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We apply the symmetric tensor network state (TNS) to study the nearest-neighbor spin-1/2 antiferromagnetic
Heisenberg model on the kagome lattice. Our method keeps track of the global and gauge symmetries in the TNS
update procedure and in tensor renormalization group (TRG) calculations. We also introduce a very sensitive
probe for the gap of the ground state—the modular matrices, which can also determine the topological order if
the ground state is gapped. We find that the ground state of the Heisenberg model on the kagome lattice is a
gapped spin liquid with the Z2 topological order (or toric code type), which has a long correlation length ξ ∼ 10
unit cells. We justify that the TRG method can handle very large systems with thousands of spins. Such a long
ξ explains the gapless behaviors observed in simulations on smaller systems with less than 300 spins or shorter
than the length of 10 unit cells. We also discuss experimental implications of the topological excitations encoded
in our symmetric tensors.

DOI: 10.1103/PhysRevB.95.235107

I. INTRODUCTION

The pattern of long-range entanglement defines topological
orders in gapped quantum phases of matter that lie beyond
the Landau symmetry-breaking paradigm [1]. The quantum
spin liquid (QSL) state is a concrete example of topologically
ordered states [2–10]. In (2+1) dimensions, topological order
is described by new topological quantum numbers, such as
nontrivial ground-state degeneracy and fractional excitations
[11–16]. These topological properties are fully characterized
by modular matrices for the degenerate ground states [14–22],
whose elements encode the mutual statistics and topological
spins of excitations [23].

Generally, a many-body quantum state is expressed as

|ψ〉 =
∑

s1,...,sN

T s1,...,sN |s1, . . . ,sN 〉, (1)

where the coefficient T s1,...,sN can be viewed as a tensor
exponentially large with system size. For a gapped local Hamil-
tonian, entanglement entropy of its ground states typically
obeys an area law [24]; thus T s1,...,sN can be approximated
by contractions of small local tensors. A set of variational
states has been proposed, such as matrix product states in
one-dimensional and quasi-two-dimensional (2D) systems
[25], projected entangled pair states in 2D systems [26], and
other types of tensor network states (TNSs) [27,28]. For a TNS
that describes a topologically ordered wave function in 2D,
the gauge symmetry of local tensors is necessary [29]; i.e.,
each local tensor should be invariant under local symmetry
transformations on virtual legs. For a gauge-symmetric TNS,
we are able to compute modular matrices [20–22] which can
detect topological phase transitions [30–32].

The nearest-neighbor (NN) spin-1/2 kagome antiferromag-
netic Heisenberg model (KAFHM),

H =
∑
〈ij〉

Si · Sj , (2)

is thought to host a QSL ground state. ZnCu3(OH)6Cl2 (her-
bertsmithite) [33–44] and Cu3Zn(OH)6FBr [45] are promising
compounds for experimental realizations of KAFHM with
additional interactions. Many different ground states have been
proposed for KAFHM [46–72]. Numerically, the initial density
matrix renormalization group (DMRG) calculations [66–68]
supported a symmetric Z2 QSL ground state. Considering
time-reversal symmetry and translational symmetries, Zaletel
et al. [73] argued that the Z2 QSL should be Z2 gauge type
[3,74] (i.e., toric code type [75]). However, DMRG simulations
fail to find all four degenerate ground states on a torus [76],
or braiding statistics of quasiparticles for the Z2 topological
order [3,74].

In this paper, we use the TNS to address the (topological)
nature of the KAFHM ground state. Since previous studies
did not detect any symmetry-breaking order, we will assume
that the KAFHM ground state can be described by a TNS with
translational, time-reversal, and SU(2) spin-rotational symme-
tries. SU(2) symmetry implies a Z2 gauge symmetry on the
TNS [64] and then we can study both Z2 topologically ordered
and trivial states [21]. We stress that without implementation
of the Z2 gauge symmetry, it would be hard to identify the
topological order in the TNS.

We introduce the modular matrices as a very sensitive
probe for the gap of the ground state and use it to determine
the topological order for a gapped ground state. The tensor
renormalization group (TRG) flow of modular matrices has
very different behaviors for gapped and gapless ground states
[21]. We find that the KAFHM ground state is a gapped
QSL with the Z2 topological order [3,74] and has a long
correlation length, ξ ∼ 10 unit cells. We justify the TRG
flow of modular matrices at critical points and argue that
our estimation of the correlation length is valid within a
distance of 30 unit cells or more, consistent with previous
studies [77,78]. Such a long correlation length (ξ ∼ 10 kagome
unit cells) might explain the DMRG’s failure in identifying
Z2 topological order and the gapless behaviors in recent
numerical simulations [69–72,79]. We also discuss low-energy
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excitations in different topological sectors and their experi-
mental implications.

The organization of the rest of the paper is as follows: In
Sec. II, we introduce a set of SU(2)-symmetric TNS states. In
Sec. III, we present our algorithm to find the variational ground
states given by the symmetric TNS. In Sec. IV, we show how
to compute TRG without breaking SU(2) symmetry, which is
useful to compute modular matrices. In Sec. V, we present
the results of the modular matrices which are unique and
complete signatures of topological phases. Moreover, from
the convergence speed of modular matrices with respect to
TRG steps, we can estimate the correlation length of the TNS
wave function. More importantly, the method is justified by
comparing with the results of critical systems. Hence, it is safe
to state that this method is sensitive to the gapped/gapless
nature of the ground-state wave function. In Sec. VI, we
explain our method to calculate the ground-state energy, and
present the energy with different bond dimension. In Sec. VII,
we conclude the paper by summarizing and discussing the
possible implications for experiments.

Two Appendices are attached for better explanations. In
Appendix A, we explain the techniques of keeping symmetries
with more details. In Appendix B, we briefly review the simple
update algorithm.

II. SYMMETRIC TNS

We express the exponentially large tensor T s1,...,sN on the
kagome lattice as contractions of the local tensors [63]

T s1,...,sN = tTr(T1T2M
s1Ms2Ms3 · · · ) (3)

as shown in Fig. 1, where Ms1,s2,s3 are the site tensors
that contain the physical spin-1/2 legs forming the kagome

a

H

HOOI

b

T1

T2

M s1,s2 ,s3

id

c

G G 1

FIG. 1. (a) TNS on a kagome lattice. Darker purple tensors are site
tensors Ms1,s2,s3 carrying physical spins, while lighter purple T1,2 are
joint tensors. (b) Simple update for the TNS in which we use the HOOI
method [80,81] to truncate exp(−τH�)T1M

s1Ms2Ms2 back to T1 and
Ms1,s2,s3 . Similarly for downward triangles. (c) Symmetry condition
for the local tensors. Green tensors are the symmetry matrices Gi in
Eq. (4). Here “id” stands for identity.

lattice and T1,2 are the three-leg joint tensors; tTr denotes the
tensor contraction over connected legs. We require SU(2) spin
rotation, time-reversal, and translation symmetries to search
the possible topological ground states.

SU(2) spin rotation symmetry requires local tensors be
invariant under symmetry operators:

Msi = tTr{[Gsi (�θ) ⊗ Gi(�θ) ⊗ Gj (�θ )]Msi },
T1,2 = tTr{T1,2[Gi(−�θ ) ⊗ Gj (−�θ ) ⊗ Gk(−�θ )]}, (4)

where �θ is the angle of global SU(2) rotation and Gi are
matrices of (projective) representations. Since SU(2) has
no projective representations, every virtual leg must obey
(reducible) representations of SU(2), i.e.,

Msi ∈
⊕
i,j∈J

V 1
2
⊗ Vi ⊗ Vj ,

T1,2 ∈
⊕

i,j,k∈J

Vi ⊗ Vj ⊗ Vk, (5)

where Vi are irreducible representations of SU(2) with spin i

and J is a collection of spins. The physical leg is associated
with a 2-dimensional Hilbert space while the virtual legs have
the multiplet dimension:

D∗ =
∑
j∈J

1, (6)

dubbed in Refs. [82–84]. The corresponding bond dimension
is

D =
∑
j∈J

(2j + 1). (7)

Subtly, the 2π SU(2) global spin-rotation transformation
implies Z2 gauge symmetry in the TNS; i.e., local tensors are
invariant (up to some constant) under Z2 gauge transforma-
tions. For adiabatic global SU(2) spin rotation 0 → 2π for a
certain ground state, the system goes back to the ground state.
The matrix representation of 2π global SU(2) spin rotation
acting on a virtual leg is

⊕
j∈J (−)2jI2j+1, which is Z2 gauge

symmetry in the center of SU(2) representation. Z2 gauge
symmetry in the TNS does not always indicate Z2 topological
order. Only when Z2 gauge symmetry deconfines does Z2

topological order survive; i.e., the system goes to another
ground state after adiabatic global spin rotation 0 → 2π .

All the tensors are real and thus satisfy time-reversal
symmetry. The lattice symmetries (e.g., translation symmetry)
can be extended by Z2 invariant gauge group (IGG) and
the projective representations are classified by the projective
symmetry group (PSG) method [4,52,64]. In this paper, we
focus on one particular PSG class in which the translation
symmetry has a trivial projective representation and all tensors
are generated by translation transformations on tensors T1,2

and Ms1,s2,s3 , which is further discussed in Sec. III.
We stress that keeping track of gauge symmetry throughout

the entire computation is essential to generate certain topolog-
ical states in 2D TNS. Once the IGG of 2D TNS is known, a
basis set for the degenerate ground states can be obtained by
gauge transformations [85–87]. One may naively expect that
the gauge symmetry on the virtual legs should automatically
emerge after the numerical optimizations. However, this is
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not always true for 2D topologically ordered TNSs due to
the following two reasons: (1) The gauge symmetry in 2D
TNSs is a necessary condition for topological order at the
thermodynamic limit [29]. Adding a small perturbation to
the tensor that violates the gauge symmetry will completely
destroy the topological order [29]. (2) Balents [88] pointed
out that on an infinite lattice the variational energy density of
a topologically ordered state can be approximated arbitrarily
close by a state in a different topological class. Therefore,
gauge symmetry is crucial to determine the phase of the
KAFHM.

III. SYMMETRIC SIMPLE UPDATE

We develop an intuitive and simple method to keep
track of symmetries during numerically truncated singular
value decomposition (SVD), whose details can be found
in Appendix A. It can be easily integrated in several TNS
algorithms, including imaginary-time evolution and TRG. In
practice, we find it also efficient. In this section, we explain
how to use it to keep symmetries in a simple update algorithm
to find the ground states.

We apply the imaginary-time evolution operator exp(−τH )
on an initial symmetric TNS to approach the ground state
in the limit τ → ∞. We increase the multiplet dimension
D∗ from D∗ = 2 (D = 3) gradually in a symmetric update.
For D∗ = 2, the vector space of virtual legs is composed
of spin-0 and spin-1/2, VD∗=2 = Vj=0 ⊕ Vj=1/2, and TNS
can describe four different PSG classes of nearest-neighbor
(NN) resonating-valence-bond (RVB) states withZ2 toric code
topological order [52,64,89]. The PSG classification is also
valid for large bond dimensions [64] where further RVB bonds
longer than NN ones are involved. In this paper, we will focus
on one particular PSG class, named the Q1 = Q2 state in Ref.
[47], which has been suggested as a promising ground state
[59]. The translation symmetry for the Q1 = Q2 state has
trivial PSG in TNSs.

In the update procedure, we use our method in Appendix A
to preserve symmetries. The bond dimension of the TNS
should be selected carefully and we use 2π SU(2) rotation
symmetry to remove round-off errors. 2π SU(2) rotation
symmetry is a diagonal matrix with diagonal elements 1 for
integer j and −1 for half-integer j . In every step of the
symmetric update, a 2π SU(2) rotation matrix can be obtained.
We set the elements to exact integers 0 (off-diagonal), −1, and
1 (diagonal) to remove round-off errors and then symmetrize
the tensors.

The above symmetric update can be easily implemented in
a simple update [63,90], cluster update [91], and full update
[92]. In this paper, we utilize the simple update algorithm [63]
to approach the ground state illustrated in Fig. 1. Besides the
symmetrization, we use the high-order orthogonal iteration
(HOOI) method [80,81] instead of high-order SVD (HOSVD)
as in Ref. [63]. If we keep multiplet dimension D∗ = 2 fixed,
we find that the Q1 = Q2 NN RVB state is the fixed-point
TNS after many successive imaginary-time evolution steps.
This is very different from the nonsymmetric simple update
[63] where the NN RVB state is not the fixed-point TNS. More
simple update details can be found in Appendix B.

Here we list the spin collection on virtual legs for different
multiplet dimension D∗:

JD∗=2 = {
0, 1

2

}
,

JD∗=3 = {
0, 1

2 ,1
}
,

JD∗=4 = {
0, 1

2 ,1, 1
2

}
,

JD∗=5 = {
0, 1

2 ,1, 1
2 ,0

}
,

JD∗=6 = {
0, 1

2 ,1, 1
2 ,0, 3

2

}
,

JD∗=7 = {
0, 1

2 ,1, 1
2 ,0, 3

2 ,1
}
,

JD∗=8 = {
0, 1

2 ,1, 1
2 ,0, 3

2 ,1, 1
2

}
,

JD∗=12 = {
0, 1

2 ,1, 1
2 ,0, 3

2 ,1, 1
2 ,1, 1

2 ,0,2
}
,

JD∗=20 = {
0, 1

2 ,1, 1
2 ,0,1, 3

2 , 1
2 , 1

2 ,1, 0,0, 3
2 ,1, 1

2 ,2, 1
2 ,1, 3

2 , 1
2

}
.

(8)

IV. SYMMETRIC TRG AND MODULAR
MATRIX EVALUATIONS

Given a TNS, we need to evaluate the norm of the wave
function:

〈ψ |ψ〉 = tTr[T1T2 · · · ], (9)

whereT1,2 are coined “double tensors” and defined as follows:

T1 =
∑

s1,s2,s3

(
TMs1s2s3

1

)∗
TMs1s2s3

1 ,

T2 = T ∗
2 T2, (10)

with TMs1s2s3
1 = tTr(T1M

s1Ms2Ms3 ).
Let us first explain our TRG scheme without symmetries

which is improved from TRG in Ref. [94]. The TRG is shown
diagrammatically in Fig. 2. We take the six-leg tensors T ≡
tTr(T1T2T1T2T1T2) as shown on the left in Fig. 2 as the
unit cell of the next coarse-graining lattice. The honeycomb
lattice turns out to be the triangular lattice composed of T .

HOOI

1 2

1

1

2

3

1

2

3

FIG. 2. TRG diagrammatic scheme. The original honeycomb
lattice can be taken as a triangular lattice in which the unit cell
is the six-leg tensor T ≡ tTr(T1T2T1T2T1T2) as shown on the left.
The triangular lattice TN can be deformed into a TN on a honeycomb
lattice [93].
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1 2 1 2

S,T

S,T

0;
S,T

S,T

S,T S,T

S, T

FIG. 3. Modular matrices. After every step of TRG, we contract
T1,2 into T1T2 and put it on the torus as described by the dashed
squares. Due to SU(2) symmetry, the result of contracting a single
T1T2 is zero. So we need four T1T2 tensors to evaluate modular
matrices.

We use the HOOI method to decompose the six-leg tensor T
on the left into one core tensor (red) and three joint tensors
S1,2,3 (black). The core tensor and the contracted tensor from
S1,2,3 are new double tensors T1 and T2 in the next TRG
step. This is similar to Fig. 12 and Fig. 13 in Ref. [93]. In
practice, we only store T1,2 and S1,2,3 in memory. During
HOOI, we do not store the whole six-leg tensor T explicitly,
but access the tensor by evaluating tensor contractions (matrix-
vector multiplication) during truncated SVD. We use LMSVD

[95] to do the truncated SVD in HOOI. The whole memory cost
is O(χ3) and the computational cost is O(χ5) where χ = D2

is the bond dimension for double tensors.
Given IGG of TNS on a torus, we can insert gauge fluxes

to pump the ground state from one to another, ψ(g → g′,h →
h′). Now we are able to use the universal wave-function overlap
method [20,21] to calculate the modular matrices:

T = 〈ψ(g′,h′)|ψ(g,gh)〉 = tTr[T1T2 ◦ (gT hT ) · · · ],

S = 〈ψ(g′,h′)|ψ(h,g−1)〉 = tTr[T1T2 ◦ (gShS) · · · ], (11)

where gT = g′ ⊗ g, hT = h′ ⊗ gh, gS = g′ ⊗ h, and hS =
h′ ⊗ g−1. g′,h′ and g,h are in IGG acting on the bra and ket,
and on the vertical and horizontal boundaries, respectively. See
Fig. 3 for a diagrammatic representation. After every step of
TRG, we contract T1,2 into T1T2 and put them on the torus to
evaluate the modular S and T matrices as illustrated in Fig. 3.

V. IDENTIFY A GAP FROM MODULAR MATRICES

In this section, we will show that the modular matrix is a
very sensitive probe for the gap of the ground state and we can
use it to determine the topological order for a gapped ground
state. For gapped and gapless ground states, the TRG flow of
modular matrices has very different behaviors [21]. To justify
the modular matrix method of determining gapped/gapless
states, we will study the TRG flow of universal ratio Q in
Eq. (13). Also from the convergence speed of the TRG flow
of Q, we can estimate the correlation length for the gapped
ground state.

A. Modular matrices for a kagome spin liquid TNS

As we have explained in Sec. IV, in order to compute
modular matrices, we need to keep gauge symmetries during
TRG. The converged modular matrices for our TNS ground
states are

S =

⎛
⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎠, T =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠, (12)

which are identical to modular matrices for the Z2 toric code
phase in the string basis [19]. Modular matrices in Eq. (12)
provide complete information of the topological order [16,23],
where the mutual statistics and topological spins of anyons can
be read off from S and T elements, respectively. This is beyond
the state-of-the-art DMRG computations which support theZ2

gapped spin liquid [66–68], only demonstrated by topological
entanglement entropy.

B. TRG flow of modular matrices for a gapless state

Since each iteration step in our calculation introduces a
truncation error, if we run many steps of iterations, the trunca-
tion errors will accumulate and the result of the calculation will
be dominated by the truncation errors. So we need to estimate
the maximum iteration step that we can run safely before the
truncation errors destroy our result.

For this purpose, we compute the modular matrices for the
TNS at critical points where the truncation errors are largest.
We compute the modular matrices for the ideal wave function
for the toric code model with string tension g = 0.802. See
Ref. [21] for more details about this wave function. It is
actually the critical point of the condensation phase transition
between the toric code and trivial phase [21]. If there is no
truncation error (for the case of an infinite bond dimension),
the tensor will flow to a fixed-point tensor, which will give rise
to the fixed-point modular matrices.

To manifest the convergence or divergence of a TRG flow,
we define the following universal ratio during the TRG flow:

Q = trace(S)

|det(S)|1/4
. (13)

We expect that Q converges after NRG steps of TRG when
tensors flows to fixed points.

For the critical toric code model [21] with the truncated
bond dimension χ = 144, the TRG flow of the universal ratio
Q is shown in Fig. 4. We find that Q indeed quickly approaches
a constant. But after 10 ∼ 12 iteration steps, Q starts to blow
up. This is caused by the truncation error introduced by the
finite bond dimension. So, we see that for bond dimension
χ = 144, we can perform 10 steps of iteration safely. This
demonstrates the validity of TRG within 10 iteration steps
where the system reaches the size with 210 spins.

C. TRG flow of modular matrices for a kagome spin liquid TNS

In the previous subsection, we justify that the TRG method
can handle very large systems with thousands of spins even
for a critical-state wave function. Now we are ready to
implement it to study our SU(2) TNS wave function. In
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5 10 15 20
NRG

0

2

4

6

8

10

12
Q

Number of spins = 2NRG

FIG. 4. The universal ratio Q [Eq. (13)] vs number of TRG steps
NRG for a toric code TNS at the critical point [21]. The system has
2NRG spins after NRG steps of the TRG iteration.

Fig. 5, we also plot the TRG flow of the universal ratio Q

for our SU(2)-symmetric TNS with the truncated total (not
multiplet) bond dimension χ = 140. We see that we obtain
the fixed-point modular matrices after only 3 ∼ 4 steps of
iterations. We still expect the TRG to be valid within 10
iteration steps. So the fixed-point modular matrices obtained
after 4 steps of iterations are valid, reliable results. We note
that at 3 steps of iterations, the modular matrices are calculated
from a system of 4 × 3Nc

RG+1 = 324 spins. Therefore, we can
only detect the gap in the kagome Heisenberg model on a
system with more than 300 ∼ 400 spins.

The modular matrices converge to the fixed-point value
only after 3 ∼ 4 TRG steps. From the convergence speed of
modular matrices, we can estimate the correlation length in our
TNS, ξ ∼ 2 × 3Nc

RG/2, in terms of the unit cell length (which is
the square root of the kagome unit cell area), where Nc

RG is the
number of TRG steps after which modular matrices converge.
From the S-matrix data for every TRG step, we can estimate
Nc

RG = 3 and the correlation length ξ ∼ 10 kagome unit cells.

1 2 3 4 5 6 7 8 9 10
NRG

0

1

2

3

4

Q

Number of spins = 4× 3NRG+1

FIG. 5. The universal ratio Q [Eq. (13)] vs number of TRG steps
NRG for our SU(2)-symmetric TNS for the kagome Heisenberg model.
The system has 4 × 3NRG+1 spins after NRG steps of the TRG iteration.

0.02 0.04 0.06 0.08
τ

12.16

12.17

12.18

12.19

12.2

f
(τ

)

f(τ ) = 0.031τ 3 − 0.0529τ 2 − 0.4369τ + 12.204

data
   cubic fitting

FIG. 6. Polynomial fitting of the free energy f (τ ). D∗ = 12 and
truncation multiplet dimension is χ∗ = 650 where the corresponding
truncated bond dimension χ is larger than 1000. The linear coefficient
is the variational energy e0 = −0.4369. All the fitting coefficients are
accurate within a 95% confidence interval.

One might point out that the correlation length ξ ∼ 10
kagome unit cells indicates a gapless critical phase since
the length of 10 unit cells is pretty close to infinity for
most numerical simulations. But 10 unit cells is not infinity
for the TRG simulation used in this paper. By studying the
quantum critical state where the TRG simulation has the worst
truncation errors, Refs. [77,78] found that the TRG simulation
can handle a very large system size with a length of over 30 unit
cells, since highly accurate critical exponents were obtained
from calculations on such large systems. In the previous
subsection, we directly justify this point via the TRG flow
of modular matrices on a critical point. So the obtained long
correlation length, ξ ∼ 10 kagome unit cells, should be valid.
This also explains the gapless behaviors in recent simulations
on a smaller system [69–72,79]. The magnetic order scaling
behavior in Ref. [70] might not be sensitive enough to resolve
such a long correlation length.

VI. GROUND-STATE ENERGY

For the ground-state energy e0 = 〈ψ |H� + H�)|ψ〉/N , we
expand the τ -dependent free energy

f (τ ) = 1

N
[ln Z�(τ ) + ln Z�(τ )]

= f0 − τe0 + O(τ 2), (14)

where

Z�/�(τ ) = 〈ψ | exp(−τH�/�)|ψ〉 (15)

is evaluated as the norm of uniform tensors. The polynomial
fitting of the free energy f (τ ) for a TNS with multiplet
dimension D∗ = 12 (D = 29) is shown in Fig. 6 and the
ground-state energy is e0 = −0.4369. Here, to compute
the variational energy, we utilize the state-of-the-art SU(2)-
symmetry implementation [82–84,96].

We provide our energy results as illustrated in Fig. 7.
For all the bond dimensions, we perform 10-step TRG to
obtain the energy. With increasing of the multiplet dimension
D∗, the energy gradually decreases. The maximum multiplet
dimension D∗ in our simulations is D∗ = 12 with variational
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data
MERA, Evenbly et al (2010)
Series expansion, Singh et al (2008)
DMRG rigorous upper bound, Yan et al (2011)
DMRG estimation, Yan et al (2011)
(Non-symmetric) TNS, Xie et al (2014)
Lanczos+VMC, Iqbal et al (2013)
Coupled Cluster, Gotze et al (2011)
DMRG, Depenbrock et al (2012)

FIG. 7. Variational energy of S = 1/2 KHAFM for different
multiplet dimensions D∗. The upper bounds on the ground-state en-
ergy obtained by the multiscale entanglement renormalization ansatz
(MERA) [57], the variational energies obtained by series-expansion
methods [54], DMRG [66,68], Lanczos improved variational Monte
Carlo [62], coupled-cluster expansion [65], and nonsymmetric TNS
[63] are also shown for comparison.

energy per site e0 = −0.4369. The energy comparison with
other results is also displayed in Fig. 7.

VII. CONCLUSION AND DISCUSSION

In conclusion, we study the kagome antiferrgomagnetic
Heisenberg model through a symmetric tensor network
approach. By keeping all the symmetries including SU(2)
spin rotation, time-reversal, and translation symmetries, we
obtain a symmetric TNS via a long imaginary-time evolution.
By computing modular matrices, we show that the kagome
Heisenberg model is a gapped spin liquid with the Z2

topological order. From the system-size dependence of the
modular matrices, we infer a long correlation length of around
10 unit cells implying a small finite gap. Furthermore, our
variational energy per site is e0 = −0.4369 up to multiplet
dimension D∗ = 12, which is 0.3% higher than that of
DMRG [68].

Experimentally, the spin gap in the kagome spin liquid
is confirmed in NMR [44,45] and neutron scattering [43].
The fractional spin excitations (spinons) have been detected
as fractionalized spin-wave continuum in neutron scattering
measurements [42,43]. Furthermore, the spin-1/2 quantum
number of spinons is revealed in NMR measurements [45].
The experimental evidence (e.g., gap and spin-1/2 quantum
number) exclusively supports the Z2 gauge type (i.e., toric
code type) topological order in the kagome spin liquid
according to the theoretical argument [73]. With the help of
SU(2) symmetry in our local tensors, we can use the quantum
transfer matrix [97] to resolve the topological information (in-
cluding nonuniversal information, such as correlation lengths)
for low-energy excitations. Fractionalized spin excitations in
neutron experiments [42] have been interpreted in terms of
bosonic spinons in Ref. [98] and fermionic spinons in Ref.
[99]. Bosonic and fermionic spinons have different symmetry
fractionalizations and then are potentially resolved and verified
in the neutron scattering experiments [99].
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APPENDIX A: KEEPING TRACK OF SYMMETRIES

There are two resources in TNS algorithms that violate the
gauge symmetry and thus “kill” the topological order. The
first one is the wrongly truncated singular vectors in truncated
singular value decomposition (SVD). The second one is the
floating-point round-off error in numerical SVD. Here we take
a simple example to explain how to get rid of these errors in
the truncated SVD.

Suppose we have a two-leg tensor (matrix) M with a
symmetry G:

∑
j1,j2

G1(i1,j1)G2(i2,j2)M(j1,j2) = M(i1,i2), (A1)

where G1,G2 ∈ G are on different legs. The truncated
SVD is usually implemented to minimize the cost function
‖M − M̃‖2:

M = USV T → M̃ = Ũ S̃Ṽ T . (A2)

Here S̃ contains only the Dcut largest singular values and
Ũ ,Ṽ contain Dcut corresponding singular vectors. Since M

has a symmetry G as shown in Eq. (A1), the singular values
are degenerate. The truncated bond dimension Dcut should
be carefully selected such that the truncated singular vectors
contain all degenerate ones.

If we keep all degenerate singular values up to a certain
threshold, truncation error in SVD does not break any
symmetry; i.e., the truncated singular vector space has the
symmetry satisfying the following symmetry condition:

G1ŨG̃ = Ũ , G̃−1Ṽ T G2 = Ṽ T . (A3)

Here G̃ is the symmetry matrix on the decomposed leg, and
can be easily obtained from the symmetry condition Eq. (A3).
Generally, G1,2 are unitary and then we have the unitarity
condition for symmetries on the decomposed bond, G̃†G̃ = 1.
However, round-off error may violate the unitarity. After fixing
the unitarity, we symmetrize the tensor Ũ and Ṽ according to
the symmetry condition Eq. (A3) and then round-off error is
removed.

APPENDIX B: SIMPLE UPDATE

In this Appendix, we briefly introduce the simple update
algorithm which is utilized in our work to find the ground
states with TNS. For more details of the simple update, we
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refer to Ref. [63]. The basic idea of the simple update is
to use a relatively simple environment for the local tensors
when truncating the bond dimension during imaginary-time
evolution. The algorithm goes as follows.

First of all, the imaginary-time evolution operator
exp(−τH ) is not a local operator although the Hamiltonian
is made of local terms. It is an exponentially large matrix with
respect to the system size. However, the evolution operator can
be decomposed approximately according to the Trotter-Suzuki
formula when τ � 1:

e−2τH = e−τH�e−τH�e−τH�e−τH� + O(τ 3), (B1)

where H = H� + H�; H� and H� are the interactions
defined, respectively, on all upward and downward triangles.
And we apply the evolution operator e−τH� , e−τH� , e−τH� ,
and e−τH� successively to the TNS over many iterative steps.
Since all the terms in H� commute, e−τH� can be decomposed
into a product of local evolution operators. This is similar
for e−τH� . In this step, the symmetry between upward- and
downward-oriented triangles is broken in the sense that the
energies of upward- and downward-triangles may be different.
This symmetry breaking can be fixed when we take a very
small value of τ in every iteration.

A diagrammatic representation of the evolution e−τH� is
shown in Fig. 1(b) in the main text. After the local evolution
operators act on local tensors, the products of tensors on the
upward triangles turn out to be e−τH� tTr(T1M

1M2M3) as
shown on the left of Fig. 1(b), which is a three-leg tensor
with dimension dD × dD × dD. When we decompose this
tensor to elementary ones and do truncation, the effect of the
environment is included by introducing a positive bond vector
λ to mimic the environment [not shown in Fig. 1(b)], which
is square root of singular values from the last iteration. In
Ref. [63], truncated high-order singular value decomposition
(T-HOSVD) is used to get new approximate tensors after
evolution. However, since T-HOSVD is not the optimal
truncation [81], we use the high-order orthogonal iteration
(HOOI) method to do the truncation [80,81].

During the symmetric update, we decrease the Trotter time
τ from 10−3 to 10−6. When τ is relatively large, the singular
value weights on up-triangle and down-triangle are slightly
different. With decreasing τ , the difference diminishes less
than 10−8. Also we find singular values weights have the 2π/3
lattice rotation symmetry. Our states are symmetric within
numerical error.

Although we use HOOI for the optimal truncation, the
HOOI approximation is still not a global approximation.
More precisely, the HOOI approximation is not the global
approximation for the updated wave functions. It only involves
local tensors. In a simple update, the issue is considered
by inserting diagonal matrices between nearest local tensors,
which are used to simulate the environment of local tensors
self-consistently [90].

Therefore, the problem with a simple update is that it
does not take precise account of the environment for local
tensors which are updated in each iteration. Hence it may
underestimate the long-range correlation or entanglement of
the spins with small bond dimension. It is generally believed
that a more refined method such as a full update [92] can fix
this issue.

The spin collection J of SU(2) spins on the virtual legs
of local tensors may be influenced by the update method.
Here we have utilized a simple update to arrive at these bond
dimensions and the corresponding gauge structure. We stress
that they cannot be arbitrary spins in the following.

Because the local tensors are invariant under SU(2) rotation,
Eq. (4) in the main text, all the spins on the legs of local
tensors should form a spin singlet. In other words, tensors
T1,2 and Ms1,s2,s3 only contain the trivial representation of the
tensor products of three SU(2) representations whose coupling
coefficients are known as 3j symbols. Hence, the set J cannot
be an arbitrary collection of spins. The choice of J must be
able to form a spin singlet.

For example, in the case of D = 3, J cannot be a spin-1,
although the Hilbert space of spin-1 is 3-dimensional. The
reason is that, together with the physical spin-1/2, Msi cannot
form a spin singlet. See Eqs. (4) and (5) in the main text. On
the contrary, we need to select {0, 1

2 } whose Hilbert space is
also 3-dimensional.
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