscle would have to be attached to the
skeleton so that any movement of the skeleton in any direction away from the stable
point would cause the muscle to lengthen. It is difficult to imagine how such a muscle
could exist, so it is difficult to imagine how any skeletal muscle's length function could
reach a local minimum in the workspace. Thus, it may not be surprising that all of
the muscles I observed were unstable. However, we usually observed stable force fields
as a result of interneuronal spinal micro-stimulation. One function of the spinal cord
may be to insure that the collection of muscles currently active is stable (Loeb, et
al., 1989). From the simulations of random activation patterns, I estimate that 75 -
90% of all multiple muscle activations are stable, so insuring stability may not be a

difficult constraint for the spinal cord to achieve.

Muscle Models are used to Predict the Spinal Force Fields
Evoked by Spinal Microstimulation

We micro-stimulated (2 - 10 pAmps) spinal interneurons in spinalized frogs, while
recording endpoint translational forces and the EMG signals from 11 hindlimb muscles
(Bizzi, et al, 1991; Giszter, et al, 1993; Loeb, et al, 1993). Except for the additional
recording of EMG signals, the methods used to record the force fields evoked by spinal
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micro-stimulation are the same as those described above for recording the force fields
evoked by muscular stimulation. We have found that spinal micro-stimulation in the
interneuronal layers of the frog spinal cord evoke a small number of different force field
shapes. The force fields evoked by spinal micro-stimulation also follow a principle of
vector summation: simultaneous stimulation of two spinal loci results in a force field
which is the vector sum of the force fields produced by independent stimulation of
the two loci.

[ used a EMG-weighted linear sums of muscle models to predict the forces evoked
by spinal micro-stimulation with high accuracy. Other groups have also success-
fully estimated endpoint forces or muscle tensions from muscle models and EMG
signals, using a wide variety of linear (Hof and Ven Den Berg 1977, 1981a-c), and
non-linear (Cholewicki and McGill 1994; Olney and Winter, 1985; Loeb, et al., 1989;
Buchanan,et al 1986), static and dynamic techniques. The force predictions validate

and quantify the accuracy of the muscle models.

Force Predictions and Muscle Dynamics

It appears that the dynamics of the activated muscles are accounted for by the neu-
romuscular control signals generated by the spinal cord. Orientation constancy in
spite of magnitude changes is a ubiquitous feature of the forces in our spinal micro-
stimulation studies (Giszter, et al. 1993), both before and after acute deafferentation
(Loeb, et al, 1993). The magnituces of the forces evoked by spinal micro-stimulation
rise and fall while the orientations remain within a 20° arc of their mean orienta-
tion. One possible explanation for the constancy of evoked forces could be a counter-
balancing of muscle types: for example, increases in the EMG signals of muscle RA
might be matched by decreases in the GA, because both muscles produce roughly the
same forces. I can begin to rule out this simple explanation, because and if counter-
balancing had occurred then the EMG-predicted forces should have reproduced the
orientation constancy of the actual forces. It is also possible that the orientation con-
stancy is due to counter-balancing activity in unobserved muscles. I can not rule this

out, but if the unobserved muscles were covarying with the observed muscles in such a
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straightforward way, then one would also expect to see evidence of counter-bhalancing
within the ohserved muscles. Again, counter-balancing among the observed muscles
does not seem to be taking place. The only other reasonable explanation for the ob-
served orientation constancy is that the differences in the dynamics of the activated
muscles does not matter for some reason. The dynamics obviously do matter to some
extent, because my models, which lack dynamics, are not perfect predictors of the re-
sults of multiple muscle activations. Thus, I suspect that the apparent unimportance
of the muscle dynamics in the orientations of the forces produced by multiple muscle
activations is in fact due to compensation for the differences in the muscle dynamics
by the spinal cord.

The constancy of the endpoint force orientations implies that the muscle tensions
were “proportionally constant”. That is, the magnitude of the torque produced by
each muscle is a constant percentage of the total torque. My models ignored the
activation dynamics of the muscles, and thus converted variations in the EMG signals
directly into variations in the muscle tensions. As a result, the modelled muscle
tensions were not proportionally constant. For example, if the magnitude of the
predicted endpoint force for muscle RA shifts from 10% to 20% of the total predicted
force magnitude (because of an increase in the EMG signal for muscle RA relative
to the other EMG signals), then the orientation of the predicted endpoint force will
swerve towards the orientation of my model of muscle RA. Thus, we can see that
the magnitude of the predicted endpoint force for muscle RA must remain at some
fixed percentage of the total magnitude: the actual forces do not swerve one way or

another *. So, the cdnstancy of the observed orientation of the net torque

net torque = Z Vm(0) * Mn(0,0, EMGpp, t)

muscle m

where v,(0) and M,.(9,6, EMG,,t) are respectively the moment arm and tension

magnitude of muscle m, requires that the ratio %:;- is approximately constant for

4We can presume that the actual muscle moment arms, v(8) are all constant. The muscle moment
arm ultimately depends on the geometry of the attachments of the muscle to the skeleton, and the
attachments do not change over the course of these experiments if at all.
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any two muscles ml and m2 throughout the multiple muscle activation of a trial.
In my experiments § is constant because 0 is zero. Thus, M.(0,0,EMG,.1) =
M, (EMG,,t). One way for a constant ratio %%:; to occur is for the activation
dynamics (M,,.(l)) for all of the muscles to be the same AND for all muscles have
the same EMG pattern. The muscles obviously do have different activation patterns.
So, the alternative way to keep %;:;- constant is for the different EMG patterns of
the two muscles to explicitly counter differences in their activation (ly’namics. %—;":‘;
is constant for every pair of activated muscles and the EMG patterns of pairs of
muscles are not the same, so it follows that the observed variations in the EMG signals
during stimulation trials are explicitly created by the spinal circuitry to account for
the different nonlinearities of the activation dynamics of the muscles. The constant
orientations and changing magnitudes imply that the magnitude of each component
of the net torque - each muscle’s contribution - is a constant proportion of the total
magnitude.

It has long been thought that the spinal cord compensates for the dynamics of
individual muscles (Nichols and Houk, 1976; Smith and Zernicke, 1987; Loeb, et al.,
1989; Loeb, et al. 1993), but the arguments in the preceding paragraph further suggest
that the spinal cord also compensates for the dynamics of collections of muscles. When
two muscles are activated at varying extents, there must come a point at which one
muscle switches to a new fiber type before the other one does, and at that point
the dynamics of the muscles are different. If keeping a constant orientation at any
magnitude is important, then the system will need to compensate for those switch-
over points. For example, suppose an endpoint force at 45° is being produced by a
muscle that can exert forces at 50° and a muscle that exerts forces at 20°. Most of
the endpoint force will come from the muscle at 50°. At some high force magnitudes,
the 45° force will require strong, fast fibers for the 50° muscle while weak, slow fibers
are recruited for the 20° muscle. The slow fibers can not be made faster, so the only
way to keep the 50° and 20° muscle forces proportional during changes in the 45°
force magnitude is to slow down the faster 50° fibers. Since it would not be a good

general strategy to slow down the fast fibers at all times, it seems plausible that the
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dynamics of the motor pools might he adjusted in a synergy-dependent way.

Force Field Muscle Models and Muscle Synergies

[ found that the locations of the equilibrium points of the spinal force fields were
qualitatively matched by the locations of the most localized and reliable equilibrium
point distributions amongst all the muscle synergies. This finding suggests that an
important criterion for muscle synergy selection is the robustness of those muscle
synergies in the face of the unpredictable effects of fatigue, muscle length, ‘muscle
velocity, and inputs to the motor neurons from afferents and descending fibers. The
many factors that can influence the magnitude of force generated in response to
motoneuronal discharges make the apparent spinal compensation for muscle dynamics
a challenging problem. Spinal representations of robust muscle synergies might serve
as a redundant mechanism for producing said compensation. In other words, full
compensation for muscle dynamics would require accurate estimates of the activation
and length states of the muscles. If the spinal cord uses robust synergies, then errors
in those state estimates will not translate into errors in output forces. Thus, the
locations of the spinal equilibria in figure 1-7 may indicate a a mechanism for inverting
the dynamics of the muscles as well as a mechanism for inverting the dynamics of the
limb.

There is a fundamental tradeoff between the robustness of a muscle synergy and
its modifiability. Obvicusiy, 11 2 synergy always produces a force field with a con-
vergent equilibrium point in a restricted region of the workspa,ce, then that synergy
can not he used to produce force fields with a wide range of workspace locations of
equilibria. Modifiable muscle synergies can probably be more quickly switched from
producing one direction of force to another. It is easy to imagine, for example, how
the synergies pictured in figure 2-18b could be modulated to produce a cyclic motion
of the limb. Thus, modifiable synergies might allow more movements and postures to
be represented with fewer muscles. It is not clear what behavioral constraints would
lead one style of muscle use to be preferable to the other or where the optimal tradeoff

point between robustness and modifiability might lie. Combinations of the two kinds
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of synergies could be used to produce synergies with robust and modifiable portions
sub-regions.

[ disagree with the prevalent view that dynamic optimization is the best available
approach to studying the effects and uses of muscle synergies (Zajac and Winters,
1990). Dynamic optimization is an expensive computation that requires researchers
to limit the problems they study. [ have shown above that a thorough exploration of
the range of possible actions of muscle synergies was a fruitful approach that did not
use optimization. Relatively little use has been made of muscle models in the analysis
of spinal circuitry (Zajac and Winters, 1990), and so there is a need further studies
of the effects and uses of muscle synergies (Buchanan, et al., 1986). By avoiding
optimization, I have been able to examine the properties of approximately 20 million
random activation patterns per week using a SPARC workstation. Thus, I believe that
the long-standing reliance on optimization as the tool of choice for exploring EMGs

and muscle usage (see Hardt, 1978) may have hindered progress to some extent.

Test of Spinal Basis Functions

The original purpose of the muscle modelling work described in this paper work
was to enable a statistical test of our theory that supra-spinal centers make use of
interneuronally organized spinal force fields as building blocks for motor patterns.
We can test this theory by using it to describe observed supra-spinal force fields
(explained below) and then comparing that description to the null hypothesis: that
supra-spinal force fields are constructed by simply recruiting arbitrary combinations
muscles without the hierarchical organization imposed by the spinal force fields. A
supra-spinal force field is a force field evoked in the same way as a muscle force
field or a spinal force field, but with a stimulating electrode at some supra-spinal
locus. [ choose as a null hypothesis the possibility that supra-spinal force fields
are the result of descending activation of motorneurons. The alternative hypothesis
is that supra-spinal force fields can only activate the muscles through a particular
intervening structure imposed by the spinal cord. There are many possible intervening

structures that one could hypothesize for the spinal cord, and indeed the general
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method I propose here could be used to test almost any imaginable hypothesized
spinal circuitry. To test the possibility that the spinal cord provides the rest of the

brain with the five spinal force field types described earlier (sce figure 1-7), we can:
1. Step 1: Evoke a supra-spinal force field, SPFF.

2. Step 2: Estimate the non-negative muscle and spinal force field coefficients to

reproduce SSFF;

5
SSFFs, = _ a;SpFF; = spinal fit

=1

17
SSFFpm. = Zb;MuFF.- = muscle fit

i=1
where 5 is the number of spinal force fields and 17 is the number of muscle

models.

3. Step 3: If the supra-spinal force field is produced by co-activation of spinal
force fields, then there should not be a significant difference in the quality of

the spinal and muscle fits:

Y (SSFFs, — SSFF)?
Y (SSFFp, — SSFF)?

~ F(N,N)

where N is the number of data pdints used to form the muscle and spinal
estimates. With x and y force vectors to be matched by the fits, N will be twice
tliec number of limb positions sampled. If the x, y, and z forces are matched,

then N will be 3 times the number of limb positions.

If the F statistic is not significant, it will indicate that the ratio of the errors is
indistinguishable from 1.0. In that case we can not rule out simple linear recruitment
of spinal interneuronal force fields by supra-spinal fibers. Conversely, a significant
F statistic will indicate that the supra-spinal force field is not implemented by the

hypothesized spinal circuitry.
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Summary

I have built statistical models of each of the muscles in the frog hindlimbh. | avoided
the biomechanical problem of predicting each muscle's length(f) function from limb
posture and muscle geometry by i.:stead fitting its length(9) statistically to the torques
observed during direct muscle stimulation. From my muscle stimulation experiments
[ found that the hindlimb muscles do not provide limb stability. We have previously
shown that spinal micro-stimulation does provide limb stability, so one role of the
spinal cord may be to provide limb stability by activating stable muscle combinations.
[ used my statistical muscle models to predict the isometric forces observed during
spinal micro-stimulation from the corresponding EMG signals. | also computed the
distribution of force fields thai should result from random activation of all of the
hindlimb muscles, and this distribution was markedly different from that observed
during spinal micro-stimulation. I used the same Monte Carlo technique to predict the
distribution of force fields that would result from random activation of the hindlimbh
muscles in each possible muscle synergy. I found that the synergies with the most
localized and reliable equilibrium point distributions best approximated with their
distributions the equilibrium locations observed during spinal micro-stimulation. This
Monte Carlo simulation result suggests that robustness in the face of noise may be an
important selection criterion for the muscle synergies represented in the spinal cord.
Finally, I showed how the muscle models and spinal force field models could be used

in statistical tests of our hypothesized spinal circuit.
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Chapter 3

Effects of acute spinal transection
on the forces evoked by spinal
microstimulation in the

deafferented, decerebrate frog

Introduction

Recent experiments (Bizzi, et al, 1991; Giszter, et al, 1993) have demonstrated that
the spinal cord of the frog contains a limited number of “modules”. That is, we
measured the hindlimb forces evoked by spinal interneuronal stimulation, and ob-
served that the evoked forces occurred in a few discrete clusters of orientations (see
figure 1-7). This result is not necessarily expected because forces which result from
random activation of the frog’s hindlimb muscles do not fall into discrete clusters.
The arrangement of the hindlimb musculature does not, therefore, readily predict the
regularity we have observed after thousands of microstimulation experiments. The
small number of force patterns suggests that the spinal cord preferentially represents

a limited number of classes of muscle combinations®.

1 As I showed in chapter 2, the identity of the classes of muscle combinations represented in the
spinal cord may be related to the biomechanical preferences of the musculo-skeletal system. The
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We theorize that the limited number of spinal modules serve as the basic building
blocks of posture and movement (Mussa-Ivaldi, 1992). Excitation from supra-spinal
descending fibers could conceivably activate simple combinations of the spinal mod-
ules in order to elicit forces that are not directly represented as modules. A problem
for this theory is that the observed spinal modules could be artifacts of spinalization,
since the spinal modules were observed during micro-stimulation of spinal cords that
were surgically isolated from the rest of the brain. To address this issue directly, |
have stimulated the spinal cords of decerebrated, deafferented frogs in order to de-
termine if modules are observed in the presence of supra-spinal descending fibers. |
have deafferented the frogs in this experiment, because decerebrated frogs can initi-
ate protracted responces to small movements of their limbs, thus complicating the
collection and interpretation of the hindlimb force data.

[ have further compared the force evoked at single spinal loci before and after
acute spinal transection in order to assess the influence of the descending fibers on

the spinal modules.

particular muscle combinations that I have called robust in the previnus chapter are not random
in any reasonable sense of the word. So although the properties of the muscles can be ured to
derive principles that might underly the patterns of forces, those forces are not determined by the
musculature. In particular, the fact that we observe only a few kinds of force fields during spinal
stimulation indicates that the spinal cord is somehow imposing structure on the results of the spinal
stimulation.
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Methods

Data Collection

Surgeries

Decerebrations: Eight healthy adult bullfrogs (Rana Catesbiana) were anesthetized
with 0.5 - 1.5 cc tricaine, The frogs were decerebrated anterior to the tegmentum,
and the optic tectum was removed. Laminectomies were performed to expose the
lumbar spinal cord. In four frogs (F8.19, F8.23, F8.25, ['8.28), spinal dorsal roots 7,
8, and 9 were cut during the laminectomy and in the other four frogs, they were cut
during the experiment. Otherwise, all surgeries were performed at least one day prior
to the experiment.

Acute Spinalization: Acute spinal transections were performed by a method previ-
ously used in an acute deafferentation study (Loeb, et a, 1993). In brief, the brainstem
anterior to the first vertebra is touched with a copper probe cooled in dry ice. The

brainstem is then gently lifted and and cut with fine surgical scissors.

Electrode Implantations

Implantation micro-electrodes were constructed from 1 cm stainless steel “insect pins”
and fine silver wire. The pins were wrapped with the wire approximately 0.3 cm from
the tip. The pins were coated with glass under a microscope (using standard electrode
manufacturing equipment), leaving 10 gum unexposed at the tip. The uncoated part
of the pin behind the silver wire was cut off, leaving a glass-insulated implantation
electrode approximately 2 - 3 mm in length.

At the start of an experiment the decerebrated frogs were sedated with tricaine,
placed in a moistened plaster frame, and secured by clamps. The right ankle was
attached to a movable force sensor (see figure 3-1A below) by a cuff capable of rotating
about the Z axis, or of being secured in place so that it could not rotate. The spinal
cord was exposed for the electrode implantation procedure.

Rings of medical-grade tubing (602-205, Dow Corning, 0.040" inner diameter)
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were glued to the exposed surface of the lumbar spinal cord with fast-acting tissue
adhesive (Vethond, product number 1469 3M Animal Care Products). An implanta-
tion electrode was lowered with a micromanipulator through the center of one of the
rings. Micro-electrode penetrations ran dorsal-ventral at sites between dorsal roots 7
and 9. We typically find a low threshold response zone 400 - 500 pm below the dorsal
surface of the lumbar cord, and this response zone generally extends for another 600
pm ventrally. Response stability was assessed by visually comparing the magnitude,
sign, and shape of the x, y, and z force traces. Once the stable zone was found,
the electrode was moved to the depth at which the response had the lowest stimulus
threshold, and the general shape and magnitude of the stimulation response was ver-
ified after 5 - 10 minutes. I then glued the electrode to the ring and spinal cord and
released it from the micromanipulator. In three frogs (F8.23, F8.28, 9.27) a second
electrode was also implanted at another spinal site using the same procedures. Thus,
a total of 11 spinal sites were examined in the eight experimental frogs. The implan-
tation procedures took 3 - 13 hours. During the implantation procedures, the frogs
were kept under sedation with tricaine in order to minimize their movements. Force
data was not gathered until the animal had recovered from the tricaine injections.
To determine the exact placement of the implanted electrode, I made a marking
lesion (10 uA DC current for 20 - 30 seconds) at the site of the implanted spinal
electrode(s) at the end of the experiment. The animals were sacrificed and perfused
with a 10% formalin solution. Their spinal cords were stained with cresyl violet
and examined to assess the location of the marking lesion(s). This procedure was
complicated by the tissue glue, and for various reasons, I was unable locate the
marking lesions in animals F8.25 and F9.23. All of the available marking lesions were

in the interneuronal grey regions.

Recording Force Fields

We measure force fields by stimulating one spinal locus with the hind limb in each of

many positions. Thus we follow this simple procedure:

1. Secure the ankle cuff in the force sensor.
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. Stimulate the cord while measuring force at the ankle.
3. Release the ankle cuff for rotation and move the limb to a new x,y position.
1. Repeat procedure at the next limb posture.

'The force sensor was attached immediately above the frog’s ankle, so the sensor's
(x,y) coordinates correspond to the frog’s right ankle position. I did not change the
z coordinate of the ankle in this experiment. As the limb muscles contract and relax
in response to the spinal stimulation, the force sensor records x, y, and z forces as
functions of time. A measured force field consists of 3 force traces per ankle position
together with the (x,y) location of the ankle at the time the forces were measured

(see figure 3-1A below).

Stimulation Parameters

The stimulation parameters were typically between 4 - 15 uA; 0.6 msec pulses width;
400 - 600 msec duration; at 40 - 50 Hz. I never changed the stimulation parameters
while collecting a force field.

Animals were monitored carefully for signs of pain (blinking, attempts to jump,
vocalization) and were kept moist with periodic applications of tap water to the skin.
The animals did not react to the placement of the spinal electrodes, nor did they

respond in any unusual way to the spinal stimulation.

Data Analysis

One stimulation trial consists of the data gathered during stimulation of the spinal
cord through one electrode with the limb at one particular position. A stimulation
trial yields 3 force traces (x force, y force, and z force) over time. (see figure 3-1).
One stimulation trial at each of several limb positions is needed to measure a force

field. The z forces were dropped from analysis in this experiment.
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Figure 3-1: Processing Sequence for Force Data This figure illustrates the processing
steps taken to convert the data from stimulation trials into a force field. (A) A
frog is drawn with its hindlimb at a hip angle of —36° and a knee angle of 87°. A
hip angle of 0° would cause the thigh to be parallel to the x axis. The illustrated
joint angles (—36°, 87°) bring the ankle to the location (110, -30) in the workspace.
Ankle positions are measured in millimeters relative to the base of the force sensor
apparatus. (B) Although three data traces (x, y, and z force) are recorded during
spinal stimulation, I have displayed only the x and y forces here. Time is measured
in tens of milliseconds. The force values are initially non-zero These initial non-zero
forces are averaged together to estimate the baseline forces. (C) X and Y force traces
are converted into XY force vectors. The non-zero initial forces of (B) are now non-
zero initial force vectors. (D) The baseline forces of (B) and (C) are removed from
all the force vectors to produce “active” XY force vectors. The initial active forces
are not exactly zero, because initial forces in (C) are not exactly equal to average
force levels used as the baseline. The force vector with the largest magnitude is the
peak force, which is used to summarize the force trial in the time-invariant force
field. (E) The time-invariant force field is constructed from the peak forces of several
stimulation trials. The peak force from the trial illustrated in (B)-(D) is plotted at
ankle position (110, -30). This force vector at (110, -30) and the other force vectors
measured with the limb at the other limb positions, together form a force field.
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The position of the frog's hip relative to the base of the force sensor apparatus and
the length of its right hind limb segments (thigh and calf) were measured at the start
of the experiment. These measurements enable the angles of the frog's hip and knee
joints to be computed from the (x,y) coordinates of its ankle. From this information
one can compute the torques at each joint corresponding to the forces measured during
spinal stimulation. The hip angles were negative in extension, positive in flexion, and
zero when the thigh was perpendicular to the body. The knee angles were all positive,

with 180° being full extension.

Processing

Each force trace has two parts: “baseline and “active”. Because we hegin collect-
ing the force traces before the stimulus begins, the average of the first 50 to 100
milliseconds of the force traces represents an estimate of the baseline force levels (fig-
ure 3-1B and C). We compute the active force traces by subtracting the baseline force
levels from the measured forces. For example, the active y-force trace for a trial is the
measured y-force trace minus the baseline y-force value (figure 3-1D). The subtracted
baseline forces include the effects of kinematic constraints and gravity, which do not
change during the course of a stimulation trial.

The (x,y,z) active forces form a time-varying 3-dimeusional force vector, the Active
Force Vector, AFV(t). These time-varying force vectors measured at each of the limh
positions form a time-varying Force Field, FF(x,y,t). During spinal stimulation, we
have found that the time-varying forces nearly always rise and fall along a line, so that
AFV(tl) < AFV(t2). Therefore, FF(x,y,t) can be well-approximated by FF(x,y), a
time-invariant force field. At each sampled position, I used the peak magnitude of the
time-varying force vectors at that position, max, || AFV(t)|, to select the force vector
for the time-invariant force field, FF(x,y) (see figure 3-1E). Although the forces of
FF(x,y) are three-dimensional, I only consider the two-dimensional (x,y) forces in this

thesis.
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Data Overview

[ measured a total of 101 force fields under two experimental conditions: Decerebrated
(50 force fields) and Spinalized (51 force fields). I examined my database both in terms

of force fields and in terms of limb position.

Force Field Correlations

[ compared force fields using a correlation measure. The force field correlation of field
A and field B is the correlation value for the vectors (X14, X24, ... XNg4, Y14, Y24, ...
YN,) and (X1g, X2g, ... XNg, Ylg, Y25, ... YNB), where Xi, is the X component
of the force at position i of field A. This measure requires that field A and field B be
sampled at the same N positions. I can now correlate measured force fields with the
standard force fields shown in figure 1-7, because the models of the standard force
fields can be used to predict forces at any limb location. In other words, my spinal
force field models allow us to measure forces at arbitrary positions in the workspace,
because the models can predict forces (for comparison) at arbitrary positions in the
workspace.

The force field correlation is depends on the inner product of the force fields:

[ FF2x(z1,yl)
FF2y(zl,y1)
FF2x(x2,y2)

=
[FF1x(xl,yl), FFly(zl,yl), FF1x(22,y2),- -]

L

=Y FFlx(zi,yi) * FF2x(zi,y:) + FFly(zi,y:) * FF2y(zi,y;)

where the X and Y subscripts refer to the X force and Y force components of the force
vectors of the force fields, FF1 and FF2, at each limb position (z;, y;). The scalar
computed in this way is the inner product of the two force fields. Because forces from
the same limb position are multiplied together, it is critical that the two force fields
be measured or computed at the same limb positions. The force field correlation value

is this inner product of the two force fields (equation 3.1) divided by the square root
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of the product of each force field’s inner product with itself. Two force fields that
correlate at a value of 0.9 or higher are generally difficult to distinguish. Values of
-0.5 and lower come from force fields that look to be direct opposites. Values of 0.5

to 0.8 range in subjective impression from similar to highly similar,

Limb Position-Dependent Force Orientations

Because stimulation trials were performed at each limb position both hefore and
after spinalization, the forces collected during those stimulation trials at a single limb
position can be compared directly. At a given limb position (for example (110, -30),
see figure 3-1A) in a given frog, I performed 5 to 6 stimulation trials both before and
after spinalization. In order to generate statistics of the before/after comparison, |
average the before (pre-spinalization) trials together and I average the after (post-
spinalization) trials together. Because 98 limb positions were measured in all, a total
of 98 before/after comparisons can be made.

I distinguished the orientation and magnitude of the x,y peak forces at each po-
sition in order to quantify the effects of spinal transection. The orientation of an x,y
force vector is arctan(y force, x force) Radians. The magnitude of an x,y force vector
is \/(_(x force)?+ (y force)?) Newtons. I found that the magnitudes and orientations of
the forces evoked by spinal stimulation in the decerebrate (pre-spinalization) animals
displayed greater variability than is typical for forces evoked by spinal stimulation
in spinalized animals. This variability is an interesting finding for further study (see
Discussion), however [ wished to exclude the effects of the force variability. 1 was able
‘to exclude the effects of magnitude variability by simply using the force orientations
for comparisons.

I excluded the effects of the orientation variability by comparing only the force
orientations that were not “anomolous”. I defined a collection of force orientations to
contain anomolous orientations if the “true range” of the orientations (see below) was
greater than 60°. When a collection of orientations contained anomolous orientations,
I used only the orientations that were in the majority. That is, I divided the range

of the orientations in two, and then used the orientations in the half that had the
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most orientations in it. When each half of the range of force orientations contained
an equal number of observations, I chose the half to use at random.

The above procedure for removing anomolous force orientations was applied to the
list of (typically five or six) orientations observed during spinal stimulation at a single
limb position in a single spinal locus in a single experimental condition. In particular,
the pre-spinalization force orientations were culled in this way at each limb position?.
The non-anomolous orientations at each limb position were averaged together to find
the mean orientation (see figure 3-6).

It is necessary to distinguish the true range of orientations fror. the apparent
range. The true range of orientations in the list (—170°, 170°, —175°, 175°) is 20°,
but the apparent range is 340°. In order to find the average of a list of orientations

such as this, I first added 360° to the negative angles: (190°, 170°, 185°, 175°).

2The post-spinalization force orientations were subject to the same procedure, but there were
few positions at which anomolous spinalized forces were found
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Results

Overview: In previous experiments we have found five discrete patterns of forces
represented in the spinal cord (figure 1-7). However, these forces were measured in
spinalized frogs. [ wished to verify that these five patterns of forces are reproducible
in more intact animals.

The experiment described here shows that the force fields evoked by lumbar spinal
microstimulation in deafferented, decerebrated frogs are substantially the same as
those observed previously in spinalized frogs. Furthermore, by comparing the force
fields evoked from a single spinal locus before and after spinal transection, I found no
qualitative or substantial quantitative difference in the the mapping of spinal locus

to force field type.

The spinal force fields are present in decerebrated frogs

In figure 1-7 I display my models of the five types of force fields previously observed
during spinal stimulation in spinalized frogs. In the experiment described here I have
found examples of each of thuse five force field types during spinal stimulation in
decerebrated frogs. Representative examples of my data are shown in figure 3-2. Each
of the four force fields in figure 3-2 is highly similar to one of the five types of force
fields evoked in spinalized frogs (see figure 1-7). The categorization of the force fields
in figure 3-2 was determined by correlation with the model force fields in figure 1-7
(see Methods). Figure 3-2A is a “Body Flexion” type force field; figure 3-2B is a
“Wipe” type force field; figure 3-2C is “Rostral Flexion” type force field; figure 3-2D
is a “Caudal Extension” type force field. The “Lateral Extension” type force field
was also evoked in one animal, as shown below in figure 3-4.

My data cannot rule out the possibility of the decerebrated frogs having other force
field types not seen in the spinalized frogs. In general, however, the majority of the
force fields I observed in the decerebrated frogs were qualitatively and quantitatively
similar to those I have observed in spinalized frogs. The mean field correlation value

of each pre-spinalization force field with the best matching spinal force field model
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Figure 3-2: Four examples of Spinal Force Fields in Decerebrated Animals Each ar-
tow in is the peak force vector from one stimulation trial. The base of each vector is
indicative of the ankle position at the time the stimulation trial was executed. The
arrow head points in the direction of the force. (A) Force field from animal F10.28.
This force field correlates best with the “Body Flexion” spinal force field, with a
correlation value of 0.84. (B) Force field from animal F8.23, electrode B. This force
field correlates best with the “Wipe” spinal force field, at 0.916 (C) Force field from
animal F9.23. This force field correlates best with the “Rostral Flexion” spinal force
field, at, 0.84. (D) Force field from animal F'8.25. This force field correlates best with
the “Caudal Extension” spinal force field, at 0.79.

was 69%, and % of these correlation values were above 55%.

Within-locus comparison of force fields before and after spinal-
ization

Having found each of the five spinal force field types in the spinal cords of decere-
brated frogs, I wished to make a closer comparison of the forces evoked before and
after spinalization. Figures 3-3 through 3-5 show a comparison of pre- and post-
spinalization force fields within individual frogs. The stimulation threshold did not

appear to be altered by spinal transection in any of the animals.
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Figure 3-3: Effects of Spinalization on Forces Evoked by Spinal Stimulation
Effects of Spinalization on Forces Evoked by Spinal Stimulation These plots show
several “Body Flexion” force fields evoked by spinal microstimulation through a sin-
gle implanted electrode before and after spinalization of deafferented, decerebrated
frog F10.20. Each arrow represents the peak force observed during one stimulation
trial. The location of each force vector is indicative of the cartesian position of the
ankle at which the limb was held by the force sensor when the stimulation trial was
executed. I have dropped the cross-hairs that show the location of the hip. As usual,
however, the force field is to the left of the hip, and the frog is oriented with its
nose toward the bottom of the page. The numbers indicate the order in which the
force fields were measured. There is no pairing implied by the numbers: for example,
pre-spinalization force field number 4 is not related to post-spinalization number 4
except in the way that all of these force fields are related (they are all evoked by a
single, unmoving, implanted, spinal electrode). The force field correlations of these
force fields with each other are shown in table 3. The post-spinalization force fields
are correlated at about 0.95. Pre-spinalization force fields (4, 5, 6) are also correlated
with each other and with the post-spinalization force fields at above 0.80. There are
magnitude fluctuations in pre-spinalization force field number 3. Some orientation
fluctuations are evident in force fields number 1 and 2.
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Field | DI D2 D3 D4 D5 D6 |XI X2 X3 X4 X5 X6
DI 1.0 - - - - - - - -

D2 (073 1.0 - - - - - -

D3 (o081 071 1.0 - - - - - - N .

D4 085 077 082 1.0 - - - - - -

D5 (084 073 079 091 1.0 - - - - -

D6 |[084 070 081 098 089 1.0 |- - - - -

Xl 074 071 073 095 0.8 093]1.0 - - - -

X2 (074 074 075 095 034 091099 IC - - - -
X3 107 066 0.75 091 083 0.88097 098 1.0 - -

X4 0.7 0.73 0.71 092 0.79 091098 098 097 1.0 - -
X5 (076 0.71 0.75 095 0.82 097096 095 093 096 1.0 -
X6 1078 0.76 0.77 096 0.90 0.95|096 096 096 096 0.98 1.0

Field Correlations for Animal F10.20: This table shows the field correlations for the pre- and
post-spinalization force fields shown in figure 3-3. Force fields D1-D6 (“D" for Deafferented)

correspond to the pre-spinalization force fields. Force fields X1-X6 (“X" for Transected)
correspond to the post-transected force fields. The force field correlation of field A and
field B is the correlation value for the vectors (x14, X24, ... XN4, Y14, Y24, ... YN4) and
(x1p, x2g, ... xNp, ylg, y28, ... yNg), where xi, is the x component of the force at
position i of field A. Only the bottom half of the matrix of correlations is shown in this
table, because the correlation of field A with field B equals the correlation of field B with
field A. Each force field is perfectly correlated with itself, as shown by the diagonal in the
table, where the correlation values are 1.0, Note that the last force field collected before the
spinal transection, force field D6, correlates with all of the post-spinalization force fields at

a level 0.88 or better.
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Figure 3-4: Effects of Spinalization on Forces Evoked by Spinal Stimulation
These plots show several “Lateral Extension” force fields evoked by spinal microstim-
ulation through a single implanted electrode before and after spinalization of deaffer-
ented, decerebrated frog F'8.19. Force fields are displayed as in figure 3-4. There is no
pairing implied by the numbers, which merely indicat¢ the order in which the force
fields were measured. The matrix of correlations of these force fields are shown in
table 3. With the exception of pre-spinalization force field number 3, all of the pre-
and post-spinalization force fields are correlated at at least 0.80. The third force field
collected before spinal transection was obviously quite different from all of the others.
In fact, pre-spinalization force field number 3 correlates with the Rostral Flexion type
standard force field (see figure 1-7) at 0.84. The other force fields all correlate best
with the Lateral Extension type force field. It is not clear why the type of evoked
force field would suddenly switch, but it is interesting that it switched to one of the
standard force field types.
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Field | DI D2 D3I D4 |XI X2 X3 Xd
D1 1.0 - - - - -

D2 (099 1.0 - ~ - - - -
D3 |-056 -0.58 1.0 - - -

D4 [097 095 -0.59 1.0 |- - -

X1 095 095 -0.35 09410 - - -
X2 (096 094 -041 096 (097 10 -

X3 (096 094 -044 097(096 099 1.0 -
X4 1083 080 -0.13 085|083 0.90 0.90 1.0

Field Qorrelgign;_[gL_A_njm_gl_Eﬁ_,_m; This table shows the field correlations for the pre- and
post-spinalization force fields shown in figure 3-4. Force fields D1-D4 (“D” for Deafferented)
correspond to the pre-spinalization force fields. Force fields X1-X4 (“X" for Transected)
correspond to the post-transected force fields. See table 3 for more generic details. Note
that the last force field collected before the spinal transection, force field D4, correlates with

all of the force fields collected after the spinal transection at a level of 0.85 or better.
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Figure 3-5: Effects of Spinalization on Forces Evoked by Spinal Stimulation
Effects of Spinalization on Forces Evoked by Spinal Stimulation These plots show
several “Caudal Extension” force fields evoked by spinal microstimulation through
a single implanted electrode before (A) and after (B) spinalization of deafferented,
decerebrated frog F8.28. See figure 3-3 for display details. The numbers simply in-
dicate the order in which the force fields were measured. The force field correlation
values for these force fields are shown in table 3. Note the tremendous magnitude
fluctuations in pre-spinalization force fields 2 and 3. Note that the rest of the fields
are correlated above a level of 0.80. 129




Field| DI D2 D3 D4 D5 D6 |X1 X2 X3 X& X5 X6
DI 1.0 - - - - - - - - - -
D2 |[0.47 1.0 - - - - - - - -

D3 (045 021 1.0 - - - - - - -

D4 085 058 040 1.0 - - - - - - -

D5 (084 050 030 095 1.0 - - - - - - -
D6 |0.81 044 026 094 098 1.0 |- - - - - -
X1 0.71 048 0.28 092 094 09210 - - - - -
X2 [0.75 050 0.28 092 096 094|099 1.0 - - - -
X3 1069 037 024 084 094 092|092 095 1.0 - - -
X4 (068 034 0.19 084 094 0931092 095 099 1.0 - -
X5 [0.69 033 0.19 081 090 094|082 0.87 095 095 1.0 -
X6 |063 024 0.17 079 0.86 092|0.83 0.87 092 093 095 1.0

Field Correlations for Animal F8.28: This table shows the field correlations for the pre- and
post-spinalization force fields shown in figure 3-5. Force fields D1-D6 (“D" for Deafferented)

correspond to the pre-spinalization force fields. Force fields X1-X6 (“X" for Transected)

correspond to the post-spinalization force fields. See table 3 for more generic details. Note

that the last force field collected before the spinal transection, force field D6, correlates with

all of the post-spinalization force fields at a level of 0.92 or better.
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In figure 3-3 we see six pre-spinalization and six post-spinalization force fields in
frog [110.20. Each force field was evoked by lumbar spinal stimulation through an
implanted clectrode. The frog was decerebrated and deafferented prior to the exper-
iment. The force fields are numbered in the order in which they were measured: in
each column of the figure, force field 1 was evoked before force field 2, and so on, In
the post-spinalization forces I also list the time since the spinalization. For exam-
ple, post-spinalization force field number 3 of figure 3-3 was measured approximately
15 minutes after the spinalization was performed (by stimulating through the same
implanted electrode, of course). Although there could be large fluctuations in the
magnitudes of the forces evoked in the pre-spinalization case, the pre-spinalization
force fields are similar to the post-spinalization force fields. This similarity was mea-
sured by force field correlation. The correlation values are given in tables 3 through 3.
For example, in figure 3-3, pre-spinalization force field number 6 correlates with post-
spinalization force field number 1 at 0.925. The mean of the 36 correlation values
between the six pre-spinalization force fields in table 3 and the six post-spinalization
force fields is 0.81.

Most of the force fields in figure 3-3 are classified as the “Body Flexion” type,
as previously identified by spinal stimulation of spinalized frogs. Figure 3-5 shows
the “Caudal Extension” type force fields from frog F8.28, electrode B. Figure 3-4
shows the “Lateral Extension” type force fields evoked in frog F8.19. The forces
evoked following spinalization were more repeatable than the pre-spinalization forces
(see particularly the exception exemplified by pre-spinalization force field number 3

‘of figure 3-3 or pre-spinalization force field number 2 of figure 3-5) In spite of a
few exceptions, however, these figures emphasize the astonishing point that I could
lift and cut the spinal cord at the level of the first vertebra and immediately evoke
virtually the same forces as [ had prior to the spinal transection.

Because of the magnitude fluctuations evident in figures 3-3 through 3-5, I used ori-
entations of non-anomolous forces to quantify the differences in the pre-spinalization
and post-spinalization forces (see section 3). The results of this quantification, are

shown in figure 3-6. The distribution of angular differences is approximately normal
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with a mean value of 5.3°. This mean angular difference could not be distinguished
statistically from 0°. Thus, spinalization did not cause any systematic change in the

orientations of the forces evoked by lumbar spinal microstimulation,
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Figure 3-6: Distribution of Peak Force Orientation Differences In this figure I show

the distribution of differences in force orientation over all the limb positions, and how
that distribution was computed. The distribution is approximately gaussian with a
mean value of 5.3°, which is not statistically different from 0°. (A) The computation
of angular differences is illustrated on four example pre- and post-spinalization force
fields (taken from figure 6). At each limb position, I computed the average orientation
of the non-anomalous forces (see section 3). There are no anomalous forces in the
displayed force fields. The average orientation of the circled pre-spinalization forces
is 125°. The average orientation of the circled post-spinalization forces is about 130°.
Therefore, the difference in the orientations at this limb position is —5°. The angular
difference of —5° is accumulated in the histogram shown part (B). (B) The histogram
of angular differences at all 98 limb positions. The height of the histogram for angular
differences between 0° and —15° is 25 observations. One of those observations is the
—5° computed in (A). Since there are 11 limb positions in each of the force fields of
(A), these force fields contribute 11 observations to the histogram of (B).
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Discussion

Spinalized frogs are quiescent, and have been shown to give repeatable responses at
many limb positions to spinal micro-stimulation at a single locus (Loeb, et al, 1993),
These characteristics enabled us to characterize spinal force fields: we repeatedly
elicited a single response by microstimulating a single spinal locus while holding the
hindlimb at many different positions (Bizzi, et al, 1991; Giszter, et al, 1993; Loeb, et
al., 1993). By measuring hindlimb endpoint forces at different limb positions in the
frog, we can approximate continuous force field functions from a few samples. It only
makes sense to do this, however, if the same behavior can be repeatedly evoked with
the hindlimb in different positions.

I wished to examine these force field patterns in frogs which were not spinalized.
Specifically, my goal in the study described here was to discover if the five force field
types shown in figure 1-7 could be evoked by spinal stimulation in decerebrated frogs.
This goal was comblicated by the tendency of decerebrated frogs to initiate protracted
responses to small movements of their limbs. Thus, I performed our experiment in
deafferented, decerebrated frogs.

The results, summarized with representative examples in figure 3-2, demonstrate
that force fields evoked by lumbar spinal microstimulation in deafferented, decere-
brated frogs are substantially the same as those observed in spinalized frogs. In a
database comprised of 50 force fields evoked by spinal stimulation of the deafferented,
decerebrate frogs, half of the force fields were well correlated to one of the spinalized
spinal force field typés (median field correlation value of 72%). The observation of
the five modelled spinal force field types (see figure 1-7) in decerebrate frogs suggests
that it is possible these five spinal force fields serve as building blocks of movement
for the descending tracts.

The forebrain and tectal tissue that I removed from these frogs do not contain
projections to the spinal cord. Supraspinal projections to the frog's lumbar spinal
cord come from the brain stem reticular formation (Corvaja et al 1973, Peterson

1984), the brain stem interstitial nucleus (Ten Donkelaar 1982), the tectum (Rubinson
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1968), the cervical spinal cord (Rubinson 1968, Corvaja et al 1973), the tegmentum
(Masino and Grobstein 1989b), the vestibular complex (Corvaja et al, 1973), and the
deep cerebellar nucleus (Montgomery 1988). There are no forebrain projections to
the spinal cord in the frog (Simpson 1976) and the tectospinals descend only to the
cervical level of the cord (Masino and Grobstein 1990). Thus, having demonstrated
that the spinal force fields types are all present in these decerebrate frogs, it is feasible
that the spinal force field types are also present in the fully intact frog.

I also examined the forces evoked at each stimulation locus and limb position be-
fore and after acute spinal transection. The forces evoked in the decerebrated animals
were more variable in orientation and in magnitude than the corresponding forces in
the spinalized animal. I excluded the effect of the magnitude variability by comparing
the orientations of the forces. I excluded the effect of the orientation variability, by
examining only the most common force orientations at each site. Under this compar-
ison, the forces evoked before and after spinalization had the same mean orientation
(as shown in figure 3-6). There were 13 limb positions at which spinalization caused
a change in the force orientation of more than 60°. Five of these 13 positions were
from force fields of one animal (F9.27, electrode B, medial site near the central canal).
Thus, ten of my eleven electrode placements assessed the evoked forces as being the
same in decerebrate frogs as in spinalized frogs.

The sole indication in my data of an influence of descending fibers on the spinal
cord was the obvious increased variability of the force magnitudes and orientations. It
is unlikely that this variability of the pre-spinalization forces was due to the electrode
moving from trial to trial. I implanted the electrodes in response zones that were
produced the same forces over several hundred microns, and the anomalous pre-
spinalization forces were generally preceded and succeeded by forces that were highly
similar to the subsequent post-spinalization forces. For these reasons, therefore, it
seems likely that the pre-spinalization force variability was due to modulation of
spinal excitability by descending fibers.

Future examination of the variability of pre-spinalization forces may help to elu-

cidate how the spinal interneuronal systems of the spinal cord are modulated by the
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supra-spinal systems. It appears preliminarily that the anomalous evoked forces may
fall into the usual set of discrete clusters. Figure 3-7 shows the distributions of force
orientations in a larger version of the experiment than reported here. Note particu-
larly the peaks in figure 3-Ta. Each peak in figure 3-Ta appears to correspond to the
force orientation of one of the five spinal force field types. The motivation for figure 3-
7a can be seen in figure 3-4, where pre-spinalization force field number 3 suddenly
changes direction. In fact, pre-spinalization force field number 3 of figure 3-4 is a fine
example of a rostral flexion force field. In general, although the pre-spinalization forces
change orientations occasionally, they nevertheless appear still to be constrained in

their orientations by the discrete clusters of forces given by the spinal force fields.

Summary

We theorize that the limited number of spinal modules serve as the basic building
blocks of posture and movement (Mussa-Ivaldi, 1992). It would be problematic for
our theory if the observed spinal modules were artifacts of spinalization. I have shown

in this experiment that the spinal modules are not artifacts of spinalization.
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Figure 3-7: Distribution of Peak Force QOrientations In this figure I show the distribu-

tion of force orientations over all the limb positions. At each limb position, the mean
orientation of the non-anomalous spinal forces is computed. That angle then becomes
0°. The three histograms in this figure show all of the force orientations relative to
the new 0° at each limb position. (A) Spinal force oritntations in decerebrate frogs
with the afferents intact. Although not described in this write-up, I evoked spinal
forces in four animals prior to cutting the dorsal roots to deafferent them. Note that
the distribution of force orientations is strikingly peaked. (B) The histogram of force
orientations in the deafferented, decerebrate frogs. (C) The histogram of force orien-
tations in spinalized frogs. Note that this histogram is quite tight around its mean
value. This indicates that the forces evoked by spinal micro-stimulation are highly
repeatable in the spinalized frogs.
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Chapter 4

Supra-spinal microstimulation in

the decerebrate frog

Introduction

Recent experixﬁents (Bizzi, et al, 1991; Giszter, et al, 1993; Loeb, et al 1993) have
demonstrated that the spinal cord of the frog contains a limited number of “mouules”.
That is, we measured the hindlimb forces evoked by spinal interneuronal stimulation,
and observed that the evoked forces occurred in a few discrete clusters of orientations
(see figure 1-7). This result is unexpected because forces which result from random
activation of the frog’s hindlimb muscles do not fall into discrete clusters. The struc-
ture of the hindlimb musculature does not, therefore, readily predict the regularity we
have observed after thousands of microstimulation experiments. The small number of
force pa,ttérns suggests that the spinal cord preferentially represents a limited number
of classes of muscle combinations.

We theorize that the limited number of spinal modules serve as the basic building
blocks of posture and movement (Mussa-Ivaldi, 1992). Descending fibers from supra-
spinal structures could conceivably activate simple combinations of the spinal modules
in order to produce forces that are not directly represented by the individual modules.
To test this hypothesis, I stimulate supra-spinal structures and measure the evoked

forces. I then investigate whether the forces evoked by supra-spinal stimulation can
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be accounted for with combinations of the spinal modules or with combinations of the
muscles. [f the patterns of supra-spinal evoked forces are more compatible with com-
binations of muscles than with combinations of spinal modules, then the hypothesis
of we linear superposition of spinal modules becomes clearly untenable.

A supra-spinal structure of particular interest in the frog is a tegmental cell col-
umn identified by Masino and Grobstein (1989a,b). These cells project to the spinal
interneuronal grey matter. Lesions of these cells are necessary and sufficient to elimi-
nate the frog’s prey orienting response (Masino and Grobstein 1989a,b). The authors
found that the lesioned animals would lunge and snap their tongues at prey at the
correct distance but at the wrong angle: in other words, the animals did not change
orientation. Masino and Grobstein (1989a) hypothesized that the tegmental cells
make use of a second subsystem in the spinal cord involved in “selection of a particu-
lar motor synergy” to produce changes in body orientation. We can now test whether

that hypothesized spinal subsystem is our identified collection of spinal modules.

Methods

Data Collection
Surgeries

Decerebrations: Six healthy adult bullfrogs (Rana Catesbiana) were anesthetized with
0.5 - 1.5 cc tricaine. The frogs were decerebrated anterior to the tegmentum, and the
optic tectum was removed. In two frogs (F4.12, F4.21, spinal laminectomies were
performed to expose and cut dorsal roots 7, 8, and 9. All surgeries were performed

at least one day prior to the experiment.

Electrode Placements

At the start of the experimental session the decerebrated frogs were sedated with
tricaine, placed in a moistened plaster frame, and secured by clamps. The right ankle

was attached to a movable force sensor (see figure 4-1A below) by a cuff capable of
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rotating about the Z axis, or of being secured in place so that it could not rotate,

A stainless steel micro-electrode (0.1 - 2 um at the tip, with 1 - 10 Mohmns
impedance in the tissue was lowered with a micromanipulator in the following supra-
spinal structures: brainstem, cerebellum, pons, and tegmentum. As the electrode
was lowered, response repeatability was assessed by visually comparing the magni-
tude, sign, and shape of the x, y, and z force traces at different stimulation depths. |
searched for repeatable response zones extending dorso-ventrally for 600 gm or more
that produced clear and repeatable force fields. Once a repeatable zone was found,
the electrode was moved to the depth at which the response had the lowest stimulus
threshold. The repeatability of the stimulation response at that depth was verified
over a period of 5 - 10 minutes. After a number of force fields were collect (see below)
at the chosen stimulation site, the electrode was removed and I repeated the abo'e
procedures to find a new site.

To determine the exact placement of electrodes, | made marking lesions (10 uA
DC current for 20 - 30 seconds) through the electrode. After all electrode penetrations
were completed, the animals then were sacrificed and perfused with a 10% formalin
solution. Brain sections were stained with cresyl violet and examined to assess the

location of the marking lesion(s).

Recording Force Fields

I measured force fields by stimulating one supra-spinal locus with the hind limb held

sequentially in each of many positions. Thus I followed this simple procedure:
1. Secure the ankle cuff in the force sensor.
2. Stimulate the supra-spinal locus while measuring the force at the ankle.
3. Move the limb to a new posture.
4. Repeat procedure at the next limb posture.

The force sensor was attached immediately above the frog's ankle, so the sensor's

(x,y) coordinates correspond to the frog’s right ankle position. I did not change the
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z coordinate of the ankle in this experiment. As the limb muscles contract and relax
in response to the supra-spinal stimulation, the force sensor records x, y, and z forces
as functions of time, A measured force field consists of those 3 force traces at each
ankle position together with the (x,y) location of the ankle position (see figure 4-1A

b;elow).

Stimulation Parameters

I found that higher stimulation parameters were generally required to excite the snpra-
spinal tissues than was typical for the spinal interneuronal stimulation. Stimulation
parameters ranged between 7 - 50zA; 0.3 - 0.8 msec pulses width; 300 - 800 msec
duration; at 40 - 300 Hz. Typical stimulation parameters were 10 - 40 uA; 0.6 msec
pulses width; 400 msec duration; at 60 Hz. The stimulation parameters were never

changed while collecting a force field.

Data Analysis

One stimulation trial consists of the data gathered during stimulation of some supra-
spinal locus (through one electrode) with the limb at one particular position. A
stimulation trial yields 3 force traces (x force, y force, and z force) over time. (see
figure 4-1). One stimulation trial at each of several limb positions is needed to measure
a force field. The z forces were dropped from analysis in this experiment, and are not
shown in figure 4-1.

The position of the frog’s hip relative to the base of the force sensor apparatus
and the length of its right hind limb segments (thigh and calf) were measured at
the start of the experiment. These measurements allow us to cumpute the angles
of the frog’s hip and knee joints from the (x,y) coordinates of its ankle. From this
information I was also able to compute the torques at each joint corresponding to the
forces measured during spinal stimulation. The hip angles were negative in extension,
positive in flexion, and zero when the thigh was perpendicular to the body. The knee

angles were all positive, with 180° being full extension.
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Figure 4-1: Processing Sequence for Force Data

Processing Sequence for Force Data This figure illustrates the processing step~ taken
to convert the datc from supra-spinal stimulation trials into a force field. (A) A frog
is drawn with its hindlimb at a hip angle of —36° and a knee angle of 87°. A hip angle
of 0° would cause the thigh to be parallel to the x axis. These joint angles bring the
ankle to the location (110, -30) in the workspace. Ankle positions are measured in
millimeters relative to the base of the force sensor apparatus. (B) Three data traces
(x, y, and z force) are recorded during supra-spinal stimulation. We have displayed
only the x and y forces here. We have not analyzed the z forces in this work, and
they are dropped for the remaining processing description, Time is measured in tens
of milliseconds. The force values are initially non-zero (20 units initial X force and 5
units initial Y force). These initial non-zero forces are averaged together to form the
baseline forces. (C) X and Y force traces are converted into XY force vectors. The
non-zero initial forces of (B) are now non-zero initial force vectors. (D) The baseline
forces of (B) and (C) are removed from all the force vectors to produce “active” XY
force vectors. The initial active forces are not exactly zero, because initial forces in
(C) are not exactly equal to average force levels used as the baseline. The force vector
with the largest magnitude is the peak force, chosen to represent this progression of
forces. (E) The peak force from the stimulation trial is plotted at ankle position (110,
-30). The force vector at (110, -30) and the other force vectors measured with the
limb at the other limb positions, together form a force field.
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Processing

Each force trace has two parts; “baseline and “active”. Because | began collecting
the force traces bhefore the stimulus began, the first 50 to 100 milliseconds of the
force traces represents an estimate of the haseline force levels (figure 4-1B and ().
I computed the active force traces by subtracting the baseline force levels from the
measured forces. For example, the active x-force trace for a trial was the measured
x-force trace minus the baseline x-force value (figure 4-1D). The subtracted baseline
forces include the effects of kinematic constraints, baseline muscular activation, and
gravity.

The (x,y,z) active forces form a time-varying 3-dimensional force vector, the Active
Force Vector, AFV(t). The time-varying force vectors sampled at each of the limb
positions form a time-varying Force Field, FF(x, y, t). During spinal stimulation,
we have found that the time-varying forces nearly always rise and fall along a line,
so that AFV(tl) o AFV(t2). Therefore, for spinal stimulation, FF(x, y, t) can bhe
well-approximated by some time-invariant force field, by FF(x, y)'. I construct the
time-invariant FF(x, y) by sampling the time-varying force field. In particualr, at each
sampled position 1 used the peak of the time-varying force vector at that position,
max, {|AFV(t)||, as the force vector in the time-invariant force field, FF(x, y) (see
figure 4-1E). Although the forces of FF(x, y) are three-dimensional, I only consider

the two-dimensional (x, y) forces in this paper.

Statistical Analysis

[ have measured a total of 43 force fields from 24 supra-spinal sites in 6 frogs. | have
used these 43 force fields to test th * hypothesis that supra-spinal force fields result
from the recruitment of combinations of spinal force fields. The null hypothesis for
this test is the possibility that supra-spinal force fields activate the muscles through
the particular intervening organization imposed by the spinal cord; in particular,

through the spinal force fields (shown in figure 1-7). The alternative hypothesis,

The validity of summarizing supra-spinal force fields with time-invariant FF(x, y) remains to be
tested.
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which we accept if the statistics are significant, is that the muscles provide a better

explanation for the supra-spinal force fields than the spinal force fields do.

This statistical test involves a few simple steps:

1.

Step 1: Evoke a supra-spinal force field, SPFF.

Step 2: Estimate the non-negative (zero or positive) muscle and spinal force

field coefficients (the 5 values a; and the 17 values b;) to reproduce SSFF:

5
S§FF5,, = Y_a;SpFF; = spinal fit

17
SSFFup. = E b;MuFF; = muscle fit

=1
Where 5 is the number of spinal force fields, and 17 is the number of muscle

force fields.

Step 3: If the supra-spinal force field is produced by co-activation of spinal force

fields, then there should not be a significant difference in the errors of these fits:

Y (SSFFs, — SSFF)?
Y (SSFF . — SSFF)?

~F(N-1,N-1)

Where N is the number of data values used to create these estimates. If [ sample
L leg positions, then N will be 2*L, because there are two error terms at each

leg position: the error in the X force and the error in the Y force.

The F statistic will indicate whether he ratio of the errors is distinguishable from

1.0. If the supra-spinal force field is determined by a significant contribution of direct

muscle activations or by any mechanism other than the activation of spinal modules,

then there should be a significant difference in the errors. Thus, if the F statistic is

significant, we will have evidence that the supra-spinal force field is not implemented

by the hypothesized spinal circuitry. If the ratio of errors is not significant, then linear

recruitment of spinal interneuronal force fields by supra-spinal fibers is a possible

explanation of the results.
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Power Analysis of the Test

An unusual aspect of the statistical test described above is that | am using it to
accept the null hypothesis that there is no difference in the errors. If the statistical
test is not significant, then I will begin to accept that the null hypothesis, which we
interpret as indicating that supra-spinal fibers recruit only spinal force fields. It is
not entirely clear how likely I am to be wrong in accepting the null hypothesis. If
I were using the statistical test in the usual way, then a significance level of 0.05
would indicate that there is a 5% chance of being wrong in accepting the test. [t
would be desirable to know the same information - how likely I am to he wrong - for
this test. In particular, I am interested in detecting differences in spinal vs muscle
recruitment by supra-spinal fibers. The differences of interest lead to different error
distributions that will cause me to accept the null hypothesis (no difference in the
error distributions) with some probability. To find out that probability, I performed

a statistical power analysis.
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Figure 4-2: Two F distributions under the Null Hypothesis

In this figure two F distributions are pictured. Random numbers that are generated from
the sample variances of two Normal random variables will follow the F distribution. In
particular, the boxed numbers called V1 and V2 (to the right of distribution (A)) are two
random variables. Both V1 and V2 have 18 values associated with them. The 18 values
were drawn from a Normal distribution with a variance of 1. The sample variance of each
set of 18 numbers is another pair of random numbers (from a Chi Square distribution). The
sample variances of the two variables V1 and V2 is 1.1481 and 1.0652, respectively. The
ratio of these two variances is 1.07775. This ratio of variances is one random value drawn
from an F distribution. (A) The theoretical F distribution for the sample variances of 18
Normal random numbers. The histogram in this figure is an empirical F distribution created
from 1000 ratios of the kind just described. The fact that there are 18 numbers used to
generate the sample variances is important to the shape of the histogram and also the shape
of the theoretical distribution (dark line). The histogram and distribution both depend on
the assumption that V1 and V2 have equal variances. That is, the two sample variances
should be estimates of the same number. Under that assumption, it would be surprising to
observe values of an F statistic greater than 2.27. The integral of the F distribution from
2.27 to infinity is 5% of the integral from 0 to infinity. (B) An empirical distribution and the
theoretical F distribution for N = 40 samples. The histogram in this panel was constructed
as in part (A), but variables V1 and V2 had 40 samples each from Normal distributions
with equal variances. The 5% surprising value of the F statistic has now dropped to 1.7.

The point of the power analysis is to find out how likely it is that no difference
in the errors will be found when in fact there is a difference. Figures 4-2 and 4-3
illustrate the mathematics underlying the statistical power analysis. The F test is
used to test for a difference in sample variances. The F test compares the ratios of
sample variances to the value at which the ratio is surprisingly large. If we use a
5% test level, and there is no difference in the two sample variances, the test will
accidentally wrongly indicate there is a significant difference 5% of the times the
test is used (on average). If we use a 5% test level und there is a 30% difference
in two samples of 18 values each, then the test will wrongly indicate that there is
no difference approximately 88% of the times the test is used (on average). We can
gain more statistical power by sampling more numbers. If we use a 5% test level and
there is a 30% difference in two samples of 40 values each, then the test will wrongly
indicate there is no difference 80% of the times the test is used (on average). The
point of the power analysis is to examine integrals (the shaded regions in figure 4-3)

in order to find out how likely my test is to wrongly indicate that force fields are a
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combination of spinal force fields when they are in fact produced by a combination

of muscle force fields.
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Performing the power analysis for the test of supra-spinal recruitment of spinal
force fields requires that errors be generated somehow. Errors must be generated
because the power analysis requires a distributional assumption: what differences do
we want to be sure to detect? For example, in figure 4-3 the shaded distributions were
generated from numerator and denominator Normal populations that had variances
. of 1.3 and 1.0 respectively. Having generated figure 4-3 I was able to compute the
probable outcomes of an F test on the numerator and denominator sample variances,
The errors of the spinal force field and muscle force field fits to supra-spinal force
fields are also like sample variances: the errors have a mean value of zero, and the
errors are computed from sum of squared differences. In order to find out the probable
outcome of an F test on a ratio of fit errors, I need to make some kind of assumption
about the distribution of spinal and muscle fit errors. Once I have assumed something
about the underlying distributions, then I can generate error statistics according to
those assumptions and use the generated statistics to compute the power of the spinal
recruitment test.

The obvious distribution to consider is that of force fields constructed from ran-
dom combinations of muscle models. Force fields generated from combinations of
muscle force fields should produce significant spinal recruitment F statistics, just as
the shaded distributions in figure 4-3 “should” produce significant variance ratio F
statistics. I constructed 1000 force fields from uniform [0,1] random activations of
muscle models (as in figure 2-6). I produced hypothetical supra-spinal force fields by
sampling the random muscle combination force fields at a few (between 7 and 40)
limb positions, and by adding Normal noise (zero mean, variance = 100 units) to the
hip and knee torques. The hip and knee torques typically ranged from 10 to 10,000
units, so the signal to noise ratio ranged from approximately 10% to 99%, depending
on the limb position. I then performed the statistical test on the sampled random
force fields: I fit them with the muscle models and also with the spinal force field
models. The ratio of the errors in the fits was compared to an F distribution for
the corresponding number of samples, and the likelihood that the generated supra-

spinal force field was produced from muscle activations was returned. In no case did
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Figure 4-3: Two F distributions under H1

In this figure two F distributions are pictured. Random numbers that are generated
from the sample variances of two Normal random variables will follow the F distri-
bution. [ have created the two shaded distributions in this figure precisely as in the
previous figure, except that the sample variance of V1, the numerator variable, is 1.3
instead of 1.0. (A) The likelihood of accepting the null hypothesis for two sample
variances with an expected ratio of 1.3. The light line is the theoretical F distribution
for two samples of N=18 values drawn from equal-variance Normal distributions. The
darker like is the empirical density observed in 1000 random values, each created from
the ratio of sample variances. The sample variances used to create these numbers were
not equal, so the F test would ideally indicate that the variances were not equal. This
panel shows a dashed line at 2.27 (from figure 4-2), above which only 5% of the F
values should fall under the null hypothesis. Note that the empirical (dark-lined)
distribution is more likely than the null hypothesis distribution to produce numbers
above 2.27. The shaded region under the dark-lined distribution is the value to bhe
computed in order to gauge the power of the F test for a true variance ration of 1.3
and 18 samples from each population. The shaded region is (proportional to) the
probability that the F test will nevertheless indicate that the sample variances are
not different. The probability that a value from the dark-lined F distribution will fall
in the shaded region is 88% Thus, the F test will indicate that there is no difference in
the variances of the two sampled populations in 88% of all such experiments. (B) An
empirical F distribution produced from 40 samples from Normal distributions with a
true ratio of variances of 1.3. The null hypothesis distribution is not shown in this
figure, because it is only used to produce the value over which we expect only 5% of
the F statistics to fall. The shaded region is (proportional to) the probability that an
F test performed on sample variances of 40 samples each will indicate that the two
underlying populations have the same variances even though they really have differ-
ent variances (1.3 for the numerator and 1.0 for the denominator). The dark grey
illustrates the integral needed to compute the probability of a false negative when the
F test is performed at an 0.1 level of confidence (68%), while the dark grey plus the
lighter grey indicate the power of the statistical test when the F test is performed at
the 0.05 level (80%).
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the F test fail: random muscle activations plus noise were always identified as being

produced from muscle combinations rather than from spinal force field combinations.
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Preliminary Results

[ first show preliminary results from animals with intact afferents. There is a method-
ological problem with afferent-intact experiments that I will describe. Two points can
be made from the afferent-intact results: there are evoked force fields that are better
fit by the muscles than by the spinal force fields, and there is preliminary indica-
tion that topographic maps of equilibrium point locations can be demonstrated by
supra-spinal micro-stimulation. I next show several examples of force fields evoked
by tegmental stimulation in deafferented frogs. These force fields are fit by the spinal

force fields as well as by the muscle force fields.

Stimulation with Afferents Intact

My first experiments were performed with the afferents intact. When the afferents
are intact, the afferents allow control strategies in which completely different muscles
and/or spinal regions are recruited at different limb positions. The test that I use
assumes that a single set of limb-position-independent coefficients can fit the supra-
spinal force field with muscle force fields. Another set of limb-position-independent
coefficients is used to fit the supra-spinal force field in terms of spinal force fields.
The negative results, in which the supra-spinal force fields are shown to be possibly
composed of spinal force fields, is not valid when the afferents are intact because the
alternative hypothesis of feedforward recruitment of muscles is a straw man. The
positive results, in which the supra-spinal force fields are shown to be composed of
muscle force fields, does not really rule out supra-spinal recruitment of the spinal
modules, because the afferents allow limb-position-dependent recruitment to which
the test is not sensitive. Thus, the first set of 27 force fields measured in afferent-intact
animals are only helpful as a demonstration of concept.

Figure 4-4 shows that it is possible to evoke a supra-spinal force field that is
better fit by the muscle models than by the spinal models. In figure 4-4 we see data
measured during brainstem stimulation, two reproductions of that data by spinal and

muscle models, and the coefficients of those reproductions/fits/decompositions. Note
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Figure 4-4: A fit of muscle models and spinal models to a brainstem force field The
three panels in this figure show a force field evoked during brainstem stimulation and
the two fits to that data by the muscle and spinal force field models. Each arrow
in the three panels is a peak force vector. The x,y location of the base each arrow
indicates the limb position at which the force was measured or computed. The hip,
belly, and nose of the animal are indicated in each plot. The brainstem stimulation
(300 msec burst at 200 Hz, 0.5 msec pulse width, 40 uA) produced forces pointing
straight towards the hip when the limb was in flexion. The muscle fit was able to
reproduce those forces but the spinal fit was not. The best fit of the spinal force
fields to the brainstem force field was (0.029 * Wipe + 0.43 * Rostral Flexion). The
best fit of the muscle force fields to the brainstem force field used 7 muscles: Biceps
(BI), Rectus Anticus (RA), Sartorius (SA), Gastrocnemius (GA), Pectinius (PT),
Quadratus Femoris (QF), and Rectus Internus Minor (RIm). Muscles QF and RIm
are two different kinds of extensor (see chapter 2) and the other muscles are flexors.

that there is a near-zero force at the lateral edge of the data force field. Neither
the muscle models nor the spinal models are able to reproduce that near-zero force.
The fit by the muscle models appears to be more accurate overall than the fit by
the spinal models. Because the afferents were intact during this experiment, the
statistical test can not be interpreted in the way it was intended. Nevertheless, the
test results were significant, so muscle models can be shown to fit a supra-spinal force
field better than spinal models. Examination of the muscles used in the fit show that
the fitting procedure predicts co-contractions of the different types of muscles defined

in chapter 2.
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Figure 4-5 demonstrates the potential of force fields for quantifying the complex
feedback modulation generally hypothesized as the role of the cerebellum. Figure 1-5
is suggestive of a topographic map of force field equilibrium points, The apparent
equilibrium posture of force fields in figure 4-5A-C becomes progressively more rostral
as the electrode is moved laterally. There was no significant difference in the spinal
. and muscle fits to the force fields in figure 4-5. If topographic maps of cerebellar
force fields that are fit by spinal force fields can bhe found in deafferented animals,
then it will suggest that the cerebellar cortex (which does not project to the spinal
cord) produces outputs in the spinal force field coordinate system. If stimulation and
recording techniques can be used simultaneously iu ihe cerebellum, then force fields
and receptive fields could potentially serve as a powerful pair of tools in understanding
cerebellar modulation of (medial in fig 4-5E and lateral in fig 4-5A,B,C,D) descending

systems.

Stimulation with Afferents Cut

I have measured 16 force fields in 3 deafferented animals, and 14 of these show no
significant difference between the spinal fit and the muscle fit. I measured eight force
fields from three sites in the tegmentum in one deafferented frog, and none of these
force fields showed a significant difference between the muscle fits and the spinal fits
despite a large number of sampled limb positions. These eight force fields are densely
sampled, in that | measured forces at many workspace locations. [ show three of

these force fields (one from each site) in figures 4-6 through 4-8.
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Figure 4-5: Five Cerebellar Force Fields The five data force fields in this figure were
measured during cerebellar stimulation at the sites indicated. The cartoon shows the
cerebellum and three sites on the surface of the brain that were measured with the
vernier coordinate frame on the electrode holder. The electrode coordinates are in
millimeters. The stimulus parameters were set at each locus (except E) by examin-
ing the strongest response at different frequencies, pulse width (chronaxie/rheobase
measurements), and train duration. The electrode depth and best pulse width sug-
gest that cell bodies in the cerebellar cortex were being stimulated. (A) Electrode
coordinates (0.95, 1.28), depth = 0.500 mm. 400 msec train at 300 Hz, 40 uA pulses
of width 0.6 msec. (B) Electrode coordinates (0.98, 1.28), depth = 0.35 mm. 400
msec train at 200 Hz, 40 A pulses of width 0.6 msec. (C) Electrode coordinates (1.0,
1.28), depth = 0.6 mm. 400 msec train at 200 Hz, 30 A pulses of width 0.6 msec.
(D) Electrode coordinates (1.0, 1.25), depth = 0.45 mm. 400 msec train at 200 Hz,
20 pA pulses of width 0.8 msec, (E) Electrode coordinates (0.92, 1.28), depth = 0.5
mm. 400 msec train at 200 Hz, 80 uA pulses of width 0.8 msec.
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Figure 4-6: Tegmentum Site One Data and fits for a tegmental force field measured at
18 limb positions. The Spinal fit and the Muscle fit both reconstruct the data “pretty
well”. The F statistic has 35 degrees of freedom, because the errors are measured
in two dimensions, hip and knee torque (2*18 positions minus one is 35). The F
statistic is not significant, so we can apparently accept the null hypothesis, that there
is no difference between the muscle and spinal errors. The tegmental force field is
constructed from spinal force fields as (0.014 Lateral Extension + 0.034¢ Extension).
~ Note that there is a hint of the lateral extension and extension equilibria in the data.
Electrode depth = 1.3 mm. 500 msec train at 50 Hz, 15 uA pulses of width 0.6 msec.
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Figure 4-7: Tegmentum Site Two Data and fits for a tegmental force field measured at
23 limb positions. The Spinal fit and the Muscle fit both reconstruct the data “pretty
well”. The F statistic (F(45, 45) = 1.19) is not significant, so we can apparently
accept the null hypothesis, that there is no difference between the muscle and spinal
errors. The tegmental force field is constructed from spinal force fields as (0.036
Rostral Flexion + 0.0024 Lateral Extension + 0.037 Extension). Note that the lateral
extension and extension equilibria can be seen in the data as reversals of forces. |
have previously found non-linearities in the magnitudes of spinal force fields following
deafferentation (Loeb, et al., 1993) that could explain why the underlying spinal force
fields might be visible in their superposition. Electrode depth = 1.1 mm. 400 msec
train at 50 Hz, 35 A pulses of width 0.8 msec.
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Summary

[t is clearly possible to measure force fields in decerebrate frogs and decompose those
force fields into linear combinations of spinal and muscle force field models. | have
measured 43 supra-spinal force fields in six decerebrate frogs, and for 16 of these the
frogs had beed deafferented. The force fields evoked during tegmental stimulation
may indeed be composed of spinal force fields, in that the statistical test of the model
errors were not significant. Thus, I have demonstrated in this chapter the feasibility

of the new experimental method designed in this thesis.
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Figure 4-8: Tegmentum Site Three Data and fits for a tegmental force field measured
at 25 limb positions. The Spinal fit and the Muscle fit both reconstruct the data
“pretty well”. The F statistic (F(49, 49) = 0.99) is not significant, so we can ap-
parently accept the null hypothesis, that there is no difference between the muscle
and spinal errors. The tegmental force field is constructed from spinal force fields as
(0.0094 Wipe + 0.092 Rostral Flexion + 0.044 Extension). Note that the extension
equilibrium can be seen in the data, as a reversal of forces in the most caudal extended
limb positions. Electrode depth = 2.0 mm. 800 msec train at 60 Hz, 20 uA pulses of
width 0.6 msec.
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