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ABSTRACT

The calculus of variations is used to determine the
thrust program and the trajectory which will minimize the
propellant necessary for a space vehicle to effect a soft
landing on an airless moon or planet. In establishing the
equations of motion, this moon or planet is approximated
by a flat plane with a constant gravitational field.

The trajectory is shown to con'sist of two portions;
the first is a free fall from the initial altitude to the
altitude where the retrorocket is ignited. The second
portion is the powered phase which slows the vehicle to a
stop just as the ground is reached. The retrorocket is
shown to operate at maximum thrust during the powered phase
and the tangent of the thrust attitude angle is shown to be
a linear function of time.

The two portions of the trajectory are both solved in
closed form. However, due to the transcendental nature of
the closed form solution of the powered portion of the tra-
jectory with time-varying thrust attitude, the total opti-
mum trajectory which meets all of the boundary conditions

must be pieced together from the trajectory equations of

the two phases by trial and error.

Thesis Supervisor: Paul E. Sandorff

Title: Associate Professor of
Aeronautics and Astronautics
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OBJECT

The object of this analysis is to determine the thrust

program and the trajectory which must be followed by a

space vehicle so that a soft landing can be made on an

airless moon or planet using a minimum amount of retro-

rocket propellant.
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INTRODUCTION

The accomplishment of a soft landing by a space vehicle

on a planet or moon requires a mechanism which can dissipate

the large relative energy of the vehicle. If the soft land-

ing is to be made on a moon or planet which is not surrounded

by an atmosphere or for which the atmospheric effects are

negligible, present day technology provides only retrorockets

as a means of accomplishing this mission. A problem now

arises. If the velocity of the vehicle is known at a given

altitude, what is the path which must be followed and how

must the retrorocket thrust be programmed, both in magnitude

and in the inclination of the thrust vector, so that a mini-

mum amount of propellant is required to bring the vehicle to

a landing with nearly zero velocity.

Although similar to the problem of optimizing rocket

take-off, which has been widely treated in the literature,

it is apparent that the landing problem will have a dif-

ferent solution than simply the reverse of the take-off tra-

jectory. For rocket take-off, the weight of the vehicle is

greatest on the ground and grows lighter as propellant is

burned and altitude is gained. The acceleration for a given

thrust will therefore increase with altitude. For retro-

rocket landing, the acceleration for a given thrust will be



least at the ignition altitude and increase as altitude is

lost. Aerodynamic drag, if effectively contributing to

the trajectories, would accentuate this difference because

drag will always act opposite to the direction of motion.

The problem treated here is limited to that of a

vehicle approaching an airless planet or moon on a steep

trajectory and effecting a landing entirely by retrorocket.

By nature, this problem lends itself to solution by the

use of the calculus of variations.



BASIC APPROXIMATIONS AND EQUATIONS OF MOTION

Two approximations concerning the nature of the target

planet are made to facilitate the variational solution.

The landing planet can be approximated by a flat plane of

infinite extent provided the horizontal velocity is small

compared to the satellite velocity and provided the hori-

zontal distance traversed is reasonably small. The gravi-

tational field strength can be approximated as a constant

with altitude provided the altitudes are small compared

with the planet radius. These approximations will work

best when the vehicle is coming in on a steep ~(close to

the vertical) approach path which will intersect the planet

surface as in a hyperbolic approach. The approximations do

not appear satisfactory for the case of a landing from a

satellite orbit.

The desired trajectory will lie in a vertical plane

since the initial velocity vector will identify that plane.

Any motion out of this plane would not aid in the vehicle

deceleration. The problem of guidance and maneuvering to

a specific landing point is excluded from consideration here.
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Figure 1.

The equations of motion for a rocket

vertical plane near this idealized planet

T

vehicle

are:

5

x

in a

(1)
Cos f

(2)

The thrust is proportional to the exhaust velocity c, and

to the mass flow (m). In the absence of atmospheric pres-

sure the exhaust velocity is assumed to be essentially

constant. The mass flow, however, is considered to be a

variable for this solution and is always negative. The

solution is facilitated by defining a new function (fi)

which is always positive:

?n

(3)

y

(0)Lam

6
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The equation for thrust becomes ;

T = 8 PC

The mass flow which can be obtained from a given retrorocket

will be limited to some maximum value. The mass flow must

therefore be limited in the variational procedure to o

0 f 1 J A&x

By substituting for thrust and dividing by the instan-

taneous mass, the equations of motion become:

e P c - 'Cos f

- S//I).

(4)

(5)

(6)
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VARIATIONAL PROCEDURE

The Constraint Equations

The steps in derivation of a solution by variational

calculus are outlined briefly below. This mathematical

method has received considerable attention recently be-

cause of its importance in optimization of rocket thrust

programs and as a result is well-documented in the litera-

ture (1,2,3,4).

The constraint equations for the variational procedure

in Mayer'- form are:

Co (7)

. / c (8)

(9)

(10)

(12)

- Wa (13)

I WIN= I
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Constraint equations f and PX are simply the equations

of motion (5) and (6). Equations 2 , 9y , and P..

define A; , A and respectively. Constraint equa-

tions and ,P define the variables and o, res-

pectively and serve the purpose of limiting the mass flow

as follows (3):

Fundamental Function

The "fundamental function" F which appears in the

Mayer form of the variational calculus apparatus is:

F= ? + Y ? ,*- 4- j/P + 4 AFPR

The Lagrangian multipliers A, through '7 are, in general,

undetermined functions of time. Substituting the constraint

equations (7)-(13),

F~ A,(' - f' <OSY0s - /-r +

-,j)k f -' 'IV;)

t x6 (t-.) +

(14)

/, 7,4 -f - ) =.

0 ic./4
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Euler Lagrange Equations

Time is the independent variable in this analysis

while x, y, v , vy, , , , , and f are the depen-

dent variables. The Euler Lagrange equations are there-

fore:

- d- O - -- A ) = 0
xdv\ 3/

- L(-~

F F

I -~ -)

~ ~ 9 -i Cr, )

-Cie

-i (-

A
3 d I)

- 0

S Cos S-f -

- ( ) =0

%- cds t -,- s ,-;wo (20)

-F ( JF- /cs 0 (21)

(15)

(16)

(17)

(18)

(19)
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a 0. = =O (22)

Tr Ix4 (235)

Time does not appear explicitly in the fundamental

function. Therefore the alternate equation

dt )i /integrates to

CF ->1E - --- ) a constant
Since F: o the alternate equation becomes-

Sx 2S(24)

Integration of Euler Lagrange equations (15) and (16) yields:

X3  A (25)

8 (26)

Since and A are constants, equations (17) and (18) can

be integrated to yield:

SAt C (27)

bt D 0 (28)

Equation (21) yields two solutions:

g = 0 or tA1 A

When 0 the thrust angle has no meaning, therefore the

important solution is:
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13t + D
At -fX I

Equations (22) and (23) along with constraints P and 7

give three possible solutions.

Case I.

Case II.

X7 = 0

/?t =. #(c~)

where )9r.-8(t) is a variable within the limit 0 atf

Case III.

Transversality Condition

The transversality condition is expressed by the fol-

lowing relation:

bF _ L -,-c LF

~jL F~ ./ALF jc4J> 1'A=O (30)

Minimization of propellant expenditure corresponds to mini-

mizing the initial mass when the final mass is known.

Therefore the following relation holds:

(31)

(32)J.'& = 0h ,

The physical variables which appear in the transversality

condition are the following:

(29)

+

, K p fy se-b)=n,



unknown

unknown

given

given

qI

-D

Y 7 -to

YV xv

given

w,~ 7~=

/0 k.

0

unknown given

Only the unknown variables have differentials. Therefore:

Citp 0

But:

j9 I,

e c s

The transversality condition becomes:

(335)K dri

given

12

Y/2

X, CP -M,



Since t, , and r7, are independent:

IK~~
a

A r, = - /

Because A= 0 by the transversality condition,

Therefore:

CA ff /

That is,

of time.

the tangent off the thrust angle is a linear function

U.

13

(34)

(35)

(36)

A , = C

C (37)
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THE TRAJECTORY

Subarcs of the Trajectory

The optimum trajectory (that is the one which minimizes

propellant expenditure) will be composed of a series of sub-

arcs which correspond to the possible solutions of Euler-

Lagrange equations (22) and (23), Cases I, II and III. Case

I arcs will be the portions of the trajectory which occur

when the mass flow and hence the thrust is zero. This is

the condition of free fall. Arcs of Case II solutions cor-

respond to possible portions of the trajectory where thee

mass flow and thrust are allowed to vary with time within

the limits, o ft, . Solutions of this type

will be shown to be unacceptable. Case III arcs are the

arcs where the thrust and mass flow are maximum. During

these powered flight portions of the trajectory, the thrust

vector must be rotated so that t-C r M . This

rotation allows the initial altitude (,0, ) boundary condi-

tion to be met. (If this boundary condition is removed so

that P is unknown, the transversality condition will

dictate that ;,= a , making the tangent of the thrust

angle constant. Some combinations of the initial altitude

and velocity can also be expected to require arcs of con-

stant thrust attitude.)
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The Arrangement of the Trajectory

entering
V velocity

coasting subare

powered subarc - A V.

coasting subare

powered subarc -- A

Figure 2.

The vehicle has an initial amount of energy, both

kinetic and potential, which has to be removed in order

to meet the boundary condition of zero velocity at land-

ing. This energy is removed during the portions of the

trajectory where thrust is applied. The assumed trajec-

tory shown above contains a general combination of coast-

ing and burning subarcs which might yield an optimum tra-

jectory. By identifying the change in momentum of the

vehicle, per unit mass, during the two burning periods

in terms of the energy/unit mass actually removed from

the vehicle, the velocity increments for the two periods

of burning are, respectively:



4VL (38)

4n Zs =/v, +

The sum of the velocity increments is a measure of the mass

of propellant which must be expended to bring the vehicle

to rest at zero altitude. When the sum of the velocity

increments is a minimum, the propellant expenditure will

be minimum and hence the trajectory will be optimum.

Summing equations (38) and (39):

V, + A V3 +27 3 V tql,-p)-v~ (40)

The initial conditions fix the values of , and , so that

the only variables which can be changed to minimize

( AV. +LiV1 . ) are V, and 3 Since

A 7 i /VI 2' ,-)a)- Z is never negative,

( OV +4 V, ) will be minimized when this term is zero.

(39)

( vc V.

dn Va. = '/ V, .2 (38)
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This term can be zero only if:

(C) or V o and a

Case (A) is clearly not possible since 3 is always

positive and -2, .is always negative. Case (B) occurs

when the gain in kinetic energy between points 1 and 3 is

exactly equal to the loss in potential energy between these

two points. Therefore a must be equal to zero and the

vehicle coasts from point (1) to point (4) with no burning

period in between. Case (C) occurs when the burnout condi-

tions at the end of the first burning period exactly meet

the boundary conditions of zero velocity at zero altitude.

Cases (B) and (C) both show that the minimizing trajectory

will be made up of one coasting subarc and one portion

where thrust is applied, in that order. Burnout will oc-

cur at zero altitude and zero velocity. Cases (B) and (C)

are clearly different statements of the same trajectory.

This analysis does not show the composition of the

period of burning; that is, the powered portion of the

trajectory could be made up of combinations of subarcs with

El
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maximum thrust and subarcs with variable thrust as long as

no coasting occurred between these possible powered sub-

arcs. This possibility is investigated later.

Coasting Flight

When the thrust is zero, as it is in the subarc corre-

sponding to Case I, the equations of motion reduce to:

- 0 (41)

(4~2)

These equations contain all the information needed for the

integration to be carried out.

The first integration yields:

ev -1 r * (44)

The second integration yields:

+ c V C (45)

_L = -4 9 -+ Cg $4 (46)

The coasting subarc is the initial portion of the trajec-

tory. Therefore the boundary conditions of initial altitude

and velocity are the initial conditions of the coasting sub-

arcs; that is, when t *
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Applying these initial conditions to the coasting subarc

equations (45) and (46) yields

(47)A rx,

Xv4,tC (3 (48)

(49)

(50)

4~-A

| ~~, ~ t;) (t 4 2

Time can be eliminated from the altitude equations as

follows:

(51)t -

=
.,~~ (52)

The two remaining Euler Lagrange equations (19) and (20)

must be investigated to prevent a contradiction to the equa-

tions of coasting flight. For Case I, A o and \

Therefore equation (19) and (20) reduce to:

OO (53)

C' C t + -x C, M7 KC/r (541)

=-y ( t - r )
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These equations serve only to evaluate the Lagrangian multi-

pliers N and ) , which are inconsequential to the inte-

gration. Therefore these equations do not contradict the

coasting flight solution.

Variable Thrust Subarc

As in the case of the coasting flight, the unintegrated

Euler Lagrange equations (19) and (20) must be investigated.

For the variable thrust subarc, Case II:

~= 0 and

Euler-Lagrange equation (2) becomes:

A, -;k~ 0 t ~ = (55)

or

C' L f (56)

But:

rA wf (29)

T9r

f

Therefore:



cos

Substituting and combining terms:

But from Euler-Lagrange equation

C',

-Th C* (at -t

(19):

Differentiating (59) yields:

( (t2
C + (6**Or'

Cl

f
C t + P) 6

/ ca ,~ c~t tof

Equating (60) and (61):

C = -C_

Or:

(63)

21

(57)

(58)

(59)

tC.st +D)~~ (60)

?"
(61)

( 3t +- D) a

V/ cot . Ce3 t-* D/ '
(62)

C9

AOf -t

pt t
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But this is constant attitude thrust (Ref. equation (37)].

Three questions now arise:

(1) Do the boundary conditions permit a constant atti-

tude thrust as the general case?

(2) If constant attitude thrust is the solution for a

special set of boundary conditions, does a varying

thrust magnitude yield an optimum trajectory?

(3) Can the burning period be composed of combinations of

constant attitude, varying magnitude thrust arcs and

varying attitude, maximum thrust arcs?

The answer to the first question can be found mathe-

matically and by physical reasoning. Since the differential

equations are all first order and linear, the number of

boundary conditions must equal the number of differential

equations. There are eight physical boundary conditions

and two boundary conditions due to the transversality condi-

tion. These ten boundary conditions are:

1. X 0  given

2. , = 0

3. r~

5. 1M given

6. given

7. give

1

given
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8. ^ , given

9. .3 A from the
transversality condition

10. ;.5- =-

The other transversality result, [( = 0 , pertains to the

alternate equation.

There are also ten first-order linear differential

equations: constraint equations Y, , , , f , ,W

and Euler-Lagrange equations (15), (16), (17), (18), and (19).

In considering the variable thrust subarc when the thrust

attitude is constant, equations (19) and (20) were shown to be

equivalent in equation (62), but equation (20) is not a dif-

ferential equation. There are, therefore, ten boundary con-

ditions and only nine equations. As a result, the boundary

conditions cannot be met in general by a constant attitude,

variable magnitude thrust, trajectory. Variable magnitude

thrust might still be a solution if a constant attitude thrust

program is a natural result of the boundary conditions. A

physical feel for this problem can be obtained by considering

just the burning phase. (A similar argument holds for the

complete trajectory.) If the thrust attitude was constant

the thrust magnitude and inclination could be adjusted to

just cancel the initial velocity vector, but the altitude

where the cancellation occurred could not be expected to be

correct.



The answer to question two can be found from a further

look into the energy conditions. For a single burning

period:

4 V V 4 .; ,
(64)

But A V and V, will each be composed of two perpendicu-

lar components. Therefore:

V8 XI

AL

)

Substituting:

-<K +A/ -. )t

&V will remove the horizontal velocity component and

d' will remove the initial vertical velocity plus the

velocity gained in free fall. Therefore:

For the case of constant attitude, variable thrust, the equa-

tions of motion can be easily integrated to yield A^w and

. The equations of motion are:

cost
P 'Cx )-

0 .AC

(65)

(66)

(67)

(68)

(69)

(5)

(6)
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Integrating P

(70)

(71)

6 Ar u- d cosA

At is the burning time.

= :. .-- .*M

Therefore:

(72)

mass ratio - Wia* ~,iI
Wi 0

' e = C' s/t 0& /at

For the constant attitude, variable thrust case therefore:

C' ha -

where

But:

where

(74)

(75)

(76)

A10
Ad ArX 

Cy C 
7" Ima-0

zi fj - e C - ,eso & /WC
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Clearly the mass ratio and hence the required propellant is

minimized when the burning time AZ is minimized. The

integration, /. adt is independent of the nature of

PCt) and ?"(t) so the variable thrust solution is non-

unique. Since the minimum propellant utilization will

occur when the burning time is minimum, from equation (76),

setting will yield the required optimum trajec-

tory. But this is just a special case of the maximum thrust

solution, Case III.

Considering now the third question, if the burning por-

tion of the trajectory is to be cmposed of constant attitude

subarcs and variable attitude subarcs, these subarcs must be

pieced together at "corners." A condition which applies at

these junctures is the Erdman-Weierstrass corner condition,

which states that

and Z j where -. o x ec.)

are continuous across the corner. Therefore:

(77)3

(78)

a (79)

(80)

+ (81)

and k since (82)
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The plus and minus superscripts refer to conditions just be-

fore and just after the corner. Equations (77) and (82) are

automatically satisfied since X= o and /< 0 Equa-

tion (81) is of no consequence since AS has no significance.

Equations (78), (79), and (80) show that B, C, and D are con-

tinuous across any corner, and hence tAN'-/ must be a single

function of time throughout the powered flight portion of the

trajectory. Thus the powered portion of the trajectory is

made up of only one subarc with one thrust attitude program,

which could be constant or varying, but not a combination of

both.

These corner conditions must also hold across the corner

between the coasting arc and the thrust arc but thrust atti-

tude has no meaning during the coasting phase.

The conclusions that one can draw are:

(1) The thrust attitude program must be a varying function

of time in general to meet the boundary conditions.

(2) The optimum trajectory will consist of only two subarcs;

namely, (a) a coast from altitude to where burning is

initiated, and (b) a burning period at maximum thrust

with thrust attitude defined by a single function.

Burnout occurs at the instant velocity and altitude are

simultaneously brought to zero.

4
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(3) The variable thrust case is shown to be non-unique and

of no interest in finding the optimum trajectory. (This

is proved by G. Leitmann in Reference 2.)

Maximum Thrust Subarc

The powered portion of the trajectory will correspond to

the Case III solutions:

As before the Euler Lagrange equations (19) and (20)

must be satisfied. But Euler Lagrange equation (19) evaluates

A5- and equation (20) evaluates A7 . Lagrange multipliers

J,-and Ay have no physical significance so (19) and (20)

are satisfied but need not be solved.

The equations of motion for maximum thrust and varying

thrust attitude are :

(84)

The mass becomes a known function of time when

The ,SNJr and Cosf are also known functions of time from

the Euler Lagrange equations. Therefore Zfx and I are

completely known functions of time and no additional informa-

tion is needed to complete the integration.



29

The time function of mass can be found from integration

of constraint equation O with constant mass flow:

A = -- 6.1 (85)

)A AO 7A4) X t (861)

When t =. 0.

Therefore:

)) AM.. ,, A -X t. (88)

The initial conditions for the powered portion of the

trajectory will depend on the coasting portion. The final

conditions are all known, however, from the boundary condi-

tions. For this reason it is more convenient to integrate

the equations of motion in reverse. This integration would

start on the ground with zero velocity and with burnout mass

and then proceed backwards in time and with increasing mass

until the initial conditions are met. A convenient time

reference for this procedure is *, O with time negative

throughout the integration. Therefore:

(89)7n M 7", -- y,) It
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Nondimensionalization Procedure

Nondimensionalizing the equations of motion provides

a concise form which facilitates the integration. The im-

portant ratios which can be used to nondimensionalize the

equations can be found using the Buckingham Pi Theorem (Ref.

6).

Table 1

Where:

L length

M mass

T time

Variables Dimensions

X or L

L T

MT -

L T

LT
tT
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Nondimensionalizing with respect to the known quantities

S)A",and 'v :

x j 8 ~ 4

Am, iry = - c~,e

Vi

-t

^.rx

7Va

dyAO

at t

Nondimensionalization proceeds by first writing the

equations of motion as known functions of time:

OAAe

A%, c

C

/C~a +Cer* PY)

Dt-

(90)

(91)

(92)

(93)

(94)

(95)

40dj.

(96)

(97)
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Then substituting the nondimensionalizing ratios:

and D
C

+

V/ C fAr* i

{ .- ' -I

are nondimensional

constants. Similarly:

I ( t-+ 1 )

The Integration

The integration of

V'

dVx
using dummy upper limits:

(
(101)

is obtained from equation 200, ref. 5, where

* + . (4. L 4+ C

as follows:

(102)

d Vx C/ x

AnU * 0 or
Ax

- ~ I
(i-t-)

(98)

(99)

where 8 -M

(100)

vx V/( [ ( C1 06 A-) 01 OZ q (~i 9+

+ CL *40 x + 1 7110

a t



33~
Evaluating at the limits and combining terms:

VX _ a (aY+)(q. T+4) + a1. i 4)/ (103)

The second integration yields the horizontal distance traversed:

t
0 r+

0r +,&) +

(1o4)

The second term of this equation can be integrated as follows,

Eq. 442, Ref. 5:

~- .(-t) 4 /jb-?9AC1-t) -(I-'t)Y/-/ -t24I-t) +25 (105)

The third term integrates directly to yield:

- A E 2 a er * / - (/+J474) +

The first term is first integvated by parts to give

17/7. Z- (106)

-( i a Ar + t +I(a.+- +* 4),4 *
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of A, A+ A-)(C'T"-+4r ++

t A[ +4t) (a */ + J-/

E (+C, 
t (Ca Q4)( a ryft ) + +

V(cT-,'f

C4 -+A)
(107)(-z- ~*ja

Multiplying the numerator and denominator by the conjugate

of the denominator:

(4+XcL-t) *4) 1 -A4

and combining terms:

IC +4 )a / (ciT Ct ]t-
0

/(Q'6-y,' Lt -~Aa Z 7 rl.rZ J )?-

(108)

CL--
(109)

I C4- +

( -- -) A 0-I I /( -q-T-ze+ ,*i

V/(a *-O ' 7

[(q +.4)(q Ir +4) + / +



**
*

+ o ) -
V 1

- t 
-

Integration of these terms yields:

1+* ae)+(-

4 ' L (c*d)( Q t -) /

4 (( - .- (' -z&)7/

C ('tf4j/ C4 )-A -

(4 1 y4 , ? *qj V

(111)
* Ref.5,)2 +q '1.

*Ref. 5, Eq.- 31.

** Ref. 5, Eq. 128.
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*1-

~
71-I

(110)

(a t )\! ( e+.&*2-j' t'- 4 [ ( a i. .&)( e. -r +0 4) +- / +*

F
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Substituting the limits and combining

IA *i
,;- t)

terms :

1* (4p4/~i /A~ 1
1-'~

(& 1'+4-) 7
(112)

The integration of

~,

j v
---

(a'~+4-) ~J

~f) (dLr ~4~4

using dummy upper

r
(,- '~) (~ r

rv -)(?)d
t - .4

*
cAt-

C,

*Ref. 5, Eq. 128.

4-

,6- .' |lr

V

V
e

limits:

(113)

0

(115)

Ot0--r) [& +
r i-

(a- r+4-)YI L-
C

- 4q (/- r) 71 Ca fto)



( a +A0) Vx ) (CCt*f+ /0

V7 +G- V -L 3
The second integration yields the altitude as a function of

time for the powered portion of the flight.

(a

+ Ictj

xA

f 1(e0

- r (i- + .4F 7

Making a trigonometric substitution, let:

( + S't6 4'

a d - -= CaSA w c( 121

r =

37

(116)

(117)

9

I 18)

(119)

(120)

(121)



Then:

tr f

(122)
f t C.xx 1j 7 ros.A tv A

Integrating by parts:

k/ 4v
A J10 g S Ak c w 5tA*( r C

- UL"A" ,eJ/,. w C 05A 4.,]! - c <*4 10

(CL

'I

(125)

-- L (fV2- 7)

Combining terms yields:

(CL -,& C 4. ' --3
- (C 4L )(I--' ,)

v/c . # .4-) Z. ' /

I
- & 2-

a.

(123)

(124)

(r ,+ ZJQ ".rF ,~ * 4

y

+ ( t , I

JFA 44)A -7-4 t Ar =

S[ ( Lr LZ

(r '-' le)4 (r T Ar) 7

Ar / +-

(126)
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Constant Attitude Case

In the limit as a --* o the trajectory equations

should approach the equations of the constant attitude

thrust case.

Lo o
/i2 k

L,. V 4Z
Q-*O A

(127)

(128)
4 Cc/-A (/-7:-) "-

v5~7

Q ANO Y

(129)A - G r

4 -C />-) + r) ' (130)

These are the equations for constant attitude thrust which

can be found by integrating equations (99) and (100) when

a. O

L1 r.
0 V
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DISCUSSION

The trajectory equations for each of the two subarcs

have been solved in closed form. These two portions must

be pieced together to obtain the total optimum trajectory

for a given mission. The factors which adjust to give this

optimum trajectory are this burning time of the retrorocket

and the constants a- and Z of the thrust attitude program.

The transcendental nature of the trajectory equations pre-

vents the direct solution of these factors. As a result,

the trajectory must be pieced together by trial and error.

As an example of how this trial and error piecing can

be carried out, for a specific mission, start by assuming

values for a, b and the retrorocket burning time. Working

backwards from the ground up, the burning time will dictate

the retrorocket ignition time ( tr ). This is also the

time of the transition between the two subarcs. The velo-

city and altitude conditions at the junction point (corner)

between the subarcs corresponding to these assumptions can

then be found from the trajectory equations for the burning

phase (eqs. 103, 117, 126). The trajectory equations of

the coasting phase (eqs. 47, 52) can then be used to trans-

fer the velkcity and altitude conditions at the junction

point to the initial altitude ( ) where the error in

velocity can be noted. Changes in a, b, and burning time

are then made and the process repeated until all the boundary



conditions are met. The horizontal distance traversed

can be determined but does not aid in determining the

unknowns. This trial and error solution might also be

accomplished graphically.
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CONCLUSIONS

1. The optimum trajectory will consist of two portions,

a free fall subarc and a powered subarc in that order.

2. The retrorocket must be operated at maximum thrust

during the powered portion of the trajectory.

3. The thrust inclination angle varies in such a manner

that its tangent is a linear function of time.

4. The equations of motion of each of the two subarcs

have been solved in closed form.

5. The total optimum trajectory can be pieced together

from the closed form solutions of the two subarcs by

trial and error.
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