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ABSTRACT

A new crossover operator, quadratic crossover, for numerical optimization with genetic
algorithms is presented. Quadratic crossover works with chromosomes that have real-
valued or floating-point genes, making unnecessary the transformation of an optimization
problem from its natural real space to a binary space. The performance of quadratic
crossover on standard genetic-algorithm test problems was compared to the performance
of existing crossover operators for real-valued chromosomes on the same set of test
problems. Quadratic crossover was found to be more reliable, and in many cases, more
efficient than the existing crossover operators. The effectiveness of the quadratic
crossover in guiding genetic search to the global optimum for a wide variety of standard
nonlinear programming test problems and real world design problems was investigated.
In 75% of the test problems considered, the quadratic crossover either found the exact
global optimum or a better optimum than the best known optimum. In the remaining 25%,
the maximum percent deviation from the global optimum or the best known optimum is
only 0.13%. Results show that the quadratic crossover is effective in guiding genetic
search to the global optimum, or at least, the neighborhood of the global optimum, for all
classes of linear and nonlinear probleins.
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Chapter I

Introduction

1.1 Genetic Algorithms as Global Function Optimizers

The design of real world systems is usually presented as optimization problems,
where only certain combinations of the design variables result in a feasible design. It is
often desirable to find the best of the combinations of the design variables that result in a
feasible design. Thus, design optimization problems become giobal optimization
problems.

A global optimization problem can be stated as follows: Given a feasible region

and an objective function f:y — %! , approximate the value
ff = min f(x)
XeEYX

and the point x* € ¥ at which the minimum f* is attained. This problem is the global
minimization problem. The minimization problem can be transformed to a maximization
problem by replacing f(x) with -f(x).

Weierstrass theorem guarantees the existence of a global optimum for an objective
function that is continuous on a non-empty, clos=d, and bounded design domain [Arora,
1989]. In addition, if the design domain is convex, the local optimum is the same as the
global optimum, and the local optimum is attained at the point where the gradient of the
objective function is zero. However, many real world problems do not have objective
functions that are everywhere continuous on the design domain, nor do they always have
design domains that are convex. Perhaps for a nonconvex design domain, a convex
subregion can be identified, and the global optimum for that convex subregion can be
found. If the objective function is multimodal, several convex subregions may have to be
identified. The reality is that global optimization problems are intractable; there is no
local criterion that guarantees that a local optimum is global if the design domain is not
nice and the objective function is not convex or, at least, quasi-convex.

Nevertheless, global optimization problems are tackled every day. There are
numerous global optimization algorithms that attempt to construct a sequence {xy} of

points in x that converge to a point x* in which the objective function f approximates or
equals f* [Zhigljavsky, 1991]. These optimization algorithms can be classified under two
broad categories: deterministic and stochastic methods. Deterministic methods include
local search techniques, covering methods, branch and bound methods, decomposition
based approaches, approximation and integral representations, and interval analysis.
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Stochastic methods include random search techniques, simulated annealing, clustering
methods, and stochastic and axiomatic models [Floudas and Pardalos, 1992}, A
comprehensive review of most of the optimization methods enumerated above can be
found in [Zhigljavsky, 1991]. Genetic algorithms, when used as function optimizers, can
be classified under stochastic methods.

Genetic algorithms are stochastic algorithms that simulate the process of natural
evolution. They start with a population of randomly created individuals, and by means of
natural selection and natural genetics, the individuals combine to produce new
individuals. The fittest individuals survive with the progression of genetic simulation, and
the not-so-fit individuals die off. The idea of the survival of the fittest is useful in
optimization because the individuals in the population can represent solution vectors to an
optimization problem so that the fitness of an individual is measured by the objective
function. The global optimum can be found by keeping track of the best individual during
the evolution process.

Genetic algorithms differ from other optimization and search techniques in that
they do not work with the design variables directly; instead, they manipulate the design
variable codings and use only the objective values to determine the direction of search.
Also, genetic algorithms process multiple starting points in parallel, so that the chance of
converging to a local sub-optimum is usually minimal. The underlying motivation for
using genetic algorithms as function optimizers is robustness. Genetic algorithms have
the ability to adapt to a wide variety of environments.

1.2 An Illustration of the Mechanics of a Simple Genetic Algorithm

The following optimization problem is considered in the illustration of the
mechanics of a simple genetic algorithm:

Maximize f(x) = x3

where xe [0, 7]

A simple genetic algorithm starts with an initial population of single-chromosome
individuals or potential solutions to an optimization problem. In this case, the
chromosomes would represent the variable x. The chromosomes are coded as strings
defined over a finite-length alphabet, usually the binary alphabet {0, 1}. In the example
problem, the variable x is an unsigned integer. Therefore, in binary notation, the variable
x will be represented with three bits. Correspondingly, the structure of the chromosomes
would be ###, where each # could be a 0 or 1. The initial population is created by
randomly assigning a O or | to each # in the chromosome. For example, an initial
population of four individuals could be

010 110 101 OI1
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The next step is to determine the fitness of the individuals in the population. This
is done by mapping the binary strings to unsigned integer numbers and evaluating the
objective function for each individual. The evaluation of the individuals in the initial
population given above is presented in Table 1.1.

Table 1.1: Fitness values of individuals in initial population

[t | i |
f;=x

1 010 2 3
2 110 3 27
3 101 5 125
4 011 6 216
Total 376
Average 04

The evolution process now starts. Evolution is composed of three basic steps:
reproduction, crossover, and mutation.
population based on the probability distribution of the fitness values of the current
population. The new population is selected by spinning a weighted roulette wheel with
slots n times, where n is the population size. The roulette wheel (see Figure 1.1) is
constructed from the probability of selection for each individual in the population, where
the probability of selection of an individual is defined as the ratio of the fitness of that

individual to the total fitness of the population.

individuals for the example problem is shown in Table 1.2.

Figure 1.1: Sample roulette wheel

Reproduction involves the sclection of a new

The probability of selection of the
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Selection using the roulette wheel is accomplished in two steps [Michalewicz, 1994]:

1. Spinning the Wheel: This step involves the generation of a random
number r, where r is in the range [0...1].

2. Selecting the Individual: This step involves finding the individual that
corresponds to the black slot shown in Figure 1.1. This is done as

follows: if r < g, the first individual is selected; otherwise, the ith
individual such that ¢, | <r<gq, for ie [2,n] is selected -- g; is the

cumulative probability of the i individual.

The cumulative probability, g;, of an i'™ individual is shown in Table 1.2. The
roulette wheel selection is illustrated for the example problem.

Table 1.2: Cumulative probability of the individuals in the initial population

Probability of Cumulative

Individual Fitness, Selection, Probabl.llly,

(Blnal')') f’ - x3 p’_ =f‘/( Zf'] q,‘ = Z pj
i=1 j=1

1 010 8 0.021 0.021

2 110 27 0.072 0.093 ]
3 101 125 0.332 0.425

4 011 216 0.575 1

Total 376 1

Average 94

Suppose that the following sequence of numbers are generated by spinning the
roulette wheel 4 times:

0.655416 0.200995 0.893622 0.281887

The first number r = 0.655416 is greater than g3 and smaller than g4, so individual 4 gets
selected for the new population; the second number r = 0.200995 is greater than ¢, and
smaller than g3, so individual 3 gets selected for the new population; the third number r =
0.893622 is greater than g3 and smaller than g4, so individual 4 is selected for the new
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population; the fourth number r = 0.281887 is greater than g, and smaller than g3, so

individual 3 gets selected for the new population. The new population consists of the
individuals

011 101 011 101

Note that an individual can get selected more than once.

Now, it is time for the individuals to undergo genetic operation. Genetic operation
is accomplished by the genetic operators -- crossover and mutation operators. Crossover
involves the recombination of the individuals in the new population to produce new
offspring. A simple crossover involves the swapping of alleles of the chromosomes. This
is illustrated for the chromosomes in the new population:

Crossing of the First Two Chromosomes

Parents:
ol11
1151
Offspring:
001
111

Crossing of the Last Two Chromosomes

Parents:
ol1l1
1011
Offspring:
01l
101

After crossover, the new population is
601 111 011 101

Mutation involves the altering of a single bit with a probability. For the binary
strings, this is equivalent to changing a bit with a value of 0 to 1 or vice versa. Let the
probability of mutation for this example problem be 0.001. Then for the initial population
of four 3-bit individuals, 12*0.001 = 0.012 bits should undergo mutation during a single
generation. Suppose that the actual simulation of the mutation process does not result in
aleration of any of the strings, then the new population is still

001 111 011 101
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‘This completes the first generation of the evolution process. This cycle of
reproduction, crossover, and mutation is repeated until the individuals have converged to
an optimum. In this case, the optimum is at x = 7 with an objective value of 343. The
statistics of the new population is presented in Table 1.3.

Table 1.3: Fitness values of individuals in the new population

. Individuals Individuals .

! (Binary) (Integer) Fitness
1 001 4 64
2 111 7 343
3 on 6 216
4 101 5 125
Total 748
Average 187

Note that the average fitness of the new population has increased by almost 100%
during a single evolution cycle. Also, the maximum fitness of the individuals has
increased by more than 50% during that same period. This is because the highly-fit
individuals in the initial population have combined to produce even more highly-fit
individuals in the new population. The notion of combining highly-fit individuals to
produce even more highly-fit individuals is the main goal of the genetic algorithm.

1.3 The Theory Behind the Canonical Genetic Algorithm

Genetic algorithms work with single-chromosome individuals, where the
chromosomes are coded as finite-length strings that are defined over some finite alphabet.
The traditional alphabets used are the binary alphabets {0,1}. So for a function

flx,y) = x2 + y2 where 0<x,y<5, and x and y are not necessarily integers

a chromosome could have the structure ######, where each # could be 0 or 1. The first
three positions or genes correspond to the parameter x and the last three genes correspond
to the parameter y. A similarity template, called a schema, can be constructed for a subset
of strings that have same alleles or gene values at certain positions in a string. The schema
is generally limited to the ternary alphabet {0, 1, #}, where # is a wild card. The similarity
information carried by each schema will depend on the number of wild cards in the string.
The fewer the number of wild cards, the more specific is the schema. The number of fixed
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positions in a schema is known as the order of the schema, and the distance between the
first and last positions in a string is known as the defining length of the schema. There are

3/ schemata for a string of length / that are defined over the ternary alphabet {0, 1, #}. In

general, a string of length / defined over an alphabet of k cardinality has (k+1)! schemata.

A simple genetic algorithm uses three genetic operators to advance from one
generation to the next. These three genetic operators are reproduction, crossover, and
mutation. Reproduction involves the selection of individuals for mating. The individuals
are selected according to their objective values. Highly fit individuals have a better
chance of getting selected to contribute to the offspring of the next generation. The
crossover operator decides how the selected individuals mate to produce offspring. The
mutation operator alters a single gene of a chromosome.

Assuming that reproduction, crossover, and mutation operations are independent,
then the expected count of a schema h after reproduction is given by

m(h,t+1)2m(h 1) -{f(h)

where m(h,t) is the number of strings representing schema h at time t, m(h,t+1) is the
number of strings representing schema h at time t+1, f{h) is average fitness of the strings
representing schema h at time r, and f,,, is the average fitness of the population at time .
This equation shows that a schema is expected to grow in proportion to the ratio of
average fitness of the schema to the average fitness of the population.

A schema survives after undergoing crossover if the crossover site falls outside the
defining length, 8, of the schema. So, if simple crossover is performed with a probability
Pecross» then the probability of the schema h surviving after crossover is given by

K]

>21-
ps= cross | _ |

where 8(h) is the defining length of the schema h and [ is the length of the strings
representing schema A.

For a schema to survive after undergoing mutation, all the fixed positions in the
schema must remain unchanged. A single allele remains unaltered with the probability (1-
Pmut)» Where p,... is the probability of mutation. Therefore, the probability of a schema
surviving after undergoing mutation is (l-pm“,)°("), where o(h) is the number of fixed
positions. For small values of p,,,,, the probability of a schema surviving after undergoing
mutation can be approximated by the expression:

pSZI—o(h) Pt
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The combined effect of reproduction, crossover, and mutation on the expected
growth rate of a schema A is expressed as

h d(h
m (hy 1+ 1) 2 m (h, ) ffi—vj[l ~Peross o =0 (h) Py
where
fth) : fitness of the schema
fave :average fitness of the population

&(h) : defining length of the schema
o(h) : order of the schema
Pecross - probability of crossover

P - Probability of mutation

The primary conclusion from the growth rate equation is that “short, low-order,
above-average schemata receive exponentially increasing trials in subsequent
generations” [Goldberg, 1989]. This conclusion is known as the Schema Theorem or the
Fundamental Theorem of Genetic Algorithms.

1.4 Chromosome Representation Issues

The schema theory was based on the binary alphabet representation. It shouid be
noted that any other finite alphabet could also have been considered. However, two
observations can immediately be made about binary representation with respect to
numerical optimization problems: (1) binary representation requires that the design
problem be mapped from its natural real space to binary space, and (2) multidimensional
optimization problems that require high precision need a rather long binary string to
represent the solution vector. Mapping the design problem from real space to binary
space is not a big problem, except that opportunities for exploiting gradualness of
functions with variables over continuous domains is forfeited. On the other hand, long
binary strings result in rather large search spaces, and genetic algorithms slowly converge
in such spaces. Real-coded genetic algorithms, on the other hand, quickly narrow
searching to a much smaller region of the entire search space [Goldberg, 1990].

Thus it seems only natural to use real-number coding instead of binary coding for
numerical optimization problems, and the number of researchers using real coding has
been on the rise lately; even though the genetic algorithm theory suggests that alphabets of
low cardinality have higher schema processing capabilities than alphabets of high
cardinality, and hence, should be more effective in search [Goldberg, 1990]. This last
statement requires further explanation. In Holland’s schema notation, the maximum
number of schemata for a string of length / defined over an alphabet of k cardinality is

(k+l)’ [Holland, 1975]. So it would be expected that an alphabet of high cardinality
should have a higher number of schemata than an alphabet of low cardinality. However,
an alphabet of high cardinality generally requires a much shorter string to represent
variables than an alphabet of low cardinality, so that the maximum number of schemata
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for the alphabet of low cardinality is higher than the maximum number of schemata for the
alphabet of high cardinality. Nonetheless, it appears that from the practical standpoint
alphabets of high cardinality (in this case, real or floating-point alphabet) give better
results for numerical optimization problems [Davis, 1991; Michalewicz, 1994].

Considering the success of real-coded genetic algorithms, the natural question is
why does the genetic algorithm theory fail to predict success for real-coded genetic
algorithms? Really, there are two issues to be addressed here: the first issue is that the real
alphabet over which real-valued chromosomes are defined is not finite, making the
schema theory irrelevant, and the second issue is the failure of the schema theory to
predict success for alphabets of high cardinality. A discussion of these two issues follows:

The basic assumption in the development of the schema theory is that the alphabet
over which the strings or chromosomes are defined is finite. This means that schemata
analysis and schema theory make sense if the real alphabet over which the real-valued
chromosomes are defined is indeed finite. Before making further comments, it is in order
to formally state the definition of a real-valued chromosome.

A real-valued chromosome has genes that are coded as floating point
numbers. The length of the real-valued chromosome is equal to the number
of the independent variables in the objective function, where each gene in
the chromosome represents a single independent variable.

A graphical representation of a real-valued chromosome for a function f(%) is
shown in Figure 1.2.

X) X2 X3 X4 X5 s Xn-1 Xn

Figure 1.2: Representation of a reai-valued chromosome

where LJ.ijS Uj for j=1..n.
Now, each Xxj can assume infinitely many values in the interval [Lj, Uj]. This

means that the real alphabet over which the real-valued chromosome is defined is not

finite. However, suppose that the interval {L;, U;] can be divided into subintervals
m

[o, B;] such that [Lj, Uj] = [T [a,B,]; this is Wright’s connected schemata [Wright,
i=1

1991]. Then each subinterval [a, ;] can be thought of as a virtual character, and the

collection of the virtual characters can be thought of as a virtual alphabet. In other words,
the schemata that is relevant to the real-valued chromosome is the interval-schemata, as
opposed to the traditional symbol schemata used in schemata analysis.

Now, the question remaining to be resolved is how to assign subintervals to the
virtual characters. One definition of virtual characters can be found in Goldberg’s report
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on “Real-coded Genetic Algorithms, Virtual Alphabets, and Blocking,” [1990]. Goldberg
defines a virtual character as a non-empty intersection of a basin (above-average intervals
attracted to a local optimum) and a one-dimensional slice of the objective function along
each dimension [Goldberg, 1990], and a virtual alphabet as a collection of the virtual
characters. There may be other ways to define the interval-schemata. The primary
conclusion is that an alternate schemata notation, such as the interval-schemata, makes it
possible to apply schemata analysis and schema theory to real-valued chromosomes.

The issue of the failure of schema theory to predict success for alphabets of high
cardinality in genetic search can now be addressed. Intuition suggests that the more
expressive a language is, the more effective it should be in search, but the fundamental
theorem of genetic algorithm claims that alphabets of low cardinality are more effective in
search than alphabets of high cardinality. Antonisse [1989] attributes the disparity in what
intuition suggests and the claims of the schema theory to an incorrect interpretation of the
schema notation.

For instance, consider the schema 000# that is defined over the ternary alphabet,
where # is a wild card. In Holland’s interpretation of schema notation, the schema 000#
refers to the set of strings {0000, 0001, 0002}. However, Antonisse says that “a set of
schemata should adequately express the quantification over values, because the wild card
for a three-valued alphabet can be between 0 and 1, 0 and 2, | and 2, or O, 1, and 2.”
Therefore, the schema 000# should refer to the set of strings {0000, 0001}, {0000, 0002},
{0001, 0002}, and {0000 0001 0002}. In other words, for a three-valued alphabet, four
wild cards are needed: # = {#;, #yp, #|2, #9)2}. With this analysis, a string of length /

defined over an alphabet of k cardinality has (2k-l)' schemata [Antonisse, 1989], as

opposed to the (k+1)! schemata predicted by Holland.

The implication of Antonisse’s analysis is best illustrated with an example. Let A
be a binary string of length 8. A has 256 distinct states. Let B be a ternary string of length
5. B has 243 distinct states. Using Holland’s interpretation of schema notation, the

number of schemata defined for A is (2+1)8 = 6561, and the number of schemata defined

for B is (3+1)5 = 1024. The number of schemata defined for A is much greater than the
number of schemata defined for B. Now using Antonisse’s interpretation of schema

notation, the number of schemata defined for A is (22-1)8 = 6561, and the number of

schemata defined for B is (23-1)5 = 16,807. A couple of comments can be made about the
results from this example:

1. With Antonisse’s interpretation of schemata, the maximum number of
schemata for string B is about 16 times the maximum number of
schemata predicted for string B by Holland.

2. The maximum number of schemata for string B is about 2.5 times the
maximum number of schemata for string A. This would suggest that
alphabets of high cardinality should be more effective in search since
they have higher schema processing capabilities than alphabets of low



21
cardinality.

3. Antonisse’s interpretation of schemata notation for binary strings is
consistent with Holland’s interpretation of schemata notation for binary
strings. This happens because the binary representation is indifferent to
the ambiguity between the wild card interpretation and an
“interpretation based on the quantification over subsets of values at a
string position” [Antonisse, 1989].

Antonisse’s interpretation of schemata aligns the predictions of the schema theory
with the suggestions of intuition. Now, Antonisse’s interpretation of schema notation can
be applied to real-valued chromosomes. In this case the wild card would be a set of

intervals, say #, = {#'.' (o, B]7 #,.' (o, B,..I} for the connected schemata.

Therefore, with the definition of virtual characters and alphabet and Antonisse’s
interpretation of schemata notation, it is probable that the apparent paradox in the schema
theory and the success of real-coded genetic algorithms may be resolved.

On the other hand, the inadequacy of the schema theory to explain the real-coded
genetic algorithm and some other variants of the genetic algorithm that have better
performance than the canonical genetic algorithm may mean that it is time to seek an
alternate theory for genetic algorithms. Encouragingly, a number of theorists are
developing new theories for genetic algorithms. For example, Peck and Dhawan present
genetic algorithms as global random search methods, and some other theorists model
genetic algorithms using the Markov chain and simulated annealing theories [Peck and
Dhawan, 1995].

Much of the work done in the area of real-valued genetic algorithms has been in
the development of genetic operators, i.e. crossover and mutation operators, for real-
valued chromosomes. Fortunately, the users of real-coded genetic algorithms can continue
to improve these operators and enjoy their success without fully understanding the theory
behind genetic algorithms. This does not mean that the users of real-coded genetic
algorithm are absolved of the responsibility of seeking to understand why a real-coded
genetic algorithm works.  Particularly, genetic algorithm theory is pertinent to
understanding why a real-coded genetic algorithm may excel for some classes of
problems, and why it may not work for other classes of problems.

1.5 Problem Statement

Out of all the operators that are responsible for advancing genetic search from one
generation to the next, only the genetic operators are directly involved with the
manipulation of the variable coding. With the real-number variable coding, it becomes
possible to develop specialized genetic operators that take advantage of local continuities
in the problem domain.

Therefore, the goal of this thesis is to develop a minimal set of specialized genetic

operators for real-coded genes that effectively finds a solution vector % = (x,x,, ..., ¥,)
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that globally minimizes (or maximizes) the objective function
fQR) = flxpxy ..x)
subject to

h;(2) = h’.(xl,xz,...,xn)= 0; i=1..p and P<n

gj(}) gj(xl,xz,...,xn) S0 j=1...m

in the domain LkakS U, where L, U,e R and k = 1...n . This problem statement is

quite general. There is no restriction on the nature of the objective function and
constraints, i.e. the objective function and constraints can be linear or nonlinear.

The effectiveness of the genetic operators will be measured by the realization of
the global optimum, the number of function evaluations required to obtain the global
optimum, and the time it takes to obtain the global optimum for a wide variety of standard
numerical optimization problems.



Chapter il

Genetic Operators for Real-Valued Chromosomes:
A Literature Survey

2.1 Overview

Any genetic simulation starts with an initial population of individuals that are
usually randomly distributed over a given domain. The successful progression of the
simulation depends heavily on the effectiveness of the genetic operators: the genetic
operators are responsible for determining how the individuals in a current generation
recombine to produce new offspring. In terms of function optimization, the new offspring
are the new potential solutions to an optimization problem. Effective genetic operators
should lead to the production of better potential solutions or offspring with the progression
of the genetic simulation. Furthermore, genetic operators should guard against premature
convergence and exploit local continuities in objective functions with continuous
variables when possible.

Genetic operators can be divided into two groups: crossover operators and
mutation operators. The crossover operators are primarily responsible for the
rzcombination process of the individuals and the mutation operators ensure that new
information is introduced into the search space. A literature survey of the current
aailable crossover and mutation operators for real-valued chromosomes is presented in
this chapter.

2.2 Crossover Operators

One-Point Crossover: This is analogous to the usual one-point crossover in binary
representation. The permissible crossover site is between the genes of a given
chromosome, where the crossover site is randomly selected. An illustration of a one-point
crossover is shown in Figure 2.1. One-point crossover is seldom used alone, and when it
is used alone, the mutation rate must be high, since mutation is the only means by which
new alleles are introduced into the search space.
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Parent 1 X) Xy l X3 | x
n

\— crossover site

(Before Crossover)

Child 1 X] X2 Y3 ** | Yn
Child 2 Yi Y2 X3 Xp
(After Crossover)

Figure 2.1: Illustration of one-point crossover

Two-Point Crossover: This is similar to the one-point crossover, except that there are two
crossover sites. An illustration of the two-point crossover is shown in Figure 2.2.

Uniform Crossover: This is a multi-point crossover. Two offspring are produced from
two parents. For every ith gene of the offspring, a coin is flipped to determine which of the

offspring gets the ith gene of the first parent and which one gets the ith gene of the second
parent.
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Parent | X |x2 X3 | X4 Xp

Parent 2 Y1 Y2 Y3 I Ya Yn

Crossover site

(Before Crossover)

Child 1 X Y2 y3 X4 Xn
Child 2 Y1 X2 X3 Ya ¥n
(After Crossover)

Figure 2.2: Illustration of two-point crossover

Simple Crossover [Michalewicz, 1994): This is similar to one-point crossover. The
major difference is that linear combinations of the alleles of the chromosomes are taken
after the crossover site as opposed to just swapping alleles. Simple crossover is illustrated
in Figure 2.3.

The parameter a (see Figure 2.3) starts at a value of 1 and if either Child 1 or Child
2 fails to satisfy the constraints, a is reduced by some constant 1/q. If after q attempts,
Child 1 or Child 2 fails to satisfy the constraints, then Child 1 and Child 2 simply become
copies of their parents. Note that when a is 1, the simple crossover is exactly the same as
the one-point crossover.
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Parent 1 X| X2 ]x3 Xn

Parent 2 Yi Y2 I Y3 Yn

\_ Crossover site

(Before Crossover)

- Child 1 X X3 ays+(1-a)x3 ay3+(1-a)x;

Child 2 Yi Y2 ax3+(1-a)ys axsy+(1-a)ys

(After Crossover)

Figure 2.3: Illustration of simple crossover

Average Crossover [Davis, 1991]: Given two parents P| = {v,, V|3, ..., V;,} and P, =
{va1, v22, ..., Vo, }, the i'" gene of the resulting offspring C = {c, ¢y, ..., ¢, } has the form:

ViitVai

C‘-= )

Linear Crossover [Wright, 1991]: Given two parents P; and P,, the candidate offspring
C,, C,, and C; have the form:

C, = 0.5P,+05P,, C, = L5P,~05P, , and C; = —05P, +1.5P,

Note that the linear combinations of the parents are performed on a gene-by-gene basis.
The best two of Cy, C,, and Cj are the new offspring.
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Whole Arithmetic Crossover [Michalewicz, 1994]: Given two parents P, and P,, the
resulting offspring C, and C, have the form:

C

| = aPy+ (1-a)P,

Gy

aP, + (1-a)P,

where ae€ [0,1] is a randomly generated number, and the linear combinations of the
parents is performed on a gene by gene basis.

BLX-00 Crossover [Eshelman and Schaffer, 1993): This is a blend crossover. It
uniformly picks parameter values that lie between two points that contain two parents (see
Figure 2.4). For instance, BLX-0.5 picks parameter values from points that lie on an
interval that extends 0.51 on either side of the interval I between the parents. BLX-0.0, the
flat crossover, picks parameter values from points between two parents [Radcliffe, 1990].

!<od>!< I >!<od>!

P 1)

Figure 2.4: Illustration of BLX-0t crossover

Heuristic Crossover [Michalewicz, 1994]: Given two parents P| = {vy,, v|2, -.., v,n}' and
Py = {vyy, V22, ..., Voo }, Where the fitness of P; is higher than or equal to the fitness of Py,

the ith gene of the resulting offspring C = {c,, c,, ..., c,} has the form:
¢; = r(vy;=vy) +vy,

where re [0...1] . The parameter r is randomly generated.

It is possible that the resulting offspring can be infeasible with this operator. If the
offspring is infeasible, another r will be generated and the heuristic crossover will be
performed again. If the offspring is still infeasible after w attempts, the heuristic crossover
will produce no offspring. The heuristic crossover has the added advantage that it uses the
objective function trends to determine the direction of search.
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2.3 Mutation Operators

Uniform Mutation: If V' = (v VWpp e V) is a chromosome, then each gene vy

Voyy e
Yy
has exactly equal chance of undergoing mutation. The result of a mutative process is

+ 1 .
vV o= (VI’VZ""’Vk""'Vn)

where 1 <k<n and v/ is arandomly generated real number between the upper and lower

bounds of vy.

Boundary Mutation [Michalewicz, 1994]: If V' = (Vs Vs oos Vi ees V) is a

chromosome, then each gene vy has exactly equal chance of undergoing mutation. The
result of a mutative process is

+1 ,
vVt (vl,vz,..., vk,...,v")

where 1<k<n and v, iseither Ly or Uy where L, <v,'<U,.

Non-Uniform Mutation [Michalewicz, 1994]: If V' = (v, vy ..,v.0v)) i a
chromosome, then each gene vy has exactly equal chance of undergoing mutation. The
result of a non-uniform mutative process is

+ 1 ,
vz (vl,vz,...,vk,...,vn)

where

{Vk +A(t,u,—v,) if random digit is 0
v, =
k

ve— ALy, - lk) if random digit is |

uy is the upper bound of vy, Iy is the lower bound of vy, and the delta function is defined as

At y) = y*r( - %)b

where t is the generation number, T is the maximum number of generations, r is a
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randomly generated number between O and 1, and b is a system parameter determining
non-uniformity. The delta function tends to zero as the number of generations tend to the
maximum number of generations. This mutation operator perturbs the chromosome about
its current position in the domain.

Gaussian Mutation: If V' = (Vs Vyr -o0r Vo - v,) IS @ chromosome, then each vy has

exactly equal chance of undergoing mutation. The result of a mutative process is
vir!o (v,,v v, v)
- l, 2, sy k y sy n

where v,' is randomly generated from a Gaussian curve with a mean of v, and a standard

deviation of one.

2.4 A Note on the Performance of the Genetic Operators

The crossover operators can be categorized into two groups, namely blending
crossovers and extrapolating crossovers. The blending crossovers are the average,
arithmetic, BLX-0.0, and simple crossovers. The extrapolating crossover operators are
the linear, heuristic, and BLX-a with o > 0.0 crossovers. The point crossovers do not fit
nicely under any of these two categories.

The blending and extrapolating crossovers have different strengths and
weaknesses, hence it is common to find two or more crossover operators in a single real-
coded genetic algorithm. For instance, the blending and point crossovers cannot sample
parameter values that lie outside the extrema represented in the population. The
implication is that if the optimum is not enclosed in the initial population, the blending
and point crossovers will not be able to find the optimum. On the other hand, the
extrapolating crossovers can sample parameter values that lie outside the extrema
represented in the population. They can also produce offspring that are not in the design
domain. The point crossovers have no way of sampling new parameter values other than
the ones in the initial population if the probability of mutation is zero, neither do they have
the ability to exploit local continuities in objective functions with continuous variables.

Michalewicz [1994] used two of the blending crossover operators, arithmetic and
simple crossovers, and one of the extrapolating crossover operators, heuristic crossover, in
his GENOCOP system. The combination of the operators achieved desired accuracies in
results, but not without running the genetic algorithm for thousands of generations in
some instances, where the bulk of the work done is in the local fine tuning of the optimum.
It would be desirable to achieve desired accuracies in results in as few generations as
possible, this is especially important for optimization problems with objective functions
that are costly to evaluate.

A lot of work has not been done with the mutation operator, but it is clear that the
desired characteristic of a mutation operator is perturbation about the current solution.
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Random mutation has a tendency to produce infeasible offsprings for constrained
numerical optimization problem. The boundary mutation is a nuisance if the optimum
solution does not lie on the boundary of the domain.



Chapter II1

New Genetic Operator for Real-Valued Chromosomes

3.1 Quadratic Crossover in Genetic Search

The beauty of real representation is that specialized genetic operators can be
developed for numerical optimization problems. Therefore, the goal is to develop a single
crossover operator that will effectively find the optimum to numerical optimization
problems with the desired accuracy in as few generations as possible. The proposed
crossover operator is quadratic crossover. Quadratic crossover combines the techniques of
quadratic interpolation, a one-dimensional local search technique, and heuristic
extrapolation, a pseudo-gradient local search technique, to produce a single individual
from three individuals. Quadratic crossover is defined for maximization problems, since
genetic algorithm problems are formulated as maximization problems. The description of
the quadratic crossover is as follows:

Let Py = {vipvip Vi eav,h Py= {vy v vos, o vy, 1
and P3 = { Vi1 V3os V3gs -oes V3 "} be three parents selected for crossover,

where the v;;’s are real numbers. Also, let the associated fitness values of
the parents be fj, f,, and f5 respectively. Now, suppose that the fitness of a
parent can be related to each gene of the parent such that f; = g;(v;;), where i
refers to the parent and j refers to the gene of the parent. Then if &;(vij) is
continuous on the given interval [ Lj, U j] , where Lj R RS U i &j(vyy) can
be approximated by a sufficiently high-order polynomial [Arora, 1989].
Since the idea is to find a general relationship between f; and vij A
quadratic curve is sufficient to approximate gi(v;).

In order to fit a quadratic curve to g;, three points are needed at

every it gene. The three points are obtained from the three parents. So for

every j'" gene, the quadratic curve h ;i ( E) = a jE_,Z + bjE, +¢; is fitted to the

genes v, v;, and vy;. The coefficients of the quadratic curve are given by
the following expressions:



I [fs‘fl _fz‘fl]
Vi~ Vo J

b, = el

J sz..

lj-aj(v2j+ vlj)

2
¢, =f —ajvlj—ijlj

The critical point of hj(E,) is obtained from the following

expression:

d

721 (®) = b+ 2a€ = 0

b 2
The critical point is éj* = —Ej-. If Lzhj(f_,) = 2"j<0' then

|
b,
E_,j* = —ﬁ is the maximum point of hj(E,) )

J

Now, let the new individual be D = {dll'dl2'd13""'dln}'

Then d; = §j* if ﬁj* is the maximum point of hj(ﬁ) and L, Sﬁj* <U;.
This ends the quadratic interpolation part of the quadratic crossover,
What happens if hj(E_,) does not have a maximum point in the

interval [Lj, U j] or if at least two of the j“‘ genes have the same, or nearly

the same, alleles, so that aj, bj, or ¢; are undefined? This is where the

heuristic extrapolation comes in. For every Kth gene where the quadratic
interpolation fails to provide a value for the gene of the new individual D,
heuristic extrapolation will be invoked.

The heuristic extrapolation is implemented as follows: Let the best

of the three parents be M| = {m,,m,,m,, ..., mln} and let the worst

of the three parents be M, = {m,, m,,, my,, ..., m, } , then the Kt gene

of the new individual D that does not yet have a value will asume a value
according to the expression:

32
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d,=r(m —m,) +m,

where re [0...1] is a randomly generated number. If at least one dj

among all dy’s needed is not in the interval [L,, U], then r will be

decreased by half, and the heuristic extrapolation will be attempted again.
If after W attempts, at least one d, among all d}’s needed is not in the

interval [L,, U,] then the heuristic extrapolation would have failed. If the

heuristic extrapolation fails, then the empty Kb position of D wili be

randomly assigned values from the KB position of any of the three parents.

The structure of the quadratic crossover procedure is summarized in Figure 3.1.

procedure quadratic crossover

begin
/* quadratic interpolation */
je1
repeat
compute a;, bj, G
compute &j.*

if Lj < ﬁj* < Uj
4= &+
indexj «— FULL
else indexj<— EMPTY
jej+1
until (j > length of D)

/* heuristic interpolation */
M, = parent with highest fitness

M, = parent with lowest fitness
Generate a random number r in [0,1]
we0

repeat
feasible = TRUE

je1

do
if indexj = EMPTY

dj = r*(m)j-my;) + my;
if dj & [Lj, Uj]
feasible = FALSE
jej+1
while (feasible = TRUE &
j < length of D)
r=r/2
wéew+

until (w > W | feasible =
TRUE)

/* Random Assignment */
if feasible = TRUE
crossover is done
else
je 1
do

if index; = EMPTY
dj=vyjorvyorvy;
jej+1

while (j < length of D)

end

Figure 3.1: Quadratic crossover procedure
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3.2 Performance Tests with Quadratic Crossover

The performance of the quadratic crossover is compared to the performances of
five crossover operators for a selected number of standard genetic algorithm test problems
with known optima. The crossover operators considered are linear, flat (BLX-0.0), BLX-
0.5, average, and heuristic crossovers. These operators are described in Chapter II. The
evaluation of the performance of the crossover operators are based on the number of times
that the optimum is obtained in five independent runs and the average number of
generations or function evaluations required to obtain the optimum, if thz optimum is
obtained at all.

The genetic algorithm used in optimization operates at steady-state with
overlapping population. Steady-siate with overlapping population means that only a
specified percentage of the population is replaced every generation. Given a replacement
ratio x and a population of size n, the percentage of the population to be replaced every

generation is n - x. So for every generation f+1, an intermediate population is created by

inserting n - x newly created individuals into the population at generation f; then n - x
worst individuals are deleted from the intermediate population to create the new
population for generation r+1. The newly created individuals are created by crossover of
individuals from the population at generation r. Individuals are selected for crossover by
the roulette wheel selection scheme, where individuals with above-average fitness values
have a better chance of getting selected for crossover. The control parameters for the
steady-state genetic algorithm for all the test runs are listed below:

Population Size : 60
Probability of Crossover : 1.0
Probability of Mutation (per gene) :  0.001

Replacement Ratio : 0.25

The maximum number of generations depends on the difficulty of the problem but
will not exceed 10,000. The mutation operator used in the optimization process is
Gaussian mutator. A low mutation rate is selected for test runs so as to place emphasis on
the performance of the crossover operators.

The performance of a real-coded genetic algorithm is also compared with the
performance of a binary-coded genetic algorithm for the same set of test problems. The
binary-coded genetic algorithm uses uniform crossover and flip-a-bit mutator with the
same population size, crossover rate, and mutation rate as the real-coded genetic
algorithm. The binary representation codes one variable with 16 bits, so a solution vector

with n variables would be represented with a binary string of length 16 - n.
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3.2.1 Optimization of Parabolic Function
The optimization problem for the parabolic function is stated as follows:

3
Maximize f(x) = 2 x;
i=1

subject to
=5.12<x), xy, x;£5.12

This problem is from [DelJong, 1975]. A plot of the objective function in two-
dimensions in shown in Figure 3.2. There are eight global optima with t* = 78.6432. The
global optima are located at the boundary of the domain.

Figure 3.2: Plot of parabolic function in two-dimensions

The number of times that the optimum is found by the crossover operators and the
binary implementation in five consecutive runs are listed in Table 3.1. The maximum
number of generations for each run is 500. Convergence plots for the different crossover
operators and the binary implementation are shown in Figures 3.3a through 3.3c.

The quadratic crossover found the optimum in all 5 runs, and so did the linear,
heuristic, and BLX-0.5 crossovers. The binary-coded genetic algorithm also found the
optimum in all 5 runs.  The linear crossover found the optimum in the least number of
generations. The performances of the blending crossovers, i.e. the average and flat
crossovers, are not quite as good as the performances of the other crossover operators on
this problem. The not-so-good performance of the average and flat crossovers is not
surprising -- if the initial population does not envelope the global optimum, it would be
impossible for the average and flat crossovers to attain the optimum (except, by mutation).



Table 3.1: Comparison of the performance of selected crossover operators for

the parabolic function

Crossover % of time that exact Average number of Average number of
('; ;erator optimum is found in generations to find function evaluations®
P 5 runs optimum to find optimum

Quadratic 100 45 735

Linear 100

Flat 0

BLX-0.5 100

Average 40

Heuristic 100 40 660

Uniform 100 117 (best) 1815 (best)

(Binary)

a. Number of function evaluations = Replacement ratio * Population size * Number of
generations + Population Size (for initialization)

80.0 ;

75.0 -

7004 |

65.0 1

Objective Score

60.0 1

55.0 -

—— Quadratic Crossover

- Linear Crossover
Flat Crossover

—-— BLX-0.5 Crossover

50.0

0.0 100.0

200.0

300.0

Generation Number

400.0

500.0

Figure 3.3a: Convergence plot for parabolic function (best performance)
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Figure 3.3b: Convergence plot for parabolic function (best performance)
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—— Real Implementation (Quadratic Crossover)
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0.0

100.0

200.0 300.0 400.0 500.0
Generation Number

Figure 3.3c: Convergence plot for parabolic function (best performance)
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3.2.2 Optimization of Rosenbrock Function

The optimization problem for the Rosenbrock function, or Rosenbrock’s saddle, is
stated as follows:

o 2 )2 2
Minimize f(x) = 100 X =Xy +(l—xl)

subject to
-2.048 < X; <2.04%

This problem is from [DeJong, 1975]. A plot of the objective function is shown in
vigure 3.4. The global optimum is f* = Q at x* = (1,1).

Figure 3.4: Plot of Rosenbrock’s saddle

The number of times that the optimum is found by the crossover operators and the
binary implementation in five consecutive runs are listed in Table 3.2. The maximum
number of generations is 200. The convergence plots for the different crossover operators
and the binary implementation are shown in Figures 3.5a through 3.5c. Note that the
objective score in the convergence plots is -f.

The quadratic, linear, and heuristic crossovers found the exact optimum in all 5
runs. The binary-coded genetic algorithm found the optimum in | of the 5 runs. The
average, flat, and BLX-0.5 crossovers did not find the optimum in any of the runs. The
quadratic crossover required the least number of function evaluations to get the optimum.



39

Table 3.2: Comparison of the performance of selected crossover operators for
Rosenbrock’s saddle

% time that : Average number | Average number
. . Best optimum . .
Crossover optimum is of generations to of evaluations?®
. found . :
found in 5 runs find optimum to find optimum
Quadratic 100 0 57 915
Linear 100 0
Flat 0 0.0411396
BLX-0.5 0 0.076034
Average 20 8.56772e-11
Heuristic 100 0
Uniform 20 8.2217e-05 162 2490
(Binary)

a. Number of function evaluations = Replacement ratio * Population size * Number of genera-
tions + Population Size (for initialization)

See Figure 3.5a2 for exploded view
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Figure 3.5al: Convergence plot for Rosenbrock’s saddle (best performance)
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Figure 3.5b: Convergence plot for Rosenbrock’s saddle (best performance)
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Figure 3.5c: Convergence plot for Rosenbrock’s saddle (best performance)

3.2.3 Optimization of Stair-Steps Function
The optimization problem for the stair-steps function is stated as follows:

5
Maximize f(x) = z integer(xl.)
i=1

subject to
=5.12< X; <5.12

This problem is from [DeJong, 1975]. The stair-steps function is discontinuous. A
plot of the objective functi:n in two-dimensions is shown in Figure 3.6. The global
optimum is f* =25 at x* = (§, 5, §, §, 5).

The number of times that the optimum is found by the crossover operators and the
binary implementation in five consecutive runs are listed in Table 3.3. The maximum
number of generations for all runs is 1,000. Convergence plots for the different crossover
operators and the binary implementation are shown in Figures 3.7.

Again, the quadratic, linear, BLX-0.5, and heuristic crossovers found the optimum
in all runs. The flat crossever found the optimum in 1 out of 5 runs. The average
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crossover did not find the optimum in any of the runs. The binary-coded genetic
algorithm found the optimum in 4 out of 5 runs.
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Figure 3.6: Plot of stair steps function in two-dimensions

Table 3.3: Comparison of the performance of selected crossover operators
for the stair-steps function

% t'ime lh?t Numb‘er of Numb'er of Average number
Crossover optimum is generations to generations to f evaluations®
found in 5 obtain optimum | obtain optimum 0 ‘;:va uations
runs (best) (average) to find optimum

Quadratic 100 33 567 8565

Linear 100 9 21 564

Flat 20 958 |

BLX-0.5 100

Average 0

Heuristic 100

Uniform 80 28 28 480

(Binary)

a. Number of function evaluations = Replacemeit ratio * Population size * Number of gencr-
ations + Population Size (for initialization)
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Figure 3.7a: Convergence plot for stair-steps (average performance)
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3.2.4 Optimization of Inverted Shekel’s Foxholes
The optimization problem is stated as follows:

Maximize f(x) = 500- 75
0.002 + '21 3 p
A (xi"”fi)
i=1 '
subject to
-65.536 < X; <65.536

Eshelman and Schaffer [1993] describe Shekel’s foxholes as evenly spaced wells
with sloped floors sunk in a plateau. A plot of the objective function is shown in Figure
3.8. There are 24 sub-optima. The global optimum is f* = 499.002.
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Figure 3.8: Plot of inverted Shekel’s foxholes

The number of times that the optimum is found by the crossover operators and the
binary implementation in five consecutive runs are listed in Table 3.4. The deviation of
the optimum found by the crossover operators and the binary implementation from the
global optimum is also shown in Table 3.4. The maximum number of generations for all
runs is 1,000. Convergence plots for the different crossover operators and the binary
implementation are shown in Figures 3.9a and 3.9b.

Table 3.4: Comparison of the performance of selected crossover operators
for inverted Shekel’s foxholes

% time that average max deviation
Crossover optimum is deviation from from optimum
found in 5 runs optimum (%) (%)
Quadratic 20 0.2 04
Lincar 0 1.4 1.4
Flat 0 1.2 1.4
BLX-0.5 20 0.4 0.4
Avcrage 0 1.6 1.4
Heuristic 0 2.7 2.7
Uniform 60 0.0 0.2
(Binary)
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Quadratic crossover and BLX-0.5 found the exact optimum in 1 run out of 5 runs.
The linear, flat, average, and heuristic crossovers did not find the optimum in any of the 5
runs. The binary implementation found the optimum in 3 out of 5 runs.
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Figure 3.9a: Convergence plot for inverted Shekel’s foxholes (average performance)
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Figure 3.9b: Convergence plot for inverted Shekel’s foxholes (average performance)
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3.2.5 Optimization of Inverted Binary F6 Function
The optimization problem is stated as follows:

2
(sin fo + xi) -0.5

2
1.0+ 0.001(xf + xi))

Maximize f(x) = 0.5- (
subject to
-10<x,,x,<10

This function is from [Davis, 1991]. A plot of the objective function is shown in
Figure 3.10. The global optimum is f* = 1 at x* = (0,0).

Figure 3.10: Plot of inverted binary F6 function

The number of times that the optimum is found by the crossover operators and the
binary implementation in five consecutive runs are listed in Table 3.5. The maximum
number of generations for all runs is 100.

Quadratic and BLX-0.5 crossovers found the exact optimum in | run out of 5 runs.
The linear, flat, and heuristic crossovers did not find the optimum for any of the 5 runs.
The performance of the average crossover is outstanding on this problem. One possible
explanation for the outstanding performance of the average crossover on this problem is
that the objective function is symmetrical about the origin and the optimum lies at the
origin. To confirm this, the function is shifted off the origin so that the optimum is now at
(X1.%X,) = (1,1). With this shift, the average crossover found the optimum in 1 out of 20
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consecutive runs. However, shifting the function off the origin did not improve the
performance of the other crossover methods on this problem. The poor performance of
quadratic crossover has a lot to do with the nature of the objective function. The quadratic
crossover may be more successful in finding the exact optimum for the original problem if
two of the parents selected for crossover are nearly symmetric about the origin and the
third parent is located near the origin, where the fitness of the third parent is higher than
the fitness of the other two parents.

Table 3.5: Comparison of the performance of selected crossover
operators for inverted binary F6 function

Crossover % fime th'fu Optimum obtained
Operator optimum is (on average)
p obtained in 5 runs
Quadratic 20 0.990284
Linear 0 0.990284
Flat 0 0.990284
BLX-0.5 20 0.990284
Average 80 1
Heuristic 0 0.990284
Uniform 0 0.990284
(Binary)

3.2.6 Optimization of Dynamic Control Problem
The optimization problem is stated as follows:

N-1
C e 2 2
Minimize  f(x) = xy+ Z (xk'“‘k)
k=0
subject to
Kol = St k=0,1,...,N-1

-200<u, £200, «x

k = 100

0=
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This problem is from Michalewicz [1994]. The optimization problem has N=45
variables. The optimal value is given by

. _ 2
J —Kox0

where K| is the solution to the Riccati equation:

Kk+l

R(ET )

and KN =1

The optimal value is J* = 16180.4.

The number of times that the optimum is found by a selected number of crossover
operators, including the quadratic crossover, in five consecutive runs are listed in Table
3.6. The maximum number of generations is 10,000. Convergence plots for the different
crossover operators are shown in Figure 3.11.

The quadratic crossover found an optimum of 16180 in all 5 runs. The other
crossover operators, including the binary implementation, did not find the optimum in any
of the runs. Note that if the maximum number of generations is increased, some of the
other crossover operators may eventually find the optimum. For the binary
implementation, the control parameters also have to be changed.

Table 3.6: Comparison of the performance of selected crossover operators for the dynamic
control problem

% time that Average Average Maximum
. . number of o o
optimum is enerations fo deviation from | deviation from
foundin 5 runs | 5™ . optimum optimum
obtain optimum
Quadratic 100 2420 0 0
Linear 0 e 1477 162
Flat 0 37999 62829.7
BLX-0.5 0 719.5 1035.2
Average |0 R 83614 18665.4
Heuristic | 0 . 2] 3739 559.7
Uniform |0 ' il 227026 By
(Binary) i
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3.2.7 Time Performance: Binary vs. Real Implementation

The time performance for the real implementation and binary implementation is
compared in this section. The dynamic control problem is again considered here:

N-1
e . 2 2
Minimize f(x) = xy+ 2 (xk+uk)
k=0

subject to
Xepl =ty k=0,1,...,N-1
- 2 =
2005uk_<.._00. X0 100

where N is the number of variables. The binary implementation codes a variable with 30
bits, so a solution vector with N variables has 30 - N bits. For both the real and binary
implementation, the population size is 100, the probability of crossover is 1.0, the
probability of mutation is 0.1, the replacement ratio is 0.5, and the maximum number of
generations is 10,000. The real implementation uses quadratic crossover, and the binary
implementation uses uniform crossover.

The results are shown in Table 3.7. The rate at which CPU time increases as a
function of the number of variables is much higher for the binary implementation than it is
for the real implementation (see Figure 3.12). The general conclusion is that the real
implementation is more efficient than the binary implementation.

Table 3.7: CPU time (s) as a function of number of variables

N 5 10 15 20 25
Time (Float) 82 84 134 174 199
Optimum 16179 16180 16179.9 16179.9 16179.9
Time (Binary) | 165 300 408 566 658
Optimum 16194.9 16218.4 17362.5 19764.7 50083.6
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Figure 3.12: CPU time (s) as a function of number of variables for real and
binary implementations

3.2.8 Summary of Results

The percentage of time that the optimum is found in five independent runs for all
the test probiems is summarized in Table 3.8. Quadratic crossover found the optimum in
all five runs for four of the six problems. The linear and heuristic crossovers found the
optimum in all five runs for three of the six probelms. The BLX-0.5 crossover found the
optimum in all five runs for two of the test problems. The average and flat crossovers did
not find the optimum for all five runs for any of the test problems. The performance of the
quadratic crossover on the dynamic control problem is quite good, considering that none
of the other crossover operators found the optimum in 10,000 generations. The general
conclusion is that the quadratic crossover operator is very reliable and efficient in guiding

the search to the global optimum.



Table 3.8: Summary of percentage of time that optimum is found in 5 runs for test
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problems

Crossover | Parabolic | Rosenbrock | Stair-Step Shekel’s Binary F6 | Dynamic
Operator Function Function Function Function Function Control
Quadratic | 100 100 100 20 20 100
Linear 100 100 100 0 0 0

Flat 0 0 20 0 0 0
BLX-0.5 | 100 0 100 20 20 0
Average 40 20 0 0] 80 0
Heuristic | 100 100 100 0 0 ¢




Chapter IV

Genetic Algorithm for Numerical Optimization
Problems: the GaNOP System

4.1 Overview

GaNOP is an acronym for Genetic algorithm for Numerical Optimization
Problems. GaNOP optimizes unconstrained and constrained, linear and nonlinear
optimization problems using genetic search algorithm. In mathematical terms, GaNOP

minimizes (or maximizes) the objective function

f®) = f(x}, %9 .00 x,)

subject to

l...p; and p<n

=
3
N’
n
(=}
1l

h; (%)

h;(x}, x,, ...

gj(k) = gj(xl,xz,...,xn) <0;j=1...m
in the domain L, <x, < U, where L,, U, € R and k = 1...n.

GaNOP is modeled after the genetic search algorithm GENITOR [Whitley, 1989]. The
details of the GaNOP system are presented in this chapter.

4.2 Description of the GaNOP System

The GaNOP system is developed with a C++ genetic algorithm library, GAlib'.
The following is a summary of the basic steps in a GaNOP evolutionary process:

1. GAlib is alibrary of C++ genetic algorithms objects that was developed by Matthew Wall at
Massachusetts Institute of Technology. For more information on GAlib, refer to the URL

address http://lancet.mit.edu/ga/ on the internet.
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4.2.1 Preprocessing

This step involves the transformation of the optimization problem stated above to a
GaNOP problem. The GaNOP problem is a constrained problem: the inequ:lity
constraints in the original problem are replaced with penalty functions and the equality
constraints are eliminated, but the domain is bounded.

For minimization problems, the GaNOP problem is stated as follows:

k
Maximize F(x) = —f(x) - Z D,

i=1

subjectto L, <x, < U,

where k is the number of equality constraints and @, a penalty function, is

defined as

c.g.+d, if g.>0
¢, = { 191 i i

0 otherwise

where g; is an inequality constraint and c; and d; are user-specified
constants.

For maximization problems, the GaNOP problem is stated as follows:

k
Maximize F(x) = f(x) - Y @,

i=1
subjectto L, <x, < U,

where all the definitions above still apply.

The equality constraints are not directly included in the GaNOP problem statement
because it is almost impossible to exactly satisfy the equality constraints with the floating
point representation. Perhaps if the equality constraint is relaxed a little, say Ih;l < le-9,

then it will be possible to take care of the equality constraints with penalty functions. But
in many of the problems, it will be much easier to identify a couple of independent
variables and calcuiate the dependent variables using the expressions for the equality
constraints. Eliminating equality constraints will generally result in additional inequality
constraints that can be taken care of by penalty functions. Illustrative examples are
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included in the next two chapters.

There is no structured way to assign values to c; and d; in the penalty functions.
Usually, small values are chosen for the constants, and if GaNOP violates constraints for
more than the first 20% of the maximum number of generations, then the values of c; and
d; are increased. The penalty awarded to the violation of constraints should be big enough
to discourage GaNOP from moving to the infeasible region.

The genetic operators used in GaNOP ensure that the bound constraints are not
violated.

4.2.2 Initialization

GaNOP starts with an initial population of single-chromosome individuals or
potential solutions to the optimization problem. The initial population is created as

follows: Given a chromosome ¥ = (xl, Xy, ..., X,) , €ach gene x; is randomly assigned an
allele that has a value between (and including) the upper and lower bounds prescribed for

the i'" allele, where i goes from 1 to n. This process is repeated for all the chromosomes in
the initial population. Note that this initialization procedure may result in chromosomes
that are infeasible, but the initialization procedure will not result in chromosomes that
violate the bound constraints.

After initialization, the objective scores of the chromosomes are obtained by
evaluating the objective function for each individual. The objective scores are mapped to
the fitness scores using sigma truncation scaling:

fi =fi= Yaye=c-0)

where f; is the fitness score, f; is the objective score of an individual, f,,,. is the

population’s average objective score, ¢ is a small integer, and & is the population’s
standard deviation. The sigma truncation scaling sets possible negative f;' to zero.

4.2.3 Evolution

Evolution starts with the initial population created during the initialization process.
The transition from generation f to generation ¢ + | is accomplished through three basic
operations: reproduction, crossover, and mutation. The explanation of the three basic
operations follows:

Reproduction involves the selection of three individuals (or parents) from the
population at generation f using the roulette wheel selector. The roulette wheel selector
picks an individual based on the magnitude of the fitness score of the individual relative to
the fitness scores of the rest of the population. Indviduals with higher scores are more
likely to be selected.

Crossover involves the production of a new offspring by combining the parents
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selected during reproduction. The combination process is performed by the quadratic
crossover operator. The crossover operator is applied with a probability. If the crossover
operator is not applied, the new offspring will be a copy of one of the parents.

The new offspring undergoes mutation. The mutation operator is Gaussian
mutator. The Gaussian mutator used in GaNOP is slightly different from the one
presented in Chapter II. The modified Gaussian mutator is defined as follows:

If vV = (vl,vz, cees Vio ...,vn) is the new offspring, then each vj has

exactly equal chance of undergoing mutation. The result of a mutative
process is

+ 1
7 (vl,vz,...,vk',...,vn)

where v, is randomly generated from a Gaussian curve with a mean of v, .

The standard deviation of the Gaussian curve is 0.5 - (U, - L,) if the ratio

of the generation number to the maximum number of generations is less
than 0.75; the standard deviation is 0.1 - (U, ~L,) if the ratio of the

number of generations to the maximum number of generations is greater
than or equal t0 0.75. Note that L, <v, <U,. If v/'¢ [L,, U,], another

v, will be generated until v’ satisfies the bound constraints for v, .

The process of selecting parents, combining parents to produce new offspring, and
mutating the new offspring continues until the number of offspring produced is equal to
the total number of individuals to be replaced in one generation. The total number of
individuals to be replaced is given by the product of a user-specified replacement ratio and
the population size.

The new offspring are then inserted into the population at generation ¢, and then
the worst individuals are deleted from the population to make the new population for
generation f + 1. The number of worst individuals deleted from the population is equal to
the number of new offspring inserted into the population. Depending on the fitness values
of the offspring in relation to the fitness values of the population at generation ¢, the
offspring may or may not be a member of the new population. The new population is then
evaluated; the objective scores are scaled using the sigma truncation scaling.

Evolution terminates when the maximum number of generations specified by the
user has been completed. GaNOP keeps track of the best individual throughout the
evolution process. A flowchart of GaNOP after preprocessing is shown in Figure 4.1.
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Chapter V

Optimization with GaNOP: Theoretical Problems

5.1 Overview

Unlike many optimization techniques, GaNOP does not impose any stringent
conditions on the nature of the problem that it optimizes. In fact, the only two
requirements are that the design domain should be bounded and the design variables
should be continuous.  The versatility of GaNOP is demonstrated by optimizing a wide
variety of standard nonlinear programming theoretical test problems. The test problems
are classified as theoretical problems because their global optima are known.

For every optimization problem considered, the optimum obtained with GaNOP
will be compared to the global optimum of the problem. When possible, the performance
of GaNOP will be compared to the performance of the optimization technique used in the
source of a particular problem, where the parameters of interest are the accuracy of the
result, the run-time, and the number of function evaluations required to obtain the
optimum. Naturally, GaNOP should require more function evaluations than other
optimization techniques that have some auxiliary knowledge of the nature of the objective
functicn and design domain.

Optimization problems will be reformulated as GaNOP problems. Five
independent runs are made for all the test problems, and the optimum found in each run is
reperted. For every test problem, the history of the optimization process for a selected
run (usually the best) is presented. For the same selected run, the running percentage of

the time that the different parts of the quadratic crossover' operator used in GaNOP are
implemented will be reported. For any generation i, where i is greater than zero, the
percentage of time that one part of the quadratic crossover, say quadratic interpolation,
occurs is equal to the total number of quadratic interpolations (counted on a gene-by-gene
basis) performed from generation | to generation i divided by the total number of
crossovers from generation 1 to generation i. The total number of crossovers for any
generation i is the product of the total number of individuals produced by quadratic
crossover from generation 1 to generation i and the length of an individual.

The default values for the GaNOP control parameters are listed in Table 5.1.
When necessary, the default values of the control parameters will be altered to guide
GaNOP to the optimum solution. All runs are carried out on a SGI-Indy station.

1. The three parts in the quadratic crossover are quadratic interpolation, heuristic cxtrapolation,
and random assignment. The quadratic crossover procedure is given in Chapter Iil.



Table 5.1: GaNOP control parameters

Control Parameters Value
Population Size 100
Probability of Crossover 1.0
Probability of Mutation 0.1
Replacement Ratio 0.5
Number of Generations Variable

5.2 Optimization of Quadratic Functions

Two quadratic functions are considered. The first function, the Rosen-Suzuki
function, is taken from Hock and Schittkowski [1981]. The second function is a
multimininia parabolic function from Corana et al. (1987]. The multiminima parabolic

function in two dimensions has local minima of the order of 1019,
The following is the description of the quadratic test functions and the
optimization process of the functions with GaNOP.

5.2.1 Rosen-Suzuki Function
The minimization problem is stated as

Minimize f(%) = xf+x§+2x§+x§—5x,—5x2—21x3+7x4

subject to
g = -—8+xf+x;+x§+xi+x!—x2+x3—x4SO
& = —10+x|2+2x§+x§+2xi—xl -x,<0
&3 = —5+2xf+x§+x§+2xi—xl—x450
% e [-50, 50]

This problem features the minimization of a convex objective function subject to
three quadratic inequality constraints. The design domain is unbounded in the original
problem statement. The bounds on the variables have been introduced to make the
optimization problem solvable by GaNOP. The bounds on the variables introduce four
additional inequality constraints. The global optimum is at x*=(0,1,2,-1) with f(x*) = -44.
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GaNOP
The minimization problem is restated as follows:

3
Maximize F(R) = —f(}) - Y, @,

i=1

where
S-g.+5 if g.>0
o, = { 8i i , fori=1.273
0 otherwise
X e [-50, 50]

An initial population of four-gene individuals is randomly distributed over the
entire design domain. The four genes correspond to the variables x;, X;, X3, and x4. The

individuals are allowed to evolve for 1,000 generations with GaNOP keeping track of the

best individual throughout the evolution process. The output for 5 different runs are
shown in Table 5.2.

Table 5.2: Rosen-Suzuki output for 5 runs

Best Optimum | No. of generations to No. of function
Run # . . . .
Found (f) obtain optimum evaluations® required

1 -44 223 11,250
2 -44 334 16,800
3 44 326 16,400
4 -44 379 19,050
5 -44 334 16,800

a. No. of function evaluations = Population Size + Replacement Ratio*Population
Size*Number of Generations

GaNOP found the global optimum in all runs. A typicdl optimum found is
2* = (-0.0005463221, 1.000618, 2.000213, -0.9996195)
and f(X*)=-44

On average, GaNOP finds the global optimum in 334 generations with 16,800
function evaluations. The history of the optimization process for Run #2 is presented in
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Table 5.3. A convergence plot of GaNOP for Run #2 is shown in Figure 5.1. The

convergence plot shows that GaNOP finds the neighborhood of the optimum in less than
100 generations.

Table 5.3: History of optimization process for Rosen-Suzuki function (Run #2)

Generation # X) X3 X3 X4 F(x)
0 17.41715 -8.449738 7.078285 -0.3118286 -8726.227
100 0.00170557 1.011245 1.995385 -1.003309 43.99863
200 0.0027545 11 1.002352 2.001289 -0.9979787 43.9999]
500 -0.0002485895 0.9997745 2.000242 -0.9997551 44
1000 -0.0002485895 0.9997745 2.000242 -0.9997551 44
CPU Run 9
Time (s)
Number of 50,000
Crossovers
Number of
Mutations 20,025
50.0
25.0 1
o
o
3
2 00/
2
8
o
(@]
-25.0 1
‘50.0 M T T T T T T T T 1
0.0 200.0 400.0 600.0 800.0 1000.0

Generation Number

Figure 5.1: Convergence plot for Rosen-Suzuki function (Exploded View)
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The running percentage of time that the different parts of the quadratic crossover
are implemented for Run #2 is shown in Figure 5.2. The trend in Figure 5.2 is as follows:
for the first 13 generations, the percentage of time that quadratic interpolation occurs
increases from 56.5% to 57.5%. During this same period, the objective score increased
from -8726.227 to 29.29354. For the next 57 generations, the percentage of time that
quadratic interpolation occurs decreases from 57.5% to 50.2%. During the 57
generations, the best objective score increased from 29.29354 to 43.99001, where the
global optimum is F* = 44 -- note that the objective score is determined by F(x) and not
f(x). So in the first few generations when GaNOP is searching for a feasible region, the
percentage of time that quadratic interpolation occurs increases. In this same period, the
percentage of time that heuristic extrapolation occurs decreases. In the next phase when
GaNOP starts to locate the optimum, the percentage of time that quadratic interpolation
occurs starts to decrease, and the percentage of time that heuristic extrapolation occurs
starts to increase. From generation 57 to generation 680, the percentage of time that
quadratic interpolation and heuristic extrapolation occur remains fairly constant. Beyond
generation 680, the percentage of time that quadratic interpolation occurs starts to
decrease again, while the percentage of time that heuristic extrapolation occurs starts to
increase. In summary, quadratic interpolation dominates when GaNOP is searching for
the feasible region, and heuristic extrapolation dominates when GaNOP is fine tuning the
optimum. Note that random assignments do not occur during quadratic crossover for the
entire 1,000 generations.

80.0%

60.0% -

40.0% 3 - . \

Quadratic Interpolation
Heuristic Extrapolation

20.0% -~ Random Assignment
0.0% -
k]
-20.0% .
0.0 200.0 400.0 600.0 800.0 1000.0

Generation Number

Figure 5.2: Running percentage of time that quadratic interpolation,
heuristic extrapolation, and random assignment are performed during
quadratic crossover for Rosen-Suzuki function



5.2.2 Parabolic Multiminima Function
The generic definition for the parabolic multiminima function, q,,, is stated as follows:

Let D¢ be the domain of definition of the function q,, in n-space

ac ‘.'R':_]

n
DfE [xe R :-a,<x,<a,..,-a,<x,<a,;
Dy is a rectangular subdomain of R", centered around the origin whose

width along each coordinate direction is determined by the corresponding
component of the vector a.
Let D, be the family of open, disjoint, rectangular subdomains of

R" contained in Dy and defined as

P {xe Df:k,.s’.—t,.<k,.s,.+ti,...,

n

k,s,—t,<x <k.s, +t; k.. k €I,

n
t,se R, ;<

D, is the open subset of D¢ where the function q,, presents local
minima. The vector s controls the grid steps along each axis, the grid
points being the centers of these subdomains, while the vector t controls
the size of these subdomains. The condition t<s;/2 ensures that the
subdomains are disjoint. ‘

Let D, be the closed subdomain of D¢ complementary to D,: Dy -
D,,- The test function q,(x) of n real variables is defined as

9,(x): D> R,

n
qn(x)szdl.xf, xe D, de ®R"

r +
i=1

n
2
q, (x) EC,_Z dz;, xe d’fl----v"n’ (kp, .-, k) #0
i=1
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where

ks, + 1 if k;<0
= 0 if ki= 0
kis;+1t if k;>0

The components of the vector d determine the steepness of the
paraboloid along the axes, while the coefficient c, controls the depth of

local minima relative to the function values along the boundaries of the

regions d, . Itis worth noting that the region d, , belongs to the

e
subdomain D, where q, is not constant around the origin, which is the

unique global minimum of q,, [Corana et al., 1987].

Corana et al. [1987] used the parameter settings listed in Table 5.4 to evaluate the
performance of optimization algorithms:

Table 5.4: Control parameters for q,

Parameters Value
aj, .n 104
SI,..n 0.2 (0.1 forn =10)

0.05 (0.04 for n = 10)

C 0.15

dyn (1, 1000, 10, 100, 1, 10, 100, 1000, 1, 10)

The number of grid points associated with each dimension is 2a;/s;. The total local

minima of the test function q,(x) in its domain is 10°"-1 [Corana et al., 1987].
A section of q,(x) along an axis i is shown in Figure 5.3a. A three-dimensional
plot of q, ford; =d;, = 1 is shown in Figure 5.3b. A contour plot of q, is alsc shown in

Figure 5.3c.  Figures 5.3a through 5.3c are good visual tools for observing the strongly
discontinuous nature of the q functions and how easy it is for any unimodal optimization
technique to get trapped in a local minimum.
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Figure 5.3a: A section of q,(x) along an axis i where d; = 10

Figure 5.3b: Three dimensional plot of q;(x) ford; =d, =1
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X2

Figure 5.3c: Contour plot of g,(x) ford; =d, =1

Parabolic Multiminima Function in Two Dimensions: The minimization problem is stated
as follows:

Minimize f(x) = g, (x)
where x e Df

The global optimum is f,(2*) =0 at ¥* = (0,0).

GaNOP
The minimization problem is restated as follows:

Maximize F(X) = -f(%)

where x e Df
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An initial population of two-gene individuals is randomly distributed over the
entire design domain. Each individual is a point in the problem space. The first gene in
the individual corresponds to x; and the second gene corresponds to x,. The individuals

are allowed to evolve for 1,000 generations. The output for 5 different runs are shown in
Table 5.5.

Table 5.5: 2-D parabolic multiminima output for 5 runs

Run # Best Optimum Generalior'ms to No. of Function
Found (f) Obtain Optimum [ Evaluations® Required
1 1.130439¢-24 815 40,850
2 2.93360e-23 872 43,700
3 3.127169e-25 346 17,400
4 2.93360e-23 872 43,700
5 1.441338e-21 833 41,750

a. No. of function evaluations = Population Size + Replacement Ratio*Popula-
tion Size*Number of Generations

GaNOP obtained the global optimum in all runs. A typical optimum found is

x* =(5.404767e-12, -1.115774e-14)
and f(2*)= 2.9336e-23

The history of the optimizaticn process for Run #3 is shown in Table 5.6. The
convergence plot of GaNOP for Run #3 is shown in Figure 5.4. The convergence plot
shows that GaNOP found the neighborhood of the optimum in less than 50 generations.
In Run #3, GaNOP found the optimum in 346 generations with 17,400 function
evaluations. This seems like a lot of function evaluations, but the number of function
evaluations depends on the desired accuracy of the result. For instance, GaNOP obtained
the optimum f = 1.9e-10 at generation 51 with 2,650 function evaluations.

Corana et al. [1987] reported a global minimum of 4.2e-10 using simulated
annealing with 656,000 function evaluations. This is about 38 times the number of
function evaluations required by GaNOP to obtain the optimum in Run #3. The Nelder-
Mead simplex algorithm, a unimodal optimization technique, found the global optimum
with 150,000 function evaluations after 240 restarts. Clearly, GaNOP performs better than
simulated annealing and Nelder-Mead simplex algorithm on this problem.



Table 5.6: History of optimization process for parabolic multi-
minima (Run #3)

Generation # X) X3 F
c -1203.593 17.7793 -264539.2
100 -1.03491e-09 -5.272864e-11 | -3.851348c-18
200 -7.975654e-11 | -6.06645%-13 | -6.729125¢-21
500 1.645476e-13 | -1.690092e-14 | -3.127169¢-25
1000 1.645476e-13 | -1.690092e-14 | -3.127169¢-25
CPU Run Time (s) 8
No. of Crossovers 50,000
No. of Mutations 9915
0.0 1
)
-20.0
y
(0]
8 -400;
(75}
2
8 600
s)
@]
-80.0 1
-100.0 + T v - T . ,
0.0 200.0 400.0 600.0 800.0 1000.0

Figure 5.4: Convergence plot for 2-D parabolic multiminima function

Generation Number
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The percentage of time that the different parts of the quadratic crossover are
implemented for Run #3 is shown in Figure 5.5. For the first 15 generations, the
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percentage of time that quadratic interpolation occurs decreases from 64% to 61.4%.
During this same period, the best objective score increased from -264539.2 to -0.018375.
From generation 15 to generation 266, the percentage of time that quadratic interpolition
occurs increases from 61.4% to 81.5%. During this same period, the best objective score
(F) increased from -0.018375 to 9.440862¢-22. Beyond generation 266, the percentage of
time that quadratic interpolation occurs remains fairly constant, and so does the best
objective score. For the 2-D parabolic multiminima function, quadratic interpolation
dominates throughout the evolution process. This trend is different from the one observed
for the Rosen-Suzuki function, where quadratic interpolation dominates during the search
for the feasible region and heuristic extrapolation dominates when GaNOP is fine tuning
the optimum. Note that heuristic extrapolation decreases when quadratic interpolation
increases and increases when quadratic interpolation decreases. Again, there are no
random assignments during quadratic crossover for the entire 1,000 generations.

100.0%
80.0% 1
60.0% | Quadratic Interpolation
- Heuristic Extrapolation
40.0% | Random Assignment
20.0% - -
0.0% 1
-20.0% - . . . . - -
0.0 200.0 400.0 600.0 800.0 1000.0

Generation Number

Figure 5.5: Running percentage of time that quadratic interpolation,
heuristic extrapolation, and random assignment are performed during
quadratic crossover for 2-D parabolic multiminima function

Parabolic Multiminima Function in Four Dimensions: The minimization problem is stated
as follows:

Minimize f(}) = g, (%)



where X e D

f

The global optimum is f4(2*) = 0 at * = (0,0,0,0).

GaNOP

The minimization problem is restated as follows:

Maximize F(%) = -f(%)

where X € D

f
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An initial population of four-gene individuals is randomly distributed over the
entire design domain. The four genes correspond to the variables x,, x5, X3, and x4. The
individuals are allowed to evolve for 2,000 generations. The output for 5 different runs
are shown in Table 5.7.

Table 5.7: 4-D parabolic multiminima output for 5 runs?

Ll

Run #

Best Optimum

No. of generations to

No. of function

Found (f) obtain optimum evaluations? required
l 6.229116e-13 1,940 48,600
2 4.739943e-13 1,693 42,425
3 4.739943e-13 1,693 42,425
4 5.498258e-13 1,937 48,525
5 4.739943e-13 1,693 42,425

a. Probability of Crossover = 0.95; Replacement Ratio = 0.25.

b. No. of function evaluations = Population Size + Replacement Ratio*Population
Size*Number of Generations

GaNOP obtained the global optimum in all the five runs. A typical optimum found

is

** =(-2.240197e-08,

and f(2*)= 4.739943e-13

1.378791e-08,

1.434433e-07, 2.73615e-08)

The history of the optimization process for Run #2 is presented in Table 5.8. The
convergence plot of GaNOP for Run #2 is shown in Figure 5.6. The typical optimum is

obtained in 1,693 generations wiii: 42,425 function evaluations.

The best optimum
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obtained using simulated annealing with 1,464,000 function evaluations is 8.7¢-8 [Corana

et al., 1987]. The Nelder-Mead simplex algorithm failed on this problem.

Table 5.8: History of optimization process for 4-D parabolic multiminima (Run #2)

Generation Number

Generation # X| X2 X3 X4 F
0 3254.374 795.0283 -2808.437 5398.156 -5.453112c8
100 -0.228202 -9.832004¢-3 | -0.04551505 9.382609¢-4 -0.003375
200 -0.228202 -9.832004e-3 | -0.04551505 9.382609¢-4 -0.003375
700 4.330514c¢-6 6.77095¢-8 -3.003316e-7 | -3.09445¢-8 -2.433568¢-11
1500 -1.415761e-6 | -1.709767¢-8 | -5.360409c-8 | 1.956329¢-7 -6.152664¢-12
2000 -2.240197¢-8 | 1.378791e-8 1.434433e-7 2.78615¢c-8 -4,739943¢-13
CPU Run Time
12
(s)
No. of 47,533
Crossovers
No. of
Mutations 20,068
0.0-{
-1000.0 -
L .2000.0
o
3
S .3000.0 {
=
8
8 -4000.0 1
-5000.0 1
-6000.0 T r r ,
0.0 500.0 1000.0 1500.0 2000.0

Figure 5.6: Convergence plot for 4-D parabolic multiminima function
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The percentage of time that the different parts of the quadratic crossover are
implemented for Run #2 is shown in Figure 5.7. The percentage of time that quadratic
interpolation occurs steadily increases from 54% at generation | to 59.3% at generation
39. During this same period, the best objective score (F) increased from -5.453112e+08 to
-767.2767. From generation 39 to generation 74, the percentage of time that quadratic
interpolation occurs decreases from 59.3% to 56.8%. During this same period, the best
objective score (F) increased from -767.2767 to -0.5246251. From generation 74 to
generation 2,000, the percentage of time that quadratic interpolation occurs gradually rises
from 56.8% to 71.6%. This trend is somewhat similar to the one observed for the 2-D
version of the parabolic multiminima function. In the 2-D version, the initial increase in
the percentage of the quadratic interpolation that occurs is not present. The heuristic
extrapolation decreases when quadratic interpolation increases and increases when
quadratic interpolation decreases. There are no random assignments during quadratic
crossover for the entire 2,000 generations.

80.0%

60.070 {\/_/

40.0% =7
Quadratic Interpolation

0,

20.0% Heuristic Extrapolation

Random Assignment
0.0% -
-20.0% — —- T - " P\
0.0 200.0 400.0 600.0 800.0 1000.0

Generation Number

Figure 5.7: Running percentage of time that quadratic interpolation,
heuristic extrapolation, and random assignment are performed during
quadratic crossover for 4-D parabolic multiminima function.
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Parabolic Multiminima Function in Ten Dimensions: The minimization problem is stated
as follows:

Minimize f(%) = g, (3)

where X e Df

The global optimum is f;o(**) = 0 at 2* = (0,0,0,0,0,0,0,0,0,0).

GaNOP
The minimization problem is restated as follows:

Maximize F(%) = -f(%)

where X € Df

An initial population of ten-gene individuals is randomly distributed over the
entire design domain. Each individual is a point in the problem space. The individuals are
allowed to evolve for 2,500 generations.

GaNOP consistently remained trapped in the local minimum (i.e. one of the holes)
adjacent to the global minimum in all the runs. A typical optimum found is

% =(-0.022465421, -0.013882368, 0.018357892, -0.0097310301,
-0.13446185, -0.00068439927, 0.018650901,
0.016743518, -0.0049647833, 0.024669537)

and f( %)= 0.00054

Really, for the parabolic multiminima problem, GaNOP remains trapped in a local
sub-optimum for dimensions greater than 4. Interestingly, the simulated annealing
technique used in Corana et al. [1987] also consistently remained trapped in the local
minimum (f = 0.00054) adjacent to the global minimum for the 10-D parabolic
multiminima function.

The percentage of time that the different parts of the quadratic crossover are
implemented for Run #5 is shown in Figure 5.8. The trend in Figure 5.8 is closer to the
trend for the 4-D version of the parabolic multiminima function. Note that there are
random assignments in this case.
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Figure 5.8: Running percentage of time that quadratic interpolation,
heuristic extrapolation, and random assignment are performed during
quadratic crossover for 10-D parabolic multiminima function

5.3 Optimization of Generalized Polynomial Functions

Three generalized polynomial functions are considered. The first objective
function is a second-degree polynomial in two variables. The second objective function is
a fourth-degree polynomial in four variables. The third objective function can be
extended to any number of dimensions. The following is a description of the test
functions and the optimization process with GaNOP.

5.3.1 Soland’s Problem

This problem is taken from [Floudas and Pardalos, 1987]. It features a convex
objective function with a nonconvex inequality constraint. The bounds on the variables
introduce four additional linear inequality constraints.

Minimize f(x,y) = — 12x—Ty+y’

subject to

h = —2x4+2-y =0
0<x<2and0<y<3
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A plot of the problem domain is shown in Figure 5.9. The best known solution is x* =
0.71751, y* = 1.470, and f* = -16.73889.

3

I

y=2-2x*

+29.5

Figure 5.9: Graphical solution of Soland’s problem

GaNOP
The first step in transforming the minimization problem to a GaNOP problem is to

. . . . . 4
eliminate the equality constraint. From equality constraint h, y = 2-2x . The
independent variable is x and the dependent variable is y. Two inequality constraints

result from the bound constraints on y: g, = 2x"~2<0 and g, =2~ 2x" ~3<0. The

minimization problem can now be rewritten in terms x only:

2
Minimize f' (x) = - 12x-7(2-2x“J +(2-2x4)

subject to
g, = 2x-2<0
g, =2-2x"-3<0
0<x<2

The minimization problem is restated as follows:
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2
Maximize F(x) = —f'(x) - Y, @,

i=1
where

S-g.+2 if g.>0
o, = { 8i Bi and0<x<2

¥ 0 otherwise

An initial population of one-gene individuals is randomly distributed over the
entire design domain. The individuals are allowed to evolve for 100 generations with
GaNOP keeping track of the best individual throughout the evolution process. GaNOP
obtained the global optimum in all runs. A typical global optimum found is

x* =0.71753848, y* =1.4698353, and f* =-16.738895

The global optimum was obtained in 4 generations with 300 function evaluations.
The run-time for 100 generations is 1s. The percentage of time that the different parts of
the quadratic crossover are implemented for Run #1 is shown in Figure 5.10. At the

beginning of the evolution process, quadratic interpolation dominates. At generation 257,
heuristic extrapolation starts to dominate. The general trend is that quadratic interpolation
dominates when the individuals in the population are fairly dissimilar, and heuristic
extrapolation dominates when the individuals in the population are fairly similar.

100.0%
80.0% 1

60.0% 1

a00%{ T —

Quadratic Interpolation
20.0% 1 -
% / - Heuristic Extrapolation
Random Assignment

0.0% 1~

-20.0% —
0.0 20.0 40.0 60.0 80.0 100.0
Generation Number
Figure 5.10: Running percentage of time that quadratic interpolation,
heuristic extrapolation, and random assignment are performed during
quadratic crossover for Soland’s problem
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5.3.2 Colville’s Function
This problem is from [Michalewicz, 1994]:

Minimize f(x) = 100(x2-xf)2+ (1-xl)2+90(x4-x§)2+ (1-x,)°
+1o.1((x2—1)2+ (x4—1)2)+19.8(x2—1) (x,— 1)

where -10.0<x,, x,, x5, x, < 10.0

The bounds on the variables introduce eight inequality constraints. The global solution is
x*=(1,1,1,1) and f* = 0.

GaNOP
The minimization problem is restated as follows

Maximize F(x) = —f(x)
where -10.0 < X)s Xpy X3, Xy S 10.0

An initial population of four-gene individuals is randomly distributed over the
entire design domain. The individuals are allowed to evolve for 500 generations. The
output for 5 different runs is presented in Table 5.9.

Table 5.9: Colville’s output for 5 runs

. Number of Number of Function
Best Optimum . .
Run # Found (f) Generations to Evaluations? to
Obtain Optimum Obtain Optimum
1 0 147 7450
2 0 114 5800
3 0 132 6700
4 0 114 5800
5 0 145 7350

a. No. of function evaluations = Population Size + Replacement Ratio*Population
Size*Number of Generations
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GaNOP obtained the exact global optimum in all runs. The history of the
optimization process for Run #2 is presented in Table 5.10.

Table 5.10: History of optimization process for Colville’s function (Run #2)

Generation # X} X2 X3 X4 F

0 1.5140095 | 1.5319357 | 1.4181671 | 4.4755135 | -766.26251

50 0.92561758 | 0.86553949 | 1.0388691 1.0765578 | -0.053369757
100 0.9999997 | 0.9999997 | 1 0.99999988 | -1.1993606e-11
200 1 ] 1 1 0

500 1 1 1 1 0

Run Time (s) 5

g;)o‘s(:ivers 25,000

No. of 9

Mutations?

a. Probability of Mutation = 0.0001

In Runs #2 and #5, GaNOP obtained the global optimum in 114 generations with
5,800 function evaluations. This same problem was solved by Michalewicz’s GENOCOP
system (a genetic-algorithm based optimization system), and the best optimum obtained in
10,000 generations was x* = (1.000581, 1.001166, 0.999441, 0.998879) with f* =
0.0000012 [Michalewicz, 1994, p. 157]. GaNOP performs better than GENOCOP on this
problem; although, it is not clear that a different control parameter setting, other than the
setting used in the reported run with GENOCOP, may have led GENOCOP to obtain the
optimum solution in fewer generations.

The percentage of time that the different parts of the quadratic crossover are
implemented for Run #2 is shown in Figure 5.11. Again, quadratic interpolation
dominates in the beginning of the evolution process and heuristic extrapolation dominates

from generation 125%. The observation that quadratic interpolation dominates when the
individuals are dissimilar and that heuristic extrapolation dominates when the individuals
are similar still holds for Colville’s function.
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Figure 5.11: Running percentage of time that quadratic interpolation,
heuristic extrapolation, and random assignment are performed during

300.0

quadratic crossover for Colviile’s function

5.3.3 Rosenbrock Function

4000  500.0
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The Rosenbrock function [Rosenbrock, 1960] in n dimensions has the general

form:

n-1

= 3 [100(x, )+ (1-xp7]

k=1

The Rosenbrock function is unimodal.

Rosenbrock Function in Two Dimensions: The minimization problem is stated as

2\2

Minimize f, (%) = IOO(xz—xl) + (l—xl)2

where % e [-2000, 2000]

The bounds on the variables x; and x, introduce four inequality constraints. A plot
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of fy(%) is shown in Figure 5.12a. A section of f,(%) along an axis x, = 0 is shown in
Figure 5.12b. The global optimum is fo(2*) =0 at ** =(L,1).

X|

Figure 5.12b: A section of f; along axis x, =0

The Rosenbrock function is a standard nonlinear programming test problem; thus
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it has been tackled by several optimization techniques. The techniques considered by
Corana et al. [1987] are simulated annealing and Nelder-Mead simplex algorithms.
Simulated annealing is a stochastic optimization technique and Nelder-Mead simplex
algorithm is a deterministic optimization technique. The performance of GaNOP on the
two-dimensional Rosenbrock function will be compared to the performance of simulated
annealing and Nelder-Mead simplex algorithms on the same problem.

GaNOP
The minimization problem is restated as follows:

Maximize F(X) = -f5(%)
where X € [-2000, 2000]
An initial population of two-gene individuals is randomly distributed over the
entire design domain. The first gene of the individual ccrresponds to x; and the second

gene corresponds to x,. The individuals are allowed to evolve for 500 generations. The
output for 5 different runs are shown in Table 5.11.

Table 5.11: 2-D Rosenbrock output for 5 runs

Run # fy Gl?g;[;?: > No. <.)f Func[ior.l
Optimum Evaluations® Required
: 0 109 5550
2 0 73 3750
3 0 73 3750
4 0 62 3200
> 0 73 3750

a. No. of function evaluations = Population Size + Replacement
Ratio*Population Size*Number of Generations

In all runs, the exact global optimum was obtained. The history of the
optimization process for Run #2 is presented in Table 5.12. On average, the number of
evaluations required to obtain the exact global optimum is about 3,750. Corana et al.
[1987] reported a global minimum of 1.8e-10 using simulated annealing with 500,001
function evaluations. This is about 133 times the number of function evaluations required
by GaNOP to obtain the exact global optimum. With Nelder-Mead simplex algorithm, a
global optimum of 5.4e-11 was obtained. The Nelder-Mead simplex algorithm required
907 function evaluations [Corana et al., 1987]. Obviously, the Nelder-Mead simplex
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algorithm is more efficient that GaNOP on this problem. This result is not entirely
surprising because the simplex technique utilizes some auxiliary information that is not
available to GaNOP or simulated annealing, i.e. gradients of the objective.

The running percentage of time that the different parts of the quadratic crossover
are implemented is shown in Figure 5.13. Again the trend observed in Figure 5.13 is
similar to the trend observed for Colville’s function.

Table 5.12: History of Optimization Process for 2-D Rosenbrock

function (Run #2)
Gencration # X X F
0 -3.3985596 745.93115 -53931556
50 091201866 0.82748741 0.0095816767
100 1 1 0
500 | 1 0
CPU Run Time (s) 4
No. of Crossovers 25,000
No. of Mutations® 6

a. Probability of Mutation = 0.0001

100.0% -
80.0% 1
L
60.0% 1 Quadratic Interpolation
Heuristic Extrapolation
40.0% ¢ . Random Assignment
20.0%
0.0%
-20.0% - - ,
0.0 200.0 400.0

Generation Number

Figure 5.13: Running percentage of time that quadratic interpolation,
heuristic extrapolation, and random assignment are performed during
quadratic crossover for 2-D Rosenbrock function
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Rosenbrock Function in Four Dimensions: The minimization problem is stated as

3
7\2 7
Minimize f,(}) = 3 [lOO(ka—x;_) + (1-x)7]
k=1
where % € [-2000, 2000]

The bounds on % introduce eight inequality constraints. The global minimum is
f,(2*)=0at ¥* =(1,1,1,1).

GaNOP
The minimization problem is restated as follows:
Maximize F(}) = -f4()
where X € [-2000, 2000]
An initial population of four-gene individuals is randomly distributed over the

entire design domain. The genes correspond to the variables x;, x,, X3, and x4. The

individuals are allowed to evolve for 500 generations. The output for 5 different runs are
presented in Table 5.13.

Table 5.13: 4-D Rosenbrock output for 5 runs

Gcncrali(?ns No. of Function
Run # f to Obtain Evaluations® Required
Optimum valuations® Require
1 0 176 8,900
2 0 255 12,850
3 0 176 8,900
4 0 184 9,300
5 0 215 10,850

a. No. of function evaluations = Population Size + Replacement
Ratio*Population Size*Number of Generations

In all runs, the exact optimum was obtained. The history of the optimization
process for Run #1 is presented in Table 5.14. On the average, the number of function



85

evaluations required to obiain the exact global optimum is about 10,000. Corana et al.
[1987] reported a global optimum of 1.8e-7 using simulated annealing with 1,328,001
function evaluations. This is about 133 times the number of function evaluations required
by GaNOP to obtain the optimum. Using the Nelder-Mead simplex algorithm with 870
function evaluations a global optimum of 6e-18 was obtained [Corana et al., 1987).
Again, the performance of Nelder-Mead simplex algorithm is better than the performance
of GaNOP on this problem.

Table 5.14: History of optimization process for 4-D Rosenbrock function (Run #1)

Gencration # X| X3 X3 Xy F
0 302.80176 306.38721 283.63354 895.10278 -2.3438418c12
50 0.38929528 | 0.16872656 | 0.076927155 | -0.013678871 | -2.2187653
100 091013587 | 0.82839209 | 0.68642557 | 0.47364545 -0.13646547
200 1 1 1 | 0
500) | I 1 1 0
CPU Run Time (s) 5
No. of Crossover 25000
No. of Mutations® 9

a. Probability of Mutation = 0.0001

The running percentage of time that the different parts of the quadratic crossover
are implemented for Run #1 is shown in Figure 5.14. Again, the trend in Figure 5.14 is
consistent with the other trends exhibited by Colville’s function and the 2-D version of the
Rosenbrock function.
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Figure 5.14: Running Percentage of time that quadratic interpolation,
heuristic extrapoiation, and random assignment are performed during
quadratic crossover for 4-D Rosenbrock function

Rosenbrock Function in Ten Dimensions: The minimization problem is stated as
i 2\2 2
Minimize f,,(%) = 3 [lOO(xk+ | —xk) v (1-x) 7]

k=1

where X e [-2000, 2000]

86

The bounds on the vector % introduce twenty inequality constraints. The global minimum

is f1o(X*) =0 with ¥* = (1,1,1,1,1,1,1,1,1,1).

GaNOP
The minimization problem is restated as

Maximize F(X) = -f(%)

where X € [-2000, 2000)
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An initial population of ten-gene individuals is randomly distributed over the
entire design domain. The individuals are allowed to evolve for a number of generations.
The output for 5 different runs are shown in Table 5.14.

Table 5.15: 10-D Rosenbrock output for 5 Runs

Best Ontimum Generations No. of Function
Run # LFour?dl(f) to Obtain Evaluations
Optimum Required
1 3.735785e-10 2780 139,100
2 1.3627144e-10 3188 159,500
3 2.6421532e-09 2133 106,750
4 1.3597905e-09 2481 124,150
5 6.6015211¢-09 3238 162,000

The best optimum obtained is

f(x* )= 1.3627144e-10
at

** =(1,0.99999982, 0.9999997, 0.99999952, 0.99999923,
0.99999869, 0.99999768, 0.99999547, 0.99999088, 0.99998176)

This optimum was obtained with 159,500 function evaluations. Corana et al. did not give
results for 10-D Rosenbrock function. Hock and Schittkowski [1987] solved this problem
using sequential quadratic programming (NLPQL), a deterministic optimization
technique. The optimum obtained was 1.808 18e-6 with 176 function evaluations.

The history of the optimization process for Run #1 is shown in Table 5.14. The
convergence plot of GaNOP for the 10-D Rosenbrock function is shown in Figure 5.15.
The running percentage of time that the different parts of the quadratic crossover are
implemented for Run #1 is shown in Figure 5.16. The trend in Figure 5.16 is still similar
to the trends observed for the 2-D and 4-D versions of the Rosenbrock function. Note that
from about generation 1,000 to generation 2,000, the percentage of time quadratic
interpolation and heuristic extrapolation are implemented is equal and fairly constant.
During this period, the best objective score moved from -0.05364 to -1.321e-6. However,
from generation O to 1,000, when quadratic interpolation dominates, the best objective
score moved from -4.826e14 to -0.05364. Again the objective scores here are determined
by F(x) and not f(x). This is still in line with the observation that quadratic interpolation
dominates when the individuals are fairly dissimilar, or when GaNOP is still searching for
the neighborhood of the optimum solution.



Table 5.16: History of optimization process for 10-D
Rosenbrock function (Run #1.)

Generation #

0 -4.8258407c+14
100 101.18977

S00 2.3539438

1000 0.053638354
2500 8.5464841c-08
5000 3.735785¢-10
CPU Run Time (s) 67

No. of Crossovers 250,000

No. of Mutations? 384

a. Probability of Mutation = 0.00015
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Figure 5.15: Convergence plot for 10-D Rosenbrock function
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Figure 5.16: Running percentage of time that quadratic interpolation,
heuristic extrapolation, and random assignment are performed during
quadratic crossover for 10-D Rosenbrock function

5.4 Optimization of Linear Objective Function
This protlem is taken from [Floudas and Pardalos, 1987].

Minimize f(x,y) = —x-y
subject to

4 3 2
g, = y-2x +8x -8x-2<0

g, = y—4x" +32x°-88x" + 96x-36 <0
0<x<3 and 0<y<4
The problem has two nonlinear constraints; the objective function is linear with its known

global optimum at (x*,y*) = (2.3295, 3.1783), and f* = -5.5079. The feasible rcgion is
almost disconnected [ see Figure 5.17].
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Figure 5.17: Graphical solution for the linear objective function

GaNOP
The mi.imization problem is restated as follows:

Maximize F(x,y) = x+y-®, - ®,
subject to

S5-g.+2 if g.>0
(e)) —{ i Bi , fori=12

0 otherwise
0<x<3and0<y<4

An initial population of two-gene individuals are randomly distributed over the
entire design domain. The individuals are allowed to evolve for 100 generations. The
global optimum was obtained in all runs. The typical optimum obtained is

(x*,y*) = (2.3295228, 3.1785152) with f* = -5.508038

The global optimum was obtained in 74 generations with 3,800 function
evaluations. The history of the optimization process is presented in Table 5.16. The
convergence plot of GaNOP for this problem in shown in Figure 5.18. The running
percentage of time that the different parts of the quadratic crossover are implemented is
shown in Figure 5.19. The trend in Figure 5.19 is similar to the trend observed for the
Rosenbrock function in 10 dimensions.



Table 5.17: History of optimization process for the linear
objective function

Objective Score (F)

Generation # X y F
0 2.3435702 2.6939869 5.0375571
10 2.3319812 3.1651652 5.4971466
50 2.329519 3.178484 5.5080032
100 2.3295228 3.1785152 5.508038
CPU Run 2
Time (s)
No. of 5.000
Crossovers

No. of

Mutations 984

5.60 -

5.50 1 —-

5.40 1 rf[

5.30

5.20 W

5.10 1

5.00 r r - . \

0.0 20.0 40.0 60.0 80.0 100.0

Generation Number

Figure 5.18: Convergence plot for linear objcctive function
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Figure 5.19: Running percentage of time that quadratic interpolation,
heuristic extrapolation, and random assignment are performed during
quadratic crossover for the linear objective function

5.5 Summary of Results

GaNOP obtained the global optimum in all the problems considered in this
chapter, except for the 10-D parabolic multiminima function where it remained
consistently trapped in one of the local minimum adjacent to the globai optimum. The
results obtained by GaNOP are accurate to at least six significant digits after the decimal
point, except for the 10-D parabolic multiminima function. This shows that the quadratic
crossover is effective in accurately finding the global optimum.

The observed trend in the running percentage of the time that the different parts of
the quadratic crossover are implemented for the problems considered in this chapter is that
quadratic interpolation dominates when the individuals are fairly dissimilar, or when
GaNOP is search for the neighborhood of the optimum, and heuristic extrapolation
dominates when the individuals are fairly similar, or when GaNOP has located the
neighborhood of the optimum and is fine tuning the optimum. This observed trend does
not apply to the parabolic multiminima function, where quadratic interpolation dominates
throughout the evolution process. This is probably duc to the strongly discontinuous
nature of the function: quadratic interpolation gets the individuals out of the local minima,
and heuristic extrapolation is probably more useful in the continuous bowl where the
global optimum solution lies.



Chapter VI

Optimization with GaNOP: Practical Problems

6.1 Overview

In the previous chapter, the results of the optimization of selected theoretical
problems with GaNOP were presented, and GaNOP was found to be effective in finding
the global optimum to the desired accuracy for a wide class of nonlinear problems. In this
chapter, practical problems are considered. Some of these problems have objective
functions and constraints that are highly nonlinear with nonconvexities. The global
optima for some of the problems are known, and only the best known global optima are
available for the other problems. For all test problems, the optimum obtained by GaNOP
will be compared to the global optimum or the best known global optimum.

Ten independent runs are made for each test problem, and the average performance
of GaNOP for the ten runs is reported. Again, the running percentage of the time that the
different parts of the quadratic crossover are implemented will be reported.

6.2 Coil Spring Design Problem

The standard definition of a coil spring design problem from [Arora, 1989, p. 450-
454] is as follows:

Minimize f= (N+2) -D-d°

subject to
3
g = l_D—'N350
71785 - d
g, = D - (43D—d) + 2.46 2—lSO
12566 -d” - (D-d) 12566 -d
g, = l_l40.54-d$0

D> N
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bounds:
005<d<0.2, 025<D<0.5, 2<N<I5

where d is the wire diameter, D is the coil diameter, and N is the number of active coils.
The design problem has three variables and four inequality constraints. The bound
constraints introduce six additional inequality constraints. Arora [1989] solved the
minimization problem using sequential quadratic programming. The optimum obtained is
d* =0.051699, D* = 0.35695, and N* = 11.289 with f* = 0.0126787.

GaNOP
The minimization problem is restated as follows:

Maximize F=-f-)®,

g if ¢.>0
where @; = { &
0 otherwise

The bounds on the variables remain the same.

A population of three-gene individuals is randomly distributed over the entire
domain. The first gene corresponds to d, the second gene to D, and the third gene to N.
The individuals are allowed to evolve for 500 generations with GaNOP keeping track of
the best individual throughout the evolution process.

GaNOP obtained the optimum in all runs. A typical optimum obtained is

f*=0.0126787
atd* =0.0516931, D* =0.356816, N* =11.2973

On average, the optimum was obtained in 74 generations with 3,800 function
evaluations. The history of the optimization process is given in Table 6.1. The
convergence plot of GaNOP for this problem is shown in Figure 6.1.

The running percentage of time that the different parts of the quadratic crossover
were implemented during the evolution process is shown in Figure 6.2. There is a sharp
increase increase in the percentage of time that quadratic interpolation occurs for the first
nine generations. During this period, the best objetive score (F) moved from -0.218985 to
-0.0130907, where the optimum solution is -0.0126787. Overall, the percentage of time
that heuristic extrapolation occurs is greater than the percentage of time that quadratic
interpolation occurs.



Table 6.1: History of optimization process for coil spring design problem*

'

eneration # d D N F
0 0.0585839 0.409274 13.5899 -0.0218985
50 0.0517467 0.358102 11.2259 -0.0126823
100 0.0516977 0.356927 11.2908 -0.0126787
250 0.0516931 0.356816 11.2973 -0.0126787
500 0.0516931 0.356816 11.2973 -0.0126787
CPU Run 4
Time (s)
gl?c;szfc;vers 25,000
II\\vI’lcl)l't::lfions 7.:469

a. Population Size = 100, Probability of Crossover = 1.0, Probability of Mutation =
0.1, Replacement Ratio = 0.5, Number of generations = 500

Objective Score (F)

-0.020 1

-0.014 )

-0.016 1

-0.018 ;

0.022

0.0

100.0  200.0

300.0

Generation Number

400.0

500.0

Figure 6.1: Convergence plot for coil spring design problem
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Figure 6.2: Running percentage of time that quadratic interpolation,
heuristic extrapolation, and random assignment are performed during
quadratic crossover for coil spring design problem

6.3 McGalliard’s Problem
The following problem is taken from [Stephanopoulos and Westerberg, 1975].
The minimization problem is stated as follows:

06 06 04
Minimize f(x,u) = x| +x, +x3 +2u; +5u,—4x;- 1,

subject to
hy = x,~3x;,-3u; =0

hy = x3-2x,--2u, = 0
hy =4u,—u; =0

gy =x,+2u -4<0
8, =X, tu,—-4<0

gy = X3+u;—6<0

g4 =% —-350
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gs = u,—2<0

8¢ = x3—4SO
lower bounds:

x,uz20

This problem features a nonconvex objective function with three linear equality
constraints and six linear inequality constraints. The lower bounds on the variables
introduce six additional inequality constraints. The optimum found by Stephanopoulos
and Westerberg [1975] using the Hestenes’ method of multipliers is f* = -11.96 at x* =
(0.67,2,4) and u* = (0,0,0).

GaNOP
The first step in transforming the minimization problem to 2 GaNOP problem is to
eliminate the equality constraints. This is accomplished as follows:

From the equality constraint h,,
x,~3x,

3
From the equality constraint h,,

lll=

Y - Xy—2x,
2 2
From the equality constraint hs,

x2—3xl)
Uy = 4ul = 4( 3

The independent variables are now X, X, and x3. The dependent variables are u;,

u,, and uj.

From the inequality constraint g4 and lower bound constraint,
0<x,<3

From the inequality constraint g¢ and lower bound constraint,
0<x;<4

From the inequality constraint g5 and upper bound constraint for X3,
0<x,<2
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The minimization problem can now be rewritten in terms of the independent
variables only:

Minimize

, 06 06 04 Xy —3x, (x3‘2x2) (x2‘3x1)
fl(x) =x; +x, +x, +2( 3 )+5 > —4x;-4 3

subject to

' x,—3x,
g -xl+2( 3

X, —2x
' -x2+( 3 > 2)—430

X, = 31!:I

)-aso

o
N}
1

g'3=x3+4( )—650
new constraints (from u > 0):
g4 =—-(x,-3x)) <0

gs = -(x3-2x,) <0

0<x <3, 0<x,<2, and 0<x;<4

The minimization problem is restated as follows:

5
Maximize F(x) = -f(x) - Y, @,

i=1

where

10g'.+1 if g'.>0
¢, = { 8 f & , fori=1,..5
0 otherwise

Os’xls3, OSx?_SZ,and OSx3$4

An initial population of three-gene individuals is randomly distributed over the
entire design domain. The first gene corresponds to x|, the second gene corresponds to x,,

and the third gene corresponds to x3. The individuals are allowed to evolve for 150

generations with GaNOP keeping track of the best individual throughout the evolution
process. ‘
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GaNOP obtained a better optimum than the reported optimum in all runs. The
optimum found is

f* =-13.4019
at x* =(0.166667, 2, 4) and u* = (0.5, 0, 2)

On average, GaNOP finds the optimum in 35 generations with 1,850 function
evaluations. The history of the optimization process is presented in Table 6.2. The
convergence plot of GaNOP for this problem is shown in Figure 6.3. The running
percentage of time that the different parts of the quadratic crossover are implemented
during the evolution process is presented in Figure 6.4. Unlike the spring design problem,
there is no initial increase in the percentage of time that quadratic interpolation occurs.
Again, the percentage of time that heuristic extrapolation occurs is greater than the
percentage of time that quadratic interpolation occurs. Note that thcre are random
assignments during quadratic crossover.

Table 6.2: History of optimization process for McGalliard’s problem?

Generation # X) X2 X3 F
0 0.184763 1.43 3.69375 9.98548
10 0.165447 1.5962 3.99931 13.3851
50 0.166667 2 4 13.4019
100 0.166667 2 4 13.4019
150 0.166667 2 4 13.4019
CPU Run 2

Time (s)

ggészf)vers 7500
Iljltt:tfions 2146

a. Population Size = 100, Probability of Crossover = 1.0, Probability of Mutation
= 0.1, Replacement Ratio = 0.5, Number of Generations = 150
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Figure 6.3: Convergence plot for McGalliard’s problem
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Figure 6.4: Running percentage of time that quadratic interpolation,
heuristic extrapolation, and random assignment are performed during
quadratic crossover for McGalliard’s problem
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6.4 Weight Minimization of a Speed Reducer

This problem is taken from [Chihsiung and Papalambros, 1996]. The
minimization problem is stated as follows:

Minimize f(x) = 0.7854x,x§(3.3333x§+ l4.9334x3—43.09334)—

1.508x,( xg +.x7 ) + 7477 xg + 37 ) + 0.7854( x2 + x50

subject to

tooth bending stress:

tooth contact stress:

pinion deflection:

gear deflection:

pinion shaft stress:

gear shaft stress:

geometry constraints:

bounds:

89 =

810 ~

8 =

27
X1 XoXq

3975

2 2
x|x213

-1<0

1<0

1.93x] <o

XyX3Xg

3
1.93x5 ~

1<0
XyX3Xq

10 745)c4\2
= + 16900000 < 1100
Xg XyX3 )

10 745x5 )
] + 147500000 < 850
Xq *2%3 )

[\S]

Xy
-—+5<0
X

Xy

—=12<0

X
15xg+19

Xy

1<0

Llx,+ 1.9
_— 1 L0
Xs

2.6<x, <36, 0.7<x,<08, 17<x,<28,
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7.3<x,,x5583,29<x,<39, 50<x, <55

The best solution found by Chihsiung and Papalambros [1996] using the convex
cutting plane algorithm for generalized polynomial models is x* = (3.5, 0.7, 17.0, 7.3,
7.65, 3.34, 5.23) with f* = 2954.3. This solution violates constraint gs.

GaNOP
The minimization problem is restated as follows:

i
Maximize F(x) = —f{x) - 2 P,

i=1
where

100-g,+75 if g,>0
= { §i Bi fori#8,9

0 otherwise

100 g.+ 145 if ¢.>0
o ={ 8i Bi fori = 8,9

! 0 otherwise

The bounds on the variables remain the same.

A population of seven-gene individuals is randomly distributed over the entire
design domain. The indiveauals are allowed to evolve for 500 generations. The optimum
found by GaNOP in all runs is

f* = 2956.906
at x* = (3.5, 0.69999999, 17, 7.3000002, 7.6521692, 3.3502147, 5.2292361)

This solution does not violate any constraint. GaNOP obtained the optimum
solution in 193 generations with 9,750 function evaluations. The history of the
optimization process is presented in Table 6.3. The running percentage of time that the
different parts of the quadratic crossover operator are implemented is shown in Figure 6.6.
The trend for the speed reducer problem is similar to the trend for McGalliard’s problem.



Objective Score

Table 6.3: History of the optimization process for

speed reducer problem?

Generation # F
0 -3621.1467
50 -2960.4014
100 -2957.0173
250 -2956.906
500 -2956.906
CPU Run Time (s) 6
No. of Crossovers 25000
No. of Mutations 17356

a. Population Size = 100, Probability of Cross-
over = 1.0, Probability of Mutation = 0.1,
Replacement Ratio = 0.5
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Figure 6.5: Convergence plot for the speed reducer problem
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Figure 6.6: Running percentage of time that quadratic interpolation,
heuristic extrapolation, and random assignment are perforrned during
quadratic crossvoer for the speed reducer problem

6.5 Chip Layout Problem

The goal of this optimization process is to find the relative placement and shapes
of chips such that the total chip area is minimized subject to linear and nonlinear
constraints. The details of the problem can oe found in [Domeich and Sahinidis, 1995].
The optimization problem is stated as follows:

Minimize f = XYat XpYp XY+ XY+ Xy, + Xy,

subject to
hy = Xy FX X X = 0
h4 = —yc+yf =0
hs = =y, =¥y +y,+y, = 0
g = —x,+x.+1<0
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8y = Y=Y, +1=0

83 = —x,y,+30<0
84 = —Xpy,+20<0
gs = —x.y,+25<0
8¢ = — XY +25<0

g, =-x,y,+15<0
8g = —xfyf+2030

lower bounds:
xa’ xb’ xj) ya’ yc’ ye' )'fz 5
XpX,Yyg 24

xc,yb22

The global solution to the problem is x* = (5, 5, 4, 4, 4, 5), y* =(7.25, 4, 5, 6.25, 5, 5), and
f* = 146.25.

GaNOP
The first step in using GaNOP is to transform the minimization problem to a
GaNOP problem. This is accomplished as follows:

From the equality constraint hj,
Xe = X4
From the equality constraint h,,
Xp = Xa
From the equality constraint hj,
Xp= X+ X =X,
So x,, X¢, and x4 are the independent variables; x., X., and x; are the dependent
variables.

From the equality constraint hy,
Yr=Ye
From the equality constraint hg,
Ye = YatYp=Yu
SO Y., Yb» Ye» and y4 are the independent variables; y, and yy are the dependent
variables.



106

The minimization problem can now be stated in terms of the independent variables

only:
Minimize
f(x) = xaya+xayb+xcyc+xdytl+xd(ya+yb_yd) + (xa+xd—xc)yc
subject to
g, =-x,+x_+1<0

gy =Y;-y,+1=<0
gy =-xy,+30<0
gy =-xy,+20<0

8s=—-xy.+25<0

8¢ =—Xxy;+25<0

g7=-x,(y,+y,-yy) +15<0
gg=—(x,+x,~x)y.+20=0
g9 =—(x,+x;,—-x)+5<0

g'lO = - (ya+y,,—yd) +5<0

lower bounds:
Yo Yar Ve 25
Xp Yy >4

X,y 22

This problem now has seven independent variables. The global optimum is x, =5, x. =4,
X4 = 4, Va= 7.25, Yp = 4, Y= 5, Yd= 6.25 with f = 146.25.

The minimization problem can be restated as
10

Maximize F (x) = —f'(x) - Y @,
i=1
where
o = {g".+20 if g.>0

0 otherwise

The lower bounds remain the same. Since GaNOP works with a bounded domain,
the upper bound for all the variables is set to 30.
An initial population of 7-gene individuals is randomly distributed over the entire
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design domain. The individuals are allowed to evolve for 400 generations. The exact
global optimum was obtained in all runs. The optimum found is

Xa=3,X.=4,X3=4,y,=7.25,yp,=4,y. =5, yqg = 6.25 with f* = 146.25

On average, the optimum was found in 319 generations with 16,050 function
evaluations. The history of the optimization process is given in Table 6.4. The
convergence plot of GaNOP for this problem is shown in Figure 6.7. The running
percentage of the time that the different parts of the quadratic crossover are implemented
is shown in Figure 6.8. The trend in Figure 6.8 is again similar to the trends in
McGalliard’s and the speed reducer problems. Note that there are random assignments
during quadratic crossover for this problem. There is also an initial increase in the
percentage of time that quadratic interpolation occurs during quadratic crossover.

Table 6.4: History of optimization process for chip layout problem?®

Generation # Penalty F
0 130.059 -627.5
50 0 -156.442
100 0 -148.687
250 0 -146.252
400 0 -146.25
CPU Run Time (s) 6
No. of Crossovers 20000
No. of Mutations 14159

a. Population Size = 100, Probability of Crossover = 1.0, Probability of Mutation =
0.1, Replacement Ratio = 0.5, Number of Generations = 400
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6.6 Three-Stage Membrane Separation Problem

This problem is taken from [Hock and Schittkowski, 1981]. The minimization
problem is stated as follows:

Minimize f(x) = x;;+x,+x3

subject to
g, = X,—x3<0

g, = x;,-x,20

83 = —1+0.002x7—0.002x850
g4 = 50-f(x) <0
gs = f(x) -250<0

8¢ = — X3+ 1.262626x,,~ 1.231059x;x,,<0

— x5 +0.03475x, + 0.975x,x — 0.00975x, < 0

oQ
)
1l

gg = — X +0.03475x, +0.975x,x, - 0.00975x3 < 0

89 = —XgXg+ X Xg+ X, X7 =X, xg <0
810 = — 1 +0.002 (x,xg + x5x5 — X, Xg — XgXg) + X5 +xc <0
811 = —XyXg+X3x,4+ Xxcxg + 500x, — 500x, — x,x,,<0

812 = — X, +0.9+0.002 (xyx,—x3x,,) SO

813 = — X, +0.03475x, +0.975x,x, - 0.00975x;
£14 = — X, +1.262626x, — 1.231059x,x, <0

815 = — X+ 1.262626x, - 1.231059x,x5 <0
bounds:
0.1<x,x,,x3<1, 00001<x,<0.1, 0.1 Sx5,%X,<0.9,
0.1 < x4, x, <1000, 500 < x, <1000, 0.1 <x,,<500,
1 <x, < 150, 0.0001 <X X3S 150

This problem features a linear objective function with 5 linear inequality constraints and
10 nonlinear inequality constraints. The optimum solution is

f* =97.588409

at x* = (0.8037703, 0.899860, 0.9709724, 0.9999952, 0.1908154,
0.4605717, 574.08G3, 74.08043, 500.0162, 0.1, 20.23413,
77.43755, 0.00673039)
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GaNOP
The minimization problem is restated as follows:

15
Maximize F(x) = —f(x) - ) @,

i=1

where

50000-g,.+20 if g;>0
q>,. = ,fori=1,...,15
0 otherwise

An initial population of 13-gene individuals is randomly distributed over the entire design
domain. The individuals are allowed to evolve for 5,000 generations. A typical optimum
found by GaNOP is

f* = 97.600624
x* = (0.80366808, 0.90004075, 0.97483724, 0.099943474, 0.19090439,
0.4969188, 574.2218, 74.221855, £00.01855, 0.1, 20.282104,
77.312241, 0.0062818807)

The deviation from the global optimum is 0.012215. This optimum is obtained in 4,992
generations with 249,700 function evaluations. The history of the optimization process is
given in Table 6.5. The convergence plot for this problem is given in Figure 6.9. The
running percentage of time that the different parts of the quadratic crossover are
implemented is shown in Figure 6.10.

Table 6.5: History of optimization process for the membrane
separation problem?

Generation # F penalty
0 -2307982.5 2307810.3
100 -805.84973 662.3385
CPU Run Time 29
(s)
No. of 237,512
Crossovers
No. of
Mutations 324,958




Table 6.5: History of optimization process for the membrane
separation problem?®

Generation # F penalty
500 -305.47379 211.21477
1000 -98.212151 0
2500 -97.679665 0
5000 -97.600624 0
CPU Run Time 29
(s)

No. of 237,512
Crossovers

No. of

Mutations 324,958

a. Population Size = 100, Probability of Crossover = 0.95, Proba-
bility of Mutation = 0.1, Replacement Ratio = 0.5, Number of
Generations = 5000
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Figure 6.9: Convergence plot for the membrane separation problem
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Figure 6.10: Running percentage of time that quadratic interpolation,
heuristic extrapolation, and random assignment are performed during
quadratic crossover for the membrane separation problem

6.7 Bartholomew-Biggs Problem

This problem is taken from [Hock and Schittkowski, 1981]. The minimization problem is
stated as follows:

4

Minimize f(x) = ¥ (2.3x3k+|+0.0001x§k+|+l.7x3k+2+
k=0
2 2
0.0001x3; , , +2.2x4, , , +0.00015x5, , 4 )
subject to
8j = —X3j,1+X35_,— 7150

8j+a = X3jp1 =Xy~ 650
8j+8 = ~X3jp2+ X3~ 7150

Biv12 = X¥3j42— %351~ 1<0



I3

jvte = "33+ X3 =750
8j+20 = X3j437%3;=6<0
forj=1,.4

86 = —x4—x5-x6+5030
827 = —x7—x8—x9+7OS0
89 = —Xj3—X;,—Xx5+100<0

bounds:
8<x <21, 43 <x,<57, 3<x;<16, OSx3k+lS90,

0<xy,,,<120, 0<x,, , ,<60

fork=1,..4
The problem features a quadratic objective function with 29 linear constraints. The
optimum solution is x* = (8,49,3,1,56,0,1,63,6,3,70,12,5,77,18) with f* = 664.8204500

GaNOP
The minimization problem is restated as follows:
29
Maximize F(x) = -f(x) - ¥ @,
i=1
where

o =

{ 10-g,+5 if g;>0
0

otherwise

,fori=1,...,29

The bounds on the variables remain the same.

An initial population of 15-gene individuals is randomly distributed over the entire
design domain. The individuals are allowed to evolve for 2,000 generations with GaNOP
keeping track of the best individual.

The best optimum found by GaNOP is

f* = 665.734
at x* = (8, 48.1534, 3.8467, 1.00045, 52.0664, 6.2898c-16, 5.16778,
59.0663, 5.7659, 7.9083, 66.0549, 11.0368, 10.0282,
72.9355, 17.0364)

The deviation from the global optimum is 0.913. This optimum is obtained in 1,311
generations with 19,725 function evaluations. The history of the optimization process is
shown in Table 6.6. The convergence plot for this problem is shown in Figure 6.11. The



114

running percentage of time that the different parts of the quadratic crossover are

implemented is shown in Figure 6.12.

Table 6.6: History of optimization process for

Bartholomew-Biggs problem?

Generation #
0 -2429.33
100 -5.3334
500 -671.716
1000 -665.908
1500 -665.734
2000 -665.734
CPU Run Time (s) 12
No. of Crossovers 28751
No. of Mutations 40

a. Population Size = 60, Probability of Crossover
= 0.96, Probability of Mutation = 0.0001,
Replacement Ratio = 0.25, Number of Gener-

ations = 2000
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Figure 6.11: Convergence plot for Bartholomew-Biggs problem
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6.8 Heat Exchanger Design
This problem is taken from [Hock and Schittkowski, 1981]:

Minimize f(x, x,, x3) = x| + X, + X3

subject to
g, = —1+0.0025 (x, +x¢) <0
8, = —1+0.0025 (- x4+ x5+x;) <0
83 =—-1+001(-x5+x5) <0

84 = 100x; —x,x, +833.33252x, — 83333.333<0
85 = XpX4— Xyx;—1250x, + 1250x5, <0
86 = X3X5—X3xg —2500x4 + 1250000 <0
100 < x, £10000, 1000 < x5, x5 < 10000
and 10 < x,, x5, x4, X5, xg < 1000
This problem has eight variables with three linear and three nonlinear constraints. The

best known global optimum is x* = (579.31, 1359.97, 5109.97, 182.02, 295.60, 217.98,
286.42, 395.60) and f* = 7049.25 [Hansen et al, 1989].

GaNOP
The minimization problem is restated as follows:

6
Maximize F(x) = -f(x) - Y @,

i=1

where
10000-¢.+1000 if g.>0
= { 8i 877 fori=1..3
0 otherwise
100-g.+5 ifg.>0
®, = { 8i Bi , fori=4,..6
0 otherwise

An initial population of 8-gene individuals is randomly distributed over the entire design
domain. The individuals are allowed to evolve for 5,000 generations. The best optimum
found by GaNOP is
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x* = (605.629, 1344.67, 5099.37, 184.176, 296.025, 215.824, 288.151, 396.025)
f* =7049.67

The typical optimum is
x* =(613.424, 1385.13, 5052.05, 184.8, 297.918, 215.2, 286.882, 397.918)
f* =7050.61

The deviation of the best optimum from the global optimum is 0.42.

Table 6.7: History of optimization process for heat exchanger
design problem (best optimum)?

Generation # F Penalty

0 -27978.9 16444.9

100 -7207.25 0

500 -7051.34 0

1000 -7049.67 0

2500 -7049.67 0

5000 -7049.67 0

CPU Run Time (s) 95

No. of Crossovers 375,000

| No. of Mutations 333

a. Population Size = 100, Probability of Crossover = 1.0, Probability of
Mutation = 0.0001, Replacement Ratio = 0.75, Number of Genera-
tions = 5000
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6.9 Summary of Results

GaNOP obtained the reported global optimum for the coil spring design problem
and the chip layout problem. GaNOP found better answers than the reported optimum for
McGalliard’s problem and the speed reducer problem. GaNOP did not find the exact
optimum for the membrane separation problem; the percent deviation from the optimum
(f*) is 0.0125%. GaNOP did not find the exact optimum for the Bartholomew-Biggs
problem; the percent deviation from the optimum (f*) is 0.137%. GaNOP did not find the
exact optimum for the heat exchanger problem; the percent deviation from the optimum
(f*) is 0.006%.

The general trend observed for the percentage of time that the different parts of the
quadratic crossover are implemented for the practical problems considered in this chapter
is quite different from the general trend observed for the theoretical problems. For most of
the practical problems, the heuristic extrapolation dominates throughout the evolution
process. In the case of the theoretical problems, the quadratic interpolation usually
dominates at the beginning of the evolution process and the heuristic extrapolation
dominates at the end. However, one thing that is consistent in the trends for the theoretical
and practical problems is that the quadratic interpolation usually shows an initial increase
for the first few generations of the evolution process and then starts to drop with the
progression of the evolution process.



Chapter VII

Conclusion

7.1 Summary

In the introductory chapter, genetic algorithms with real-valued chromosomes was
proposed as an optimization technique for numerical optimization problems. Thc primary
objection to using chromosomes with real-valued or floating-point genes in genetic search
was discussed, and the conclusion was that the advantages of using real-coded genetic
algorithm for numerical optimization problems far outweighed the objection to the use of
real-valued genes in genetic search. This conclusion is the motivation for this thesis; the
goal of the thesis was to develop new specialized genetic operators for the real-valued
chromosomes.

A survey of the currently available genetic operators for real-valued chromosomes
was presented in the second chapter. The observation was that the genetic operators (in
particular, the crossover operators) had different strengths and weaknesses, sometimes
making it necessary to combine two or more of these operators in a single genetic search.

In the third chapter, a new crossover operator, quadratic crossover, that uses
polynomial interpolation and a pseudo-gradient local search technique to produce a new
individual was proposed. The performance of the quadratic crossover was compared to
the performances of the crossover operators presented in the second chapter. The
quadratic crossover was found to be more reliable, and at times, more efficient than the
other crossover operators for the selected standard genetic algorithm test problems
considered.

A genetic-algorithm based numerical optimization system, GaNOP, was presented
in the fourth chapter. This system uses the new quadratic crossover and a modified
Gaussian mutator in genetic search.

In the fifth and sixth chapters, the effectiveness of GaNOP in finding the global
optimum of a wide variety of theoretical and practical nonlinear test models to the desired
accuracy was investigated. The quadratic operator, with the modified Gaussian mutator,
guided GaNOP to the global optimum in 8 out of the 9 theoretical problems. The
quadratic operator, with the modified Gaussian mutator, guided GaNOP to the reported
global optimum in 2 out of 7 practical problems. GaNOP obtained better solutions than
the reported optimum for another 2 of the practical problems. In the remaining three
problems, GaNOP did not obtain the reported global optimum; although, GaNOP located
the neighborhood of the optimum, i.e. the maximum percent deviation in the solution
obtained is 0.13%. The primary conclusion is that the quadratic crossover is effective in
accurately finding the global optimum for a wide variety of nonlinear test models.
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7.2 Future Work

In GaNOP, the selection scheme during reproduction is the roulette wheel selection
scheme. As shown in Chapter I, the roulette wheel selector can select the same individual
more than once. The implication is that sometimes two or all of the parents selected for
quadratic crossover can be identical, in which case, the quadratic interpolation part of the
quadratic crossover will not be successfully implemented. If the three parents are
identical, no useful information can be obtained from the heuristic exirapolation either.
This means that the composition of the offspring will be determined by random
assignments. To ensure that quadratic interpolation has a good chance of occurring during
a single crossover, the parents selected for crossover should be distinctly different,
especially during the first few generations when quadratic interpolation is very useful in
locating the feasible region or the neighborhood of the optimum. A future direction would
be to modify the roulette wheel selector such that a single individual gets selected only
once during reproduction. It will also be interesting to see how other selection schemes
affect the performance of GaNOP.

The performance of GaNOP on nontrivial problems is greatly affected by the
control parameter settings. Unfortunately, the selection of the control parameter settings
is still an art. However, this does not mean that control parameter settings that will guide
GaNOP to the optimum based on the nature of the objective function and the constraints
cannot be estimated. A future direction would be to find problems that are representative
of the typical problems encountered in the real world. These problems will be classified
according to the type of objective function and constraint(s). Empirical studies will be
conducted on this problems, and a set of control parameter values that guide GaNOP to
the global optimum will be identified. This information will be very useful for a designer
that is not particularly interested in how GaNOP works but would like to find the global
optimum to a design problem.

In almost all the test runs, GaNOP converged to an optimum before the specified
maximum number of generations was completed. It would be nice to have GaNOP
terminate just after it has converged to the optimum, rather than wait until the maximum
number of generations is complete. A future direction would be to develop a better
criterion for terminating GaNOP.
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