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Abstract—Time-varying graphs are a useful model for net-
works with dynamic connectivity such as vehicular networks, yet,
despite their great modeling power, many important features of
time-varying graphs are still poorly understood. In this paper,
we study the survivability properties of time-varying networks
against unpredictable interruptions. We first show that the
traditional definition of survivability is not effective in time-
varying networks, and propose a new survivability framework.
To evaluate the survivability of time-varying networks under the
new framework, we propose two metrics that are analogous
to MaxFlow and MinCut in static networks. We show that
some fundamental survivability-related results such as Menger’s
Theorem only conditionally hold in time-varying networks. Then
we analyze the complexity of computing the proposed metrics
and develop approximation algorithms. Finally, we conduct
trace-driven simulations to demonstrate the application of our
survivability framework in the robust design of a real-world bus
communication network.

I. INTRODUCTION

Time-varying graphs have emerged as a useful model for
networks with time-varying topology, especially in the context
of communication networks. Examples include vehicular ad
hoc networks [1], [2], space communication networks [3], [4],
mobile sensor networks [5], [6], whitespace networks1 [7]–[9]
and millimeter-wave (mmWave) networks2 [10]. In Figure 1,
we illustrate a simple time-varying graph and its snapshots
over 3 time slots.

In many applications of time-varying networks, transmission
reliability is of a great concern. For example, it is critical to
guarantee transmission reliability for vehicular networks that
are often used to exchange traffic and emergency information;
it is also crucial to provide robustness against unexpected
shadowing for mmWave networks [10]. Unfortunately, time-
varying networks are particularly vulnerable due to their
constantly changing topology that results from different kinds
of interruptions. One type of interruptions are called intrinsic
interruptions which originate from the inherent nature of the
network, such as node mobility in vehicular networks. For
certain types of networks, such intrinsic interruptions are often
predictable. For example, it is easy to predict the temporal pat-
terns of topology for a time-varying network formed by either
public buses [1], [2] or satellites [3], [4] which have fixed

This work was supported by NSF Grants CNS-1116209 and AST-1547331.
1In whitespace networks, the states of secondary links change over time

due to primary users’ channel reclamation/release.
2In a mmWave network with tunable directional antennas, the network

topology could vary with the dynamic adjustment of beam directions.
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Fig. 1. (a) The original time-varying graph, where the numbers next to each
edge indicate the slots when that edge is active. The traversal delay over each
edge is one slot. (b) Snapshots of the time-varying graph.

tours and schedules; in low-duty-cycle sensor networks [11],
[12], the sleep/wake-up pattern is periodic and can be predicted
accurately; in whitespace networks, the states of secondary
links in the next few hours can be known a prior by using the
whitespace database [13]; a recent study [14] also shows that
human mobility has 93% potential predictability. In contrast,
the other type of interruptions are extrinsic and unpredictable.
For example, the predictions about the evolution of network
topology are prone to errors and could be inaccurate due to
various unforeseen factors such as unexpected obstacles and
hardware malfunctions. These unpredictable disruptions may
greatly degrade network performance and are referred to as
failures. The goal of this paper is to understand the robustness
of time-varying networks against unpredictable interruptions
(failures) while treating those predictable interruptions as an
inherent feature of the network.

Due to the unpredictability of failures, it is desirable to
evaluate the worst-case survivability. In static networks, this is
usually defined to be the ability to survive a certain number of
failures as measured by the mincut of the graph. However, this
definition is not effective in time-varying networks. By its very
nature, a time-varying network may have different topologies
at different instants, so its connectivity or survivability must
be measured over a long time interval. To be more specific,
we would like to highlight two important temporal features
that are neglected by the traditional notion of survivability.

First, failures have significantly different durations in a time-
varying network. For example, an unexpected obstacle may
only disable the link between two nodes for several seconds,
after which the link reappears. In contrast, the traditional
definition of survivability is intended for a static environment
and fails to account for links reappearing. The duration of
failures has a crucial impact on the performance of time-
varying networks; for example, in the time-varying network
shown in Figure 1, an one-slot failure of any link cannot
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separate node A and node D while a two-slot failure (i.e.,
a failure that spans two consecutive slots) can disconnect D
from A by disabling link A→ B in the first two slots.

Second, failures may occur at different instants. This feature
is obscured in static networks but has a great influence on
time-varying networks due to their changing connectivity. For
example, if a two-slot failure occurs to link A→ B at the
beginning of slot 2, node D is still reachable from node A
within the three slots; however, if the two-slot failure happens
at the beginning of slot 1, there is no way to travel from A to
D within the three slots.

To handle the above non-trivial temporal factors, we propose
a new survivability framework for time-varying networks. Our
framework captures both the number and the duration of
failures. The contributions of this paper are in the following
four areas:
• Model. We propose a new survivability framework, i.e.,
(n, δ)-survivability, where the values of n and δ characterize
the number and the duration of failures the network can toler-
ate. Moreover, by tuning the two parameters, our framework
can generalize many existing survivability models. We further
propose two metrics, namely MinCutδ and MaxFlowδ , in order
to assess robustness in time-varying networks.
• Theory. We provide new graph-theoretic results that high-
light the difference between static and time-varying graphs.
For example, we show that some fundamental survivability-
related results such as Menger’s Theorem3 only conditionally
hold in time-varying graphs.
• Computation. Due to the difference between static and
time-varying graphs, the evaluation of survivability becomes
very challenging in time-varying networks. We analyze the
complexity of computing the proposed survivability metrics
and develop efficient approximation algorithms.
• Application. We conduct trace-driven simulations to demon-
strate the application of our framework in a real-world commu-
nication network used in a public transportation system. It is
shown that our survivability framework has strong modeling
power and is more suitable for time-varying networks than
existing approaches.

The remainder of this paper is organized as follows. In
Section II, we formalize the model of time-varying graphs. In
Section III, the new survivability framework and its associated
metrics are introduced. In Section IV, we investigate some
computational issues in the proposed framework. In Section
V, trace-driven simulations are conducted to demonstrate the
application of our framework in a real-world bus communica-
tion network. Finally, related work and conclusions are given
in Sections VI and VII, respectively.

II. MODEL OF TIME-VARYING GRAPHS

In this section, we formalize the model of time-varying
graphs and introduce some important terminology and as-
sumptions that will be frequently used throughout the paper.

3In graph theory, Menger’s Theorem is a special case of the maxflow-mincut
theorem, which states that the maximum number of edge- or node-disjoint
paths equals to the size of the minimum edge or node cut, respectively.

A useful tool for transforming time-varying graphs is also
introduced.

A. Definitions and Assumptions

Time-varying graphs are a high-level abstraction for net-
works with time-varying connectivity. The formal definition,
first proposed in [19], is as follows.

Definition 1 (Time-Varying Graph). A time varying graph G =
(G, T , ρ, ζ) has the following components:
(i) Underlying (static) digraph G = (V,E);
(ii) Time span T ⊆ T, where T is the time domain;
(iii) Edge-presence function ρ : E × T 7→ {0, 1}, indicating
whether a given edge is active at a given instant;
(iv) Edge-delay function ζ : E × T 7→ T, indicating the time
spent on crossing a given edge at a given instant.

This model can be naturally extended by adding a node-
presence function and a node-delay function. However, it
is trivial to transform node-related functions to edge-related
functions by the technique called node splitting (see [22],
Chapter 7.2); thus, it suffices to consider the above edge-
version characterization.

In this paper, we consider a discrete and finite time span, i.e.,
T = {1, 2, · · · , T}, where T is a bounded integer indicating
the time horizon of interests, measured in the number of
slots. In practice, T may have different physical meanings.
For instance, it may refer to the deadline of packets or delay
tolerance in delay-tolerant networks; it may also correspond
to the period of a network whose topology varies periodically
(e.g., satellite networks with periodical orbits). The slot length
of a time-varying graph is arbitrary as long as it can capture
topology changes in sufficient granularity.

Under the discrete-time model, the edge-delay function ζ
can take values from N = {0, 1, · · · }. Note that zero delay
means that the time used for crossing an edge is negligible
as compared to the slot length. Throughout the rest of this
paper, we consider the case where edge delay is one slot, i.e.,
ζ(e, t) = 1 for any e ∈ E and t ∈ T , however, it is trivial to
extend the analysis to arbitrary traversal time.

The edge-presence function ρ indicates the predictable
topology changes in a time-varying network. Examples of
such predictable topology changes include those in a space
communication network with known orbits [3], [4], in a
mobile social network consisting of students who share fixed
class schedules [15], in a low-duty-cycle sensor network with
periodic sleep/wake-up patterns [11], [12], in a whitespace net-
work with planned channel reclamation [7], [8], in a mmWave
network with scheduled beam steering [10], etc. In contrast,
unpredictable topology changes (also referred to as failures
in this paper) include those caused by unexpected shadowing,
unscheduled channel reclamation, hardware malfunctions, etc.
Note that this model does not require perfect predictions of
future topology changes since any prediction errors can be
treated as failures.



B. Terminology

Definition 2 (Contact). There exists a contact from node u to
node v in time slot t if e = (u, v) ∈ E and ρ(e, t) = 1. This
contact is denoted by (e, t) or (uv, t).

Intuitively, a contact is a “temporal edge”, indicating the
activation of a certain edge in a certain time slot. In the
example shown in Figure 1, there exists a contact (AB, 1),
showing that link A→ B is active in slot 1.

Definition 3 (Journey [18]). In a time-varying graph, a
journey from node s to node d is a sequence of contacts:
(e1, t1)→ (e2, t2)→ · · · → (en, tn) such that for any i < n
(i) start(e1) = s, end(en) = d;
(ii) end(ei) = start(ei+1);
(iii) ρ(ei, ti) = 1;
(iv) ti+1 > ti and tn ≤ T .

Intuitively, a journey is just a “time-respecting” path. Condi-
tions (i)-(ii) mean that intermediate edges used by a journey
are spatially connected. Condition (iii) requires that inter-
mediate edges remain active when traversed. Condition (iv)
indicates that the usage of intermediate edges must respect
time and the journey should be completed before the time
horizon T . For example, there exists a journey from A to D
in Figure 1: (AB, 1)→ (BC, 2)→ (CD, 3) when T = 3.

Definition 4 (Reachability). Node d is reachable from node s
if there is a journey from s to d.

Intuitively, reachability can be regarded as “temporal connec-
tivity” which indicates whether two nodes can communicate
within T slots. For example, node D is reachable from node
A in Figure 1, meaning that a message from A can reach D
within T = 3 slots.

C. A Useful Tool: Line Graph

A line graph is a useful tool which allows us to transform
a time-varying graph into a static graph that preserves the
original reachability information. Readers may temporarily
skip the details and revisit this section when necessary.

The transformation uses a similar idea to the classical Line
Graph [39] which illustrates the adjacency between edges. The
difference here is that we also need to consider the temporal
features of time-varying graphs. Given a time-varying graph
G with source s and destination d, its Line Graph L(G) is
constructed as follows.
• For each contact (e, t) in the original time-varying graph
G, create a corresponding node in the Line Graph; the new
node is denoted by ve,t. In addition, create a node for the
source s and a node for the destination d, respectively.

• Add a directed edge from node ve1,t1 to node ve2,t2 in the
Line Graph if (e1, t1)→ (e2, t2) is a feasible journey from
start(e1) to end(e2). Also, add an edge from node s to node
ve,t if start(e) = s, and add an edge from node ve,t to node
d if end(e) = d.

An example of the Line Graph is shown in Figure 2. The Line
Graph is useful in the sense that it preserves the information

of every s-d journey in the original time-varying graph.
In Figure 2, we can observe the correspondence between
journey (AB, 1) → (BC, 2) → (CD, 3) and path A→ VAB,1

→ VBC,2 → VCD,3 → D. This is generalized in Observation 1
whose correctness is easy to verify.

Observation 1. Every s-d journey in a time-varying graph
has an one-to-one correspondence to some s-d path in its
Line Graph.
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Fig. 2. Illustration of Line Graph (src: A, dst: D).

III. SURVIVABILITY MODEL AND METRIC

In this section, we begin to investigate the survivability
properties of time-varying networks. Specifically, we are in-
terested in their resilience against unpredictable interruptions
(i.e., failures) such as unexpected shadowing, hardware mal-
functions, etc.

We first develop a new survivability model for time-varying
networks. Next, several metrics are introduced to evaluate
survivability under the new model. Finally, we present some
graph-theoretic results regarding these metrics, which high-
lights the key difference between time-varying and static
networks. In particular, we will show that some fundamen-
tal survivability-related results in static networks, such as
Menger’s Theorem, only conditionally hold in time-varying
networks. Such a difference makes it challenging to evaluate
survivability in a time-varying network.

A. (n, δ)-Survivability

In static networks, the worst-case survivability is usually
defined to be the ability to survive a certain number of failures
wherever these failures occur. This definition is still feasible
but very ineffective in time-varying networks because it fails
to capture many temporal features of failures (e.g., duration
and instant of occurrence). As discussed in the introduction,
these temporal features have significant impacts on time-
varying networks. Hence, we extend the survivability model
in order to account for these temporal effects and propose
the concept of (n, δ)-Survivability. We first define (n, δ)-
survivability for a given source-destination pair, i.e., pairwise
(n, δ)-survivability.

Definition 5 (Pairwise (n, δ)-Survivability). In a time-varying
graph G, a source-destination pair (s, d) is (n, δ)-survivable
if d is still reachable from s after the occurrence of any n
failures, with each failure lasting for at most δ slots.

We can further define global (n, δ)-survivability.



Definition 6 (Global (n, δ)-Survivability). A time-varying
network is (n, δ)-survivable if all pairs of nodes are (n, δ)-
survivable.

Since it only takes O(|V |2) to check all pairs of nodes, global
(n, δ)-survivability can be easily derived from pairwise (n, δ)-
survivability. Therefore, we will focus on pairwise (n, δ)-
survivability for a given pair of nodes (s, d) throughout the
rest of this paper.
Discussion: The above definitions do not impose any assump-
tion about when and where the n failures occur and thus
imply the worst-case survivability. In other words, (n, δ)-
survivability means the network can survive n failures that
last for δ slots wherever and whenever these failures occur.
The parameter n reflects “spatial survivability”, indicating how
many failures the network can survive, and the parameter δ
reflects “temporal survivability”, indicating how long these
failures can last.

Note also that (n, δ)-survivability is a generalized definition.
For example, if δ = T (note that T is the time horizon), then
(n, δ)-survivability reflects the number of permanent failures
the network can tolerate, which becomes the conventional
notion of survivability used in static networks.

Finally, it should be mentioned that failures can be either
link failures or node failures. Since node failures can be
converted to link failures by node splitting (see [22], Chapter
7.2), we will consider link failures unless otherwise stated.

B. Survivability Metrics

In static networks, two commonly-used survivability metrics
are: MinCut, i.e., the minimum number of edges whose
deletion can separate the source and the destination, and
MaxFlow, i.e., the maximum number of edge-disjoint paths
from the source to the destination. If MinCut (or MaxFlow)
equals to n, the destination is still connected to the source after
any n − 1 link failures. However, by its very nature, a time-
varying network has different topologies at different instants,
so its connectivity or survivability must be measured over a
long time interval and these static metrics cannot be directly
applied to time-varying networks. In this section, we introduce
two new metrics for (n, δ)-survivability. The fundamental
relationship between the two metrics will be further discussed
in Section III-C.
1) Survivability Metric: MinCutδ

Before we proceed to the first survivability metric, it is
necessary to introduce the notions of δ-removal and δ-cut.

Definition 7 (δ-removal). A δ-removal is the deletion of a link
for δ consecutive time slots.

Intuitively, a δ-removal just corresponds to a link failure that
lasts for δ consecutive time slots.

Definition 8 (δ-cut). A δ-cut is a set of δ-removals that can
render the destination unreachable from the source.

The above definition is similar to the traditional notion of
graph cuts except that δ-cuts also account for the duration

of removals.
Now we are ready to introduce the first metric for (n, δ)-

survivability, namely MinCutδ . This metric directly follows
from the definition of (n, δ)-survivability and is analogous to
MinCut in static networks.

Definition 9 (MinCutδ). MinCutδ is the cardinality of the
smallest δ-cut, i.e., the minimum number of δ-removals needed
to render the destination unreachable from the source.

Discussion. First, MinCutδ gives the minimum number of δ-
removals required to disconnect the time-varying network. In
particular, when MinCutδ = n, the source-destination pair can
safely survive any n−1 failures that last for δ slots and is thus
(n−1, δ)-survivable. Second, MinCutδ generalizes MinCut in
static networks since we can simply set δ = T such that a
δ-removal becomes a permanent link removal.

Formulation. MinCutδ corresponds to the following Integer
Linear Programming (ILP) problem:

min
∑

(e,t)∈C

ye,t

s.t.
∑

(e,t)∈R(δ,J)

ye,t ≥ 1, ∀J ∈ Jsd,

ye,t ∈ {0, 1}, ∀(e, t) ∈ C.

Here, ye,t is a binary variable indicating whether a δ-removal
occurs to edge e in slot t, and C is the set of contacts in the
time-varying graph. Jsd is the set of feasible journeys from s
to d. For any J ∈ Jsd, we define R(δ, J) as the set of contacts
{(e, t)} such that if ye,t = 1 then journey J will be disrupted,
i.e., R(δ, J) = {(e, t)| ∃(e, t′) ∈ CJ s.t. 0 ≤ t′ − t < δ},
where CJ is the set of contacts used by journey J . Thus, the
first constraint in the above ILP forces every journey from s
to d to be disrupted by at least one of the selected δ-removals,
such that d is not reachable from s.

The above formulation is concise but has an exponential
number of constraints because the number of possible journeys
is exponential in the number of contacts. There also exists a
compact ILP formulation which is less intuitive and omitted
here for brevity. The complexity and the algorithm for solving
the above ILP will be further discussed in Section IV-B.

2) Survivability Metric: MaxFlowδ

The second survivability metric, namely MaxFlowδ , is anal-
ogous to MaxFlow in static networks. Before the detailed
definition of this metric, we first introduce the notion of δ-
disjoint journeys.

Definition 10 (δ-disjoint Journey). A set of journeys from the
source to the destination are δ-disjoint if any two of these
journeys do not use the same edge within δ time slots.

Mathematically, suppose J is a set of δ-disjoint journeys. For
any two journeys J1, J2 ∈ J , if edge e is used by J1 in slot
t, then J2 cannot use the same edge e from slot t − δ + 1
to slot t+ δ − 1. In other words, sliding a window of δ slots
over time, we can observe at most one active journey over



each edge within the window. Figure 3 gives an example of
δ-disjoint journeys for the cases where δ = 1 and δ = 2.
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slot 2 slot 3slot 1

Journey 1
Journey 2
Journey 3

Journey 1

Journey 2

(a) Case 1: δ = 1

(b) Case 2: δ = 2

Fig. 3. Illustration of δ-disjoint journeys. The source-destination pair is
(A,C). (a) When δ = 1, any two different δ-disjoint journeys cannot use
the same link within the same slot, and there are three δ-disjoint journeys.
(b) When δ = 2, only two δ-disjoint journeys exist since any link cannot be
used by two δ-disjoint journeys within 2 slots. For example, link A → B has
been used by Journey 2 in slot 1, so any other δ-disjoint journey cannot use
this link in slot 1 or 2.

It is easy to see that each one of the δ-disjoint journeys
keeps a “temporal distance” of δ slots from others. Due to the
temporal distance, any failure that lasts for δ slots can influ-
ence at most one of these δ-disjoint journeys. Consequently,
the maximum number of δ-disjoint journeys in a time-varying
network is a good indicator of its survivability. The more δ-
disjoint journeys there exist, the more failures (lasting for δ
slots) the network can survive. Now it is natural to introduce
the second survivability metric MaxFlowδ .

Definition 11 (MaxFlowδ). MaxFlowδ is the maximum number
of δ-disjoint journeys from the source to the destination.

Discussion. First, we would like to compare MaxFlow (for
static networks) and MaxFlowδ (for time-varying networks).
MaxFlow considers disjoint paths which require spatial dis-
jointness, i.e., any two disjoint paths never use the same link.
This requirement is too demanding for time-varying networks
because such networks often have sparse spatial connectivity.
In the example of bus communication networks (see Section
V), we will see that a time-varying network may not have any
spatially-disjoint paths. Thus, MaxFlow is not an appropriate
metric for time-varying networks. By comparison, MaxFlowδ
considers δ-disjoint journeys, which allows for temporal dis-
jointness. Moreover, MaxFlowδ generalizes MaxFlow since
we can simply set δ = T so that δ-disjoint journeys become
spatially disjoint.

Second, MaxFlowδ not only gives us a measure of network
survivability but also tells us how to achieve such survivabil-
ity. The idea is similar to Disjoint-Path Protection in static
networks [26] [27], where disjoint paths are used as backup
routes. In time-varying networks, we can send packets along
different δ-disjoint journeys to increase transmission reliabil-
ity. If we use n δ-disjoint journeys (i.e., MaxFlowδ ≥ n), the
transmission can survive any n−1 failures that last for δ slots

and is thus (n− 1, δ)-survivable.
Formulation. MaxFlowδ corresponds to the following ILP:

max
∑
J∈Jsd

xJ

s.t.
∑

J:(e,t)∈R(δ,J)

xJ ≤ 1, ∀(e, t) ∈ C

xJ ∈ {0, 1}, ∀J ∈ Jsd.
Here, xJ is a binary variable indicating whether journey J
should be added to the set of δ-disjoint journeys. All the other
notations have the same meanings as in the formulation of
MinCutδ . The first constraint checks every edge and forces
this edge to be used by at most one of the δ-disjoint journeys
in any time window of δ slots. The above formulation also has
an exponential number of constraints. A compact formulation
also exists but is omitted for brevity. The complexity and
the algorithms for solving the above ILP will be further
investigated in Section IV-A.

C. Analysis of Metrics

Recall that in static networks, the well-known Menger’s
Theorem shows that MinCut equals to MaxFlow; due to this
equivalence, we can compute MaxFlow and MinCut efficiently
(e.g., the Ford-Fulkerson algorithm). Hence, it is necessary
to study the fundamental relationship between MinCutδ and
MaxFlowδ , in order to gain insights into their computation.
Let MinCutRδ and MaxFlowR

δ be the LP relaxation for the ILP
formulation of MinCutδ and MaxFlowδ , respectively. It is easy
to show that MinCutRδ is the dual problem of MaxFlowR

δ . By
strong duality and the properties of LP relaxation, we make
the following observation:

MaxFlowδ ≤ MaxFlowR
δ = MinCutRδ ≤ MinCutδ.

As a result, as long as Menger’s Theorem holds in time-
varying networks (i.e., MaxFlowδ = MinCutδ), all of the four
quantities will be equivalent, and we can simply compute
MaxFlowδ and MinCutδ by solving their LP relaxations. Inter-
estingly, the following theorem shows that Menger’s Theorem
only “conditionally” holds in time-varying networks.

Theorem 1. Time-varying graphs have the following surviv-
ability properties:
(I) If δ = 1, then Menger’s Theorem holds for any time-varying
graph, i.e., MaxFlow1 = MinCut1.
(II) For any δ ≥ 2, there exist instances of time-varying
graphs such that MaxFlowδ < MinCutδ . Moreover, the gap
ratio MinCutδ

MaxFlowδ
can grow without bound.

Proof. See Appendix A.

Theorem 1 shows that Menger’s Theorem could break down
in time-varying graphs, which highlights a key difference
between time-varying and static graphs. Due to this funda-
mental difference, the traditional techniques used to compute
MaxFlow or MinCut in static networks, such as the Ford-
Fulkerson algorithm, cannot be applied to time-varying graphs
to compute MaxFlowδ or MinCutδ . In the next section, we will
further discuss the computation of the two metrics.



IV. COMPUTATIONAL ISSUES

In this section, we study the computational complexity and
related algorithms for computing MaxFlowδ and MinCutδ in
time-varying networks.

A. Computation of MaxFlowδ

We start with the computation of MaxFlowδ for an arbitrary
value of δ, referred to as the δ-MAXFLOW problem. The
following theorem shows that this problem is even NP-hard to
approximate.

Theorem 2. δ-MAXFLOW is NP-hard. It is even NP-hard to
achieve O(

√
|E|)-approximation, and this bound is tight.

Proof. See Appendix B.

Note that to prove the tightness of the inapproximability
bound, we just need to find an algorithm that achieves
O(
√
|E|)-approximation, which will be demonstrated later.

Next, we propose an approximation algorithm that attains
the approximation lower bound in Theorem 2. Before we move
on to the detailed algorithm description, it is necessary to
introduce a short-hand term called interfering contact.

Definition 12 (Interfering Contact). Consider a journey J . A
contact (e, t) is said to be an interfering contact of journey J
if there exists a contact (e, t′) used by J such that |t− t′| < δ.

If J is one of the δ-disjoint journeys, then its interfering
contacts cannot be used by any other δ-disjoint journey.

Now we are ready to present a greedy algorithm for δ-
MAXFLOW, shown as Algorithm 1. It first computes the Line
Graph (see Section II-C) of the original time-varying graph
and then finds an s-d path with the least number of nodes in the
Line Graph. By the property of Line Graphs (see Observation
1 in Section II-C) , this path corresponds to a journey in the
original time-varying graph; then we add this journey to the
set of δ-disjoint journeys. The next operation is to remove all
the interfering contacts of this journey from the time-varying
graph and reconstruct the Line Graph from the remaining time-
varying graph. If s and d are still connected in the Line Graph,
the above procedure is repeated until s and d are disconnected.
From the definition of interfering contacts, we can easily verify
that the obtained journeys are δ-disjoint.

Now we estimate the time complexity of this greedy al-
gorithm. In each iteration (steps 2-8), we need to compute
the Line Graph and the path with the least number of nodes.
Recall that we denote |C| the total number of contacts in the
time-varying graph. Then it takes O(|C|2) time to construct
the Line Graph and O(|C|2) time to compute the path with the
least number of nodes (suppose BFS is used). Also note that
the total number of iterations is at most |C| since the number
of δ-disjoint journeys cannot exceed |C| and each iteration
adds one δ-disjoint journey. Consequently, the overall time
complexity of the greedy algorithm is O(|C|3).

The approximation ratio of this greedy algorithm is given
in the following theorem.

Algorithm 1 Greedy Algorithm for δ-MAXFLOW
Input:
G: the time-varying graph;
(s, d): the source-destination pair;
δ: the degree of temporal disjointness;

Output:
J1, · · · , Jm: a set of δ-disjoint journeys.

1: Initialize m = 0;
2: Compute the Line Graph of G;
3: if s and d is disconnected in the Line Graph then
4: Go to step 10;
5: end if
6: m← m+ 1;
7: In the Line Graph, find an s − d path Pm that passes

the least number of nodes (the corresponding journey is
denoted by Jm);

8: Remove all the interfering contacts of Jm from G;
9: Go to step 2;

10: END.

Theorem 3. The greedy algorithm attains O(
√
|E|) approx-

imation for δ-MAXFLOW, i.e., OPT
ALG = O(

√
|E|).

Proof. See Appendix C.

Clearly, the above approximation ratio attains the lower bound
in Theorem 2. As a result, the greedy algorithm is the optimal
approximation algorithm that achieves the best approxi-
mation ratio, and the inapproximability bound in Theorem
2 is tight. In practice, the greedy algorithm also performs
extremely well, as is demonstrated by the following numerical
results.
Numerical Results for the Greedy Algorithm. In order
to understand the performance of the greedy algorithm, we
compare it with the optimal solution to δ-MAXFLOW. In
our experiment, 1000 random time-varying graphs are tested.
Each network has 20 nodes and the underlying static graph
is a random scale-free graph. The time horizon is T = 20
slots and we assume each link is active with a probability
p = 0.5 in each slot. The source-destination pair is also
randomly selected. The optimal solution to δ-MAXFLOW is
derived by directly solving its ILP formulation. Figure 4 shows
the comparison, where the approximation gap is calculated
by OPT−ALG

ALG . We can observe that the approximation gap is
usually less than 8%, much better than the theoretical bound
in Theorem 3.

B. Computation of MinCutδ

In this section, we study the computation of MinCutδ for an
arbitrary value of δ, referred to as the δ-MINCUT problem.
The complexity of δ-MINCUT is given in Theorem 4.

Theorem 4. δ-MINCUT is NP-hard.

Proof. Kempe et al. [24] showed that in a special type of
time-varying graphs, where each link is active for only one
slot, it is NP-hard to determine whether there exists a set
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Fig. 4. Comparison between the greedy algorithm (Algorithm 1) and the
optimal solution to δ-MAXFLOW.

of k nodes whose permanent removals can disconnect the
source-destination pair. This is obviously a restricted instance
of the node-version δ-MINCUT problem, which implies that
the node-version δ-MINCUT is NP-hard. Moreover, it can be
verified that node-version problems are just a special case
of edge-version problems by using node splitting (see [22],
Chapter 7.2). Hence, the edge-version δ-MINCUT problem is
also NP-hard.

Due to the computational intractability of δ-MINCUT, we
present an approximation algorithm (referred to as the min-
weight algorithm) for δ-MINCUT. The algorithm proceeds in
three steps.

• Step 1: Assign a weight to each contact according to its
“temporal closeness” to other contacts. Intuitively, if there are
more contacts in the “temporal neighborhood” of the given
contact, then a δ-removal (i.e., a δ-slot failure) of this contact
will disable more neighboring contacts at the same time.
Hence, this contact should be given a smaller weight such that
it has a higher priority of being removed. We let the weight
of a contact be inversely proportional to the number of its
“neighboring” contacts (see SETWEIGHT in Algorithm 2).

• Step 2: Compute MinCut1 over the weighted time-varying
graph. Note that Property (I) in Theorem 1 still holds in
weighted time-varying graphs, so MinCut1 can be efficiently
computed (e.g., by solving the LP relaxation). After this step,
we obtain a set of contacts S∗ with the smallest sum of weights
whose removals will disconnect the source-destination pair.

• Step 3: Compute the δ-cover of S∗, i.e., the smallest set
of δ-removals needed to cover all the contacts in S∗. For
example, suppose S∗ = {(e1, 1), (e1, 2), (e2, 2), (e2, 4)} and
δ = 2. Then we need at least three δ-removals to cover all the
contacts in S∗: one for (e1, 1) and (e1, 2), one for (e2, 2) and
one for (e2, 4); this means that |Coverδ(S∗)| = 3. Finally, the
δ-cover of S∗ is returned as a feasible solution to δ-MINCUT.

The performance of the above min-weight algorithm is
given in the following theorem.

Theorem 5. The min-weight algorithm (Algorithm 2) achieves
δ-approximation for δ-MINCUT, i.e., ALG

OPT ≤ δ.

Algorithm 2 Min-Weight Algorithm for δ-MINCUT
1: Call SETWEIGHT to compute the weight for each contact;
2: Compute MinCut1 over the weighted time-varying graph,

where we obtain a set of contacts S∗ with the smallest sum
of weights whose removals will disconnect the source-
destination pair;

3: Return the δ-cover of S∗ as the solution.
4: Procedure: SETWEIGHT
5: for each contact (e, t) do
6: Scan all the δ-slot windows containing (e, t), and find

the one that contains the maximum number of contacts
(say containing Ke,t contacts);

7: Set ωe,t = 1
Ke,t

;
8: end for

Proof. See Appendix D.

Numerical Results for the Min-Weight Algorithm. The sim-
ulation setting is the same as that used for Algorithm 1. Figure
5 shows the comparison between the min-weight algorithm
(Algorithm 2) and the optimal solution to δ-MINCUT. We
notice that the min-weight algorithm is close to the optimum:
the approximation gap4 is less than 10% for a relatively
small value of δ; in particular, the approximation gap is zero
when δ = 1. The final observation is that the approximation
gap becomes larger with the increase in δ; this tendency is
consistent with the theoretical approximation ratio of δ.
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V. APPLICATION: BUS COMMUNICATION NETWORKS

In this section, we demonstrate how to use our survivability
framework to facilitate the design of robust networks in
practice. To be more specific, we exploit δ-disjoint journeys
to design a survivable routing protocol for a real-world bus
communication network [2]. Each bus in the network has
a pre-designed route and is equipped with an 802.11 radio
that constantly scans for other buses. Since the route of each
bus is designed in advance, we can make a coarse prediction
about bus mobility and the evolution of their communication

4The approximation gap is calculated by ALG−OPT
OPT

.



topology. As a result, we can convert this bus communication
network into a time-varying graph whose topology changes
according to the estimated bus mobility. However, the pre-
diction may not be perfect due to various reasons such as
unexpected obstacles, traffic accidents, traffic jam, etc. The
goal of survivable routing is to reduce the packet loss rate due
to these unpredictable failures.

In the rest of this section, we first present the design of the
survivable routing protocol using δ-disjoint journeys. Then we
discuss trace statistics, simulation settings and results.

A. Survivable Routing Protocol: DJR

The basic idea of this protocol is to replicate each packet
at the source and send these copies along multiple δ-disjoint
journeys obtained by solving δ-MAXFLOW. When at least
one of these copies reaches the destination, the original packet
is successfully delivered. This replication-based protocol is
referred to as Disjoint-Journey Routing (DJR). The advantages
of DJR over other reliable routing protocols are as follows.

• Simplicity of Deployment in Time-varying Networks. Static
networks usually deploy ARQ at the data link layer and TCP at
the transport layer for error recovery. However, due to the lack
of connectivity, it is not only difficult to get timely ACK at the
sender but also hard to find opportunities for retransmissions.
In contrast, DJR does not require any feedback, which greatly
simplifies the data link layer and the transport layer (no need
for error recovery). In addition, as a network-layer protocol, it
can be combined with FEC codes at the physical layer (e.g.,
erasure code [28]) to achieve a better performance.

• Temporal Diversity. Traditional survivable routing protocols
rely on spatial diversity, such as Disjoint-Path Routing (DPR)
[26] [27], where spatially-disjoint paths are used to recover
packets. However, spatial diversity is a demanding requirement
in networks with sparse and intermittent connectivity. We
will demonstrate that it is hard to find even two spatially-
disjoint paths in the bus network. By comparison, DJR exploits
temporal diversity to combat failures and is well suited for
time-varying networks, especially when failures are transient.

• Two-dimensional Tunability. Our survivability framework
has two natural parameters, namely n and δ. Hence, the tun-
ability of DJR is also in two dimensions: we can both tune the
number of δ-disjoint journeys to use, and also adapt the degree
of temporal disjointness. By comparison, existing survivable
routing protocols (e.g., [29]–[31]) lack such flexibility.

B. Traces

We use the trace from UMassDieselNet [2] where a pub-
lic bus transportation system was operated around Amherst,
Massachusetts. The trace records the contacts among 21 buses
in 9 days, which roughly reflects bus mobility over the pre-
designed bus routes. We use such contact information as a
coarse prediction for the states of bus-to-bus links in the 9-day
period. However, we assume that the prediction is imperfect
and unpredictable failures may disable these contacts (the
failure model will be introduced in the next section).

active

6 AM 12 PM 6 PM 12 AM
Time

(a)

 0

 50

 100

 150

 200

 250

 300

 0  13  26  39  52  65

F
re

q
u
e
n
c
y

Contact Duration (s)

(b)

Mean = 10.0211

Standard Deviation = 12.0373

Fig. 6. Statistical structures of the bus communication network. (a) The bursty
pattern of the contacts between a typical pair of buses. (b) Histogram for
contact durations. Most contacts only last for a short period of time.

To facilitate our subsequent discussion, we pre-process the
raw trace and observe two important features of this bus
communication network. The first observation is the “bursty”
structure of contacts between any two buses; that is, buses
only communicate with each other occasionally. Figure 6(a)
illustrates such a bursty structure for a typical pair of buses.
The second observation is that most connections in this
network last for only a short period of time. As is shown
in Figure 6(b), most contacts span less than 20s.

C. Simulation Settings

In our simulation, the slot length is identical to the trace
resolution, i.e., one second. According to the measurement in
[2], the average transmission rate is about 1.64Mbps. If the
packet size is set to be 1KB, the transmission time of one
packet is nearly negligible as compared to the slot length,
which implies zero link-traversal delay. Each packet has a
deadline (DDL) after which it will be dropped from the
network; naturally, the packet deadline can be modeled by the
time horizon T of the corresponding time-varying graph. A
packets is generated between a random source-destination pair
immediately after the previous packet expires or gets delivered.
In addition, at most n copies are allowed, meaning that we
can use at most n δ-disjoint journeys to send these copies.
Algorithm 1 is used to compute δ-disjoint journeys.

Since it is impossible to precisely predict future topology
changes, we impose random failures on the time-varying graph
generated from the trace. For each link, we let failures occur
in each slot with a certain probability p, and the duration of
each failure is uniformly distributed within [0, d] seconds. The
performance metric is the packet loss rate, i.e., the fraction of
packets that fail to reach the destination before the deadline.

D. Total Number of δ-Disjoint Journeys

We first look at the maximum number of δ-disjoint journeys
in the bus communication network (Figure 7). First, it can
be observed that there exist very few δ-disjoint journeys in
this network: less than three δ-disjoint journeys when δ ≥ 5.
Particularly, only one δ-disjoint journey exists when δ is rel-
atively large, which means that it is almost impossible to find
even two journeys that are spatially disjoint (i.e., δ = T ). This
observation indicates the lack of spatial connectivity in this bus
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network and implies the inefficiency of traditional Disjoint-
Path Routing in networks with intermittent connectivity since
such a protocol only relies on spatial diversity. Second, we can
observe the diminishing return for the number of δ-disjoint
journeys: beyond a certain value of δ, the increase of δ no
longer reduces the number of δ-disjoint journeys. Such a
tendency is due to the bursty contact structure in this network
(see Section V-B). The final observation is that extending the
packet deadline increases the total number of δ-disjoint jour-
neys since there are more transmission opportunities within a
longer deadline.

E. Tunability of DJR

Next, we study the two-dimensional tunability of DJR
(Figure 8). We first investigate the tunability of n, i.e., the
maximum number of copies we are allowed to produce or
the maximum number of δ-disjoint journeys we can use. If
we are allowed to use only one of the δ-disjoint journeys
(n = 1), DJR is ineffective and the packet loss rate remains
at a high level regardless of the value of δ. If we can use
more δ-disjoint journeys, the packet loss rate is significantly
reduced (of course, more redundant copies are created).

The influence of δ is more interesting. With the increase of
δ, the packet loss rate first goes down and then increases; this
tendency can be explained as follows. When δ is small, there
exist many δ-disjoint journeys and we can choose any n of
them to transmit copies of packets. With a fixed number of
disjoint journeys, it is known that larger temporal disjointness
makes the network more robust since it can survive failures of
longer duration. Hence, the packet loss rate first goes down.
However, the increase of δ also leads to the reduction in the
number of δ-disjoint journeys (see Figure 7); beyond a certain
value of δ, the number of δ-disjoint journeys becomes smaller
than n and we have to send copies over fewer than n disjoint
journeys, which means that the network can survive fewer
failures. Therefore, although temporal disjointness continues to
grow, the reduction in the number of available disjoint journeys
makes the loss rate increase. Moreover, we can observe that
there exists an “optimal” value of δ which minimizes the
packet loss rate (highlighted by shaded circles). In fact, this
optimal value is the maximum δ such that MaxFlowδ ≥ n.
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VI. RELATED WORK

Time-varying Graphs. There is extensive literature seeking
to define metrics for time-varying graphs, such as connectivity
[18], [24], [38], distance [20], centrality [33], [34], diameter
[35], [36], etc. The combinatorial properties of time-varying
graphs are also an active research area. For example, Kranakis
et al. focused on finding connected components in a time-
varying graph; Ferreira et al. investigated the complexity
for computing the shortest journey [20] and the minimum
spanning tree [38] (see the survey [19]).

Survivability in Time-varying Networks. Despite the ex-
tensive research on time-varying graphs, there is very little
literature on survivability of time-varying networks. The clos-
est work to ours was done by Berman [23] and Kleinberg
et al. [24]. They discussed vulnerability in so-called “edge-
scheduled networks” or “temporal networks” where each link
is active for exactly one slot and only permanent failures
happen. Our work considers a more general graph model while
leveraging the temporal features of failures, thus generalizing
their results. Scellato et al. [21] investigated a similar prob-
lem in random time-varying graphs and proposed a metric
called “temporal robustness”. By comparison, our framework
is deterministic, thus guaranteeing the worst-case survivability.
Li et al. [32] studied a related but different problem in
time-varying networks; specifically, they proposed heuristic
algorithms to find the the min-cost subgraph of a probabilistic
time-varying graph such that the probability that the subgraph
is temporally connected exceeds a certain threshold.

Time-varying Graphs and DTNs An important application
scenario of time-varying graphs is Delay Tolerant Networks
(DTN), where nodes have intermittent connectivity and can
only send packets opportunistically. The primary goal of DTN
is to improve the packet delivery ratio via some routing
schemes, and there is extensive literature in this area, such as
[28]–[32]. In contrast, our work does not focus on any specific
routing algorithm. Instead, this paper is intended to understand
the inherent survivability properties of a time-varying network,
which can facilitate the design of survivable routing algorithms
in DTNs (e.g., Section V).



VII. CONCLUSIONS

In this paper, we propose a new survivability framework for
time-varying networks, namely (n, δ)-survivability. In order
to evaluate (n, δ)-survivability, two metrics are proposed:
MinCutδ and MaxFlowδ . We analyze the fundamental rela-
tionship between the two metrics and show that Menger’s
Theorem only conditionally holds in time-varying graphs.
As a result, computing both survivability metrics is NP-
hard. To resolve the computational intractability, we develop
several approximation algorithms. Finally, we use trace-driven
simulations to demonstrate the application of our framework
in a real-world bus communication network.
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APPENDIX

A. Proof to Theorem 1

1) Proof to Property (I): Consider a time-varying graph G
with the source s and the destination d. Let MaxFlow be the
maximum number of node-disjoint paths from s to d in the
Line Graph of G and MinCut be the cardinality of the smallest
node cut that separates s and d in the Line Graph. It is not
hard to verify the following lemma.

Lemma 1. MaxFlow1 = MaxFlow and MinCut1 = MinCut.

Remark: Lemma 1 does not holds for δ ≥ 2. For example, if
δ = 2, there is only one δ-disjoint journey in Figure 2(a) but
there are two node-disjoint paths in its Line Graph.

Now we can apply the node-version Menger’s Theorem to
the Line Graph and obtain MaxFlow = MinCut. By Lemma



1, we can conclude that

MaxFlow1 = MaxFlow = MinCut = MinCut1.

2) Proof to Property (II): The non-trivial part is to show
that the gap ratio can be arbitrarily large. We construct a family
of time-varying graphs {Gk}k≥1 such that MinCutδ

MaxFlowδ
= k for

any δ ≥ 2 in the k-th graph. The constructions for k = 1, 2, 3
are shown in Figure 9. We can observe that G1 is a single-
level graph; G2 is built upon G1, where the first level is exactly
G1; similarly, G3 is built upon G2, where the first two levels
correspond to G2.

We use inductions to prove that MaxFlowδ = 1 while
MinCutδ = k for any δ ≥ 2 in the k-th graph Gk. For brevity,
we only demonstrate the induction philosophy from G1 to G2
while its generalization is easy.

• In G1, the source-destination pair is (s, d1). It is obvious
that MaxFlowδ = MinCutδ = 1 for any δ ≥ 2.

• In G2, the source-destination pair is (s, d2). We want to show
that MaxFlowδ = 1 but MinCutδ = 2 for any δ ≥ 2. To see
MaxFlowδ = 1, we notice that there are two possible choices
for traveling from s to d2. One is via node d1 and the other is
to directly descend to level 2. The former choice yields only
one δ-disjoint journey from s to d2 since we know from G1 that
there is only one δ-disjoint journey from s to d1. For the latter
choice, the only possibility is s → v2,1 → v2,2 → v2,3 → d2
but this journey cannot be δ-disjoint of any journey in the
first choice (i.e., via node d1) for any δ ≥ 2. Hence, there is
only one δ-disjoint journey from s to d2, i.e., MaxFlowδ = 1
for any δ ≥ 2. Now it remains to show MinCutδ = 2 and
we prove this by showing that any single δ-removal cannot
disconnect d2 from s. If the δ-removal takes place in level 1,
there exists a feasible journey from s to d2 via s → v2,1 →
v2,2 → v2,3 → d2 in slots 4, 5, 6, 7. If the δ-removal occurs to
some contact outside level 1, the journey from s to d1 is still
available. Moreover, there exists at least one journey from d1
to d2 since there are two spatially disjoint journeys from d1 to
d2 (one journey is via d1 → v2,1 → v2,2 → d2 in slots 3, 4, 5,
and the other journey is via d1 → v2,3 → d2 in slots 3, 7). As a
result, d2 is still reachable from s via s→ d1 → d2. Now it is
safe to conclude that any single δ-removal cannot disconnect
d2 from s, which implies MinCutδ ≥ 2. Note that d2 can
be easily made unreachable from s with 2 δ-removals (e.g.,
disable the two contacts from s). Therefore, MinCutδ = 2

Note that the key part in G2 is the “shortcut edge” v2,2 → d2
which can only be used by journeys that travel through d1.
Following the similar line of induction (with minor modifica-
tions), we can show MaxFlowδ = 1 and MinCutδ = k for any
δ ≥ 2 in the k-th graph Gk.

B. Proof to Theorem 2

The proof is based on a reduction from the Bounded-Length
Edge-Disjoint Paths (BLEDP) problem which is NP-hard [25].
• PROBLEM: BLEDP.
• INSTANCE:
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Fig. 9. Examples used in the proof to Property (II) in Theorem 1. The source-
destination pair is (s, dk) in graph Gk (k = 1, 2, 3). Edge traversal delay is
one slot.

– A weighted digraph G′ = (V ′, E′), where the weight
on edge e indicates its length (denoted by le). The
length of each edge is a positive integer.

– The source-destination pair (s, d).
– A bounded integer L > 0 indicating the length bound.

• QUESTION: Find the maximum number of edge-disjoint
paths from s to d in G′ such that the length of each of
these paths is upper-bounded by L.

Here we make an additional assumption that there exists no
edge with its length greater than L in G′. We also assume
that there are no isolated nodes in G′. These assumptions do
not change the complexity of BLEDP because we can simply
remove these isolated nodes or long edges from G′ without
any influence on the optimal solution.

The high-level idea of the reduction is to transform the
“spatial length bound” into a “temporal length bound”. Note
that in our model, a natural temporal bound T exists so we set
T = L. In addition, we also need to make sure that whenever
edge e is crossed, a “temporal distance” of le slots is traversed.
Since it is assumed that edge-traversal delay is one time slot,
we can expand each edge in series such that extra delay is
incurred. To be more specific, if the length of edge e is le,
we replace this single edge by le edges that are catenated in
series; each of the catenated edges has one-slot traversal delay
and is active in the entire time span. An example is illustrated
in Figure 10. It is trivial to check that BLEDP is equivalent to
solving δ-MAXFLOW in the constructed time-varying graph
for δ = T . Hence, δ-MAXFLOW is NP-hard.

It remains to investigate the hardness of approximation for
δ-MAXFLOW. Guruswami et al. [25] proved that it is NP-
hard to achieve O(

√
|E′|)-approximation for BLEDP. In the

constructed time-varying graph, we have |E| =
∑
e∈E′ le ≤

L|E′|. Since L is a bounded integer, it follows that |E′| =
Ω(|E|). Therefore, it is also NP-hard to achieve O(

√
|E|)-

approximation for δ-MAXFLOW.
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Fig. 10. Illustration of the reduction from BLEDP to δ-MAXFLOW. Note
that in the constructed time-varying graph, edge traversal delay is one time
slot and each edge is active in the entire time span {1, 2, 3, 4}

C. Proof to Theorem 3

If the the destination is unreachable from the source, both
the optimal solution and the greedy algorithm will yield a
result of zero, where no approximation gaps exist. Hence, it
is enough to consider the scenario where the destination is
reachable from the source.

Before the detailed proof, it is essential to define the notions
of short paths and long paths in the Line Graph. Let k be an
arbitrary positive integer. A short path consists of at most k
nodes while a long path is made up of more than k nodes.
Their corresponding journeys are called the short journey
(traversing at most k edges) and the long journey (traversing
more than k edges), respectively. Denote J ∗ = {J∗1 , · · · } the
optimal solution and J = {J1, · · · } the solution obtained by
the greedy algorithm.

We first prove that the number of long journeys in J ∗ is
at most |E|(

T
δ +1)

k . Indeed, since journeys in J ∗ are δ-disjoint,
each edge can be traversed by at most dTδ e journeys in J ∗.
At the same time, each of the long journeys in J ∗ traverses
more than k edges so the total number of long journeys in J ∗

can be at most b d
T
δ e|E|
k c ≤ |E|(

T
δ +1)

k .
Then we prove that the number of short journey in J ∗

is at most 2k × |J |. To show this point, we first prove that
each short journey (say J∗j ) in J ∗ is interfered by some short
journey (say Ji) in J (i.e., J∗j and Ji use the same edge
within δ slots). Note that each short journey in J ∗ must be
interfered by at least one journey in J otherwise the greedy
algorithm is not finished. Let Ji ∈ J be the journey that
interferes with some journey J∗j ∈ J ∗ for the first time, i.e.,
journeys constructed in the greedy algorithm before Ji do not
interfere with J∗j . In other words, when the greedy algorithm is
constructing journey Ji, journey J∗j is also a candidate journey.
Since Ji is selected rather than J∗j , it implies that the number
of edges traversed by Ji is less or equal to that of J∗j . Due to
the fact that J∗j is a short journey, we can conclude that Ji is
also a short journey.

Meanwhile, each short journey in J can interfere with at
most 2k δ-disjoint journeys because any short journey in J
contains at most k contacts and each of these contacts can
interferes with at most 2 δ-disjoint journeys. Hence, the total
number of δ-disjoint journeys that can be interfered by the
short journeys in J is at most 2k×|J |. Since we have shown
that each short journey in J ∗ is interfered by at least one short
journey in J , it is safe to conclude that the number of short
journeys in J ∗ is upper-bounded by 2k × |J |, which means
that

|J ∗| = |J ∗long|+ |J ∗short| ≤
|E|(Tδ + 1)

k
+ 2k × |J | (1)

Now we set k to be the integer such that
√
|E|(Tδ + 1) ≤ k <√

|E|(Tδ + 1) + 1. Then it follows that

|J ∗| <
√
|E|(T

δ
+ 1) + 2

(√
|E|(T

δ
+ 1) + 1

)
|J |

≤
√
|E|(T

δ
+ 1)|J |+ 2

(√
|E|(T

δ
+ 1) + 1

)
|J |

=
(

3

√
|E|(T

δ
+ 1) + 2

)
|J |

where the first inequality follows from the setting of k and the
second inequality holds because of our premise that |J | ≥ 1
(i.e., the destination is reachable from the source). Since T is
a bounded integer and δ ≤ T , we can finally conclude that
Algorithm 1 achieves O(

√
|E|)-approximation.

D. Proof to Theorem 5

We make two simple observations regarding the weights.
The first is that ωe,t ≥ 1

δ since Ke,t ≤ δ. The second is that
the sum of weights that can be removed by one δ-removal
is less or equals to 1. Indeed, consider a certain δ-removal
that deletes contacts (e, t1), (e, t2), · · · , (e, tn). It should be
obvious that Ke,ti ≥ n for any 1 ≤ i ≤ n, which means∑n
i=1 ωe,ti =

∑n
i=1

1
Ke,ti

≤
∑n
i=1

1
n = 1. Then we introduce

the following lemma.

Lemma 2. Let C be an arbitrary set of contacts whose
removals disconnect the source-destination pair. The following
result holds∑

(e,t)∈C

ωe,t ≤ |Coverδ(C)| ≤ δ
∑

(e,t)∈C

ωe,t.

Proof. The lower bound directly follows from the second
observation mentioned above. Then we get down to proving
the upper bound.

Denote Ec the set of underlying edges in C. For each
edge e ∈ Ec, suppose we need ne δ-removals to completely
delete e from C, and the corresponding removal heads are
(e, t1), (e, t2), · · · , (e, tne), where we assume 1 ≤ t1 < t2 <
· · · < tne ≤ T . Denote Ce,i the set of contacts deleted by the
δ-removal with head (e, ti) and define

We,i =
∑

(e,t)∈Ce,i

ωe,t, ∀e ∈ Ec and 1 ≤ i ≤ ne. (2)



Then we have

|Coverδ(C)| =
∑
e∈Ec

ne =
∑
e∈Ec

ne∑
i=1

∑
(e,t)∈Ce,i ωe,t

We,i
, (3)

where the last equality is due to equation (2). We also notice
that for any e ∈ Ec and 1 ≤ i ≤ ne∑

(e,t)∈Ce,i

ωe,t ≥ ωe,ti ,

because contact (e, ti) is included in Ce,i. By simple transfor-
mations, we obtain∑

(e,t)∈Ce,i ωe,t

ωe,ti
≥ 1 =

∑
(e,t)∈Ce,i ωe,t

We,i
.

Since ωe,ti ≥ 1
δ , we have

δ
∑

(e,t)∈Ce,i

ωe,t ≥
∑

(e,t)∈Ce,i ωe,t

ωe,ti
≥
∑

(e,t)∈Ce,i ωe,t

We,i
.

Taking the above inequality into (3), we obtain

|Coverδ(C)| ≤ δ
∑
e∈Ec

ne∑
i=1

∑
(e,t)∈Ce,i

ωe,t = δ
∑

(e,t)∈C

ωe,t,

where the last equality holds because C =
⋃
e∈Ec

⋃ne
i=1 Ce,i

and any two sets in the collection {Ce,i|e ∈ Ec, 1 ≤ i ≤ ne}
do not intersect.

With the above lemma, we are ready to prove the approxi-
mation ratio for the min-weight algorithm. Suppose CALG is
the set of contacts disabled by the solution of the min-weight
algorithm and C∗ is the set of contacts disabled by the optimal
solution to δ-MINCUT. Then according to Lemma 2, we have

|Coverδ(CALG)| ≤ δ
∑

(e,t)∈CALG

ωe,t.

Since the min-weight algorithm first finds the minimum num-
ber of 1-removals that can disconnect the source-destination
pair in the weighted time-varying graph, we have∑

(e,t)∈CALG

ωe,t ≤
∑

(e,t)∈C∗
ωe,t.

This implies that

|Coverδ(CALG)| ≤ δ
∑

(e,t)∈C∗
ωe,t ≤ δ|Coverδ(C∗)|,

where the last inequality is due to the lower bound in Lemma
2. Therefore, δ-approximation is achieved by the min-weight
algorithm.


