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Abstract

Understanding the velocity of the compressional waves travelling through rocks is
essential for the purposes of applied geophysics in such areas as groundwater and
hydrocarbon exploration. The wave velocity is defined theoretically by the Newton-
Laplace equation, which relates the wave velocity, V, to the square root of the ratio
of the rock's elastic modulus, M, and its density, p (Bourvie et al., 1987). Therefore,
the equation indicates that the velocity is inversely proportional to density. However,
the in-situ field measurements and laboratory experiments of compressional wave
velocity through different rocks show otherwise. In other words, the velocity is directly
proportional to approximately the 4 th power of density as stated by Gardner (Gardner
et al., 1974).

This thesis investigates the inconsistency between theory and observations re-
garding the relationship between velocity and density of saturated porous rocks. The
inconsistency is clarified by deriving a new expression for the elastic modulus, M,
using Wyllie's time average equation and the Newton-Laplace equation. The new
derived expression of the elastic modulus, M, provides dependence of M on density
to approximately the 9 th power. In addition, Gardner's equation is modified to ac-
curately obtain the velocity over the entire range of densities (from 1.00 g/cm3 to
around 3.00 g/cm3) and porosity (from 0% to 100%).

The end of this thesis is an application of the previous outcomes with real data
sets, where the results validate the derived expression of the elastic modulus as well
as the generalized form of Gardner's equation.

Thesis Supervisor: Frank Dale Morgan
Title: Professor of Geophysics
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Chapter 1

Introduction

1.1 The problem and objective

Many scientists throughout history spent a tremendous amount of time studying the

compressional wave behavior through different mediums. Understanding the velocity

of waves provides important information about the properties of the medium in which

the wave is travelling. In exploration geophysics for water and hydrocarbons, for

example, seismic wave velocity is one of the key parameters that has to be accurately

measured.

The wave velocity is related to the elastic properties of the rock and its density

by the theoretical expression (Bourvie et al., 1987):

V - (1.1)
r p

where V is the wave velocity, M is the elastic modulus and p is the density. The

equation, which is known as the Newton-Laplace equation, relates the compressional

wave velocity directly to the square root of the elastic modulus and inversely to the

square root of density. However, the latter dependence opposes the real observed

relationship between velocity and density. The experimental and laboratory mea-

surements on rocks show that the compressional wave velocity actually increases with

increasing density (Gardner et al., 1974).

17



It is important to note that most of the books that describe this relationship for

rocks don't demonstrate this contradiction. An example is seen in figure 1-1, which

is a page from the book Acoustics of Porous Media (Bourvie et al., 1987), that has

the expression of the wave velocity equation without any further clarification about

the real relationship between velocity and density. Another example is in figure 1-

2 from the book Introduction to the Physics of Rocks (Gue'guen and Palciauskas,

1994) where any demonstration is missing. On the other hand, the figure 1-3 is a

page from the book Exploration Seismology (Sheriff and Geldart, 1995) where the

authors do notify the readers about the interrelation between the elastic modulus

and density. However, the latter still does not demonstrate that the velocity increases

with increasing density. The readers will assume that the dependence of velocity on

density is what is seen in the equation rather than the true relationship, which creates

a misunderstanding of the real physical behaviour of the velocity.

The current reasoning for this inconsistency between the theory and observation

is explained by the fact that the elastic modulus is also dependent on density. In

other words, the velocity is a function of the elastic modulus and density and the

elastic modulus itself is also a function of density, i.e. V = f(M, p) and M = g(p).

This thesis investigates the relationship between the compressional wave velocity and

density for rocks as well as the relationship between the elastic modulus and density.

The results of this investigation attempts to clarify and quantify the dependence of

velocity and elastic modulus on density. In addition, the results are applied using

real data to validate the findings.

1.2 Thesis Outline

The second chapter of this thesis is a review of the history of the wave velocity

equation and the theory of elasticity. Chapter 3 shows real observations of the com-

pressional wave velocity through different mediums such as gases, solids and rocks.

The conclusion of chapter 3 directs the research toward deriving a new expression

of the elastic modulus, M, that results in a remarkable relationship between M and

18



density. Chapter 5 shows the results of applying the findings of chapter 4 to real

data. Chapter 6 highlights the main conclusion points of this thesis.
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IE0UL15 AND hMECANEiM

extent of fracture porosity by the increase in velocity with pressure, The ordinate in the
diagram represents the normalized dilferenoe between the compressional velocity without
premure and that under a presure of I GPa for dry samples: the greater the number of
cracks, the mon the velocity varies with premure.

As already noted, the Pierre shale samples used in Fig. 5.2 display a diflerent velocity
function than Fig. 5.1. The velocity plateau as a function of pressure, which represents the
closure of its "last" crack for the sample concerned, is not oberved for this rock at
120 MPa. In fact. Jones and Wang (1981 observed this phenomenon continuing up to
0.4 GPa. It is possible that the increase in velocity as a Iunction of preinure shows. m
addition to the coistinuous closure of the microcracks. an alignment of the clay crystals in
the minimum shear strength plane(Tosaysa. 1982). Chalk, the second example in Fig. 52, is
very complicated because the structure or the material varies according to the pressure
applied (creep). We shall not go into further detail for either Pierre shale or chalk,
assuming that the variation in velocity versus premnure are only important if the structure
of the material investigated is not changed irreversibly by the experunent. For clays as wCU
as chalk, there is good reason to suspect hysteresis in the curve of velocity vs effective
pressure.

We have shown that the increase in velocity with pressure results from the closure of the
cracks, and that this closure is refected by a greater rigidity of the material under pressure
fix. an increase in the corresponding elastic modulusi, In fact, it must be remembered that
any velocity V can he expressed in the forn -

'I- (5.l)

where A4 is the elastic modulus, and p the density. and that. consequently, at constant p.
an increase in elastic modulus implies a rise in velocity. The behavior of cracks and pores
under confining pressure was modeled by Walsh (1965, 1969) and Wu (0966) for a pore or
crack included in a matrix. The equations satisfied by K, the bulk modulus, and p, the
shear modulus of the rock for the dry sample are the following:

I + A (5.21
K K,\ ej

I + B t (5.3)
p ,\ le)

where K I and oL are the solid moduli.e the aspect ratio of the pore or crack (e - I for a
sphere, e 4 1 for a crackj 0 the porosity, and 4 and B are constants depending on the
characteristics o( the medium and close to 1.

For the saturated sample:

01 + A#* (5.4)

- if- l +B' (5.5)
p ,keJ

where A' and B' are constants -depending on K, and y, (and fluid bulk modulus for A')
and clos to 1. It can be seen that.if e = 1, the effect of the pore on the moduli is negligible

Figure 1-1: A page from the book Acoustics of Porous Media that demonstrates the

wave velocity equation (Bourvie et al., 1987)

20
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VII. Acoustic Properties

BELAusrF of thc important ruik of seismic pra4uxting and somc logging&

understanding the acoustic rock propertie (velocity and attenuation) ts

essential for thesc and other geophysical applications. We have seen in

chapter IV that the acoustic velocities V and V, can be expressed

simply in terms of the elastic constants and de*ity of a medium. Tbc

elastic constants and density depend on litbhalogy, porosity, fluid satura-

tion. pressure, and temperdtire. Attenuation is an independent parame-

ter which is potentially ridi in information, but the many complex

procemes of attenuation are much more difficult to interpret. As a

genefal rule. elastic anisotropy is not very pronounced, but there are

certain cases where it must be taken into account.

VELOCIV OF ELAS11C WAVES

Ved*y and Lado

Lithology is an knportant factor Mich affects the velocities l, and V,.

In veduneuatv rwcks, on the average. higher velocitics are observed in

carbonates than in sandstune and marl (fig. VI ii. But, unless we know

their exact composition and/or their porosity. sandstone and calcite

cannot be distinguished simply on the basis of V,. Let uw awune for the

time heing that the rocds are inotropic. homogeneous. and elastic. Then

utilizing equations IV.S and 9:

4

The ratio V,/V, is interesting from the point of view of lithokigy

because it only depends on the Poisson's ratio v-. With the aid of table

IV.2. one can show

I (V,/VY - 2

2 (V/V9 - I

Figure VI.2 shows that the V,/V, ratio can be used to differentiate

between sandstone and limestone. This result is partially a consequence

Figure 1-2: A page from the book Introduction to the Physics of Rocks that demon-

strates the wave velocity equation (Gue'guen and Palciauskas, 1994)
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Figure 1-3: A page from the book Exploration Seismology that demonstrates the wave
velocity equation (Sheriff and Geldart, 1995)
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Chapter 2

Literature Review

2.1 The compressional wave velocity in history

The velocity of compressional waves has been a major subject of investigation through-

out the history( (Gassman, 1951; Biot, 1956b,a; Geertsma and Smit, 1961; Domenico,

1977)). Many scientists tried to measure and derive an expression that would provide

an accurate value for the velocity of sound, which is a compressional wave, in air.

It started in the 16th century when Isaac Newton derived a theoretical expression to

calculate the velocity of sound using the pressure and the density of the air in which

the sound wave is traveling (Finn, 1964), which is:

V = (2.1)

where V is the velocity of sound wave, P is the pressure of air and p is the density of

air. During the same time, other scientists were conducting experiments to measure

the speed of sound through air. They found that the measured experimental value

was almost 20% higher than the theoretical one, and no one was able to explain this

excess over theory (Finn, 1964).

In the 1 8 th century, Pierre-Simon Laplace investigated the speed of sound problem

and was able to explain the inconsistency between the theoretical and experimental

values. He found out that Newton followed Boyle's law of heat dissipation in his
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derivation; i.e., the temperature of the medium does not change throughout the pro-

cess of wave propagation (compression and rarefaction), making it an isothermal

process. Conversely, Laplace identified that when the sound wave propagates, the air

particles oscillate in high speed that would not allow the heat to escape. Thus, the

temperature of the medium is raised and, as a result, the pressure is raised. This

process is known as an adiabatic process (Finn, 1964; de Podesta, 2002).

To account for this new understanding of the problem, Laplace related the speed

of sound to the square root of Gamma, -y, which is the ratio of the principle heat

capacities' (Finn, 1964):

C = (2.2)
Cv

where Cp is the heat capacity at constant pressure and CV is the heat capacity at

constant volume. Thus, the new equation for the speed of sound, known thereafter

as The Newton-Laplace Equation, becomes:

V = (2.3)

where K = -yP and it is defined as the Bulk modulus for gases. Using the above

equation along with y = 1.42 for air gives a value of 331.2 m/s (Finn, 1964; de Podesta,

2002), which is in great agreement with the experimental measurements.

2.2 Theory of Elasticity

2.2.1 Hooke's Law

One fundamental law in the theory of elasticity is Hooke's Law, which addresses the

deformation of bodies under load (Jones, 2009). Hooke's law is expressed by:

F = kAd (2.4)

'Heat capacity is the ratio of heat added to or removed from a gas to the subsequent change in
temperature.
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where F is the force, Ad is the resulting length of elongation or compression, and k is

a constant that characterizes the material, which was a spring in Hooke's experiment.

In addition, Robert M. John stated in his book Deformation Theory of Plastic-

ity (Jones, 2009) that the first one to establish a linear relationship between stress

and strain is James Bernoulli in 1705 (Jones, 2009). John, in his book, states that

Bernoulli saw that a relation giving the ratio (force)/(area), or mean stress, as a

function of strain characterizes the material (Jones, 2009).

2.2.2 Young Modulus

Leonhard Euler worked along with John Bernoulli on the Bernoulli-Euler bending

theory. In his work on the theory, he characterized the material by its modulus of

extension, which is what is known today as Young modulus. Clearly, the modulus

is mistakenly referred to Thomas Young who came later and worked toward defin-

ing a limit to the linear relation between stress and strain rather than defining the

relationship itself (Jones, 2009).

Euler Modulus, E, is defined as the constant of proportionality between exten-

sional stress and extensional strain, in a uniaxial stress system (Mavko et al., 2003;

Sheriff and Geldart, 1995):

E = -x (2.5)

where o-, is the stress in the x-direction and Ex is the strain in the x-direction.

2.2.3 Poisson's Ratio

Simon Denis Poisson observed that there is a relationship between the strain in the

perpendicular (transverse) direction to the applied stress and the strain in the direc-

tion of the applied stress (axial) (Jones, 2009). This relationship is known as Poisson's

ratio (Mavko et al., 2003):

V = Etransverse (2.6)
Eaxial
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2.2.4 Bulk Modulus

Bulk modulus, K, is the constant of proportionality between pressure, P, and volu-

metric strain, Ev (Mavko et al., 2003):

P
(2.7)

where P is the normal stress applied in the x-, y- and z-directions. Ev, the volumetric

strain, is the equivalent of the resultant change in volume relative to the original

volume (Mavko et al., 2003; Sheriff and Geldart, 1995):

AV
EV = V (2.8)

2.2.5 Shear Modulus

Shear modulus, A, is the constant of proportionality between an extensional stress and

the resultant strain in the perpendicular direction, defined as (Mavko et al., 2003):

o= X
[t- (2.9)

where o is the stress in the x-direction and EY is the strain in the y-direction.

2.3 The derivation of the compressional wave ve-

locity

The derivation of the wave equation requires the understanding of stress, strain and

their relation to each other (White, 1965; Sheriff and Geldart, 1995).

Any elastic object that experiences a stress will undergo some displacements,

which are called strains (White, 1965) (figure 2-1). The strain has different types

depending on the direction of stress applied on the body. The strain can be normal

or shear. Below are a set of equations for normal and shear strains.

26



y

Ay

o.yy

Az,

U yyx

I "ZX
Sex~~

/
AX

Figure 2-1: An elastic object with applied stresses

Normal in the x-, y- and z-directions:

a~u-
Exx = ,Ox

= auy
ay'

_ uz
6 zz = C 'z

Shear:

exy = eYx =

6 zX = Exz =

EzY = Ez =

1 Oux

2 ay

1 auz
2 ay

+ a),
ax

+ auz
ax

+ au)
az

A linear relationship between stress and strain can be stated as (White, 1965):

a = CE (2.14)

where C is a (6x6) matrix called the Compliance. For an isotropic object, C contains

2 unique constants of proportionality known as Lame' parameters A and /p. Below are
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the equations that relate stress to strain with Lame' parameters in each direction:

O-xx = (A + 2[t)exx + Ayy + AeZZ

O-YY AExx + (A + 2p)Eyy + Aezz

-zz= AEx + AEYY + (A + 2p)Ezz

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

O-xy = IEXY

o-xz = pExz

0-yz = I-L-yz

When the stresses on the body are unbalanced, the body will no longer be in static

equilibrium. This satisfies Newton's 2 ,d Law of motion which states that the total

unbalanced forces acting on a body is equal to the product of the body's mass and

its acceleration:

F = ma (2.21)

The following equation is the sum of the total surface forces applied in the x-

direction:
F
A

(U-xx + aux Ax
Ox

(Ou + o-7 z

Bz

oxx)AYAZ +

- Jxz)LXAY =

-+ F, =oxxA

(u-xy + o" Ay - -xy)zAzAz +
ax

o- xx

Ox
+Oaxy+0 Oz

- o O
Fx = Oux +ax

Fy = (a ry +

Fz = ( zx
5x +

Oy

OOyy
ay

+ oz))AxzAyAz
Oz

+ OUYz)AxAyAzz
Oz

Do-z Oo-z
zy + Zz)AzAyAz

Oy Oz

Because m = pV where V is the volume, then F = pVa and by using the relation
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between stress, strain and displacement, assuming that there is no displacement in

the y- and z-directions and that u_ is independent of uY and uz, the equation becomes:

(A + 2t) - = p at2 (2.27)

This equation is in the form of a wave equation where its velocity is:

V = A + 2p (2.28)
P

Lame' parameters are related to other elastic moduli such as the Bulk Modulus by:

K = A + !p. The velocity becomes (Sheriff and Geldart, 1995):

K + 4/V= (2.29)
P

The above equation is the compressional wave velocity for 3D body with M = K+ lp.

2.4 Effective Media Theories

There are many effective media theories that have been established during the history

of studying rocks; This section reviews some of those theories.

2.4.1 Voigt and Reuss Bounds

The Voigt and Reuss bounds predict the effective elastic moduli of a material that

has a mixture of phases such as rocks. The expressions provide upper and lower

bounds of the elastic moduli of the material knowing the volume fraction and the

elastic modulus of each phase (Mavko et al., 2003).

The Voigt upper bound is also known as the iso-strain average because it assumes

that each phase experience different stresses but has the same strain. It is expressed

as:
n

MV = fiM, (2.30)
i=1
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where M, is Voigt effective modulus, Mi and fi are the elastic modulus and volume

fraction of each phase, respectively, and n is number of phases in the mixture.

The Reuss lower bound assumes that the layers undergo the same perpendicular

stress. Hence, it is known as the iso-stress average. It is expressed as:

M : ft (2.31)

2.4.2 Hashin-Shtrikman Bounds

The Hashin-Shtrikman bounds were derived in 1963 for a material with two phases (Hashin

and Shtrikman, 1963). The bounds give a range of the effective elastic moduli without

any information about the geometry of the medium and they are narrower than the

Voigt and Reuss bounds (Mavko et al., 2003). The bounds are given by:

For the Bulk modulus:

KHS = K 1 + f2(2.32)
(K2 - K1)- 1 + fi(K1 + 4/p1)-1

For the Shear modulus:

AHSI- 1 f2 (.3
(/Ht2 _2l - 2fi(K1+2pi)
+(p2 - p) + f 1 (K1 + 1i 1 ()

where K1 and K2 are the bulk moduli of each phase, 1u1 and P2 are the shear

moduli of each phase, and fi and f2 are the volume fraction of each phase.

The upper bound is computed by assuming that the stiffer phase is number 1 and

the softer phase is number 2 and vise versa to calculate the lower bound.

2.4.3 Hill Average Moduli Estimate

The Hill average modulus is just the arithmetic average of the Voigt and Reuss

bounds. It is expressed as:

M Mv+Mr (2.34)
2
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where M, and M, are the Voigt and Reuss average described earlier in section 2.4.1,

respectively (Mavko et al., 2003).

2.5 Wyllie's Equation (Time Average Equation)

In 1956 and 1958, M. R. J. Wyllie proposed a model to calculate the velocity through

a porous medium with a saturating fluid in its pore space (Wyllie et al., 1956, 1958).

His time average model relates the total time it takes the wave to travel across the

medium to the sum of the time it takes to travel through each phase. The total time

is:

t = t +t. (2.35)

where tf, and tm are the times it takes the wave to travel through the fluid and the

mineral, respectively. The equation can be converted to velocities by:

1- =- + (1-) (2.36)
V Vf Vm

where V is the velocity through the medium, Vf is the velocity through the fluid filling

the pore space, and Vm is the velocity through the mineral. Phi, #, is the porosity,

which is the ratio of pore space volume to total volume of the medium, #4= where

v, is the pore volume and VT is the total volume.
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Chapter 3

Observations

3.1 Compressional Wave Velocity through Gaseous

Elements

The fact that the Newton-Laplace equation was first derived for the sound wave

travelling through air motivated me to look into the compressional wave velocity

through different gases. Table 3.1 (de Podesta, 2002) has the velocities and densities

of those gases, which are plotted in linear scale in figure 3-1 and log scale in figure 3-2.

The data is fitted by a power function:

V = ap (3.1)

where the fit parameters are a = 400 and b ~ -. This fit suggests that the velocity

is proportional to the inverse of the square root of density. In other words, the

experimental results of the compressional wave velocity through different gases are in

agreement with the Newton-Laplace equation.
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Table 3.1: The measured compressional wave velocities and densities for gases
Gas Velocity (m/s) Density (kg/m3 )

Hydrogen, H2  1286 0.08995
Helium, He 972 0.1786
Neon, Ne 434 0.9003

Fluorine, F2  332 1.14
Nitrogen, N 2  337 1.25
Oxygen, 02 332 1.428
Argon, Ar 308 1.782

Bromine, Br2  149 3.12
Chlorine, C12  219 3.164
Krypton, Kr 213 3.739

Iodine, I2 138 4.953
Xenon, Xe 170 5.858

'I,
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Figure 3-1: Measured velocity versus density for gaseous elements
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Figure 3-2: Log of measured velocity versus log of density for gaseous elements
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Figure 3-3: Measured velocity versus density for non-porous solid elements

3.2 Compressional Wave Velocity through non-porous

Solid Elements

Since the gases are in agreement with the Newton-Laplace equation, I shifted my focus

toward the compressional wave velocity through different non-porous solid elements.

Table 3.2 (de Podesta, 2002) and figure 3-3 represent the measured compressional

wave velocity versus density for different non-porous solid elements. Figure 3-4 is a

plot of log velocity versus log density for the non-porous solid elements.

As seen in the figure, the velocity has a general decreasing trend with increasing

density. The data are fitted by a power line in the form of equation 3.1, where the fit

parameter b ~ -1. This also suggests that the experimental velocities through solids

are in agreement with the Newton-Laplace equation.
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Table 3.2: The
solids

measured compressional wave velocities and densities for non-porous

Solid
Magnesium, Mg
Beryllium, Be
Aluminum, Al
Titanium, Ti

Vanadium, V
Zirconium, Zr

Zinc, Zn
Chromium, Cr

Tin, Sn
Manganese, Mn

Iron, Fe
Niobium, Nb

Cadmium, Cd
Nickel, Ni

Copper, Cu

Molybdenum, Mo
Silver, Ag
Lead, Pb

Tantalum, Ta
Uranium, U
Tungsten, W

Gold, Au
Platinum, Pt

Velocity (m/s)
5823
12890
6374
6130
6023
4650
4187
6608
3380
4600
5957
5068
2780
5700
4759
6475
3704
2160
4159
3370
5221
3240
3260

Density (kg/M 3 )
1738
1846
2698
4508
6090
6507
7135
7194
7285
7473
7873
8578
8647
8907
8933
10222
10500
11343
16670
19050
19254
19281
21450
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Figure 3-4: Log of measured velocity versus log of density for non-porous solid ele-
ments
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Table 3.3: The average measured compressional wave velocities and average densities
for rocks

Rock Type Velocity (m/s) Density (kg/M3 )
Dry Sand 800 1600
Wet Sand 1750 2000

Saturated Shales and Clays 1800 2200
Saturated shale and sand sections 1850 2250
Porous and saturated sandstones 2750 2250

Limestone 4750 2550
Chalk 2450 2050
Salt 5000 2200

Anhydrite 4750 2950
Dolomite 5000 2700
Granite 5250 2600
Basalt 5500 2900
Gneiss 4800 2600

3.3 Compressional Wave Velocity through Rocks

The compressional wave velocity through different rocks, shown in table 3.3 (Mavko,

2016), is plotted in linear scale in figure 3-5 and the log of velocity versus the log of

density is plotted in figure 3-6. The values provided are the average for each lithology

as each one has a range velocities and densities. As seen in the figure, the velocity

generally increases with increasing density. The data are fitted by a power line in the

form of equation 3.1, where b ~ 2.3.

In addition, figure 3-7 is Gardner's log-log plot that shows the average lines of

the compressional wave velocity versus density for different rocks such as: Sandstone,

Shale, Limestone, Dolomite, Salt and Anhydrite (Gardner et al., 1974). As seen, the

compressional wave velocity is directly related to density. Gardner's average is:

V = 108.28p 4  (3.2)

where V is in m/s and p is in g/cm3 . In general, the figures for rocks are characterized

by an increase in velocity with an increase in density. This opposes the expectations

from the theoretical equation defined by Newton and Laplace, where the velocity is

expected to decrease with increasing density.
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Figure 3-5: Measured velocity versus density for rocks
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Figure 3-6: Log of measured velocity versus log of density for rocks
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Figure 3-8: Merged log velocity versus log density for gases, solids and rocks

3.4 Conclusion

The confusion behind the relationship between velocity and density when considering

different mediums can be explained by the following:

" The wave velocity through single-phase materials such as gases and non-porous

solid elements conform to the Newton-Laplace theoretical expression as it is.

" The velocity through two-phase materials, such as rocks, has a different rela-

tionship to what is expected from the Newton-Laplace theory.

Figure 3-8 is a plot of log velocity versus log density for the three mediums: gases,

solids and rocks. It is very clear that the single phase mediums (gases and solids)

have negative slopes where as the two-phase mediums (rocks) have positive slope.

The following chapter looks at how to tackle this problem and provides a solution.
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Chapter 4

Methodology

4.1 Derivation of new expression for the elastic

modulus, M

The fact that the time average equation is in Gardner's plot (figure 3-7), which has

a positive slope very similar to the slope of Gardner's average line, was the starting

point for the derivation. The first step is to check the high power dependence of

velocity on density for Wyllie's equation. This is done by calculating the velocity

using equation 2.36 with the parameters in table 4.1. Figures 4-1 and 4-2 show the

velocity calculated using Wyllie's equation versus density and porosity. Although

rocks generally have a range of porosity from around 5% to around 35%, the velocity

is calculated for porosity from 0% to 100% to see the behaviour of velocity at the two

extream ends of porosity and density.

In order to get an approximate relationship between velocity and density, matlab's

curve fitting application was used to get the best-fit parameters. First, the fit was in

the form of power function V = apb. The fit parameters are: a = 0.006 and b = 1.7

with normalized rmse between the calculated velocity and the fit line rmse = 0.14.

Another fit was done using the power function V = apb + c. The fit parameters are:

a = 3 x 10-", b = 4.1 and c = 1469 with normalized rmse between the calculated

velocity and the fit line rmse = 0.03, which is a better fit compared to the first form.
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Table 4.1: The parameters used to calculate the velocity using Wyllie's equation
Parameter Value

# from 0% to 100%
Vm 6000 m/s
Pm 2650 kg/M 3

Vf 1500 rn/s

pf 1000 kg/rn3

In addition, it also confirms that Wyllie's equation depends on approximately the 4th

power of density, which is similar to Gardner's average.

As the velocity calculated using Wyllie's equation produces a high power depen-

dence of velocity on density, an elastic modulus from Wyllie's equation is derived. It

is basically done by setting the velocity in Wyllie's equation equal to the velocity in

the Newton-Laplace form. The following steps demonstrate the derivation of the new

expression of the elastic modulus, starting with Wyllie's equation:

1 4 (1-0) (4.1)
V Vf Vm

Unifying the denominator:

1 _#Vm +(14- )Vf(42I-- =V 1-Ov (4.2)
V VV

Writing it as V:

V = Vf (4.3)
#VM + (I - #)M

Our interest is defining a relationship between the elastic modulus and density,

so, Wyllie's equation is rewritten in terms of density using the relationship between

porosity and density. The relationship between porosity and density is established by

the weighted average formula to calculate the bulk density of rocks:

P = fp + (1 - #)Pm (4.4)

where p is the bulk density, pm is the density of the mineral matrix and pf is the
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density of the fluid in the pore space. This makes the porosity in terms of density:

P - Pm
pf - PM

Using the above equation 4.5 yields:

Vf VM

(P P )V + (1 - (PM--P ))VfPm-Pf Pm-Pf

Taking ( 1 ) as a common factor in the denominator:

V Vf Vm
)[(Pm - P)(VM -Vf)] +V

Multiplying the equation by (P-- f) gives:

V =(Pm Pf)V VM
((PM - p)(VM - Vf)] + (Pm - pf)Vf

Expanding the denominator gives:

V = (Pm Pf)VfVm
PmVm - PmVf - PVm + PVf + PmVf PfVf

The pmVf terms in the denominator cancel each other, the result is:

V = (Pm Pf)V VM
PMVm - PVm + pV - pfVf

Simplifying the denominator:

T/I _ (Pm - Pf )VfVm

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)
P(Vf - V) + PmVm - PfVf

Setting the above equation equal to the velocity in the Newton-Laplace form:

M_

P

(Pm - Pf)VfVM

P(Vf - VM) + PmVm - Pf V
(4.12)
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Square both sides of the equation:

M (Pm - pf)VfVM 2 (4.13)
p p(V - VM) + pmVM - pf V

M (p- p)2V2V2- = P( V )Pmf (4.14)
p (p(Vf - V) + pmVm - pf Vf) 2

Solving for the elastic modulus, M, gives the new expression in terms of bulk

density:

(Pm - Pf)VfVrP
M(P) (p(Vf - Vm) + pmV - pfVf) 2

In addition, keeping Wyllie's equation in terms of porosity gives:

qpfVf V + (1 - 4)pmV/V3
M(O) = + q(r - )

mV +f(.-V))2

(4.15)

(4.16)

The above two equations 4.15 and 4.16 represent the elastic modulus of Wyllie's

equation that provides the anticipated high power dependence of velocity on density.

4.2 Applying the new expression to synthetic data

The new expression is used to calculate the elastic modulus using the parameters

in table 4.1. Figures 4-3 and 4-4 are plots of the calculated elastic modulus, M,

using the new derived expression in equation 4-3 versus density and porosity. The

new expression provides an exact relationship between the elastic modulus and den-

sity. In order to get an numerical approximate relationship between M and density,

the approximated relationship between the velocity using Wyllie's equation and the

Newton-Laplace equation is used to derived the expected dependence between M and

density. The steps below demonstrate this:

Starting with the power function that was used to fit Wyllie's equation:

V = apb+ c (4.17)
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Figure 4-3: The calculated elastic modulus using the new derived expression versus
density

Using the Newton-Laplace equation in order to get the elastic modulus, M, and setting

the velocities equal to each other:

M -apb + c (4.18)

Solving for M by squaring both sides:

M
- = (apb + c) 2

p
(4.19)

Solving for M:

M = (apb + c) 2 p (4.20)

The form of equation 4.20 is used to get the fit parameters, which are: a =
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Figure 4-4: The calculated elastic modulus using the new derived expression versus
porosity
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1.2 x 1010, b = 3.96 and c = 1455 with normalized rmse = 0.06. The parameters

are close to the parameters for Wyllie's equation. Moreover, expanding equation 4.20

and using b = 4 produces a relationship between the elastic modulus and density as:

M = Ap 9 + Bp5 + Cp, (4.21)

where A, B, and C are constants. As seen, the elastic modulus is proportional to the

power 9 of density.

The previous approximation is a little bit complicated. So, to further approximate

the relationship between the elastic modulus and density in a simpler form, a power

function M = apb, where b = 9, is used to get the fit parameter a = 1.795 x 10-20.

Figure 4-5 is a plot of the calculated elastic modulus using the new expression, the fit

line M = (apb + c) 2 p and the fit line M = ap versus density. It is very clear that the

fit line M = (apb + c) 2p gives good approximation of the derived elastic modulus, M.

4.3 Comparing the elastic modulus using the new

expression to the elastic modulus using the ef-

fective media theories and the geometric mean

This section shows the results of comparing the elastic modulus using the new expres-

sion to the the elastic modulus using the effective media theories and the geometric

mean. The models were introduced in chapter 2 and they are:

" Voigt upper and Reuss lower bounds

" Hashin-Shtrikman upper and lower bounds

" Hill average estimate

In addition, the geometric mean is another way of averaging the elastic modulus
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Figure 4-5: The calculated elastic modulus using the new derived expression, calcu-

lated elastic modulus using [M = (apb + c) 2 p, rmse = 0.05] and the calculated elastic

modulus using [M = apb, rnse = 0.67] versus density
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Figure 4-6: The calculated effective elastic modulus using: the new derived expression,
effective media theories and the geometric mean versus density

of the rock. It is expressed as:

Mgm = - x (4.22)

where Mgm is the elastic modulus of the rock, Mm is the elastic modulus of the

mineral, Mf is the elastic modulus of the fluid and # is the porosity.

Table 4.1 contains all parameters used in the calculations of the effective elastic

modulus. The results of each effective modulus model were then used to calculate

the velocity using the Newton-Laplace equation. Figure 4-6 and 4-7 are plots of the

calculated elastic modulus versus density and versus porosity using the above models

along with the calculated elastic modulus using the new derived expression and the

geometric mean. The lower Hashin-Shtrikman and Reuss bounds are similar.
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Figure 4-7: The calculated effective elastic modulus using: the new derived expression,

effective media theories and the geometric mean versus porosity
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Figure 4-8: The calculated velocity using the elastic modulus calculated by: the new
derived expression, effective media theories and the geometric mean versus density

Moreover, Figures 4-8 and 4-9 are plots of the calculated velocity versus density

and versus porosity using the above models along with the velocity calculated using

the new derived expression of M and the geometric mean.

As seen, the elastic modulus using the effective media theories do not produce

the expected high power dependence of velocity on density. On the other hand, the

geometric mean is very close to the new expression. The normalized rmse between

the geometric mean and the calculated elastic modulus using the new expression is

0.32.
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Figure 4-9: The calculated velocity using: the new derived expression, effective media
theories and the geometric mean versus porosity
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4.4 Generalized Gardner's equation

It was stated previously that Gardner's equation has the form V = apb, where b =

4. However, using the same form of Gardner's equation to get an approximated

relationship between the velocity using Wyllie's equation and density did not produce

the power 4 dependence. On the other hand, the other form with the added constant

(V = apb+c) gave the 4 power dependence of velocity on density. This fact introduced

the idea of modifying Gardner's equation. In addition, the modified or generalized

form will ensure that the velocity is correct throughout the entire range of densities.

As seen in figure 4-10, Gardner's velocity does not provide the correct value at the

lower end of density (density of water), which is 1500 m/s. The modified form is:

V = apb + c (4.23)

The new additional term c is constrained by the fact that at the density of water

(1.00 g/cm 3 ), the velocity should be equal to the velocity of water which is 1500 m/s.

This is obtained by constraining the sum of a and c to be 1500 (a + c = 1500). This

will improve the fit to the calculated data as well as insure that the velocity is correct

for the entire range of densities.
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Figure 4-10: The calculated velocity using Gardner's equation versus density
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Chapter 5

Applications to Real Data

5.1 Introduction

The data used in this chapter are well-log data that includes: compressional wave

velocity, bulk density, porosity, and the volume of each mineral at each measurement.

Three out of the four wells are mainly Carbonate rocks provided by Saudi Aramco

(well No. 1, well No. 2 and well No. 3). Well No. 4 has Clastic rocks, that is taken

from the problem sets in the book Quantitative Seismic Interpretation (QSI) (Avseth

et al., 2005). The figures from 5-1 to 5-4 are plots of the velocity versus density for

each well.

5.2 Applying the new expression of the elastic mod-

ulus, M, to real data

This section contains the results of applying the new expression of the elastic modulus,

M, (equation 4.15) that was derived in section 4.1 to real data sets. Each well in

Saudi Aramco's data was divided by the dominant mineral at each measurement..

For example, if there is at least 90% Calcite and a maximum of 10% Anhydrite and

Dolomite, the measurement is considered within the Calcite or Limestone interval.

On the other hand, the data from the QSI book are already divided into 6 intervals

61



6500
x Mixed Lithaogy x x
a Urmestone
* Dofonite

6000 * Anhydrte * * *

x x ) x
Sx

5500 - x x xx

x5000 m E
xx

4500

4000 x

3500 ' Iii I - - 1-

2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1
Density (g/cm3 )

Figure 5-1: The velocity versus density for well No. 1
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63

I
7000

6500 [

6000 [

5500-

75 5000

4500 [

4000 [

3500
2.

a i I I I I I

2



7000 1 1 1
x hixed Lithology
a Limestone
* Dolormte -6500 Anhydrfte x u

* Artyrite * xpcxhX x

6000

5500 x
xx x x x

x x x
x x

0

a xx

x

4500

4000 -

3500
2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1

Density (g/cm3 )

Figure 5-3: The velocity versus density for well No. 3
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Table 5.1: The average of the parameters used
new derived expression of the elastic modulus

Medium Parameter

Calcite Vm

Dolomite

Quartz

Water

Pm

Vm

Pm

Vm

Pm

Vf

Pf

in calculating the velocity using the

Value

6000 m/s

2.7 g/cM 3

7000 m/s

2.7 g/cm3

5000 m/s

2.65 g/cm3

1500 m/s

1 g/cn3

based on the lithology of that interval. However, only one lithology is investigated in

this section (Sandstone) as the other intervals are either silty sands, cemented sands

or silty shale. Introducing the cement or silt factor might affect the values used for

the mineral parameters, which in turn might impact the results of the calculations.

Table 5.1 contains the average parameters used in the calculations for each lithol-

ogy interval and for water. The figures from 5-5 to 5-16 represent the results of the

calculated velocity using the new derived expression of the elastic modulus, M, for

each interval within the four wells. In addition, table 5.2 has the calculated rmse

values for each well.

5.3 Applying the generalized form of Gardner's

equation to real data

This section contains the results of applying the generalized form of Gardner's equa-

tion (equation 4.23) to each lithology within each well. Table 5.3 has the results of

the fit parameters "a" and "b", where c = 1500 - a. Moreover, the figures from 5-17

to 5-28 show the calculated velocity using the generalized form of Gardner's equation
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Table 5.2: The calculated normalized rmse between the calculated velocity using the
new expression of M and the measured velocity for each lithology interval

Well No. Lithology rmse

Well 1 Limestone 0.03

Dolomite 0.05

Well 2 Limestone 0.06

Well 3 Limestone 0.07

Dolomite 0.10

Well 4 Clean Sands 0.05
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6000

5500

5000

4500

4000

3500

3500 4000 4500 5000 5500 6000
Measu red Velocity (m/s)

6500 7000 7500

Figure 5-5: The calculated velocity using the new derived expression of the elastic
modulus, M, versus measured velocity for Limestone within Well No. 1 (rmse = 0.03)
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Figure 5-6: The calculated velocity using the new derived expression of the elastic
modulus, M, and measured velocity versus density for Limestone within Well No. 1

(rmse = 0.03)
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Figure 5-7: The calculated velocity using the new derived expression of the elastic
modulus, M, versus measured velocity for Dolomite within Well No. 1 (rmse = 0.05)
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Figure 5-9: The calculated velocity using the new derived expression of the elastic
modulus, M, versus measured velocity for Limestone within Well No. 2 (rmse = 0.06)
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Figure 5-10: The calculated velocity using the new derived expression of the elastic
modulus, M, and measured velocity versus density for Limestone within Well No. 2

(rmse = 0.06)
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Figure 5-11: The calculated velocity using the new derived expression of the elastic
modulus, M, versus measured velocity for Limestone within Well No. 3 (rmse = 0.07)
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Figure 5-12: The calculated velocity using the new derived expression of the elastic
modulus, M, and measured velocity versus density for Limestone within Well No. 3

(rmse = 0.07)
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Figure 5-13: The calculated velocity using the new derived expression of the elastic

modulus, M, versus measured velocity for Dolomite within Well No. 3 (rmse = 0.10)
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Figure 5-15: The calculated velocity using the new derived expression of the elastic
modulus, M, versus measured velocity for Clean Sands within Well No. 4 (rmse =
0.05)
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Figure 5-16: The calculated velocity using the new derived expression of the elastic
modulus, M, and measured velocity versus density for Clean Sands within Well No.
4 (rmse = 0.05)
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Table 5.3: The fit parameters "a" and " b" and the normalized rmse for each lithology

Well No. Lithology a b c = 1500 - a rmse

Well 1 Limestone 102 3.0 1398 0.03

Dolomite 336 2.5 1164 0.05

Well 2 Limestone 78 4.2 1422 0.05

Well 3 Limestone 228 3.0 1272 0.05

Dolomite 272 2.8 1228 0.06

Well 4 Clean Sands 59 4.1 1451 0.05

versus measured velocity and the calculated and measured velocities versus density

for each lithology interval. It is very clear that the results of calculating the velocity

in the generalized form of Garnder's equation fit the measured data with the highest

rmse around 6%.

In addition, to find the average value for the fit parameter "b" for all different

lithologies, a weighted average is calculated: baverage - N(nxbi)

of points within an interval, bi is the value of the fit parameter b for that interval,

and N is the total number of points. The result is baverage = 3.7, which is close to the

power found by Gardner and the fit of Wyllie's equation.
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Figure 5-17: The calculated velocity using the generalized form of Gardner's equation

[V = apb+c] versus measured velocity for Limestone within Well No. 1 (rmse = 0.03)
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Figure 5-18: The calculated velocity using the generalized form of Gardner's equation
[V = apb + c] and measured velocity versus density for Limestone within Well No. 1
(rmse = 0.03)
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Figure 5-19: The calculated velocity using the generalized form of Gardner's equation

[V = apb+ c] versus measured velocity for Dolomite within Well No. 1 (rmse = 0.05)
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Figure 5-20: The calculated velocity using the generalized form of Gardner's equation
[V = apb + c] and measured velocity versus density for Dolomite within Well No. 1
(rmse = 0.05)
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Figure 5-21: The calculated velocity using the generalized form of Gardner's equation

[V = apb+c] versus measured velocity for Limestone within Well No. 2 (rmse = 0.05)
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Figure 5-22: The calculated velocity using the generalized form of Gardner's equation
[V = apb + c] and measured velocity versus density for Limestone within Well No. 2
(rmse = 0.05)
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Figure 5-23: The calculated velocity using the generalized form of Gardner's equation

[V = apb+C] versus measured velocity for Limestone within Well No. 3 (rmse = 0.05)
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Figure 5-24: The calculated velocity using the generalized form of Gardner's equation
[V = apb + c] and measured velocity versus density for Limestone within Well No. 3
(rmse = 0.05)
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Figure 5-25: The calculated velocity using the generalized form of Gardner's equation
[V = apb + c] versus measured velocity for Dolomite within Well No. 3 (rmse = 0.06)
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Figure 5-26: The calculated velocity using the generalized form of Gardner's equation
[V = apb + c] and measured velocity versus density for Dolomite within Well No. 3
(rmse = 0.06)
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Figure 5-27: The calculated velocity using the generalized form of Gardner's equation
[V = apb + c] versus measured velocity for Clean Sands within Well No. 4 (rmse =

0.05)
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Figure 5-28: The calculated velocity using the generalized form of Gardner's equation
[V = apb + c] and measured velocity versus density for Clean Sands within Well No.
4 (rmse = 0.05)
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Chapter 6

Conclusion

This thesis investigated the inconsistency between theory and observations regarding

the relationship between velocity and density of saturated porous rocks. In Chapter 3,

it was concluded that the velocity behaves differently depending on the medium in

which the wave is travelling. For gases and non-porous solids, which are considered

single phase materials, the velocity obeys the Newton-Laplace equation. On the other

hand, introducing another phase to the medium changes the wave behaviour, which

is the case with porous saturated rocks. In addition, it was also confirmed that the

velocities through different rocks depend on density to approximately the 4th power

as already stated by Gardner (Gardner et al., 1974).

Because of the fact that the velocity calculated using Wyllie's equation increases

with increasing density, a new expression for the elastic modulus was derived in Chap-

ter 4 by linking the Newton-Laplace equation to Wyllie's equation. The new expres-

sion of the elastic modulus can be calculated using the parameters of the mineral, fluid,

and the bulk density or porosity of the rock. In addition, it was also concluded that

the elastic modulus depends numerically on density in the form (M = Ap 9+Bp 5+Cp)
or approximately (M = ap9), as summarized in figure 6-1. Moreover, Gardner's equa-

tion was modified to insure that the velocity is correct over the entire range of densities

(V = apb +c).

Chapter 5 showed the results of applying the findings in Chapter 4 using real well-

log data from 4 wells. The new derived expression for the elastic modulus, M, provided
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new expression for the elastic modulus, M, the approximate relationship between the
elastic modulus and density, and the approximate relationship between velocity and
density
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results that are in good agreement with measured data. Moreover, a grid search is

used to obtain the fit parameters of the generalized form of Gardner's equation to

real data. In addition, the weighted average of the fit parameter "b" for all different

lithologies was found to be 3.7, which is close the value of the fit parameter "b" for

the original form of Gardner's equation and Wyllie's equation (4).

The velocity calculated using the new expression of the elastic modulus, M, (equa-

tion 4.15) is indistinguishable when compared to the the velocity calculated using the

numerical approximation of velocity (equation 4.23), which was based on Gardner's

approximation. In addition, both ways of calculating and approximating velocity

provided small rmse errors.
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