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Abstract

Since the first MOOC (Massive Open Online Course) in 2011, there have been over
4,000 MOOCs on various subjects on the Web, serving over 35 million learners.
MOOCs have shown the ability to transcend time and space, democratize knowledge
dissemination, and bring the best education in the world to every learner. However,
the disparate distances between participants, the size of the learner population, and
the heterogeneity of the learner backgrounds make it difficult for instructors to inter-
act with learners in a timely manner, which adversely affects their learning outcome.

To address these challenges, in this thesis, we propose a framework of educational
content linking. By linking pieces of learning content scattered in the various course
materials into an easily accessible structure, we hypothesize that this framework will
guide learners and improve content navigation. Since most instruction and knowledge
acquisition in MOOCs takes place when learners are surveying course materials, better
content navigation may help learners find supporting information to clear up confusion
and improve the learning outcome.

To support our conjecture, we present end-to-end studies to investigate our frame-
work around two research questions. We first ask, does manually generated linking im-
prove learning? To investigate this question, we choose two STEM courses, statistics
and programming language, and demonstrate how the annotation of linking among
course materials can be accomplished with collaboration between course staff and
online workers. With this annotation, we implement an interface that can simultane-
ously present learning materials and visualize the linking among them. In a large-scale
user study, we observe that this interface enables users to find desired course mate-
rials more efficiently, and retain more concepts more readily. This result supports
the notion that manual linking does indeed improve learning outcomes. Second, we
ask, can learning content be generated using machine learning methods? For this
question, we propose an automatic linking algorithm based on conditional random
fields. We demonstrate that automatically generated linking can still lead to better
learning, although the magnitude of the improvement over the unlinked interface is
smaller. We conclude that the proposed linking framework can be implemented at
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scale with machine learning techniques.
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Chapter 1

Introduction

In 2011, a MOOC (massive open online course) revolution began in university educa-

tion [71, 99]. Today, a mere five years after the first MOOC was launched, over 4000

MOOCs, from science and engineering to humanities and law, have been offered on

the Web and have served over 35 million learners on platforms such as Coursera, edX,

Udacity, and FutureLearn [126, 27, 32, 128, 38]. These MOOCs have been created by

over 500 of the world’s top institutions and have been taught by the top instructors.

In addition, MOOCs allow free enrollment and enable learners around the globe to

take courses without the need for physical presence. Thus, MOOCs have the poten-

tial to transcend time and space, democratize knowledge dissemination, and bring

opportunities to learners in every corner of the world.

MOOCs inspire a new model in the delivery of quality education. In conventional

residential education, classes have much smaller sizes. These classes are taught in

thousands of institutions on the same subject with only slight variations. In contrast,

MOOCs adopt a distributed model. This model can accumulate the investment of

offering these classes in institutions and instructors, and allow course builders to al-

locate their time and effort more efficiently in implementing in each course various

state-of-the-art and research-based pedagogies such as active learning, mastery learn-

ing, and cooperative learning [97, 29, 28]. Thus, MOOCs provide enormous educa-

tional value to learners and instructors. Evidence suggests that well-designed MOOCs

alone can lead to high levels of student learning and satisfaction [97]. In addition,
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we have observed a growing trend of college instructors adopting this approach in

blended classrooms [78]. In blended learning, residential classroom instructors utilize

existing MOOC content to save effort in course material preparation, and thus leave

time to focus on interacting with students to create a learner-centered environment

[114, 25, 50].

However, the open and free character of MOOCs has also created a set of chal-

lenges that are not observed in conventional education, that is, the sheer size of the

learner body, and the heterogeneity of their backgrounds [56]. A MOOC typically

has thousands to tens of thousands of learners with various demographics, course

preparedness, learning goals, and motivations. Given this class size and heterogene-

ity, the conventional one-size-fits-all pedagogy is not sufficient. For example, in the

same MOOC, some learners may struggle with elementary concepts due to insufficient

prerequisite backgrounds, while another group of learners may already have years of

experience in the industry of the relevant area and their learning goal is to update

their job skills. Due to physical distance, learners in MOOCs usually rely on self-

regulated learning to meet their own learning needs. For instance, a learner who is

confused about a topic in the lecture video may choose to pause the video, turn to

a textbook or discussion forum for a more understandable description, and return to

the video when the learner has a better understanding about the underlying topic. In

this way, different learners take various learning paths and learning materials for their

diverse learning needs. Nonetheless, because of the unfamiliarity of learners with the

course subject as well as the amount of learning content in a MOOC, it is usually

cumbersome for learners to find suitable content.

To address these challenges, in this thesis we propose an educational content link-

ing framework which allows the linking and organizing of the scattered educational

materials in a MOOC, as well as the visualization of the conceptual relations across

these materials. Since visualization assists learners in navigating the material, we ex-

pect this framework to help learners achieve self-regulated learning by allowing them

to find appropriate information efficiently.
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1.1 Motivation

One-to-one tutoring has been shown to be extremely effective in enhancing learning

outcomes [12]. However, as this approach is too costly, for many years educators have

dreamt of achieving similar effectiveness with a scalable approach [12]. A significant

number of studies have attempted to determine how people learn and why one-to-one

tutoring is so successful in improving learning [129, 46]. One of the key factors could

be constructive struggle: much research have shown that keeping learners in a state

of engagement between boredom and confusion has a substantial positive impact on

learning [35, 115, 110]. Outside the laboratory, this strategy has also been commonly

applied to keep learners engaged, e.g., by asking students questions, inserting quizzes

into lecture videos, or providing instructional scaffolding (Instructors provide suffi-

cient support to learn a concept, while, during the entire learning process, support is

taken away gradually to promote learners developing deeper-level knowledge).

Timely responses to confusion play a crucial role in the success of this strategy,

and failing to do so can affect learning in the opposite way, leading to frustration,

or causing learners to cease participating. In a MOOC scenario, the incredibly low

instructor-to-learner ratio and the heterogeneous background of learners make re-

sponding to learning needs extremely challenging. To address the problem, typically

instructors can provide pre-defined hints, optional course materials, or even intelli-

gent tutoring systems (ITS) to serve various needs and address sources of confusion.

Another alternative is to rely on the learners themselves to discover answers in course

forums or on the Web. Although helpful, both approaches also have their downsides.

Providing hints, optional materials, or ITS, even with the help of state-of-the-art

machine learning methods, involves significant handcrafting, such as designing banks

of responses or individualized pathways for different needs. This approach is neither

scalable nor generalizable from course to course. Furthermore, application of this

approach in undergraduate-level or graduate-level subjects, which are the focus of

MOOCs, is more cumbersome, since concepts at such a subject level are much more

complicated. In contrast, the alternative is much more scalable. The learnersourcing
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model [63] potentially generates responses to diverse learning needs at scale. How-

ever, due to the amount of generated responses and needs, matching between the two

is challenging. For example, although ideally a learner can clear up every confusing

point by using the MOOC forum or the Web, looking for useful contents from such

a large database can be troublesome. This searching is more difficult for beginning

learners, who sometimes find it difficult to describe their needs.

1.2 Educational content linking

Therefore in this thesis we propose a third way: educational content linking. In this

framework learning contents that are scattered throughout different types of course

materials, such as lecture videos, slides, discussions forums, or quizzes, are linked

based on their conceptual relations. A tree is then built based on these links and

presented to learners along with the content. Visualizations of these relations guide

learners through the content. It is hoped that this will help learners to find appro-

priate content for their various learning needs with less effort, and thus the learning

path will be tailored to suit their background. Furthermore, this framework has two

extra upsides. First, since we do not limit this framework to any types of mate-

rial, educational content linking works seamlessly with both approaches described in

the previous section. Second, since a conceptual relation is the only property that

must be inferred, the framework is simple enough to be realized with state-of-the-art

machine learning and human language technologies (HLTs). The simplicity of the

framework also suggests that this model will work well in general cases rather than

certain constrained environments.

In Fig. 1-1 we illustrate how educational content linking works by comparing

course materials presented in the traditional way to those in the proposed "linked"

way. In the figure, different types of materials are represented in different colors. Con-

tent in each type of material is segmented into smaller units, called learning objects

in this thesis, and represented as nodes here. In this framework, the only requirement

for learning objects is that an object should convey concepts in a self-contained way
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Figure 1-1: Schematics of the transformation of several independent course materials
to a linked structure. Each color illustrates one type of education material. Note that
here linking refers to conceptual relations across materials.

that learners can understand. Thus, in implementations of the framework an object

can be any reasonable unit such as a textbook section, a discussion thread, or a video

vignette.

The left-hand side of Fig. 1-1 illustrates how materials are presented in MOOCs

conventionally. Objects are aligned in sequence based on a syllabus, table of contents,

or user-created time. Various types of materials are made available to learners as

disjoint entities. In this scenario, a student interested in a specific concept cannot

easily look up relevant information from various materials, e.g., from lectures or

slides to sections of the textbook or discussions. In addition, the user-generated

content, such as discussions, is usually too voluminous to be accessed efficiently if

only organized chronologically.

In contrast, in educational content linking, the courseware is linked across material

types and presented as a tree, as illustrated on the right-hand side of the figure. In this

tree, one type of course material is specified as the trunk, here denoted by red nodes.

This type of material is utilized to extract the syllabus represented by the trunk.

The rest of the materials are employed to build the leaves of the tree. Each leaf,

denoted by the blue and green nodes, corresponds to a learning object that is related

to an object from the trunk material. In this framework, conceptual relations among

learning objects are visualized in addition to the original sequential presentation of

materials. Thus, we expect learners to be able to better compare content from varied
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Figure 1-3: Experimental pipeline for the question Can the courseware be linked at
scale using machine learning methods?

materials, thereby more efficiently identifying information that is useful for them.

The goal of this thesis is therefore to prove our hypothesis: educational content

linking helps learners find desired information at scale. We focus our investigation

on two research questions: 1) Would it help learners if we are able to link course

materials using human annotators? and 2) Can the courseware be linked at scale

using machine learning methods? Figs. 1-2 and 1-3 outline the steps we take in this

thesis to approach these two questions.

Fig. 1-2 shows how we proceed with question 1. In the investigation, we first

choose MOOC subjects to focus on and collect the corresponding course materials.

Human annotators are then recruited to label conceptual relations among learning
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objects in these materials. After that, we design an interface to present to users

the material content along with the linking. Using the interface, user studies are

conducted to observe how learners accomplish learning tasks with different strategies

for material presentation. We recruit workers from the Amazon Mechanical Turk

(Turkers) [90] to carry out the study on a massive scale at a reasonable cost. Task

results are analyzed to explore how linking affects learning.

As for the second question, our investigation is summarized in Fig. 1-3. We

adopt a similar pipeline in approaching this question, except that we replace human

annotators with a machine learning algorithm to label the linking. This automation

makes the implementation of educational content linking a scalable procedure.

1.3 Contributions

The primary contributions of this thesis can be summarized as follows:

∙ We propose a framework for courseware presentation that allows learners to

navigate much more easily. We have found with the proposed approach that

learners, especially novices, can find the desired information faster without sac-

rificing accuracy, and can retain concepts more readily. This framework can

also be easily integrated into different pedagogies to further improve learning.

∙ We describe the develoment of an end-to-end study with Turkers to explore

the effects of the proposed framework on learning. The pipeline is a practical

solution for the investigation of various pedagogies on a massive scale.

∙ We propose a method based on machine learning and human language tech-

nologies, or HLTs, to discover linking automatically. We show that this makes

scalable the implementation of educational content linking, at least for STEM

(science, technology, engineering and math) courses. Results suggest that learn-

ers benefit even from linking that are labeled automatically, albeit with a slightly

smaller improvement than with the handcrafted system.
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1.4 Thesis overview

The remainder of this thesis is organized as follows:

∙ Chapter 2 lays the groundwork for educational content linking by covering the

related research in education and HLT. It also provides descriptions about the

MOOCs and course materials used in this thesis.

∙ Chapter 3 describes in detail how we approach the first research question: Can

linking help learning? We discuss the annotation of linking, the implementation

of an interface which presents the course content and conceptual relations, the

conducting of the user study, and the results.

∙ Chapter 4 presents an automatic linking method based on machine learning and

HLTs. By analyzing how linking labeled with this method affect learning, this

chapter investigates the second research question: Can linking be done at scale?

∙ Chapter 5 reviews the experiments and contributions of this thesis, and proposes

directions for future research.
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Chapter 2

Background

This chapter gives background concepts of the three main building blocks in this

thesis: learning science to motivate the entire framework as well as supervise the

system design and learning interface implementation; crowdsourcing and learn-

ersourcing to recruit participants and effort at scale; machine learning and un-

derstanding to fuel the automation of the system. We review related literature

and offer background material in these three domains. Additionally, a description of

course materials used in experiments throughout this thesis will also be provided.

2.1 Learning science

For many years education practitioners and researchers endeavor to discover better

ways of learning from a variety of aspects [46, 5, 109]. Researchers try to unveil

the mechanism of learning, knowledge acquisition, and long-term memory establish-

ment from cognitive science and psychology; practitioners design theory-grounded

and evidence-based approaches in their classes to improve student performance. The

mental state of learners and its effect on learning is one of the most discussed top-

ics. Constructive struggle shows positive impact on learning performance by keeping

learners in a mental state of boredom and confusion alternatively [35, 115, 110]. Jean

Piaget proposed a theory describing how cognitive disequilibrium, such as confusion,

can drive a human to develop new knowledge schema or rebuild an existing one,
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i.e., motivate the process of learning [62]. However, without being properly resolved

in time, confusion can lead to frustration or even dropping out [110, 136]. Active

learning emphasizes the engaging of learners in discussion, high-order thinking, prob-

lem solving, or peer teaching [13]; it has demonstrated a positive impact on learning

outcomes by increasing enthusiasm in students and maintaining their interest in the

course [103, 111]. Cognitive load theory suggests that a complicated learning envi-

ronment can overwhelm limited working memory of a human, cause distraction or

frustration, and is detrimental to learning outcomes [74, 60, 124]. Although these

theories seem contradictory at first glance, all of them imply the importance of bal-

ancing between challenging learners with confusion and easing their load with a proper

response.

2.1.1 Tutoring at scale

Due to the delicacy of the learning mechanism, one-to-one tutoring, which is the model

where learners can receive maximum attention from teachers, has set a benchmark in

education that is hard to match [12]. However, a one-to-one model is cost prohibitive.

In order to provide quality education to each and every learner, the idea of intelligent

tutoring systems (ITSs) has been proposed [129, 102, 4]. ITS is a computer system

that provides immediate feedback or hints to students based on their current learning

states. For example, when asked to write a piece of code solving "square root of

a number x" with guess-and-check algorithm, in an ITS students can first choose

strategy "start with a guess, g". After implementing corresponding code, students can

choose following strategy such as "check whether g times g equals x", "claim g as the

answer", or "make a new guess". The system gives feedback such as congratulating

learners, asking to try again, or providing hints either on each step or waiting until

the students have submitted solutions. The example here shows an ITS applied in a

problem-solving task. Actually, the framework can be implemented for different tasks

to assist students in different learning stages [16, 15]. Since the tutoring is based on

a computer, ITS can help many more learners at the same time.

Although ITS has been shown to be effective on improving learning outcomes
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at much larger scale than one-to-one tutoring [129], authoring such a system takes

a lot of effort [102]. A great tutor is made of an abundance of knowledge derived

from years of his/her experience in teaching. Thus, codifying the knowledge and

designing instruction strategies in the system, e.g., deciding what exactly the feedback

to the learner is, is an extremely complex task. While solutions involving automated

methods such as machine learning exist for some components in the system [22, 44,

31], the state-of-the-art artificial intelligence techniques are insufficient in solving the

entire problem. Thus, it is usually done by handcrafted rules to codify instruction

strategies. Because of the effort that has to be taken, authoring an ITS from scratch

is still expensive.

Because of the demand for human input, a peer-to-peer model is proposed for

scalability. Learnersourcing demonstrates how learners can collectively contribute

to improving learning material and interfaces for future learners, and engage in a

meaningful learning activity simultaneously [63]. Mitros and Sun presented a simi-

lar framework that allows a community of students and instructors to jointly create

and polish tutoring resources around a shared skeleton [94]. Glassman and others

demonstrated that learners can work collaboratively, generating rich problem solving

hints and strategies [41], as well as designing complex assessment questions [93]. By

automatically ranking submissions of a coding problem based on stylistic mastery

from novice to experts, AutoStyle can provide students the "just a little better" sub-

missions from others to improve their coding style incrementally [24]. The model of

peer grading is another frequently applied strategy to offer learners feedback at scale

with minimal instructor input [127, 101]. In addition to receiving knowledge and

feedback passively, learners can also take the initiative and seek help from commu-

nities in a course forum [71] or even a question-answering (Q&A) site such as Stack

Overflow [119]. In this peer-to-peer model, tutoring resources are created by em-

ploying the wisdom from a massive learner body, and thus the required efforts from

instructors or experts are greatly reduced. Furthermore, the opportunity of reflecting

on others’ confusions and preventing the curse of knowledge are the other two pluses

[41]. The former allows learners to revisit and rethink their understanding, and the
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latter bridges the gap between learners and instructors, who sometimes cannot put

themselves in students’ shoes [18].

However, content created with this model usually suffers from information overload

and chaos [135]. For example, a discussion board in a MOOC may have thousands of

users and thousands of simultaneous threads, with great response time and quality.

But for a learner who is three days behind in the course schedule, it is already impos-

sible to follow existing discussions [53]. The peer-created materials are overwhelming

and cause confusion. Inspired by the requirement of helping students receive suitable

responses from an exploding amount of learning content, researchers have begun to

explore a scalable means for organizing peer-generated content. Asking peers to tag

content they generated is one frequently adopted strategy [9], but sometimes criticized

for the lack of accuracy and consistency [108]. Wise et al. introduce an automated

algorithm to identify forum posts that are related to course topics [135]. The detec-

tion of structure in discussion threads with natural language understanding is also

investigated [26, 122].

This thesis proposes a framework of responding to learners’ confusion with well-

organized learning content. In this framework, linking among content is discovered

automatically and visualized when learners seek help. We aim to help learners re-

solve confusion by providing guidance for content navigation. Content generated

by instructors and peers are both used, which illustrates the generalizability of our

method. A user study is also explored to provide evidence of benefit in learning.

2.1.2 Course navigation

In this thesis, we introduce a method of automatically organizing learning content

as well as the resolution of learners’ confusion with guidance for navigating content.

The importance of guided instruction in teaching is discussed in detail by Kirschner

et al. from aspects of human cognitive structure and the expert-novice difference

[65]. Furthermore, due to the distant nature of MOOCs and online learning, learners

usually depend on self-regulated learning to resolve their own learning needs, and

whether the self-regulated learning can be achieved is highly correlated to the effi-
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ciency of finding desired learning materials. Hence, there is a rich thread of research

in providing guidance for navigating online learning content.

Kim demonstrates how to extract structure from learning videos with learners’

collective video interaction and annotation data [63]. With the possibility of non-

linear navigation of videos, which is empowered by the extracted structure, learners

reported a better learning experience. The LinkedUp project aims at linking open ed-

ucation resources through the use of Uniform Resource Identifier (URI) and Resource

Description Framework (RDF) to improve access of content [43]. In Adaptive Edu-

cational Hypermedia, materials are organized using a concept map diagram [14, 30].

Study navigator supports the simultaneous access to multiple textbook sections, one

for the current concept to learn, and the rest for background knowledge [2]. The

alignment between textbook and lecture videos [92], and the restructuring of ency-

clopedic resources [88] are also proposed for better navigation. This thesis offers an

end-to-end study in content organization and navigation, from the idea of linking and

the algorithmic method, to the visualization of relationships and user study.

2.2 Crowdsourcing

In the previous section we discussed the peer-to-peer model of tutoring. This model

is actually an application of crowdsourcing. A typical crowdsourcing system relies

on crowd workers recruited from the Web (e.g., workers on Amazon Mechanical Turk

[90]) to provide human computation for complicated parts (usually the parts that

cannot be easily solved with a computer) in the system. By taking advantage of the

large-scaled online community, huge problems can be divided and solved at much

lower costs.

Wikipedia is one of the most compelling examples of crowdsourcing. This project

of recording all human knowledge in the form of an online encyclopedia solicits con-

tributions from anyone with an Internet connection. Since its launch in 2001, its

repository now accumulates over 5.2 million articles with comprehensive topic cov-

erage [96]. Games with a purpose (GWAP) proposes the idea of embedding work
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into games [133]. Researchers disguise a computation problem as an online game.

While people play the game, they are actually serving as processors in a giant dis-

tributed system and solving the problem without consciously doing so. The ESP

game is one of the earliest successes in GWAP [132]. In the ESP game, two play-

ers are shown the same picture and they have to independently label the picture

with words. Players can earn scores when their labels are matched and the goal

of the game is to maximize earned scores within a fixed period of time. The real

computation problem behind the game is labeling images with natural language, and

players generated annotations for almost 300,000 images in its first four-month period

of deployment. Other examples of crowdsourcing projects include translation (e.g.,

MIT OpenCourseWare [http://ocw.mit.edu/courses/translated-courses/], or

talks in TED conferences [http://www.ted.com/participate/translate]), helping

scientific discovery (e.g., Foldit [https://fold.it/]), or public health (e.g., Food

Source Information [http://fsi.colostate.edu/]). These projects are driven by

noble goals (such as the public good) or offering personal benefits (such as fun). These

motivations attract a large number of people on the Web and make recruitment of

the crowd possible.

This thesis contributes to this line of work through two crowdsourcing applica-

tions: we utilize learning content generated by peers (i.e., course forum) for confusion

resolution and recruit online workers as subjects in experiments. In the former ap-

plication, the incentive for learners to contribute is that their work can not only help

their peers, but also themselves and future learners. As for the latter application,

workers are partially motivated by the opportunity to learn from MOOC materials.

2.2.1 Micropayment workforces

However, not every project has a goal that can attract the general public to contribute,

and it is usually difficult to design a win-win condition for both researchers and the

crowd. A more general approach is to pay the crowd to complete tasks, and there are

many online crowdsourcing platforms offering services of matching and payment be-

tween task requesters and anonymous online workers. These platforms include Ama-
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zon Mechanical Turk (AMT) [90], CrowdFlower [https://www.crowdflower.com/],

and InnoCentive [https://www.innocentive.com/].

These platforms are widely used among data scientists in academia and industry

to access the online workers for a variety of tasks. McGraw demonstrates an organic

automatic speech recognition systems trained upon spoken utterances collected from

the crowd [89]. PlateMate collects object tagging and natural language description for

food photos from paid online workers, and allows users to upload photos of their meals

and get information about the food intake, composition, and nutrition [95]. Callison-

Burch presents a crowdsourcing workflow to evaluate quality of a machine translating

system [17]. There is much other research examining the usefulness of these paid

crowds for collecting, annotating, enriching, and evaluating data, including collecting

spoken caption of images [45], annotating intention in user-generated content [84],

real-time captioning of spoken content [73], and user interface evaluation [66].

In this thesis, we utilize the paid online workers recruited on AMT as experimental

subjects in two research domains: natural language data annotation and user study

in education research. For the first domain we design workflows in which workers

have to understand natural language content in learning objects and label relations

among these objects; for the second domain, we design tasks meaningful in learning

for workers to complete and measure workers’ performance. By providing monetary

incentives to the crowd, we are able to complete experiments at a much faster rate.

2.2.2 Quality control

Quality is the most criticized issue of crowdsourcing. Because of the variance in work-

ers’ expertise, level of skills, effort, and personal bias, crowdsourcing usually yields

noisier results than a conventional paradigm [76]. Furthermore, the geographically

disparate nature of crowdsourcing makes it more difficult to communicate the task

guideline and keep workers on consistent procedural executions than in a controlled

environment such as a laboratory. Hence, there is a rich thread of research in studying

how to obtain satisfactory results with crowdsourcing.

According to Allahbakhsh et al., these approaches for quality control can be cat-
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egorized into two general types, design time and run time [3]. The most common

design time approach is filtering workers based on their profile, such as their previ-

ous task acceptance rate, their IP address as an estimator of their first language, or

performance in a qualification test. The profile filtering is supported in most crowd-

sourcing platforms. Another design time approach is effective task preparation. This

approach investigates how to improve quality through different worker incentives as

well as better task description, workflow, and interface. Mason and Watts found in-

trinsic incentive such as enjoyable tasks has a more positive effect on the result than

extrinsic incentive such as monetary rewards [87]. Learnersourcing described above

is one of the best examples to offer workers intrinsic incentives [63, 93, 41, 94]. For a

better workflow, CrowdForge proposes a framework to divide complex problems into

micro-tasks [67]. Since workers on crowdsourcing platforms are more familiar with

simple and independent tasks, this dividing strategy has a positive impact on the

results. Chen et al. also discuss in detail the importance of clear task description

(e.g., the experimental goal, who is eligible, how the result will be reviewed, and the

reward strategy) for the quality [21].

Run time approaches are another type of quality control strategy. The most

common way to do so is that experts review the results, and decide which ones are

not qualified and should be rejected. This review mechanism is supported in most

crowdsourcing platforms today. Another common approach is majority consensus.

By introducing redundancy and overlapping in task assignment, majority voting can

be employed to decide the real results. Karger et al. introduce a probabilistic ap-

proach to model the noisy answers from workers and improve quality [61]. There also

exist studies that redesign the workflow to control quality on the fly. Lee and Glass

demonstrate a multi-stage speech transcription system [77]. In this system, after each

stage of transcription a machine-learning-based low quality detector is trained to fil-

ter spammers and provide instantaneous feedback to workers. Many studies have

reported that, with proper quality control, crowdsourcing can yield good or near

expert-level task results [77, 59, 100].

This thesis adopts a wide range of quality control approaches to improve reliability
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of online workers, including majority consensus, expert review, as well as clear task

description, workflow, and interface. Moreover, in addition to monetary incentives,

our tasks also provide the opportunity to learn from MOOC materials.

2.3 Machine learning and human language under-

standing

The crowd can solve many complex computational problems at reasonable costs.

However, it will be more efficient if we can solve one problem and apply the so-

lution to other similar problems. This is made possible by the recent progress in

machine learning [10]. Given data that records computational problems and usu-

ally the corresponding solutions provided by a human, research in machine learning

explores algorithms or models that can summarize regularities and patterns in the

data, and solve relevant but unseen problems with discovered regularities. Thus, with

machine learning we can build a model from data annotated by a human (either a

trained data scientist or naïve online workers), and apply the model to solve future

in-domain problems automatically.

2.3.1 Human language technology

Machine learning is one of the most active research fields in computer science nowa-

days, and it has extremely diverse applications: stock market prediction [23], credit

card fraud detection [19], medical diagnosis [69], and intelligent robotics [68] to name

just a few. Among these applications, human language technology (HLT) is one of

the domains receiving the most attention.

Human language is pervasive in our daily life, and it is one of the most crucial

means for communication and information exchange. Since human language is ubiq-

uitous, there is a rich thread of research concerning HLT, investigating the producing

and understanding of human language as well as attempting to improve human-to-

human and human-to-machine communication. HLT is an interdisciplinary field that
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includes natural language and speech processing, computational linguistics, statis-

tics, and psychology. Due to the recent progress in machine learning, there is a trend

of applying machine learning techniques to solve HLT problems. For example, Liu

investigated machine-learning-based approaches to facilitate the access of rich user-

generated content online [82]. Shahaf et al. propose an algorithm to glue pieces of

information scattered in various news articles, and create a structured summary for

the entire story [116]. Other applications of machine learning in HLT include in-

formation retrieval [85], automatic speech recognition (ASR) [138], semantic tagging

[83], topic modeling [33], and automatic question answering [131].

Since human language is an integral part of education for knowledge transferring,

there is also research studying how to improve communication between learners and

instructors by understanding the natural language content in learning materials with

the aid of machine learning. Glass et al. demonstrated the MIT Lecture Browser.

By automatically transcribing speech in lecture videos with ASR techniques, learners

can easily browse through the text and identify topics they are interested in more

efficiently [40]. On top of the transcribed text, in the FAU Video Lecture Browser, key

phrases are also extracted, ranked, and presented along with aligned lecture video.

By clicking each key phrase, learners can access corresponding video vignettes for

detailed discussion [105]. Without transcribing speech to text beforehand, a method

matching spoken search queries to lecture speech directly on audio is also proposed

to improve video navigation [107]. Fujii et al. further presented an algorithm to

automatically summarize course lectures; thus learners can get the big picture behind

each lecture without watching the video from beginning to end [37].

Beyond the lectures, there also exist studies in understanding of textbook and

course forums with HLT and machine learning, since there is an abundance of nat-

ural language in these materials. Lin et al. proposed a method to classify genres of

discussion threads for improving accessibility of forums [81]. A similar idea is ap-

plied to identify questions and potential answers in discussion boards [54]. Li et al.

demonstrated how to build a semantic forum that allows semantic search, relational

navigation, and recommendation with HLT [80]. An automatic approach to discover
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relevance among textbook sections was also investigated [2]. Due to the popularity of

MOOCs, recent research has begun using HLT in understanding MOOC materials, in-

cluding intention classification and topic modeling for forum posts [122, 135, 121, 39],

textbook section recommendation for lecture videos [92], and automated essay scoring

[7].

These research strategies demonstrate that, with HLT, the machine can learn

to understand course materials as well as assist the information exchange among

teachers, students, and materials. Due to these advantages and the nature of MOOCs

(i.e., size of the audience and physical distance among them), HLT can play a crucial

role in improving the learning experience and performance in online learning. In this

thesis we introduce an HLT-based method to automatically discover relations among

various types of MOOC materials, and show its benefit in learning.

2.3.2 Conditional random fields (CRF)

In this thesis we adopt conditional random fields (CRF) to model the relations among

learning objects. CRF is an instance of graphical models [123], which is a graph

designed to model the conditional dependence structure among random variables (a

random variable is usually used to express the observation in data samples and the

hidden classes these samples belong to). The training and inference of CRF is well

studied in the machine learning field. Therefore, it is widely used in learning temporal

dependence from sequential data, such as speech, text, image, and bioinformatics

[83, 47, 113]. Since most course materials can be expressed with sequential structure,

we believe the CRF is a perfect match to our problem. In the following we will

introduce the mathematical definition, the training, and the inference of CRF.

A general CRF can be defined as follows: given Y as the set of unobserved

variables, and X as the set of observed ones, let G be a factor graph over X and Y. If,

for any x, the conditional probability p(y|x) can be factorized according to G, then
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Figure 2-1: Diagram of general CRFs and linear chain CRFs.

(X, Y ) is a conditional random field [123]. That is,

𝑝(y|x) =
1

Z(x)

A∏︁
𝑎=1

Ψ𝑎(y𝑎,x𝑎) (2.1)

where y is a vector denoting the assignment to Y, x denoting the assignment to X,

Ψ𝑎 is the set of factors in G, a is the index of factors, and Z(x) is the normalization

term.

Z(x) =
∑︁
y

A∏︁
𝑎=1

Ψ𝑎(y𝑎,x𝑎). (2.2)

Each factor Ψ𝑎 is a function of y𝑎 and x𝑎, which are subsets of the unobserved

and observed variables respectively (i.e., y𝑎 ⊆ 𝑌 and x𝑎 ⊆ 𝑋). The value of Ψ𝑎 is

a non-negative scalar, which can be interpreted as a measure of how compatible this

subset of assignment y𝑎 to the unobserved variables is with its dependent observations

x𝑎. An example of a general CRF and its corresponding factor graph is shown on

the left panel of Fig. 2-1. In this graph, Ψ1 depends on 𝑋1 and 𝑌1, and Ψ2 depends

on 𝑌2, 𝑋1, and 𝑋2 for instance. Since there is no constraint to the underlying factor

graph of CRF, we can see it is flexible in expressing various structures among data.

With equation 2.1, inferring labels (i.e., unobserved variables) from observations

can be modeled with a maximization problem: finding the label assignment y which

maximizes the conditional probability 𝑝(y|x) given the observations x. However,

solving this maximization problem in general CRFs is intractable [123]. There are
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two usually adopted approaches to obtaining feasible solution. First, if we limit the

underlying factor graphs of CRFs to several special cases, e.g., a chain or a tree,

the exact inference can be solved in polynomial time. On the other hand, several

algorithms can be used to obtain approximate inferences, e.g., Markov chain Monte

Carlo sampler [47], and loopy belief propagation [125]. Since a linear sequence is

the most common and dominant structure for arranging topics in course materials,

we choose the linear chain CRF in this thesis and design our algorithm based on it.

Another benefit of a linear chain architecture is that it reduces the model complexity

and mitigates overfitting. This is crucial, especially when annotated training data is

hard to obtain, such as in our problems.

In the right panel of Fig. 2-1, we show an example of linear chain CRFs. Similar

to general CRFs, 𝑋 and 𝑌 also represent the observed and unobserved variables

respectively, except that 𝑌𝑡 are structured to form a chain. This chain structure

adds a constraint to the probabilistic dependence expressed by the model that an

unobserved variable 𝑌𝑡 can directly depend on only the single previous unobserved

variable 𝑌𝑡−1 and several observations x𝑡 = {𝑋𝑡𝑠}𝑁(𝑌𝑡)
𝑠=1 . Here 𝑁(𝑌𝑡) denotes the

number of observed variables depending on 𝑌𝑡.

With the linear chain structure, the conditional probability 𝑝(y|x) can be rewritten

as following equation

𝑝(y|x) =
1

Z(x)

T∏︁
𝑡=1

Ψ𝑡(𝑌𝑡, 𝑌𝑡−1,x) (2.3)

by replacing Ψ𝑎, the set of factors in G, with Ψ𝑡. Each factor Ψ𝑡 is a function of 𝑌𝑡, 𝑌𝑡−1

and x, and these factors represent the linear-chain factor graph. In real application

Ψ𝑡 is usually set as the following form Ψ𝑡(𝑌𝑡, 𝑌𝑡−1,x) = exp{
∑︀K

𝑘=1 𝜃𝑘𝑓𝑘(𝑌𝑡, 𝑌𝑡−1,x)},

and Equation 2.3 is rewritten as

𝑝(y|x) =
1

Z(x)

T∏︁
𝑡=1

exp{
K∑︁

𝑘=1

𝜃𝑘𝑓𝑘(𝑌𝑡, 𝑌𝑡−1,x)}. (2.4)

Here 𝑓𝑘(𝑌𝑡, 𝑌𝑡−1,x) is a feature function that researchers need to design based on

domain knowledge, and 𝜃 = {𝜃𝑘}K𝑘=1 is the parameter set that has to be learned from
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training data. This chain structure is called the Markov property, which assumes

the modeled stochastic process is memoryless, i.e., the prediction to the current un-

observed variable depends only on the prediction to the previous one, and no other

earlier prediction. Another popular model that assumes this property to hold is

the hidden Markov models (HMM), and in fact this linear chain CRF can be inter-

preted as a generalized HMM, where the factor function Ψ does not need to have a

probabilistic interpretation as HMM does. With the memoryless property, the infer-

ence problem of linear chain CRF (as well as HMM) can be solved efficiently with a

dynamic-programming algorithm [123].

In addition to the inference problem, another issue of applying CRFs to real tasks is

parameter estimation, or training. The maximum likelihood criterion is typically used

for estimating parameters: given the fully labeled training data 𝐶 = {x(𝑖),y(𝑖)}N𝑖=1,

where (x(𝑖),y(𝑖)) is the 𝑖-th sample in the data, x(𝑖) = (x(𝑖)
𝑡 )T𝑡=1 is a sequence of obser-

vations, and y(𝑖) = (𝑌
(𝑖)
𝑡 )T𝑡=1 is a sequence of labels corresponding to 𝑥(𝑖), we estimate

the model parameter 𝜃 with the maximum likelihood estimator 𝜃 = argmax𝜃𝑙(𝜃). 𝑙(𝜃)

is the objective function and equals
∑︀N

𝑖=1 log𝑝(y(𝑖)|x(𝑖); 𝜃) with 𝑝(y(𝑖)|x(𝑖); 𝜃) as defined

in Equation 2.4. However, in general the estimator does not have an analytic form.

Therefore, a gradient ascent approach is adopted to obtain an approximate solution

to this optimization problem (other approaches also exist but gradient ascent is most

commonly used in practice). The algorithm for gradient ascent can be summarized

as follows:

Algorithm 1 Gradient ascent algorithm
1: Randomly initialize the parameter set 𝜃
2: repeat
3: Compute the gradient of the objective function, ∇𝑙(𝜃)
4: Update the parameter set 𝜃 according to pre-defined learning rate 𝜌

𝜃 := 𝜃 + 𝜌∇𝑙(𝜃)

5: until convergence criterion is achieved.

This algorithm updates the estimated parameters along the direction where the

objective function is increased most at each step. When the convergence criterion

(e.g., the difference of estimation in two consecutive iterations is less than the pre-

42



defined threshold) is achieved, the estimation is the trained model parameters. There

are many variations of this algorithm, such as Newton’s method, BFGS, and conjugate

gradient [123]. These variations attempt to improve convergence speed with different

techniques but share the same compute-gradient-and-update idea.

These training and inference techniques are widely used in various applications of

linear chain CRF. In Chapter 4, we will discuss how to apply the general model in

our problem of linking discovery.

2.3.3 Word embedding

In order to apply statistical models to natural language content, we have to represent

content in a form that the model accepts, i.e., numeric vectors. Here we give an

introduction to the vector representations employed in this thesis.

The first representation is unigram embedding, or Bag of Word (BoW) embedding.

In this simple embedding, a document is represented as a vector [N(𝑤1), N(𝑤2), ...,

N(𝑤|𝑉 |)], where 𝑤𝑖 is the 𝑖-th word in vocabulary V, and N(𝑤𝑖) is the score of 𝑤𝑖 in

this document. The score can be the number of occurrences, the word frequency, or

term frequency-inverse document frequency (TF-IDF) [112]. The upside of unigram

embedding is that this method is intuitive and easy to train. However, since each

word is represented as an atomic unit in the vector and different words are encoded

independently, the long-range lexical dependency, such as the context of a word, is

missing in this representation.

To make the shallow and local representation embed lexical dependency in a longer

range, we can adopt an 𝑛-gram model, which is an extension of unigram embedding,

and each element in the vector represents a combination of 𝑛 words instead of a

single word. Nonetheless, this model provides only limited added value. An 𝑛-gram

model greatly increases the dimension of vector representation, since it exhaustively

enumerates all possible combinations of 𝑛 words. Due to the curse of dimensionality,

in practice we can only use a small 𝑛 in order not to overfit, especially when the size

of training data is limited. Thus, the range of dependency this method can encode is

still restricted.
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We turn to word2vec embedding for our second representation with longer lexical

dependency [91]. Word2vec is a two-layer neural network. Its input is a text corpus

and its output is the vector representation for each word in the corpus. As com-

pared to the 𝑛-gram and unigram method, word2vec is a continuous language model,

which means that each word is represented as a continuous vector. The upside of

this representation is its capability of encoding semantic and syntactic dependencies

among words. In the 𝑛-gram or unigram method, each word or combination of words

is represented with an independent element in the vector, and the relations among

words cannot be encoded efficiently; in word2vec, the neural network model is de-

signed to discover and represent semantic and syntactic dependencies from patterns

from words’ context. For instance, based on the word2vec model trained on millions

of Wikipedia pages, 𝑣King− 𝑣Man + 𝑣Woman ≈ 𝑣Queen, and 𝑣Apples− 𝑣Apple + 𝑣Car ≈ 𝑣Cars,

where 𝑣𝑖 denotes the word2vec representation of word 𝑖. With word2vec embedding,

the document representation can be simply obtained by averaging word vectors over

the entire document.

The word2vec embedding is trained using a feedforward neural network model

with architecture shown in Fig. 2-2 [106]. In the figure, x𝑡 is an one-hot vector with

its 𝑖-th element equal to 𝛿(𝑤𝑡 = 𝑣𝑖); W1 and W2 are matrices of weights to be learned

from a corpus; h is a vector of hidden layer projection obtained by transforming the

hidden layer input with the sigmoid function 𝜎; 𝑘 is the hyper-parameter deciding

the size of context for this model to learn from. Here 𝛿() is an indicator function with

𝑤𝑡 as the 𝑡-th word in corpus and 𝑣𝑖 as the 𝑖-th word in vocabulary. These vectors

and parameters are related to each other based on the following equation:

x𝑡 = W2h = W2(𝜎(W1[𝑥T
𝑡−𝑘, 𝑥

T
𝑡−𝑘+1, ..., 𝑥

T
𝑡+𝑘]T)). (2.5)

This model can be interpreted as a classifier trained to predict a word based on its

neighbors, typically using the Stochastic Gradient Descent (SGD) training algorithm.

The algorithm is very similar to the one introduced in Section 2.3.2, except that, in

each step, we update the estimated parameters W1 and W2 along the direction where
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Figure 2-2: Architecture of feedforward neural network employed to obtain word2vec
embedding.

the objective function is decreased most, and we use cross entropy as the objective

function. After the training, the vector representation of 𝑤𝑡 is W1x𝑡. In this way,

the neural network can encode the long-range semantic and syntactic dependencies

in vectors by discovering patterns from the context of words.

In fact, there are other common approaches to represent text documents as vec-

tors that encode high-level lexical and semantic information: doc2vec [75] and topic

modeling [98, 52, 11]. Doc2vec is a very similar algorithm to word2vec except that

it learns representation for larger blocks of text directly, such as paragraphs or sen-

tences. Topic modeling refers to a family of methods for discovering latent semantic
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structure and identifying the subsets of words co-occurring more frequently in docu-

ments of various "topics". In this thesis we choose not to use these representations.

Doc2vec requires too much in-domain data for training. The learned "topics" in topic

modeling are too broad for our problem. For instance, with topic modeling we can

easily identify python, complexity, or object oriented programming corresponding to

topic computer science, and standard deviation, or hypothesis testing belonging to

statistics. However, when it comes to distinguishing complexity from programming,

since the two concepts are in different lectures, topic modeling usually introduces a

lot of noise. Hence, we surmise that doc2vec and topic modeling are not suitable for

our problem.

2.4 Corpora

Before starting to implement our proposed framework and investigating the effects

on learning, we have to first decide which materials and MOOC subjects our system

should be built upon. Today there are over four thousands MOOCs on the Web cov-

ering subjects from science to humanities. Types of materials and pedagogies adopted

in these MOOCs are diverse. It is impractical to expect an exhaustive exploration

of every condition. Thus, in this thesis we make a tradeoff between feasibility of

experiments and generalizability of results. In the following we discuss the decisions

we make and the rationale.

2.4.1 Course subjects

Experiments in this thesis use two MOOCs: Introduction to Statistics: Descrip-

tive Statistics (Stat2.1x), and Introduction to Computer Science and Programming

(6.00x). Stat2.1x was offered by University of California, Berkeley, from February to

March in 2013 on edX [55], and 6.00x was offered by Massachusetts Institute of Tech-

nology (MIT), from February to June in 2013 on edX [1]. Stat2.1x is an introduction

to fundamental concepts and methods of statistics, which require basic high-school

level Mathematics. 6.00x is aimed at undergraduate students with little programming
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experience, and discusses how to solve real problems with computational approaches

and computer programming. Both MOOCs were very successful. Stat2.1x has over

47,000 registrants, and 6.00x has over 72,000 registrants. Due to the popularity of

these two MOOCs and the growing interest in STEM education these years, we choose

to focus investigation in this thesis on Stat2.1x and 6.00x. The popularity of under-

lying MOOC subjects makes findings in experiments more influential, representative

and likely to be applied to different conditions. Furthermore, our familiarity with the

topics is another plus.

In our following investigation, these two MOOCs serve different purposes. We

use Stat2.1x for developing minimum viable product [58] and 6.00x for the final

evaluation. In system development, minimum viable product is an intermediate stage

where a product with a minimum amount of features is built to gather information

and user feedback about the product. In this stage, the goal is to validate product

ideas from interaction with real users with minimum cost. This provides insights for

further system development and greatly reduces risk as compared to implementing

all features in the product at once. We believe Stat2.1x can serve this purpose well

for two reasons. First, this MOOC is shorter (less than two months) than most of

the others, but still contains necessary components and course materials. Therefore

we can implement our framework on a complete MOOC more readily, e.g., labeling

linking on fewer materials. Second, statistics is familiar and interesting to many, thus

making it easier to recruit experimental subjects in our study. For these reasons,

we select Stat2.1x for an intermediate validation of the benefit and scalability of

educational content linking. The role of Stat2.1x can be interpreted as a development

set in a machine learning system.

With the validation and feedback, we improve our implementation on 6.00x and

evaluate the resulting system in depth. In addition to aiming at answering fundamen-

tal questions such as whether linking is beneficial or scalable, we also explore advanced

features, such as reproducibility, generalizability, and portability of the framework.

We can interpret 6.00x as a test set in machine learning system. Using one MOOC for

development and a different MOOC for testing makes the evaluation more credible
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and less subject to the criticism that we overfit our implementation to a particular

MOOC.

There are other benefits of using 6.00x. Since this MOOC was offered by MIT,

there are many more resources available to us. We can easily reach course staff and

MIT students who have taken the corresponding course on campus for insightful

understanding. Moreover, this MOOC and its corresponding residential course have

been offered many times on edX and at MIT. These multiple offerings leave room for

expanding our survey along various dimensions in the future.

2.4.2 Course materials

Within a MOOC, a wide range of course materials are available to learners, such as lec-

ture videos, lecture slides, labs, textbook, discussion forum, course Wiki, quizzes and

exams. Considering the development cost, again we choose a subset from these mate-

rials for experiments in this thesis: lecture videos, slides, and textbook for Stat2.1x,

and the previous three materials together with discussion forum for 6.00x. There

are several reasons for us to make this choice. First, these types of materials are

common to many MOOCs nowadays and contain a large portion of learning con-

tent. Second, these materials have similar form over different course subjects. This

fact makes the experiment easier to reproduce from MOOC to MOOC. In contrast,

for example, quizzes and exams have diverse styles, from multiple-choice questions

to computational problems to essay writing, and each course subject emphasizes on

various styles. Thus it might be challenging to generalize experimental results to a

variety of MOOCs. Third, these materials allow us to investigate various types of

linking, from linking two types of materials composed by the same instructor that

can be aligned in order properly, to linking two materials with very different creators

and organization. One example of the first type is linking between lecture videos and

slides, and examples for the second one are linking lecture videos to textbook or to

discussion forum. We will explain these two types in detail in the next section. For

these reasons, we believe our choice of materials can help us obtain generalizable and

reproducible experimental results with reasonable cost.
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Table 2.1: Summarization of sizes of course materials used in this thesis.
Sizes Words Vocabulary

Stat2.1x
Lecture video 7 hours 62k 1,743
Lecture slides 157 pages 11k 785
Textbook [120] 77 sections 45k 1,825
6.00x
Lecture video 21 hours 174k 3,086
Lecture slides 498 pages 32k 1,952
Textbook [42] 144 sections 119k 4,594
Discussion forum 1,239 threads 236k 6,772

Note that discussion forum is only chosen in the evaluation MOOC (i.e., 6.00x).

This is because accessing data with personally identifiable information, such as forum

posts, requires lengthy paperwork. This work should not be a part of development of

minimum viable product.

In Table 2.1 we summarize the quantity of these materials. The first column lists

the number of video hours, slide pages, textbook sections, and discussion threads.

Here we measure the size of the textbook by number of sections rather than pages,

since the textbook used in Stat2.1x is a Web-based electronic book, and pages in this

book are not properly defined. Furthermore, considering the cost of data annotation,

we only used the threads posted under the lecture videos in our experiment; these

1,239 threads are about one tenth of the total posts in 6.00x. The second and third

columns show the number of words in the available material and the count of unique

words, respectively. Here video transcription is used for computing the number of

words.

From this table we observe that the amount of content in 6.00x is much greater

than the amount in Stat2.1x. This is another reason why we chose Stat2.1x to develop

the minimum viable product. The much smaller corpus means a faster process of

establishing linking among the course materials.
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Chapter 3

Would linking help learning?

This chapter investigates the first research question: Would it help learners if we were

able to link course materials using human assistance? In MOOCs most instruction

and knowledge acquisition happen as the learning content is delivered. Thus, in the

previous chapter, we surmised that making materials more accessible by linking them

would enhance the learning experience and outcomes. For example, when learners

are confused at a specific point of the lecture, more accessible materials allow them to

find useful content with which to more easily clear up their confusion. In this chapter,

we explore the research question in support of our theory with empirical evidence. To

approach this question, we conducted an end-to-end study investigating the following

issues:

∙ How to link course content with human assistance?

∙ How to present linking along with content to learners?

∙ How to measure the effect of linking on learning?

∙ Is linking helpful?

The study is conducted on two MOOCs: Stat2.1x and 6.00x, which are described

in detail in Section 2.4. In the first MOOC we evaluate the idea with minimum input,

and in the second MOOC we measure system performance in realistic conditions. In
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our experiment, we discover that, using human annotation, we can build an interface

presenting course material with meaningful interconnection. Our interface is shown

to be beneficial in supporting learners to complete their tasks: it allows learners to

search for information more efficiently, retain more concepts using the same amount

of time, and focus on informative learning content. Moreover, we contribute to the

research community by providing a user study pipeline that can be conducted at scale

and in a cost-effective way.

3.1 Linking materials

Linking is an abstract and general idea; however to implement a real system based

on the idea, a concrete definition is required. Linking refers to relations among

objects and can typically be visualized as a graph diagram, with vertices representing

the objects and edges for the linking. However, many people are not comfortable

interacting with a general graph diagram [48], since the volume of possible paths in

the graph is confusing and overloads the human cognitive system [65]; in order not to

distract learners, most learning content, e.g., lectures, or textbook sections, is aligned

in sequence. Likewise, we limit our linking to a specific trunk-and-leaves architecture.

In this section, we discuss how to link course content with human assistance under

this architecture.

3.1.1 The linking tree

Fig. 3-1 illustrates the trunk-and-leaves architecture we limit linking to, with blue

nodes representing the trunk and the others for leaves. A node in the diagram rep-

resents a learning object, which is defined in Section 3.1.2. The trunk visualizes the

main flow of the courses and shows students a clear learning path to follow. Each leaf

node attaches to one object on the trunk, and represents a supplementary learning

object for the corresponding trunk node.

In this thesis, we select lecture video sequences as the trunk of the tree, since

most online or residential classes center around the lecture or lecture videos. Below,
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Figure 3-1: Trunk-and-leaves architecture (i.e., the linking tree)

we discuss how to obtain supplementary objects, i.e., the leaves, for each trunk node

with human annotation.

3.1.2 Homologous and heterologous linking

We identify supplementary objects for each node on the trunk by discovering the

relations between three pairs of course materials: lecture videos and slides, videos

and textbook, and videos and discussions. In this thesis, instead of treating the

entire video as an atomic element, we discover relations at the level of the video

segment. We surmise that this finer granularity is helpful in visualizing in-video

structure, such as subgoals, subtopics, or meaningful conceptual pieces; the structure

improves learning and navigation by summarizing and abstracting low-level details

as well as reducing the cognitive load of learners [63]. In order to achieve this level

of granularity, we define a learning object as a segment of the lecture video, a page

in the lecture slides, a textbook section, or a discussion thread.

Before describing how to discover relations between materials, we first discuss

the two types of relations: homologous and heterologous linking. The reason for

discussing these two types first is because their linking patterns are distinct; the dif-

ference can greatly affect how to discover relations. In Fig. 3-2, we show examples
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Figure 3-2: Examples of homologous (upper panel) and heterologous linking (lower
panel)

of these two types of linking, with homologous linking in the upper panel and het-

erologous in the lower panel. The figure illustrates two sequences of learning objects

from two types of materials along with the relation between each object pair. Here

objects in the trunk (i.e., segments of lecture videos) are represented as blue nodes,

and objects from another material (e.g., pages of slides, textbook sections or discus-

sion threads) are in orange or pink. The indices of objects are also labeled (1 to 7, A

to C, and a to c).

As shown in the figure, a homologous linking is a many-to-one and monotonic (or

order-preserving) mapping between two sequences of learning objects. A monotonic

mapping satisfies the following attribute:

x ≤𝛼 y implies 𝑓(x) ≤𝛽 𝑓(y) if 𝑓(x), 𝑓(y) is not ∅ (3.1)

where x and y are learning objects in material 𝛼, f (x) and f (y) are the objects

in material 𝛽 and linked to x and y respectively, and ∅ is the empty set. x ≤𝛼 y

refers to the case in which object x precedes object y in the material sequence 𝛼; the

precedence can be defined by the chapter/section/lecture indices or the thread post

time. Homologous linking mostly exists between two materials authored by the same

person, e.g., between video segments and slides, since in this case topic arrangement
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in different materials usually follows the same ontology.

In contrast, heterologous linking refers to the case in which mappings between

two object sequences are many-to-many or not order-preserving, as in the example

shown in the lower panel of Fig. 3-2. In this example, the precedence of objects in one

sequence is not preserved after mapping these objects to objects in another sequence,

resulting in the many crisscrosses when visualizing the mapping. Heterologous linking

usually exists when the underlying two materials come from different authors. This

is because the cognitive system in which humans interpret and store knowledge varies

from person to person. It is very likely that different authors arrange topics and

content in different ways.

The linking between lecture videos and forum discussions, or lecture videos and

textbook, can usually be classified as representing a heterologous relationship. For

a textbook, its arrangement of chapters and sections can be totally different from

the arrangement of lectures in a course. As for posts in a forum, if we sort them by

creation time, they can also be in a distinct order from the lectures. This is because

every learner has a different pace and experiences different learning progress; hence

even at the same point in time, different learners may commence discussions about

different topics.

In fact, instead of a dichotomy, it is more precise to interpret the monotonic

property as a spectrum, where the proportion of mapping that violates Equation 3.1

changes gradually from zero to one. For example, although neither video-to-discussion

or video-to-textbook linking are order-preserving, there are usually more crisscrosses

in the former. We choose to simplify the spectrum to two conditions – homologous

and heterologous linking – because it is not practical to investigate every point on

the spectrum. Since the proportion of order-preserving mappings between materials

is highly correlated to the complexity of identifying supplementary objects, we used

two methods to discover the relations for the two types respectively.
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Segments		 2 3	 5	 7	6	4	1

Possible	supplementary	objects	 A	 B	 C	

Labels	 A	 B	 -	 C	-	B	A	

Figure 3-3: Annotating homologous linking as an alignment problem

3.1.3 Linking representation

Since homologous linking is a many-to-one and monotonic mapping, we formulate

relation discovery as an alignment problem. In Fig. 3-3 we show how to annotate

homologous linking based on this formulation to represent the relation configuration

between materials illustrated in the left panel of Fig. 3-2. Given two sequences of ma-

terials – one the trunk and the other a set of candidates of the leaves – we identify the

non-overlapping, sequential chunk of trunk nodes corresponding to each leaf in order,

and label these nodes with the index of the leaf. Here, we define a correspondence

between a chunk of trunk nodes and a leaf when they contain identical discussion

about a concept. In addition, since the video transcription sentence is the only unit

that can be obtained easily and is of a finer granularity than the entire video, we

choose one sentence as a video segment (i.e., a node on the trunk).

For heterologous linking we can adopt the same formulation, as shown in the

upper panel of Fig. 3-4. However, in this case, since the aligned chunk of trunk nodes

need not be sequential, and the chunks for different leaves may overlap, identifying

the chunks is much more complicated than in the homologous case. Furthermore, the

possibility of one video segment aligning to multiple leaves makes this problem a multi-

label classification problem, which increases the complexity of any automated method

to infer the relation. Consequently, we propose another formulation for heterologous

linking, as shown in the lower panel of Fig. 3-4.

In this alternative formulation, we divide the entire relation identification problem

into several sub-problems by considering each leaf independently. That is, in each

sub-problem, our goal is to discover the relation between the sequences of trunk nodes

and a separate leaf. Each sub-problem is interpreted as a binary classification task,
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Segments		 2 3	 5	 7	6	4	1

Possible	supplementary	objects	
a	

b	
a	

Labels	(alignment)	 ac	 b	 -	 c	-	b	ac	
	c	

Segments		 2 3	 5	 7	6	4	1

Labels	(binary	classificaAon)	
a	
b	
c	 Y	 N	 N	 N	N	N	Y	

Y	 N	 N	 Y	N	N	Y	
N	 Y	 N	 N	N	Y	N	

Figure 3-4: Annotating heterologous linking as either an alignment problem (upper
panel), or a binary classification problem (lower panel)

where every trunk node is classified as related (denoted as "Y" in the figure) or

unrelated ("N") to the leaf. In this way, we solve the entire problem by solving many

simpler sub-problems.

We can also adopt a transcription sentence as a node on the trunk. However,

the workload of relation discovery can be too heavy for the humans because we have

many sub-problems to solve. Since in the two MOOCs investigated in this thesis we

have both homologous and heterologous linking in the corpus, in our implementation

we first annotate the former linking, and merge the sequential chunk of sentences

that are aligned to the same leaf as a new video segment (for clarity, below we refer

to this video unit used in heterologous linking as a "video vignette", and use "video

segment" for a general purpose, e.g., a sentence in homologous linking or a vignette in

heterologous). These vignettes inferred from the alignment are used as trunk nodes

in the following heterologous linking to reduce annotator workloads. In addition,

we define a trunk node as related to the leaf if the concept contained in the trunk

node is equivalent to, an instance of, or a part of the leaf. Here, we choose a more

relaxed definition than the "correspondence" of homologous linking, because in the

heterologous case, content is usually organized in various manners and we are less
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likely to find identical mappings in the two underlying materials.

Thus in this thesis we link MOOC materials using the following steps:

1. Determine homologous linking of video transcription sentences (trunk nodes)

against lecture slides (leaves). The homologous linking is formulated as an

alignment problem.

2. Group transcription sentences linked to the same slide together, and define each

group as a "video vignette".

3. Determine heterologous linking of video vignettes against textbook sections and

discussion forum posts. The heterologous linking is formulated as a binary

classification problem.

3.1.4 Annotation tasks

For these two types of linking, we designed two websites to collect human annotations.

In Fig. 3-5, a screenshot of the website used for homologous linking is shown. Since

in this thesis, the only homologous linking investigated is the alignment between the

lecture video transcription and slides, we thus design the interface to present for each

instant a transcription of a lecture video and a deck of slides from the same lecture

in parallel. In the website, a human annotator first selects a slide page by clicking

"<" (previous page), or ">" (next page). Then the annotator clicks and drags on the

sentences he or she intends to align to the selected slide, and clicks on the "Add the

selected chunk" button to confirm the alignment. After the confirmation, sentences

aligned to different pages of slides are highlighted with different background colors,

which are listed on the rightmost side of the screen. For instance, in this figure the

first three sentences are aligned to the first slide, and the following ten sentences are

aligned to the second. The interface also provides a "Clear your alignment" button

for annotators to clear the confirmed alignment. Note that in this interface we do not

show the lecture video, because we intend to simplify the workflow of this annotation

task, and encourage our annotators focus on the transcription sentences.
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Figure 3-5: Website built to collect homologous linking (i.e., the alignment between
lecture video transcription and slides)

We designed another website for the annotation of heterologous linking; as an

example we show its screenshot in Fig. 3-6. During implementation we investigated

two mappings, i.e., lecture video to discussion forum and video to textbook, for the

heterologous condition; therefore, we also designed the interface to present video

content and discussions (or textbook) side-by-side. As shown in the figure, in the

upper half of the website, lecture video from the entire course is presented. Annotators

can access the videos by clicking on the main title (this is a title shared among several

lecture videos, and is here presented in blue text) and subtitle (a title specific to each

video, presented in black text) of each video listed on the left hand side of the screen.

In addition to a lecture video, here we also provide the aligned video transcription on

the right and the thumbnails of aligned slides below the video. The transcription is

synchronized with the video based on the time code extracted from the video subtitle

file. The alignment between a video and its slides is inferred from human annotation

in the homologous task as well as from the time code of transcription sentences; we

show this alignment information using black markers on the video scrubber, each

marker of which represents the beginning of a video vignette that is aligned to one

slide. As compared to the website for homologous linking, here we present video

along with the various relevant materials (e.g., the aligned slides and transcription)
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“Link	vignette” bu)on	 Linked	vignettes	

List	of	main	2tles	and	sub2tles	of	videos	 Slide-alignment	markers	 Synchronized	transcrip2on	

Figure 3-6: Website built to collect heterologous linking (i.e., the binary classifi-
cation task of deciding whether a video vignette/discussion thread pair or a video
vignette/textbook section pair is relevant)

simultaneously, to provide annotators with a comprehensive understanding of each

video vignette, which in the heterologous task is the unit we work on.

In the lower half of the website, a discussion thread (or a textbook section) is

shown to annotators. The annotator selects the relevant video vignettes from the

entire course, and links these vignettes to the thread by clicking the "Link vignette"

button. Linked vignettes are also shown on the screen with text in cyan. Since a

video vignette 𝑣𝑖 can be defined by two markers (i.e., the marker representing the

beginning of a video vignette that is aligned to slide i and the next marker for slide
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i+1), the annotator can simply select 𝑣𝑖 by dragging the video scrubber to any place

between the two markers.

We then recruited human subjects to annotate links in our corpus with the two

websites. In Stat2.1x, the linking between lecture videos and slides (homologous) and

the linking between videos and textbook (heterologous) were annotated; for 6.00x,

in addition to the two pairs of materials above, the video-discussion linking was also

labeled. For the statistics course, in order to expedite the development process, we

employed for the labeling three annotators (including the author) who were graduate

students or postdoctoral researchers with expertise in statistics. Each annotator spent

five hours labeling the homologous task and 8 hours on the heterologous one. Majority

voting was applied to the labeling results of the three annotators to obtain the final

linking annotation used in this thesis.

To understand the consistency among annotators, we computed Cohen’s kappa

statistic [130] to measure the inter-annotator agreement. The statistic can be written

as the following equation:

𝜅 =
𝑝𝑎 − 𝑝𝑐
1 − 𝑝𝑐

. (3.2)

In this equation, 𝑝𝑎 is probability of agreement among annotators observed in samples

(i.e., in the corpus), and 𝑝𝑐 is the theoretical probability of chance agreement. In

Stat2.1x, the kappa scores are 0.867 and 0.599 for the homologous and heterologous

task respectively. According to several arbitrary guidelines, these scores show almost

perfect and moderate agreement among annotators in the two tasks respectively [72,

34]. In addition, the lower score in the heterologous linking also reflects that the

underlying task is more complicated than the homologous one.

For 6.00x, one of our goals was to establish a more realistic pipeline with its

materials. Thus, instead of researchers, we chose to recruit online workers from AMT

for the homologous linking, and teaching assistants in both the edX and MIT offering

of 6.00x for the heterologous tasks. Online workers were employed here for homologous

linking since they were an economic choice for data annotation with satisfactory

quality [77], especially for simple underlying tasks. In contrast, we chose to recruit
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teaching assistants for the heterologous task, because in the designed annotation

workflow, annotators must be familiar with the entire course before they can select

relevant videos for each discussion (or textbook section) efficiently. This task requires

annotators to spend a much longer period of time to ramp up. However, since on

the crowdsourcing task-matching platform workers usually have thousands of tasks to

choose from at the same time, the returning worker rate is much lower in comparison

to recruiting teaching assistants for annotation. The low return rate necessitated a

large portion of time to train new workers to be familiar with the content, and likewise

a smaller portion of experienced workers yielding quality output.

We created a total of 945 HITs (i.e., Human Intelligence Tasks)1 on AMT to align

105 video-slide pairs, with nine workers on each pair and a reward of $0.25 for each

HIT. 100 workers participated in the annotation; the mean and standard deviation of

the total time spent for each worker were 35.5 minutes and 63.4 minutes respectively.

Majority voting over the nine labeling results in each pair of video and slides was also

used to obtain the alignment used in this thesis.

For the labeling of the 144 textbook sections to lecture videos, we recruited four

teaching assistants from the 6.00x course offered at MIT; the labeling of 1,239 dis-

cussion threads was done by two teaching assistants from the MIT 6.00 course and

five teaching assistants from the edX version. Each section or discussion thread was

labeled by three different annotators for the majority consensus process. These an-

notators spent 7.5, 7.5, 5, and 3 hours on the textbook task, and 16, 14, 10, 10, 6,

6, and 2 hours labeling the forum. We paid these annotators at the rate of $45 per

hour.

We also computed kappa scores for these annotations. For the video-to-slide,

video-to-textbook, and video-to-discussion linking, the scores were 0.810, 0.761, and

0.434 respectively. We are satisfied with these results because all of the scores also

show almost perfect or moderate agreement among annotators [72, 34]. Comparing

these numbers to the scores obtained in Stat2.1x, we find that in homologous linking,

online workers were able to yield as consistent annotation as the researchers (cf. 0.810

1On AMT, each HIT is a self-contained task a worker completes for a reward.
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vs 0.867); annotators were more consistent in linking textbook to video sequences (cf.

0.761 vs. 0.599), presumably because the author of the textbook used in 6.00x was also

one of the lecture instructors. Therefore, it was easier to identify the related learning

objects from two material sequences. In contrast, linking discussions was undoubtedly

the most complicated task since the learner-generated content was noisier and less

organized than that from educators, as reflected in its low inter-annotator consistency.

Even so, the 0.434 kappa score still shows fair agreement among teaching assistants.

3.2 Presenting linking to learners

With the linking among course materials annotated, we then designed an interface

to visualize the annotated relations while learners access the course content. Our

ultimate objective was to provide learners guidance and make learning content more

accessible, and to help them find supporting materials more efficiently when they

were confused or otherwise in need. After surveying the relevant literature [63, 122,

135, 65, 92, 121, 39, 86], we identified three high-level goals that informed our design.

Supporting relational navigation among materials. Many observations sug-

gest that, in current MOOC platforms, it is difficult for learners to identify related

materials [122, 135, 92, 121, 39]. Thus many interactions are not supported, such as

skipping redundant forum posts, or navigating from a specific point of a lecture to

further discussion in the forum and detailed explanation in the textbook. To support

these navigation needs, we leveraged the annotated linking among learning materi-

als. We designed our interface to visually illustrate the relations among the material.

The visualization guides learners and allows them to jump back and forth among the

relevant content.

Providing easy access to different conceptual pieces within a lecture

video. Previous research has shown that presenting videos along with sub-goals

helps people learn better, since the sub-goals can abstract away low-level details and

reduce the cognitive load of learners [63, 65, 86]. Since the lecture slides are usually

the skeleton of a lecture, and since each slide can be interpreted as a conceptual
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piece or sub-goal of this lecture, we designed the interface to visualize the alignment

between slides and videos. In this way, videos aligned to different conceptual pieces

can be accessed efficiently.

Minimizing distraction while providing guidance. The additional naviga-

tion and guidance introduce new elements to the interface. Thus learners must learn

how the new interaction works, which can be distracting or can lead to cognitive

overload. Since distractions have a negative effect on learning [65], we also designed

our interface to minimize disturbances. Specifically, we borrowed many design deci-

sions from mainstream MOOC platforms to facilitate intuitive interaction with the

interface. Below, we introduce the interface and describe in detail how the design

achieves the three goals.

In Fig. 3-7, a screenshot is shown of the interface presenting content and linking

simultaneously. In the interface, there are four main components: key-term search,

material list, content presentation, and linking visualization. To begin interacting

with the interface, the user enters the topic he or she intends to learn in the search

field. Our server retrieves the learning materials relevant to the entered topic by 1)

stemming the search query for query expansion, 2) enumerating n-grams (n from one

to five) in the expanded query, 3) scoring each lecture video, slide, textbook section,

and discussion thread with the number of matched n-grams, and 4) returning the

material with the N (we set N to 60 in the following experiment) highest scores.

Instead of simply presenting the content of the entire course, we provided a search

tool in this interface, because search is a common and mature technique that helps

users narrow down candidate documents and obtain the desired information.

The returned materials are listed based on their types (i.e., video, slides, textbook,

and discussion) and their original position in each material sequence (e.g., chapter

index). The material sequence accessed by selecting the "video" tab (i.e., the list

of the videos’ main titles and subtitles on the left hand side of the screen) is the

main flow, or the trunk, of returned content. In addition to videos, we also attach

returned slides, textbook sections, and discussion threads (i.e., the leaves) to relevant

videos according to the linking annotations; orange, green, and pink icons for these
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Tabs	for	different	material	types	 Search	tool	

List	of	main	7tles	and	
sub7tles	of	lecture	videos	

Icons	indica7ng	available	
types	of	linked	materials	

Synchronized	video	
transcrip7on	

Materials	linked	to	the	
lecture	video	(each	block	
is	synchronized	to	the	
video	progress	bar)	

Figure 3-7: The implemented interface which presents learning content and linking
information simultaneously. In this interface, course materials are retrieved by sub-
mitting queries using the provided search tool. The retrieved materials are listed
according to their types (in the top left corner of this screenshot) and their original
positions in each material sequence (e.g., lecture or chapter indices). Titles of listed
materials are shown on the left hand side, and content selected from the list is in
the middle. If the selected content is a video (i.e., the trunk), linked supplementary
objects (i.e., the leaves) are also displayed as orange, green, or pink blocks under the
video scrubber.

supplementary contents are appended to the titles of corresponding videos to illustrate

the available types of materials. The returned slides, textbook sections, and discussion

threads that are not related to any videos are listed under the corresponding tabs next

to the "video" tab.

As far as learnability goes, we laid out the interface to resemble the arrangement

in prevalent MOOC platforms such as edX. By borrowing the design decisions made

by the professional user experience teams in these platforms, we were able to make

our interface intuitive, which helps learners to concentrate on learning the content,
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instead of learning how to use the website. This fact not only enhances the learning

experience, but also reduces noise when we measure how linking affects learning in

a user study. In addition, we chose to preserve the original flow of materials when

presenting the returned content, instead of listing materials by their relevance scores.

Preserving the original flow allows us to visualize the context and prerequisite depen-

dency among returned materials, which is crucial for achieving meaningful learning

[5].

After selecting a video from the list, the learning content along with linking infor-

mation is shown in the middle. As illustrated in the figure, a lecture video and the

synchronized transcription are presented. Under the video scrubber, several orange,

green, and pink blocks are rendered. These colored blocks are synchronized with the

video progress bar. Each colored block corresponds to a linked supplementary ob-

ject (i.e., a slide, textbook section, or discussion thread), and the span of the block

represents the video vignette that is linked to the underlying object. As shown in

Fig. 3-8, by clicking on each colored block the corresponding object is displayed in a

lightbox. As for the returned slides, sections, and threads that are not linked to any

video, learners can also access the content by selecting the material title from the list

under the corresponding tab; the resulting content is also displayed in the middle of

the website.

We surmised that this interface would enhance the learning experience by helping

learners access relevant information and identify the underlying sub-topics of the

videos. As compared to a conventional video player where only the video scrubber

is provided, the synchronized object identifiers serve as recommendations that might

prove useful for learners at different points in their learning path. For instance, if

a learner were watching a lecture video and were confused at a specific point in the

video, with our interface this learner could access easily the detailed explanation in

the textbook using the linking from the video vignette; if the learner wanted to learn

more about a concept mentioned at some point in the video, the linked forum threads

could provide further discussion. Furthermore, since relevant materials are linked and

placed together under the video scrubber, it is easier to identify redundant learning
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Page	1 ✖

Figure 3-8: By clicking on any of the colored blocks under video scrubber, content
of the linked supplementary object represented by this clicked block is rendered in
a lightbox. In this figure, we provide an example illustrating how a linked slide is
displayed in the proposed interface after its corresponding block is clicked.

content, such as duplicated questions in the forum; therefore this interface streamlines

navigation.

Additionally, as the lecture slides are typically the skeleton of a lecture, each slide

can be seen as a sub-topic or a sub-goal of the lecture. Thus, by aligning slides to

a lecture video, we divide the video into several conceptual pieces, where each piece

corresponds to a sub-goal or sub-topic. We visualize this alignment in the proposed

interface. Hence learners visually identify the structure of the lecture, and navigate

to different sub-topics easily.

The remaining part is how to obtain the synchronized object identifiers below

the video scrubber. As shown in Fig. 3-9, this can be done easily with the linking

annotation described in Section 3.1. With the time code extracted from the video

subtitle file, for each supplementary object we obtain the beginning and ending time

codes for the segment of transcription sentences linked to this object. The video player

with the synchronized linked objects can then be rendered with the time information.
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Segments		 2 3	 5	 7	6	4	1

Labels	(linking	to	slides)	 A	 B	 -	 C	-	B	

Labels	(linking	to	textbook)	
α	
β	

Y	 Y	 N	 N	N	Y	Y	
N	 N	 N	 N	N	N	N	

Labels	(linking	to	discussions)	

a	
b	
c	 Y	 N	 N	 N	N	N	Y	

Y	 N	 N	 Y	N	N	Y	
N	 Y	 N	 N	N	Y	N	

d	 N	 N	 N	 N	N	N	N	

A	 						Segment	index							Time	code	
						Segment	1 	0:00	–	0:30	
						Segment	2 	0:30	–	1:25	
						Segment	3 	1:25	–	1:40	
						Segment	4 	1:40	–	2:45	
												…	
						Segment	7 	4:05	–	4:46	
	

0:00	–	1:25	 1:25	–	2:45	 4:05	–	4:46	

Figure 3-9: With the annotated linking from video segments (i.e., sentences or vi-
gnettes) to slides, textbook, and discussions, as well as the time code of each segment,
the synchronized linked objects under the video scrubber can be rendered. In this
example, each page of slides is indexed with A, B, and C; each textbook section is
indexed with 𝛼, 𝛽, and so on; each discussion thread is indexed with a, b, c, and so
on.

3.3 Comparative study

To answer the research question "Would it help learners if we were able to link

course materials using human annotators?" we assessed the learning effect of linking

presented to learners. Specifically, we conducted a comparative study, in which we

presented experimental subjects with interfaces with or without linking, and measured

their performance on various learning tasks. We focused our study on three aspects:

∙ How do learners find learning content when linking are provided?
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∙ How does linking affect learners in integrating and memorizing information

within a fixed period of time?

∙ How does linking affect different cohorts of learners?

3.3.1 Study design

We adopted a between-subjects design for our study, where each learner was randomly

assigned to either the linking interface (i.e., the interface described in Section 3.2)

or a baseline interface without any of the inter-material relations from the linking

interface. We introduce the baseline interface in detail in Section 3.3.2.

We designed two learning task scenarios for learners to perform with their assigned

interface: information search and concept retention. Learner performance in these

tasks was analyzed to investigate the learning effect of linking with respect to the

three aspects described above.

∙ Information search tasks involve finding learning content that corresponds

to a given problem. In each of these tasks, the learner is randomly assigned

a problem sampled from the course quizzes. This learner is then to use the

assigned interface to find a piece of learning content that explains how to solve

the problem. A piece of learning content can be a specific moment in a lecture

video, a page of slides, a textbook section, or a discussion thread (only in 6.00x).

This emulates the scenario where the learner is attempting to find informative

content to solve a problem.

∙ Concept retention tasks require learners to remember, understand, and in-

tegrate concepts relevant to a given topic. In each task, we randomly give a

learner a topic sampled from the courses, and allow ten minutes for the learner

to learn about the topic using the assigned interface. After the learning stage

we ask this learner to write a short essay that includes as many concepts as

he or she can remember. In the writing stage, this learner is not allowed to

access the interface and learning content. We set a time limit in order to eval-

uate how efficiently learners browse through the materials, and how efficiently
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they capture and remember high-level information. This emulates the scenario

where learners attempt to gain an integral and high-level understanding of a

topic within a limited amount of time.

Typically, researchers prefer to apply intervention straight in a course, so that

they can measure its effects directly. In contrast, in this thesis we choose to focus our

investigation around the above two learning scenarios, and explore the navigational

behavior of learners, because learning involves complicated mental processes – from

motivation and memorization to understanding and problem solving. It may be too

unrealistic to expect to ascertain all of these processes in a single set of experiments.

Indeed, exploring the effect of linking in a course could introduce many variables and

sources of noise, and thus obfuscate any advantage brought by intervention. There-

fore, as suggested in previous work [57], we concentrated our investigation on how

linking can facilitate material navigation. If we are able to show that linking posi-

tively affects this subset of learning processes, there is abundant literature discussing

the correlation between navigation and learning [63, 135, 65, 92, 86, 137], thus making

self-evident the benefit of linking in learning.

For these two scenarios, we sampled ten problems and topics respectively in each

of the two MOOCs (i.e., Stat2.1x and 6.00x) investigated. In this sampling we em-

phasized the first half of each of the two courses, because lectures from the latter

half are typically more advanced, complicated, and require prerequisite knowledge

learned earlier in the course. With this emphasis on foundational lectures, we were

attempting to reduce noise introduced by the diverse prior knowledge learners may

have. In Fig. 3-10, we show two sampled problems from each of the MOOCs along

with examples of learning content pieces we accept as answers. In Fig. 3-11, two ex-

amples of sampled topics along with one learner’s submission respectively are given.

Concepts in these submitted essays are highlighted in bold font. In Appendix A we

list the complete sets of sampled problems and topics for each MOOC.
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Figure 3-10: The first row shows two sampled problems used in the information search
learning scenario. For each of the problems, shown in the second row is a piece of
learning content that is accepted as the answer; a textbook section (content titled
"The Range, IQR and SD")) and a page of slides (titled "Types of Exceptions") is
displayed respectively. In this figure, the left hand side is a problem-answer pair for
Stat2.1x; the right is from 6.00x.

3.3.2 Baseline

In the comparative study, we implemented a baseline interface, and investigated

whether assigning learners with either the baseline or the linked interface (linking) af-

fected their performance in accomplishing tasks. Thus, we designed the null interface

(null).

In Fig. 3-12, a screenshot of the null interface is shown. The only difference in this

interface is the lack of the visualization element. It retains linking ’s visual layouts, as

well as the components for key-term search, material list, and content presentation.

As illustrated in this figure, in the null interface users also begin by submitting search

queries, after which the retrieved materials are also listed according to their types (i.e.,
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Correlation is a measure of linear association: 
how nearly a scatterplot follows a straight line. Two 
variables are positively correlated if the 
scatterplot slopes upwards (r > 0); they are 
negatively correlated if the scatterplot slopes 
downward (r < 0). Correlation is a measure of 
association, not causation. 

Computational complexity is a theory that 
classifies computational problems based on their 
difficulty. Programmers try to increase a programs 
conceptual complexity to reduce the 
computational complexity. Asymptotic notation 
gives a way to talk about the relationship between 
running time of an algorithm and its inputs. It 
becomes less efficient the longer the input. There 
are many important classes of complexities: 
constant, logarithmic, linear, log-linear, 
polynomial, and exponential. Constant is 
independent of inputs. Log-linear is product of 2 
items which are both dependent on the size of the 
inputs. 

Figure 3-11: The first row shows two sampled topics used in the concept retention
scenario. For each topic, shown as an example is an essay submitted by a learner in
our user study. We also set concepts in essays in bold font. In this figure, the left
hand side is a topic-essay pair for Stat2.1x and the right is for 6.00x.

the panels of material types listed in the top left corner) and their original positions

in each material sequence (e.g., lecture or chapter indices, as shown on the left hand

side of the figure); the learning content selected from the sequence is rendered in the

middle. However, every material type is presented independently and no relational

information is provided, e.g., the linked supplementary objects (or the leaves) are no

longer rendered under the lecture videos (i.e., the trunk). By comparing the linking

and null interfaces, we investigate how learner behavior is affected when they are

offered information on relations among learning content.

3.3.3 Experiment subjects

For experimental subjects, we chose to recruit online workers from AMT [90]. Gen-

erally, we would seek a subject pool of learners who are actually taking the course.

However, in our case, online workers are good substitutes for enrolled learners, be-

cause we measure their behavior in accomplishing specific learning tasks where clear
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Figure 3-12: The null interface, which serves as one of our baselines. This interface
retains linking ’s components for key-term search, material list, and content presen-
tation. The layout and visual design are also identical. The only difference is that
we strip away the linking visualization, and there is no synchronized supplementary
learning object under each lecture video (i.e., the trunk).

instruction is provided. In these tasks, the goals of online workers are very similar

to those of learners, such as finding the desired information as quickly as possible or

learning more high-level concepts within a limited amount of time. Therefore, they

interact with our interface much as enrolled learners do. Besides, although these work-

ers are monetarily driven, as shown in the following quote from a worker’s feedback,

financial gain is not their sole motivation.

"I really like this HIT. I hope I am doing them well for you as intended.

I want to thank you as well, because I’m actually learning quite a bit

about computer programming and I really like the lectures and how they

are organized, every time the 10 minutes are up, I’m kind of disappointed

because I feel like I was just getting started learning about a subject I’m

interested in."

Our HITs also motivate workers intellectually, and attract many who want to learn

about the two courses. Moreover, performing a live experiment in an actual MOOC
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is expensive and time consuming. In contrast, the abundant online labor pool and

the diverse demographics of workers guarantee us access to users of various back-

grounds on a large scale, and simultaneously demand a reasonable cost in time and

money. This fact allows us to investigate the third aspect – "How does linking affect

different cohorts of learners?" – to understand the usefulness of the proposed frame-

work for a heterogeneous learner body. Given these advantages, we thus chose these

micropayment online workers as our experimental subjects.

3.3.4 Experiment scale

In Table 3.1, the scale of our experiment is summarized. In Stat2.1x, for each scenario

we deployed 2,000 HITs on AMT: the null and linking interfaces, 10 problems or

topics, and 100 HITs accomplished by 100 unique online workers for each pair of

problem/topic and interface. The reward for each HIT was $0.35 and $1.00 for the

information search and concept retention scenario respectively. As listed in the table,

a total of 497 and 751 unique AMT workers participated in each of the two scenarios.

These numbers are different from 2,000 because we allowed each worker to solve

more than one problem or topic (under the between-subject design, in contrast, each

subject may only work with one assigned interface). The experiment took four months

to complete.

The scale of the 6.00x experiment is also shown in the table. Here also, 2,000

HITs were deployed for each scenario. In the two scenarios, 393 and 631 workers

participated respectively. Observing the slow completion rate of the experiment in

Stat2.1x, we increased the HIT rewards to $1.50 and $2.00 for the two scenarios. In

6.00x, since the relevant topics were more complicated, there were fewer potential

and qualified workers for our tasks. This is another reason why we decided to provide

larger monetary incentive. This experiment took two and a half months to complete.
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Table 3.1: Sizes of comparative studies on Stat2.1x and 6.00x
Number of tasks Number of unique workers
Stat2.1x 6.00x Stat2.1x 6.00x

Information search 2,000 2,000 497 393
Concept retention 2,000 2,000 751 631

3.4 Results

Given the experimental setup and deployment described above, we then measured

subject performance in accomplishing the learning tasks, to explore the effect of link-

ing on learning from three aspects: how does linking affect search, affect integrating

or memorizing information, and affect different cohorts. To study how linking affects

various cohorts of learners, in our tasks we also required subjects to fill in a back-

ground survey. Based on information provided by subjects in the survey, we identified

three demographic factors that could influence their performance: their highest ac-

complished degree, their previous experience in online courses, and their previous

exposure to relevant topics/courses.

To study the effect of these factors, we divided subjects with three different criteria

(i.e., whether or not they had had exposure to statistics or the Python programming

language, whether they had taken MOOCs previously, and did they have at least

a bachelor’s degree). In Table 3.2, we list for each Stat2.1x learning scenario (i.e.,

information search and concept retention) and interface (i.e., null and linking) the

numbers of completed tasks classified by criterion. We observe that about seven out

of ten and six of ten of the participants in the two scenarios reported prior knowledge

in statistics (the second and third row of the table); only about a quarter of subjects

in these scenarios had attended MOOCs previously (fourth and fifth rows); slightly

more than half of the participants had a bachelor’s or higher degree (sixth and seventh

rows). We also break down the completed tasks in 6.00x and summarize the results

in Table 3.3. The data show that slightly more tasks were contributed by subjects

with previous exposure to MOOCs and with at least a bachelor’s degree, but fewer

tasks were completed by subjects with experience in the course topics (i.e., the Python

programming language). On top of these divisions, we measured learning performance

75



Table 3.2: Number of tasks completed by each cohort for each learning scenario (i.e.,
information search and concept retention) and interface (i.e., null and linking) in the
Stat2.1x study

Information search Concept retention
null linking null linking

Overall 1,000 1,000 1,000 1,000

Statistics Yes 714 704 594 597
No 286 296 406 403

MOOCs Yes 295 249 205 287
No 705 751 795 713

≥Bachelor Yes 573 522 549 519
No 427 478 451 481

Table 3.3: Number of tasks completed by each cohort for each learning scenario (i.e.,
information search and concept retention) and interface (i.e., null and linking) in the
6.00x study

Information search Concept retention
null linking null linking

Overall 1,000 1,000 1,000 1,000

Python Yes 455 536 443 409
No 545 464 557 591

MOOCs Yes 384 397 319 315
No 616 603 681 685

≥Bachelor Yes 607 623 617 540
No 393 377 383 460

among each cohort to investigate the effect of linking on search behavior as well as

integrating and memorizing information.

3.4.1 How linking affects search

In this section, we investigate learner performance in the information search scenario.

Here, we computed two metrics: average search time and average accuracy. The first

metric evaluates how quickly each subject was able to identify a piece of learning

content (i.e., a specific moment in a lecture video, a specific slide, a textbook section,

or a discussion thread) in answer to the assigned problem and submitted HIT; the

second metric measures whether the identified content indeed answered the problem.

To measure the accuracy, for each problem the learning content pieces that were valid
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Table 3.4: Learner performance in information search scenario in Stat2.1x study.
Performance is evaluated by the average search time and average accuracy metrics,
and measured within various cohorts using different interfaces.

Average search time (seconds) Average accuracy (%)
null linking null linking

Overall 206 152 69.2 69.5

Statistics Yes 166 147 71.1 70.5
No 295 160 64.9 67.1

MOOCs Yes 166 139 72.0 70.6
No 225 154 68.2 68.9

≥Bachelor Yes 198 163 70.7 70.6
No 208 136 67.5 68.5

answers were labeled. In Stat2.1x, three annotators who were graduate students or

postdoctoral researchers with expertise in statistics did the labeling; for 6.00x, we

recruited three teaching assistants from the same class offered at MIT to obtain the

annotation. Note that when a worker identified a specific moment in a lecture video

as the answer, we accepted the submission as correct only if it deviated from any of

our labeled answers by less than one minute. With these metrics, we attempted to

understand how linking affects learner behavior when they are trying to find learning

content.

Table 3.4 summarizes learner performance in the information search scenario in the

Stat2.1x study. Performance was evaluated using the average search time (columns

1 and 2) and average accuracy (columns 3 and 4), and measured within cohorts with

various backgrounds (row 1 for overall subjects; rows 2 and 3 for whether subjects

had prior knowledge in statistics; rows 4 and 5 for whether subjects had attended

MOOCs before; rows 6 and 7 for whether they had at least a bachelor’s degree) and

using different interfaces (columns 1 and 3: null ; columns 2 and 4: linking). As

mentioned above, experiments conducted using online workers are often attended by

spammers. To control the quality of worker submissions, in each learner cohort we

discarded submissions with search times in the top and bottom 5%. This filtered

such as workers trying to cheat the system by randomly selecting a piece of learning

content, or workers leaving their computers during tasks.
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To examine how providing linking information affected learners in search, we fo-

cused on the performance difference between subjects using each of the interfaces.

These differences are plotted in Fig. 3-13. For consistency, the length of each bar

represents the improvement of a given metric for the linking interface as compared

to the null interface. Thus, the upper panel corresponds to the average time using

the null interface subtracted by the time using the linking interface. In contrast, the

lower panel is computed by subtracting the accuracy when using the null interface

from the accuracy when using the linking interface. In the figure, learner cohorts are

aligned in the same order as in the table. In addition to the difference values, the 95%

confidence intervals are also presented. Furthermore, differences that are statistically

significant (we adopted a one-tailed, two-sample t-test for the average search time

and a one-tailed, binomial proportion test for the average accuracy; the significance

level was set to 0.05) are marked with red asterisk.

Focusing first on row 1 of Table 3.4, as well as the first bar in the upper and

lower panels of Fig. 3-13, we see that the overall search time was reduced by 36%

(or 54 seconds) when using the linking interface (cf. 206 vs. 152), and that this

reduction is statistically significant. In contrast, there was no significant difference

in the accuracy between the two interfaces. This shows that subjects were able to

find desired information much faster without sacrificing accuracy, and it supports our

conjecture that the linking benefits educational content navigation.

Table 3.4 and Fig. 3-13 also include individual results for the three demographic

groups. In all six cases the linking interface yielded shorter search times (with re-

ductions from 19 seconds to 135 seconds). Also, this reduction in search times was

statistically significant in four out of the six cases: subjects without prior knowledge

in statistics, without prior exposure to MOOCs, and with/without a bachelor’s degree

or higher. To interpret these results, we classified as naive learners those subjects who

were less familiar with the course materials, less experienced with MOOCs, and less

educated. This is because subjects with less familiarity must spend more time and

effort to catch up on prerequisite knowledge before they can understand a new topic.

MOOC learners tend to be self-learners and desire to constantly enrich themselves
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Figure 3-13: Improvement in search time (upper panel) and accuracy (lower panel)
when linking interface is used. Learning performance improvement was measured
in the Stat2.1x study. Also shown are the 95% confidence intervals (shown as error
bars) and significance test results (statistically significant differences marked with red
asterisk).

with learning by utilizing any available resource. In contrast, subjects with no expe-

rience in MOOCs are more likely to be passive learners or less comfortable learning

from online materials. For education, its purpose is not only to teach students specific

knowledge, but also to teach how to learn. Thus, there is a higher chance that less

educated subjects have less learning experience.

We observe that the linking interface yielded greater time reductions for novice

subjects. This is perhaps not surprising. As pointed out by Kirschner et al. [65], due

to the lack of learning experience and comprehensive understanding of the underlying

course topics, novice learners are typically unable to properly explore learning content
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on their own. Without providing guidance to these learners, their cognitive system

can be overloaded by new topics that must be learned and prerequisite knowledge

that must be accumulated; thus, they are more likely to struggle with frustration.

As compared to the baseline, our linking interface visualizes linking among pieces of

learning content, supports relational navigation among materials, and provides easy

access to each sub-goal or sub-concept within a lecture video. These features serve

to guide users, helping learners navigate through the learning content. Therefore,

learners find information more efficiently, and greater improvement is observed in

novices since they are precisely those learners who are more likely to struggle, need

more support, and can benefit more from guidance.

As for search accuracy, although the performance difference between the two in-

terfaces varied from -1.4% to 2.2% in various cohorts, none of these discrepancies was

statistically significant. Our results indicate that in this experiment linking has little

impact on task accuracy. This could be due to the fact that the difference between the

two interfaces was in the visualization of inter-material relations; the two interfaces

were built on the same set of learning content and search mechanism. Since Stat2.1x

is a rather small MOOC that contains only 7-hour lectures spanning 5 weeks, and we

used only a limited set of materials (i.e., videos, slides, and textbook) to build this

minimum viable product, it was not difficult for patient learners to find the correct

pieces of learning content in a reasonable amount of time.

From these results in the Stat2.1x study we conclude that by linking the educa-

tional content and visualizing the inter-material relation with the linking interface,

learners found desired information more efficiently without sacrificing search correct-

ness. Moreover, among the studied cohorts of learners, novices benefitted more from

the provided guidance. These observations show one of the possible ways that linking

facilitates learning.

With this encouraging result, we further expanded the horizons of the study by

exploring 6.00x, another MOOC. Since learning is dependent on the course subject,

with the 6.00x study we attempted to investigate whether the benefit of linking shown

above is topic-dependent, or if the improvement is more general. If we were able to
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Table 3.5: Learner performance in the information search scenario in the 6.00x study.
Similar to the first study, performance is evaluated by the average search time and
average accuracy, and measured in various cohorts using different interfaces.

Average search time (seconds) Average accuracy
null linking null linking

Overall 443 349 87.7 89.5

Python Yes 419 323 90.3 90.3
No 463 378 85.6 88.6

MOOCs Yes 427 336 88.0 89.4
No 454 357 87.6 89.5

≥Bachelor Yes 472 359 89.5 91.5
No 399 331 85.1 86.2

provide evidence showing that linking yielded similar improvements in some learning

factors with a different course, it would be stronger proof that the benefit of linking

is generalizable to various topics. Additionally, in the 6.00x study we also attempted

to evaluate our linking framework in a more realistic scenario. Thus, materials from

online forums were also provided in the interfaces; data annotation (the linking among

materials and the correct pieces of learning content for each problem in the user study

task) was done by teaching assistants instead of the researchers themselves.

Table 3.5 summarizes learner performances in the information search scenario

in the 6.00x study. As with the Stat2.1x study, performance was evaluated by the

average search time (columns 1 and 2) and average accuracy (columns 3 and 4).

These metrics were measured within cohorts of various backgrounds (rows 1 to 7)

and using different interfaces (columns 1 and 3: null ; columns 2 and 4: linking). We

employed similar dividing criteria for the background (i.e., prior knowledge, MOOC

experience, and highest degree). Besides, the same quality control mechanism (i.e.,

discard submissions with search times in the top and bottom 5%) was utilized to

minimize noise from spammers.

To examine the benefit brought by linking, here we also focus on the performance

difference when the various interfaces were deployed, and plot the differences in Fig. 3-

14. Similar to the Stat2.1x study, values of the bars in this figure represent the time

reduction (upper panel) and accuracy increase (lower panel) achieved by deploying
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Figure 3-14: Improvements in search time and accuracy when linking interface was de-
ployed. Learning performance was measured in the 6.00x study. The 95% confidence
intervals and significance test results are also plotted.

the linking interface. Improvement in different cohorts is also displayed in the same

order as in the table. In addition we plot the 95% confidence intervals (the error

bars) as well as whether the differences were statistically significant (marked with red

asterisk if significant).

From Table 3.5 and Fig. 3-14, the first thing we observe is that when the linking

interface was deployed, each cohort of experimental subjects took significantly less

time to accomplish the tasks. As for the accuracy of the completed tasks, a sta-

tistically significant improvement from the linking interface was found in the entire

group of subjects, subjects without prior experience in Python language, subjects

without prior exposure to MOOCs, and subjects with at least a bachelor’s degree.
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No significant difference was measured in the other cohorts.

The observations show that our previous conclusion holds also for a different

course: precisely, that when linking is presented, learners find desired information

more efficiently without sacrificing search correctness. This result strengthens our

claim that linking benefits learning. In addition, we see improvement in search accu-

racy here in several cohorts. This presumably results from the increased amount of

learning materials available. In 6.00x the course was three times longer than Stat2.1x,

and the discussions were also available for learners. We hypothesize that when learn-

ers have more material to navigate through, being able to visualize the relations

between materials has a larger effect on their ability to find information.

To validate this conjecture, we conducted a regression analysis between the search

time used in tasks and the accuracy improvement yielded by the linking. It would

support our hypothesis if we could find evidence showing that when learners spent

longer on their tasks, the linking interface yielded larger accuracy improvements (note

that in this study subjects spent twice as much time as that spent in the Stat2.1x

study). We designed the regression analysis by first sorting each of the 1,000 tasks

in the null group and in the linking group separately according to the search time.

Each set of tasks was then divided into 10 equal-sized batches from tasks using the

least amount to the most amount of time. We averaged the search time over the 𝑖-th

batch of the two sets (i.e., tasks using null or linking) as the value of the independent

variable of sample 𝑖 in the regression; the value of the dependent variable we calculated

by subtracting the accuracy of the 𝑖-th batch of tasks using the null interface from

the accuracy of the 𝑖-th batch using the linking interface.

The result of our regression analysis is plotted in Fig. 3-15. Clearly our regression

model has a positive slope, which shows that search time and improved accuracy are

positively correlated. This observation supports our previous conjecture. However,

we must note that the 𝑝-value of a hypothesis test that the slope is positive is 0.17,

which is higher than the usually-used significance level of 0.05.

The second observation that can be made from Table 3.5 and Fig. 3-14 is that

both naive and advanced learners benefitted from the linking interface in terms of
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Figure 3-15: This first-order regression model (dashed line) relates the average search
time (in seconds) of task batches (horizontal axis) to the accuracy improvement
yielded by deploying the linking interface (vertical axis)

reduced task completion time. We believe this finding is related to the subject matter

in the user study. 6.00x covered a wide range of advanced topics such as algorithms,

complexity, computational problem solving, and Python language programming. In

contrast to Stat2.1x, the statistics course which contained material typically taught

systematically in a high school class, in 6.00x most people are familiar with only

part of the topics. For instance, a computer scientist might know algorithms and the

theory of computation but might not use Python; a data analyst might be familiar

with using Python to analyze data, but might not be an expert in algorithms. Thus,

some subjects classified as advanced learners based on our categorization could have

been beginners in the topics used in some of the learning task2. This may explain

why a more uniform improvement over cohorts was observed.

In conclusion, the results in the 6.00x study provide more evidence supporting the

benefit of linking in learning. With the linking interface, learners also found desired

2This can be illustrated with some feedback received in this study: one participant said, "I was
already familiar with most of the concepts except for dynamic programming and program complexity.
I was a computer science major 30 years ago. Back then they were teaching IBM 360/370 assembly
language and FORTRAN 77. I code now in C, Python, PHP, SQL, shell scripts and elisp for my own
little projects now and again, although those are too small to warrant much attention for dynamic
or complexity considerations." Another participant mentioned: "I already know much about Python,
but I find out new things doing these! I don’t think I ever really understood the use of recursion until
I completed this task."
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information more quickly. The improvement in learning performance was observed

in both search time and accuracy, and in more cohorts of subjects. These results

also highlight the potential of applying linking to various course subjects for better

learning. In Section 3.5, we analyze learner click-through patterns in order to provide

more understanding and examples about why linking yields better performance; first

though, in the next section, we attempt to analyze the benefit of linking from another

perspective: information memorization.

3.4.2 How linking affects information memorization

In comparison to finding the desired information, concept retention is a more com-

plicated scenario involving finding, integrating, and memorizing knowledge. In this

section we investigate whether linking enhances learners performance in this com-

plex condition. To evaluate the performance we computed one metric: the number

of unique key-terms. This metric measures the information richness in paragraphs

submitted by subjects, and thus reflects how many concepts relevant to the assigned

topic learners can retain after a fixed-length learning stage. We adopted a rather sim-

ple metric (as compared to other metrics that evaluate and grade essays [134]) and

informed subjects how their submissions would be evaluated, in order to give learners

a concrete goal and simplify the learning tasks. From the tasks we attempted to

identify factors that were not closely related to material navigation (e.g., the fluency

or wording in the essay). Furthermore, other complicated metrics are usually subjec-

tive and not easily generalized to different domains (e.g., they require many manually

graded essays for an automated grading algorithm to learn from), and thus they do

not align with our purpose.

To compute our key-term metric, we needed only label a set of relevant terms for

each topic used in the concept retention scenario. For the labeling, we first designated

the glossary in each textbook used in Stat2.1x and 6.00x as the set of candidate terms.

The same annotators recruited in Section 3.4.1 (i.e., the information search scenario)

were also asked to label the relevant topics for each term in the candidate set. With

the annotation, we computed the metric simply by counting how many terms were
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Table 3.6: Learner performance in the concept retention scenario in the Stat2.1x
study. Performance was evaluated by the number of unique key-terms in submitted
essays and measured within various cohorts using different interfaces.

Number of unique key-terms
null linking

Overall 4.39 4.91

Statistics Yes 4.71 5.11
No 3.98 4.60

MOOCs Yes 4.83 5.14
No 4.27 4.77

≥Bachelor Yes 4.73 5.23
No 3.98 4.60

covered in the essay (since multiple words can sometimes refer to the same word stem,

e.g., cats, catty, and cat, in practice we first conducted word stemming [36] to reduce

the derived or inflected words in the essay to their word stem before counting the

key-terms). This metric allowed us to understand how linking affects learners when

they were trying to acquire and remember high-level information about a topic.

Table 3.6 summarizes learner performances in the concept retention scenario in

the Stat2.1x study. Performance was evaluated by the number of unique key-terms

contained in the submitted essays. As in the information search scenario, the eval-

uation was also computed within cohorts from different backgrounds (rows 1 to 7)

and using different interfaces (column 1: null ; column 2: linking). We discovered

workers trying to cheat on the tasks by copying and pasting paragraphs found online

(e.g., Wikipedia) in their essays. Therefore we utilized an open online plagiarism

checker [20]. This checker segmented paragraphs to be checked into sentences, sub-

mitted these sentences on Google search, and reported plagiarism if highly similar

documents were found on the Web. With this checker, we controlled the quality of

the experiment by identifying the spammers and rejecting their results.

To focus on the performance difference when various interfaces were deployed, we

also visualize the improvement from the 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interface measured in each subject

cohort in Fig. 3-16. That is, the length of each bar represents the average number of

unique key-terms when the 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interface was deployed, subtracted by the number
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Figure 3-16: The improvement in the number of unique key-terms contained in sub-
mitted essays when 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interface was used. Learning performance was measured
in the Stat2.1x study. The 95% confidence intervals and significance test results are
also provided.

when the 𝑛𝑢𝑙𝑙 interface was used. Additionally, the 95% confidence intervals (the error

bars) as well as whether the differences are statistically significant (marked with red

asterisk if significant) are also indicated. Here, we adopted a one-tailed, two-sample

t-test for significance and set the significance level to 0.05.

The first row of Table 3.6 and the first bar in Fig. 3-16 show that, overall, subjects

were able to mention a greater number (12%) of key-terms when using the 𝑙𝑖𝑛𝑘𝑖𝑛𝑔

interface (cf. 4.39 𝑣𝑠. 4.91); furthermore, the difference was statistically significant.

Looking over the rest of Table 3.6 and Fig. 3-16, we observe a trend similar to that

in the information search scenario, where the 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interface yielded improvement

over each cohort of subjects, and in four out of the six cases (i.e., subjects with no

prior knowledge in statistics, without prior exposure to MOOCs, and with/without a

bachelor’s degree or higher) the differences passed the significance test. Furthermore,

it seems that novices also benefitted more from linking than advanced learners (e.g.,

all three naive cohorts show statistically significant improvement).

These results reveal another aspect of the benefit that linking may provide. In

the course materials, there were usually many learning pieces relevant to a topic;

some complementary pieces, and some redundant. With the visualized inter-material
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relation, complementary content could be identified easily and thus be better utilized

to reinforce learning. For example, while watching the lecture video, subjects could

refer to the aligned slides to understand the lecture at the concept level, as well as

to the linked textbook sections or posts for detailed discussions. Identical learning

content could also be skipped easily. Furthermore, the visualization helped learn-

ers better plan their learning path within the limited-length learning session, and

avoid exploring irrelevant or secondary content to the assigned topics. These features

made possible by visualizing linking can also be interpreted as the guidance which

leads learners navigating through learning content when accomplishing assigned tasks.

Therefore, subjects, especially novices, could access knowledge more efficiently in the

learning session, and retain more key-terms when they wrote down what they could

remember. In Section 3.5 we provide more evidence to support this claim.

We also investigated whether this aspect of benefit can be generalized to vari-

ous course subjects in a more realistic condition. Hence, similar to the information

search scenario, we further studied 6.00x, a different MOOC, and explored it using

an expanded material set (i.e., forum discussions were additionally used) and data

annotation pipeline (i.e., teaching assistants were recruited as annotators).

Table 3.7 summarizes learner performance in the concept retention scenario in the

6.00x study. Similarly, performance was evaluated by the average number of unique

key-terms in the submitted essays, and measured within various cohorts (rows 1 to

7) using different interfaces (column 1: 𝑛𝑢𝑙𝑙; column 2: 𝑙𝑖𝑛𝑘𝑖𝑛𝑔). In this study, the

same quality control mechanism using plagiarism checking was employed to filter out

noise from spammers. Furthermore, to focus on the benefit brought by linking, in

Fig. 3-17 we plot the performance difference when the various interfaces were deployed

(i.e., number of key-terms when the 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interface was assigned subtracted by that

when the 𝑛𝑢𝑙𝑙 interface was used). In addition to these differences, the 95% confidence

intervals (the error bars) as well as the results of the significance tests (marked with

red asterisk if significant) are also indicated in the figure.

From Table 3.7 and Fig. 3-17, we first observe that when the 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interface was

deployed, subjects in each cohort mentioned a greater number of key-terms. This ob-
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Table 3.7: Learner performance in the concept retention scenario in the 6.00x study.
As with the Stat2.1x study, performance was evaluated by the number of unique key-
terms in the submitted essays and measured within various cohorts using different
interfaces.

Number of unique key-terms
null linking

Overall 8.07 8.56

Python Yes 8.64 9.09
No 7.64 8.20

MOOCs Yes 8.37 8.55
No 7.93 8.56

≥Bachelor Yes 8.60 9.13
No 7.21 7.91

*	

*	

*	

Figure 3-17: The improvement in the number of unique key-terms when the 𝑙𝑖𝑛𝑘𝑖𝑛𝑔
interface was deployed. Learning performance was measured in the 6.00x study. The
95% confidence intervals and significance test results are also provided.

servation is identical to the Stat2.1x results. However, we find that the improvement

was statistically significant in fewer cohorts (i.e., in the entire group of subjects, sub-

jects without prior exposure to MOOCs, and subjects without a bachelor’s degree).

This may be because of the advanced topics used in this user study. As discussed

above, our stratification of learners, inherited from the Stat2.1x study, might not have

aided in distinguishing novices from advanced learners. Therefore the learners in each

cohort could have been too diverse to perform consistently. This claim is supported

by the standard deviations (i.e., error bars) observed in Fig. 3-17, which are much
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larger than those in Fig. 3-16.

These results also support our previous claim that when linking is shown in the

interface, learners can access information more efficiently and retain more key-terms in

their summary of assigned topics. The improvement not only suggests another benefit

of linking in learning, but also suggests the possibility of applying our framework in

other course subjects. Note that these observations support our hypothesis only that

linking is helpful in learning; they do not, however, explain why. Without knowing

this, we cannot utilize this linking pedagogy in suitable conditions. Thus, in the next

section, we analyze the learner click logs in order to provide an explanation.

3.5 Click log analysis

From the user study results discussed above, we can summarize that by presenting

the linking among learning materials, learners were able to access course materials

more efficiently and perform better in learning tasks. However, we were also curious

to discover how the linking changes the navigational behavior of learners, and why

the change yielded improvement in accomplishing our learning tasks. Therefore, we

examined the click log3 generated when learners attempted the tasks. We utilized the

log to extract the following three metrics:

∙ Number of search queries used in each learning task.

∙ Number of learning objects4 surveyed in each task.

∙ Time spent (measured in seconds) in each surveyed learning object.

In each learning scenario (i.e., search and retention), we computed the three metrics

averaging over the tasks using each of the two interfaces (i.e., 𝑛𝑢𝑙𝑙 and 𝑙𝑖𝑛𝑘𝑖𝑛𝑔). The

results are summarized in Table 3.8.
3In the 6.00x study, in addition to the submitted answers (i.e., the selected learning object or the

essay summarizing the assigned topic), we also recorded how learners interacted with our interfaces.
Whenever a learner initiated an event to sumbit a search query or click on any learning object, that
event along with the triggered time was stored in our server.

4Note that because of the way we recorded the event, here the definition of a learning object is
slightly different from the rest of this thesis. A learning object in this section refers to a lecture
video, a page of lecture slides, a textbook section, or a discussion thread.
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Table 3.8: In the information search and concept retention scenario of the 6.00x study,
we computed the three metrics (number of search queries used to accomplish a task,
number of learning objects surveyed in each task, and the spent time in each learning
object) for the two interfaces. The averages (𝜇) and standard deviations (𝜎) of the
three metrics are listed here.

Information search Concept retention
null linking null linking

#Search queries (𝜇, 𝜎) (2.9, 2.9) (2.7, 2.8) (1.6, 1.2) (1.4, 0.9)
#Learning objects (𝜇, 𝜎) (10.9, 9.7) (7.7, 7.5) (11.8, 8.7) (7.8, 6.6)
Spent time per object (𝜇, 𝜎) (32.3, 73.4) (35.1, 64.9) (46.0, 88.4) (70.6, 115.8)

Comparing first the numbers in the two scenarios, we observe that in the informa-

tion search scenario, learners tended to use more search queries, survey more learning

objects, and spend less time on each object. Considering the average time learners

spent interacting with the interfaces in the two scenarios (6.6 minutes in information

search in average and 10 minutes in concept retention), the difference between the

two scenarios in the numbers of queries and learning objects is even larger. This

discrepancy may derive from the nature of the two scenarios. In the search scenario,

learners needed only identify the objects which contained information needed to solve

the assigned problems; however, they had to decide which search queries to use. As

for the retention scenario, learners were to digest and remember information in the

content, but it is obvious that they would use the assigned topics or relevant terms

as the queries. Thus, in the search scenario, learners were inclined to survey more

queries and learning objects, but spend less time on each of the queries or objects.

We then juxtapose the metrics for each interface within the two scenarios. We find

that as compared to using the 𝑛𝑢𝑙𝑙 interface, when the 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interface was deployed,

experimental subjects tended to use fewer search queries (information search: 2.7 𝑣𝑠.

2.9, concept retention: 1.4 𝑣𝑠. 1.6), survey fewer objects (information search: 7.7

𝑣𝑠. 10.9, concept retention: 7.8 𝑣𝑠. 11.8), but spend more time on each object

(information search: 35.1 𝑣𝑠. 32.3, concept retention: 70.6 𝑣𝑠. 46.0). We believe

this observation explains our user study results. The observation suggests that when

linking was visualized, learners were able to identify that learning content which

was more informative for the assigned topics or problems; in contrast, when the
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𝑛𝑢𝑙𝑙 interface was deployed, learners had to submit more queries and access more

learning objects. Thus, with the 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interface, learners were able to spend more

time understanding the information relevant to the search or retention tasks, yielding

better performance. This observation and the user study results can also be related

by reduced cognitive load, which has a positive effect on learning [65]: when linking

is presented, it is easier for learners to filter out less useful learning objects, which

lessens the cognitive load of learners in understanding the materials.

To support our conjecture, we further investigated how relevant the learning ob-

jects surveyed by learners were to their assigned tasks. In order to measure this

relevance, we utilized the labeled valid learning pieces which were used to evaluate

whether the selected learning content was correct in the information search scenario.

With the click log recorded in this search scenario, we measured the percentage of

surveyed learning objects which contained at least one valid learning piece for the

assigned problem.

The mean and standard deviation of the percentage were 0.33 and 0.26 for tasks

using the 𝑛𝑢𝑙𝑙 interface, and 0.50 and 0.33 for tasks using the 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 one. We note

that when the 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interface was deployed, learners tended to survey more objects

containing valid learning pieces. This fact supports our previous claim that when

the relations among learning materials were presented, learners were able to filter out

learning objects less likely to contain useful content, and focus on informative objects.

Thus, better learning outcomes were achieved.

To further illustrate how linking can help learners identify useful information,

we visualize two sampled search paths recorded from two subjects when they were

completing the assigned tasks using different interfaces. We sampled the two paths

based on the following criteria. First, in the paths, subjects surveyed the same number

of learning objects as the interface average (i.e., 10 objects for the path recorded in

the task using the 𝑛𝑢𝑙𝑙 interface and 7 objects for the 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 one). Second, learners

surveyed the same number of objects that contained at least one valid learning piece

as the interface average (i.e., 3 informative objects for both interfaces). Third, the

two paths were recorded from tasks assigned with the same question.
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Figure 3-18: Question asked in the tasks where we recorded the two sampled search
paths.

In Fig. 3-18, we show the question corresponding to the two sampled search paths.

This question is about the normal distribution. Figures 3-19 and 3-20 present two

search paths observed in tasks using the 𝑛𝑢𝑙𝑙 and 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interfaces respectively. In

these paths, the screenshots and titles of the surveyed learning objects are listed

according to the visited order; the material type of each object is also indicated.

Furthermore, the titles of objects containing valid learning pieces are set in red; the

titles of other objects are in cyan.

From these two paths, we first note that the learner who was assigned the 𝑙𝑖𝑛𝑘𝑖𝑛𝑔

interface exhibited significantly better survey quality. Most objects selected by this

learner were relevant to the topic of the normal distribution. In contrast, the search

path of the learner using the 𝑛𝑢𝑙𝑙 interface seems unplanned. This observation sup-

ports our previous claim that learners benefitted from linking since they were able to
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1.	Using	Inheritance:	Designing	a	Class	Hierarchy	
(Video)	

2.	Standard	devia>on	and	histogram	
(Video)	 3.	Measuring	complexity	(Video)	

4.	Hashing	(Video)	 5.	Rolling	a	die	(Video)	 6.	Think	about	computa>onal	complexity	
(Textbook)	

7.	Distribu>ons	(Textbook)	 8.	Exponen>al	and	Geometric	
Distribu>ons	(Textbook)	 9.	Uniform	Distribu>ons	(Textbook)	

10.	Normal	Distribu>ons	and	
Confidence	Levels	(Textbook)	

Figure 3-19: The sampled search path recorded when a subject used the 𝑛𝑢𝑙𝑙 interface
to complete the assigned task. In this path this subject surveyed ten objects, three
of which contained valid learning pieces. The three objects are indicated with their
titles in red; the titles of the remaining objects are set in cyan. These numbers equal
the average of the 𝑛𝑢𝑙𝑙 interface.

more easily filter out less informative materials and focus on the useful ones. Further-

more, we note that the learner using the 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interface switched between different

types of materials more frequently. This fact also supports our assertion that when

linking is presented, learners are able to utilize complementary information from var-

ious types of materials to reinforce their learning.

In this section, we analyzed the click log recorded in the 6.00x user study to

explain why linking yields better learning performance in our experiment. We found

that when the links among materials were presented to learners, they submitted fewer
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1.	Standard	devia-on	and	histogram	
(Video)	

3.	Benford’s	Distribu-on	(Textbook)	

4.	Crea-ng	func-ons	(Video)	 5.	Normal	distribu-on	(Video)	 6.	Normal	distribu-on	(Slides)	

7.	Normal	Distribu-ons	and	Confidence	
Levels	(Textbook)	

2.	Standard	devia-on	and	histogram	
(Slides)	

Figure 3-20: The sampled search path recorded when a subject used the 𝑙𝑖𝑛𝑘𝑖𝑛𝑔
interface to complete the same task as in Fig. 3-19. In this path this learner surveyed
seven objects, three of which contained valid learning pieces. These numbers equal
the average of the 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interface.

queries and surveyed fewer objects, and spent more time on each object. Moreover,

the surveyed objects were more informative; therefore learners performed better on

their tasks. However, we should note that the differences in these metrics were not

statistically significant. Hence, further stratification of samples is required to obtain

stronger evidence.

3.6 Conclusions

This chapter explores our first research question: does manually generated linking

help learning? We started by defining two types of linking: homologous and heterol-

ogous linking. We formulated the annotation of these two linking types as alignment

and binary classification problems respectively, and demonstrated how the annotation

can be accomplished by researchers, online workers, and course staff. Then, we imple-
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mented a 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interface that simultaneously presents learning materials and the

annotated linking among them, after which we conducted a large-scale user research

study with the two selected STEM courses (statistics and programming languages)

to investigate the question.

Our user research showed that the 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interface enabled learners to find desired

learning content more efficiently and retain more concepts more readily. By analyzing

the click log recorded when learners used the interfaces in the user research, we

observed that presenting both content and linking at the same time helped learners to

focus on informative learning materials, and thus potentially reduced their cognitive

loads. These results support the notion that manual linking does indeed improve

learning outcomes.
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Chapter 4

Can we link automatically?

In this chapter, we investigate methods to link courseware automatically. We showed

in the previous chapter that linking helped learners to navigate the course materi-

als, and helped them to find supportive learning content when they were in need

or confused. These visualized relations among content also provided guidance that

lessened the cognitive loads of learners. Hence the learning experience and outcome

were enhanced.

However, from our experience in developing a linking system, annotating relation

information requires deep and comprehensive understanding of the course subject,

and the labeling process itself is time-consuming. Moreover, even given the linking

for the current class, obtaining the relation annotation for future offerings requires

much redundant work – since in a new class offering, more forum posts come in (many

of which are duplicates), and several lectures may be re-organized. This makes it

necessary to maintain and repeat labeling on the updated materials. Thus, manual

implementation of an educational content linking framework is cost-prohibitive, in-

efficient, and not scalable. To facilitate modification of the proposed framework to

be more easily deployed and more general, especially given the voluminous amounts

of learning materials, we investigate whether the linking of learning content can be

generated by machines.

In the following investigation of automated linking methods, we focus on three

issues:

97



∙ How to design an automated linking method?

∙ How closely does the automatically generated linking approach human annota-

tion?

∙ Does automated linking still benefit learners?

For the first issue, we discuss how to formulate linking generation as a predic-

tion/classification problem, and discuss how to solve the problem with machine learn-

ing and human language technologies. For the second issue, we compare machine-

generated linking with the ground truth established in advance by a human (i.e.,

the linking we collected in the previous chapter). The comparison is simple, and

sheds light on the capability of the implemented automated methods. However, such

an evaluation is not perfectly precise, since it measures the similarity between two

generated linkings, as opposed to our ultimate goal, which is learning outcome im-

provement. Furthermore, typically there are many linking configurations which could

benefit learners. Computing the similarity to a gold standard is a biased metric which

ignores all the other beneficial possibilities. Therefore, we also explore the third issue

by conducting a user study on the automated linking, with a pipeline similar to that

designed in the previous chapter. Although conducting a user study is costly and

time consuming, it evaluates directly the benefits of machine generated linking on

learners.

We explored these three issues using the same two MOOCs: Stat2.1x and 6.00x.

In our experiments, we found that although there were some differences between the

machine- and human-generated linking, they resulted in only slight negative effects on

learning. Moreover, the interface driven by automatic linking (below denoted as the

auto linking interface) still helps learners to achieve better performance in their tasks.

Furthermore, we analyze the difference patterns, and conclude that anecdotally most

disagreements between human annotators and our contributed linking algorithm made

little difference to learners. In the rest of this chapter, we describe our exploration in

detail.
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The study discussed above was conducted by comparing an interface present-

ing linking information to a baseline that implemented the conventional strategy for

delivering learning materials online (i.e., the null interface). Since MOOCs are an

emerging research field in education, researchers and educators continue to integrate

innovative pedagogies into MOOC designs. We are curious how effective our proposed

linking framework in comparison to these state-of-the-art techniques. Therefore, in

this chapter we describe another user study conducted to compare our linking/auto

linking interfaces to the interface currently deployed on edX (denoted as the edx inter-

face). Our results show that learners still achieved better performance in the explored

learning tasks with our manually and automatically generated linking.

4.1 Problem formulation

In the design of our automated algorithm we chose to focus on the natural language

content in course materials and formulate the linking generation task as a sequential

tagging problem. Natural language is an integral part of education for the transmis-

sion of knowledge; thus we expected that an algorithm based on the understanding of

natural language in learning content would be more generalizable to different courses.

The sequential tagging formulation is as follows: we view as a sequence of docu-

ments the nodes on the trunk of a linking tree, and represent them as a sequence

of input feature vectors x = (x1,x2, ...,xT). Determining which supplementary ob-

jects should link to these nodes can be interpreted as predicting a sequence of labels

y = (𝑌1, 𝑌2, ..., 𝑌T) given x. Here 𝑌𝑖 represents the linking configuration of the trunk

node 𝑖, e.g., the index of an aligned slide or whether a given discussion thread is

linked to node 𝑖 or not.

We adopted the sequential tagging formulation, because the ordering and context

is informative when modeling learning materials. Many theories in the cognitive sci-

ence of learning suggest that to achieve meaningful learning1, humans must match

1The state where the newly acquired knowledge is fully understood and ready for future use in
different circumstances.
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the information they learn to how their minds are structured, and integrate this new

information with their prior knowledge and existing cognitive system [46, 5]. Guided

by these theories, learning content is typically structured in a sequentially dependent

manner to help students acquire knowledge. Thus, we surmised that contextual de-

pendency would be helpful in predicting links, e.g., it is likely that neighboring video

segments are linked to similar or identical sets of supplementary learning objects.

There are many other applications of this sequential tagging formulation in the

natural language understanding domain, including part-of-speech (POS) tagging [104],

semantic tagging [70], and machine translation [8]. These applications work at a word-

level granularity (i.e., each token is a word) and attempt to interpret the meaning

of each token. Since natural language is usually interpreted in sequence by humans,

modeling the context is also beneficial in understanding syntax and semantics. In

our formulation, a learning object, which can be a video segment, a slide, a textbook

section, or a post thread, is adopted as a token, and we model the contextual and

lexical dependency upon this larger unit with a similar formulation.

Due to the abundance of applications, many machine learning models have been

proposed to solve related problems, including the linear-chain CRF model, hidden

Markov models (HMM), general graphical models, and long short-term memory

(LSTM) recurrent neural networks [51]. In this thesis, we also adopt linear-chain

CRF for our linking problem; HMM can be interpreted as a linear-chain CRF with

generative modeling2; as compared to linear-chain CRF or HMM, a general graph-

ical model removes the Markov limitation and thus is more complex3; LSTM is a

model with even higher complexity and non-linearity, and is widely used to express

complicated data dependencies.

We chose the linear-chain CRF for several reasons. First, in comparison to many

other natural language applications, our corpus was small. This was due to the dif-

ficulty of data annotation: labeling the relations among learning objects requires

deeper understanding of the content than annotating the POS tags or semantics of

2The linear-chain CRF is a discriminative model.
3Higher complexity means that the underlying model has more free variables and more ability to

represent dependency in data.
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each word. Our corpus size cannot support the training of complicated models such

as LSTM or general graphical models because of the danger of overfitting. Second,

as compared to non-linear models such as LSTM, with a linear model it is easier to

interpret the results. For instance, each weight in the model can be directly inter-

preted as the importance of a corresponding feature. This interpretation can facilitate

subsequent system development. Third, a discriminative model was preferred in our

tasks, since it allows us to incorporate new features into the model without mak-

ing unnecessary assumptions about the underlying probabilistic distribution4. This

property allows the automated algorithm to be extended easily with various features,

which is favorable because there are usually many information modalities in course

materials. Below, we discuss how to predict links with CRF under this formulation.

4.2 Sequential tagging with CRF

As discussed in Section 3.1, we categorize the relations among learning materials into

homologous and heterologous linking, and adopt different annotation methodologies

(i.e., alignment and classification). Here we follow the same categorization and design

our automated linking algorithm for the two types of relation respectively.

In the homologous case, we applied the linear-chain CRF model to solve the

alignment problem. First, we have two types of materials to be linked: one is the

trunk and the other is a set of leaf candidates. In this thesis, we designate the trunk

as the course’s lecture videos; thus the candidates in this homologous case are the

lecture slides corresponding to each video. For each lecture 𝑖, the video transcription

sentences form the sequence of input feature vectors x(𝑖) = (x(𝑖)
𝑡 )T𝑡=1 in the CRF (i.e.,

4Generative models such as HMM which are based on a full probabilistic model must model the
probabilistic distribution of all variables, including both observed (i.e., the features or observations)
and unobserved (i.e., the labels) variables. The distribution can be learned from a corpus from
scratch but such learning usually requires too many data samples. We can also make assumptions to
initialize or limit the distributions to a specific form for the learning to be feasible (especially when we
do not have enough data). However, making assumptions is error-prone. In contrast, a discriminative
model models only dependency between the observations and the unobserved variables that should be
inferred. In such a model we need not learn the entire distribution or make unnecessary assumptions.
Therefore, it is much easier to augment a discriminative model with new features (i.e., by introducing
new variables and dependencies into the model).
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x(𝑖)
𝑡 ) is the 𝑡-th transcription sentence). Then using CRF, we predict a sequence

of labels y(𝑖) = (𝑌
(𝑖)
𝑡 )T𝑡=1 given x(𝑖). Here the value of unobserved variable 𝑌

(𝑖)
𝑡 is

the index of the slide aligned to x(𝑖)
𝑡 ; that is, 𝑌 (𝑖)

𝑡 ∈ {1, 2, ..., 𝑆(𝑖)}, where 𝑆(𝑖) is the

number of slides used in lecture 𝑖. In this way, we transform the alignment task into

a problem of inferring the value (i.e., the label or the index of the aligned slide) of 𝑌𝑡

from observation x; we then solve this inference problem with CRF.

With CRF’s linear chain structure, the model not only learns the dependence

between observation x (i.e., the content of each learning object) and alignment y,

but also the contextual dependence (i.e., dependence between 𝑌𝑡−1 and 𝑌𝑡) over the

sequence of objects. Hence, the pattern of order-preserved mapping can be learned

during model training. The learned patterns function as probabilistic rules affecting

alignment prediction (e.g., if sentence 𝑡 − 1 aligns to slide 𝑠, it is more likely that

sentence 𝑡 aligns to slide 𝑠 or 𝑠 + 1, but it is impossible for 𝑡 to align to slide 𝑠′ ∈

{1, 2, ..., 𝑠− 1}). These rules model the order-preserving characteristic of homologous

linking.

For heterologous linking, we also apply linear-chain CRF to the binary classifica-

tion problem. Similar to the homologous case, we also have a sequence of learning

objects from the trunk (i.e., the lecture videos), and another learning object sequence

as the leaf candidates (i.e., textbook sections or forum posts in the following im-

plementation). The video transcription is still the input. However, in contrast to

using a sentence as a token, here we adopt a video vignette (i.e., a sequence of sen-

tences aligned to the same page of slides in the previous alignment task) as an item5.

In addition, instead of modeling one sequence of candidate objects at a time, ev-

ery object is considered separately, and the CRF is used to predict binary labels –

whether the considered object is linked or not. That is, in this task the CRF input

is x(𝑖𝑗) = (x(𝑖𝑗)
𝑡 )T𝑡=1 for lecture 𝑖 and supplementary object (e.g., textbook section or

post) 𝑗; x(𝑖𝑗)
𝑡 is the collection of transcription sentences of lecture 𝑖 which align to

5As explained above, we use larger units here to reduce the number of tokens, since each supple-
mentary object is considered separately in this problem, which greatly increases the computation
time of the model in training and inference. Furthermore, a video vignette is a more comparable
unit to supplementary objects used here, which are either textbook sections or forum posts.
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slide 𝑡 in the lecture. The model predicts a label sequence y(𝑖𝑗) = (𝑌
(𝑖𝑗)
𝑡 )T𝑡=1, where

𝑌
(𝑖𝑗)
𝑡 ∈ {0, 1} encodes whether video vignette 𝑡 is linked to supplementary object 𝑗

or not.

With this linear chain architecture, in the binary classification task we still model

the dependency of linking configurations among neighboring learning objects on the

trunk, but with a looser constraint. The model still learns the linking pattern from

a sequence of video vignettes. For instance, for neighboring vignettes, they are more

likely to share the same relationship (i.e., linked or not linked) to a supplementary

object. However, since each supplementary object is considered independently, no

dependence across supplementary objects is learned. This modeling of data depen-

dency agrees with our understanding of heterologous linking. As discussed above,

heterologous linking is not order-preserving. Thus, certain learning objects arranged

closely in one material may imply little about the arrangement of their linked objects

in another material. For example, whether learning object A𝑖 is linked to object B𝑗

could have little to do with the event that A𝑖−1 is linked to B𝑗−1 due to the variation

of object arrangement across materials6. Since such dependency is of little benefit in

predicting linking, modeling the dependency across supplementary and trunk objects

simultaneously simply increases the risk of overfitting (due to the increased model

complexity) and introduces noise.

In contrast, the linking configuration of a sequence of trunk learning objects to

a supplementary one does correlate. This is because topic continuity in educational

material is crucial for learners to better digest the content. It is unlikely that the

lecturer switches topics abruptly or frequently. Thus, for instance, whether learning

object A𝑖 is linked to object B𝑗 is dependent on the event that A𝑖−1 is linked to B𝑗. In

comparison to our model for homologous tasks, this model design is more reasonable

for heterologous linking.

6Here A and B represent two types of learning materials; 𝑖 and 𝑗 are the indices of learning
objects in the two materials respectively.
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4.3 Feature extraction

Information in MOOC materials is multimodal. Text, vision, audio content, or even

the click log can be useful for linking. To represent the diverse data in a uniform

way that can be learned by the CRF model, we must design the feature function set

in Equation 2.4. To facilitate label inference, these features should be informative.

Below, we discuss the feature design for our linking task.

Lexical similarity features. Since natural language is a central part of edu-

cation and the transmission of knowledge, we designed our first feature set, lexical

similarity features, based on the text content of course materials. These features were

designed based on the assumption that the similarity between two learning objects

is correlated with whether the two objects are linked. In the alignment task, lexical

features can be written as

𝑓𝑦𝑘(𝑌𝑡, 𝑌𝑡−1,x) = cos_sim(Φ(x𝑡+𝑘),Φ(𝑦))1{𝑌𝑡=𝑦}, 𝑘 ∈ {−𝐾,−𝐾+1, ..., 𝐾} 𝑎𝑛𝑑 𝑦 ∈ {1, 2, ..., 𝑆}

(4.1)

where 1 is an indicator function and K is a hyper-parameter deciding the length of

context considered in the model. Cos_sim(x𝑡+𝑘, 𝑦) is the cosine similarity between

the vector representation (defined by Φ) of video transcription sentence 𝑡 + 𝑘 and

the supplementary learning object 𝑦. In the alignment task, 𝑦 is the page index for

lecture slides. Thus learning object 𝑦 is the 𝑦-th page in the slides.

For the binary classification task, the lexical features we extracted are

𝑓𝑘(𝑌𝑡, 𝑌𝑡−1,x) = cos_sim(Φ(x𝑡+𝑘),Φ(𝑙𝑜)), 𝑘 ∈ {−𝐾,−𝐾 + 1, ..., 𝐾}. (4.2)

Since in this task each supplementary learning object is considered separately, the

lexical features compute the cosine similarity between the vector representation of

this supplementary object 𝑙𝑜 and video vignette 𝑡 + 𝑘 (i.e., sentences aligned to slide

𝑡 + 𝑘 in the previous task).

Computation of the cosine similarity requires that we define the vector represen-

tation, Φ, of a document (i.e., a video sentence, a video vignette, or a supplementary
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learning object). Our first adopted vector used a bag-of-words (BoW) representation.

In this representation, we compute the TF-IDF score of each word in the document

and transform the document to a vector where each dimension corresponds to the

score of a unique word. Second, we adopted the word2vec representation, which

was introduced in detail in Section 2.3.3. Word2vec is a continuous language model

trained with a neural network to compute the word probability based on the word’s

context in the corpus. After the model is trained, each word is represented as a vector

in a continuous space by collecting the neural network weights corresponding to that

word. With this word-level embedding, each word in a document is transformed first

to its word2vec representation, and the document vector is computed by averaging

these word vectors. In contrast to the BoW model, the word2vec embedding supports

the learning of long-term semantic and syntactic regularities in language. We believe

that our linking algorithm can understand learning objects from different aspects

using these two vector representations.

Transition features. As discussed above, we sought to learn the contextual

dependence of the linking configuration with CRF. Thus, we designed the second

feature set – transition features:

𝑓𝑦𝑦′(𝑌𝑡, 𝑌𝑡−1,x) = 1{𝑌𝑡=𝑦}1{𝑌𝑡−1=𝑦′}, 𝑦, 𝑦′ ∈ 𝑌 (4.3)

where 𝑌 is the set of labels. The assumption behind these features is that the inference

of a linked object for two consecutive video segments (i.e., sentences or vignettes)

is dependent. These features are typically used in applications of CRF to encode

temporal dependencies; here they allow our CRF model to learn temporal patterns

of the linking configuration.

Visual features. Lecture videos are usually the center of MOOCs. In addition

to the human language content such as video transcription, the visual channel also

provides rich information with which to understand the materials and infer linking.

For example, studies show that scene changes in educational videos affect the watching

behavior of learners and usually coincide with structural breaks in videos [64]. Hence,
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we designed a set of visual features to extract this useful information:

𝑓𝑦(𝑌𝑡, 𝑌𝑡−1,x) = frame_distance(𝑡)1{𝑌𝑡=𝑦}, 𝑦 ∈ 𝑌. (4.4)

Here we define frame_distance(𝑡) as the Euclidean distance between video frames

corresponding to the beginning and end of video segment 𝑡. The time code information

of sentences is encoded in the video subtitles, which are typically provided in MOOCs

to enhance material accessibility. If there are no subtitles, we obtain the time code by

aligning the audio signal with the lecture transcription or by performing automatic

speech recognition.

Since video frames are represented by the color of each pixel, we must also trans-

form this information to vectors to computing the distance. We investigated two

vector representations: the HSV (hue, saturation, and value) histogram and the hori-

zontal projection. The HSV histogram is widely used in tasks such as scene detection,

and represents a frame by its color distribution [118]. The HSV histogram of a video

frame is obtained by first transforming the RGB color value of each pixel in the frame

to the HSV space. Then the three coordinates (i.e., H, S, and V) of the HSV space

are discretized into a number of bins. The number of pixels in each bin is counted to

compute a three-dimensional histogram, and the histogram is flattened to a vector as

the HSV representation of the frame. The HSV histogram is popular since it models

the mechanism of human color perception. Furthermore, as opposed to simply repre-

senting frames as vectors of color of each pixel, the histogram method is much more

robust to noise.

However, the HSV representation fails to capture some distinct characteristics of

educational videos. For instance, in MOOCs, it is usually the case that the entire

video consists of shots of slides or scenes with very similar colors. The HSV descriptor

cannot effectively distinguish among these slides or scenes. Thus, we implemented

horizontal projection, the second descriptor. To extract this descriptor, for a frame

with 𝑚 by 𝑛 pixels in the HSV space, we first represent the frame with three 𝑚-by-𝑛

matrices corresponding to the three coordinates (i.e., H, S, and V). For each matrix
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we add up the intensity of each row to project the visual content along the horizontal

direction and obtain an 𝑚-by-1 vector. The horizontal projection of a frame is then

the concatenation of vectors from the three matrices. Since much informative content

in educational videos is presented horizontally (e.g., bullets in slides), this tailored

descriptor describes video frames in a more pedagogically meaningful way.

One thing that should be noted is that in Equation 4.4, these features depend only

on the frame distance and label of segment 𝑡. This is problematic since the frame

distance between the beginning and end of sentence 𝑡 has little to do with the label

of the sentence, but is highly dependent on whether the labels of sentences 𝑡 and 𝑡−1

are different. With the current label set, the dependence between label transition and

frame distance cannot be represented by these features.

Thus, we added boundary, another label, to the original label set. In Fig. 4-1, we

illustrate how this additional label works by comparing the same linking configuration

represented with two label sets. The upper panel of Fig. 4-1 corresponds to the

original label set described above, where the value of the label is the page index of

the linked slide (alignment task) or whether the considered supplementary object is

linked (binary classification task). In the lower panel, an additional boundary label

(represented as ’bnd’ in the figure) is also employed to denote the case where the

two consecutive segments are linked to different slides or have different relations to

the considered object. With the additional boundary label, the dependence between

label transition and frame distance can be encoded in the visual feature functions,

and the extended label set has the same ability to express linking configuration as the

original set. Thus, we adopted the extended label set for incorporating visual channel

information to our automated linking algorithm.

Another possible solution to encoding the dependence between label transition

and frame distance would be to use feature functions that depend on both 𝑌𝑡 and

𝑌𝑡−1. However, this solution would increase the number of features and make the

model more likely to overfit when a small training corpus is used. Thus we chose the

extended label set instead.

In this thesis, we only use the frame distance features to encode visual information
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Segments		 2 3	 5	 7	6	4	1

Labels	(alignment)	 A	 A	 B	 C	B	B	A	

Labels	(binary	
classifica>on)	

a	
b	

Y	 Y	 N	 N	N	N	Y	
N	 N	 Y	 N	Y	Y	N	

Segments		 2 3	 5	 7	6	4	1

Labels	(alignment)	 A	 Bnd	 B	 C	Bnd	B	A	

Labels	(binary	
classifica>on)	

a	
b	

Y	 Bnd	 N	 N	N	N	Y	
N	 Bnd	 Y	 N	Bnd	Y	N	

Figure 4-1: The same linking configuration represented with two different label sets.
In the upper panel, the original label set described in Section 4.2 is used. A, B, and
C denote the aligned slide index; Y and N denote whether the considered object is
linked. In the lower panel, the original label set along with a boundary label (denoted
as ’bnd’ ) is used.

in course materials. There are other methods to understand the visual channel,

e.g., optical character recognition (OCR), and semantic understanding of images [45].

However, OCR provides little additional information that could supplement other

resources such as slides or video transcription. Current image semantic understanding

extracts only shallow information such as there is a man writing on the black board

or the woman is talking. Thus, although these methods are gaining in popularity,

we believe they are not suitable or mature enough for our tasks, and chose not to

investigate them here.

Metadata features. Descriptions of the learning content also can facilitate link-

ing inference. Thus we extracted metadata features to encode such information. In

this thesis, two types of metadata features were used: position and learner tagging.

Below we describe the two features respectively.

The following is the position features equation in the alignment task:

𝑓𝑦(𝑌𝑡, 𝑌𝑡−1,x) = exp(| 𝑡
T

− 𝑦

𝑆
|), 𝑦 ∈ {1, 2, ..., 𝑆}. (4.5)
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This feature set encodes the difference between the relative position of a video tran-

scription sentence and a slide in their original sequence. The relative position is

computed by dividing the index of the sentence or slide by the number of sentences

or slides in the lecture. The motivation of this feature set is self-evident: if a sentence

is mentioned at the beginning of the lecture, this sentence is more likely to be aligned

to the first couple of slides.

We also extracted similar features for the binary classification task:

𝑓(𝑌𝑡, 𝑌𝑡−1,x) = exp(| 𝑡
T

− 𝑖𝑛𝑑𝑒𝑥(𝑙𝑜)

N
|). (4.6)

In this case 𝑡 is the video vignette index in the entire sequence of lecture videos, and

T is the number of video vignettes in the entire course. index(lo) is the index of

the supplementary learning object under consideration, and N is the number of sup-

plementary objects in the course (e.g., the number of textbook sections or discussion

threads). The textbook and forum is sorted and indexed based on the section number

and thread creation time respectively.

We also used learner tagging as a set of metadata features. In the MOOC plat-

form where we collected learning content for experiments in this thesis, learners were

allowed to post discussions under each lecture video [32]. We recorded this tagging

information and created a function 𝑙𝑜(𝑡) which maps the 𝑡-th video vignette to a set of

discussion threads which were posted under the video this vignette belongs to. With

this function, we extracted our learner tagging features as

𝑓(𝑌𝑡, 𝑌𝑡−1,x) = 1{𝑙𝑜∈𝑙𝑜(𝑡)}, (4.7)

where 𝑙𝑜 represents the discussion thread we considered each time. Although learn-

ers sometimes post irrelevant discussions under the video, such as chats with fellow

learners, we still believe this feature set is helpful for our automated linking system

because it narrows down the number of vignettes that can link to each thread. Note

that this tagging information is only available in discussions on the current MOOC

platform; thus the learner tagging features are only deployed in the task of linking
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videos and discussions.

As described above, we observe that features we utilized here are diverse in their

forms and value ranges. For all these feature functions, we only assume the existence

of dependence between certain observations and labels; no assumption of distributions

for these dependencies is required. Thus, in comparison to a generative method such

as HMM, with our CRF models it is easier to add new features and extend the

automatic linking algorithm.

4.4 Evaluation: similarity to human labeling

We then evaluated our linking algorithm on material in the two MOOCs introduced

in Section 2.4: Stat2.1x and 6.00x. In the Stat2.1x MOOC, we had lecture videos,

slides, and a textbook; for the 6.00x MOOC, we used the previous three types of ma-

terials along with forum posts. Thus, we investigated automated homologous linking

between lecture videos and slides in the two MOOCs. For the heterologous case, we

studied video-to-textbook-section linking in Stat2.1x, and video-to-textbook-section

along with video-to-discussion-thread linking in 6.00x. Since in the heterologous case

the video vignette was used as the linking unit, in the experiment we used a two-pass

procedure: we first trained a CRF to align video sentences to slides. Then we utilized

the best alignment result in the development set to obtain the video vignette (i.e.,

define the sentences that align to each slide as one video vignette). With these video

vignettes we then trained CRFs to predict linking between vignettes and textbook

sections or forum discussions.

As discussed at the beginning of this chapter, in the evaluation we explored two

issues: 1) how closely does the automatically generated linking approach human an-

notation? 2) Does automated linking benefit learners? In this section, we investigate

the first issue. Here we compare automated linking results to human labeling as col-

lected and discussed in Section 3.1.4, and compute F1 scores to measure the similarity.

We explore the second issue in the next section.

In the evaluation, instead of simply splitting the corpus into training and testing
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Table 4.1: The F1 scores (%) of automated linking systems in Stat2.1x using different
models (logistic regression and CRF) as well as lexical (BoW stands for bag-of-words
and word2vec for the neural network word embedding) and visual (HSV=HSV his-
togram and HP=horizontal projection) features. Performance of both homologous
(i.e., linking between video sentences and slides) and heterologous (i.e., linking be-
tween video vignettes and textbook sections) tasks is listed. In the table, the paren-
theses after word2vec denote that the HP visual features were deployed only in the
homologous task.

Linking systems (model, feature) Homologous Heterologous
Logistic regression BoW 74.9 29.6

CRF
BoW 81.3 45.2
BoW + HSV 84.9 44.6
BoW + HP 85.8 44.8

CRF word2vec (+ HP) 86.2 45.1
BoW + word2Vec (+ HP) 86.7 47.2

sets, we adopted a 5-fold cross validation technique. Specifically, we partitioned our

materials into five equal-sized batches. Every time, we chose one batch for testing.

The remaining four batches were used for training and hyper-parameter selection. We

iterated the training-testing procedure five times with different batches as test sets,

and averaged the test-set F1 scores to evaluate the model performance. We adopted

a cross validation technique here, because we wanted to present the entire course

with machine-predicted linking. If we split the corpus into training and testing, the

machines would only predict linking in a portion (i.e., the test set) of the courseware

- it would be meaningless to predict linking in the training set since information from

the human annotation was already used to train the model.

We first investigated the performance of machine-generated linking in Stat2.1x.

In Table 4.1 we summarize the F1 scores of the automated linking systems using the

various models and features in the homologous (i.e., linking between video sentences

and slides) and heterologous (i.e., linking between video vignettes and textbook sec-

tions) tasks. To obtain comparable evaluation metrics, in both tasks F1 scores were

computed at the sentence level. Therefore in the heterologous case, before computing

the F1 scores, we first mapped the vignette-level linking results to the sentence level.

In this table we study how visual and lexical features affect linking performance by
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using various vectorization techniques to encode learning objects for computing video

frame distances and lexical similarities. Here, HSV histograms (denoted as HSV)

and horizontal projections (denoted as HP) descriptors were investigated to repre-

sent video frames; bags of words (denoted as BoW) and neural network embeddings

(denoted as word2vec) were studied to represent text content. Since text content is

so central to education for the transmission of knowledge, and because BoW is the

most widely used text vectorization in natural language processing, in our study we

started with linking systems using BoW for lexical features. The word2vec and vi-

sual features were gradually introduced to the systems to investigate their potential

benefits.

In addition to visual and lexical features, we also evaluated the benefit of using

transition features (i.e., modeling contextual dependencies) in predicting linking. We

studied the effect of transition features by comparing the CRF algorithm with a

baseline model: logistic regression. In logistic regression, the alignment and linking

of each video segment were predicted separately and no contextual dependency was

modeled. Thus by comparing logistic regression and CRF systems using identical

visual and lexical feature sets, the potential benefit of transition features in linking

performance could be studied.

As for the metadata features, we utilized them as default features in every linking

system we reported, since these features have been shown to be beneficial in general

in a variety of applications [49, 117]. In the experiment here with Stat2.1x, positional

features were the metadata features deployed in the linking system.

In this table first we see that the logistic regression model (row 1) performed sig-

nificantly worse than other systems. When an identical feature set (except transition

features) was used, CRF outperformed logistic regression by 6.4% in homologous link-

ing and 15.6% in the heterologous task (c.f., row 1 and 2). This observation shows

the benefit of formulating linking as a sequential tagging problem: by treating the

video segments as a data sequence and introducing transition features into the sys-

tem, we model the temporal patterns of the linking configurations. In contrast to

simply modeling the content similarity in materials such as in logistic regression, the
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contextual information of the CRF allows it to better understand how the topics in

courseware are organized and dependent on one another. Therefore, in both tasks

transition features yield better linking performance.

On top of the lexical features computed from BoW embedding, we investigated

how the additional visual features affected the performance of CRF linking systems

(c.f., rows 2 to 4). In homologous linking, both HP and HSV features yielded improve-

ment. In order to explain why visual features were helpful in this task, we analyzed

our course materials, finding that lecture videos are usually dominated by colloquial

speech, and about only 23% of the sentences in the video transcription contain key-

terms (terms that appear in the textbook glossary) which are useful to identify the

underlying concepts. This small percentage shows that lexical information is sparse.

In addition, the lexical similarity features are sometimes noisy at the transition of

two slides or topics. For instance, the lecturer could conclude the previous topic or

connect two topics using a story. Thus, information from verbal content is often

insufficient to infer linking. In contrast, the forte of our visual features is encoding

information pertinent to scene changes, which can provide complementary clues to

the lexical features for use in aligning slides and videos. Thus, combining both fea-

tures yields better performance. Comparing rows 3 and 4, we further find that HP

outperformed HSV in linking performance. We believe that HP is more suitable for

our tasks since it is tailored to educational videos where many contents are presented

horizontally.

As for the heterologous task, we find that neither visual feature yielded any im-

provement. This is presumably because information encoded in these visual features

mostly concerns scene changes, and offers little benefit in inferring the links between

textbook sections and the video transcription. Also, whatever useful information the

visual features might have, has very likely already been encoded in the alignment

we used to obtain video vignettes. Thus, it appears that visual features in this task

simply introduced irrelevant or redundant information to the model, and thus no

improvement was observed.

We then studied the benefit of the word2vec embedding on top of our current best
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systems (i.e., row 4 in the homologous task and row 2 in the heterologous task). In

row 5 we replaced the BoW lexical similarity features with the word2vec features. In

the table, the parentheses after word2vec denote that the HP visual features were only

deployed in the homologous task. As compared to the previous best systems, similar

linking performance was achieved (c.f., 85.8% to 86.2% in the homologous task and

45.2% to 45.1% in the heterologous task). In row 6, we integrated the lexical features

computed from both BoW and word2vec embeddings, yielding further performance

improvements (c.f., 86.2% to 86.7% in the homologous task and 45.1% to 47.2% in

the heterologous task).

To explain these improvements, we analyzed the two lexical feature sets and found

that values of similarity features computed from the BoW embedding were sparse, i.e.,

most values were zero. This is presumably because each word in BoW representation

is treated as an atomic unit; each word’s corresponding element in the vector works

independently from others. Thus, if two documents have no overlapping words, the

cosine similarity between them is zero. Similarity features computed from this em-

bedding encode information about how many overlapping words two learning objects

have, which is highly correlated with whether the two objects are linked. However,

sometimes different terms are chosen to express the same meaning in different objects

or materials. Under such conditions, the BoW embedding fails, tending instead to

produce false negatives, i.e., two relevant objects whose similarity is zero or under-

estimated.

For the word2vec embedding, however, we found that the computed similarity

values were much smoother. In the word2vec representation, words and documents

are represented as vectors in a continuous space, where dimensions work jointly to en-

code different semantic or syntactic regularities. Semantically or syntactically related

words could be distributed closely in the continuous space, and it is possible for the

meaning of unseen words to be reconstructed given their relevant terms. This makes

up in part for discontinuities caused by mismatched wording between two documents.

However, the encoding yields more false positives, i.e., two irrelevant objects whose

similarity is high. Based on these findings, we believe that the BoW and word2vec
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Table 4.2: F1 scores (%) of automated linking systems in 6.00x using different mod-
els (logistic regression and CRF) and lexical (BoW and word2vec) and visual (HP)
features. Performance of both homologous (i.e., linking between video sentences
and slides) and heterologous (i.e., linking between video vignettes and textbook sec-
tions/discussion threads) tasks is listed.

Linking systems (model, feature) Homologous Heterologous
Videos
to slides

Videos to
textbook

Videos to
discussions

Logistic regression BoW 63.3 66.0 31.3

CRF
BoW 71.7 69.3 32.1
BoW + HP 73.7 - -
BoW + word2Vec (+ HP) 74.7 71.1 33.3

embeddings provide complementary encodings of text content; therefore integrating

similarity features computed from the two yielded better performance.

We then applied this method to generate the 6.00x linking. Table 4.2 lists the

performance of automated linking systems using different models and features. Here

we also investigated the linking between video sentences and slides for the homologous

linking; for heterologous task, in addition to the linking between video vignettes and

textbook sections, linking between vignettes and discussion threads was also studied.

Similar to the Stat2.1x experiment, we adopted the sentence-level F1 score as the

evaluation metric.

In this thesis, we utilized 6.00x to investigate the generalizability of the proposed

methods. Thus, in this experiment we explored only the system configurations which

showed improvement in the Stat2.1x experiment to determine whether these improve-

ments could be generalized to different courses and materials. Specifically, we studied

three techniques shown to be helpful above: 1) modeling contextual dependency with

transition features, 2) adding visual features to detect scene changes in the align-

ment task, and 3) integrating complementary lexical similarity features computed

from both BoW and word2vec embeddings. Here, we also started with systems using

metadata features7 and lexical features from the BoW embedding, and added other

features incrementally for the investigation.

7Position features were used in all three linking tasks: video segments to slides, textbook, and
discussions. The learner tagging features were also used to linking video segments and discussions.
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In Table 4.2 we observe that the three techniques again yielded improvement.

Comparing rows 1 and 2, CRF outperformed logistic regression consistently in the

three tasks (8.4% in linking videos to slides, 3.3% in linking videos to textbook, and

0.8% in linking videos to discussions). This improvement shows that the benefit

of modeling contextual dependency generalizes over these tasks. However, improve-

ments in linking between videos and discussions were relatively small as compared

to other tasks. We believe this is because relations between videos and discussions

are distinct from videos and others. Lecture videos, slides, and textbook are created

by the educators and represent a systematic attempt to transmit knowledge. In con-

trast, most content in the forums is created by learners to resolve specific sources of

confusion. The topic organization of learner-created materials is very different from

that of educator-created materials. Hence contextual dependency features, which are

designed to improve linking prediction via an understanding of the topic organization

in materials, were much less helpful when linking videos to discussions.

Comparing rows 2 and 3, we find that visual features also yielded improvement in

this programming course. Note that here we only explored the horizontal projection

descriptor in the homologous task, since in the Stat2.1x experiment, HP yielded better

performance in the homologous task, and none of the visual features were helpful in

the heterologous task. In comparison to the results observed in Table 4.1, we find

that the performance improvement yielded by HP was smaller (71.7% to 73.7% here

and 81.3% to 85.8% previously). We surmise that this is because of the differences in

the video styles used in the two courses. We observe in Stat2.1x that a large portion

of the lecture video was simply shots of slides; however in 6.00x there was also a great

deal of live coding demos and talking head sessions. The demos and talking head

sessions introduce noise into our visual features, complicating the detection of slide

changes. From these results, we conclude that the benefit of the visual features can

be generalized, but the degree of improvement yielded depends on the style of the

underlying lecture video.

We then further integrated the lexical features computed from the BoW and

word2vec embeddings. In the table we observe that the combination of the two em-
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Table 4.3: Best performance of proposed automated linking system (evaluated with
F1 scores, listed in first two rows) and annotator agreement (evaluated with kappa
scores, listed in third and fourth rows) in each linking task

Homologous Heterologous
Videos
to slides

Videos
to textbook

Videos
to discussions

Automatic linking
(F1 scores, %)

Stat2.1x 86.7 47.2 -
6.00x 74.7 71.1 33.3

Annotator agreement
(Kappa scores, %)

Stat2.1x 86.5 59.9 -
6.00x 81.0 76.1 43.4

beddings again enhanced the linking performance consistently (c.f., 73.7% to 74.7%

in linking videos to slides, 69.3% to 71.1% in linking videos to textbook, and 32.1%

to 33.3% in linking videos to discussions). These results imply that the complemen-

tarity of BoW and word2vec embeddings could be a general fact found in different

courseware; thus the integration could yield generalized improvement over different

courses.

From Tables 4.1 and 4.2 we observe widely-varying F1 scores (the best result

of each linking task ranged from 33.3% to 86.7%). To investigate why this is, in

Table 4.3 we compare the best F1 scores to the annotator agreement (described in

detail in Section 3.1.4) for each linking task. The first two rows summarize the

best performance of our automated linking systems in F1 scores, and the following

two rows list the labeling consistency among annotators evaluated in terms of kappa

scores. The kappa scores can be interpreted as a measurement of how difficult and

ambiguous the underlying linking task was for humans. In this table we find that the

machine performance is highly correlated with the ambiguity of the linking task. This

finding is reassuring, especially for the video-to-discussion task where only a 33.3% F1

score is achieved, since a significant portion of difference between the machine- and

human-labeled linking could be attributable simply to the underlying task ambiguity,

which detracts much less from the learner experience than linking irrelevant learning

objects.

In this section, we showed that the CRF-based linking method integrates infor-

mation from different features and yields better performance than the conventional
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logistic regression method. By modeling contextual dependency and combining the

complementary BoW and word2vec embeddings, we observed consistent improvement

in all the linking tasks studied. For visual features, we found they were only helpful

in homologous tasks. In these experiments, we showed the extensibility of CRF to

different features. We believe this characteristic fits our problem well. Given the

recent popularity of both MOOCs and machine learning research, the styles of learn-

ing materials and algorithms for understanding content are ever-changing. Given our

model’s extensibility, it can grow with new machine learning techniques, pedagogies,

and content by adding the corresponding features (e.g., our CRF can use as features

even posterior probabilities or classification results predicted by a neural network). In

addition, the improvement across courses and materials to some extent demonstrates

the generalizability of the proposed method, which is crucial for our framework to be

widely applied in different conditions.

In the previous discussion we also examined the correlation between model perfor-

mance and annotator agreement. We surmise that it is likely that the low F1 scores

will not greatly detract from the learner experience. In the next section, we attempt

to provide evidence for this conjecture with a user study experiment.

4.5 Evaluation: benefit in learning

We then investigate the second question of the evaluation: do automatically-generated

linking still benefit learners? To answer this, we conducted a user study similar to

that in Section 3.4. We studied learner performance when course materials were

presented with various strategies: different types of materials presently separately

(i.e., presented in the null interface) or linked by humans (i.e., linking) or by machines

(i.e., auto linking). After replacing manually-labeled linking with those generated by

machine8, if we were to observe performance improvements similar to that described

in Section 3.4, we could conclude that our automated linking system is beneficial to

learners. Below, we also study the effect of automatic linking on learners in the search

8In this section, Section 4.4’s best results are used in the interface for the user study.
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and retention learning tasks.

4.5.1 How automatic linking affects search

Here we investigate how automated linking affects learners performance in the infor-

mation search scenario. Performance was also evaluated with two metrics: average

search time and average accuracy. Table 4.4 summarizes the Stat2.1x performance.

The results of the null and linking interfaces are identical to those discussed in Sec-

tion 3.4.1. Here, auto linking corresponds to the condition where learners accom-

plished the assigned tasks using an interface that presents automatic linking. Other

than the deployed interfaces, other experimental procedures in the auto linking study

were identical9. Moreover, to examine how automatic linking benefits learners, we also

focused on the differences in performance yielded by the various interfaces. Fig. 4-2

visualizes the improvement from linking (red bars) and auto linking (black bars) as

compared to null . The upper panel corresponds to the time reduction yielded by the

linking and auto linking interfaces in different learner cohorts; the lower panel shows

the accuracy increase from the two interfaces. The 95% confidence interval of the

difference is also provided.

Similar to the linking interface, in Table 4.4 and Fig. 4-2 we observe that an

interface driven by machine-generated linking also helps learners find information

within a shorter period of time in general; as for the search accuracy, no statistically

significant difference was found. Among the studied learner cohorts, novice learners

(subjects without prior knowledge in statistics, without prior exposure to MOOCs,

and without a degree higher than bachelor’s) as well as subjects with a degree higher

than bachelor’s showed statistically significant improvements in search time reduction.

When we compare the improvements yielded by linking and auto linking , we find that

in each cohort subjects using the linking interface consistently needed less time in the

9We also collected 1,000 HITs for the same 10 questions on the Amazon Mechanical Turk. Since
a between-subjects design was used, only online workers who did not participate in our experiment
with the null and linking interfaces were allowed in the study. The auto linking study was conducted
three months after the experiment on the null and linking interfaces was complete. In addition, the
same quality control mechanism was applied here.
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Table 4.4: Learner performance in the information search scenario of the Stat2.1x
study. Performance was evaluated by the average search time and average accuracy
metrics, and measured within various cohorts using the null , linking , and auto linking
interfaces.

Average search time (seconds) Average accuracy (%)
null linking auto linking null linking auto linking

Overall 206 152 162 69.2 69.5 69.5

Statistics Yes 166 147 154 71.1 70.5 70.0
No 295 160 178 64.9 67.1 68.0

MOOCs Yes 166 139 160 72.0 70.6 71.7
No 225 154 163 68.2 68.9 68.5

≥Bachelor Yes 198 163 167 70.7 70.6 70.0
No 208 136 151 67.5 68.5 68.3

Table 4.5: Learner performance in the information search scenario in the 6.00x study.
Performance was evaluated by the average search time and average accuracy metrics,
and measured within various cohorts using the null , linking , or auto linking interfaces.

Average search time (seconds) Average accuracy
null linking auto linking 𝑛𝑢𝑙𝑙 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 auto linking

Overall 443 349 360 87.7 89.5 90.4

Python Yes 419 323 352 90.3 90.3 93.0
No 463 378 365 85.6 88.6 88.6

MOOCs Yes 427 336 336 88.0 89.4 91.1
No 454 357 371 87.6 89.5 90.0

≥Bachelor Yes 472 359 353 89.5 91.5 92.3
No 399 331 370 85.1 86.2 87.4

search task.

We also explore how automated linking affects search in 6.00x. The results are

summarized in Table 4.5. In this table, in addition to the learning performance

reported in Table 3.5, the result of the user study on the auto linking interface is

also listed10. Furthermore, in Fig. 4-3 we also visualize the performance differences

when the various interfaces were deployed. We present the improvement (i.e., time

reduction in the upper panel and accuracy increase in the lower) from linking (red

bars) and auto linking (black bars) as compared to null .

10In this study, each facet of the experiment – except the deployed interface – was the same as that
in Section 3.4.1. 1,000 HITs for the same 10 questions were collected on the Amazon Mechanical
Turk. A between-subjects design was adopted. In this study we conducted the experiment with the
three interfaces (i.e., null , linking , and auto linking) simultaneously. Additionally, the same quality
control mechanism was employed.

120



*	

*	

*	

*	

*	

Figure 4-2: The improvement in search time (upper panel) and accuracy (lower panel)
with the linking (red bars) or auto linking (black bars) interface, with the null in-
terface as the baseline. Learning performance improvement was measured in the
Stat2.1x study. The 95% confidence intervals (shown as error bars) and significance
test results (marked with red asterisk if the difference is statistically significant) are
also provided.

In Table 4.5 and Fig. 4-3, we find that the auto linking interface also allowed

learners to complete tasks with less time in most cohorts (except for subjects without

a bachelor’s degree), as compared to the null interface. Search accuracy was also im-

proved in the entire group of subjects, subjects with or without experience in Python,

subjects with or without previous exposure to MOOCs, and subjects with a bachelor’s

degree or higher. In addition, in comparing the improvements yielded by the linking

and auto linking interfaces, we observe highly correlated and statistically significant

improvements in mostly the same cohorts (except for the time reduction for subjects
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Figure 4-3: Improvements in search time and accuracy when different interfaces were
used in the 6.00x study. This plots the improvement yielded when using linking (red
bars) and auto linking (black bars) as compared to null .

without a bachelor’s degree, the accuracy for subjects with Python experience, and

the accuracy for subjects with previous MOOC exposure).

From the user study results discussed above, we observe that in most cases the

auto linking interface was still able to help learners in the search task, but generally

yielded slightly less improvement than the linking interface (except for the accuracy

of the 6.00x study). The observation is interesting: our results in Section 4.4 show

that some of the linking used in the auto linking interface were very different from

those labeled by humans (e.g., the linking between videos and discussions in 6.00x);

however, based on our user study experiment, learners seemed to benefit from both

interfaces despite their using somewhat different linking annotations.
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We believe the user study results support our previous conjecture that despite

the few discrepancies between human- and machine-labeled linking, many of the

differences could be attributable to the ambiguity of the underlying linking tasks.

Therefore, both humans and machines created reasonable linking, and learners bene-

fitted from both the linking and auto linking interfaces. However, from the results we

also believe that machines cannot match humans as to the depth of understanding

of the learning content, and thus still make linking errors which confuse learners.

Hence, usually smaller improvements in learning performance are measured when we

replace human-labeled linking with the machine-generated ones. In Section 4.6, we

continue this discussion about the difference between linking labeled by humans and

machines, and investigate the difference patterns to explain why auto linking is still

helpful. Below we investigate the other learning scenario: concept retention.

4.5.2 How automatic linking affects information memorization

Here we explore how the automatic linking affects learner performance in the concept

retention scenario. Performance was measured by the numbers of unique key-terms

in the learner-submitted essays. Table 4.6 compares the performance when an auto

linking interface was deployed to results when linking or null was used (those reported

in Table 3.6 for the Stat2.1x experiment). The user study for the auto linking interface

followed the same experimental procedures described in Section 3.4.2, e.g., 1,000

HITs for the same 10 sampled topics on AMT, a between-subjects design, and a

plagiarism check for quality control11. Also visualized is the performance improvement

(increased number of key-terms) from linking (red bars) and auto linking (black bars)

as compared to null .

Similar to the results in the information search scenario, automatic linking also

yielded performance improvements in the retention task. As compared to subjects

assigned the null interface, learners who used auto linking mentioned more key-terms

in their essays. The improvement is statistically significant in the entire group of

11This study was also conducted three months after the experiments on the null and linking
interfaces were complete.
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Table 4.6: Learner performance in the concept retention scenario in the Stat2.1x
study. Performance was evaluated by the number of unique key-terms in submitted
essays and measured within various cohorts using the null , linking , and auto linking
interfaces.

Number of unique key-terms
null linking auto linking

Overall 4.39 4.91 4.83

Statistics Yes 4.71 5.11 5.02
No 3.98 4.60 4.50

MOOCs Yes 4.83 5.14 5.07
No 4.27 4.77 4.75

≥Bachelor Yes 4.73 5.23 5.04
No 3.98 4.60 4.46

experimental subjects as well as among the novice learners. Moreover, if we com-

pare the improvement yielded by linking and auto linking , we find that the latter

consistently showed a smaller increase in the number of key-terms.

The effect of automatic linking on the 6.00x retention task is also summarized

in Table 4.7. The null and linking columns correspond to the results discussed in

Table 3.7. The learning performance observed in the user study where the auto

linking interface was deployed is listed in the auto linking column12. Additionally,

Fig. 4-5 visualizes the performance difference observed when different interfaces were

used, and plots the increase in the number of key-terms from using linking (red bars)

and auto linking (black bars) as compared to null .

From Fig. 4-5 and Table 4.7, we find that automatic and manual linking perform

similarly. Both linking and auto linking interfaces equipped learners in each cohort to

use more key-terms in their summaries of the assigned topics. However, at the 95%

confidence interval, the improvement yielded from the auto linking interface was not

statistically significant in the seven cohorts studied here.

Similar to what we found in the information search scenario, the user study results

discussed here also show that despite the differences between manual and automatic

links, learners benefitted from both. The results provide additional support for our

12In the study, the same experiment setup was adopted: 1,000 HITs for the same 10 topics and a
between-subjects design. In addition, at the same time we conducted an experiment with the three
interfaces (i.e., null , linking , and auto linking).
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Figure 4-4: The improvement in the number of unique key-terms contained by sub-
mitted essays when the linking (red bars) or auto linking (black bars) interface was
used, with the null interface as the baseline. Learning performance was measured in
the Stat2.1x study. The 95% confidence intervals and significance test results are also
provided.

conjecture that many disagreements between the manual and automatic linking come

from the task ambiguity, and that the CRF model still makes reasonable decisions

when linking learning objects. Hence, only a small degradation in learning perfor-

mance was found when manual linking was replaced by automated linking.
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Table 4.7: Learner performance in the concept retention scenario in the 6.00x study.
Performance was evaluated by the number of unique key-terms in submitted essays
and measured within various cohorts using the null , linking , and auto linking inter-
faces.

Number of unique key-terms
null linking auto linking

Overall 8.07 8.56 8.39

Python Yes 8.64 9.09 8.74
No 7.64 8.20 8.14

MOOCs Yes 8.37 8.55 8.63
No 7.93 8.56 8.28

≥Bachelor Yes 8.60 9.13 8.77
No 7.21 7.91 7.88

*	

*	

*	

Figure 4-5: The improvement in the number of key-terms contained in submitted
essays when different interfaces were deployed in the 6.00x study. Also visualized
is the improvement from using linking (red bars) and auto linking (black bars) as
compared to null .
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4.6 Difference pattern analysis

In the previous section, we provided evidence that automatic linking still benefit

learning, and that the low similarity between manual and automatic linking causes

only a small degradation in the observed learning performance. In this section, we

attempt to provide explanations for why automatic linking are also helpful in learning

– if not as much so as manual linking – by looking into the difference patterns between

manual and automatic linking.

For the analysis, we choose the task of linking between video vignettes and discus-

sion threads; this task had the lowest F1 score. We compare the linking predicted by

our best automated system to human annotation. In the comparison, we first sam-

pled 50 discussion threads from those threads which were linked to different vignettes

in human and machine labeling. After reviewing the sampled threads, we identified

four difference patterns:

1. Pattern 1: only annotators linked some vignettes to the thread.

2. Pattern 2: only machines linked some vignettes to the thread.

3. Pattern 3: both machines and annotators linked some but not the same vi-

gnettes to the thread; the non-overlapping vignettes belong to the same lecture

video.

4. Pattern 4: both machines and annotators linked some but not the same vi-

gnettes to the thread; the non-overlapping vignettes belong to different lecture

videos.

We categorize the sampled 50 threads into the four patterns in Table 4.8. Here we

find that pattern 1 dominates in numbers. With this categorization, below we analyze

each pattern and how it affects the learning experience in order to shed light on the

user study results.

Pattern 1 includes 62% of the sampled threads. However, we believe that among

the four, this pattern detracts the least from the learning experience. Because of the
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Table 4.8: The number of threads categorized into the four difference patterns.
Pattern 1 Pattern 2 Pattern 3 Pattern 4

Number of threads 31 6 8 5

way we presented learning content and visualized linking, in this pattern, the auto

linking interface simply regressed to the null ; since the thread was not linked to any

video vignette by machines, this thread was presented under a separate discussion

tab. Although the regression increased the difficulty to access this thread, the user

experience in interacting with the rest of the learning materials was almost identical.

Thus learners still accessed the desired information from the rest of the materials to

accomplish their tasks as they did in the interface driven by manual linking.

To illustrate this difference pattern and give a concrete example, we consider one

specific thread from our set of 31. We present the content of this thread and its

linked vignette in Fig. 4-6. In the left panel of the figure, we see that the discussion

is about how dictionaries enable quick web searches in Google. In the right panel

we observe that our TAs related this discussion to a vignette13 introducing the basic

idea of a dictionary, while the machines linked nothing to this post. Thus, in our

linking interface, when learners surveyed this vignette of dictionary introduction,

this discussion about web search was rendered under the video, while in the auto

linking interface no discussion was presented. However, the discussion only added

fun facts and additional information to the vignette. Without the post, the concept

of a dictionary could still be properly learned from the vignette. This example implies

a negligible effect on learning for difference pattern 1.

In addition, we examined the relation between this difference pattern and task

ambiguity, finding that in 19 of the 31 threads, one of the three annotators14 agreed

with the machines (i.e., linking nothing to the thread). From this result we believe

that many disagreements between machines and annotators derive from the conser-

13Note that since a video vignette is defined as the video chunk aligned to one slide page, the
content in a vignette can be well summarized by the aligned slide. For simplicity, here we show the
aligned slide to represent the vignette.

14Note that the manual annotation was obtained by taking the majority voting over the labeling
of three TAs.
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Discussion	thread	

Linked	vigne3e	(Humans)	

Linked	vigne3e	(Machine)	

Figure 4-6: An example of difference pattern 1. The left panel shows a sampled
discussion thread; the right panel presents the vignette linked to the thread by human
annotators (upper right) and by the proposed CRF algorithm (lower right). The case
where none of the vignettes is linked is represented by ∅.

vativeness of the machines: the automated algorithm is inclined not to link videos

and threads when the linking is ambiguous. This fact also supports our belief that

this difference pattern has little negative effect on learning, since learners can focus

on the case when the relation between learning objects is strong.

Six out of the 50 sampled threads were categorized into the second pattern. This

pattern detracted from the learning experience and confused learners. In this case,

the machines linked to discussion threads vignettes which were deemed irrelevant by

annotators. Under these vignettes the discussion threads were shown in our auto

linking interface. Learners were obliged to expend their cognitive capacity to under-

stand these unrelated threads, and could have ended up feeling confused about why

these threads were presented. Therefore with this type of difference pattern, learning

performance was lowered.

We also give an example of difference pattern 2. In Fig. 4-7, we consider one

specific thread from the set of six on the left; the content of the linked vignette

labeled by humans and machines is presented on the right. The thread is meaningless

discussion, but the machines linked it to a vignette describing a hash function. It is
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Discussion	thread	
Linked	vigne3e	(Humans)	

Linked	vigne3e	(Machine)	

Figure 4-7: An example of difference pattern 2. The left panel shows a sampled
discussion thread; the right panel presents the vignette linked to the thread by human
annotators (upper right) and the proposed algorithm (lower right).

obvious that this type of difference may distract or confuse learners, and thus detract

from their learning experience.

We also examine the question of whether all disagreements result from algorithmic

errors or whether some result from task ambiguity, finding that in the case of difference

pattern 2, one of the three annotators agreed with the machine’s linking in 2 out of

the 6 threads. Hence, we believe that not all differences in this category were the

result of machine mistakes, and only a portion of the differences caused declines in

learner performance.

As for the third pattern, 8 out of the 50 sampled threads were classified in this

category. Similar to the first pattern, we also believe this difference pattern had little

negative effect on learners given our interface design. In this pattern, although the

machines and humans linked different vignettes to a thread, these vignettes belonged

to the same lecture video. With our interface design, this thread was presented

under the same video but was merely aligned to different parts of the video scrubber.

Therefore, this difference pattern did not greatly change the user experience15.

An example of difference pattern 3 is shown in Fig. 4-8. As we can see, the thread

15In 4 out of the 8 threads, one of the three annotators linked the same video vignettes as the ma-
chine. This also supports our claim that the proposed automated system links reasonable vignettes;
thus it is very likely the disagreement did not affect learners negatively.
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Discussion	thread	
Linked	vigne3e	(Humans)	

Linked	vigne3e	(Machine)	

Figure 4-8: An example of difference pattern 3. In this example, the thread (left
panel) was linked by humans and machine to two vignettes (right panel) in the same
lecture video. The two vignettes are closely related to each other, and the difference
in presenting these two ways of linking was only minor.

was relevant to both vignettes linked by humans and machine. When the two various

ways of linking were presented in our interface, qualitatively the difference was minor,

which supports our previous claim.

A total of 10% (5 out of 50) of the sampled threads were categorized as the last

pattern. As with pattern 2, this difference category confused the learner, detracting

from the learning experience, since in auto linking the discussion threads were linked

to lecture videos which were totally different from those labeled by humans; here the

proposed automated linking algorithm agreed with any of the three annotators in

only 1 out of the 5 threads. Thus, we conclude that this difference pattern is less

likely to be caused by task ambiguity; it is very likely that videos that were linked

only in the automated system were irrelevant to the threads.
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Discussion	thread	

Linked	vigne3e	(Humans)	

Linked	vigne3e	(Machine)	

Figure 4-9: An example of difference pattern 4. Here, humans and machine linked
two vignettes (right panel) from various lecture videos to the same discussion the
thread (left panel).

Fig. 4-9 shows an example of difference pattern 4. In the posts here, learners

discuss how the Python interpreter utilizes symbol tables to keep track of variable

bindings in recursion, which was explained exactly in the vignette linked by our TAs.

In contrast, the proposed CRF algorithm linked this thread to a less relevant vignette

belonging to another lecture video describing global variables. Learners could have

been distracted by the discussion of the symbol tables when viewing this video.

From this analysis we can find that although the similarity between automated

and manual linking was low in some tasks, we find reasonable many of the differences

resulting from task ambiguity and the linking labeled by both machine and humans;

otherwise the differences were properly presented in our interface. Such differences

were recovered or ignored easily by learners and thus had little effect on user expe-

rience. Therefore, we also observe considerable improvement in learner performance

when the auto linking interface was deployed. Note that this analysis was performed

for the process linking video vignettes and discussion threads. We believe that this
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conclusion generalizes to the linking of other materials, since similar automated algo-

rithms were utilized.

4.7 Comparison with the edx interface

In the above studies, we have shown that when we present learning content to learners,

if we are able to visualize the relations among content, learners achieve better perfor-

mance in completing the assigned learning tasks. Furthermore, we demonstrated that

we can obtain the relations either from human annotators or the proposed CRF linking

algorithm. These studies were conducted by comparing the linking and auto linking

interfaces to the null interface, a baseline that implements the conventional strategy

for delivering learning materials online. In this section, we investigate whether our

linking framework provides added value to the interface currently deployed for MOOC

platforms (here we choose as our baseline the edX website).

4.7.1 The edx interface

To ensure a consistent deployment for the user study, rather than using the edX

website directly, we implemented our own edx interface to conduct the AMT study. A

screenshot of this interface is presented in Fig. 4-10. We reproduced the design of the

interface and the content layout from the edX website in order to offer learners a user

experience identical to the one they use when engaged in a state-of-the-art MOOC

platform. The only difference between our edx interface and the real platform is that

here, we additionally provided the search mechanism for accessing course materials;

this was also done in order to ensure a comparison consistent with our linking , auto

linking , and null interfaces.

In this interface, instructors upload a deck of lecture slides beneath the paired

lecture video. The associated slides are presented as a link under the video player for

learners to refer to. On the edX website, to motivate learners to engage in discussion

and to organize the voluminous forum postings, learners were allowed to post under

a lecture video to specify the relation between their discussions and the lecture; these
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Figure 4-10: The implemented edx interface that reproduced the design and layout
of the edX website to offer learners a user experience similar to that of a real MOOC,
except that we added the additional search tool to access course materials. This in-
terface was used to investigate how much added value our linking framework provides
for state-of-the-art MOOC platforms.

posts were directly rendered under the video for future learners. This functionality

was also implemented in our edx interface.

From the design of the edx interface we find that this interface can be interpreted

as another approach to educational content linking on different information levels:

lecture slides were linked on the lecture level rather than the page level as in the

linking interface; the relation between discussions and lecture videos was inferred

from learner choices rather than being based on the content of the material; the

textbook was still presented separately. Thus, as compared to the null interface, the

edx interface serves as a baseline in the comparative study for a different purpose.

We implemented the edx interface in order to investigate how much added value our
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linking framework provides for state-of-the-art MOOC platforms. In contrast, we

utilized the null interface to explore the fundamental research question asked in this

thesis: does linking help learning?.

4.7.2 User study, results, and discussions

To examine what value the proposed linking framework adds to state-of-the-art

MOOC platforms, we conducted another user study. In this study, again we pub-

lished 1,000 HITs on AMT for each of the two learning scenarios, and learners in

this study were to use the edx interface to accomplish their tasks. By comparing

the learning performance measured here to the results from the null , linking , and

auto linking interfaces, we can investigate whether our educational content linking

framework improves on the current MOOC design. Note that in this study, except

for the deployed interface for completing tasks, the remaining experimental setup was

identical to the other user studies discussed in this thesis (e.g., the same 10 sampled

questions and topics, the same number of rewards, the same quality control mecha-

nism, and the between-subjects design). Furthermore, for simplicity in this chapter

we only investigated 6.00x for our study, and the user study was conducted together

with the other three (i.e., null , linking , and auto linking) interfaces.

Table 4.9 summarizes learner performance (evaluated by the average search time

and accuracy) in the information search scenario. Columns 1 to 3 and 5 to 7 corre-

spond to the performance measured when the null , linking , and auto linking interfaces

are utilized. These results are identical to those reported in Table 4.5. The user study

result when the edx interface was deployed is listed in columns 4 and 8. Here, we em-

ploy the same dividing criteria to stratify learner backgrounds (i.e., prior knowledge,

experience in MOOCs, and highest degree).

Since our goal is to examine how much added value our educational content linking

framework brings us, in Fig. 4-11 we again visualize the differences in performance

yielded by different pairs of interfaces. In this figure we present the improvement

(i.e., time reduction in the upper panel and accuracy increase in the lower) from

linking (red bars) and auto linking (black bars) as compared to null , as well as the
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Table 4.9: Learner performance in the information search scenario in the 6.00x study.
In addition to the results reported in Table 4.5, we list performance (evaluated by
the average search time and average accuracy) measured when the edx interface was
used.

Average search time (seconds) Average accuracy
null linking auto linking edx null linking auto linking edx

Overall 443 349 360 401 87.7 89.5 90.4 88.6

Python Yes 419 323 352 352 90.3 90.3 93.0 89.5
No 463 378 365 443 85.6 88.6 88.6 87.9

MOOCs Yes 427 336 336 386 88.0 89.4 91.1 89.3
No 454 357 371 409 87.6 89.5 90.0 88.2

≥Bachelor Yes 472 359 353 393 89.5 91.5 92.3 90.8
No 399 331 370 411 85.1 86.2 87.4 85.8

Table 4.10: Learner performance in the concept retention scenario in the 6.00x study.
In addition to the results reported in Table 4.7, we list the number of unique key-terms
in submitted essays measured when the edx interface was used.

Number of unique key-terms
null linking auto linking edx

Overall 8.07 8.56 8.39 8.03

Python Yes 8.64 9.09 8.74 8.47
No 7.64 8.20 8.14 7.68

MOOCs Yes 8.37 8.55 8.63 8.51
No 7.93 8.56 8.28 7.76

≥Bachelor Yes 8.60 9.13 8.77 8.67
No 7.21 7.91 7.88 7.23

improvement from linking (blue bars) and auto linking (orange bars) as compared

to edx . By looking at the blue and orange bars, we understand the potential of our

linking framework to improve content delivery in current MOOC platforms. The

red and black bars are plotted here for comparison to our previous results; they are

identical to those in Fig. 4-3.

In Table 4.10 we report the observed performance in the concept retention sce-

nario. In addition to the results discussed in Table 4.7, which are listed in columns

1 to 3 here, in column 4 we present the performance measured for learners who used

the edx interface for their tasks. Additionally, to visualize the added value yielded

by the proposed linking framework, we also plot in Fig. 4-12 the differences in the

number of key-terms when the various interfaces were deployed.
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Figure 4-11: Improvement in search time and accuracy for different interfaces. Plotted
are the improvement from using linking (red bars) and auto linking (black bars) as
compared to null , and the improvement from linking (blue bars) and auto linking
(orange bars) as compared to edx .

From the linking − edx and auto linking − edx bars (i.e., the blue and orange

bars) in Fig. 4-11, we find that the proposed linking interfaces (driven by either

manual or automatic links) allowed learners to find content more quickly but with

similar accuracy. Comparing each linking − edx and auto linking − edx bar to the

corresponding linking − null (i.e., red) and auto linking − null (i.e., black) one,

less time reduction is observed in general, and the reduction is significant in fewer

groups of subjects. For the linking − edx and auto linking − edx bars of subjects

with experience in Python, subjects with previous exposure to MOOCs, and subjects

with a bachelor’s or higher degree, as well as the auto linking − edx bar of subjects
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Figure 4-12: The improvement in the number of unique key-terms contained by sub-
mitted essays when different interfaces were deployed. The bars are pictured as in
Fig. 4-11.

without previous exposure to MOOCs, the differences are not statistically significant.

However, their counterparts in the linking − null and auto linking − null bars are

significant. Results here suggest the added value that the proposed linking and auto

linking interfaces provide for current MOOC platforms. Furthermore, in the search

accuracy, statistically significant improvement was shown only for the auto linking

− edx bars of the entire group of subjects, subjects with experience in Python, and

subjects without previous exposure to MOOCs. As compared to the linking − null

and auto linking − null bars, statistically significant difference is observed in a fewer

number of cohorts. These observations suggest that the edx interface is a better

baseline (in terms of yielding better learning performance) than the null one. The

reason is self-evident: the edx interface implements its own linking, which have been

shown to be able to make course materials more accessible and improve learning.

The proposed linking interfaces also yielded more key-terms consistently over each

cohort as compared to the interface reproducing the current MOOC design (Fig. 4-

12). Furthermore, in this learning scenario, the null and edx interfaces seemed to

perform similarly, and therefore the difference between the linking − edx and auto

linking − edx bars when compared to the linking − null and auto linking − null

ones in the same cohorts is much less obvious than that in the information search
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scenario. We surmise that this difference results from the nature of the two scenarios.

In comparing the null and edx interfaces, one of the most significant changes is

that in the edx interface relevant discussions were stacked beneath the lecture video.

Discussions are typically initiated because of confusion about specific problems or

concepts in the learning content; they contain useful information to solve questions

asked in the search scenario. However, information in these posts is fractional and

thus it is challenging to learn about a topic systematically from these posts. Therefore,

the improved navigation over discussions was much more helpful in our search tasks.

Our results show that the proposed educational content linking framework po-

tentially allows learners to find desired learning content more quickly than the cur-

rent MOOC interface design with comparable accuracy; with the proposed interfaces,

subjects also retained more information after learning with the assigned topic in the

same amount of time. Since the edx interface also partially implemented linking, we

surmise that the improvement resulted from several differences in the interface de-

sign. First, the page-level alignment between slides and lecture videos better reflects

the structure and emphasizes the sub-goals of videos. Second, the relation between

discussions and videos tagged by learners can be noisy and distract other learners;

taking into account the topical relevance between content contained in the two types

of materials helped to maintain the tagging quality. Third, some discussions might

be related to only parts of the videos. This information is not available in the current

MOOC platforms. Fourth, it might be worthwhile to visualize the relations between

lecture videos and external resources, such as a recommended textbook. We believe

that by integrating these features properly into the current platform design, learning

experience in MOOCs would be enhanced significantly.

4.8 Conclusions

In this chapter we investigated our second research question: can linking be done

at scale? For this question, we formulated the linking annotation as a sequential

tagging problem, and proposed an automatic content linking algorithm based on
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CRFs. In the algorithm, to infer the linking, a variety of features were utilized:

lexical similarity, transition, visual, and metadata features. In analyzing the difference

patterns between automated and manual linking, we found that many differences

resulted from task ambiguity and had little negative effect on learners. Hence, in our

user research we observed similar improvement in learning performance when the auto

linking interface replaced the linking one. We concluded that our linking framework

can be realized at scale with an automated algorithm.

Furthermore, we also compared our linking and auto linking interfaces to a re-

production of the edX website, and explored how these interfaces support learners in

completing assigned tasks. In the user study we also demonstrated that, as compared

to the current design in MOOC platforms, our educational content linking framework

still helped learners find information more quickly and retain more concepts. We

believe that the proposed linking framework enriched the current MOOC interface

design. We envision engaging learners with more accessible course materials and a

better learning experience powered by content linking.
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Chapter 5

Conclusions

This dissertation introduced educational content linking: a framework for organizing

course materials to make content more accessible for learners. In this chapter we

conclude by summarizing the main contributions of this thesis and discuss possible

directions for future work.

5.1 Summary and contributions

This thesis contributes to the research community by proposing a framework for

educational content linking. This framework provides better navigation over learning

materials and improves the learning experience. Around the framework we conducted

two lines of studies to answer two research questions: 1) Would it help learners if we

were able to link course materials using human annotators? and 2) Can the courseware

be linked at scale using machine learning methods?

In exploring the first question, this thesis makes three main contributions: the

linking annotation, the interface design, and the evaluation.

∙ The linking annotation. We provide a definition of linking and a formula-

tion of labeling relations among learning materials as an alignment and binary

classification problem. We design the workflow of annotating linking with re-

searchers or with collaboration between course staff and online workers. Linking

is an abstract concept; this contribution makes it concrete.
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∙ The interface design. We design an interface to deliver learning content with

the visualization of linking among the materials. The interface can provide

pedagogical benefits through improved content navigation.

∙ The evaluation. We conduct a large-scale user study with online workers and

two learning scenarios to investigate specific learning mechanisms: search and

retention. We argue that this study can measure the benefits of pedagogical

intervention reliably with reasonable cost, when the underlying learning goals

in the study are clear to participants. The study result shows that the proposed

linking framework indeeds improve learning outcomes in the investigated search

and retention scenarios.

In the second part of this thesis, we investigated the second research question, and

offer two main contributions: the automated linking algorithm and the comparison

to a currently deployed MOOC interface.

∙ The automated linking algorithm. We propose an automated linking al-

gorithm based on CRFs and multimodal features. In our large-scale user study

we demonstrate that, despite the differences between the manually and auto-

matically generated linking, most differences can be properly presented in our

interface or easily ignored by learners, and thus the interface powered by auto-

mated linking can still lead to better learning performance than the unlinked

interface. This result suggests that the proposed linking framework can be real-

ized at scale with an automatic algorithm based on machine learning techniques.

∙ The comparison to a currently deployed MOOC interface. In addition

to the conventional unlinked content delivery, we explore the added value our

linking framework can potentially provide to a currently-used MOOC interface.

The user research result suggests that the framework proposed here can possibly

enrich the design of the studied MOOC interface, engage learners with more

accessible learning content, and improve learning outcomes.
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5.2 Future work

This dissertation showed the potential of educational content linking in engaging

learners with a better learning experience. This conceptual idea can be further veri-

fied, refined, and applied to various circumstances to improve learning.

5.2.1 Learning platforms of the future

Our user research results demonstrate several possible ways in which linking can

offer learners a better experience. We envision that the future learning platforms

will engage learners with more accessible learning content. Although in this thesis

we investigate linking in two learning tasks, search and retention, there are many

other aspects of learning that could potentially benefit from the proposed framework.

For instance, when solving the problem sets or performing online lab experiments,

with better organized learning materials, confused learners would be more likely to

receive proper assistance from the content. Furthermore, our studies were conducted

with online workers. Research implementing the proposed experimental pipeline in

a MOOC environment would be valuable to clarify the mechanism by which linking

helps actual learners.

Instead of reproducing our entire implementation of linking, separate components

in our pipeline also inspire directions of design for future platforms. For example,

the automated linking algorithm could be applied to filter noisy posts and improve

the quality of discussions; instructors could utilize the algorithm to discover relevant

learning content to enrich or reorganize their lectures. Our presentation of lecture

videos provides design implications for better video interaction with visualized struc-

ture and subgoals. The design of our 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interface suggests an elegant way to

offer recommended readings. These components lead to new avenues to improved

MOOC platforms.

143



5.2.2 Towards a variety of course subjects and material types

This thesis focuses on two STEM courses: statistics and the Python programming lan-

guage. However, as we mentioned in Chapter 1, there have been over 4,000 MOOCs

on the Web with subject fields ranging from science and engineering to humanities

and law. In addition to their topics, these MOOCs span various applied pedagogies,

course designs, and methods for content organization or delivery. Several interest-

ing questions that should be explored are "Whether our linking framework can be

applied to other subject fields", "which fields, pedagogies, designs, and content orga-

nization can benefit from linking", and "how various conditions interact with the idea

of linking". We believe a wider deployment of this framework in various MOOCs can

elucidate these questions.

With a wider deployment, the involved types of course materials would also vary.

For example, some MOOCs heavily emphasize proble sets, while others stress online

labs. For the proposed framework to be of more general use, we also must answer

questions such as "how to extend our implementation, from linking annotation to

visualization, to accommodate these variations" and "whether and how the conclusions

made in this dissertation are affected by the use of different types of materials". Our

initial foray of adding forums to our implementation is a good illustration of how to

investigate these questions.

5.2.3 More sophisticated algorithm for linking at scale

In Chapter 4, we demonstrated that many differences between manual and automated

linking have little negative effect on learners. However, there is still a considerable por-

tion of disagreement which can confuse learners. We believe that a more sophisticated

machine learning model would yield a deeper and more comprehensive understanding

of the course materials, and thus generate linking which is more similar to the human

annotated one.

One promising model is the attention-based neural network. In this model, first

proposed for machine translation [6], for each word in the sentence of the target
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language, the network learns a weight for each word in the source sentence. The

weight represents how relevant the source word is in predicting the target word.

When applying this model to our linking problem, the target tokens to be predicted

would be the linking configuration (e.g., the linked slide index, or whether two objects

are linked), and the source tokens would be two sequences of learning objects to be

linked. This network would focus its attention on informative learning content when

deciding the linking configuration; this mechanism is similar to how humans generate

the linking.

More informative features would also help the model to yield better linking results.

In addition to the information extracted from learning content, such as the lexical

and visual features utilized in our method, user behavior is another excellent resource

for predicting linking. In this thesis, we demonstrate the usage of learner-generated

tags about discussion posts in the linking algorithm. Aside from these tags, click logs

and browsing histories are very likely to aid in linking inference. Kim shows that the

aggregation of learner video interactions can reveal the underlying video structure and

provide implication for video authoring and interface design [63]. We believe that by

grouping the browsing history and summarizing clickstream patterns, we could better

understand the relevance among learning materials and extract informative features

for linking prediction.

Beyond these machine learning techniques, crowdsourcing (or learnersourcing)

is an alternative for linking at scale. Li and Mitros proposed a learning module

where learners can collaboratively recommend additional learning objects and manage

the recommended materials for future learners [79]. We envision a linking system

which allows learners and machines to author, edit, and manage the linking of course

materials in a collaborative way.

Furthermore, portability is another issue that should be investigated towards a

scalable linking system. In this thesis, we adopted a 5-fold cross validation technique

to obtain training and testing sets from the same MOOC. This experimental setup

raises the question of why we need the automated linking, since the manual labeling

of the entire MOOC is available. Hence, more realistic conditions should be explored,
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where for instance the automated algorithm is trained and tested on the same course

subjects but different offerings, or even on different MOOCs.
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Appendix A

Sampled problems and topics for the

user study

A.1 Sampled problems

A.1.1 Problems of Stat2.1x

The following problems were used in the information search scenario of the Stat2.1x

user study.

Q1 The table below shows the distribution of the ages of people who died by

gunfire in the U.S. during one week. Based on the table, how to compute the height

of each bar in the histogram.

age (years) percent

15-25 44

25-35 20

35-55 16

55-85 20

Q2 If both X and Y axis have the same unit (e.g., cm, degree, pound, ...), do I

have to convert them into standard unit (i.e., z-score) in order to calculate correlation

coefficient (r)?
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Q3 The average height of a large group of children is 43 inches and the SD is 1.2

inches. The average weight of these children is 40 pounds and the SD is 2 pounds.

The correlation coefficient (r) between the two variables (height and weight) is 0.65.

What is the equation of regression line for the two variables?

Q4 The average height of a large group of children is 43 inches and the SD is 1.2

inches. The average weight of these children is 40 pounds and the SD is 2 pounds.

The correlation coefficient (r) between the two variables is 0.65. How to estimate the

height of a person whose weight is 44 pounds with the equation of regression line?

Q5 What is the formal definition for X𝑡ℎ percentile, where X is a general, real

number between 0 and 100?

Q6 When we compute the residual, the error is the distance between an actual

point and the regression line. Should we use the vertical distance (i.e., draw a vertical

line from the actual point to the regression line, and take the distance between the

actual point and the intersecting point), perpendicular distance (i.e., from the actual

point, draw a line which is perpendicular to the regression line), or the horizontal

distance?

Q7 What is the range of value of correlation coefficient (r)? Can it be 5, negative

number, etc.

Q8 What is the definition of a football-shaped scatter plot? How does a football-

shaped scatter plot look like?

Q9 In a stem and leaf plot, we have elements something like:

16 | 1234

17 | 89

18 | 56

What exactly does this mean?

Q10 In the following, we show the distribution of midterm scores in a statistic

class. Please find the ’inter-quartile range’.

148



midterm scores percent of students

0-60 10

60-75 22

75-85 30

85-95 13

95-100 25

A.1.2 Problems of 6.00x

The following problems were used in the information search scenario of the 6.00x user

study.

Q1 x is a tuple and x = (’John’, ’Hello’, ’A’, ’Hi’). What is the value of

x[2]?

Q2 What error (if any) is raised when the following code snippets are attempted?

mylist = [10, 20, 30]

mylist.index(11)

A: ValueError

B: TypeError

C: SyntaxError

D: NameError

E: No error is raised

Q3 What method is called when an object is created?

A: self

B: obj.self

C: init

D: __init__

E: new

Q4 True or False?

- A Python class is an example of data abstraction.
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Q5 A dictionary is an immutable object because its keys are immutable.

A: True

B: False because its keys can be mutable

C: False because a dictionary is mutable

Q6 True or False?

- Declarative knowledge refers to statements of fact and imperative knowledge

refers to ’how to’ methods.

Q7 True or False?

- Every problem which is computable can be computed with a set of six

primitive operations.

Q8 For the following explanation of type of programmatic model, fill in the blank

with the appropriate model the definition describes.

A ______ model is one in which randomness is present, and variable states

are not described by unique values, but rather by probability distributions.

The behavior of this model cannot be entirely predicted.

A: continuous

B: deterministic

C: discrete

D: dynamic

E: static

F: stochastic

Q9 x is a list and x = [1, 4, 3, 0]. Specify the value of x after executing the

following expression:

» x.append(7)

Q10 Samples were taken from a distribution, and the histogram of those samples

is shown here:
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Which of the following distributions were the samples taken from?

A: Uniform Distribution

B: Exponential Distribution

C: Normal Distribution

A.2 Sampled topics

A.2.1 Topics of Stat2.1x

The following topics were used in the concept retention scenario of the Stat2.1x user

study.

1. Regression

2. Residual

3. Normal distribution

4. Percentile

5. Histogram

6. Standard deviation
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7. Mean

8. Scatter plot

9. Median

10. Correlation

A.2.2 Topics of 6.00x

The following topics were used in the concept retention scenario of the 6.00x user

study.

1. Operation

2. Function

3. Computation complexity

4. Dynamic programming

5. Graph

6. Object

7. Iteration

8. Class

9. Recursion

10. Sort

152



Bibliography

[1] 6.00x introduction to computer science and programming MITx on edX course
report - 2013 spring. http://papers.ssrn.com/sol3/papers.cfm?abstract_
id=2382322&download=yes/. Accessed: 2016-11-05.

[2] R. Agrawal, S. Gollapudi, A. Kannan, and K. Kenthapadi. Studying from elec-
tronic textbooks. In Proceedings of the 22nd ACM international conference on
Conference on information & knowledge management, pages 1715–1720. ACM,
2013.

[3] M. Allahbakhsh, B. Benatallah, A. Ignjatovic, H. R. Motahari-Nezhad,
E. Bertino, and S. Dustdar. Quality control in crowdsourcing systems. IEEE
Internet Comput, 17(2):76–81, 2013.

[4] J. R. Anderson, C. F. Boyle, and B. J. Reiser. Intelligent tutoring systems.
Science(Washington), 228(4698):456–462, 1985.

[5] D. P. Ausubel. The acquisition and retention of knowledge: A cognitive view.
Springer Science & Business Media, 2012.

[6] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[7] S. P. Balfour. Assessing writing in moocs: Automated essay scoring and cali-
brated peer review (tm). Research & Practice in Assessment, 8, 2013.

[8] Y. Belinkov and J. Glass. Large-scale machine translation between Arabic and
Hebrew: Available corpora and initial results. arXiv preprint arXiv:1609.07701,
2016.

[9] V. Bhat, A. Gokhale, R. Jadhav, J. Pudipeddi, and L. Akoglu. Min (e) d your
tags: Analysis of question response time in stackoverflow. In Advances in Social
Networks Analysis and Mining (ASONAM), 2014 IEEE/ACM International
Conference on, pages 328–335. IEEE, 2014.

[10] C. Bishop. Pattern recognition and machine learning (information science and
statistics), 1st edn. 2006. corr. 2nd printing edn, 2007.

[11] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Journal of
machine Learning research, 3(Jan):993–1022, 2003.

153



[12] B. S. Bloom. The 2 sigma problem: The search for methods of group instruction
as effective as one-to-one tutoring. Educational researcher, 13(6):4–16, 1984.

[13] C. C. Bonwell and J. A. Eison. Active Learning: Creating Excitement in the
Classroom. 1991 ASHE-ERIC Higher Education Reports. ERIC, 1991.

[14] P. Brusilovsky. Developing adaptive educational hypermedia systems: From
design models to authoring tools. In Authoring tools for advanced technology
Learning Environments, pages 377–409. Springer, 2003.

[15] P. Brusilovsky, J. Eklund, and E. Schwarz. Web-based education for all: a tool
for development adaptive courseware. Computer networks and ISDN systems,
30(1):291–300, 1998.

[16] P. Brusilovsky and C. Peylo. Adaptive and intelligent web-based educational
systems. International Journal of Artificial Intelligence in Education (IJAIED),
13:159–172, 2003.

[17] C. Callison-Burch. Fast, cheap, and creative: evaluating translation quality
using Amazon’s mechanical turk. In Proceedings of the 2009 Conference on
Empirical Methods in Natural Language Processing: Volume 1-Volume 1, pages
286–295. Association for Computational Linguistics, 2009.

[18] C. Camerer, G. Loewenstein, and M. Weber. The curse of knowledge in eco-
nomic settings: An experimental analysis. The Journal of Political Economy,
pages 1232–1254, 1989.

[19] P. K. Chan and S. J. Stolfo. Toward scalable learning with non-uniform class
and cost distributions: A case study in credit card fraud detection. In KDD,
volume 98, pages 164–168, 1998.

[20] Plagiarism checker. http://smallseotools.com/plagiarism-checker/. Ac-
cessed: 2016-11-05.

[21] J. J. Chen, N. J. Menezes, A. D. Bradley, and T. A. North. Opportunities for
crowdsourcing research on Amazon mechanical turk. Interfaces, 5(3), 2011.

[22] M. Chen, E. D. Lughofer, M. Huang, H. Chiang, P. Wu, and Y. Hsieh. A multi-
strategy machine learning student modeling for intelligent tutoring systems:
based on blackboard approach. Library Hi Tech, 31(2):274–293, 2013.

[23] R. Choudhry and K. Garg. A hybrid machine learning system for stock market
forecasting. World Academy of Science, Engineering and Technology, 39(3):315–
318, 2008.

[24] R. R. Choudhury, H. Yin, J. Moghadam, and A. Fox. Autostyle: Toward
coding style feedback at scale. In Proceedings of the 19th ACM Conference
on Computer Supported Cooperative Work and Social Computing Companion,
pages 21–24. ACM, 2016.

154



[25] O. Comber, R. Motschnig, and Z. Komlenov. Supporting person-centered learn-
ing: Does the choice of the learning management system matter?: A case study
with moodle, fronter and cewebs. In IEEE EDUCON 2010 Conference, pages
885–890, 2010.

[26] G. Cong, L. Wang, C. Lin, Y. Song, and Y. Sun. Finding question-answer
pairs from online forums. In Proceedings of the 31st annual international ACM
SIGIR conference on Research and development in information retrieval, pages
467–474. ACM, 2008.

[27] Coursera. https://www.coursera.org/. Accessed: 2016-11-05.

[28] A. Fox B. Hartmann D. Coetzee, S. Lim and M. A. Hearst. Structuring inter-
actions for large-scale synchronous peer learning. In Proc. CSCW, 2015.

[29] M. A. Hearst D. Coetzee, A. Fox and B. Hartmann. Chatrooms in MOOCs:
All talk and no action. In Proc. Learning at Scale, 2014.

[30] A. Dattolo and F. L. Luccio. A new concept map model for e-learning envi-
ronments. In International Conference on Web Information Systems and Tech-
nologies, pages 404–417. Springer, 2008.

[31] H. Drachsler, K. Verbert, O. C. Santos, and N. Manouselis. Panorama of rec-
ommender systems to support learning. In Recommender systems handbook,
pages 421–451. Springer, 2015.

[32] edX. https://www.edx.org/. Accessed: 2016-11-05.

[33] J. Eisenstein and R. Barzilay. Bayesian unsupervised topic segmentation. In
Proceedings of the Conference on Empirical Methods in Natural Language Pro-
cessing, pages 334–343. Association for Computational Linguistics, 2008.

[34] J. L. Fleiss, B. Levin, and M. C. Paik. Statistical methods for rates and propor-
tions. John Wiley & Sons, 2013.

[35] C. Flow. The psychology of optimal experience. Harper&Row, New York, 1990.

[36] W. B. Frakes and C. J. Fox. Strength and similarity of affix removal stemming
algorithms. In ACM SIGIR Forum, volume 37, pages 26–30. ACM, 2003.

[37] Y. Fujii, K. Yamamoto, N. Kitaoka, and S. Nakagawa. Class lecture summa-
rization taking into account consecutiveness of important sentences. In INTER-
SPEECH, pages 2438–2441. Citeseer, 2008.

[38] FutureLearn. https://www.futurelearn.com/. Accessed: 2016-11-05.

[39] N. Gillani and R. Eynon. Communication patterns in massively open online
courses. The Internet and Higher Education, 23:18–26, 2014.

155



[40] J. R. Glass, T. J. Hazen, D. S. Cyphers, I. Malioutov, D. Huynh, and R. Barzi-
lay. Recent progress in the MIT spoken lecture processing project. In Inter-
speech, pages 2553–2556, 2007.

[41] E. L. Glassman, C. J. Terman, and R. C. Miller. Learner-sourcing in an engi-
neering class at scale. In Proceedings of the Second (2015) ACM Conference on
Learning at Scale, pages 363–366. ACM, 2015.

[42] J. V. Guttag. Introduction to computation and programming using Python. Mit
Press, 2013.

[43] M. Guy, M. d’Aquin, S. Dietze, H. Drachsler, E. Herder, and E. Parodi.
Linkedup: Linking open data for education. Ariadne, (72), 2014.

[44] W. Hämäläinen and M. Vinni. Comparison of machine learning methods for
intelligent tutoring systems. In International Conference on Intelligent Tutoring
Systems, pages 525–534. Springer, 2006.

[45] D. Harwath and J. Glass. Deep multimodal semantic embeddings for speech
and images. In 2015 IEEE Workshop on Automatic Speech Recognition and
Understanding (ASRU), pages 237–244. IEEE, 2015.

[46] J. Hattie and G. CR Yates. Visible learning and the science of how we learn.
Routledge, 2013.

[47] X. He, R. S. Zemel, and M. Á. Carreira-Perpiñán. Multiscale conditional ran-
dom fields for image labeling. In Computer vision and pattern recognition,
2004. CVPR 2004. Proceedings of the 2004 IEEE computer society conference
on, volume 2, pages II–695. IEEE, 2004.

[48] M. A. Hearst and D. Degler. Sewing the seams of sensemaking: A practical
interface for tagging and organizing saved search results. In Proceedings of the
Symposium on Human-Computer Interaction and Information Retrieval, page 4.
ACM, 2013.

[49] K. Hirohata, N. Okazaki, S. Ananiadou, and M. Ishizuka. Identifying sections in
scientific abstracts using conditional random fields. In IJCNLP, pages 381–388,
2008.

[50] G. W. Hislop. The inevitability of teaching online. Computer, 42:94–96, 2009.

[51] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computa-
tion, 9(8):1735–1780, 1997.

[52] T. Hofmann. Probabilistic latent semantic indexing. In Proceedings of the 22nd
annual international ACM SIGIR conference on Research and development in
information retrieval, pages 50–57. ACM, 1999.

156



[53] Fiona M Hollands and Devayani Tirthali. Moocs: Expectations and reality. full
report. Online Submission, 2014.

[54] L. Hong and B. D. Davison. A classification-based approach to question an-
swering in discussion boards. In Proceedings of the 32nd international ACM
SIGIR conference on Research and development in information retrieval, pages
171–178. ACM, 2009.

[55] Introduction to statistics: descriptive statis-
tics (Stat2.1x). https://www.edx.org/course/
introduction-statistics-descriptive-uc-berkeleyx-stat2-1x/. Ac-
cessed: 2016-11-05.

[56] G. S. Stump J. DeBoer, A. D. Ho and L. Breslow. Changing "course" recon-
ceptualizing educational variables for massive open online courses. Educational
Researcher, 2014.

[57] J. Janssen, C. Tattersall, W. Waterink, B. Van den Berg, R. Van Es, C. Bolman,
and R. Koper. Self-organising navigational support in lifelong learning: how
predecessors can lead the way. Computers & Education, 49(3):781–793, 2007.

[58] W. S. Junk. The dynamic balance between cost, schedule, features, and quality
in software development projects. Computer Science Dept., University of Idaho,
SEPM-001, 2000.

[59] F. Jurcıcek, S. Keizer, M. Gašic, F. Mairesse, B. Thomson, K. Yu, and S. Young.
Real user evaluation of spoken dialogue systems using Amazon mechanical turk.
In Proceedings of INTERSPEECH, volume 11, 2011.

[60] S. Kalyuga. Cognitive load theory: Implications for affective computing. In
Twenty-Fourth International FLAIRS Conference, 2011.

[61] D. R. Karger, S. Oh, and D. Shah. Efficient crowdsourcing for multi-class
labeling. ACM SIGMETRICS Performance Evaluation Review, 41(1):81–92,
2013.

[62] J. Kibler. Cognitive disequilibrium. In Encyclopedia of Child Behavior and
Development, pages 380–380. Springer, 2011.

[63] J. Kim. Learnersourcing: improving learning with collective learner activity.
PhD thesis, Massachusetts Institute of Technology, 2015.

[64] J. Kim, S. Li, C. J. Cai, K. Z. Gajos, and R. C. Miller. Leveraging video
interaction data and content analysis to improve video learning. In Proceedings
of the CHI 2014 Learning Innovation at Scale workshop, 2014.

[65] P. A. Kirschner, J. Sweller, and R. E. Clark. Why minimal guidance during
instruction does not work: An analysis of the failure of constructivist, discovery,
problem-based, experiential, and inquiry-based teaching. Educational psychol-
ogist, 41(2):75–86, 2006.

157



[66] A. Kittur, E. H. Chi, and B. Suh. Crowdsourcing user studies with mechanical
turk. In Proceedings of the SIGCHI conference on human factors in computing
systems, pages 453–456. ACM, 2008.

[67] A. Kittur, B. Smus, S. Khamkar, and R. E. Kraut. Crowdforge: Crowdsourcing
complex work. In Proceedings of the 24th annual ACM symposium on User
interface software and technology, pages 43–52. ACM, 2011.

[68] G. Konidaris, L. P. Kaelbling, and T. Lozano-Perez. Symbol acquisition for
probabilistic high-level planning. In Proceedings of the Twenty Fourth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), 2007.

[69] I. Kononenko. Machine learning for medical diagnosis: history, state of the art
and perspective. Artificial Intelligence in medicine, 23(1):89–109, 2001.

[70] M. Korpusik, C. Huang, M. Price, and J. Glass. Distributional semantics for
understanding spoken meal descriptions. In 2016 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), pages 6070–6074.
IEEE, 2016.

[71] J. DeBoer G. S. Stump A. D. Ho L. Breslow, D. E. Pritchard and D. T. Seaton.
Studying learning in the worldwide classroom research into edx’s first MOOC.
Research and Practice in Assessment, 8:13–25, 2013.

[72] J. R. Landis and G. G. Koch. The measurement of observer agreement for
categorical data. biometrics, pages 159–174, 1977.

[73] W. Lasecki, C. Miller, A. Sadilek, A. Abumoussa, D. Borrello, R. Kushalnagar,
and J. Bigham. Real-time captioning by groups of non-experts. In Proceedings
of the 25th annual ACM symposium on User interface software and technology,
pages 23–34. ACM, 2012.

[74] N. Lavie, A. Hirst, J. W. De Fockert, and E. Viding. Load theory of selective
attention and cognitive control. Journal of Experimental Psychology: General,
133(3):339, 2004.

[75] Q. V. Le and T. Mikolov. Distributed representations of sentences and docu-
ments. In ICML, volume 14, pages 1188–1196, 2014.

[76] M. Lease. On quality control and machine learning in crowdsourcing. Human
Computation, 11(11), 2011.

[77] C. Lee and J. R. Glass. A transcription task for crowdsourcing with automatic
quality control. In Interspeech, volume 11, pages 3041–3044. Citeseer, 2011.

[78] T. Lewin. Colleges adapt online courses to ease burden. The New York Times,
2013.

158



[79] S. Li and P. Mitros. Learnersourced recommendations for remediation. In 2015
IEEE 15th International Conference on Advanced Learning Technologies, pages
411–412. IEEE, 2015.

[80] Y. Li, M. Dong, and R. Huang. Semantic organization of online discussion
transcripts for active collaborative learning. In 2008 Eighth IEEE International
Conference on Advanced Learning Technologies, pages 756–760. IEEE, 2008.

[81] F. Lin, L. Hsieh, and F. Chuang. Discovering genres of online discussion threads
via text mining. Computers & Education, 52(2):481–495, 2009.

[82] J. Liu. Harvesting and summarizing user-generated content for advanced speech-
based human-computer interaction. PhD thesis, Massachusetts Institute of Tech-
nology, 2012.

[83] J. Liu, S. Cyphers, P. Pasupat, I. McGraw, and J. R. Glass. A conversational
movie search system based on conditional random fields. In INTERSPEECH,
pages 2454–2457, 2012.

[84] J. Liu, S. Seneff, and V. Zue. Harvesting and summarizing user-generated
content for advanced speech-based HCI. IEEE Journal of Selected Topics in
Signal Processing, 6(8):982–992, 2012.

[85] T. Liu. Learning to rank for information retrieval. Foundations and Trends in
Information Retrieval, 3(3):225–331, 2009.

[86] L. E. Margulieux, M. Guzdial, and R. Catrambone. Subgoal-labeled instruc-
tional material improves performance and transfer in learning to develop mobile
applications. In Proceedings of the ninth annual international conference on In-
ternational computing education research, pages 71–78. ACM, 2012.

[87] W. Mason and D. J. Watts. Financial incentives and the performance of crowds.
ACM SigKDD Explorations Newsletter, 11(2):100–108, 2010.

[88] D. Mathew, D. Eswaran, and S. Chakraborti. Towards creating pedagogic
views from encyclopedic resources. In Proceedings of the Tenth Workshop on
Innovative Use of NLP for Building Educational Applications, pages 190–195,
2015.

[89] I. C. McGraw. Crowd-supervised training of spoken language systems. PhD
thesis, Massachusetts Institute of Technology, 2012.

[90] Amazon mechanical turk (AMT). https://www.mturk.com/. Accessed: 2016-
11-05.

[91] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

159



[92] S. Milli and M. A. Hearst. Augmenting course material with open access text-
books. In Proceedings of the Eleventh Workshop on Innovative Use of NLP for
Building Educational Applications, 2016.

[93] P. Mitros. Learnersourcing of complex assessments. In Proceedings of the Second
(2015) ACM Conference on Learning at Scale, pages 317–320. ACM, 2015.

[94] P. Mitros and F. Sun. Creating educational resources at scale. In 2014 IEEE
14th International Conference on Advanced Learning Technologies, pages 16–18.
IEEE, 2014.

[95] J. Noronha, E. Hysen, H. Zhang, and K. Z. Gajos. Platemate: crowdsourcing
nutritional analysis from food photographs. In Proceedings of the 24th annual
ACM symposium on User interface software and technology, pages 1–12. ACM,
2011.

[96] Size of wikipedia. http://en.wikipedia.org/wiki/Wikipedia:Size_of_
Wikipedia/. Accessed: 2016-11-04.

[97] G. J. Sussman C. J. Terman J. K. White L. Fischer P. F. Mitros, K. K. Afridi
and A. Agarwal. Teaching electronic circuits online: Lessons from MITx’s 6.002x
on edX. In Circuits and Systems (ISCAS), 2013.

[98] C. H. Papadimitriou, H. Tamaki, P. Raghavan, and S. Vempala. Latent se-
mantic indexing: A probabilistic analysis. In Proceedings of the seventeenth
ACM SIGACT-SIGMOD-SIGART symposium on Principles of database sys-
tems, pages 159–168. ACM, 1998.

[99] L. Pappano. The year of the MOOC. The New York Times, 2012.

[100] G. Parent and M. Eskenazi. Toward better crowdsourced transcription: Tran-
scription of a year of the let’s go bus information system data. In Spoken Lan-
guage Technology Workshop (SLT), 2010 IEEE, pages 312–317. IEEE, 2010.

[101] C. Piech, J. Huang, Z. Chen, C. Do, A. Ng, and D. Koller. Tuned models of
peer assessment in MOOCs. arXiv preprint arXiv:1307.2579, 2013.

[102] M. C. Polson and J. J. Richardson. Foundations of intelligent tutoring systems.
Psychology Press, 2013.

[103] S. Saggar M. Gupta R. Thaman, S. Dhillon and H. Kaur. Promoting ac-
tive learning in respiratory physiology–positive student perception and im-
proved outcomes. National Journal of Physiology, Pharmacy and Pharmacology,
3(1):27–34, 2013.

[104] A. Ratnaparkhi. A maximum entropy model for part-of-speech tagging. In Pro-
ceedings of the conference on empirical methods in natural language processing,
volume 1, pages 133–142. Philadelphia, USA, 1996.

160



[105] K. Riedhammer, M. Gropp, and E. Nöth. The FAU video lecture browser
system. In Spoken Language Technology Workshop (SLT), 2012 IEEE, pages
392–397. IEEE, 2012.

[106] X. Rong. word2vec parameter learning explained. arXiv preprint
arXiv:1411.2738, 2014.

[107] R. Rose, A. Norouzian, A. Reddy, A. Coy, V. Gupta, and M. Karafiat. Subword-
based spoken term detection in audio course lectures. In 2010 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing, pages 5282–5285.
IEEE, 2010.

[108] L. A. Rossi and O. Gnawali. Language independent analysis and classification
of discussion threads in coursera MOOC forums. In Information Reuse and
Integration (IRI), 2014 IEEE 15th International Conference on, pages 654–661.
IEEE, 2014.

[109] M. DiPietro M. C. Lovett S. A. Ambrose, M. W. Bridges and M. K Norman.
How learning works: Seven research-based principles for smart teaching. John
Wiley & Sons, 2010.

[110] R. Pekrun S. D’Mello, B. Lehman and A. Graesser. Confusion can be beneficial
for learning. Learning and Instruction, 29:153–170, 2014.

[111] M. McDonough M. K. Smith N. Okoroafor H. Jordt S. Freeman, S. L. Eddy and
M. P. Wenderoth. Active learning increases student performance in science, en-
gineering, and mathematics. Proceedings of the National Academy of Sciences,
111(23):8410–8415, 2014.

[112] G. Salton, A. Wong, and C. Yang. A vector space model for automatic indexing.
Communications of the ACM, 18(11):613–620, 1975.

[113] K. Sato and Y. Sakakibara. RNA secondary structural alignment with condi-
tional random fields. Bioinformatics, 21(suppl 2):ii237–ii242, 2005.

[114] J. Schreurs and A. Al-Huneidi. Development of a learner-centered learning
process for a course. In Proc. Interactive Collaborative Learning (ICL), 2011.

[115] C. L. Seeley. Faster isn’t smarter: messages about math, teaching, and learning
in the 21st century: a resource for teachers, leaders, policy makers, and families.
Math Solutions, 2009.

[116] D. Shahaf, C. Guestrin, and E. Horvitz. Trains of thought: Generating informa-
tion maps. In Proceedings of the 21st international conference on World Wide
Web, pages 899–908. ACM, 2012.

[117] D. Shen, J. Sun, H. Li, Q. Yang, and Z. Chen. Document summarization using
conditional random fields. In IJCAI, volume 7, pages 2862–2867, 2007.

161



[118] A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain. Content-
based image retrieval at the end of the early years. IEEE Transactions on
pattern analysis and machine intelligence, 22(12):1349–1380, 2000.

[119] Stack Overflow. https://stackoverflow.com/. Accessed: 2016-11-05.

[120] SticiGui. http://www.stat.berkeley.edu/~stark/SticiGui/index.htm/.
Accessed: 2016-11-05.

[121] G. S. Stump, J. DeBoer, J. Whittinghill, and L. Breslow. Development of a
framework to classify mooc discussion forum posts: Methodology and chal-
lenges. In NIPS Workshop on Data Driven Education, 2013.

[122] C. Sun, S. Li, and L. Lin. Thread structure prediction for mooc discussion
forum. In International Conference of Young Computer Scientists, Engineers
and Educators, pages 92–101. Springer, 2016.

[123] C. Sutton and A. McCallum. An introduction to conditional random fields for
relational learning, volume 2. Introduction to statistical relational learning.
MIT Press, 2006.

[124] J. Sweller. Cognitive load during problem solving: Effects on learning. Cognitive
science, 12(2):257–285, 1988.

[125] B. Taskar, P. Abbeel, and D. Koller. Discriminative probabilistic models for
relational data. In Proceedings of the Eighteenth conference on Uncertainty in
artificial intelligence, pages 485–492. Morgan Kaufmann Publishers Inc., 2002.

[126] By the Numbers: MOOCs in 2015. https://www.class-central.com/
report/moocs-2015-stats/. Accessed: 2016-08-21.

[127] K. Topping. Peer assessment between students in colleges and universities.
Review of educational Research, 68(3):249–276, 1998.

[128] Udacity. https://www.udacity.com/. Accessed: 2016-11-05.

[129] K. VanLehn. The relative effectiveness of human tutoring, intelligent tutoring
systems, and other tutoring systems. Educational Psychologist, 46(4):197–221,
2011.

[130] A. J. Viera and J. M. Garrett. Understanding interobserver agreement: The
kappa statistic. Fam Med, 37(5):360–363, 2005.

[131] O. Vinyals and Q. Le. A neural conversational model. arXiv preprint
arXiv:1506.05869, 2015.

[132] L. von Ahn. Human Computation. PhD thesis, Carnegie Mellon University,
2005.

[133] L. Von Ahn. Games with a purpose. Computer, 39(6):92–94, 2006.

162



[134] J. Wang and M. S. Brown. Automated essay scoring versus human scoring: A
comparative study. The Journal of Technology, Learning and Assessment, 6(2),
2007.

[135] A. F. Wise, Y. Cui, and J. Vytasek. Bringing order to chaos in mooc discussion
forums with content-related thread identification. In Proceedings of the Sixth
International Conference on Learning Analytics & Knowledge, pages 188–197.
ACM, 2016.

[136] D. Yang, M. Wen, I. Howley, R. Kraut, and C. Rose. Exploring the effect of
confusion in discussion forums of massive open online courses. In Proceedings
of the Second (2015) ACM Conference on Learning at Scale, pages 121–130.
ACM, 2015.

[137] D. Zhang, L. Zhou, R. O. Briggs, and J. F. Nunamaker. Instructional video in
e-learning: Assessing the impact of interactive video on learning effectiveness.
Information & management, 43(1):15–27, 2006.

[138] Y. Zhang, G. Chen, D. Yu, K. Yaco, S. Khudanpur, and J. Glass. Highway
long short-term memory rnns for distant speech recognition. In 2016 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 5755–5759. IEEE, 2016.

163


