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We offer a new proof of the relationship between the solution of a matrix Riccati equation
and the optimal solution of a linear-quadratic regulator problem in the presence of linear terminal
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1. INTRODUCTION

In a previous paper, Coppel [1] presented some new proofs of the relationship between the

solution of a matrix Riccati equation and the optimal trajectory of a linear-quadratic regulator

problem in case the target is a fixed point and also in case it is free. He did not discuss the same

problem in case the target is partially constrained, which is the topic of this paper. In the sequel,

primes as superscripts indicate matrix or vector transposition.

We consider the problem of minimizing the cost functional,

J(ti,(;u)= t (tf )Gx(tj )+j f[ Q(t)x +2 S(t )u +u'R (t )u]dt, (1)
tl

subject to the constraints,

i=A(t)z+B(t)u, tot<tl<t,, (2)

X(ti)=(, (3)

Dx (tf) =0, (4)

where the coefficient matrices, A, B, Q, S, and R are continuous on [to,tf , the rows of the con-

stant qxn matrix D are linearly independent, and the control u is to selected from the class U of

appropriately dimensioned vector-valued functions which are piecewise continuous on [t 1,tf J. The

state vector x( t ) belongs to R and the control vector u (t) belongs to Rm . Without loss of

generality, we may suppose that G is symmetric and that Q(t) and R(t) are symmetric for each t.

Let Uo(t1,~) denote the subclass of U whose members steer the point ( to the hyperplane (4) on

the time interval [tl,tf]. Let f(t,to) denote the state transition matrix for the system (2). It was

shown in [2] that the class U0 is not empty if and only if

t,

fDP(t ,t)B(t)BY (t)Vtf ,t)Dl dt>O. (5)

2. THE MAIN THEOREM

Theorem. Suppose,

(i) R(t) > 0 for to< t < tf,

(ii) Relation (5) holds for all t, e [to,tf)



(iii) J(to,O;u)>O for all nontrivial u in Uo.

Let X(t ),A(t) denote a matrix solution of the hamiltonian system,

S' +B' X+Ru=O (6)

z =(A -BR-S )z-BR 1- X (7)

>=-(Q-SR-XS )z-(A-BR - 1 g )' X (8)

for which

DX(tf )=0, (9)

A(tf )= GX(tf )+ D' D, (10)

and where the matrix (D' ,X (tf )) has full rank. Then X(t) is nonsingular for all t e[to,tf). More-

over,

min J(tj,~;u)=' A(t! )X'(tl)¢, t1e(to, tf ). (11)

The minimum is attained for the unique input,

uo(t )=-R -(t )[SV (t )X(t ) + BY (t )A(t )]Xl(tl)~. (12)

If we set P(t)=A(t )X-1 (t) , then P(t) is defined on .to, tf ),and is symmetric. Furthermore,

uo(t)=-R-'(t ){S (t)+ B' (t)P(t )zo(t), (13)

where xo is the solution of (2) - (3) corresponding to the input uo , and P satisfies the matrix Ric-

cati equation,

P+A'P+PA +Q=(PB+S)R-1(9BP+' ) (14)

and terminal condition,

lim Xt (t)[P(t)-G]X(t)=O. (15)
t-*t! -

Proof. Let tr be a fixed vector in R" and let

xo(t)=X(t)?l, Xo(t)=A(t)71, uo(t)=-R-(t)(S(t (t)xzo+B (t )Xo).

Then

Dzo( t/ )=0.

Define,

w(x,u)=zx Qx+2z' Su +u' Ru.

Then
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w(Zo,uo)=x o(Q-SR-1- S )o+ Xo' BR-'Y Xo.

By Lemma 1 of [11,

t1jw(xouo)dt =o' (t1)Xot)l-zo (t )o 0(t1 )-

Then,

t!

J(tv,X(t1)rq;uo) = Zo (tf)Go(t )+ fw(zo,uo)dt =z (tl)XO(t 1 ). (16)
t1

Suppose X(tl)ir=0. Then zo(tl)=0 and from (16) we find that J(tl,O;uo)=O. Hypothesis (iii)

then implies that uo=0 . Hence, from (2), zo must vanish identically. From (6) and (8) we find,

' Xo=O and Xo=-A' X, te[tr,t 1 !, (17)

and from (10) we find that

Xo(tf )=' D r. (18)

It was shown in [2] that hypothesis (iii) implies that the only solution of (17) - (18) is

Xo(t)-O and Dr1=0. Hence, t1B'(X (t),D' )=0, and so r7=0. Thus, X(tl) is nonsingular. If (iii)

holds for all t1 e [to,tf) then X(t 1 ) is nonsingular for all t1 e t 0o,t ).

Let xo,u O be defined as above and let 77X0. Define .=X(t 1)r/. Then (;X0,

zot)=X(t)X-'(t)(, Xo(t)=A(t)X-1(tj)~,

and uO satisfies (12).

Let (x,u) be any admissible solution of (2) satisfying (3) and (4). Then as in [1],

t!

J(t,~;u)= zi (t)Gz(t,! )+ fw(z,u)dt

=J(tj, ;uo)+(z(t, )-zo(t ))' C(x(t t)-Zo(tf ))+ fW(Z-Zo,U-Uo)dt > J(tl,;uo),
tIl

and equality holds if and only if u =uo. Furthermore, from (16) we find,

J(tl,~;Uo) = zd (t)Xo(to) = ='A(tj),L(tj)~,

and if we define P(t)=A(t)Xl(t) then

J(tl,;uO)= i' P(tl)a.

From the definition of P(t) and from (7) and (8) we obtain (14). We see from (10) that
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X (t)(P(t)-G)X(t)= (t(t)(A(t)-GX(t)).
Thus,

lim Xt (t)(P(t)-G)X(t) =' (tf)D'D = O.
ttf-

To see that P is symmetric, we note that it follows from (6) - (7) that

dt(X t (t)At)(-A' (t)X(t))=o. (19)

Since X' (tj)A(tf)=AX (t )GX(t I )then (19) implies that

xA (tl)t(t)=At(t)X(t). (20)
Multiplying (20) by X'(t) on the right and [X' (t)]- ' on the left we find that

A(t )X'l(t)=[XV (t)j-A~ (t),
and this completes the proof.

REFERENCES

[11 Coppel, W. A., "Linear-quadratic optimal control." Proc. Royal Soc. Edinburgh, 73A, 18, pp.

271-289, 1974/5.

[21 Haas, V. B., "Normality and controllability for the problem of Bolza," Int. J. Control, 30, pp.

331-338, 1979.


