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Abstract

Mercury's magnetic field is characterized by its weak strength, spin-aligned axisymmetry and a

large offset of the magnetic equator relative to Mercury's geographic equator. The combination of

these features is difficult to be explained with an Earth-like dynamo. We enhance the traditional

dynamo model by adding a stably stratified layer in Mercury's core and a north-south

asymmetric heat flux pattern at the core-mantle boundary, and find multiple cases in which the

surface magnetic field exhibits all the observed characteristics. This result supports either

thermal or chemical stratification at the top of Mercury's core, and suggests that the northern

hemisphere mantle could be more convective, which could be caused by moderately elevated

concentration of heat-producing elements in that region.

The isotopic similarity between the Earth and Moon and the volatile depletion of the Moon

collectively suggest the Moon-forming impact to have been a high-energy, high-angular

momentum event. The excess angular momentum of the post-impact Earth-Moon system was

suggested to have been drained through an orbital resonance mechanism. We find an alternative

mechanism, a limit cycle, that can reduce angular momentum over a much broader parameter

range. We couple the orbital evolution with lunar magma ocean solidification to assess the

mutual effects of orbital processes and the Moon's thermal profile on each other. We find that the

resonance is unstable for causing severe tidal heating in the Moon, while the limit cycle works

with satisfaction in the coupled model. Consequently, the limit cycle is a more viable mechanism

than the resonance to drain the excess angular momentum.

Lunar volcanism is mainly concentrated in the lunar nearside. Researchers proposed that this

hemispheric asymmetry could be the result of a single diaper ascension of deep, radiogenically

heated material, but it is unclear why the diaper occurred in the nearside mantle. In an attempt

to explain this observation by heterogeneous tidal heating, we computed the distribution of tidal

heating in the lunar mantle, and find that tidal distortion is unable to concentrate heating and

cause the diaper to occur in the lunar nearside when a spherically symmetric structure of the

Moon is assumed.

3



Contents

Abstract 3

Introduction 5

Chapter 1 17
Magneticfield modelingfor Mercury using dynamo models with a stable layer and laterally variable
heatflux

Chapter 2 35
Early evolution of the Earth-Moon system with afast-spinning Earth

Chapter 3 57
Coupled orbital-thermal evolution of the early Earth-Moon system with a fast-spinning Earth

Chapter 4 78
The role of tidal heating on the development of the magmatic asymmetry of the Moon

Conclusions and Implications 89

Appendix 91
Tidal heating in a synchronously rotating, two-layered satellite

References 100

Symbols

G gravitational constant

me mass of the Earth

Re radius of the Earth

Qe dissipation factor of the Earth

k 2e degree-2 potential Love number of the Earth

mm mass of the Moon

Rm radius of the Moon

Qm dissipation factor of the Moon

k2m degree-2 potential Love number of the Moon
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Introduction

This thesis presents research performed during my graduate study. The projects reflect my

interest in the relationships between the internal structure of rocky planetary bodies, and their

orbital and rotational evolution. The thesis contains four parts: (1) dynamo simulations of

Mercury's asymmetric magnetic field assuming a stable layer in the core and laterally

heterogeneous heat flux at the core-mantle boundary; (2) the orbital evolution of the early Earth-

Moon system with a fast-spinning Earth; (3) the coupled orbital-thermal evolution of the early

Earth-Moon system; and (4) an assessment on the role of tidal heating in producing the magmatic

asymmetry of the Moon. These topics are briefly introduced below.

1

Mercury's magneticfield isfull of unexpected mysteries.

Since the MESSENGER spacecraft's arrival at Mercury in 2008, it gradually accumulated enough

measurements to determine the strength and configuration of the planet's magnetic field

(Anderson et al., 2011, 2012). The weakness of the field, as expected from data acquired from

Mariner 10's flybys of Mercury in the 1970s, is confirmed. The magnetic dipole moment is refined

to -190nT-rpanet 3, less than 1/100 that of the Earth (-3x10 4nT-Re 3). This weak field strength can

not be explained by an Earth-like dynamo. Indeed, the weakness of the field, which has been

known since the 1970s, has led groups of researchers to speculate the magnetic field to be a

crustal remanent field (Stephenson 1975; Srnka 1976; Aharonson et al., 2004). After

MESSENGER's measurements of the field's configuration, we have more confidence in an active

dynamo origin of the field, but we still need future detection of temporal variations of the field to

confirm its dynamo origin.

In addition to confirming Mercury field's weakness, the MESSENGER data has also revealed

intriguing features about the configuration of the field. As shown in Fig. 1, the magnetic field is

very axisymmetric about the spin axis of Mercury, with the magnetic axis aligned to within 0.80 of
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the spin axis. On the other hand, the field strength in the northern hemisphere is much stronger

than in the southern hemisphere. This north-south asymmetry can be interpreted as a large

offset of 480 km (-20% of Mercury's radius) of the magnetic equator from the geographic

equator, or, in terms of spherical harmonic components, a large quadrupole in addition to the

conventionally dominant dipole (Anderson et al., 2011; 2012).

magnetic axis
spin axis

magnetic equator

geographic equator

Fig. 1. The configuration of Mercury's magnetic field. The tilt between the two axes and the magnetic equator's offset

are exaggerated for view.

This combination of spin-aligned axisymmetry and a large magnetic equator offset has only been

observed for Mercury, among all dynamo generated magnetic fields in the solar system, making it

an intriguing exception to the norm. Saturn's magnetic field also exhibits spin-aligned

axisymmetry (with the tilt less than 1*), but it is north-south symmetric. The combination of

these two features is contrary to the predictions of conventional dynamo theory and simulation

results. This contradiction can be illustrated in terms of the Gauss coefficients, or the coefficients

of the spherical harmonic expansion of planetary magnetic fields. Let gim, him denote the degree-i,

order-m coefficients. In this formalism gio denotes the spin-axisymmetric dipole, and gii, hi,

denote the equatorial dipoles (with their dipole axes lying on the geographic equator). The spin-

aligned axisymmetry corresponds to a small sqrt(gi2 +hii2)/gio ratio, and the large offset

corresponds to a large g2o/glo ratio (0.40). Therefore, Mercury's case requires small gn, hi, and a

large g2o. However, in dynamo theories, when the g2o mode is excited, the gil, hil modes will also
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be activated and strengthened. This is because their degree+order numbers are all even and have

similar wavelengths, and therefore they belong to the same family (Bullard and Gellman, 1954).

In chapter 1 of the thesis, we will show that by the application of a stratified layer to the top of

the outer core, and the use of laterally heterogeneous, north-south asymmetric heat flux at the

core-mantle boundary, the dynamo model is able to produce a magnetic field that is weak, highly

axisymmetrically aligned with the spin axis, and significantly north-south asymmetric.

To explain the spin-aligned axisymmetry of Saturn's magnetic field, Stevenson (1980) proposed

that a stably stratified layer of metallic H-He liquid acts to "axisymmetrize" the surface magnetic

field. Since helium is immiscible with hydrogen in the molecular-metallic transition zone, it

would rain out of the molecular H-He mixture and become enriched in the metallic H-He region.

An inhomogeneous, stably stratified layer of metallic liquid would form in the top of the metallic

region (Fig. 2). This layer does not participate in the metallic liquid convection, thus limits the

dynamo region to deeper depths. The liquid in this stable layer is in differential rotation due to

the equator-to-pole temperature differences, and it is shown by analysis that the differential

rotation causes attenuation of the non-axisymmetric components of the magnetic field and does

not affect the axisymmetric parts when the Rossby number (the ratio of convection to Coriolis

force) is large.

Helium

Uniformly

30,000 km Distributed

12,000 km
R

Conventional

58,000 krn

Depleted
Molecular in He

HZ-He

Inhomogoneous
Metallic 

EnrichedH-He
in He

ock and/or
ice core

Differentiating
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Fig. 2. (From Stevenson 1980) Conventional and proposed internal cross-section of Saturn showing the

inhomogeneous stably stratified metallic liquid layer above the dynamo region.

A stably stratified layer could also form in Mercury's outer core by thermal or chemical

stratification. Hauck et al. (2004) suggested a subadiabatic heat flux at Mercury's core-mantle

boundary (CMB). A subadiabatic CMB heat flux leads to a region of stratification at the top of the

core. The stable layer can alternatively be a consequence of FeS enrichement in the top region of

the core. Mercury's surface sulfur and iron contents indicate a chemically reducing environment

for the planet's formation (Nittler et al., 2011), which favors an enrichment of sulfur and silicon

in the core. Enriched sulfur in the core could be in the form of FeS, whose liquid mixture property

in the high-temperature, high pressure Fe-Ni-S-Si system is complex. If FeS were immiscible with

the Fe and Ni core liquids under certain conditions, a stably stratified layer of FeS rich liquid

would form at the top of the core.

We applied a north-south asymmetric heat flux pattern at the CMB, with stronger flux in the

northern hemisphere. This pattern is supported by the observations of surface K distribution

(Peplowski et al., 2012) and the existence of large expanses of volcanic plains near Mercury's

north pole as revealed by MESSENGER imaging (Head et al., 2011). The surface concentration of

K and other heat-producing elements is moderately higher in the northern high latitudes than in

the equatorial regions. The distribution of these elements in the southern hemisphere is

currently unknown due to the MESSENGER spacecraft's highly eccentric orbit, which takes the

spacecraft too far from Mercury's surface in the southern hemisphere to obtain reliable

compositional observations. It is possible that the southern high latitude regions do not possess

elevated concentrations of K, and the global surface distribution of K and other heat-producing

elements shows a north-south asymmetry with higher concentrations in the north. The surface K

variations are interpreted to reflect the compositions of the intrinsic crustal material (Weider et

al., 2015). In the case of north-south asymmetry, the surface K distribution could further suggest

moderately elevated K concentrations in the northern hemisphere mantle. Since Mercury's

mantle is just unstable enough to be in the convective state (Michel et al., 2013), moderately

stronger radiogenic heating in the mantle in the northern high latitudes would substantially

promote convection there, resulting in either increased rates of convection than other regions, or

the occurrence of convection when there is no convection in the southern regions. Either case
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will result in stronger heat flux in the north. The presence of the northern smooth plains (Head et

al., 2011) also suggests more vigorous mantle thermal activity in the northern high latitudes at

the formation time of these plains. Even though this volcanic activity occurred more than 3.8-3.9

billion years ago, it can still be related to the current day CMB heat flux pattern if the elevated

volcanism in the northern high latitudes was caused by elevated concentrations of heat-

producing elements in the mantle there. The small spatial scales of Mercury's mantle convection

cells and overall low activity (Michel et al., 2013) is unlikely to have laterally redistributed

mantle material globally, so a pattern of elevated concentration of heat-producing elements in

the northern mantle in the ancient eras would have persisted to the present day.

With the application of a stably stratified layer in the core and a variable heat flux at the CMB,

and by varying the inner core size, the size of the stable layer, and magnitude of the variable heat

flux, we find multiple dynamo cases in which the surface magnetic field exhibit all the three

observed characteristics of Mercury's magnetic field. The weak intensity of the surface field is

due partly to the stable layer's limiting the dynamo region to the deeper regions of the core, and

more importantly, to the skin effect of the stable layer in damping out the high frequency

components of the magnetic field in the dynamo region. The latitudinal variability of the CMB

heat flux induces differential rotation in the stable layer, which attenuates the non-axisymmetric

components of the magnetic field.

2 & 3

The origin of the Moon is strictly constrained by the range of possible lunar orbital histories.

In the early 2000s, with Canup & Asphaug's (2001) then unprecedentedly complex and detailed

simulations and visualizations of the proposed Moon-forming giant impact, an impact scenario,

since then commonly referred to as the standard model, became widely recognized and accepted

as the most probable scenario as the origin of the Moon. One of its key advantages is that the

resultant Earth rotates with a -5 hour period, which is close to expectations based on the current

value of the Earth-Moon system's total angular momentum. It was then taken for granted that the

Earth-Moon system's total angular momentum, which is the sum of the orbital angular
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momentum and the two bodies' individual rotational angular momentum, has stayed relatively

constant since the Moon's formation throughout the solar system's history.

It is this angular momentum constraint that helped bring the demise of other lunar formation

hypotheses, such as the fission hypothesis. It is also this constraint that filtered out a wide range

of possible impact scenarios in numerical simulations like Canup & Asphaug's (2001), limiting

the possible scenarios to those in which the bulk of lunar material predominantly comes from the

impactor, not the proto-Earth.

As time proceeds, the science community found insights and conflicts on the lunar origin from

the chemical perspective. Wiechert et al. (2001) reported identical oxygen isotopic compositions

between the lunar and terrestrial samples. This is in direct conflict with the standard impact

scenario: if the lunar material had predominantly come from the impactor, how can the Moon

possess the same isotopic signature as the Earth? Pahlevan & Stevenson (2007) later proposed a

chemical equilibration mechanism between the post-impact Earth and the proto-lunar disk to

account for the oxygen similarity. However, Zhang et al. (2012) reported another species of

isotopes that appear to be identical in the Moon and the Earth: titanium. Unlike the volatile

oxygen, titanium is highly refractory, and thus unlikely to be equilibrated between the Earth and

the disk.

Therefore, titanium, along with other isotopic similarities (0, W, Cr), puts the standard model in

question: either the lunar material has a substantial terrestrial contribution, or the impactor is

isotopically identical with the proto-Earth by coincidence (Mastrobuono-Battisti et al., 2015; Kaib

and Cowan, 2015 ). The latter possibility is unsatisfying.

Several groups (Cuk and Stewart, 2012; Canup, 2012; Reufer et al., 2012) focused on the first

possibility, and identified numerical impact scenarios in which the bulk lunar material largely

derives from the proto-Earth. All these scenarios assumed the impact angular momentum to be

much larger than the current Earth-Moon value. In the scenario of Reufer et al. (2012), also

known as the "hit and go" model, the excess angular momentum is drained from the system by

the escape of a portion of the impactor material from the Earth's gravity. In both the Cuk and
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Stewart (2012) and Canup (2012) models, the excess angular momentum remains in the rotation

of the Earth after the impact, causing a fast-spinning Earth with the rotational period as short as

2.5 hours.

Lock et al. (2016) proposed that impact scenarios that leave the Earth in a fast-spinning, i.e., high-

angular momentum state have the advantage of being able to explain the depletion of volatiles in

the Moon. After a high-energy, high-angular momentum giant impact, the Earth could be in a post

hot spin stability limit state, in which the Earth's mantle, atmosphere, and the circumplanetary

disk (MAD) form an extended structure with no discontinuities in it. This MAD structure of bulk

silicate Earth (BSE) vapor can extend beyond the Roche limit. The observed depletion of volatiles

in the Moon, as well as the isotopic similarities between the Earth and Moon, is a natural result of

the condensing Moon equilibrating with the BSE vapor. The enrichment of the heavy potassium

isotopes in the Moon reported by Wang and Jacobsen (2016) supports this model of lunar

accretion. On this basis it appears that a fast-spinning post-impact Earth is more likely.

Starting from a fast-spinning Earth, the excess angular momentum should be drained in the

subsequent history through orbital dynamics mechanisms, or the two scenarios would fail even

though they succeed in producing an Earthlike proto-lunar disk composition. In this sense, the

study of orbital dynamics mechanisms through which the system can lose angular momentum is

critical for understanding the type of the Moon-forming giant impact.

The evection resonance was taken by Cuk and Stewart (2012) as the mechanism to drain angular

momentum from the system. The evection resonance was first briefly suggested by Yoder in

private communication (1976) with Peale and Cassen (1978), but simply dismissed by them

because they accepted the capture hypothesis for the lunar origin and in addition this resonance

can only occur when the Moon is close to the Earth (4.3-6.3 Earth radii), which is not allowed by

the capture hypothesis. Touma and Wisdom (1998) explicitly described the resonance and

developed a simplified model that nicely describes the system's behavior in the resonance. In

simple words, this resonance occurs when the motion of the lunar orbit's pericenter is "resonant"

with the Sun's motion around the Earth, both with the period being 1 year. The angle between

the direction to the Sun from Earth and the direction to the lunar orbit's pericenter (the evection
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angle, a in Fig. 3) stays near a constant value of Mr. The most prominent phenomenon of the

resonance is the strongly elevated lunar orbital eccentricities (to 0.2, 0.3, and higher). The semi-

major axis decreases, and the Earth despins, therefore the system's angular momentum

decreases.

Sun

lunar
periccnter

"",41

Earth

Fig. 3. The definition of the evection angle, u.

However, Wisdom and Tian (2015) pointed out that the evection resonance is not a likely to have

drained the angular momentum. This is simply because the severe tidal heating as a result of the

high eccentricities over long periods of time reported by Cuk and Stewart (2012) would be so

strong as to have vaporized the Moon.

In chapter 2, we propose an alternative orbital mechanism that can reduce the Earth-Moon

system's angular momentum. This mechanism is related to the evection resonance, but is a limit

cycle instead of a resonance. When the system is in the limit cycle, the evection angle circulates

from 0 to 2T, and the eccentricity vibrates between a lower bound and an upper bound (Fig. 4),

with a period the same as that for the circulation of the evection angle. With Qe set at 400, the

limit cycle lasts for more than 500 thousand years, and drains the system's angular momentum to

a value close to the current value.

12



0 1 -

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01
100 100.1 100.2 100.3 100.4 100 5

t [kyj

Fig. 4. The vibration of lunar orbital eccentricity in a typical limit cycle.

Compared with the evection resonance, the limit cycle raises the eccentricity only moderately.

The lower and upper bounds of the eccentricity depend on the tidal parameters of the Earth and

Moon (Qe, Qm, k2e, k2m), but for most cases the upper bound does not exceed 0.1. Therefore, the

limit cycle does not cause severe tidal heating in the Moon and is expected to work more stably

and robustly than the evection resonance.

Another advantage of the limit cycle is that it works over a much wider range of parameters than

the evection resonance. This property not only makes the limit cycle a more probable mechanism

to have drained the excessive angular momentum, but also keeps the limit cycle mechanism more

robust to changes in disturbances and temporal changes in the Earth and Moon's thermal states

and tidal properties.

In chapter 3, we couple the orbital evolution with the lunar magma ocean evolution to investigate

the mutual effects of the orbital mechanisms and the Moon's thermal state on each other. Since

the crystallization of the lunar magma ocean before the formation of a conductive plagioclase lid

only takes several thousand years (Elkins-Tanton et al., 2011), we start the magma ocean with a

plagioclase lid of 5 km in thickness. In addition to the orbital processes, we also evolve the

magma ocean liquid's volume, the thickness, temperatures and tidal properties of the lid. We

simulate thermal conduction, tidal heating, partial melting and melt migration in the lid. The

orbital system evolution affects the magma ocean processes by updating the lunar orbital
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semimajor axis and eccentricity, which determine the tidal heating rate in the lid. The lunar

magma ocean processes affect the orbital evolution by changing the Moon's tidal properties,

which determine the orbital accelerations related with the lunar tidal deformation.

With the two systems coupled, we find that the evection resonance is unstable and does not

reduce the system's angular momentum. When the system is captured in the evection resonance,

the rapid increase in eccentricity causes violent changes in the Moon's tidal properties and soon

brings the system out of the parameter range of the resonance. So the system exits the resonance

shortly after it gets into the resonance, and the angular momentum loss is negligible.

In contrast, the limit cycle works robustly to drain the system's angular momentum as much as in

the non-thermally coupled model. This is mainly because the moderate increases in eccentricity

enhance tidal heating in the lid only mildly and slowly, and the changes in the lunar tidal

properties are much smaller and more gradual than in the evection resonance. In addition, the

wide parameter range for the occurrence and maintenance of the limit cycle also helps to

guarantee that the changes in lunar tidal properties do not easily bring the system out of the limit

cycle.

Therefore, we conclude that the limit cycle is the most viable mechanism to have drained the

Earth-Moon system's excess angular momentum if the Earth started spinning fast.

4

Why is the "man in the Moon" on the lunar nearside? Did tidal heating play a role in determining its

location?

The Moon exhibits a hemispheric asymmetry in the distribution of mare basalts. The

overwhelming majority of the volume of the maria is on the lunar nearside. At first glance, it

appeared that the mare basalts occur at the topographically low regions (e.g. Kaula, 1974).

However, after the acquisition of the global topographic data (Zuber et al., 1994; Smith et al.,
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2016), it is recognized that many topographically low regions, most noticeably the South Pole-

Aitken basin, do not contain abundant basalt emplacements. It is then more likely that the

asymmetric distribution of maria indicates a fundamental asymmetry in lunar mantle activity.

The nearside mantle has experienced relatively elevated partial melting during the lunar history,

expressed in the form of mare distribution on the surface. Then why is this asymmetry

hemispheric in scale, and why is the melting activity centered on the nearside?

Previous models (Hess & Parmentier, 1995, Zhong et al., 2000) proposed scenarios to explain the

formation of spherical harmonic degree-1 pattern of the mare asymmetry. At the end of the lunar

magma ocean solidification, the dense ilmenite (FeTiO3)-rich cumulates (IC), which are the last

cumulates in the crystallization sequence, lie beneath the latest liquids that are highly

concentrated in heat-producing elements (urKREEP). The IC layer, together with the iron rich

mafic cumulates, overlie the magnesium rich, first crystallized minerals which are then at the

base of the mantle. This gravitationally unstable density profile soon leads to a large-scale

overturn in the mantle, bringing the IC and the iron rich silicates to the bottom of the mantle.

Some of the late stage, radioactive element rich liquid is entrained with the IC and also sinks.

Then the mixed ilmenite cumulates (MIC) either form a lunar core or a dense, radioactive

element rich layer surrounding the core. According to Rayleigh-Taylor instability analysis, the

overturn occurs rapidly, on the order of several thousand years.

As a result of this global-scale overturn, a substantial fraction of the Moon's heat-producing

elements is concentrated in the deepest regions of the lunar mantle. As time proceeds, radiogenic

heat accumulates in or around the core, and the outward thermal conduction is slow due to the

great depth. The growing temperature and the resulting gravitational buoyancy of the MIC finally

drives its ascent through the mantle to relatively shallow depths. Decompression melting of the

ascending MIC creates the mare volcanism in 200-600 My. In this scenario, a single, large diapir

is likely, since the spherical harmonic degree-1 pattern has the most rapidly growing instability

under a wide range of parameter space, as given by both Rayleigh-Taylor instability analysis and

numerical simulations (Hess & Parmentier, 1995, Zhong et al., 2000). Therefore, the hemispheric

asymmetry of the mare basalt distribution can be simply the result of spherical harmonic degree-

1 diapir ascension of the deep MIC, radioactive element rich material.
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However, the second question remains not completely answered. Why did the diapir rise in the

nearside of the lunar mantle? Laneuville et al. (2013) proposed that the concentration of mare

volcanism on the nearside of the Moon could be a natural consequence of the mantle thermal

evolution, provided that the Moon's bulk KREEPy material is concentrated in the nearside crust

and upper mantle in the first place. However, they did not provide an explanation for the

concentration of the KREEPy material.

In chapter 4, we explore the feasibility of laterally heterogeneous tidal heating leading to the

ascending diapir's occurrence in the nearside mantle. We expect the possibility that tidal

deformation preferentially dissipates energy in the nearside mantle, raises the mantle

temperatures, reduces the viscosity, and thus facilitates the mantle flow and diapir ascension.

We follow Peale and Cassen's (1978) approach for analyzing the distribution of tidal heating in a

spherical body with a solid exterior layer overlying a liquid interior. We re-derive the formalism,

correct errors, and extend the analysis to include both degree-2 and degree-3 tidal heating. We

find that the pattern of degree-2 tidal heating does not preferentially heat the mantle regions on

the Earth-Moon line in any case. For the degree-3 case, even though the mantle regions on the

Earth-Moon line get the most tidally heated in some cases, the magnitude of heating is too small

to have any effect when compared with the degree-2 heating.

We conclude that either tidal heating does not play a role in determining the location of the

diapir ascension, or the spherically symmetric model's deformation scheme is not applicable to

the Moon.
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Chapter 1

Magnetic field modeling for Mercury using dynamo models with a stable layer and

laterally variable heat flux

ZhenLiang Tian, Maria T. Zuber, Sabine Stanley

Abstract

Mercury's surface magnetic field is unique among planetary magnetic fields for its weak

intensity, spin-aligned axisymmetry, and large dipole offset. An Earth-like dynamo setup applied

to Mercury does not reproduce these features. Here we explain the magnetic field observations

by a combination of two effects: (1) a stably stratified layer at the top of the outer core, and (2) a

degree-1 north-south asymmetric spherical harmonic heat flux variation at the core-mantle

boundary (CMB). We vary the stable layer thickness and size of the inner core, and find models

that can produce surface magnetic fields possessing the observed features of Mercury.

Introduction

Mercury's magnetic field is a weak, offset dipole-dominated, spin-aligned axisymmetric field

(Anderson et al., 2011, 2012; Winslow et al., 2014). It is unique among all active dynamo-

generated magnetic fields in the solar system because of the following combination of properties:

(A) its magnetic moment is as weak as -190nT-rpianet 3, less than 1/100 that of the Earth

(Anderson et al., 2012);

(B) its dipole axis is aligned with Mercury's rotation axis to within 0.8o (Anderson et al., 2012). In

a Gauss expansion of the magnetic field, this fact corresponds to small gi1/gio and hu1 /gio ratios,

where gim and him correspond to the degree-i, order-m Gauss coefficients.

(C) its dipole offset, which is the distance between the magnetic dipole equator and Mercury's

geographic equator, is -480 km (0.2*rplaiet). This offset corresponds to g2o/glo = 0.40 at the

planetary surface.
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According to magnetostrophic balance and energetics arguments, and assuming an Earth-like

partitioning of the core magnetic field between poloidal and toroidal components, Mercury's

dipole moment is expected to be in the range 4x10 3 - 4x10 6 nT-rpianet3 (Stanley & Glatzmaier,

2010). The observed weak field intensity alone poses a challenge to conventional Earth-like

dynamo models.

Mercury's magnetic field is also anomalous for its morphology. Among axial dipole-dominated

planetary magnetic fields, which include the magnetic fields of Mercury, Earth, Jupiter, Saturn

and Ganymede, only Mercury and Saturn have confirmed dipole tilts less than 1 from the

rotation axis (present data for Ganymede only provides an upper limit of 40 on the dipole tilt)

(Smith et al., 1980; Kivelson et al., 2002; Anderson et al., 2012). Saturn, however, has a dipole

offset of 0.04-rstur (Smith et al., 1980), which is much smaller than Mercury in the ratio to the

planetary radius.

Prior to the MESSENGER spacecraft's measurements of the dipole tilt and offset of Mercury's

magnetic field, several analytic and numerical studies tried to explain the weak intensity of the

magnetic field: (1) A thermoelectric dynamo was proposed (Stevenson, 1987; Giampieri &

Balogh, 2002) in which thermoelectric currents are driven by temperature differences on an

irregular CMB. These currents would produce a toroidal magnetic field, and the helical motions in

the fluid outer core would interact with the toroidal field to produce a weak poloidal field

observable at Mercury's surface (10 2-10 3nT). (2) Stanley et al. (2005) used a thin shell dynamo

model, in which fluid convection mainly operates outside the cylinder tangent to a very large

inner core, to generate a non-Earth-like field partitioning between toroidal and poloidal

components in the core. The core magnetic field is strong, but is dominated by toroidal

components that do not penetrate outside the core, thus producing a weak surface field (10 3nT).

Takahashi and Matsushima (2006) also used a thin shell geometry of outer core, and produced

core magnetic fields that are dominated by high degree, multipole components which decrease to

much lower intensities than the dipole on Mercury's surface. The surface magnetic field can be as

small as 10 3nT. However, their model requires the inner core to be electrically insulating.

Heimpel et al. (2005) investigated a very thick shell dynamo, which results in single-plume

convection in the shell and produced relatively weak poloidal magnetic fields (10 4nT at
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Mercury's surface). (3) The Vilim et al. (2010) model involves dissolution of Fe from S at some

depth in the outer core, which results in two dynamo regions (the region above that depth, and

the region below it) that can produce magnetic fields with opposite signs, thus weakening the

observable surface magnetic field (160-1500nT). (4) Several studies (Glassmeier & Auster, 2007;

Gomez-Perez & Solomon, 2010; Heyner et al., 2010; Heyner et al., 2011) investigated the

feedback dynamo, in which there is a negative feedback between the dynamo-generated

magnetic field and the magnetic field generated by the magnetospheric currents, where the

magnetosphric currents result from the interaction between the internal planetary magnetic field

and the solar wind. Mercury's magnetopause is close to the planet's surface as the weak dipole

field is unable to push it farther away from the surface. This closeness of the magnetopause to the

surface facilitates the magnetospheric field's substantial contribution to the overall field in

Mercury's interior. The magnetospheric field is intrinsically anti-parallel to the internal dynamo

field at the CMB, and lowers the saturation level of dynamo action in the core, therefore

weakening the overall field in the core as well as on Mercury's surface (60nT in Heyner et al.,

2011, for example).

These dynamo models usually evoke some special geometry of the core dynamo region, and

produce surface magnetic fields comparable in intensity to the observed magnetic field of

Mercury. However, none of these models predict a surface magnetic field that is dominated by a

highly axisymmetric and offset dipole.

It is difficult to generate a magnetic field that displays simultaneously a very small dipole tilt and

a large dipole offset, i.e., a field with both a large gzo and small gii and hu. This is because the g20

(axial quadrupole) and g, and h, (equatorial dipole) components belong to the same dynamo

symmetry family (degree+order = even number). When fluid flows strongly excite one mode in

the family, they typically excite other modes of similar wavelength in the same family (Bullard

and Gellman, 1954). To numerically generate a magnetic field with these features, modifications

to conventional dynamo models are needed.

To explain the weak intensity and axisymmetry of Saturn's magnetic field, Stevenson

(1980,1982) proposed a structure that featured a stably stratified layer with differential rotation
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at the top of the dynamo source region. The presence of the stable layer weakens the surface

magnetic field by: (1) limiting the dynamo generation region to the deeper parts of the metallic H

and He layer; and (2) attenuating the magnetic field, especially the rapidly varying, high

multipole components, by the skin effect when the dynamo field passes through the stable layer.

This stable layer, with differential rotation within it, can also act to "axisymmetrize" the surface

magnetic field. Stevenson (1982) analytically determined that axisymmetrization should occur if

the magnetic Reynolds number of dynamo action is sufficiently large. For Saturn, whose magnetic

field is produced by the dynamo operating in the metallic hydrogen region, the stratified layer

can be produced as helium rains out of the metallic hydrogen region of Saturn due to helium's

immiscibility in metallic hydrogen in the molecular-metallic hydrogen transition region.

Later kinematic dynamo studies (Love, 2000; Schubert et al., 2004) examined the effect of a

stable layer surrounding the dynamo generation region in axisymmetrizing the magnetic field.

These models prescribe the fluid flow in the stable layer, neglect the effects of the Lorentz force

on the fluid flow and the interactions between the stable and unstable layers, and track the

evolution of the magnetic field. Results showed that the stable layer can affect the symmetry of

the surface magnetic field, but the magnetic field need not attain axisymmetry. The symmetry of

the resulting magnetic field depends on the prescribed flows in the stable layer and the geometry

of the magnetic field within the region of dynamo generation.

Recent dynamic dynamo studies (Christensen, 2006; Christensen & Wicht, 2008; Stanley &

Mohammadi, 2008) investigated the role of a stable layer, without latitudinally variable thermal

boundary conditions, in determining the geometry of the surface magnetic field. Christensen and

Wicht (2008) incorporated a very thick, stably stratified layer surrounding the dynamo region,

and found that a weak, axisymmetric field can be achieved for certain parameter regimes.

However, they did not typically produce the combination of a small dipole tilt and a large dipole

offset. Stanley and Mohammadi (2008) instead looked at the effects of thin stable layers. They

found that a thin, stably stratified layer surrounding the dynamo region, by itself, does not act to

axisymmetrize the surface magnetic field. Some patterns of zonal flows in the stable layer may

disrupt the dynamo action through interaction between the stable and unstable layers.

For the case of Saturn, Stanley (2010) further investigated how a thin, stably stratified layer can

affect the magnetic field with latitudinal heat flux variations (spherical harmonic degrees 2 and
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3) imposed at its outer boundary. She discovered that only a stable layer with heat flux variations

of certain patterns and signs can axisymmetrize the magnetic field. With a standard dynamo

model, which has no stable layer or laterally variable thermal boundary conditions, thermal

winds in the dynamo region can arise as a natural result of fluid convection. For the case of

Saturn, when the thermal boundary condition (spherical harmonic degree-2) is applied at the top

of the stable layer, the resultant thermal winds in the stable layer are in the same direction as

those that would naturally arise from convection in the unstable layer. In this situation, the

differential rotation in the stable layer shears out the non-axisymmetric components of the

magnetic field in the dynamo region and produces an axisymmetric surface magnetic field.

However, when the applied thermal boundary condition is of the opposite sign, or an octupole

mode (spherical harmonic degree-3), the thermal winds produced in the stable layer would act to

destabilize the flows in the dynamo region through interactions between stable and unstable

layers, therefore producing more non-axisymmetric magnetic fields at the planetary surface. This

study demonstrates the importance of the direction and equatorial symmetry of differential

rotation in the stable layer in axisymmetrizing the surface field.

For Mercury, a stably stratified layer can also form at the top of the outer core, and a latitudinally

heterogeneous heat flux is likely to be present at the top of this stable layer. The stable layer can

form as a result of thermal and chemical stratification. According to thermal evolution models

(for example, Hauck et al., 2004), the heat flux at the CMB of Mercury is subadiabatic, which

contributes to thermal stratification near the CMB. In addition, the high sulfur abundance and

relatively low Fe content on the surface of Mercury (Nittler et al., 2011) indicate a chemically

reducing environment during Mercury's formation, which favors an enrichment of sulfur and

silicon in the core. Earth-based (Margot et al., 2007) and MESSENGE R-derived (Smith et al.,

2012) geophysical measurements initially required the presence of a solid FeS-rich layer at the

top of the outer core (Smith et aL., 2012) to explain the planet's radial density distribution.

Subsequent refinement of the obliquity measurement (Margot et al., 2012) dictates that this layer

is still consistent with the observations but is no longer required (Hauck et al., 2013). The

presence of a solid FeS layer naturally requires an FeS-rich liquid layer to exist below it, which

forms a stably stratified layer in the liquid core region.
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Lateral variations in temperature within the mantle above the CMB are likely to occur in planets

due to the pattern of mantle convection, the heterogeneous distribution of heat-producing

elements in the mantle, or the effect of giant impacts. Stanley et al. (2008) applied a degree-1

spherical harmonic heat flux distribution at Mars' CMB to produce a single-hemisphere dynamo

for ancient Mars that could account for the concentration of the planet's remanent crustal

magnetic field in the southern hemisphere. For Mars, the heterogeneous heat flux distribution at

the CMB can be produced as the result of the giant impact creating the Borealis basin (Andrews-

Hanna et al., 2008), or as the result of a hemispheric-scale pattern of mantle convection. Lateral

variations in temperature at the Earth's CMB are evidenced by seismic tomography (van der Hilst

et al., 2007). Unfortunately Mercury lacks seismic observations needed for tomographic mapping,

however, geological features, such as large volcanic plains (Head et al., 2011), can be used to infer

potential patterns of temperature variations at least in the era of formation of those features.

In a dynamo model for Mercury's magnetic field, Cao et al. (2014) applied spherical harmonic

degree-2 and degree-4 heat flux variations at the CMB with the highest heat flow at the equator.

They did not provide a justification for these conditions, though the surface boundary condition

does have degree-2 structure due to latitude-dependent insolation (cf. Aharonson et al., 2003).

Along with volumetric buoyancy applied in the core, they produced magnetic fields with large

dipole offsets, an average dipole tilt of 3o (personal correspondence), and a magnitude somewhat

weaker than that scaled from an Earth-like dynamo field, but still much larger than Mercury's

observed field.

In this study, we assume a degree-1 heat flux distribution at the CMB. A degree-1, laterally

variable mantle heat flux distribution is plausible in ancient Mercury. A laterally variable thermal

structure in the mantle is consistent with geological observations (Head et al., 2011) of extensive

volcanic flooding at the surface in Mercury's northern high latitudes between the late stages of

the late heavy bombardment - 3.7 to 3.8 Ga ago. The widespread volcanism indicates more

vigorous mantle convection and heat transport in the northern hemisphere. More rapid mantle

heat transport can result in cooler temperatures near the CMB, and thus a higher heat flux across

the CMB. Even though the northern volcanic plains only occupy 6% of Mercury's surface area, it

is quasi-centered on the pole and the inferred spherical heterogeneity in heat flux can be roughly

represented by a degree-1, order-0 spherical harmonic pattern. This assumes the area of volcanic
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flooding corresponds to the regions of higher rates of mantle convection, instead of an entire

hemisphere of positive variable heat flux of the degree-1 spherical harmonic pattern.

The heterogeneous distribution of mantle convection rates can be attributed to either variations

in concentration of heat-producing elements in the mantle or heterogeneous distribution of

mantle viscosity. Mapping of the surface distribution of radioactive elements (Peplowski et al.,

2012) reveals higher concentration of K in the surface tens of centimeters in the northern high

latitudes compared to the equatorial regions. This was initially explained by a thermal

redistribution mechanism, where K is transported from hotter equatorial regions to the cooler

pole regions. But later findings of correlation of K and Mg/Si ratio distributions suggest that the

surface K variations result from the compositions of the intrinsic crustal material (Weider et al.,

2015). Currently a global map of surface concentration of radioactive elements is unavailable due

to the high eccentricity of the MESSENGER spacecraft's orbit around Mercury, so we are not sure

whether the southern high latitude regions also have higher than average concentrations of heat

producing radioactive elements. If moderately elevated abundances of heat-producing elements

are present in surface rocks, and thus the mantle source regions in the northern high latitudes

but not in the southern regions, the resultant higher mantle temperature in the north would

favor a higher heat flux at the CMB in the north. Even though a somewhat hotter mantle in the

northern high latitudes lowers the rate of thermal conduction, the higher temperature makes the

material less viscous and therefore increases the likelihood or vigor of mantle convection.

The surface K abundance in the northern high latitudes is on average (over the longitudes) 2-3

times higher than in the equatorial regions (Peplowski et al., 2012), and suggests only moderate

concentration of heat-producing elements in the crust and mantle there. This is very different

from the case of Procellarum KREEP terrane (PKT) on the Moon, which concentrates the

dominant majority of the heat-producing elements of the Moon. In the latter case, the surface Th

distribution suggests significantly raised mantle temperatures in the PKT region, which leads to a

thermal blanket (Stegman et aL., 2003) that prevents efficient heat transfer from the core to the

surface. For Mercury, the surface K abundance variation is much more limited in magnitude, and

the implied slightly raised mantle temperatures in the northern high latitudes should have a

more effective impact on heat transfer through enhancing mantle convection. This is especially

the case when the average mantle is just near the critical point for convection to occur, i.e., when
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the occurrence and maintenance of mantle convection is most sensitive to slight changes in

viscosity. Thermal evolution studies (for example, Michel et al., 2013) suggest that at a mantle

thickness of about 400 km, the mantle is just unstable enough to be in the convective state, and in

some cases the convection does not persist to the present. Therefore, even moderately stronger

internal heating in the mantle in the northern high latitudes would substantially promote

convection there, resulting in either increased vigor of convection than other regions, or the

persistence of convection to the present when convection in the southern regions has already

ceased. In either case, since heat transport via convection tends to be more efficient than by the

diffusive process in conduction, the overall rate of heat transport from the core to the planetary

surface would be higher in the northern high latitudes than in the southern regions, thus creating

a north-south asymmetric heat flux across the CMB, with the strong values the north.

The assumption of heterogeneous heat flux can be tested by future missions to Mercury that (1)

map the surface concentration of heat-producing elements in the southern hemisphere, to

produce a global map combined with MESSENGER data in the northern hemisphere; and (2)

measure the latitudinal variation of surface heat flux.

In this study, we carry out numerical dynamo simulations that feature an outer stratified layer in

the core and a degree-1 heat flux at the CMB.

Model & Method

The essential mechanism of dynamo generation is the coupling of hydrodynamic and

electromagnetic processes in a region of electrically-conductive fluid, which models the evolution

of the magnetic, temperature and flow velocity fields. Our Boussinesq dynamo model is governed

by the non-dimensional equations for:

magnetic induction

(a/at - V2)B = Vx (vxB), (1)

the non-existence of magnetic monopoles

V xB= 0, (2)

fluid flow (Navier-Stokes)
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Rom (d/dt +v- V)v +zxv = Ra(1-rio)- 2 0 r +jxB +Ek (1-rio) 2 V2V - Vp, (3)

continuity in the Boussinesq approximation

Vv = 0, (4)

and energy

(d/at -qk V2 ) = -v. V(To(r) +0). (5)

In these expressions, B is the magnetic field, v is the flow velocity field, 0 is the superadiabatic

temperature perturbation field (the difference between the total superadiabatic temperature

field and To(r), the conductive temperature solution),j is the electrical current density, p is the

fluid pressure, and rio is the ratio of the radii of the inner core to the outer core.

In the non-dimensionalization of these equations, ro (the outer core radius) is used as the length

scale, r = r0
2/r, (the magnetic diffusion time, where q is the magnetic diffusivity) is used as the

time scale, Bscale = sqrt(2flp/a) (the magnetostrophic balance value, where n is the rotation rate

of the planet, p is the fluid density, and a is the fluid's electrical conductivity) is used as the

magnetic field scale, Tscale = hTro (where hT is the negative of temperature gradient at inner core

boundary) is used as the temperature scale. Assuming q = 0.6 m2 /s (or a = 1.3x106 S/M) (Pozzo

et aL, 2012), the magnetic diffusion time would beT = r,2/ ~ 2.1x 105 years.

In the expressions above:

Rom = q/(2r 2) is the magnetic Rossby number, the ratio of the inertia force to the Coriolis force;

Ek = v/(2f2r 2) is the Ekman number, the ratio of the viscous force and the Coriolis force, where v

is the fluid's kinematic viscosity;

qk = K/q is the Roberts number, the ratio of thermal diffusivity (K) to magnetic diffusivity; and

Ra = agohTr 2 /(2fi2) (a is the thermal expansion coefficient of the fluid) is the modified Rayleigh

number, a measure of the driving buoyancy force.

Our numerical scheme for dynamo simulations is based on the model of Kuang & Bloxham

(1999) with the following modifications:

1) We pose a stably stratified layer in the upper region of Mercury's outer core (Fig. 1). This

stratification may result from a subadiabatic heat flow at the CMB of Mercury. Christensen

(2006) and Christensen and Wicht (2008) have shown that dynamo models with an outer stably
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stratified layer can result in weak surface magnetic fields.

2) We implement fixed laterally heterogeneous heat flux boundary conditions at the CM B.

This results in thermal winds in the stably stratified layer that can act to modify the field toward

axisymmetry, as demonstrated by Stanley (2010).

We use viscous stress-free, non-penetrative boundary conditions on the velocity field and a freely

rotating, finite conducting inner core with the same conductivity as the fluid outer core.

2440km

- 2030km

stratified region

0.55-0.85ro

0.05-0.50ro

Fig. 1. Internal structure model of Mercury used in the numerical simulations. Sizes of regions are not to scale.

The model has 36 radial grid points in the solid inner core and 64 radial grid points in the fluid

outer core. The spherical harmonics in the longitudinal and latitudinal directions reach a
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maximum degree of 33 and maximum order of 21. We employ a very weak hyperdiffusion

starting at spherical harmonic degree 20 of the form:

Vt(f) = vo (1 +a(l -lo)")/(1 +a(li -lo)") for I> lo,

where vt represents either the kinematic, magnetic or thermal diffusivity, vo refers to the

constant value for I < 20, lo = 20, 11 = 20, n = 2 and a = 0.05 for the kinematic diffusivity, and a =

0.06 for the magnetic and thermal diffusivities. Dharmaraj et al. (2014) demonstrated that such a

hyperdiffusion does not significantly affect the solutions. Grote et al. (2000) and Zhang & Jones

(1997) suggest that the use of hyperdiffusion leads to suspect results in dynamo models.

However, these models use much stronger hyperdiffusion than our model. For example, Grote,

Busse & Tilgner (2000) uses: a = 0.075, lo = 0, 11 = 4, n= 3, while we use a = 0.05, lo = 20, 11 = 20, n

= 2 in this study. The values of viscosity as a function of spherical harmonic degree for several

models are shown in the Fig. 2. It is clear that the Kuang & Bloxham (1999) and the current study

have much weaker hyperdiffusion than the Grote et al. study. Furthur tests for a range of

hyperdiffusion values suggest that our use of hyperdiffusion does not notably affect the large

scale fields in this model.
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Fig. 2. Comparison of the values of viscosity as a function of spherical harmonic degree for Grote et al. (2000) model,

Kuang & Bloxham (1999) model, and the model used in this study.

We investigate a plausible range of inner core sizes and stratified layer thicknesses. The inner

core radius ranges from 5% to 50% of the core radius, and the thickness of the stratified layer

ranges from 15% to 45% of the core radius. The stable stratification is implemented in our

Boussinesq model via a co-density formalism similar in manner to previous work, where the

background temperature profile is given a stable conductive profile (Stanley & Bloxham, 2004,

2006; Stanley & Mohammadi, 2008; Stanley, 2010). It is specified by a non-dimensional

background co-density gradient dCo/dr. Those cases producing average dipole tilts less than 5*

are listed in Table 1. We apply a degree-1 spherical harmonic variable heat flux. In Table 1,

variable heat flux is defined in terms of the ratio of the root mean square of perturbations in CMB

heat flux to Fmean, the mean superadiabatic heat flux. Fmean = KhTri,2, where K is the thermal

conductivity.
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Table 1. Inner core sizes, stable layer thicknesses (dstable) and background co-density gradient (dCo/dr), variable heat

flux, and the resultant surface magnetic fields'gio, dipole tilts, and offsets of the models that produce average dipole

tilts less than 5'. Core radius (r,) is 2030 km, the magnetic Rossby number (Rom) is 2x10-5, the Ekman number (Ek) is

2x10-s, and the modified Rayleigh number (Ra) is 5000.

Model Variable Avg. gio Avg. offset
ri0  dstabie/ro dCo/dr hetfu n) Avg. tilt (") (rant

number heat flux (nT) (rplanet)

1 0.05 0.30 1 0.127 194 0.58 0.08

2 0.10 0.35 1 0.084 97 0.53 0.17

3 0.10 0.30 1 0.070 198 1.34 0.17

4 0.15 0.40 1 0.070 515 0.70 0.21

5 0.15 0.35 2 0.070 236 0.51 0.17

6 0.20 0.45 1 0.084 79 0.59 0.22

7 0.20 0.40 1 0.084 249 1.30 0.20

8 0.20 0.35 3 0.141 124 2.96 0.23

9 0.30 0.35 5 0.141 284 2.51 0.12

Results

Results that have average dipole tilts less than 50 are summarized in Table 1. Assuming a degree-

1, latitudinally varing heat flux at the CMB, and a range of inner core sizes and stable layer

thicknesses, we obtain stable solutions for which the surface magnetic fields are weak, highly

axisymmetric about the spin axis, and with a large dipole offset. An example is shown in Fig. 3.

Fig. 3 shows the field analyses for a dynamo case whose inner core radius is 0.15 rCMB, and whose

stably stratified layer is between 0.65-1.0 rCMB (model number 5). For most of the time, the

planetary magnetic moment is about 200-30OnT-rpanet3, which is of similar magnitude as

Mercury's observed value of 190nT-rpanet3 . The tilt of the dipole axis from the spin axis is mostly

less than 10, and the dipole offset of 0.17-rplanet agrees well with the observed value of 0.2-rp1anet. In

comparison, a dynamo case with the same stable layer but a homogeneous heat flux at the CMB

typically produce magnetic fields with dipole tilts too large to match the observations, though

sometimes with a weak field intensity at the surface.

For the magnetic field below the stably stratified layer, the strongest positive values are mostly

distributed around the north pole, creating a strong low degree spherical harmonic component.

Even though the strongest negative value is even larger than the strongest positive value in
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absolute value, these strong negative values are in small-scale flux spots near the equator, and

only contribute to higher degree multipole components, which are attenuated through the stable

layer. The magnetic field below the stable layer already exhibits the north-south asymmetry, with

stronger fields in the northern hemisphere. The stably stratified layer preferentially weakens the

rapidly varying high degree components by the skin effect as the magnetic field diffuses through

it, creating a dipole- and quadrupole-dominated magnetic field at the top of the stratified layer.

The weak strength of the surface field is partly due to the size of stable layer that limits the

dynamo region within 0.65 rcMB. But since Mercury's core is so huge (rCMB = 2030km, rplanet

2440km), the weak strength is mainly attributed to the stable layer's skin effect.

Fluid velocity field plots show substantial differential rotation in the stratified layer. As predicted

by Stevenson (1980), the differential rotation plays a major role in twisting the non-

axisymmetric components of the magnetic field in the dynamo and producing a more

axisymmetric surface field.
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Fig. 3. (a) Surface field diagnostics, (b) radial component of magnetic field just below the stratified layer, (c) radial

component of magnetic field at the top of the stratified layer, (d) fluid flow field, and (e) power spectrum, or

Mauersberger-Lowes spectrum, as computed by (l+1)(rpanet/r)2l+ 4 En,O:(g;nI2 
+ him2 ) at the CMB, for model number 5.

In (a), the upper plot shows the gio, gii, hil coefficients vs. time, the middle plot shows the angle between dipole axis

and spin axis vs. time, and the lower plot shows the dipole offset vs. time. In (d), the left plot shows the longitudinally

averaged toroidal flow in non-dimensional units, while the right plot shows contours of poloidal flow, in which red

denotes counter-clockwise motion, and blue denotes clockwise motion. The dashed lines denote the boundary

between stably stratified and unstable layers. In (e), the blue line denotes the power spectrum of the modeled

magnetic field, and the green line denotes the observed values by the MESSENGER team (Anderson et al., 2012).

Both data are non-dimensionalized such that their respective dipole moment is 1. rpanet3 .

Implications

Our results show that a mechanically stratified layer at the top of the liquid core can play an

important role in producing a spin-aligned, dipole-dominated surface magnetic field with a large

dipole offset to the equator. This conclusion is consistent with the results of thermal evolution

modeling that the thermal gradient at the CMB is subadiabatic, which can lead to stable

stratification at the CMB (Christensen, 2006). The emergence of a stratified layer can also be

attributed to chemical stratification of liquid FeS at the top of the outer core. A solid FeS layer,

which must overlie an FeS-rich liquid layer, was once thought to be required (Smith et al., 2012)

to explain Mercury's observed geophysical parameters (Margot et al., 2007; Smith et al., 2012).

More recently, the refinement of Mercury's obliquity (Margot et al., 2012) dictates that the

existence of a solid FeS layer is still possible but not required (Margot et al., 2012; Hauck et al.,

2013). Our simulations provide additional motivation for considering the existence of such a

solid layer, which can form above a stratified FeS-rich liquid layer. We note that the enrichment

of light alloying elements, such as S and Si, in the core, is consistent with the observed high

abundances of volatile S contents on Mercury's surface detected by the MESSENGER spacecraft

(Nittler et al., 2011). The mixture property of the FeS liquid in the high-temperature, high

pressure Fe-Ni-S-Si system is complex. If FeS were immiscible with the Fe and Ni core liquids

under certain conditions, a stably stratified layer of FeS rich liquid would form at the top of the

core. It is unclear under what conditions will the precipitated FeS solids stay at the top of the

core to form a solid FeS layer, instead of sinking down to join the inner core. In either case, the

existence of an FeS enriched liquid layer helps to produce a Mercury-like surface magnetic field.
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Cao et al. (2014) used an equatorially symmetric (degree-2 and 4) heat flux variation at the CMB

and volumetric buoyancy in the core to model the large offset of Mercury's magnetic field. They

produced surface magnetic fields with the strongest parts in the northern hemisphere. The

dipole tilt of the surface magnetic field in their model is 3o on average and 60 at maximum

(personal correspondence), somewhat larger than the observed value of less than 0.80. They

produced magnetic fields somewhat weaker than what an Earth-like dynamo would produce,

with an Elsasser number of 3 x102 at the CMB. Assuming the core's density to be 6.5x1O 3 kg-m-3

(Hauck et al., 2013) and the core's electrical conductivity to be 1.3x10 6 S/M (Pozzo et al., 2012),

this is equivalent to a magnetic field strength of 1.4x104 nT at the CMB, still much larger than

what the observed surface field strength of 190 nT would allow. In comparison, the degree-1 heat

flux pattern in our model has evidence from the distribution of volcanic plains on Mercury, and

our models are able to produce not only large dipole offsets, but also typical dipole tilts less than

or near 10, and a field magnitude comparable to the Mercury observations.

Conclusion

We can produce Mercury-like magnetic fields with dynamo models that feature a partially

stratified core and a degree-1, spherical harmonic, laterally heterogeneous heat flux applied at

the CMB. The stably stratified layer acts to both weaken the surface magnetic field by limiting the

dynamo convection region to the deeper regions of the core, and to attenuate higher multipole

components of the magnetic field through the skin effect. The degree-1 CMB heat flux gives rise

to differential rotation in the stratified layer, which further drives the surface magnetic field

towards axisymmetry by damping the non-axisymmetric components. The presence of a

stratified layer at the top of the outer core is consistent with either thermal stratification given by

thermal evolution models of Mercury, or chemical stratification of liquid FeS below an overlying

solid FeS layer consistent with the high abundance of volatiles on the surface of Mercury as well

as geophysical measurements of low-degree gravity, the obliquity of the spin axis and the

amplitude of the forced physical libration.
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Chapter 2

Early evolution of the Earth-Moon system with a fast-spinning Earth

Jack Wisdom, ZhenLiang Tian

Abstract

The isotopic similarity of the Earth and Moon has motivated a recent investigation of the

formation of the Moon with a fast-spinning Earth (Cuk and Stewart, 2012). Angular momentum

was found to be drained from the system through a resonance between the Moon and Sun. They

found a narrow range of parameters that gave results consistent with the current angular

momentum of the Earth-Moon system. However, a tidal model was used that was described as

approximating a constant Q tidal model, but it was not a constant Q model. Here we use a

conventional constant Q tidal model to explore the process. We find that there is still a narrow

range of parameters in which angular momentum is withdrawn from the system that

corresponds roughly to the range found earlier, but the final angular momentum is too low to be

consistent with the Earth-Moon system. Exploring a broader range of parameters we find a new

phenomenon, not found in the earlier work, that extracts angular momentum from the Earth-

Moon system over a broader range of parameters. The final angular momentum is more

consistent with the actual angular momentum of the Earth-Moon system. We develop a simple

model that exhibits the phenomenon.

Introduction

An isotopic crisis (Melosh, 2009) has inspired a recent scenario for the formation of the Moon

(Cuk and Stewart, 2012). Prior research (Canup, 2004, 2008) into the giant impact scenario for

the formation of the Moon has assumed that when the Moon was formed the Earth-Moon system

was left with the present angular momentum. Indeed, this was thought to be a virtue of the

model. However, in these simulations the Moon is predominantly formed from the impactor.

Recent isotopic measurements have shown that the Moon and Earth have essentially identical

isotopic composition for chromium (Lugmair and Shukolyukov, 1998), oxygen (Wiechert et al.,
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2001), tungsten (Touboul et al., 2007), titanium (Zhang et al., 2012). Thus to explain the isotopic

similarity of the Earth and Moon one has to appeal to an accidentally similar impactor, or to some

sort of reequilibration of the isotopic signature after the impact but before the Moon formed

(Pahlevan and Stevenson, 2007). But reequilibration of isotopes in the protolunar disk seems

less likely because refractory isotopes have been found to be similar for the Earth and Moon. The

similarity of the Earth and Moon suggests that the Moon forming impact was more severe than

previously investigated and that the Moon formed from material derived directly from the

Earth's mantle (Cuk and Stewart, 2012; Canup, 2012; Lock et al., 2016). The enrichment of heavy

potassium isotopes in the Moon (Wang and Jacobsen, 2016) also supports a high-energy, high-

angular momentum giant impact. The problem is that such an impact would leave the Earth

spinning much more rapidly than previously assumed and some mechanism of removing the

excess angular momentum must be found.

One such mechanism was recently proposed by Cuk and Stewart (2012). In this scenario, the

Moon is formed by a hard impact by a smaller and faster impactor than previously considered,

excavating material that forms the Moon that is largely derived from Earth's mantle. The Moon is

initially formed with low eccentricity just outside the Roche radius, and evolves outwards due to

the action of tides on the Earth. As it evolves it is captured into a resonance between the Moon

and the Sun where the period of precession of the lunar pericenter is one year. This resonance is

called the evection resonance (see Touma and Wisdom, 1998). After the system is captured into

the evection resonance the eccentricity of the lunar orbit rises dramatically. Due to the

eccentricity damping effect of tides raised in the Moon (Goldreich, 1963), an equilibrium

eccentricity is reached. In cases where the evection resonance is stable, angular momentum is

drained from the system and deposited in the Earth-Moon system's orbital motion about the Sun.

The rotation rate of the Earth slows and the semimajor axis of the lunar orbit decreases until the

angular orbital motion near pericenter matches the rotation rate of the Earth, at which point the

evection resonance becomes unstable (Touma and Wisdom, 1998) and the system escapes from

resonance. The angular momentum of the Earth-Moon system is left with a value close to the

present angular momentum.
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However, the tidal model used by Cuk and Stewart (2012) was described as approximating a

"constant Q" tidal model, but in fact it had little to do with a conventional constant Q tidal model.

In this paper we show that when a conventional constant Q tidal model is used we can reproduce

the basic phenomenon reported by Cuk and Stewart (2012), but too much angular momentum is

lost. However, we have found an alternate scenario that can drain an appropriate amount of

angular momentum from the system over a wide range of parameters.

Methods

The physical model and numerical methods that we use are similar to those used in Touma and

Wisdom (1994, 1998), and also similar to those used by Cuk and Stewart (2012). One difference

between our model and that of Cuk and Stewart is that we studied the rotation of the Moon (for

reasons explained below); for Cuk and Stewart the Moon was a point mass.

Our numerical model integrates the orbital evolution of the Earth, Moon, and Sun. We integrate

the full rotational dynamics of an axisymmetric Earth and a triaxial Moon, with spin-orbit

coupling of Earth and Moon. We include tides in the Earth and Moon, using the constant-Q

Darwin-Kaula model. We add intrinsic wobble damping following Peale (1977).

The symplectic mapping method of Wisdom (1991) forms the framework for our numerical

model. In this method, the Hamiltonian is split into parts that are separately efficiently solvable;

the complete evolution is obtained by interleaving the pieces. We think of the splitting in terms

of the introduction of delta functions into the Hamiltonian. The n-body Hamiltonian is split into

Kepler Hamiltonians plus the interaction Hamiltonian using hierarchical Jacobi coordinates (see

Sussman and Wisdom, 2015). During the "drift" step we evolve both the Kepler motion and the

free rigid body motion of the Earth and Moon. During the "kick" step the spin-orbit interactions

are evaluated, and the tides are introduced by a tidal kick.

We actually developed two versions of our code. In one version the rotational configuration of

each rigid body was specified by the rotation matrix that takes the body from its reference

orientation to its actual orientation by an active rotation. In the other version we specified the

rotational configuration by a quaternion (Sussman and Wisdom, 2015). The torques and
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accelerations are given by the expressions in Touma and Wisdom (1993). In the first code we

evolved the free rigid body during the drift step using the Lie-Poisson algorithm specified in

Touma and Wisdom (1993); in the second code we numerically integrated the quaternion

equations of motion for a free rigid body (Sussman and Wisdom, 2001). We found that the two

codes gave good agreement.

A key difference between our study and that of Cuk and Stewart is the tidal model. Cuk and

Stewart used a tidal model that they described as approximating a constant Q tide, but it was not

a constant Q tidal model; we actually used the conventional constant Q tidal model.

The Cuk and Stewart (2012) tidal model is as follows. The tidal torque on the Earth is

T = TS(of) M, (1)cor6

where S(W, ) =( - I)/ wDw - fi, and To = 1.95x10-5 in units where Gme and Re are unity.

The quantity M is the vector angular momentum of the Earth, w is the rotation rate of the Earth, r

is the Earth-Moon distance, andfis the true anomaly of the Moon's orbit. The numerical value

was chosen so that the rate of evolution corresponded to Qe = 100. Before we go on let's criticize

this expression. First, it is simply not the case that in any real tidal model the tidal torque is

always aligned with the angular momentum vector. The tidal torque should involve the orbital

elements (or the position and velocity) of the Moon, and the tidal torque need not be aligned with

the angular momentum of the Earth. Second, the fact that the factor To is given numerically,

rather than being given in terms of parameters of the system, is indicative of the fact that this

expression is not derived from more basic physical principles. Third, the origin of the factor S is

not clear; its form seems to be completely arbitrary. Next, Cuk and Stewart state that "the

acceleration of the Moon corresponds to a torque that is equal and opposite in sign." Since a

torque is derived from a force by a cross product, and information is lost in performing a cross

product, it is not possible to uniquely determine the acceleration from the torque. Cuk and

Stewart took the tidal acceleration to be perpendicular to the radius vector to resolve the

ambiguity. Again, in conventional tidal models it is not necessarily the case that the tidal

acceleration is perpendicular to the radius vector. Finally, the acceleration of the Moon due to

tides raised in the Moon is given by the expression

38



f = -Aovrr- 13/ 2 f, (2)

where Ao = 2.7 x 10-3 in the same units as before, and Vr is the radial component of the velocity.

This has the virtue (and sole purpose) of damping the orbital eccentricity. It is not clear whether

the eccentricity dependence of this tidal acceleration corresponds to any conventional tidal

model. The factor Ao is, again, not given in terms of physical parameters.

To illustrate these criticisms, consider the expressions for the popular constant At tide (see

Touma and Wisdom, 1994, for a pedagogical introduction). In this tide (sometimes called the

Mignard-Hut tide, Mignard, 1979, Hut, 1981), the response of the planet to the tide raising

potential is a coherent tidal bulge that is delayed in time by a constant time interval At. The force

on the Moon due to tides that it raises on the Earth is

F = -3k2Gmm 2 Re5r10{r2r + At[2r(r - v) +r2(rxw +v)]}, (3)

and the torque on the Moon's orbit (opposite to the torque on the Earth's figure) is

T = rxF = -3k2Gmm 2 Resr8At[(r-w)r -r2z +rxv], (4)

where r is the vector from the Earth to the Moon, v is the velocity of the Moon relative to the

Earth, r is the magnitude of r, and w is the angular velocity vector. Note that the coefficients are

given in terms of physical parameters of the system; this reflects the fact that the expressions are

derived from more basic physical principles. Note that there are three terms in the torque, only

one of which is proportional to the angular momentum (spin) of the Earth. There are two other

terms that involve the relative position and velocity of the Earth and Moon. The Cuk and Stewart

torque is simply proportional to the angular momentum of the Earth. Note that the torque is

derived from the force (acceleration) by performing a cross product of the radius vector with the

force. The force is derived first. Cuk and Stewart reverse this: they evaluate the torque first and

deduce the force from it with an extra assumption that the force is perpendicular to the radius.

Of the four terms in the force, only one of them is perpendicular to the radius vector (the third).

In the Cuk and Stewart tide the force is taken to be strictly perpendicular to the radius vector.

The constant At tide has the characteristics required of a real tidal model, but it does a poor job of

fitting the Lunar Laser Ranging results (Williams et al., 2005, 2014). Thus it is not a good tidal

model for the Moon. The Mignard-Hut model is reported here because the expressions for it are

simple and by comparison it illustrates deficiencies in the Cuk and Stewart tidal model.

39



We used a Darwin-Kaula constant Q model (Kaula, 1964). The Darwin-Kaula tidal model Fourier

expands the tide raising potential and considers the response of the body on which tides are

raised term by term. Each term in the tidal potential raises a tidal bulge and the corresponding

exterior potential of that tidal bulge is proportional to the Love number k1; we keep only the

second degree 1=2 terms. The response to each Fourier component is delayed in phase to take

account of the dissipative nature of the tides. The Darwin-Kaula model is fully general in that it

can represent the tidal response of a body with any rheology by incorporating the appropriate

frequency dependence of the phase delays and the Love numbers.

But there is actually scant knowledge of the frequency dependence of the tidal response of

planets and satellites. Indeed, only for the Moon is there any hint of the frequency dependence of

the tidal response, and there the response is measured for only two frequencies. The result is a

weak dependence on frequency (Williams et al., 2005, 2014). According to these Lunar Laser

Ranging (LLR) results, the lunar Q at one month is 30, and the lunar Q at one year is 34. The

expression for the Q as a power law is 30(Period/27.212d) 0-04. Thus the lunar Q is very nearly

independent of frequency. Williams et al. (2014) state "The uncertainties at 1 month and 1 year

are too large to assess whether dissipation increases or decreases with period." The frequency

dependence of the tidal response of the early Moon and Earth are unknown. In view of this

uncertainty, with the LLR results, we adopt the "constant Q" model, as proposed by Kaula (1964)

and Goldreich (1966). Also, we adopt the constant Q model because this is the model the Cuk and

Stewart model was intended to approximate. Note that the constant At tide has Q 0C Period and

so is not a good match to the LLR results (Williams et al., 2014).

The general expression for the tidal potential is (Kaula, 1964}:

T(r, 0, A) = ZImpq Timpq(r, , A) , (5)

where r is the radial distance from the center of the planet on which tides are raised, 0 and A are

respectively, the latitude and longitude of the point of evaluation of the tidal potential. We

restrict I to 2, m and p run from 0 to 1, and q runs from -N to N. Note that higher IqI terms are

proportional to a higher power of eccentricity e. We chose N=10, to be intentionally excessive.

The components of the tidal potential are:
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Timpq(r, 4, A) = (R/r)1+1ki[Umpq(R)]ag (6)

- kIR 2 +lrl-B*mC*mpqPm(sinP)

tcosll-m even(Vlmpq ECmpq -m(A +0*)) (7)
six 1-m odd

where R is the radius of the planet on which tides are being raised, k1 is the potential Love

number, Ulmpq is the Impq component of the tide raising potential, "lag" indicates that the phase of

each term is lagged to take account of dissipation. In the subsequent expression, we have

B*m = Gm*(l -m)!/(l +m)! (2 -Som), (8)

C*Impq = (a*)-1-1Flmp(i*)Glpq(e), (9)

V*Impq = (1 - 2 p)&)* +(I -2p +q)M* +mD*, (10)

where, in general, the asterisk marks quantities belonging to the tide raising body, and 0 is

argument of pericenter, M is the mean anomaly, 0 is the longitude of the ascending node, and 0 is

the angle from the inertial reference longitude to the origin of longitudes on the planet on which

tides are raised. The Kaula inclination polynomials Fimp(i*) for 1=2 are tabulated in Kaula (1964);

the eccentricity functions Glpq(e*) may be written in terms of Hansen functions:

Glpq(e*) = X-i_ 111-2p) (e*) (11)

The Hansen functions, when written as a power series in the eccentricity, have the Newcomb

coefficients as coefficients. The lowest order Hansen functions are listed in Kaula (1964). More

generally, the Newcomb coefficients (and hence the Hansen functions) may be evaluated with a

simple recurrence (Plummer, 1960). Because these are needed many times (each time the tidal

potential is evaluated) we "memoized" the table of Newcomb coefficients, i.e. we computed only

the coefficients that were needed, as needed, and the computed values were saved in a table for

later use. We evaluated the Hansen functions up to order 10 in the eccentricity. The

accelerations and torques are derived from this tidal potential.

The "constant Q" tide is a specialization of this general expression in which the phase lags Elmpq

are taken to be all equal in magnitude E with the sign of (vimpq - mO). The E is related to Q by tan C

= 1/Q. Note how little the Cuk and Stewart "constant Q" tidal model has in common with the

actual constant Q tide.

There is a tidal torque on the Moon that tends to remove the Moon from synchronous rotation.

But because the figure of the Moon is out-of-round the synchronous lock remains. What results,
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in the simplest situation, in that there is an offset in the direction of the axis of minimum moment

from the line pointing to the Earth. This offset results in additional forces on the Earth-Moon

orbit. If the Moon's rotation remains simple, then these additional torques can be calculated and

taken into account in the equations of tidal evolution (Yoder and Peale, 1981). But, more

generally, they can be taken into account by actually integrating the rotation of the Moon and the

resulting spin-orbit interactions. We chose the latter course because it is more general.

Evection Resonance Results

Figs. 1 and 2 show aspects of the evolution of the Earth-Moon system in a simulation with Qe =

100 and A = 1.7376. The A parameter is a measure of the relative dissipation in the Earth and the

Moon:

A = (k2 m/k2e)(Qm/Qe)'(me/mm) 2 (Rm/Re)5. (12)

A small A implies relatively small dissipation in the Moon; a large A implies relatively large

dissipation in the Moon. In this simulation the obliquity of the Earth and Moon, and inclination of

the Moon's orbit are all zero. Because of the assumption of Cuk and Stewart (2012) that the tidal

torque is proportional to the angular momentum the domain of applicability is restricted to zero

inclination and obliquity. So we first compare our results for zero obliquities and lunar

inclination to the results of Cuk and Stewart (2012). In this simulation the initial Earth-Moon

separation is 5Re, with initial rotation period of 2.53 hours. This corresponds to an evolution

from an initial Earth-Moon separation of 3.5Re with an initial rotation period of 2.5 hours, we just

saved time by starting the evolution a little further out.
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Fig. 1. The eccentricity e of the lunar orbit is plotted versus time t. For this run Qe = 100 and A = 1.7376. The

obliquity is zero.
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Fig. 2. The evection resonant argument a is plotted versus time t. For this run Qe = 100 and A = 1.7376. The

obliquity is zero.
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The orbital eccentricity (see Fig. 1) shows a sudden increase upon entering the evection

resonance (see Touma and Wisdom, 1998, for analytic approximations to the evolution in the

evection resonance). The eccentricity reaches an equilibrium in which the tendency to increase

in the evection resonance is balanced by a tendency to decrease due to dissipation in the Moon.

This is followed by an interval of approximately 130,000 years of nearly constant large

eccentricity. Over this interval the semimajor axis and the rotation rate of the Earth decrease.

Once the system escapes the evection resonance the eccentricity quickly gets small. The plot of

the evection resonance angle (see Fig. 2) shows that once the system is captured, the resonance

angle, a = z - 2L0, librates about, in this case, 7/2, and the amplitude of the libration gradually

decreases. Here, zi is the longitude of pericenter of the lunar orbit, and )Lo is the longitude of the

Earth in its orbit about the Sun. Whether the system is captured about w/2 or 37/2 is

probabilistic. These results are all roughly consistent with those of Cuk and Stewart (2012),

though the details differ.

An important difference with respect to Cuk and Stewart (2012) is the amount of angular

momentum that is extracted from the system as a result of this temporary capture into the

evection resonance. Fig. 3 shows the final angular momentum versus A from Cuk and Stewart

(2012) and for our model, which uses a true constant Q tide. We see that with the full model too

much angular momentum is withdrawn from the system to be consistent with the Earth-Moon

system.

Evection Resonance Results with Inclination and Obliquity

Unlike the Cuk and Stewart tidal model, our model is fully general in that it can handle arbitrary

obliquities and lunar inclination. It is known that to be consistent with today's inclination of the

lunar orbit to the ecliptic the Moon had a 10* inclination to the equator of the Earth at about 10Re,

and the obliquity of the Earth at this point had to be about 100 (see Touma and Wisdom, 1994,

1998). We have made some initial explorations of the process of passage through the evection

resonance with nonzero initial obliquity and inclination.
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Fig. 3. This plot shows the scaled angular momentum of the Earth-Moon system L/LS after the system escapes the

evection resonance versus the A parameter. The angular momentum scale is L. = C-sqrt(GmeR 3), where C is the

largest moment of inertial of Earth. The filled triangles are the results of Cuk and Stewart (2012), who used their

own tidal model. The filled squares are our results using the conventional constant Q model. For our results to be

comparable to those of Cuk and Stewart we have taken the obliquities and inclination to be zero. The horizontal line

near L/L, = 0.35 indicates the current angular momentum of the Earth-Moon system; the line L/L, =0.635 is the

initial scaled angular momentum in our runs.

In this exploration we started the Moon with an inclination to the Earth's equatorial plane of 9.9*;

the initial obliquity of the Earth is 100. The initial rotation period of the Earth of 2.5 hours. The

initial eccentricity of the lunar orbit is 0.001 and the semimajor axis is a=3.5Re.

The plots of the orbital elements are similar to the zero obliquity plots, though naturally a little

more complicated, and will not be shown in detail. One result is that we found that wobble of the

Moon is significantly excited. There are two sources of wobble damping in the Moon. It turns out

that tides on the Moon raised by the Earth damp wobble in the Moon (Peale, 1976). Another

source of wobble damping is internal dissipation in the Moon (Peale, 1977). We include both of

these mechanisms of wobble damping in our simulations.
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We adopt a simple model for intrinsic wobble damping. In isolation, intrinsic wobble damping

conserves angular momentum but damps body components of the angular velocity. LetA B C

be the principal moments of inertia, and Wa, Owb, and wc be the corresponding components of the

angular velocity. The body components of the angular momentum are La = Awa, Lb = Bwb, and Lc =

Cwc. We then calculate o'a = &) exp(- At/r), and &'b = wb exp(- A t/T), for time interval At and time

constant r. Then define L'a = A w',, L'b = Ba 'b, and L'c = Cw'c = Cwc. Let L = sqrt(La2 + Lb2 + Lc 2 ) and

L'= sqrt((L'a)2 + (L'b) 2 + (L'c) 2 ), then L"a = L'a(L/L'), L "b = L'b(L/L), L "C = Lc(L/L'). From this we

can compute the new components of the angular velocity on the principal axes: (W ")a = L""/A,

(w ")b = L "b/B, (w ")c = L "C/C. But the principal axes need to be rotated to bring the new angular

momentum components into alignment with the direction of the angular momentum in space,

which does not change. Define q = (L" x L)/(L L")), where the boldface indicates vectors in the

body frame. Let sina be the length of q; a is the angle between the directions of L and L". Then

let q = q/(sin a) be the unit vector about which we rotate the body in inertial space by the angle a

to bring the new body components of the angular momentum into alignment with the original

angular momentum. The net result is a body with the original angular momentum, but with

smaller components of the angular velocity on the a and B axes. The timescale for wobble

damping is (Peale, 1977}:

T = 3GCQm/(k 2mRmn 5W 3 ), (13)

where w is the rotation rate.

We quantify wobble by the ratio of the magnitude of the component of the angular velocity on the

a and b plane (where a and b are the axes of minimum and intermediate moments of inertia)

divided by the total angular velocity. Let

(ab = (Wa 2 +(b 2)1/ 2 ' (14)

and

(0 = (Wa 2 +Ob 2 +Wc 2)1/ 2, (15)

then a dimensionless measure of the amount of wobble is Wab/O. Fig. 4 shows a plot of this

measure of the wobble versus time for a run with obliquities and lunar inclination.
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Fig. 4. The wobble Wab of the Moon is plotted versus time t. For this run Q, = 100 and A = 2.319. The initial obliquity

of the Earth is 10, and the inclination of the lunar orbit to the equator of the Earth is 9.9*.

We expect that the Moon will have a 200-400km deep magma ocean overlain by a 5-10km crust

during the interval in which the evection resonance is encountered (Elkins-Tanton, 2008). The

interior below the magma ocean is solid. It is not clear that the rigid body dynamics we have

assumed is an adequate description of the dynamics of a body with such complicated structure.

We might expect that it would be harder to maintain wobble in a body with a magma ocean. So

we have carried out a series of runs with the rate of wobble damping enhanced by a factor of 10.

This is enough to eliminate the wobble instabilities seen in the first set of runs. Note that Peale

(1977) acknowledges that other estimates of the wobble damping timescale are as much as an

order of magnitude smaller than his estimate.

Fig. 5 shows a summary of the final angular momentum in the runs in this interval of the A

parameter, for Qe = 100. The results with zero obliquity and inclination are shown with the

results for the oblique, inclined case, with and without enhanced wobble damping. It is still the

case that too much angular momentum is extracted when the system is captured by the evection

resonance to be consistent with the Earth-Moon system. Of course, this is just one tidal model;
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perhaps other tidal models would give a final angular momentum that is more consistent with

the actual angular momentum of the Earth-Moon system.
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Fig. 5. This plot shows the scaled angular momentum of the Earth-Moon system L/LS after the system escapes the

evection resonance versus the A parameter. The filled squares are the zero obliquity results. The filled triangles are

our results with initial Earth obliquity of 10' and initial lunar inclination to the equator plane of 9.9o. The open circles

are our results with obliquity and inclination, but with enhanced wobble damping. The horizontal line near LILS =

0.35 indicates the current angular momentum of the Earth-Moon system.

A Limit Cycle

We have explored a wider range of parameters than were explored by Cuk and Stewart (2012),

and we found a new dynamical phenomenon that may be more promising for the explanation of

the Earth-Moon angular momentum than the scenario proposed by Cuk and Stewart. We found

that for larger A and larger Qe the system bypasses the evection resonance, and gets caught in

what might best be called a limit cycle associated with the evection resonance. The system is not

captured in the evection resonance, but instead the evection resonant argument circulates. The

rate of evolution of the evection resonant argument is modulated by the phase of the resonant

argument. In the phase plane (e cos a, e sin a), the system circulates around the libration islands
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associated with the evection resonance. It appears to be an attracting cycle, thus the proposed

name of "limit cycle".

The eccentricity e versus time t for the limit cycle is shown in Fig. 6. For this run we set the

obliquities of the Earth and Moon, and the lunar inclination, to zero. We see that the eccentricity

is caught in a cycle, and that both the maximum and minimum eccentricity of this cycle are much

smaller than the equilibrium eccentricity when the system is caught in the evection resonance.

The stroboscopic plot of the evection resonance angle a versus time t (Fig. 7) shows that the

resonance angle circulates (the system is not caught in the evection resonance), and that the rate

of evolution is modulated by the phase of the evection resonance angle.
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Fig. 6. The limit cycle is exhibited in this plot of eccentricity e versus time t. In this run the obliquities and lunar

inclination are zero. This run uses the full model with Qe=400 and A=13.0.
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Fig. 7. The limit cycle is exhibited in this plot of resonant argument a versus time t. The resonant argument

circulates and is sampled at regular intervals. Concentrations of points occur at angles at which the evolution of the

resonant argument is slower. In this run the obliquities and lunar inclination are zero. This run uses the full model

with Q,=400 and A=13.0.

Fig. 8 shows the angular momentum versus A after the limit cycle is passed. In these runs, the

initial obliquities and lunar inclination were set to zero, and Q,=400. For Qe=100 we did not find

the limit cycle behavior over this same range of A. We see that over a broad range of A, roughly 8

< A < 15, significant angular momentum is extracted from the system. Recall that additional

angular momentum is extracted from the system by solar tides as the system evolves from 10Re,

where these simulations were terminated, to the present 60Re, though the extent of this

additional angular momentum extraction surely depends on the tidal model. So it is appropriate

that the limit cycle results lie above the Earth-Moon line.
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Fig. 8. This plot shows the scaled angular momentum after passage through the limit cycle versus the dissipation

parameter A. In these runs with the full model, the obliquities and lunar inclination are set to zero, and Q, = 400. We

see a broad range of A in which significant angular momentum is extracted from the system. The horizontal line

indicates the present angular momentum of the Earth-Moon system.

We have also found that the limit cycle behavior exists for Qe=400 when the obliquities and lunar

inclination are nonzero.

A Simplified Model of the Limit Cycle

The behavior in the limit cycle can be captured to some extent by a simplified model. In this

simplified model, we take the obliquities of the Earth and Moon, and the inclination of the lunar

orbit to the equator plane of the Earth all to be zero. The Hamiltonian governing the behavior

near the evection resonance (see Touma and Wisdom, 1998) is then

H = n 2E - n 1J2(Re/a1)2L'1-e2)-3/ 2 -n2 2 /n, .L'e 2.15/8 -cos 2u, (16)

where E = L'(1 - (1 - e2)1/ 2) is the momentum conjugate to the evection angle a = n2t - ZU, where

zu is the longitude of the pericenter, and where L'= (mmipai)1/ 2, with p = Gmmme, n2 is the mean
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motion of the Earth about the Sun, ni is the mean motion of the Moon about the Earth, J2 is the

Earth oblatenesss factor. Note that

e2 = Z/L' ( 2 - Z/L') . (17)

We assume thatJ2 =J2o(w/wo) 2 where w is angular rate of rotation of the Earth. We assumeJ20 =

0.001083 for Wo corresponding to a 24 hour rotation. We express the Hamiltonian in terms of the

non-singular momentum = sqrt(2E) cos a and conjugate coordinate q = sqrt(2E) sin a. The

equations of motion are just Hamilton's equations.

To Hamilton's equations we add terms that reflect the tidal evolution. These are derived from the

constant Q Darwin-Kaula model (Kaulal964}.

Based on the Kaula series, we might naively write

da/dt = 2/3 Ka ( 1 - (19A -51/4)e 2 + (1065/16 - 551/8 A)e 4 +-, (18)

de/dt = -1/3 K ((7A - 19/4)e + (299/8 A - 503/16)e 3 +- ), (19)

where

K= 9/2 -k2 e/Qe -mm/me -sqrt(GmeRe -3 ) (Re/a)131 2 . (20)

But tides on the Moon have a net torque on the Moon that tends to remove the Moon from

synchronous rotation. If the Moon's minimum moment of inertia is not aligned with the Earth,

then the Moon is subject to a gravity gradient torque because of its nonzero gravitational

moment C22. In the equilibrium orientation of the Moon these two torques balance. This

orientation offset results in additional terms in the equations governing the evolution of the

lunar orbit. These additional terms can either be taken into account by integrating the rotation of

the Moon, as we did in the full model, or by modifying the expressions for the tidal evolution of

the semimajor axis and eccentricity. Here we follow the latter course. Taking this effect into

account, the total rate of change of the semimajor axis and eccentricity of the Moon are

da/dt = 2/3 Ka ( 1 + 2 e 2 + c 4 e4 + 6 e6 +), (21)

de/dt = -1/3 K (d1 e + d3e3 + ds es + ---. (22)

For (5/2)n < w, the coefficients are:

C2= 51/4- 7A, (23)

C4 =1065/16 -403/8 A, (24)

C6= 29229/128 -1207/6 A, (25)

and
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di= 7A -19/4, (26)

d3 = 347/8 A -503/16, (27)

ds= 3619/24 A + 14117/128. (28)

For 2n < t < (5/2)n, the coefficients are:

C2 = 51/4- 7A, (29)

C4 = 1065/16 -403/8 A, (30)

C6 = -3044003/2304 -1207/6 A, (31)

and

di= 7A -19/4, (32)

d3= 347/8A -503/16, (33)

ds= 3619/24 A +629323/768. (34)

For (3/2)n < o < 2n, the coefficients are:

C2 = 51/4- 7A, (35)

C4 = -3559/16 -403/8 A, (36)

C6 = -41123/2304 -1207/6 A, (37)

and

d1 = 7A -19/4, (38)

d3= 347/8 A +1809/16, (39)

ds = 3619/24 A -37621/768. (40)

These results generalize the result used in Yoder and Peale (1981).

Though we have reported these expressions for various conditions on the rotation rate relative

to the lunar mean motion, it turns out that these were not needed. For the evolution in the limit

cycle the condition (5/2)n < o is always maintained; there are no changes in the values of the

tidal constants during the evolution.

To these tidal orbital equations we must add an equation for the tidal slowing of the rotation of

the Earth. We find

da/dt = -L/(X me Re2 )( a-1 -da/dt -e/(1-e2 )-de/dt), (41)
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where A = C/(meRe 2) = 0.3308, with polar moment of inertia C, and L = L' (1 - e2)1/2.

The simple model captures the evolution into the limit cycle. This demonstrates that the limit

cycle is not an artifact of the rather complicated full model. But the agreement with full model is

not as good as one would have hoped. First, the range of eccentricity variation is shifted to larger

values in the simplified model. The eccentricity reaches values near 0.16 for the simplified

model, but only values near 0.1 for the full model. Also, the range of the A parameter in which the

limit cycle phenomenon occurs is different for the simplified model and the full model. Fig. 9

shows the summary plot of scaled angular momentum versus the A parameter for the simplified

model. We do not yet understand why there is this disagreement. Presumably, the full model

captures some physical effect that we have not identified for inclusion in the simple model. But

the fact that the simple model exhibits the limit cycle is important, nevertheless.
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Fig. 9. Results of the simplified model with Q, = 400. The open squares mark the results using the simplified model;

the filled squares mark the results of the full model. The limit cycle is found with the simplified model, though the

results do not match the full model exactly. Note that capture by the limit cycle is probabilistic for some values of A.

Discussion
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We are concerned that the high eccentricities obtained during the temporary capture in the

evection resonance (e of order 0.35) would lead to large tidal heating, which in turn would

change the parameters of the Moon and the consequent orbital evolution. Recall that the formula

for tidal heating (Peale and Cassen, 1979) is proportional to the square of the orbital eccentricity

and inversely proportional to sixth power of the semimajor axis. During the temporary capture

in the evection resonance the eccentricity is high and the semimajor axis is small, so we can

expect large tidal heating. Of course, the Moon is expected to have a thin (5-10km) lid underlain

by a magma ocean (200-400km) during the interval in which the system is captured by the

evection resonance. This configuration may be expected to actually increase the tidal heating, as

heating in a thin lid can actually be larger than in a corresponding solid body (Peale et aL., 1979).

To properly address the consequences of this tidal heating on the orbital evolution requires

examining a coupled thermal-orbital model, which we plan to do in a subsequent work.

Note however that the limit cycle behavior that we have discovered has an advantage in this

regard. The typical eccentricity is less than of order 0.1. So according to the tidal heating

formula, the rate of tidal heating, all other factors remaining the same, would be less by a factor

of about 10. So the concern about tidal heating affecting the orbital evolution is mitigated, to

some extent. The problem should still be addressed in a coupled thermal-orbital model.

Conclusion

The tidal model of Cuk and Stewart (2012) was described as approximating a constant Q tide,

but, in fact, had little to do with a constant Q tide. We have explored the early evolution of the

Earth-Moon system through the evection resonance with a true constant Q tide. We found that

we can reproduce the basic phenomenon discovered by Cuk and Stewart (2012), which is that

significant angular momentum can be extracted form the system. However, we find that the

evection resonance actually extracts too much angular momentum to be consistent with the

current Earth-Moon system. Exploring a broader range of parameters than explored by Cuk and

Stewart (2012), we found a new phenomenon, which we describe as a limit cycle of the evection

resonance. The resonant argument of the evection resonance is not oscillating, but rather is

circulating in a manner that is modulated by the phase of the evection resonant argument.
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Angular momentum is also extracted from the Earth-Moon system if the system is captured by

the limit cycle. We find that after the system escapes the limit cycle the angular momentum is a

little larger than the current angular momentum of the Earth-Moon system, but this is good as

during the subsequent evolution to the present configuration solar tides continue to extract a

small amount of angular momentum. The range of parameters that give an appropriate

reduction of angular momentum is broader than the range of parameters for which the evection

resonance reduces the angular momentum. Of course, other tidal models should be explored.

We feel that the limit cycle holds promise for explaining the angular momentum of the Earth-

Moon system, in the context of the new scenarios for harder Moon-forming impacts.

Acknowledgements: We thank M. Cuk, S. Stewart, J. Meyer, and W. Ward for interesting and

helpful discussions.
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Chapter 3

Coupled orbital-thermal evolution of the early Earth-Moon system with a fast-

spinning Earth

ZhenLiang Tian, Jack Wisdom, Linda Elkins-Tanton

Abstract

Several new scenarios of the Moon-forming giant impact have been proposed to reconcile the

giant impact theory with the recent recognition of the volatile and refractory isotopic similarities

between Moon and Earth. Two scenarios leave the post-impact Earth spinning much faster than

what is inferred from the present Earth-Moon system's angular momentum. The evection

resonance has been proposed to drain the excess angular momentum, but the lunar orbit stays at

high orbital eccentricities for long periods in the resonance, which would cause large tidal

heating in the Moon. A limit cycle related to the evection resonance has also been suggested as an

alternative mechanism to reduce the angular momentum, which keeps the lunar orbit at much

lower eccentricities, and operates in a wider range of parameters. In this study we use a coupled

thermal-orbital model to determine the effect of the change of the Moon's thermal state on the

Earth-Moon system's dynamical history. The evection resonance no longer drains angular

momentum from the Earth-Moon system since the system rapidly exits the resonance. Whereas

the limit cycle works robustly to drain as much angular momentum as in the non-thermally-

coupled model, though the Moon's tidal properties change throughout the evolution.

Introduction

The giant impact theory for lunar formation (Hartman and Davis, 1975, Cameron and Ward,

1976) can account for the large angular momentum of the Earth-Moon system, the late formation

of the Moon, the Moon's deficiency of iron and volatiles, and the presence of a magma ocean in

the early lunar history. Simulations of the impact and accretion processes led to a well accepted

standard model of lunar formation (Canup and Asphaug, 2001, Canup, 2004, 2008), in which a

Mars-sized body collided with the proto-Earth, forming an Earth-Moon system with the angular
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momentum equal to the present value. This model fit well with multiple lines of observations,

until the relatively recent recognition of the isotopic similarities of the elements oxygen

(Wiechert et al., 2001), chromium (Lugmair and Shukolyukov, 1998), tungsten (Touboul et al.,

2007) and titanium (Zhang et al., 2012) between lunar samples and the terrestrial mantle. These

isotopic similarities, especially of highly refractory elements like Ti, which is not likely to have

equilibrated during a post-impact equilibration phase (Pahlevan and Stevenson, 2007), are

evidence that the lunar material was predominantly derived from the proto-Earth, unless the

impacting planet had isotopic signatures very close to those of the proto-Earth (Mastrobuono-

Battisti, Perets, and Raymond, 2015, Kaib and Cowan, 2015). However, the standard model

indicates that the Moon should have mostly been derived from the impactor, given the dynamical

constraint that the angular momentum of the Earth-Moon system at the time of lunar formation

should be close to the present value. Lock et al. (2016) proposed that a fast-spinning post-impact

Earth could explain the depletion of volatiles in the Moon. After a high-energy, high-angular

momentum giant impact, the Earth can be in a post hot spin stability limit state. In this state, the

Earth's mantle, atmosphere, and the circumplanetary disk form a well-mixed continuous

structure of BSE vapor that extends beyond the Roche limit. The volatile depletion in the Moon

and the isotopic similarities between the Earth and Moon are natural results of the equilibration

between the condensing Moon and the BSE vapor. The enrichment of the heavy potassium

isotopes in the Moon (Wang and Jacobsen, 2016) supports this accretion model. So the case for a

fast-spinning post-impact Earth gets stronger.

Several new impact scenarios (Cuk and Stewart, 2012, Canup, 2012, Reufer et al., 2012) have

been proposed to reconcile this contradiction. While these models can produce a Moon with

essentially the same materials that make up the terrestrial mantle, they all assume impact

angular momenta much higher than the current angular momentum of the Earth-Moon system.

The Reufer et al. scenario assumes that the excess angular momentum is removed through the

escape of a portion of the impactor mass from the system just after the impact. The other two

assume an Earth-Moon system with an initial angular momentum much higher than the current

value.
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With dynamical simulations that begin with a fast-spinning Earth, it was suggested (Cuk and

Stewart, 2012) that the excess angular momentum can be transferred to the Earth's orbit around

the Sun through an orbital resonance between the precession of the lunar pericenter and the

Earth's orbit around the Sun. Upon the system's entry into this resonance, called the evection

resonance, the period of precession of the lunar pericenter is locked to one year, the angle

between the direction of the lunar pericenter and the direction of the Sun from the Earth (the

evection angle, see Fig. 3. in the introduction of the thesis) begins to oscillate about either Tr/2

rad or 3Tr/2 rad, and the eccentricity of the lunar orbit is raised. While the system is captured in

the evection resonance, the eccentricity is maintained at a high value, the semi-major axis of the

lunar orbit decreases, and the Earth despins, all contributing to the loss of angular momentum

from the Earth-Moon system. With this orbital mechanism to remove the excess angular

momentum, the two giant impact scenarios work well to produce an Earth-Moon system that

could meet both the chemical and angular momentum constraints.

However, passage through the evection resonance would cause large tidal heating in the Moon.

To illustrate the problem, consider the heating in the Moon with fixed parameters. The resonance

excites the eccentricity of the lunar orbit to as high as 0.5, and keeps the system trapped in it for a

period of -100,000 years, when the Moon is just about 4-7Re from the Earth. Take the rate of

tidal heating of the Moon to be 21 Gme 2 e 2 Rm 5n k2m (Peale and Cassen, 1978), where e, n, a are the
2 a6  QM

lunar orbit's eccentricity, mean motion, and semi-major axis. Approximate k2m with ", where

p, p, g are the Moon's rigidity, density and surface acceleration. Taking the time spent in the

resonance to be 100,000 years, e = 0.5, Q = 100, p = 3.34x103 kg m-3, p = 6.5x1010 N m-2, g = 1.62

m S-2, the Earth-Moon distance to be 6.5 Re, the Moon's specific heat capacity to be 1256 J kg-1

C-1, and the lunar mass to be 7.438x1022kg, the temperature of the Moon will be raised by

-10,000 oC after the system's passage through the evection resonance. Such an increase in

temperature would have completely vaporized the Moon! So the assumption of fixed parameters

is inadequate. It is necessary to take into account how the large tidal heating in the Moon changes

the parameters and consequently the dynamical evolution.
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With new orbital simulations that use a more complete tidal model, and are run over a greater

range of parameters, an alternative mechanism was found to be capable of removing the Earth-

Moon system's angular momentum while avoiding the drawbacks of the evection resonance

(Wisdom and Tian, 2015). In this mechanism, which is a limit cycle related to the evection

resonance, the lunar eccentricity oscillates in a range with an upper bound typically near 0.1, and

the evection angle circulates from 0 to 2r rad with the same period as the oscillation of

eccentricity. During the system's capture in the limit cycle, the semi-major axis of the lunar orbit

decreases, and the Earth despins, so the angular momentum of the Earth-Moon system is also

reduced, as in the evection resonance. Compared with the evection resonance, this mechanism

excites the system to orbital eccentricities smaller by a factor of 3-5, even using the upper bound

of eccentricity oscillation. Since the rate of tidal heating is proportional to the square of

eccentricity, the Moon is therefore much less seriously heated by tides through the limit cycle.

The limit cycle has an additional and significant advantage that it occurs over a much wider range

of tidal parameter than the evection resonance.

How well do these two mechanisms (the evection resonance and the evection limit cycle) work

when considering the consequences of tidal heating? Heating of a body must induce changes in

the body's tidal properties, and thus affect the orbital evolution by changing the tidal

accelerations. The purpose of this study is to determine the manner and extent of the effect of the

thermal evolution of the Moon on the orbital evolution that starts with a fast-spinning Earth, and

to evaluate the effectiveness of the limit cycle and the evection resonance in removing the Earth-

Moon system's excess angular momentum.

Model

The computational scheme is composed of two interacting subsystems, the thermal evolution of

the Moon and the orbital evolution of the Earth, Moon, and Sun. The thermal system tracks the

changes of the Moon's thermal profile, structure, and tidal properties over time. The orbital

system tracks the locations and velocities of the Earth, Moon, and Sun, as well as the Earth and

Moon's rotational state.
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At every time step, the thermal system reads the values of lunar orbital eccentricity and semi-

major axis from the orbital system, because they are needed to calculate the heating of the Moon.

The thermal system determines the values of k2m and Qm, which are then used by the orbital

system for calculating the tidal accelerations.

In the thermal model, we begin with a lunar structure that is suggested by magma ocean

solidification studies: a thin (5 km), solid anorthositic flotation lid overlies a liquid magma ocean

of -100 km in depth, which overlies a solid interior. According to some solidification models (for

example, Elkins-Tanton et al., 2011), an original magma ocean as deep as 1000 km, without a lid

on the surface, can solidify 80% in just several thousand years, as heat efficiently escapes the

magma ocean to space by radiation. After this point, plagioclase begins to crystalize and

buoyantly segregates from the magma to form a lid at the surface. The presence of the lid

switches the heat loss regime from radiation from a free liquid surface to the significantly less

efficient thermal conduction through the solid lid. Then it takes tens of millions of years (My) to

solidify the remaining magma. During the first several thousand years, tidal dissipation in the

Earth dominates the orbital evolution of the Earth-Moon system, since the dissipation in the

Moon without a solid lid overlying the magma ocean would be very small. The orbital change is

mainly an increase in the lunar orbit's semi-major axis, with little change in eccentricity and the

system's angular momentum. Since several thousand years is short compared to the -100,000

years the system spends in the evection resonance or limit cycle, and nothing significant happens

during this period, we choose to start the evolution assuming 80% of the magma ocean has

already solidified and that a thin plagioclase lid has been formed.

For radiogenic heating in the Moon, we assume that all the heat-generating isotopes are retained

in the magma during magma ocean solidification. We infer the amount of heating according to

chondritic abundances of radiogenic isotopes, assuming the simulated evolution begins 60 My

after the formation of calcium-aluminum-rich inclusions, as suggested by tungsten isotope

chronologies (Touboul et al., 2007). We find that radiogenic heating is not a significant

contribution to the energy budget.
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The orbital system's set-up and evolution are the same as in Wisdom and Tian (2015), and we

briefly outline it here. We evolve the locations and velocities of the Earth, Moon, and Sun using

the N-body symplectic mapping method (Wisdom and Holman, 1991). In the N-body symplectic

map, we integrate the system alternatively with the Kepler Hamiltonians (which are directly

integrable) for a time step and then the interaction Hamiltonian (also easily solvable) for the

same step length. As long as the time step length is short compared with the shortest period of

the system (here the lunar orbital period), this solution approximates the solution of the complex

real Hamiltonian (the sum of the Kepler Hamiltonians and the interaction Hamiltonian) with

satisfaction. We also evolve the rigid body rotational states of the Earth and Moon, and include

the spin-orbit interactions of the Earth with the lunar orbit and the Earth's orbit around the Sun,

and the Moon's spin-orbit interactions with the lunar orbit around the Earth. In Wisdom and Tian

(2015) we used both the quaternion equations of motion (Sussman and Wisdom, 2015) and the

Lie-Poisson algorithm (Touma and Wisdom, 1993) for the rigid body dynamics, and the two

approaches produced the same results. In this study we use the Lie-Poisson integrator.

The full form of the Darwin-Kaula tide (Kaula 1964) is used for computing the tidal accelerations

of the Earth and Moon. The tidal potential is expanded to a sum of terms of different frequencies.

Each frequency component of the tidal potential, Vimpq, is specified by the combination of

numbers (l,m,p,q), as is the phase lag for each frequency, which is denoted as Elmpq. We adopt a

constant-Q model (Q being frequency-independent rather than time-independent) with Elmpq =

Qml.sign(m( -0) +(1 -2p)6 +(1 -2p +q)n), where Q and cb denote the rate of change of the

perturber's longitude of ascending node and argument of pericenter, n denotes the orbital mean

motion, 6 denotes the rotation rate of the deforming body. The constant Q model is consistent

with what is known about the frequency dependence of the Q of the present day Moon (Williams

et al., 2005, 2014). A disadvantage of the constant Q model is that the tidal phase lags exhibit

discontinuities near commensurabilities, which presumably only approximate the actual

behavior. An alternate choice could have been the popular Mignard tidal model (Mignard, 1979),

but in this model the frequency dependence of the Q is not consistent with what is observed. We

feel the advantages of the constant Q model outweigh its disadvantages.
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The evolution of the thermal system is governed by a set of processes including tidal heating and

thermal diffusion in the lid, partial melting and melt migration in the lid, crystallization and

release of latent heat and radiogenic heating in the magma ocean, and exchange of heat between

the magma ocean and the lid. We illustrate each of them below.

(1) Tidal heating and thermal diffusion in the lid

The contribution of tidal heating and conduction of heat to the lid's temperature evolution is

described by

dT _ 2K T + d ( K T' + Hat r dr ar dr Pic

where T is the local temperature, r is the radius, t is the time, K is the thermal diffusivity, pi is the

density, Cp is the specific heat capacity, H is the local volumetric tidal heating rate. We use C =

1256 J kg- 1 'C-1 and K = 10-6 m 2 s- 1.We take p, = 2927 kg M- 3 , the average grain density of the

crust (Wieczorek et al., 2013). The current actual crustal density with porosity is 2550 kg m- 3 ,

but the porosity is the result of billions of years of accumulative impact cratering, which was not

the case for the earliest period of the Moon. We also made simulations using the current density

(2550 kg m-3) and find that the results are insensitive of the choice between the two densities.

The first two terms on the right side constitute Fourier's law written in spherical coordinates,

with the approximation that the heating and temperature are azimuthally homogeneous.

In the computation, first we parameterize the depth of each layer usingy, which varies from 0 (at

the surface) to 1 (at the bottom of the lid). So

r = Rm - 61 -y, (2)

where 61 is the thicknesses of the lid. Let T'(ty) = T(t, r), and note that 61 is varying with time,

equation (1) becomes

y i5 2K aT' K '
2

T' H(

at 81 r-51) dy iay2 picp

Then we discretize the lid to 100 layers of thickness Ar = 61 Ay (Ay = 1/100). Denote the

temperature of the ith layer to be Ti, equation (3) becomes

dT =(y 6  
2K T'+ -T

1
' + T1+1-2Ti+Ti-i H

72= ) + 4cit 61 r6 1
2Ay I AY 2 P + (4
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We evolve the lid temperatures according to equation (4). Note that this equation does not

include the thermal effects of partial melting and melt migration, which is treated separately and

will be elaborated later.

The expression for the azimuthally averaged rate of volumetric tidal heating in the lid is derived

based on Peale and Cassen(1978), and we correct and outline it in the appendix. It is

H = pG2 mE 2nRmza-6Q-1g-2k2m 2(21/5-ao2 +42/5-a2 -252/5-a1a2 +126a22 +252/5-a3 2 )

X (e 2 +403/56 e4 +1207/42 e 6 +336953/4032 e8 +--), (5)

where g = 1.62 m S-2 is the surface acceleration, and the ac are functions of the layer's position

and the lid thickness, which are presented in the appendix. In this expression, a, Q, k2m, e and ai

all evolve over time.

The dissipation factor, Q, for a layer at temperature T is given by the Ojakangas and Stevenson

(1986) formula

-(T)= 1 +[__ - 1 ]()f, (6)
Q Qmmax Qmmin Qmmax Tp

where Tp is the melting temperature of plagioclase. We take Tp = 1550 OC. We set Qmmi = 20, and

let Qmmax vary with the runs. Experimentally, the parameter n ranges from 20 to 30 (Ojakangas

and Stevenson, 1986); we use 25. The choice of Qmmin = 20 is somewhat arbitrary. The current Q
of the Moon is approximately 20 (Williams et al., 2005, 2014).

We take an effective 1/Qm of the Moon for use in the orbital system to be the average of the 1/Q

of the individual lid layers.

k2 m as a function of the lid thickness is given in the appendix. The rigidity of the shell is taken to

be P = 6.5 x 109 N m-2 .This is an order of magnitude smaller than the rigidity used by Peale and

Cassen (1978) based on seismic velocities in today's cold Moon. We use a lower rigidity because

of the high temperatures in the lid during the early epoch, though we do not explicitly take into

account the temperature dependence of the rigidity. To some extent the choice of rigidity is

arbitrary and offset by the uncertainty in the values of the tidal Qs of the early Moon and Earth.
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(2) partial melting and melt migration in the lid

Tidal heating strongly affects the solid lid, and in these models raises parts of the lid above its

melting temperature. Melting portions of the lid creates plagioclase melt migration upward in the

lid, and can result in plagioclase melt eruption and re-solidification on the surface. This process

has the critical effect of changing the relationship of age of the plagioclase with depth in the lid:

Originally, the youngest plagioclase is at the bottom of the lid where it has floated from the

remaining magma ocean, but if remelted and erupted, then the youngest plagioclase is on the

surface.

Whenever some part of the lid is heated to Tp, the plagioclase there begins to melt. The melt

fraction depends on the amount of heating after the temperature reaches Tp. For example, after

the lid has been subjected to tidal heating and thermal diffusion for some time, a particular lid

layer could reach a temperature that exceeds Tp by a positive value, AT, according to equation (4).

But physically, after the layer temperature reaches Tp, the further amount of heating, AE, would

result in melting of layer rather than further raising the layer temperature. Let Vlayer is the volume

of the layer, Lp is the latent heat in melting and crystallization of plagioclase, then AE =

ViayerpiCpAT. The volume of the melted solid is Vinelt = AE/(Lpp 1), so the melt fraction is

fmelt = Vmeit/ Viayer = (Cp/Lp)AT. (7)

We start the computation of melting in the bottom layer. Once some melt is produced, it begins to

rise through the lid to the surface, thermally interacting with the lid layers that it travels through.

When the melt meets a layer that is also heated to T and melted to some fraction, the two bodies

of melt join and migrate upward together. When the melt meets a cold layer, or a layer with a

negative AT, some fraction crystallizes there, releasing the latent heat and increasing the layer's

temperature. Meyer et al. (2010) found that the change in this fraction value from 0 to 1 does not

affect the results qualitatively. We take the fraction to be 1 in this study. One exception is when

the cold layer is very near Tp. In this situation, the full amount of crystallization will raise the

layer temperature above Tp. Therefore, in this case we take the volume of melt crystallization to

be the amount that is just enough to raise the layer temperature to T,.
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When the body of melt reaches the surface, it is instantly quenched and assumes the equilibrium

surface temperature. Then any hollow in each layer caused by melting and migration is filled

with material from the neighboring overlying layer or layers, with the heat content of the filling

material mixed with that of the layer to be filled, thus updating the temperatures of each layer.

We take the latent heat in the melting and crystallization of plagioclase to be 4.187x10s J kg- 1,

and the equilibrium surface temperature to be 280 EK.

(3) magma ocean model

The magma ocean is assumed to be convecting and follows an adiabatic temperature profile; for

the Moon this adiabatic temperature varies little with pressure and we approximate the

temperature as constant with depth. Therefore, instead of tracking the full temperature profile of

the magma ocean, we only track this constant temperature, T, and the thicknesses of the lid (61),

the magma ocean(Sf), and the radius of the solid interior (fs), which are related to Tf in the

process of magma ocean solidification.

The thermal evolution of the magma ocean is described by

Er - $c - Lp V = Cppf Vff , (8)

where $r is the rate of radiogenic heating of the magma ocean, t, is the rate at which heat is

conducted from the magma ocean to the lid at the base of the lid, the third term on the left hand

side is the rate of production of latent heat of solidification as the volume of the magma ocean

(Vf) decreases, and the right hand side is the rate of change of the heat content of the magma

ocean due to its changing temperature. If the bottom of the lid is heated above the magma ocean

temperature, thermal conduction will reverse direction to inwards, and Vf will increase (As we

will see in Fig. 4). We take pf= 3000 kg m 3 . Meyer et al. (2010) included an additional /ff related

term on the right hand side to represent the change of the magma ocean's heat content due to

volume decrease during solidification. However, this is compensated by the increase in heat

content of the crystals settling out as their volume increases. Here we correct this error.
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We compute the radiogenic heating by extrapolating the chondritic abundances of 235U, 238U, 40K,

and 2 32Th back to the time of formation of the Moon. We then multiply by the heat production per

mass, the density, and the volume of the magma ocean and sum over the four isotopes. The half-

lives, current abundances, and specific heat productions are given by Turcotte and Schubert

(2002).

The solidus of the magma ocean is parameterized to fit the bulk lunar mantle solidus of Longhi

(2003). We use

T,(r) = 2134 -0.1724r -1.3714x10- 4r2 , (9)

where Ts is the solidus in Kelvin and r is the radius in km. Tf = Ts (fs), so Tf can be related to s:

Tf = D Ts(6s) - 5s . (10)

Note that the solidus temperature of the magma ocean at the base of the lid, Ts(s), is lower than

Tp. This is because the pure mineral has a higher melting temperature than the multiphase melt

has.

As the magma ocean solidifies, both plagioclase and mafic minerals crystallize from the magma.

We assume constant fractional crystallization such that the volume of the crystallized plagioclase

is of a fixed proportion,f of the volume of all crystallized solids. Upon crystallization, the

plagioclase floats to join the lid, while the mafic crystals precipitate on the solid interior. Let V

(61) = 41T/3(Rm 3 -(Rm -6)3) denote the volume of the lid, Vs (6s) = 4Tr/3 6s3 denote the volume of

the solid interior, V1 and V, denote the rates of change of the volumes, we have

f = - (YI +YVS), (11)

Y/ = A(Y/ +YS), (12)

Yi = 41T(Rm -61)261, (13)

Vs = 4w5s26s , (14)

Putting these equations together, we find

65/ = -($r -Ec)Sif/D, (15)

5s = -(Er -$c)S 2(1-f)/D, (16)

if = -D Ts(6s)(Er -$c)S 2 (1-f)/D, (17)
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where S1 = 41Ts2, S2 = 4T(Rm - 6/)2, D = -C pf S2 Vf (61, 6s)DTs(6s)-(1-f) +Lpf S1S2, the volume of the

magma ocean is Vf (61, 6s) = 4Tr/3((Rm-6l) 3 - 3). And 6f can always be specified by 6f = Rm -Si - 5s.

We tabulate the parameter values in table 1.

Table 1. Parameter values.

orbital constants initial orbital conditions
me/msun 3.0034398x10-6 semi-major axis 5RE c
mm/msun 3.6949711x10-8 day length 2.53 hr c
Re 6371km Earth's obliquity 0
Rm 1737 km Moon's obliquity 0
Cp/(me -Re2) 0.3308 lunar inclination 0
Op 2Tu rad- day-1 lunar eccentricity 0.001

j2p 0.00108263
thermal constants initial thermal conditions

TP 1550'C S5 5 km

CP 1256 J kg-'K-1 5f 110 km
Lp 4.187x10s J kg-1  tidal parameters
K 1.0x10-6 m 2 S- 1  k2e 0.299
PI 2927 kg m-3  Qe 400
pf 3000 kg m-3 k2 m Updated by (5.
f a 0.4 Qm Updated by lid thermal profile,
plid b 6.5xlO9 Pa Qmmin, and Qmmax.
Moon gravity 1.62 m s-2  Qmmin 20
Moon surface temperature 280 K Qmmax Fit to give the initial A value.
af is the plagioclase crystal proportion in magma ocean solidification.
b plid is the rigidity of the lid.
c The combination of 5Re and 2.53 hr is equivalent to the combination of 3.5Re and 2.5 hr. We use 5Re and 2.53 hr in
order to save some computation time.

Results

We made simulations over a range of parameters. The variation of tidal parameters can be

characterized by the A parameter

A = (k2m/k2e)(Qm/Qe)-'(me/mm) 2 (Rm/Re) s, (18)

which is a measure of the relative dissipation in the Earth and in the Moon.

Fig. 1 shows the angular momentum of the Earth-Moon system when the Earth-Moon distance

reaches 8.5 Re, at which point the system would have exited the limit cycle or the evection

resonance if previously captured by either, versus the initial A parameter of the system. It also

shows the maximum eccentricity reached in each run. For comparison, we also show the results

for a non-thermally-coupled orbital model on the same figure. When the system is set such that
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the A parameter computed from the initial thermal state is small, in the range for evection

resonance in the non-thermally-coupled model, the system does not lose angular momentum to a

noticeable amount. The maximum eccentricity is 1.5-2 times smaller than that of the non-

thermally-coupled counterpart, which indicates that the system does not stay long enough in the

evection resonance for the eccentricity to be fully raised. On the other hand, when the initial A

parameter falls in the range for the occurrence of the limit cycle, almost the same angular

momentum is lost in the thermally coupled model as in the non-thermally-coupled model, and

the maximum eccentricity is also similar. Even though the all final angular momenta for the limit

cycle runs are larger than the current value by some difference, we will see that the difference

grows progressively smaller if we use larger Qe values (Fig. 5).
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Fig. 1. Angular momentum of the Earth-Moon system when the Earth-Moon distance reaches 8.5R, (left) and the

maximum eccentricity in each run (right) versus: (black points) the initial A parameter, for thermal-orbital coupled

simulations; (red crosses) the A parameter, for non-thermally-coupled simulations. The unit of angular momentum

is L, = C(GmR, -3)1/2, where C is Earth's largest moment of inertia (current value). The black line is the current value

of the system's angular momentum.

First consider a case where the system is captured into the evection resonance. Fig. 2 shows the

details of evolution for a run with the initial A = 1.74. The system gets captured in the evection

resonance at t = 38 thousand years (ky). Then the evection angle starts to oscillate around T/2
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rad, and the lunar orbital eccentricity rises rapidly. As tidal heating gets elevated, lid

temperatures gradually increase, Q of the Moon decreases, and the A parameter grows gradually.

After a time lag of -12 ky, during which the excess heat builds up in the Moon, the increase of lid

temperatures is accelerated, and the A parameter grows rapidly from less than 5 to -110. The

increase of A is mainly due to the decrease in Qn,, though k2,, also changes. Some layers'

temperatures reach Tp, so partial melting and melt migration occur. At the same time of this rapid

growth of the lid temperatures and the A parameter, the system escapes the evection resonance,

and the eccentricity plunges to zero. The system's exit from the resonance is due to the A

parameter growing out of the range suitable for the occurrence of the resonance as observed in

the non-thermally-coupled model (Fig. 1). Then as A decreases to within the range of evection

resonance (-5), the system enters the evection resonance a second time. The eccentricity growth

is less rapid this time, and the duration is short (-20 ky), which are consistent with the non-

thermally coupled model when A is near 5 (Fig. 1, right panel, red crosses). Compared to the

corresponding run with the non-thermally-coupled model, in which the system stays in the

evection resonance for -600 ky and maintains an eccentricity of -0.34 throughout the

resonance, the system in this run attains a maximum eccentricity of just 0.2, and stays in the

evection resonance for only 30 ky. Therefore, the amount of angular momentum loss is negligible.
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Fig. 2. The evolution of the system's A parameter (blue in upper left plot), the lunar orbit's eccentricity (black in

upper left plot), the evection angle (upper right plot), the semi-major axis (blue in lower left plot), the system's

angular momentum (black in lower left plot), and the temperatures of selected (the 10th, 20th, ... 100th) lid layers

(lower right plot) for a thermal-orbital coupled simulation with an initial A parameter being 1.74.

The orbital and thermal processes in this run, such as the quick termination of the evection

resonance and brief periods of partial melting and melt migration in the lid, are typical among

the cases in which the system encounters the evection resonance.

Now consider a case where the system is captured into the limit cycle. Fig. 3 shows the details of

evolution for a run with the initial A = 14. The system not only enters the limit cycle, but remains

in the limit cycle for a long time and a significant amount of angular momentum is drained. Upon

entry into the limit cycle at t = 37 ky, the lunar orbital eccentricity rapidly grows, as in the
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evection resonance. But the eccentricity oscillates between -0.01 and -0.09, a range whose

upper bound is considerably smaller than what would be achieved in the evection resonance

(0.3-0.5 in the non-thermally coupled model). Since the rate of tidal heating is approximately

proportional to e2, heating in the Moon is significantly less severe, and the growth of the A

parameter is limited. As the A parameter increases, the system is still retained in the limit cycle,

and the upper bound of eccentricity is lowered, which is in agreement with the trend observed in

the non-thermally-coupled simulations. Then the A parameter reaches a peak value and this is

when the upper bound of eccentricity stops decreasing. After that, the A parameter begins to

decrease, and both bounds of the eccentricity shift upward with the change of A parameter. In the

later half of the limit cycle, though the eccentricity gets as large as when the limit cycle begins,

the A parameter does not increase. This is because the lid is getting increasingly more efficient at

emitting heat, both to space and to the magma ocean, after the short initial phase of A increase.

The detailed behavior of A is explained below.
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Fig. 3. The evolution of the same parameters as in Fig. 2, for a thermal-orbital coupled simulation with an initial A

parameter being 14.
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Fig. 4. The evolution of the lid thickness (black curve, left scale) and temperature gradients at the top (blue solid

curve, right scale) and the bottom (blue dashed curve, right scale) of the lid, for the same simulation as in Fig. 3. The

lid thickness is normalized with the initial thickness.

In detail, in the beginning of the limit cycle, the large eccentricities cause elevated tidal heating in

the lid, decreasing Qm and thus increasing the A parameter. But soon a maximum A value is

reached, as the result of the combination of four negative feedbacks: (a) as A increases, both

bounds of the eccentricity's oscillation decrease, leading to less rapid deposit of tidal heat in the

lid; (b) as the temperatures of lid layers near the surface increase while the surface temperature

stays constant at the equilibrium temperature, the negative temperature gradient at the surface

and thus the heat flux to space increase; (c) as the temperatures of the bottom layers rise above

the magma ocean temperature, heat flux switches direction so that now the lid loses some heat to

the magma ocean; (d) as the heat flux at the lid base switches direction, according to equation

(15), the lid begins to thin, while the temperatures of each layer continues to increase, so the

effects of (b) and (c) get strengthened.

After A reaches the maximum, the lid continues to thin as the bottom layers continue to be hotter

than the magma ocean. So even though the lid temperatures have stopped increasing, (d)

continues at work, strengthening (b). Then the rate of heat loss from the lid, now dominated by

(d) and (b), exceeds the rate of heat deposit in the lid, and the lid temperatures begin to decrease,
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causing the A parameter to decrease, too. But as A decreases, the range of eccentricity oscillation

gets to higher values, thus slowing down the rate of decrease of A.

In the later half the limit cycle, two opposing mechanisms work simultaneously: (i) the thinning

of the lid leads to an increasing rate of heat loss from the lid mainly through (d) and (b), and (ii)

the resultant decrease of A leads to an increasing rate of tidal heating in the lid (through increase

eccentricities) which slows down the decrease of A, acting as a negative feedback on (i). The

result is that A approaches an asymptotic value, as shown in Fig. 3.

The system remains in the limit cycle in the whole process even though the A parameter changes,

allowing the continued draining of angular momentum from the Earth-Moon system. This

robustness is partly attributed to the range of A parameter that allows the occurrence and

maintenance of the limit cycle being much wider than that for the evection resonance.

Discussion and Conclusion

We also carried out simulations with Qe being 200, 300 and 500, and other parameters kept the

same. Results are shown in Fig. 5 as angular momentum versus the initial A parameter. We see

that at all Qe values there is no significant angular momentum decrease in the evection resonance

region (A in 1-3), consistent with what we observed for the Qe = 400 case. The results also show

that when a smaller Qe (300) is used, the limit cycle is still encountered, but over a smaller range

of parameters. When Qe is further decreased to 200, no observable angular momentum decrease

occurs, indicating the absence of the system's capture in the limit cycle. This trend illustrates the

importance of Qe in the Earth-Moon system's early evolution: Qe controls the rate of Earth-Moon

separation, and the limit cycle, as well as resonances, capture the system with a higher chance

when the Moon is separating from the Earth at a lower rate. A small Qe means larger tidal

disturbing forces to the system, which makes it harder for the limit cycle to occur and to be

maintained. Zahnle et al. (2007) preferred a large Qe, which can better facilitate angular

momentum loss in our model.
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Fig. 5. The system's angular momentum when the Earth-Moon distance reaches 8.5 RE, versus the initial A

parameter, for the cases of Q=200 (green), Q,=300 (red), Q,=400 (black), Q,=500 (blue). In the left panel, the Q,=300,

Q,=400 and Qe=500 points are offset by -0.05, -0.10 and -0.15 on the y-axis respectively to improve clarity, and the

lines of current angular momentum are also offset accordingly. The right panel plots the same data without offset,

and shows the tendency of smaller minimum final angular momentum achieved with increasing Qe.

These results also demonstrate the importance of the A parameter in the early evolution of the

Earth-Moon system. As long as the Earth-Moon separation is sufficiently slow (by assuming a

sufficiently large Qe), the system enters the limit cycle at the same A parameter values. Thus the

detailed values of Q and k2 are less important.

With the orbital evolution of the Earth-Moon system being coupled with the thermal evolution of

the Moon, and beginning with a fast spinning Earth, the system can not lose its excess angular

momentum through the evection resonance. When the system encounters the evection

resonance, the eccentricity tends to be excited to large values (0.3-0.5), tidal heating in the lid

becomes too intense to be efficiently conducted out, and partial melting and melt migration

occur. The severe heating during the resonance induces rapid changes in the Moon's tidal

properties and thus in the tidal accelerations, forcing the system to exit the resonance soon after

it enters the resonance. In contrast, due to the lower eccentricities and the effects of feedback

mechanisms that reduce the net heating in the lid, the limit cycle mechanism works stably over
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extended periods of time, and successfully reduces the Earth-Moon system's angular momentum

to a value that is near the current value over a wide range of parameters. Therefore, we conclude

that if the Moon formed in a giant impact scenario that leaves the early Earth spinning much

faster than is deduced from the current Earth-Moon's angular momentum, the limit cycle is a

viable mechanism to have removed the excess angular momentum.
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Chapter 4

The role of tidal heating on the development of the magmatic asymmetry of the Moon

ZhenLiang Tian, Maria T. Zuber

Abstract

The majority of lunar mare basalts have been emplaced on the nearside of the Moon. Previous

studies proposed that this hemispheric asymmetric magmatic distribution could be a result of

cumulative radiogenic heating in the deep lunar interior and later the ascension of a spherical

harmonic degree-1 diapir in the mantle. However, why the diapir occurred on the nearside of the

Moon remains unexplained. In this study we assess the possible role of tidal heating in producing

the magmatic asymmetry. We approximate the Moon assuming a solid mantle overlying a liquid

interior, and analyze the lateral distribution of degree-2 and degree-3 tidal heating in the lunar

mantle. From the calculations, we conclude that either tidal heating could not have contributed to

the occurrence of the diapir on the nearside, or the spherically symmetric shape assumed in the

derivation of tidal heating does not correctly represent the Moon.

Introduction

The Moon exhibits a hemispheric asymmetry in the distribution of mare basalts. The

overwhelming majority of the volume of the maria is on the lunar nearside. At first glance, it

appeared that the mare basalts occur at the topographically low regions (e.g. Kaula, 1974).

However, after the acquisition of the global topographic data (Zuber et al., 1994; Smith et al.,

2016), it is recognized that many topographically low regions, most noticeably the South Pole-

Aitken basin, do not contain abundant basalt emplacements. It is then more likely that the

asymmetric distribution of maria indicates a fundamental asymmetry in lunar mantle activity.

The nearside mantle has experienced relatively elevated partial melting during the lunar history,

expressed in the form of mare distribution on the surface. Then why is this asymmetry

hemispheric in scale, and why is the melting activity centered on the nearside?
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Previous models (Hess & Parmentier, 1995, Zhong et al., 2000) proposed scenarios to explain the

formation of spherical harmonic degree-1 pattern of the mare asymmetry. At the end of the lunar

magma ocean solidification, the dense ilmenite (FeTiO 3)-rich cumulates (IC), which are the last

cumulates in the crystallization sequence, lie beneath the latest liquids that are highly

concentrated in heat-producing elements (urKREEP). The IC layer, together with the iron rich

mafic cumulates, overlie the magnesium rich, first crystallized minerals which are then at the

base of the mantle. This gravitationally unstable density profile soon leads to a large-scale

overturn in the mantle, bringing the IC and the iron rich silicates to the bottom of the mantle.

Some of the late stage, radioactive element rich liquid is entrained with the IC and also sinks.

Then the mixed ilmenite cumulates (MIC) either form a lunar core or a dense, radioactive

element rich layer surrounding the core. According to Rayleigh-Taylor instability analysis, the

overturn occurs rapidly, on the order of several thousand years.

As a result of this global-scale overturn, a substantial fraction of the Moon's heat-producing

elements is concentrated in the deepest regions of the lunar mantle. As time proceeds, radiogenic

heat accumulates in or around the core, and the outward thermal conduction is slow due to the

great depth. The growing temperature and the resulting gravitational buoyancy of the MIC finally

drives its ascent through the mantle to relatively shallow depths. Decompression melting of the

ascending MIC creates the mare volcanism in 200-600 My. In this scenario, a single, large diapir

is likely, since the spherical harmonic degree-1 pattern has the most rapidly growing instability

under a wide range of parameter space, as given by both Rayleigh-Taylor instability analysis and

numerical simulations (Hess & Parmentier, 1995, Zhong et al., 2000). Therefore, the hemispheric

asymmetry of the mare basalt distribution can be simply the result of spherical harmonic degree-

1 diapir ascension of the deep MIC, radioactive element rich material.

However, the second question remains not completely answered. Why did the diapir rise in the

nearside of the lunar mantle? Laneuville et al. (2013) proposed that the concentration of mare

volcanism on the nearside of the Moon could be a natural consequence of the mantle thermal

evolution, provided that the Moon's bulk KREEPy material is concentrated in the nearside crust

and upper mantle in the first place. However, they did not provide an explanation for the

concentration of the KREEPy material.
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In this study, we explore the feasibility of laterally heterogeneous tidal heating leading to the

ascending diapir's occurrence in the nearside mantle. We expect the possibility that tidal

deformation preferentially dissipates energy in the nearside mantle, raises the mantle

temperatures, reduces the viscosity, and thus facilitates the mantle flow and diapir ascension. We

follow Peale and Cassen's (1978) approach of analyzing the equilibrium strain and stress

distribution in a synchronously rotating, layered spherically symmetric body in response to the

tide-raising potential. With the strain rate derived from the rate of change of tidal potential, we

calculate the distribution of the rate of energy dissipation. We automate the derivation process,

and expand the analysis to spherical harmonic degree-3. Then we consider the scheme in the

context of recent scenarios of lunar orbital evolution, and assess the importance of the

contribution of tidal heating to the heterogeneity of lunar mantle thermal states in various

situations.

Strain and dissipation analysis

In this section we solve the equilibrium displacement, strain and tidal dissipation distribution of

a spherically symmetric layered body in response to tidal potentials. The Moon is modeled as a

solid elastic mantle overlying a liquid core (Fig. 1). Both layers are assumed to be homogeneous,

incompressible, and have the same density. The solid exterior layer has much higher shear

rigidity than the interior (p E i). The elastic assumption is used for the purpose of deriving the

equilibrium strain. Dissipation will be treated later by the introduction of a phase delay in the

Moon's equilibrium elastic deformation. The derivation for the case of spherical harmonic

degree-2 deformation and degree-2 tide-raising potential is given in the appendix. Here we only

present the degree-3 case.

R

E Fig. 1. Profile of the model Moon.
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The Earth's tide-raising potential V can be expanded in spherical harmonics as:

V= Gme/r'-rj = Gme/r' n (r/r') Pn(cosS),

where S is the angle between the direction of the Earth from the center of the Moon and the

direction to the point of evaluation, r is the radius of the point of evaluation, r' is the distance

between Earth and Moon. The geometry is illustrated in Fig. 2. With R as a shorthand for Rm, we

define

Vn= Gme/r' (r/r')n Pn(cosS),

Vn 0=Gmer'-- 1 Rm",

and then

V= En Vno -(r/R)nPn(COSS).

r

M

S r'

Earth
Moon

Fig. 2. Geometric relationships in the formulation of the tide-raising potential.

The deformation of the Moon also produces a potential. The total disturbing potential, U, is the

sum of V and the potential produced by the Moon's distortion.

According to Love (1944; pp.257, eq.22),

U =YnUn

=YIn[ Vn +3g/(2n+1)-An-(r/R)n ]

where An is the degree-n radial displacement at the satellite's surface, g is the surface

gravitational acceleration. The expression An =Ano Pn(cosS). Then

Un = [Vn0 +3g/(2n+1).AnO]x(r/R)n Pn(cosS). (1)

Since the definition of the degree-n potential Love number kn as Un = Vn + kn - Vn (r R),

we have
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kn= 3g/(2n+1) A.0/VO.

To establish the equation of equilibrium displacement, we need to analyze the forces in the

satellite in the presence of a gravitational perturbation. The forces are:

(i) hydrostatic pressure (-po, po is positive when the pressure is compressive);

(ii) satellite's self gravitational acceleration when unperturbed (-gr f);

(iii) stress caused by tidal distortion (X);

(iv) forces from the total disturbing potential (VU).

Forces (i) and (ii) satisfy (as when the satellite is unperturbed):

-Vpo -pgrr = 0

Forces (i), (ii), (iii) and (iv) satisfy the equilibrium equation (Love 1944, pp.257, eq.23):

-Vpo +V-X -pgrr +pVU = 0

and the two equations yield

V-* +pVU = 0.

In Cartesian coordinates, the x component is:

axXxx +ayXxy +azXxz +pdaxU = 0. (3)

Since Xij = -p6ij + 2peij, where p is the mean pressure due to tidal distortion, and in recta

coordinates,

eij = (aiuj+ijui), (4)

we can rewrite (1) as

-ax(p-pU) +1p(xax+ay+az)ux +[tOx(dxux+ayuy+dzuz) = 0. (5)

The assumption of incompressibility gives

V - U = 0 (6)

We define

P = p-pU, (7)

and then (5) and (6) give

-VP +ptV2U= 0. (8)

Since [t is constant in each layer, (1), (6) and (7) imply that P is a harmonic function (i.e.

Then (8) can be expanded as:

-VPn +[tV2ii+ = 0, (9)

ngular

, V2P = 0).
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where

Pn+ =Po,.(r/R) P.(cosS) =pn+-pUn,

Pn_ =P~On(r/R)-n-1 P(cosS) =Pn-

in the outer layer, and

Pn+ =P0In(r/R)nPn(cosS),

Pn- =0

in the inner layer. Equation (9) is the expression for equilibrium displacement.

A particular solution is given by Love (1944; pp. 258):

UP3'= A3 r P3 + B 3 +i P3 +

where A3+ = 1/12 p-1, B 3+ = -1/12 t-1, A3 - = -1/30 [ 1, B 3- = 4/15 [- 1,

where [ is the rigidity of whichever zone is under consideration. We use ptE to denote the rigidity

of the outer layer and i' for the inner layer.

Following Peale and Cassen 1978, we take the homogeneous solution to be

uH3+ = VX(iXVct 3+)

where (D3 is any harmonic function. The harmonic coefficients cD03., D03- and c1013 are defined

similarly to those for P3 .

The complete degree-3 solution is

U3 =U 3+ +U3-~

U3 =A3 r 2V 2 P3  +B 3 r'P 3  -V(ct 3  +'r-VCP 3 ). (10)

The boundary conditions are: (i) the total traction vanishes at the satellite's deformed surface;

(ii) the total traction is continuous at the boundary between the two layers; and (iii) the

displacement components are also continuous at the boundary. Expressing these conditions on

traction and displacement using the coefficients 03A0, 0130, P3 0, P130, A30 as defined above, we

obtain a system of linear equations in terms of these coefficients. Solving the equilibrium

displacement and strain is then equivalent to solving for these coefficients. The matrix

representation of the equations for [tFct 3+o, ptF3-O, R2P 3, 0, R2P3-0, p'c1i3
0, R2PI 3

0 , and ptERA30 is:
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-48 120 1/3 -17/5 0 0 4 pR 2V20

-16 -30 5/12 8/15 0 0 0 0

-12T1 3 -121y 4 1 2 1213 sP 0 0
6 56

-4 q 3  3 1- 4  rS/12 -r-2/30 4TI 3  -1 sp 0 0 (11)

-1611 3 -3 0- 4 5 5  -2  16 13  - s-q 5  0 0

-48I3 120q-4 T1S/3 2
L-2 48T1 3 -qs/3 0 0

-12 -12 1/6 2/5 0 0 -1 0

where i=b/R, b is the radius of the boundary between two layers, and P=IE/[I. Since the inner

layer is liquid, we take the limit P->oo. Then the two rows in (11) dominated by P terms imply

that pl 1
13

0 =R2 P1 3
0 =0. So we ignore these two variables, and hereafter use [ to refer to pE since p

does not appear. The solutions are:

2.0 = ptRA3 0 (7/4 )-1 (-475olo4 -4 7 5 156 -1 4 3 5 -q78)/16 ,

I(D2-0 = [tRA 3
0 (7/4 )-1 ( 3 7 5 1178 +88 f9to13)/

6 ,

R2P2+0 = ptRA3
0 (7/4 )-1 (-1140lgoto4 -4500s56),

R2P2-0 = ptRA 3
0 (7/4 )-1 ( 2 6 2 5fl56 + 8 2 5 1178 +825fl9to13), (12)

and

kRA20 = pR2 V3
0 (7/4 )/[k .pgR/p +5,], (13)

where

= 9 5joto4 + 3 7 5 s6 + 3 7 5 l78 + 8 8 9to13,

= 2 09floto4 -180056 +180078 - 2 0 9fl9to13,

fOto4 = 1+3+q2+q3+q4,

156 = l5 +f 6 ,

fl78 = q+l

l9to13 = q9+ql0+qll+q12+q13.

Substituting these results into (10), we obtain the equilibrium displacement. Then using (4) we

obtain the equilibrium strain and stress. Both the stress and the equilibrium strain depend on r'

and S (the angle between the line to the planet and the line to the point of evaluation). At a given

fixed point in the satellite, r' and S change over time due to the planet's orbital motion and the

satellite's rotation, so the stress and strain vary, too. Dissipation occurs due to the anelastic
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flexing of the satellite, which is equivalent to a phase delay applied to the elastic deformation. We

denote the phase-delayed strain as e*ij. The rate of energy dissipation per unit volume is

W = Xij&*ij =-pSij*ij +2Iieij6*ij (14)

=-pat(V-_i*) +2 eije*ij

=2Iieij&*ij.

This is the distribution of volumetric tidal heating. The expansion of this expression into different

tidal frequencies and the evaluation of the phase lag at each frequency is similar to the appendix

and we don't repeat that part of the derivation here.

Results

For spherical harmonic degree-2 tidal heating, with various assumptions regarding the liquid

core size, orbital eccentricity, and the Moon's inclination, the lateral distributions of tidal heating

at different depths do not show a concentration on the nearside. Actually, the distribution is

symmetric about the 0* meridian, 900 meridian, and the equator.

As an example for eccentricity dominated tidal heating, we show the results for the case when the

Earth-Moon separation is 5Re, the core radius is 0.1R, the orbital eccentricity is 0.1, and the

inclination is 0, in Fig. 3. At all depths of the mantle, the maximum heating is near the polar

region. At depths near the core (r=0.15R), there is a local maximum at the 900 longitude of the

equatorial region. None of the depths shows concentrated heating in the sub-Earth point

W at 3/20 a, [10-2 erg cm-' s- ] V at 7/20 a, [102 erg cmn- s-] i at 11/20 a, [10- erg cm-
3 

s']

~ ~ 4v ~L
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Wat 3/4 a 10-3 erg cm s- at 19/20 a, [10 erg cm-3 S

Fig. 3. The lateral distribution of degree-2 tidal heating at r=0.1SR, 0.35R, 0.55R, 0.75R, 0.95R. Tj=0.1, e=0.1, i=0,

a=5Re. Since the distribution is symmetrical about the equator, 00 and 900 meridians, only one quadrant is plotted.

We also show an example for the inclination dominated tidal heating. Fig. 4 shows the results for

the case when the Earth-Moon separation is 5Re, the core radius is O.1R, the orbital eccentricity is

0, and the inclination is 300. At all depths, the maximum heating is at the 900 longitude of the

equatorial region. This pattern does not favor the diapir to ascend in the nearside mantle, either.

14 at 3/211a [10 erg cm s iiat t'20 a [10 urg cm s Ia1 111 20 a[10 erg c

1Wat 3/4 a [iO - erg cm- 3 
-'] 'at i9/20 a [i0~ erg cm- -'

I I

Fig. 4. The lateral distribution of degree-2 tidal heating at r=0.15R, 0.35R, 0.55R, 0.75R, 0.95R. 3=O.l, e=0, 1=30*,

a=5Re.
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For the degree-3 tidal heating, the eccentricity dominated heating is concentrated on the

nearside at most of the depths. However, the magnitude of the heating is -3 orders of magnitude

smaller than the degree-2 heating. This is simply because the degree-n heating rate W. has the

factor R2n -r'-2n-2 , as dictated by the Rn -r'-n-1 factor in V. 0 in both Xij and Oij. (R/r') 2=

(1737km/(5*6371)) 2 =3e-3. Therefore W,.1 is -10-3 that of Wn. The well-developed degree-3

pattern of concentrated tidal heating in the nearside would not have any effect on the location of

the diapir because of its small magnitude.

Fig. 5 and 6 show the eccentricity dominated (e=0.1, i=O) and inclination dominated (e=O, i=30*)

degree-3 tidal heating distribution when the Earth-Moon separation is 5Re and the core radius is

O.1R.

It at 3/20 a 10 erg cm s

Wat 3/4 a [10- erg cm
3 

s-1

LI f -.

Wat 7/20 a, [10 erg cmi s

at 19/20 a [10 7 
erg cm- s-]

..........

A'at 11/20 a. [10' _erg on s

60

Fig. 5. The lateral distribution of degree-3 tidal heating at r=0.15R, 0.35R, 0.55R, 0.75R, 0.95R. -r=0.1, e=0.1, i=0,

a=5R,.
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W at 3/20 a, [10-6 erg cm s - Vat 7/20 a, [10 erg cm-3 s AVat 11/20 a, [10 erg cm-' s

W at 3/4 a~ [10-s erg cm-' s' J at 19/20 a~ [106 eg cm '

Fig. 6. The lateral distribution of degree-3 tidal heating at r=O.15R, O.35R, O.55R, O.75R, O.95R. rI=O.1, e=O, i=300 ,

a=SRe.

Discussion and conclusion

With the spherically symmetric geometry assumed for the Moon, it is not possible that

heterogeneous tidal heating in the lunar mantle would favor and trigger the proposed degree-i

diapir ascension in the lunar nearside. Tidal heating in the Moon has always been dominated by

the degree-2 component. The degree-2 tidal heating, under various assumptions of core radii,

orbital eccentricities and inclinations, does not work to concentrate energy dissipation on the

nearside or around the sub-Earth point mantle.

We conclude that either lunar tidal heating does not play a role in determining the location of the

diapir ascension proposed by Zhong et al. (2000), or the spherically symmetric model's

deformation scheme does not apply to the Moon.
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Conclusions and Implications

This thesis makes the following conclusions:

1. The weak, axisymmetric, and offset magnetic field of Mercury can be produced by a

dynamo with (i) a stably stratified layer (chemical or thermal) at the top of Mercury's large core,

and (ii) a spherical harmonic degree-1 north-south asymmetric heat flux at the core-mantle

boundary, which is consistent with the ancient large expanse of northern volcanic plains.

2. In Moon-forming giant impact scenarios that left the Earth spinning much faster than

allowed by the current angular momentum of the Earth-Moon system, the evection resonance

cannot work stably to reduce the system's angular momentum for the high eccentricities would

have soon changed the Moon's tidal parameters and destabilize the resonance.

3. The limit cycle related to the evection resonance is the most viable mechanism for

draining the Earth-Moon system angular momentum. It raises the orbital eccentricities only to

limited values, so does not substantially change the lunar plagioclase lid's temperatures nor the

Moon's tidal properties.

4. The limit cycle can be met and maintained over a wide range of parameters. A larger Q of

the Earth will result in a wider range for the occurrence of the limit cycle. Therefore, a large Q of

the Earth in the system's early history facilitates the system's angular momentum loss.

5. Assuming a spherically symmetric geometry of the Moon, tidal heating does not facilitate

the occurrence of the degree-1 diapir ascension in the mantle and the concentration of mare

basalts on the nearside of the Moon. This means that either tidal heating has never been an

important factor in determining the Moon's asymmetry, or the spherically symmetric geometry

fails to represent the Moon in the tidal heating analysis.

These conclusions have the following implications:

1. The Mercury dynamo results favor either a chemical or a thermal stratified layer. A

possible liquid FeS stratification on the top of the core is consistent with a solid FeS layer at the

bottom of Mercury's silicate mantle. The solid FeS layer was once proposed to explain the high

bulk density of the solid shell of Mercury, but later proven to be possible but not required. Our

results provide additional motivation for considering the existence of such a layer. A high core

sulfur concentration, along with the unexpected high sulfur content detected on Mercury's
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surface, strongly supports a reducing environment for Mercury's formation, and indicates the

lack of strong heating and little volatile loss during the process.

2. The Mercury dynamo results favor a higher core-mantle boundary heat flux in the

northern hemisphere than in the southern hemisphere. Such a pattern of heat flux is consistent

with more rapid mantle convection and heat transfer in the northern hemisphere. Together with

the ancient northern volcanic plains, which indicates more vigorous partial melting in the

northern high latitudes then, the dynamo results imply a lower viscosity or higher average

temperature in the northern hemisphere mantle. This north-south mantle thermal asymmetry

can be a result of higher concentration of heat-producing elements in the northern hemisphere. It

is interesting to see this asymmetry's effect on the planet's thermal history and more specifically,

the history of Mercury's heat budget and core cooling.

3. The orbital-thermal evolution results of the early Moon suggest the existence of a non-

negligible period of moderately elevated orbital eccentricity in early lunar orbital history, when a

fast-spinning Earth is assumed at the beginning. With an QE set at 400, this period is about 1 My.

But with a larger QE assumed (for e.g., Zahnle et al. (2007) proposed that the QE could be 100-

1000 times larger than the commonly used value), this period will be proportionally longer. This

opens up a new possibility for future lunar magma ocean solidification simulations. Long periods

of moderately elevated eccentricity will effectively slow down the lid growth and elongate the

complete solidification of the magma ocean. This possibility can help reconcile the disagreement

between the modeled solidification time (-20 My) and the much broader range of measured

anorthosite samples (-200 My) (Elkins-Tanton et al., 2011).

90



Appendix

tidal heating in a synchronously rotating, two-layered satellite

The issue of tidal heating in a shell has been studies by previous investigators (Peale and Cassen, 1978,
Peale et al., 1979, Wahr et al., 2006, Meyer et al., 2010, Beuthe, 2013). For convenience, we derive the
expression of degree-2 tidal heating in synchronously rotating, two-layered satellite. The solid exterior
layer of the satellite has a much higher shear rigidity than the liquid interior layer (ptE>>V). Both layers are
incompressible and have the same density. We use the constant-Q Darwin-Kaula formulation to model the
tide. In part 1, we derive the equations of the equilibrium displacement in the satellite and the boundary
conditions. In part 2, we solve the displacement field and derive the equilibrium strain. In part 3, we
derive tidal heating as a function of position in the satellite, the angle-averaged heating at a given radius,
and the total heating in the outer solid layer of the satellite.

1: equation of displacement, boundary conditions

To establish the equation of the equilibrium displacement, we need to analyze the forces in the satellite in
the presence of a gravitational perturber. The forces are:
(i) hydrostatic pressure (-po, po is positive when the pressure is compressive);
(ii) satellite's self gravitational acceleration when unperturbed (-gr f);
(iii) stress caused by tidal distortion (X);
(iv) forces from the total disturbing potential (VU, U is defined after equation (a1)).

(i), (ii) satisfy (as when the satellite is unperturbed):

-Vpo -pgrf = 0

(i), (ii), (iii), (iv) satisfy the equilibrium equation (Love 1944, pp.257, eq.23):

-Vpo +V-X -pgrf +pVU = 0

the two equations give

V-X +pVU = 0.

In Cartesian coordinates, the x component is:

aXxx +ayXxy +dzXxz +p.U = 0 (a1)

U, the total disturbing potential, is the sum of the perturber's disturbing potential and the potential
associated with the satellite's distortion. It can be spherical harmonically expanded. According to Love
(1944; pp.257, eq.22),

U =ZnUn

=Zn[ Vn +3g/(2n+1)-A,-(r/R)n ]

where An is the degree-n radial displacement at the satellite's surface, g is the surface gravitational
acceleration, r is the radius of the point of evaluation, and R is the satellite's radius.

Vn= GM(r/r')nPn(cosS),

where M is the mass of the planet, S is the angle between the direction of the perturber from the center of
the satellite and the direction to the point of evaluation, r' is the distance between the satellite and the
planet. Define
VnO=GMr'-nl Rn, then

Vn=VnO -(r/R)nPn(cosS), and the corresponding surface radial displacement takes the form
Ln =Ano Pn(cosS). So
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Un = [VnO +3g/(2n+1)-AnO]

x(r/R)n Pn(cosS). (a2)

With the definition of the degree n potential Love number kn as

Un = Vn + kn - Vn (where rs R),

we have

kn = 3g/(2n+1) Ano/Vno. (a3)

Now we relate (1) to the displacement field. Since

Xjj = -p5ij + 2peij, (a4)

where p is the mean pressure due to tidal distortion, and in rectangular coordinates,

ei = (au+ajuI),
we can rewrite (1) as

-ax(p-pU) +paxax+ayay+azaz)ux +paVxxuX+ayuy+azuz) = 0. (a5)

The incompressible assumption gives

V - U = 0 (a6)

Define P = p-pU, (a7)

then (5) and (6) give

-VP +pV2U= 0. (a8)

Since p is constant in each layer, (a2), (a6) and (a8) imply that P is a harmonic function (i.e., V2P = 0). Then

(a8) can be expanded as:

-VP, +pV2i = 0, (a9)

where

Pn+ =Pon,(r/R)nPn(cosS) =pn.-pUn,

Pn. =Pon.(r/R)-n-1Pn(cosS) =pn-

in the outer layer, and

P+ =PoIn(r/R)nP,(cosS),

Pn =0

in the inner layer.

A particular solution is given by Love (1944; p. 258):

UPn '= Anir2 VP + B Pn
where A, , Bn satisfy

(4ki+2)An +2Bn = p-1,

2kAn +(k +3)Bn = 0,
k+=n, k-=-(n+1),

(A 2+ = 5/42 p-, B2+ = -2/21 p-i,

A2-= 0, B 2 = 1/2 p-1),

where p is the rigidity of whichever zone is under consideration. We use pE to denote the rigidity of the
outer layer and p for the inner layer.

Following Peale and Cassen 1978, we take the homogeneous solution to be

uHni = Vx(rXVctn+)
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where (Dn is any harmonic function. The harmonic coefficients (Don+, (Don. and DOIn are defined similarly to
those for P .

The complete solution is

Un = Un+ + ii-

in =An r 2V 2Pa +Bo rPni

V(@n +r-V(D, ) (a 10)
Now we specify the boundary conditions.
At the satellite's deformed surface, total traction vanishes:

(Xrr -PO)Ir=R +A-[ar(Xrr -PO)]|r=R = 0,

Xreor=R +AarXrelr=R 0,

XrIr=R +arXrflr=R 0,

where A is the sum of An. Note that polr=R = 0, arpO =-pg. Xri =-pori +2peri, p =0(p-A/R), eri =0(A/R), SO Xri
=O(A/R), arXrir=R =O(A/R) 2. Neglect terms of O(AR/R)2 and higher, we get

Xrrlr=R +pgA = 0, (all)

XrOlr=R = 0. (a12)

The Xrp equation is neglected because it gives the same constraint as the Xre equation.
The total traction is continuous at the boundary between the two layers:

(Xrr -PO)Ir=R +A-[r(Xrr -PO)]r=b-

=(Xrr -PO)|r=R +A-j[r(Xrr -PO)]r=b+,

XrOlr=b- +A-drXrIr=-.

=Xrejr=b+ +A-OrXrejr=b+.

We assume the two layers have the same density, so arpojr=b- =arpOjr=b+ =-pg. Neglect of O(AR/R) 2 and
higher terms gives:

Xrrlr=b- =Xrrl|=b+, (a 13)

Xrglr=b- =XrOjr=b+. (a14)

The displacement components are also continuous at the boundary:

Urlr=b- =urlr=b+, (a15)

U6Ir=b- =uOlr=b+. (a16)

We also have A being the radial displacement at r=R:

urlr=R =A. (a17)

2: solution of displacement and strain

We can transform the conditions on the traction to conditions on the displacement using the relation:

p-WrXr

= -p-(P+pU)* +V(i-U) +(r*-Viii -iL (a18) 1

1 Proof: From (a25), (a26), (a4) and (a7), we have

Xrr = -(P+pU) +2[pdrUr,

Xro = p(r.r(r-lun) +r-ldeur),

Xre = p(r-1sin- 1 -894ur +r-r(r-lup)).

Since Xr=XrrP +XreO +Xrj4, we get

Xr+(P+pU)f

=2
p0rUrr +prar(r-luo) +r-1aDur]

+p[r-lsin-10-dur +rar(r-lu,)]4.
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where X,=Xi-. Use of (a2), (a1O) and (18) in boundary conditions (all)-(a17) leads to a set of linear
equations for pEdP 2 +0, [tEdq2-0, R2 P 2+

0, R2 P 2-
0, 1'(120, R2 PI2

0, and IERA 2 0. The matrix of coefficients is

-12 48 -1/7 -3 0 0 2 pgR pR2 V2
0

-6 -16 8/21 0 0 0 0

-12T12 481l-3 -114/7 -31-1 12T1 2  1114 0 0

8 - 8
-61 2 -16T- 3 H1 4  1/- 1 6112 14 0 0

-6112 -6q 3  114/7 12-1 611 2 3 1 r14P 0 0
7

5 -5
-3T2 21- 3  

-
4  0 3i 2 -T14P 0 0

42 4 2
-6 -6 1/7 0 0 -1 0

(a19)

where i=b/R, b is the radius of the boundary between two layers, and 3=pE/Il. Since the inner layer is
liquid, we take the limit P->oo. Then the two lines in (a19) dominated by P terms imply that pIIII20 =R2P12 0

=0. So we ignore these two variables, and hereafter use p to refer to ptE since p' does not appear. The
solutions of the other variables are:
p4)2+0 = iRA2

0 (5k)-1

- (-3211012 -32T134 -60'qS6),

pI)2-0 = tRA2O (5)-1
- (321156 +19/2 1789),

R2P 2.0 = pRA 2
0 (5)-1

- (-5041012 -1344T134),
R2P2-0 = RA2

0 (5)-1
- (6401134 + 3041156 +304J789), (a20)

and
pRA20 = pR2V 2

0 (5k)/[2k -pgR/p +24X],
(a21)

where
k = 2 4012 +641134 +641156 +191789,
A = 1911012 -56134 +56T156 -191789,
1012 = 1+1+112,

1134 = 11 3+11 4,
1156 = 115+116,

11789 = l17+118+119.

From (a3) and (a21)
3

k2= 3g/5 A 2
0/V20= 2 . (a22) 2

k+12X [/(pgR)'

Apply the relation: rdr(r-'ur) =-r-Ur +drUr, and multiply both sides with p-Ir, we get:

p-I r+p'-(P+pU),
= r[rur +r-11Our6+r-1sin-1O.du4r]

+r-urP +r2[ar(r-lur)+ar(r-Iuo)O +ar(r-lu4)]
= r(Vur +urVr) +r2ar(r-1Iu)

V(r-ur) -u +rarU
=V(ir - U) - +(i-V)it.

(18) is proven.
2 When rj=O, we get k=24, A=19, k2= 3/2

1+(19/2) 9/(pgR)
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We note that RA20 =5/3 (g-1tRk 2V 20). Since 112+0, tI2.0, R2 P 2+
0, R2 P 2 -0 are all ratios of pRA 2 , they are also

ratios of (g-lpRk 2V 20), and the ratios are functions of il, as shown in (a20).

Substitution of these coefficients into (a1O) gives the displacement solution:

ur = Rg-1 k 2ac (r-1 V 2 ),
uo = Rg-1 k 2a 2 (r-1 eV2),
ue = Rg-1 k2a2 (r-1 sin-10 -a4V2), (a23)

where
ai = 2/3 0' [(-961156 -57/2 17s)rl-5

+(160T]34 +7656 +76l789)r1- 3

+(96l012 +961j34 +18O56)
+(-36T1012 -961134)r, 2 ],

a2 = 2/3 01 [(321156 +19/2 11789)rfs

+(481012 +48T)34 +90156)

+(-30TOf12 -801134)r1 2 ]. (a24) 3

The equilibrium strain is the spatial derivative of the equilibrium displacement. In Cartesian coordinates,
eij = (aiuj +a1 u1). In arbitrary curvilinear coordinates (a, P, y), the relation between strain and
displacement is

e., = hadaua +hahpupap(1/ha) +hyhuyiy(1/hx)
e= hppup +hphyuyay(1/hp) +hahpuada(1/hp)
eyy = hyayuy +hyhauad,(1/hy) +hphyugip(1/hy)
ecp = [h 0/hp-aa(hpup) + hp/h&-0p(huua)]
epy = [hp/hy-ap(hyuy) + hy/hp-ay(hpup)]
ey. = [hy/ha-y(haua) + h0 /hy-Ba(hyu,)] (a25)

where ha = IVal, hp = 1VP|, hy = IVyI.
In spherical coordinates (r, 0, <p),

hr = 1, he = r-1, he = r-1sin-10. (a26)

Substitution of (a23) and (a26) in (a25) gives

err = Rg- 1k 2 Aao ,
eee = Rg-1k 2 -(Aa1 +Ba2),
epp = Rg-1k 2 - (Aa3 + Ca 2 ),
ere = Rg-1k 2 Da3 ,
eop = Rg-1k 2 - Ea2 ,
erp = Rg- 1k 2 - Ha 3 , (a27)

where

A = r-2V2 = GMr'-3P 2(cosS),
B = idoeA,
C = sin-20*-80qA +cot0-aeA,
D =&A,
E = sin-10-4(&eA -cotO-A),
H = sin-10-84A, (a28)

which are all independent of r, and
ao = ar(r-ai)

= 2/3 k1 [(3841156 +114Tl789)r,- 5

+(-3201134 -1521-56 -152f]789)rl-
3

+(96TlO12 +96]34 +1801156)

3 When r=O, ai= 8/3 -r, 2, U2 =4/3 -5/6 r1 2.Note that k2-a1 is equivalent to k2'-a2 in Peale & Casen (1978) and Meyer (2010), and
that k2-a2 is equivalent to their k2'ai.
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+(-10811012 -2881134)r1
2
],

C13 = (r ra2 +a)
= 2/3 k1 [(-1 2 8 1156 -381789)ri-s

+(80Tf34 +3815s +381789)rj-
3

+( 4 8 11o12 +4 8 1134 +9 0156)
+(- 4 8 T1o12 -1281134)r1 2 ]. (a29) 4S5

3: tidal heating distribution, total heating

As seen in (a27) and (a4), both the stress and the equilibrium strain depend on r' and S (the angle
between the line to the planet and the line to the point of evaluation). At a given fixed point in the satellite,
r' and S change over time due to the planet's orbital motion and the satellite's rotation, so the stress and
strain vary, too. Dissipation occurs due to the anelastic flexation of the satellite, which is equivalent to a

phase delay applied to the elastic deformation. We denote the phase-delayed strain as e*ij. The rate of
energy dissipation per unit volume is

W = Xi1e6* 1 =-p&jj*jj +2pteij6*ij
=-pat(V-'U) +2 peije*,,.
=2pIeij6*ij, (a30)

where the summation convention is used. The incompressible assumption is used. In spherical
coordinates, substitution of (a27) into (a30) gives:

W = 2 p R2g-2k2
2

x[AA*ao
2 +2AA*aX2

+(AB*+BA*+AC*+CA*)aca 2
+(B1*+CC*+2 EE*)a2

2

+2(D[b*+HHi*)U3 2 ]. (a31)

Now we can see the separation of W's dependence on radius and on the angles. The r-dependence is
completely expressed in ac, and the 0- and 4-dependences are expressed in AA*, AA* ... A, B... functions
are determined by the planet's distance and orientation relative to the satellite, and A*, 5* ... are
determined by the planet's orbital motion, the satellite's rotation, and the phase lags in the satellite's tidal
responses.

We take AA* as an example to study the form of the angle-dependent part of W. Let (0', b'), (0, $) denote
the colatitude and longitude of the planet and the point of evaluation. 4' and 4 are measured from a
particular meridian of the satellite, which is an instantaneous inertia frame of reference (X1). According to
the spherical harmonic addition theorem,

A = GMr'-3 
Z

2 o cmP2m(cosO')P2mn(cos)cos[m(4'-4)],

4 When T1=0, cto =8/3 -3r, 2, C13 =4/3 -4/3r, 2.

5 As a test, we compute values k2-ci at particular parameter values, and compare the result with Peale & Cassen (1978) and Meyer
et al. (2010). Take p=3.34, g=162, R=1.738e, t=6.5e1 (in cgs).

For q=0.5,
k2-ao = 9.138e-3 ri-s -3.233e-2 ri-

3 +9.084e-2 -0.1135 r1
2

,
k2-01 = -2.284e-3ri- 5 +1.617e-2r- 3 +9.084e-2 -3.784e-2r1 2,
k2-C 2 = 7.615e-4 ri-5 +4.542e-2 -3.154e-2 r1 2,
k2-'C3 = -3.046e-3ri- 5 +8.083e-3rr 3 +4.542e-2 -5.046e-2r1 2 .

For T1=0.95,
k2-ao = 0.8874 rrs -1.174 rr 3 +0.7768 -0.8688 r1 2

,
k2-a = -0.2219 ri-s +0.5871 ri- 3 +0.7768 -0.2896 r1 2,
k2-a 2 = 7.395e-2 ris +0.3884 -0.2413 r1 2,
k2-a3 = -0.2958 ri-s +0.2936 ri-

3 +0.3884 -0.3861 r1
2

.

These agree with k2'-cco, k2'-X2, k2'-ai, k2'-C(3 in Peale & Cassen (1978) and Meyer et al. (2010), except for a typo and two errors in
P&C 1978.
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where cm=(2-6o)(2-m)!/(2+m)!.

We then transform r', 0' and 4' to the planet's orbital elements to study the satellite's tidal response at
different disturbing frequencies. Let f, o, M, f, i, a denote the planet's longitude of ascending node,
argument of pericenter, mean anomaly, true anomaly, inclination relative to the satellite's equatorial
plane, and semi-major axis, respectively. Note that these elements are with respect to the inertia frame of
reference (xo), so $'=0-$, where $ is the longitude of the basis meridian of X1 measured in xo.

The transform is based on

Pim(cos 0')-f{C}(m*')

= X p=o Fimp(i) {c}[m(Q-i) +(l-2p)(o+f) +K(I-m>], (a32)

0, x is even
where Kx = Tx sod

Fimp(i) =

min Pm 1+sfloor 2 
m min[m+p+t-m-2t

(21 - 2t)! sinl-m- 2 t i cosS i c \p-t-) C _ c-floor(n
t!( ) 21-2t s ((- M)2)

t=0 s=O c=max[p-t-m+sl (I m 2t)!

(Kaula 1961), and the Hansen expansion

( )EM M{COSln) _ o m.(e){cOs }(kM). (a33)
a ) jsi)(nJ k= -nk in

So A(r', 0', 4', 0, f) is transformed to:

A = Xm j=oo =-co A2mpq,

A2mpq = GMa- 3 cnP2m(cos0)F2np(i)G2pq(e)
x cos[-m$ -m4 +V2mpq +Km],

where

Vinpq = mfl +(l-2p)o +(l-2p+q)M,

Glpq(e) = X(1-2p+qy'_ 1, '-2p(e).

Note that K(I-m)#Km when 1 is 3, 5...

The phase delayed form is

A*2mpq = GMa-3
x cmP2m(cosO)F2mp(i)G2pq(e)
x cos[-m*-m$+v2mpq+Km-E2mpq].

The frequency of A*Impq due to the orbital motion of the perturber and the rotation of the satellite is

fimpq = -mi +Vlmpq = -m$ +mf2 +(l-2p)6 +(l-2p+q)M.
In completely damped 1:1 spin-orbit resonance, 6 = l + +M, so

fimpq = (1-2p-m)6 +(1-2p+q-m)M.

When 6/n is small, flmpq;~ (l-2p+q-m)n. So

A2mpqA*2m'p'q'

=G 2 M 2 a-6 cmcm P2m(cOS0)P2m'(cOS)
xF2mp(i)F2m'p'(i) G2pq(e)G2p'q'(e)(-f2m-p'q')

xcos [-md -mW +V2mpq +Km]
xsin[-m'4 -m'$ +V2m'p'q- +Km' -E2m'p'q']

=G 2 M 2 a-6 cmcm' P2m(cosO)P2m'(cosO)
xF 2 np(i)F2m'p'(i) G2pq(e)G2p'q'(e)

x(-1) (2-2p'+q'-m')n-
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x{ sin[-(m'+m) -(m'+m)$+2m-pq'+v2mpq+Km+Km-E2mp'q']

+sin[-(m'-m)() -(m'-m)41+v2m-pq'-v2mpq+Km-Km-E2m'p'q'}

(a34)

The secular terms are those with m+m' being even, and
2-2p-m = 2-2p'-m', q=q'

(i.e., f2mpq = f2m'p'q'),

or
2-2p-m = -(2-2p'-m'), q=-q'

(i.e., f2mpq = -f2m'p'q').

Apply the form of phase lag in the constant-Q Darwin-Kaula tidal model
E2mpq = Q-1 sign(f2mpq) (a35)
to the expression, and ignore the periodic terms, we get the secular part of (a34):

A2mpqA*2m1p'q'

=G2M 2 a-6 cmcm' P2m(cosO)P2m'(cosO)
x F2mp(i)F2m'p (i) G2pq(e) G2p'q'(e)
x (2-2p'+q'-m')n Q-1 sign(2-2p'+q'-m')

cos(m - m') 4)
(m + m'evenf2 mpq = f2m'p'q')

(-1)m cos(m + m') j (a36)
(m + m'even,hmpq = -f2m'p'q')

0
(else)

The angle-averaged value is

AA*p-avg

=(4Tr)-1 .fO.2 TJf[ot],AA*-sinOdOdl4
21 403

=G 2M 2a-6nQ-1 -(e 2 + e 4 +...). (a37)

AI9*..., AB*e4-avg... can be computed in a similar way. Then with (a3 1), we get the angle-averaged tidal
heating:

Wep-avg = tG 2M 2nR2a-6 Q1g 2k 2
2

x(21/5ao 2 +42/5ac1 2 -252/5SC1x2 +126CC2 2 +252/5a32)

x(e 2 + e 4 ) +o(e 4). (a38)
56

The total heating rate in the outer layer (up to e 2 ) is

Wtotai =f[R-,R]4Tr2W04-avg dr
=k22.28X/ .4rpG 2M 2nR5e2 a-6Q-1g 2. (a39) 6'7

Using parameters appropriate for lo8, (a22) and (a39) give the relationship between Wtotai/(WtotaI)q=o and
ri, as shown in Fig. al, which agrees well with Peale et al. (1979) and Meyer et al. (2010).

6 When i= 0 , we get X=19, =24, Wtotai =k22-133/6 -4npEG 2
M2nRse 2

a-6 Q-1g-2.

7 R=1.821e8, p= 3 .5 3 , g=179.71, p=6.5e11, in cgs.
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