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The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19,
2016, saw the first detections of gravitational waves from binary black hole mergers. In this paper, we
present full results from a search for binary black hole merger signals with total masses up to 100M⊙ and
detailed implications from our observations of these systems. Our search, based on general-relativistic
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models of gravitational-wave signals from binary black hole systems, unambiguously identified two
signals, GW150914 and GW151226, with a significance of greater than 5σ over the observing period. It
also identified a third possible signal, LVT151012, with substantially lower significance and with an 87%
probability of being of astrophysical origin. We provide detailed estimates of the parameters of the
observed systems. Both GW150914 and GW151226 provide an unprecedented opportunity to study the
two-body motion of a compact-object binary in the large velocity, highly nonlinear regime. We do not
observe any deviations from general relativity, and we place improved empirical bounds on several high-
order post-Newtonian coefficients. From our observations, we infer stellar-mass binary black hole merger
rates lying in the range 9–240 Gpc−3 yr−1. These observations are beginning to inform astrophysical
predictions of binary black hole formation rates and indicate that future observing runs of the Advanced
detector network will yield many more gravitational-wave detections.

DOI: 10.1103/PhysRevX.6.041015 Subject Areas: Gravitation

I. INTRODUCTION

The first observing run (O1) of the Advanced LIGO
detectors took place from September 12, 2015, to January
19, 2016. The detectors provided unprecedented sensitivity
to gravitational waves over a range of frequencies from
30 Hz to several kHz [1], which covers the frequencies of
gravitational waves emitted during the late inspiral, merger,
and ringdown of stellar-mass binary black holes (BBHs). In
this paper, we report the results of a matched-filter search
using relativistic models of BBH waveforms during the
whole of the first Advanced LIGO observing run. The
compact binary coalescence (CBC) search targets gravita-
tional-wave emission from compact-object binaries with
individual masses from 1M⊙ to 99M⊙, total mass less than
100M⊙, and dimensionless spins up to 0.99. Here, we
report on results of the search for BBHs. The search was
performed using two independently implemented analyses,
referred to as PyCBC [2–4] and GstLAL [5–7]. These
analyses use a common set of template waveforms [8–10]
but differ in their implementations of matched filtering
[11,12], their use of detector data-quality information [13],
the techniques used to mitigate the effect of non-Gaussian
noise transients in the detector [5,14], and the methods for
estimating the noise background of the search [3,15]. We
obtain results that are consistent between the two analyses.
The search identified two BBH mergers: GW150914,

observed on September 14, 2015 at 09∶50:45 UTC [16],
and GW151226, observed on December 26, 2015 at
03∶38:53 UTC [17]. Both of these signals were observed
with a significance greater than 5σ. In addition, a third
candidate event, LVT151012, consistent with a BBH
merger was observed on October 12, 2015 at 09∶54:43
UTC with a significance of ≲2σ. Although LVT151012 is
not significant enough to claim an unambiguous detection,
it is more likely to have resulted from a gravitational-wave
signal than from an instrumental or environmental noise
transient. The key parameters of the events are summarized
in Table I.
The properties of the sources can be inferred from the

observed gravitational waveforms. In particular, the binary

evolution, which is encoded in the phasing of the gravi-
tational-wave signal, is governed by the masses and spins
of the binary components. The sky location of the source is
primarily determined through time of arrival differences at
the two Advanced LIGO sites. The observed amplitudes
and relative phase of the signal in the two Advanced LIGO
detectors can be used to further restrict the sky location and
infer the distance to the source and the binary orientation.
We provide a detailed evaluation of the source properties
and inferred parameters of GW150914, GW151226, and
LVT151012. We use models of the waveform covering the
inspiral, merger, and ringdown phases based on combining
post-Newtonian (PN) theory [19–24], the effective-one-
body (EOB) formalism [25–29], and numerical relativity
simulations [30–36]. One model is restricted to spins
aligned with the orbital angular momentum [8,9], while
the other allows for nonaligned orientation of the spins,
which can lead to precession of the orbital plane [37,38].
The parameters of GW150914 have been reported pre-
viously in Refs. [39,40]. We provide revised results which
make use of updated instrumental calibration.
The emitted signals depend upon the strong field

dynamics of general relativity; thus, our observations
provide an extraordinary opportunity to test the predictions
of general relativity for binary coalescence waveforms.
Several tests of general relativity were performed using
GW150914, as described in Ref. [41]. One of these was a
parametrized test for the consistency of the observed
waveform with a general-relativity-based model. We per-
form a similar test on GW151226. Since this source is of
lower mass than GW150914, the observed waveform lasts
for many more cycles in the detector data, allowing us to
better constrain the PN coefficients that describe the
evolution of the binary through the inspiral phase. In
addition, we combine the results from GW150914 and
GW151226 to place still tighter bounds on deviations from
general relativity.
The observed events begin to reveal a population of

stellar-mass black hole mergers. We use these signals to
constrain the rates of BBH mergers in the universe and
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begin to probe the mass distribution of black hole mergers.
The inferred rates are consistent with those derived from
GW150914 [42]. We also discuss the astrophysical impli-
cations of the observations and the prospects for future
Advanced LIGO and Virgo observing runs.
The results presented here are restricted to BBH systems

with total masses less than 100M⊙. Searches for compact
binary systems containing neutron stars are presented in
Ref. [43], and searches for more massive black holes and
unmodeled transient signals will be reported elsewhere.
This paper is organized as follows: Section II provides

an overview of the Advanced LIGO detectors during
the first observing run, as well as the data used in the
search. Section III presents the results of the search,
details of the two gravitational-wave events, GW150914
and GW151226, and the candidate event LVT151012.
Section IV provides detailed parameter-estimation results
for the events. Section V presents results for the consistency
of the two events, GW150914 and GW151226, with the
predictions of general relativity. Section VI presents the
inferred rate of stellar-mass BBH mergers, and Sec. VII
discusses the implications of these observations and future
prospects. We include appendixes that provide additional
technical details of the methods used. AppendixA describes
the CBC search, with A 1 and A 2 presenting details of the
construction and tuning of the two independently imple-
mented analyses used in the search, highlighting differences
from the methods described in Ref. [44]. Appendix B
provides a description of the parameter-estimation analysis

and includes a summary table of results for all three events.
Appendixes C and D provide details of the methods used to
infer merger rates and mass distributions, respectively.

II. OVERVIEW OF THE INSTRUMENTS
AND DATA SET

The two Advanced LIGO detectors, one located in
Hanford, Washington (H1) and one in Livingston,
Louisiana (L1), are modified Michelson interferometers
with 4-km-long arms. The interferometer mirrors act as test
masses, and the passage of a gravitational wave induces a
differential arm length change which is proportional to the
gravitational-wave strain amplitude. The Advanced LIGO
detectors came online in September 2015 after a major
upgrade targeting a tenfold improvement in sensitivity over
the initial LIGO detectors [45]. While not yet operating at
design sensitivity, both detectors reached an instrument
noise 3–4 times lower than ever measured before in their
most sensitive frequency band between 100 Hz and 300 Hz
[1]. The corresponding observable volume of space for
BBH mergers, in the mass range reported in this paper, was
about 30 times greater, enabling the successful search
reported here.
The typical instrument noise of the Advanced LIGO

detectors during O1 is described in detail in Ref. [46]. In the
left panel of Fig. 1, we show the amplitude spectral density
of the total strain noise of both detectors,

ffiffiffiffiffiffiffiffiffi
SðfÞp

, calibrated
in units of strain per

ffiffiffiffiffiffi
Hz

p
[47]. Overlaid on the noise curves

TABLE I. Details of the three most significant events. The false alarm rate, p-value, and significance are from the PyCBC analysis; the
GstLAL results are consistent with this. For source parameters, we report median values with 90% credible intervals that include
statistical errors, and systematic errors from averaging the results of different waveform models. The uncertainty for the peak luminosity
includes an estimate of additional error from the fitting formula. The sky localization is the area of the 90% credible area. Masses are
given in the source frame; to convert to the detector frame, multiply by (1þ z). The source redshift assumes standard cosmology [18].

Event GW150914 GW151226 LVT151012

Signal-to-noise ratio ρ 23.7 13.0 9.7
False alarm rate FAR=yr−1 < 6.0 × 10−7 < 6.0 × 10−7 0.37
p-value 7.5 × 10−8 7.5 × 10−8 0.045
Significance > 5.3σ > 5.3σ 1.7σ
Primary mass msource

1 =M⊙ 36.2þ5.2
−3.8 14.2þ8.3

−3.7 23þ18
−6

Secondary mass msource
2 =M⊙ 29.1þ3.7

−4.4 7.5þ2.3
−2.3 13þ4

−5
Chirp mass Msource=M⊙ 28.1þ1.8

−1.5 8.9þ0.3
−0.3 15.1þ1.4

−1.1
Total mass Msource=M⊙ 65.3þ4.1

−3.4 21.8þ5.9
−1.7 37þ13

−4
Effective inspiral spin χeff −0.06þ0.14

−0.14 0.21þ0.20
−0.10 0.0þ0.3

−0.2
Final mass Msource

f =M⊙ 62.3þ3.7
−3.1 20.8þ6.1

−1.7 35þ14
−4

Final spin af 0.68þ0.05
−0.06 0.74þ0.06

−0.06 0.66þ0.09
−0.10

Radiated energy Erad=ðM⊙c2Þ 3.0þ0.5
−0.4 1.0þ0.1

−0.2 1.5þ0.3
−0.4

Peak luminosity lpeak=ðerg s−1Þ 3.6þ0.5
−0.4 × 1056 3.3þ0.8

−1.6 × 1056 3.1þ0.8
−1.8 × 1056

Luminosity distance DL=Mpc 420þ150
−180 440þ180

−190 1000þ500
−500

Source redshift z 0.09þ0.03
−0.04 0.09þ0.03

−0.04 0.20þ0.09
−0.09

Sky localization ΔΩ=deg2 230 850 1600
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of the detectors, the waveforms of GW150914,
GW151226, and LVT151012 are also shown. The expected
signal-to-noise ratio (SNR) ρ of a signal, hðtÞ, can be
expressed as

ρ2 ¼
Z

∞

0

ð2j ~hðfÞj ffiffiffi
f

p Þ2
SnðfÞ

d lnðfÞ; ð1Þ

where ~hðfÞ is the Fourier transform of the signal. Writing it
in this form motivates the normalization of the waveform
plotted in Fig. 1, as the area between the signal and noise
curves is indicative of the SNR of the events.
The gravitational-wave signal from a BBH merger takes

the form of a chirp, increasing in frequency and amplitude
as the black holes spiral inwards. The amplitude of the
signal is maximum at the merger, after which it decays
rapidly as the final black hole rings down to equilibrium. In
the frequency domain, the amplitude decreases with fre-
quency during inspiral, as the signal spends a greater
number of cycles at lower frequencies. This is followed
by a slower falloff during merger and then a steep decrease
during the ringdown. The amplitude of GW150914 is
significantly larger than the other two events, and at the
time of the merger, the gravitational-wave signal lies well
above the noise. GW151226 has a lower amplitude but
sweeps across the whole detector’s sensitive band up to
nearly 800 Hz. The corresponding time series of the three
waveforms are plotted in the right panel of Fig. 1 to better
visualize the difference in duration within the Advanced
LIGO band: GW150914 lasts only a few cycles, while
LVT151012 and GW151226 have lower amplitudes but last
longer.
The analysis presented in this paper includes the total set

of O1 data from September 12, 2015 to January 19, 2016,

which contain a total coincident analysis time of 51.5 days
accumulated when both detectors were operating in their
normal state. As discussed in Ref. [13] with regard to the
first 16 days of O1 data, the output data of both detectors
typically contain nonstationary and non-Gaussian features,
in the form of transient noise artifacts of varying durations.
Longer duration artifacts, such as nonstationary behavior in
the interferometer noise, are not very detrimental to CBC
searches as they occur on a time scale that is much longer
than any CBC waveform. However, shorter duration
artifacts can pollute the noise background distribution of
CBC searches. Many of these artifacts have distinct
signatures [49] visible in the auxiliary data channels from
the large number of sensors used to monitor instrumental or
environmental disturbances at each observatory site [50].
When a significant noise source is identified, contaminated
data are removed from the analysis data set. After applying
this data quality process, detailed in Ref. [51], the remain-
ing coincident analysis time in O1 is 48.6 days. The
analyses search only stretches of data longer than a
minimum duration, to ensure that the detectors are operat-
ing stably. The choice is different in the two analyses and
reduces the available data to 46.1 days for the PyCBC
analysis and 48.3 days for the GstLAL analysis.

III. SEARCH RESULTS

Two different, largely independent, analyses have been
implemented to search for stellar-mass BBH signals in the
data of O1: PyCBC [2–4] and GstLAL [5–7]. Both these
analyses employ matched filtering [52–60] with waveforms
given by models based on general relativity [8,9] to search
for gravitational waves from binary neutron stars, BBHs,
and neutron star–black hole binaries. In this paper, we
focus on the results of the matched-filter search for BBHs.

FIG. 1. Left panel: Amplitude spectral density of the total strain noise of the H1 and L1 detectors,
ffiffiffiffiffiffiffiffiffi
SðfÞp

, in units of strain per
ffiffiffiffiffiffi
Hz

p
,

and the recovered signals of GW150914, GW151226, and LVT151012 plotted so that the relative amplitudes can be related to the SNR
of the signal (as described in the text). Right panel: Time evolution of the recovered signals from when they enter the detectors’ sensitive
band at 30 Hz. Both figures show the 90% credible regions of the LIGO Hanford signal reconstructions from a coherent Bayesian
analysis using a nonprecessing spin waveform model [48].
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Results of the searches for binary neutron stars and neutron
star–black hole binaries are reported in Ref. [43]. These
matched-filter searches are complemented by generic
transient searches which are sensitive to BBH mergers
with total mass of about 30M⊙ or greater [61].
A bank of template waveforms is used to cover the

parameter space to be searched [54,62–65]. The gravita-
tional waveforms depend upon the masses m1;2 (using the
convention that m1 ≥ m2) and angular momenta S1;2 of the
binary components. We characterize the angular momen-
tum in terms of the dimensionless spin magnitude

a1;2 ¼
c

Gm2
1;2

jS1;2j; ð2Þ

and the component aligned with the direction of the orbital
angular momentum, L, of the binary [66,67],

χ1;2 ¼
c

Gm2
1;2

S1;2 · L̂: ð3Þ

We restrict this template bank to circular binaries for which
the spin of the systems is aligned (or antialigned) with the
orbital angular momentum of the binary. The resulting
templates can nonetheless recover systems with misaligned
spins, which will exhibit orbital precession, with good
sensitivity over much of the parameter space, particularly
for near equal-mass binaries [44].
At leading order, the phase evolution during inspiral

depends on the chirp mass of the system [68–70]

M ¼ ðm1m2Þ3=5
M1=5 : ð4Þ

At subsequent orders in the PN expansion, the phase
evolution depends predominantly upon the mass ratio [19]

q ¼ m2

m1

≤ 1; ð5Þ

and the effective spin parameter [71–76]

χeff ¼
m1χ1 þm2χ2

M
; ð6Þ

where M ¼ m1 þm2 is the binary’s total mass. The
minimum black hole mass is taken to be 2M⊙, consistent
with the largest known masses of neutron stars [77]. There
is no known maximum black hole mass [78]; however, we
limit this template bank to binaries with a total mass less
thanM ≤ 100M⊙. For higher-mass binaries, the Advanced
LIGO detectors are sensitive to only the final few cycles of
inspiral plus merger, making the analysis more susceptible
to noise transients. The results of searches for more massive
BBH mergers will be reported in future publications. In
principle, black hole spins can lie anywhere in the range

from −1 (maximal and antialigned) to þ1 (maximal and
aligned). We limit the spin magnitude to less than 0.9895,
which is the region over which the EOBNR waveform
model [8,9] used in the search is able to generate valid
template waveforms [8]. The bank of templates used for the
analysis is shown in Fig. 2.
Both analyses separately correlate the data from each

detector with template waveforms that model the expected
signal. The analyses identify candidate events that are
detected at both the Hanford and Livingston observatories
consistent with the 10-ms intersite propagation time.
Additional signal consistency tests are performed to mit-
igate the effects of nonstationary transients in the data.
Events are assigned a detection-statistic value that ranks
their likelihood of being a gravitational-wave signal. For
PyCBC, the observed SNR in each detector is reweighted
using the signal consistency tests. These reweighted SNRs
are added in quadrature to obtain the detection statistic ρ̂c.
For GstLAL, lnL is the log-likelihood ratio for the signal
and noise models. The detection statistics are compared to
the estimated detector noise background to determine, for
each candidate event, the probability that detector noise
would give rise to at least one equally significant event.
Further details of the analysis methods are available in
Appendix A.
The results for the two different analyses are presented in

Fig. 3. The figure shows the observed distribution of
events, as well as the background distribution used to

FIG. 2. The four-dimensional search parameter space covered
by the template bank shown projected into the component-mass
plane, using the convention m1 > m2. The colors indicate mass
regions with different limits on the dimensionless spin parameters
χ1 and χ2. Symbols indicate the best matching templates for
GW150914, GW151226, and LVT151012. For GW150914 and
GW151226, the templates were the same in the PyCBC and
GstLAL searches, while for LVT151012 they differed. The
parameters of the best matching templates are consistent, up to
the discreteness of the template bank, with the detector frame
mass ranges provided by detailed parameter estimation in Sec. IV.
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assess significance. In both analyses, there are three events
that lie above the estimated background: GW150914,
GW151226, and LVT151012. All three of these are
consistent with being BBH merger signals and are dis-
cussed in further detail below. The templates producing the
highest significance in the two analyses are indicated in
Fig. 2, the gravitational waveforms are shown in Fig. 1, and
key parameters are summarized in Table I. There were no
other significant BBH candidates in the first advanced
LIGO observing run. All other observed events are con-
sistent with the noise background for the search. A follow-
up of the coincident events ρ̂c ≈ 9 in the PyCBC analysis

suggests that they are likely due to noise fluctuations or
poor data quality, rather than a population of weaker
gravitational-wave signals.
It is clear from Fig. 3 that at high significance, the

background distribution is dominated by the presence of
GW150914 in the data. Consequently, once an event has
been confidently identified as a signal, we remove triggers
associated with it from the background in order to get an
accurate estimate of the noise background for lower
amplitude events. The lower panel of Fig. 3 shows the
search results with GW150914 removed from both the
foreground and background distributions.

FIG. 3. Search results from the two analyses. The upper left-hand plot shows the PyCBC result for signals with chirp mass M >
1.74 M⊙ (the chirp mass of anm1 ¼ m2 ¼ 2 M⊙ binary) and fpeak > 100 Hz, while the upper right-hand plot shows the GstLAL result.
In both analyses, GW150914 is the most significant event in the data, and it is more significant than any background event in the data. It
is identified with a significance greater than 5σ in both analyses. As GW150914 is so significant, the high significance background is
dominated by its presence in the data. Once it has been identified as a signal, we remove it from the background estimation to evaluate
the significance of the remaining events. The lower plots show results with GW150914 removed from both the foreground and
background, with the PyCBC result on the left and the GstLAL result on the right. In both analyses, GW151226 is identified as the most
significant event remaining in the data. GW151226 is more significant than the remaining background in the PyCBC analysis, with a
significance of greater than 5σ. In the GstLAL search, GW151226 is measured to have a significance of 4.5σ. The third most significant
event in the search, LVT151012, is identified with a significance of 1.7σ and 2.0σ in the two analyses, respectively. The significance
obtained for LVT151012 is not greatly affected by including or removing background contributions from GW150914 and GW151226.
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A. GW150914

GW150914 was observed on September 14, 2015 at
09∶50:45 UTC with a matched-filter SNR of 23.7 [79]. It is
recovered with a reweighted SNR in the PyCBC analysis of
ρ̂c ¼ 22.7 and a log likelihood of 84.7 in the GstLAL
analysis. A detailed discussion of GW150914 is given in
Refs. [16,39,44], where it was presented as the most
significant event in the first 16 days of Advanced LIGO
observing.The results presentedhere differ from theprevious
ones in twoways: They make use of the full O1 data set, and
they use the final instrumental calibration. Thus, while
GW150914 remains the most significant in this search,
the recovered SNR and significance of the event differ
slightly from the previously reported values. In particular,
for the PyCBC analysis, the event is recovered with slightly
lower SNR than with the preliminary calibration and with a
higher value of the χ2 signal consistency test in the H1
detector. This leads to a reduction of the detection statistic ρ̂c,
from 23.6 in Ref. [16] to the current value of 22.7.
Additionally, for the PyCBC analysis, a redefinition of the
mass bins used to group templates with similar background
caused the significance ofGW150914 to be evaluated against
a different background; for details see Appendix A 1. For the
GstLAL analysis of the full O1 data set, a decrease in the
background probability for GW150914 increased the log
likelihood to 84.7 from the original value of 78.
GW150914 remains the most significant event in both

analyses. Furthermore, in both cases, there are no back-
ground events with significance equal to or greater than
GW150914. Consequently, we can only calculate a limit on
the false alarm rate (FAR) for GW150914. Using the time-
shift method to estimate background, we limit the FAR of
GW150914 to be less than 6.0 × 10−7 yr−1. This corre-
sponds to a p-value of 7.5 × 10−8, or a significance of 5.3σ.
The significance is greater than the 5.1σ derived in
Ref. [44] due to a tripling of the analysis time, which
allows time shifts to probe smaller false alarm rates.
The GstLAL analysis estimates the p-value assuming

that noise triggers are equally likely to occur in any of the
templates within a background bin. Under this assumption,
the p-value of GW150914 is estimated to be 8.8 × 10−12,
which is the minimum p-value that can be informed by the
data. However, as stated in Ref. [44], breaking that
assumption implies that the minimum p-value would be
higher. For this reason, we quote the more conservative
PyCBC bound on the false alarm rate of GW150914 here
and in Ref. [16].

B. GW151226

GW151226 was observed on December 26, 2015 at
03∶38:53 UTC with a combined matched-filter SNR of
13.0. The signal was identified as the second most
significant event in both the PyCBC and GstLAL analyses
with ρ̂c ¼ 12.8 and lnL ¼ 22.6, respectively.

Signal consistency tests show no sign of transient noise
affecting the analyses at this time, and checks of the
instrumental data reveal no serious data quality issues at
the time of the event. When single interferometer triggers
from GW150914 are used in our background estimation
methods, the tail of the distribution is dominated by their
presence. As GW150914 is confidently identified as a
gravitational-wave signal [16], we remove any background
events associated with it from the distribution.
The background distribution, under the assumption that

GW150914 is a gravitational wave, is shown in the bottom
row of Fig. 3. Now, GW151226 is more significant than all
background events in the PyCBC analysis. Its significance
cannot be measured and, as for GW150914, we limit the
FAR to be less than 6.0 × 10−7 yr−1. This corresponds to a
p-value of 7.5 × 10−8, or a significance of 5.3σ. In the
GstLAL analysis, the background extends past the
observed log likelihood of GW151226, and the event is
recovered with a FAR of 1 per 44000 years, which
corresponds to a p-value of 3.5 × 10−6 and a significance
of 4.5σ.

C. LVT151012

The third most significant event in O1 is LVT151012
observed on October 12, 2015 at 09∶54:43 UTC. It was
observed with a combined matched-filter SNR of 9.7 and
detection statistic values ρ̂c ¼ 9.7 and lnL ¼ 18.1. The
SNR of this event is considerably lower than GW150914
and GW151226 and, even though the signal consistency
tests show no signs of noise origin, the search background
is such that the FAR of LVT151012 is 1 per 2.7 years and 1
per 5.9 years in the PyCBC and GstLAL analyses,
respectively. This equates to p-values of 0.045 and
0.025, or significances of 1.7σ and 2.0σ. These results
are consistent with expectations for candidate events with
low matched-filter SNR since PyCBC and GstLAL use
different ranking statistics and background estimation
methods. At the significance of LVT151012, the back-
ground has contributions from a large number of triggers in
each detector and is no longer dominated by the presence of
GW150914 and GW151226 in the data. Consequently,
removing them does not have a large effect on the
significance. For PyCBC, the estimate of the significance
is essentially unaffected by the removal of the events. For
GstLAL, inclusion of GW150914 changes the p-value of
LVT151012 by a factor of 2, but inclusion of GW151226
has little effect.
The significance of LVT151012 is such that we do not

confidently claim this event as a gravitational-wave signal.
However, it is more likely to be a gravitational-wave signal
than noise based on our estimate for the rate of gravita-
tional-wave signals (see Sec. VI). Detector characterization
studies have not identified an instrumental or environmen-
tal artifact as causing this candidate event [13]. Parameter-
estimation results for LVT151012 are presented in the
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following section and are consistent with our expect-
ations for an astrophysical BBH source. The inferred
component masses of LVT151012 lie roughly between
the masses of GW150914 and GW151226, as shown
in Fig. 4.

IV. SOURCE PROPERTIES

In this section, we present the inferred properties of the
sources of GW150914, LVT151012, and GW151226,
assuming that the signals each originate from a binary
coalescence as described by general relativity. Tests of the
consistency of the signal with the predictions of general
relativity are presented in Sec. V. Full results for
GW150914 have been provided in Refs. [39,40], and
key results for LVT151012 have been given in
Ref. [44]. Here, we give results based upon an updated
calibration of the data. The analyses of all three signals

closely mirror the original analysis of GW150914, as
detailed in Ref. [39] and described in Appendix B.
The analysis makes use of two waveform models, the

double aligned spin waveform model (EOBNR) [8,9] and
an effective precessing spin model (IMRPhenom) [36–38].
Results from the two waveforms are similar, and the data
give us little reason to prefer one model over the other. We
therefore average the posterior distributions from two
waveforms for our overall results. These are used for the
discussion below, except in Sec. IV B, where we also
consider measurements of spin alignment from the pre-
cessing IMRPhenom waveform.
The results match our expectations for a coherent

signal in both detectors and give us no reason to suspect
that any of the signals are not of astrophysical origin. All
three signals are consistent with originating from BBHs.
Key parameters for the three events are included in
Table I and plotted in Figs. 4,5, and 6. Detailed results
are provided in Table IV in Appendix B.

FIG. 4. Posterior probability densities of the masses, spins, and distance to the three events GW150914, LVT151012, and GW151226.
For the two-dimensional distributions, the contours show 50% and 90% credible regions. Top left panel: Component massesmsource

1 and
msource

2 for the three events. We use the convention that msource
1 ≥ msource

2 , which produces the sharp cut in the two-dimensional
distribution. For GW151226 and LVT151012, the contours follow lines of constant chirp mass (Msource ¼ 8.9þ0.3

−0.3M⊙ and
Msource ¼ 15:1þ1.4

−1.1M⊙, respectively). In all three cases, both masses are consistent with being black holes. Top right panel: The
mass and dimensionless spin magnitude of the final black holes. Bottom left panel: The effective spin and mass ratios of the binary
components. Bottom right panel: The luminosity distance to the three events.
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A. Masses

The binary component masses of all three systems lie
within the range expected for stellar-mass black holes. The
least massive black hole is the secondary of GW151226,
which has a 90% credible lower bound that msource

2 ≥
5.6M⊙. This is above the expected maximum neutron star
mass of about 3M⊙ [80,81] and beyond the mass
gap where there is currently a dearth of black holes
observed in x-ray binaries [82–84]. The range of our
inferred component masses overlaps with those for stellar-
mass black holes measured through x-ray observations but
extends beyond the nearly 16M⊙ maximum of that
population [85–87].
GW150914 corresponds to the heaviest BBH system

(Msource ¼ 65.3þ4.1
−3.4M⊙) we observed, and GW151226

corresponds to the least massive (Msource ¼ 21.8þ5.9
−1.7M⊙).

Higher mass systems merge at a lower gravitational-wave
frequency. For lower-mass systems, the gravitational-wave

signal is dominated by the inspiral of the binary compo-
nents, whereas for higher-mass systems, the merger and
ringdown parts of the signal are increasingly important.
The transition from being inspiral dominated to being
merger and ringdown dominated depends upon the sensi-
tivity of the detector network as a function of frequency;
GW150914 had SNR approximately equally split between
the inspiral and post-inspiral phases [41]. Information
about the masses is encoded in different ways in the
different parts of the waveform: The inspiral predominantly
constrains the chirp mass [70,88,89], and the ringdown is
more sensitive to the total mass [90]; hence, the best-
measured parameters depend upon the mass [91–93]. This
is illustrated in the posterior probability distributions for the
three events in Fig. 4. For the lower-mass GW151226 and
LVT151012, the posterior distribution follows curves of
constant chirp mass, but for GW150914, the posterior is
shaped more by constraints on the total mass [94].

FIG. 5. Posterior probability distributions for the dimensionless component spins cS1=ðGm2
1Þ and cS2=ðGm2

2Þ relative to the normal to
the orbital plane L, marginalized over the azimuthal angles. The bins are constructed linearly in spin magnitude and the cosine of the tilt
angles, and therefore have equal prior probability. The left plot shows the distribution for GW150914, the middle plot is for LVT151012,
and the right plot is for GW151226.

FIG. 6. Posterior probability distributions for the sky locations of GW150914, LVT151012, and GW151226 shown in a Mollweide
projection. The left plot shows the probable position of the source in equatorial coordinates (right ascension is measured in hours and
declination is measured in degrees). The right plot shows the localization with respect to the Earth at the time of detection. Hþ and Lþ
mark the Hanford and Livingston sites, and H− and L− indicate antipodal points; H-L and L-H mark the poles of the line connecting the
two detectors (the points of maximal time delay). The sky localization forms part of an annulus, set by the difference in arrival times
between the detectors.
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The mass ratio q also differs between the events. We
infer that GW150914 came from a near equal-mass system
(the 90% credible lower bound of the mass ratio is
q ≥ 0.65), but GW151226 and LVT151012 have posterior
support for more unequal-mass ratios (q ≥ 0.28 and
q ≥ 0.24, respectively). The mass ratio has a large uncer-
tainty, as it is degenerate with the spin of the compact
objects [89,95,96]. This degeneracy could be broken if a
signal contains a clear imprint of precession [97–100], but
we have yet to observe this signature (see Sec. IV B).
Measurement of the mass ratio could inform our under-
standing of the origin of BBH systems.
Following the inspiral, the BBHs merge to form a final

remnant black hole. We estimate the masses of these using
fitting formulas calibrated to numerical relativity simula-
tions [36,101]. Each final mass is 0.95–0.98 of the initial
total mass of the binary components, as similar fractions of
0.02–0.05 are radiated away as gravitational waves. While
predominantly determined by the total mass, the radiated
energy also depends upon the mass ratio and component
spins; our results are consistent with expectations for
moderately spinning black holes [102,103]. The remnant
black holes are more massive than any black hole observed
to date in an x-ray binary, the least massive being
GW151226’s Msource

f ¼ 20.8þ6.1
−1.7M⊙. The final black

hole masses, as well as their spins, are shown in Fig. 4.
The remnant for GW150914 has a mass of Msource

f ¼
62.3þ3.7

−3.1M⊙ and is the most massive stellar-mass black
hole observed to date.
BBH mergers have extremely high gravitational-wave

luminosities: The peak values are 3.6þ0.5
−0.4 × 1056 erg s−1,

3.1þ0.8
−1.8 × 1056 erg s−1, and 3.3þ0.8

−1.6 × 1056 erg s−1 for
GW150914, LVT151012, and GW151226, respectively.
These luminosities are calculated using a fit to nonprecess-
ing numerical-relativity simulations [104], and the uncer-
tainty includes the estimated error from this fit. Whereas the
energy radiated scales with the total mass, the luminosity is
comparable for all three systems. There is some variation
from differences in the mass ratios and spins, and uncer-
tainties in these dominate the overall uncertainty. The
luminosity is independent of the total mass, as this sets
both the characteristic energy scale and characteristic time
scale for the system [105].

B. Spins

An isolated black hole has three intrinsic properties:
mass, spin, and electric charge [106–109]. We expect
the charge of astrophysical black holes to be negligible
[110–112]. Both the masses and spins of the black holes
leave an imprint on the gravitational-wave signal during a
coalescence. The components of the spins parallel to the
orbital angular momentum affect the phasing of the binary,
whereas orthogonal components lead to orbital precession.
The effects of the spins of the binary components are

subdominant, and they are more difficult to constrain than
the masses.
Only weak constraints can be placed on the spin

magnitudes of the binary components: In all cases, the
uncertainty spans the majority of the allowed range of
[0, 1]. We can better infer the spin of the more massive
black hole, as this has a greater impact upon the inspiral.
We find that smaller spins are favored, and we place 90%
credible bounds on the primary spin a1 ≤ 0.7 for
GW150914 and LVT151012, and a1 ≤ 0.8 for GW151226.
Observations for all three events are consistent with

small values of the effective spin: jχeff j ≤ 0.17, 0.28, and
0.35 at 90% probability for GW150914, LVT151012, and
GW151226, respectively. This result indicates that large
parallel spins aligned or antialigned with the orbital angular
momentum are disfavored. Only in the case of GW151226
do we infer a nonzero value of χeff , and from this, we infer
that at least one of the components has a spin of ≥ 0.2 at the
99% credible level.
Misalignment of the component spins with respect to the

orbital angular momentum leads to precession [113]. As a
first approximation, the amount of precession may be
quantified through a single effective precession spin
parameter χp [114]. The inferred distributions for χp are
roughly consistent with our prior expectations after incor-
porating the measured constraints on χeff . The absence of
clear information about precession could be because there
is intrinsically little precession since the binary is orientated
nearly face-on or face-off (see Sec. IV C), which minimizes
the visible effect of precession, or because of a combination
of these effects. Our aligned-spin search has reduced
sensitivity to highly precessing systems [44], which makes
it more probable that we detect nonprecessing systems. We
have yet to find strong evidence for precession but cannot
exclude the possibility of misaligned spins.
The posterior probabilities for the spin magnitudes and

tilts relative to the orbital angular momentum using the
precessing IMRPhenom model are shown in Fig 5. In all
cases, larger spin magnitudes are allowed when the spin is
misaligned: The additional in-plane spin does not change
χeff . For LVT151012 and GW151226, there is significantly
greater uncertainty for the spin of the secondary than for the
primary. This is because the mass ratios for these systems
can be more extreme: For equal mass binaries, both spins
play an equal role in the dynamics, but, as the mass ratio
tends towards zero, the effects of the secondary spin
become negligible.
All three events have final black holes with spins of

about 0.7, as expected for mergers of similar-mass black
holes [115,116]. The final spin is dominated by the
orbital angular momentum of the binary at merger.
Consequently, it is more precisely constrained than the
component spins and is broadly similar across the three
events. The masses and spins of the final black holes are
plotted in Fig. 4.
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The spin of the final black hole, like its mass, is
calculated using fitting formulas calibrated against numeri-
cal relativity simulations. In Ref. [39], we used a formula
that only included contributions from the aligned compo-
nents of spins [101]; we now use an extension of this
formula, which also incorporates the effects of in-plane
spins [117]. The change has a small impact on the final
spin of GW150914 (changing from 0.67þ0.05

−0.06 to 0.68þ0.05
−0.06 )

and a larger effect on GW151226 (changing from
0.72þ0.05

−0.05 to 0.74þ0.06
−0.06 ) as its components have more

significant spins.

C. Distance, inclination, and sky location

The luminosity distance to the source is inversely
proportional to the signal’s amplitude. GW150914
and GW151226 have comparable distance estimates
of DL ¼ 420þ150

−180 Mpc (redshift z ¼ 0.09þ0.03
−0.04 ) and

DL ¼ 440þ180
−190 Mpc (z ¼ 0.09þ0.03

−0.04 ), respectively [118].
GW151226 originates from a lower-mass system than
GW150914; hence, the gravitational-wave signal is intrinsi-
cally quieter, and its SNR is lower than GW150914’s even
though the distances are comparable. LVT151012 is
the quietest signal and is inferred to be at a greater distance
DL ¼ 1000þ500

−500 Mpc (z ¼ 0.20þ0.09
−0.09 ).

In all cases, there is significant fractional uncertainty for
the distance. This is predominantly a consequence of the
degeneracy between the distance and the binary’s inclina-
tion, which also impacts the signal amplitude [95,119,120].
The inclination is only weakly constrained; in all cases,

there is greatest posterior support for the source being either
face-on or face-off (angular momentum pointed parallel or
antiparallel to the line of sight). This is the orientation that
produces the greatest gravitational-wave amplitude, so it is
consistent with the largest distance. The inclination could
potentially be better constrained in a precessing system
[98,121]. Only for GW150914 is there preference for one
of the configurations, with there being greater posterior
support for the source being face-off [39].
Sky localization from a gravitational-wave detector

network is primarily determined by the measured delay
in the signal arriving at the sites, with additional informa-
tion coming from the signal amplitude and phase
[122–124]. For a two-detector network, the sky localization
forms a characteristic broken annulus [125–128]. Adding
additional detectors to the network would improve
localization abilities [129–132]. The sky localizations of
the three events are shown in Fig. 6, including both celestial
coordinates (indicating the origin of the signal) and
geographic coordinates (illustrating localization with
respect to the two detectors). The arrival time at
Hanford relative to Livingston was ΔtHL ¼ 7.0þ0.2

−0.2 ms
for GW150914, ΔtHL ¼ −0.6þ0.6

−0.6 ms for LVT151012, and
ΔtHL ¼ 1.1þ0.3

−0.3 ms for GW151226. Both LVT151012 and
GW151226 are nearly overhead of the two detectors,

which is where we are most sensitive and hence expect to
make most detections [53,133].
The 90% credible region for sky localization is 230 deg2

for GW150914, 850 deg2 for GW151226, and 1600 deg2

for LVT151012. As expected, the sky area is larger for
quieter events. The sky area is expected to scale inversely
with the square of the SNR [128,134], and we see that this
trend is followed.

V. TESTS OF GENERAL RELATIVITY

GW150914 provided us with the first empirical access to
the genuinely strong field dynamics of gravity. With the
frequency of the waveform peak amplitude well aligned
with the best instrument sensitivity, the late inspiral and
merger-ringdown regime could be studied in considerable
detail, as described in Ref. [41]. This allows for checks
of the consistency between masses and spins estimated
from different portions of the waveform [135], as well as
parametrized tests of the waveform as a whole [136–139].
Even though not much of the early inspiral was in the
detectors’ sensitive band, interesting bounds were placed
on departures from general relativity in the PN coefficients
up to 3.5PN. Since the source of GW151226 merged at
about 450 Hz, the signal provides the opportunity to probe
the PN inspiral with many more waveform cycles, albeit at
relatively low SNR. Especially in this regime, GW151226
allows us to further tighten our bounds on violations of
general relativity.
As in Ref. [41], to analyze GW151226, we start from the

IMRPhenom waveform model of Refs. [36–38], which is
capable of describing inspiral, merger, and ringdown, and
partly accounts for spin precession. The phase of this
waveform is characterized by coefficients fpig, which
include PN coefficients, as well as phenomenological
coefficients describing merger and ringdown. The latter
were obtained by calibrating against numerical waveforms
and tend to multiply specific powers of f. They characterize
the gravitational-wave amplitude and phase in different
stages of the coalescence process. We allow for possible
departures from general relativity, parametrized by a set of
testing coefficients δp̂i, which take the form of fractional
deviations in the pi [140,141]. Thus, we replace pi by
ð1þ δp̂iÞpi and let one or more of the δp̂i vary freely, in
addition to the source parameters that also appear in pure
general relativity waveforms, using the general relativistic
expressions for pi in terms of masses and spins. Our testing
coefficients are those in Table I of Ref. [41]. For conven-
ience, we list them again: (i) fδφ̂0;…; δφ̂7g [142] and
fδφ̂5l; δφ̂6lg for the PN coefficients (where the last two
multiply a term of the form fγ log f), (ii) intermediate-
regime parameters fδβ̂2; δβ̂3g, and (iii) merger-ringdown
parameters fδα̂2; δα̂3; δα̂4g [143].
In our analyses, we let each one of the δp̂i in turn vary

freely, while all others are fixed to their general relativity
values, δp̂j ¼ 0 for j ≠ i. These tests model general
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relativity violations that would occur predominantly at a
particular PN order (or in the case of the intermediate and
merger-ringdown parameters, a specific power of frequency
in the relevant regime), although together they can capture
deviations that are measurably present at more than
one order.
In Ref. [41], for completeness, we have also shown

results from analyses where the parameters in each of the
regimes (i)–(iii) are allowed to vary simultaneously, but
these tests return wide and uninformative posteriors. By
contrast, analyses where the testing parameters δp̂i are
varied one at a time have much smaller statistical

uncertainties. Moreover, as demonstrated in Ref. [144],
checking for a deviation from zero in a single testing
parameter is an efficient way to uncover GR violations that
occur at multiple PN orders, and one can even find
violations at powers of frequency that are distinct from
the one that the testing parameter is associated with
[145,146]. Hence, such analyses are well suited to search
for generic departures from GR, though it should be
stressed that if a violation is present, the measured values
of the δp̂i will not necessarily reflect the predicted values of
the correct alternative theory. To reliably constrain theory-
specific quantities such as coupling constants or extra

FIG. 7. Posterior density distributions and 90% credible intervals for relative deviations δp̂i in the PN parameters pi (where ðlÞ denotes
the logarithmic correction), as well as intermediate parameters βi and merger-ringdown parameters αi. The top panel is for GW150914
by itself and the middle one for GW151226 by itself, while the bottom panel shows combined posteriors from GW150914 and
GW151226. While the posteriors for deviations in PN coefficients from GW150914 show large offsets, the ones from GW151226 are
well centered on zero, as well as being tighter, causing the combined posteriors to similarly improve over those of GW150914 alone. For
deviations in the βi, the combined posteriors improve over those of either event individually. For the αi, the joint posteriors are mostly set
by the posteriors from GW150914, whose merger-ringdown occurred at frequencies where the detectors are the most sensitive.
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charges, one should directly apply full inspiral-merger-
ringdown waveform models from specific modified gravity
theories [147], but in most cases, these are not yet available.
However, in the present work, the focus is on model-
independent tests of general relativity itself.
Given the observation of more than one BBH merger,

posterior distributions for the δp̂i can be combined to yield
stronger constraints. In Fig. 7, we show the posteriors from
GW150914, generated with final instrumental calibration,
and GW151226 by themselves, as well as joint posteriors
from the two events together. We do not present similar
results for the candidate LVT151012 since it is not as
confident a detection as the others; furthermore, its smaller
detection SNR means that its contribution to the overall
posteriors is insignificant.
For GW150914, the testing parameters for the PN

coefficients, δφ̂i and δφ̂il, showed moderately significant
(2σ–2.5σ) deviations from their general relativity values of
zero [41]. By contrast, the posteriors of GW151226 tend to
be centered on the general relativity value. As a result, the
offsets of the combined posteriors are smaller. Moreover,
the joint posteriors are considerably tighter, with a 1σ
spread as small as 0.07 for deviations in the 1.5PN
parameter φ3, which encapsulates the leading-order effects
of the dynamical self-interaction of spacetime geometry
(the “tail” effect) [148–151], as well as spin-orbit inter-
action [67,152,153].
In Fig. 8, we show the 90% credible upper bounds on the

magnitude of the fractional deviations in PN coefficients,
jδφ̂ij, which are affected by both the offsets and widths of
the posterior density functions for the δφ̂i. We show bounds

for GW150914 and GW151226 individually, as well as the
joint upper bounds resulting from the combined posterior
density functions of the two events. Not surprisingly, the
quality of the joint bounds is mainly due to GW151226
because of the larger number of inspiral cycles in the
detectors’ sensitive frequency band. Note how at high PN
order, the combined bounds are slightly looser than the
ones from GW151226 alone; this is because of the large
offsets in the posteriors from GW150914.
Next, we consider the intermediate-regime coefficients

δβ̂i, which pertain to the transition between inspiral and
merger-ringdown. For GW151226, this stage is well inside
the sensitive part of the detectors’ frequency band.
Returning to Fig. 7, we see that the measurements for
GW151226 are of comparable quality to GW150914, and
the combined posteriors improve on the ones from either
detection by itself. Last, we look at the merger-ringdown
parameters δα̂i. For GW150914, this regime corresponded
to frequencies of f ∈ ½130; 300� Hz, while for GW151226,
it occurred at f ≳ 400 Hz. As expected, the posteriors from
GW151226 are not very informative for these parameters,
and the combined posteriors are essentially determined by
those of GW150914.
In summary, GW151226 makes its most important

contribution to the combined posteriors in the PN inspiral
regime, where both offsets and statistical uncertainties have
significantly decreased over the ones from GW150914, in
some cases almost to the 10% level.
An inspiral-merger-ringdown consistency test as per-

formed on GW150914 in Ref. [41] is not meaningful for
GW151226 since very little of the signal is observed in the
post-merger phase. Likewise, the SNR of GW151226 is too
low to allow for an analysis of residuals after subtraction of
the most probable waveform. In Ref. [41], GW150914 was
used to place a lower bound on the graviton Compton
wavelength of 1013 km GW151226 gives a somewhat
weaker bound because of its lower SNR, so combining
information from the two signals does not significantly
improve on this; an updated bound must await further
observations. Finally, BBH observations can be used to test
the consistency of the signal with the two polarizations of
gravitational waves predicted by general relativity [154].
However, as with GW150914, we are unable to test the
polarization content of GW151226 with the two, nearly
aligned aLIGO detectors. Future observations, with an
expanded network, will allow us to look for evidence of
additional polarization content arising from deviations from
general relativity.

VI. BINARY BLACK HOLE MERGER RATES

The observations reported here enable us to constrain the
rate of BBH coalescences in the local Universe more
precisely than was achieved in Ref. [42] because of the
longer duration of data containing a larger number of
detected signals.

FIG. 8. The 90% credible upper bounds on deviations in the PN
coefficients, from GW150914 and GW151226. Also shown are
joint upper bounds from the two detections; the main contributor
is GW151226, which had many more inspiral cycles in band than
GW150914. At 1PN order and higher, the joint bounds are
slightly looser than the ones from GW151226 alone; this is due to
the large offsets in the posteriors for GW150914.

BINARY BLACK HOLE MERGERS IN THE FIRST … PHYS. REV. X 6, 041015 (2016)

041015-17



To do so, we consider two classes of triggers: those
whose origin is astrophysical and those whose origin is
terrestrial. Terrestrial triggers are the result of either
instrumental or environmental effects in the detector, and
their distribution is calculated from the search background
estimated by the analyses (as shown in Fig. 3). The
distribution of astrophysical events is determined by
performing large-scale simulations of signals drawn from
astrophysical populations and added to the data set. We
then use our observations to fit for the number of triggers
of terrestrial and astrophysical origin, as discussed in
detail in Appendix C. The details of the astrophysical
population have a minimal impact on the fit, as in all cases
we assume a population distributed uniformly in comoving
volume. Figure 9 shows the inferred distributions of
signal and noise triggers, as well as the combined distri-
bution. The observations are in good agreement with the
model. GW150914 stands somewhat above the inferred
distribution, as it is an unusually significant event—only
6% of the astrophysical population of sources appearing in
our search with a false rate of less than one per century will
be more significant than GW150914.
It is clear from the figure that three triggers are more

likely to be signal (i.e., astrophysical) than noise (terres-
trial). We evaluate this probability and find that, for

GW150914 and GW151226, the probability of astrophysi-
cal origin is unity to within one part in 106. Meanwhile, for
LVT151012, it is calculated to be 0.87 and 0.86, for the
PyCBC and GstLAL analyses, respectively. For all of the
remaining events, the probability of astrophysical origin is
less than 15%.
Given uncertainty in the formation channels of the

various BBH events, we calculate the inferred rates using
a variety of source population parametrizations. For a given
population, the rate is calculated as R ¼ Λ=hVTi, where Λ
is the number of triggers of astrophysical origin and hVTi is
the population-averaged sensitive space-time volume of the
search. We use two canonical distributions for BBH
masses:

(i) a distribution uniform (flat) over the logarithm of
component masses, pðm1; m2Þ ∝ m1

−1m2
−1 and

(ii) assuming a power-law distribution in the primary
mass, pðm1Þ ∝ m−2.35

1 , with a uniform distribution
on the second mass.

We require 5M⊙ ≤ m2 ≤ m1 and m1 þm2 ≤ 100M⊙. The
first distribution probably overestimates the fraction of
high-mass black holes and therefore overestimates hVTi,
resulting in an underestimate of the true rate, while the
second probably overestimates the fraction of low-mass
black holes and therefore underestimating hVTi and
overestimating the true rate. The inferred rates for these
two populations are shown in Table II, and the rate
distributions are plotted in Fig. 11.
In addition, we calculate rates based upon the inferred

properties of the three significant events observed in the
data: GW150914, GW151226, and LVT151012, as dis-
cussed in Appendix C. Since these classes are distinct,
the total event rate is the sum of the individual rates:
R≡ RGW150914 þ RLVT151012 þ RGW151226. Note that the
total rate estimate is dominated by GW151226, as it is
the least massive of the three likely signals and is therefore
observable over the smallest space-time volume. The

FIG. 9. The cumulative (right to left) distribution of observed
triggers in the GstLAL analysis as a function of the log
likelihood. The best-fit signalþ noise distribution, and the con-
tributions from signal and noise are also shown. The lines show
the median number of expected triggers, and shaded regions show
1σ uncertainties. The observations are in good agreement with the
model. At low likelihood, the distribution matches the noise
model, while at high likelihood, it follows the signal model.
Three triggers are clearly identified as being more likely to be
signal than noise.

TABLE II. Rates of BBH mergers based on populations with
masses matching the observed events, and astrophysically mo-
tivated mass distributions. Rates inferred from the PyCBC and
GstLAL analyses independently as well as combined rates are
shown. The table shows median values with 90% credible
intervals.

R=ðGpc−3 yr−1Þ
Mass distribution PyCBC GstLAL Combined

Event based
GW150914 3.2þ8.3

−2.7 3.6þ9.1
−3.0 3.4þ8.8

−2.8
LVT151012 9.2þ30.3

−8.5 9.2þ31.4
−8.5 9.1þ31.0

−8.5
GW151226 35þ92

−29 37þ94
−31 36þ95

−30
All 53þ100

−40 56þ105
−42 55þ103

−41
Astrophysical

Flat in log mass 31þ43
−21 29þ43

−21 31þ42
−21

Power law (−2.35) 100þ136
−69 94þ137

−66 97þ135
−67
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results for these population assumptions are also shown in
Table II and in Fig. 10. The inferred overall rate is shown in
Fig. 11. As expected, the population-based rate estimates
bracket the one obtained by using the masses of the
observed black hole binaries.

The inferred rates of BBH mergers are consistent with
the results obtained in Refs. [42,155], following the
observation of GW150914. The median values of the rates
have decreased by approximately a factor of 2, as we now
have three likely signals (rather than two) in 3 times as
much data. Furthermore, because of the observation of an
additional highly significant signal GW151226, the uncer-
tainty in rates has reduced. In particular, the 90% range of
allowed rates has been updated to 9–240 Gpc−3 yr−1,
where the lower limit comes from the flat in log mass
population and the upper limit from the power-law pop-
ulation distribution.
With three significant triggers, GW150914, LVT151012,

and GW151226, all of astrophysical origin to high prob-
ability, we can begin to constrain the mass distribution of
coalescing BBHs. Here, we present a simple, parametrized
fit to the mass distribution using these triggers; a non-
parametric method that can fit general mass distributions
will be presented in future work. Our methodology is
described more fully in Appendix D.
We assume that the distribution of black hole masses in

coalescing binaries follows

pðm1Þ ∝ m−α
1 ; ð7Þ

with Mmin ≤ m2 ≤ m1 and m1 þm2 ≤ 100M⊙, and a uni-
form distribution on the secondary mass between Mmin ¼
5M⊙ and m1. With α ¼ 2.35, this mass distribution is the
power-law distribution used in our rate estimation. Our
choice ofMmin is driven by a desire to incorporate nearly all
the posterior samples from GW151226 and because there is
some evidence from electromagnetic observations for a
minimum BH mass near 5M⊙ [82,156] (but see Ref. [84]).
We use a hierarchical analysis [156–159] to infer α from

the properties of the three significant events—GW150914,
GW151226, and LVT151012—where all three are treated
equally and we properly incorporate parameter-estimation
uncertainty on the masses of each system. Our inferred
posterior on α is shown in Fig. 12. The value α ¼ 2.35,
corresponding to the power-law mass distribution used
above to infer rates, lies near the peak of the posterior, and
the median and broad 90% credible interval is

α ¼ 2.5þ1.5
−1.6 : ð8Þ

It is not surprising that our fit peaks near α ∼ 2.5 because
the observed sample is consistent with a flat distribution and
the sensitive space-time volume scales roughly as M15=6.
The mass distribution of merging black hole binaries

cannot be constrained tightly with such a small number of
observations. This power-law fit is sensitive to a number of
arbitrary assumptions, including a flat distribution in the
mass ratio and a redshift-independent merger rate and mass
distribution. Most critically, the fit is sensitive to the choice
of the lower-mass cutoff Mmin: Larger values of Mmin lead

FIG. 10. The posterior density on the rate of GW150914-like
BBH, LVT151012-like BBH, and GW151226-like BBH merg-
ers. The event-based rate is the sum of these. The median and
90% credible levels are given in Table II.

FIG. 11. The posterior density on the rate of BBH mergers. The
curves represent the posterior assuming that BBH masses are
distributed flat in logðm1Þ − logðm2Þ (Flat), match the properties
of the observed events (Event based), or are distributed as a power
law inm1 (Power law). The posterior median rates and symmetric
90% symmetric credible intervals are given in Table II.
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to a preference for steeper power laws with indices different
by a few.

VII. ASTROPHYSICAL IMPLICATIONS AND
FUTURE PROSPECTS

In Ref. [160], we discussed the astrophysical implica-
tions of the first gravitational-wave detection, GW150914,
of the merger of two black holes with masses m1 ¼
36.2þ5.2

−3.8M⊙ and m2 ¼ 29.1þ3.7
−4.4M⊙. We concluded that,

while it demonstrated that nature produces BBHs that
merge in a Hubble time, it was impossible to determine
the formation channel for that event. Possible BBH for-
mation channels include dynamical formation in a dense
stellar environment (see, e.g., Refs. [161–165]), possibly
assisted by gas drag in galactic nuclear disks [166,167], or
isolated binary evolution, either the classical variant via a
common-envelope phase (see, e.g., Refs. [168–173]),
possibly from population III binaries [174,175], or chemi-
cally homogeneous evolution in close tidally locked
binaries [176,177]. All of these channels have been shown
to be consistent with the GW150914 discovery [178–186].
GW151226 differs from GW150914 primarily in the

significantly lower inferred companion masses: m1 ¼
14.2þ8.3

−3.7M⊙ and m2 ¼ 7.5þ2.3
−2.3M⊙. These masses are sim-

ilar to the black hole masses measured dynamically in x-ray
binaries (for reviews, see Refs. [82,156]). If LVT151012 is
of astrophysical origin, its inferred companion masses
m1 ¼ 23þ18

−6 M⊙ and m2 ¼ 13þ4
−5M⊙ fall between those of

GW150914 and GW151226. This result indicates that
merging BBHs exist in a broad mass range.
GW151226 and LVT151012 could have formed from

lower-mass progenitor stars than GW150914 and/or in
higher-metallicity environments in which progenitors lose a
greater fraction of their mass to winds. Black holes with
such masses can be formed at solar metallicity; see, e.g.,
Ref. [187]. The low masses of GW151226 are probably
inconsistent with the chemically homogeneous evolution

scenario, under which higher masses are thought to be
required [176,177]. However, the masses are still consistent
with both classical isolated binary evolution and dynamical
formation.
The broad power-law index range α ¼ 2.5þ1.5

−1.6 inferred
from the fit to the merging binary black hole mass
distribution attempted in Sec. VI demonstrates the statis-
tical uncertainty associated with extrapolating a distribution
from just three events. There are additional systematic
uncertainties associated with the power-law model. In
particular, while population-synthesis models of binary
evolution can be consistent with power-law mass distribu-
tions over a range of masses, as in Figs. 8 and 9 of
Ref. [188], the power law is likely to be broken over the
very broad range between Mmin ¼ 5 M⊙ and a total mass
of 100 M⊙. Other formation models may not be consistent
with power-law distributions altogether (see, e.g.,
Ref. [183]). Similar methods have been employed to fit
the population of black holes with dynamical mass mea-
surements in x-ray binaries: Reference [156] obtained, for a
power-law model, Mmin ∼ 5 and power-law slopes in the
range 1.8≲ α ≲ 5.0 without accounting for possible selec-
tion effects.
Isolated binary evolution is thought to prefer comparable

masses, with mass ratios q < 0.5 unlikely for the classical
scenario [189] and implausible for chemically homo-
geneous evolution [181]. The dynamical formation channel
also prefers comparable masses but allows for more
extreme mass ratios; observations of merging binary black
holes with extreme mass ratios could therefore point to their
dynamical origin. However, the mass ratios of GW151226,
q ≥ 0.28, and LVT151012, q ≥ 0.24, are not well deter-
mined, and q ¼ 1 cannot be ruled out for either event.
Similarly, spin measurements, which point to a moderate
degree of net spin alignment with the orbital angular
momentum for GW151226, χeff ¼ 0.21þ0.20

−0.10 , cannot be
used to distinguish formation channels. On the other hand,
a zero effective spin is ruled out for GW151226; the data
indicate that at least one of the merging black holes must
have been spinning with a > 0.2 at the 99% credible level.
The inferred GW151226 merger luminosity distance of

DL ¼ 440þ180
−190Mpc, corresponding to a merger redshift of

z ¼ 0.09þ0.03
−0.04 , is similar to that of GW150914; in contrast,

LVT151012 merged about a factor of 2 further away, at
DL ¼ 1000þ500

−500Mpc, or z ¼ 0.20þ0.09
−0.09. Both are consistent

with either a relatively recent formation followed by a
prompt merger or formation in the early Universe with a
significant time delay between formation and merger.
The BBH merger rate inferred from the full analysis of

all O1 triggers, R ¼ 9–240 Gpc−3 yr−1, is consistent with
the rate inferred from the first 16 days of the O1 run [42].
The full O1 merger rate can be used to update the estimate
of the energy density ΩGW in the stochastic gravitational-
wave background from unresolvable BBH mergers,
improving on early results in Ref. [190]. Using the

FIG. 12. The posterior distribution for α in Eq. (7) using the
inferred masses for our three most significant triggers,
GW150914, LVT151012, and GW151226. The vertical line
indicates the value of α ¼ 2.35 that corresponds to the power-
law mass distribution used to infer the rate of BBH coalescence.
This value is fully consistent with the posterior, which allows a
broad range of possible values with a median and 90% credible
interval of α ¼ 2.5þ1.5

−1.6 .
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event-based, log-flat, and power-law mass distributions
presented in Sec. VI and the corresponding combined rates
in Table III, and employing the other “Fiducial” model
assumptions from Ref. [190], we obtain 90% credible
intervals on ΩGW. The three models agree at frequencies
below 100 Hz, where ΩGWðfÞ ∼ f2=3 and which contain
more than 99% of the signal-to-noise ratio for stochastic
backgrounds, with ΩGWðf ¼ 25 HzÞ ∼ 1.2þ1.9

−0.9 × 10−9.
These predictions do not significantly change the median
value of ΩGW from Ref. [190] while slightly decreasing the
range; we still conclude that this background is potentially
measurable by the Advanced LIGO/Virgo detectors oper-
ating at their projected design sensitivity.
Despite the uncertainty in the merger rate, its lower limit

can be used to rule out some corners of the parameter space
if a single formation channel is assumed for all BBHs. For
example, if all merging BBHs arise from dynamical
formation in globular clusters, then the lower limit on
the merger rate disfavors low-mass clusters [165]. On the
other hand, if all merging BBHs arise from isolated binaries
evolving via the common-envelope phase, the lower limit
on the merger rate disfavors a combination of very-low
common envelope binding energy with a high efficiency of
common envelope ejection [189] (high values of α × λ, as
defined in Refs. [192–194]), or very high black hole natal
kicks of several hundred km/s [195]. However, since
population synthesis studies have typically varied one
parameter at a time, individual parameter values cannot
be ruled out until the full parameter space is explored (see,
e.g., Ref. [196]). Moreover, the parametrizations used in
existing models may not even capture the full physical
uncertainties (see, e.g., Refs. [197,198]).
It is likely, however, that multiple formation channels are

in operation simultaneously, and GW150914, LVT151012,
and GW151226 could have been formed through different
channels or in different environments. A lower limit on the
merger rate cannot be used to rule out evolutionary
parameters if multiple channels contribute. Future obser-
vations will be required to test whether binaries can be
classified into distinct clusters arising from different for-
mation channels [199] or to compare the population to
specific evolutionary models [200–203]. Such observations

will make it possible to further probe the underlying
mass distribution of merging BBHs and the dependence
of the merger rate on redshift. Meanwhile, space-
borne detectors such as eLISA could observe heavy
BBHs several years before merger; multispectrum obser-
vations with ground-based and space-borne observatories
would aid in measuring binary parameters, including
location, and determining the formation channel by meas-
uring the eccentricity at lower frequencies [204–206].
We can use the inferred rates to estimate the number of

BBH mergers expected in future observing runs. We make
use of the future observing plans laid out in Ref. [132] to
predict the expected rate of signals in the second and third
advanced LIGO and Virgo observing runs. To do so, we
restrict our attention to those signals which will be
observed with a false alarm rate smaller than 1=100 yr.
In the simulations used to estimate sensitive space-time
volumes, 61% of the events above the low threshold used in
the PyCBC rates calculation are found with a search false
alarm rate lower than one per century. The expected
number of observed events will then scale linearly with
the sensitive space-time volume hVTi of a future search.
The improvement in sensitivity in future runs will vary
across the frequency band of the detectors and will there-
fore have a different impact for binaries of different mass.
For concreteness, we use a fiducial BBH system with total
mass 60M⊙ and mass ratio q ¼ 1 [160], to estimate a range
of sensitive space-time volumes for future observing runs
[207]. The second observing run (O2) is anticipated to

TABLE III. The standard deviations used for the (zero-mean)
Gaussian priors on calibration uncertainty for each of the three
events. The calibration of each of the two detectors has been
independently assessed [47]. These priors set the expected
variation for the frequency-dependent spline model used to
incorporate the effects of calibration uncertainty [191].

Amplitude Phase

Event Hanford Livingston Hanford Livingston

GW150914 4.8% 8.2% 3.2 deg 4.2 deg
LVT151012 4.2% 8.3% 2.7 deg 4.3 deg
GW151226 4.2% 6.9% 2.7 deg 3.6 deg

FIG. 13. The probability of observing N > 2, N > 10, and
N > 40 highly significant events, as a function of surveyed space-
time volume, given the results presented here. The vertical line
and bands show, from left to right, the expected sensitive space-
time volume for the second (O2) and third (O3) advanced detector
observing runs.
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begin in late 2016 and last six months, and the third run
(O3) is to begin in 2017 and last nine months. We show the
predictions for the probability of obtaining N or more high-
significance events as a function of hVTi (in units of the
space-time volume surveyed during O1) in Fig. 13. Current
projections for O2 suggest that the sensitivity will be
consistent with the lower end of the band indicated
in Fig. 13.

VIII. CONCLUSION

During its first observing run, Advanced LIGO has
observed gravitational waves from the coalescence of
two stellar-mass BBHs, GW150914 and GW151226, with
a third candidate LVT151012 also likely to be a BBH
system. Our modeled binary coalescence search detects
both GW150914 and GW151226 with a significance of
greater than 5.3σ, while LVT151012 is found with a
significance of 1.7σ. The component masses of these
systems span a range from the heaviest black hole in
GW150914 with a mass of 36.2þ5.2

−3.8M⊙, to 7.5þ2.3
−2.3M⊙,

the lightest black hole of GW151226. The spins of the
individual coalescing black holes are weakly constrained,
but we can rule out two nonspinning components
for GW151226 at the 99% credible level. All our observa-
tions are consistent with the predictions of general relativity,
and the final black holes formed after merger are all
predicted to have high spin values with masses that are
larger than any black hole measured in x-ray binaries. The
inferred rate of BBH mergers based on our observations is
9–240 Gpc−3 yr−1, which gives confidence that future
observing runs will observe many more BBHs.
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APPENDIX A: SEARCH DESCRIPTION

In this appendix, we give further details of the two
analyses, PyCBC and GstLAL, used in the search. Both
analyses separately correlate the data from each detector
with template waveforms that model the expected signal.
The analyses identify candidate events that are detected at
both the Hanford and Livingston observatories, consistent
with the 10-ms intersite propagation time. Additional signal
consistency tests are performed to mitigate the effects of
nonstationary transients in the data. Events are assigned a
detection-statistic value that ranks their likelihood of being
a gravitational-wave signal. This detection statistic is
compared to the estimated detector noise background to
determine, for each candidate event, the probability that
detector noise would give rise to at least one equally
significant event.
The choice of parameters for the templates depends on

the shape of the power spectrum of the detector noise. The
average noise power spectral density of the LIGO detectors
was measured over the period September 12 to September
26, 2015. The harmonic mean of these noise spectra from
the two detectors was used to place a single template bank
that was employed for the duration of the search [3].
The matched-filter SNR ρ for each template waveform

and each detector’s data as a function of time is calculated
according to [11,208]

ρ2ðtÞ≡ ½hsjhci2ðtÞ þ hsjhsi2ðtÞ�; ðA1Þ
where the correlation is defined by
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hsjhiðtÞ≡ 4Re
Z

∞

0

~sðfÞ ~h�ðfÞ
SnðfÞ

e2πiftdf; ðA2Þ

hc and hs are the normalized orthogonal sine and cosine
parts of the template, and ~aðfÞ is used to denote the Fourier
transform of the time domain quantity aðtÞ. Here, SnðfÞ
denotes the one-sided average power spectral density of the
detector noise. The waveform components hc and hs are
normalized such that the expected value of hsjhs;ci2ðtÞ in
stationary, Gaussian noise is unity [95]. The analyses
identify times when the matched-filter SNR achieves a
local maximum and store each of these as a trigger. The
analyses search only stretches of data longer than a
minimum duration, to ensure that the detectors are operat-
ing stably. The choice is different in the two analyses and
reduces the available data of 48.6 days to 46.1 days for the
PyCBC analysis and 48.3 days for the GstLAL analysis.
To suppress large SNR values caused by non-Gaussian

detector noise, the analyses perform additional tests to
quantify the agreement between the data and the template.
These tests are different in the two analyses and are
discussed in their respective subsections below. Both
analyses enforce coincidence between detectors by select-
ing trigger pairs that occur within a 15-ms window and
come from the same template. The 15-ms window is
determined by the 10-ms intersite propagation time plus
5 ms for uncertainty in accurately determining the mea-
sured arrival time of weak signals. A detection statistic for
each coincident event is derived as a function of the SNR
observed in each detector, the value of the signal consis-
tency tests, and details of the template.
The significance of a candidate event is determined by

comparing it to the search background. From this, we are
able to determine the rate at which detector noise produces
events with a detection-statistic value equal to or higher
than the candidate event (the FAR). Estimating this back-
ground is challenging for two reasons: First, the detector
noise is nonstationary and non-Gaussian; therefore, its
properties must be empirically determined. Second, it is
not possible to shield the detector from gravitational waves
to directly measure a signal-free background. The specific
procedure used to estimate the background is different for
the two analyses, as described in detail below.
The results of the independent analyses are two separate

lists of candidate events, with each candidate event
assigned a p-value and FAR. Candidate events with low
FARs are identified as possible gravitational-wave signals
for further investigation.

1. PyCBC analysis

The PyCBC analysis is described in detail in Refs. [2–4],
and the configuration used to analyze the first 16 days of O1
data, containing GW150914, is described in Ref. [44].
Following the observation of GW150914, some improve-
mentsweremade to the analysis, as we better understood the

Advanced LIGO data. All changes were tested and tuned
only on backgrounddata, prior to being incorporated into the
analysis. These changes do not affect the significance bound
of GW150914. Consequently, we chose to present the full
results, on the final calibrated data, using the improved
analysis. Here, we provide a brief overview of the analysis,
including details of changes made following the discovery
of GW150914.
In the PyCBC analysis, a trigger is stored when the

maximum of the SNR time series is above the threshold of
5.5 (chosen as a compromise between a manageable trigger
rate and assurance that no real event will be missed), with a
maximum of one trigger stored in a 1-s window (reduced
from 4 s in the previous analysis). A χ2 statistic is computed
to distinguish between astrophysical signals and noise
transients. This result tests whether the signal power in a
number of nonoverlapping frequency bands is consistent
with that expected from the waveform template [14]. The χ2

test is written explicitly as

χ2r ¼
p

2p − 2

Xp
i¼1

�
ρi −

ρ

p

�
2

; ðA3Þ

where p denotes the number of frequency bands—
constructed such that the expected signal power in each
band is equal—and ρi is the matched-filter SNR in the ith
frequency band. For data containing only Gaussian noise,
or Gaussian noise and a signal exactly matching the
template waveform, the expected value of this statistic will
be 1. For data containing non-Gaussian artefacts, or a signal
not matching well with the template waveform, this value
will be elevated. Each trigger is then ranked according to a
combination of the SNR and the χ2 test, namely,

ρ̂ ¼
�
ρ½ð1þ ðχ2rÞ3Þ=2�−1=6 if χ2r > 1

ρ if χ2r ≤ 1.
ðA4Þ

The number of frequency bands p used to compute the χ2

signal-based veto [14] was optimized using data from the
first month of O1. An improved background rejection was
found when adopting the following, template-dependent
expression for the number of χ2 bands,

p ¼ 1.75 ×

�
fpeak
1 Hz

− 60

�
1=2

; ðA5Þ

where fpeak is the frequency corresponding to the maxi-
mum amplitude of the template waveform using the models
described in Ref. [8], and p is rounded to the nearest
integer. This choice was adopted for the full O1 analysis
presented here, where all waveforms have peak frequencies
greater than 60 Hz.
Loud and short instrumental transients are identified and

excised from the data, as part of the data conditioning prior
to SNR computation. In this analysis, we compute a
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whitened time series of the strain data and compare the
magnitude of each sample against a threshold value of 100.
Samples above threshold and within a time window of
�0.5 s are clustered together, and a gating window is
placed at the time of the loudest sample in the cluster [209].
The threshold value of 100 is chosen to be much larger than
the typical value of the magnitude in Gaussian noise and
also larger than the value expected from any gravitational-
wave signal from binaries at astrophysical distances and
with intrinsic parameters within our search space.
Coincident triggers are formed when a trigger exists in

both observatories, associated with the same template
waveform and with arrival times within 15 ms. Each
coincidence is ranked with a network statistic ρ̂c, defined
as the quadrature sum of the ρ̂ in each observatory. The rate
of background events, as a function of network statistic, is
estimated from the data themselves by repeating the
analysis after artificially time-shifting the triggers from
one detector relative to the other. Time shifts in multiples
of 100 ms are performed, leading to a total of Tb ¼
5.0 × 106 years of background time analyzed.
The distribution of background noise events over ρ̂c can

vary strongly as a function of the template waveform; to
account for this variation, the parameter space is divided
into a number of regions which are treated as independent
searches [44]. Each coincident trigger is assigned a FAR
based on the background distribution in the region con-
taining the coincidence and incorporating a trial factor
equal to the number of regions. Studies of the background
distribution as a function of the template parameters, and a
reduced rate of noise events in O1 data, compared to the
engineering run data previously used in tuning the search
configuration [44], motivated a redefinition of the regions
used to divide the search space. In the current analysis, we
split the parameter space into three regions, defined by
(i) M < 1.74M⊙, (ii) M ≥ 1.74M⊙ and fpeak ≥ 100 Hz,
and (iii) M ≥ 1.74M⊙ and fpeak < 100 Hz. In the
GW150914 analysis, the boundary between regions (ii)
and (iii) was set at 220 Hz. By reducing this frequency, we
significantly reduce the number of templates assigned to
region (iii), which is dominated by short templates that are
most affected by noise transients. The frequency at peak
amplitude of the best-matching template for GW150914 is
fpeak ¼ 144 Hz. With the tuning used for the original
result, this placed it in noise-background class (iii) of
the PyCBC analysis [44]. However, with the improved O1
tuning, which changed the boundaries of the noise-back-
ground classes, this event is in noise-background class (ii).
In Fig. 3, we plot the background only from class (ii), while
the quoted significances take into account a trial factor of
three because of the three noise-background classes.

2. GstLAL analysis

The GstLAL [210] analysis method is a low-latency,
multidetector matched-filtering search for gravitational

waves emitted by the coalescence of compact objects.
The analysis exploits time-domain operations [5] that give
it a latency of seconds after the acquisition of gravitational-
wave data. This allows the GstLAL analysis to run in both
low-latency mode to provide rapid identification of signals
and in off-line mode on data that have been conditioned
with data-quality vetoes [13]. The results presented here are
for the off-line mode. No changes were made to the
GstLAL analysis relative to the results presented
in Ref. [44].
For the off-line analysis, the data sðtÞ are partitioned into

chunks, and along with the templates hðtÞ, the data sðtÞ are
then whitened in the frequency domain. The analysis splits
the template bank into sub-banks containing waveforms
that have morphological similarities. The templates are
binned in a two-dimensional space by effective spin
parameter χeff and chirp mass M, as these parameters
can be used to effectively describe a binary system in which
the spins are aligned with the binary’s orbital angular
momentum. Templates are allowed to overlap in adjacent
bins to mitigate boundary effects, although no redundant
waveforms are filtered.
An orthonormal basis of filters ĥðtÞ is then constructed

using singular value decomposition [5]. This basis is
significantly smaller than the number of input waveforms
and allows for a significant reduction in the time-domain
filtering cost. The set of filters ĥðtÞ in each bin is convolved
with the whitened data, producing a time series; the
matched-filter SNR time series ρ for each template can
then be constructed using linear combinations of the
convolution time series. A trigger is stored when the
maximum of the SNR time series crosses a predetermined
threshold of 4. A maximum of one coincident trigger per
template is stored in each second.
A signal consistency test is performed by comparing the

SNR time series of data to the SNR time series expected
from a real signal using the autocorrelation function of the
template at its time of peak amplitude, RðtÞ. A consistency
test value ξ2ac is determined for each trigger using the SNR
time series ρðtÞ, the peak SNR ρp, and the autocorrelation
function RðtÞ in some window of time δt (corresponding to
ρp) around the trigger:

ξ2ac ¼
1

μ

Z
tp−δt

tpþδt
dtjρðtÞ − ρpRðtÞj2; ðA6Þ

where the factor μ ensures that a well-fit signal has an
expectation value of 1 [44]. The window δt is a tunable
parameter that has been chosen based on Monte Carlo
simulations in real data and finding the value that (on
average) best rejects glitches.
Triggers that survive consistency checks are assigned a

ranking based upon their SNR, ξ2ac value, and the instanta-
neous horizon distance values at each detector, fDH1; DL1g,
which encode the detector sensitivity [15,211].
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A likelihood ratio is constructed to rank candidate events
by the ratio of the probability of observing matched-filter
SNR and ξ2ac from signals, h, versus obtaining the same
parameters from noise, n. The templates have already been
grouped into regions that contain high overlap, so it is likely
that templates within each group will respond similarly to
noise; in fact, the template group itself is used as a parameter
in the likelihood ratio to qualitatively establish how different
regions of the parameter space are affected by noise. The
likelihood ratio can thus be written as

L ¼ pðxH;xL; DH; DLjθi; hÞ
pðxHjθi; nÞpðxLjθi; nÞ

; ðA7Þ

where xd ¼ fρd; ξ2dg are the matched-filter SNR and ξ2ac in
each detector, θi corresponds to the template group, andDd
is the horizon distance of the given detector at the time of the
trigger. The signal distribution in the numerator is calculated
using an astrophysical model of signals distributed isotropi-
cally in the nearby universe. The denominator is calculated
under the assumption that the noise in each detector is
independent. It can then be calculated from the distribution
of triggers in each template bin observed in each detector. In
the casewheremultiple high-likelihood events are produced
at the same time, a clustering process is used to remove
events with lower likelihoods within a 4-s window so that
only the event with the highest likelihood is retained.
In a typical search, the majority of events found in

coincidence correspond to noise and not an actual signal.
To accurately distill signals from the data, the p-value at the
value of L for each event is ascertained; the p-value
describes the probability of observing the event’s L or
greater in noise alone. The GstLAL method determines the
p-value by taking the probability density functions of
parameters in Eq. (A7) obtained from triggers that are
noiselike in nature [212].

APPENDIX B: PARAMETER-ESTIMATION
DESCRIPTION

To extract information from the signal, we perform a
coherent Bayesian analysis of the data from the two
instruments using LALInference [48,213]. The properties
of the source leave imprints on the signal from which we
can infer their values [39]. We match the measured strain to
model waveforms and use the agreement to define prob-
ability distributions for the parameters that describe the
signal. A summary of results for the three events is given in
Table IV.
The result of our analysis is the posterior probability

distribution for parameters describing the source. The
posterior is computed from Bayes’ theorem [216,217]: It
is proportional to the product of the likelihood of the data
given the parameters and the prior for the parameters. The
likelihood is calculated using a noise-weighted inner
product between the data and the model waveform [95].

This depends upon the waveform and the noise spectral
density at the time of event, and both could potentially be
sources of systematic error. We incorporate the effects of
uncertainty in the detectors’ calibration using a frequency-
dependent model [191]. The posterior probability density is
mapped out using stochastic sampling algorithms, and our
parameter estimates are constructed from the distribution of
samples.
The analysis makes use of two inspiral-merger-ringdown

waveform models, a reduced-order model of the double
aligned spin EOB waveform used for the detection analy-
ses, which we refer to as EOBNR [8,9], and an effective
precessing spin model, which we refer to as IMRPhenom
[36–38,218]. For all events, the results from the EOBNR
and IMRPhenom waveforms are similar. An analysis using
a fully precessing EOBNR waveform [219], as done in
Ref. [40], will be reported in the future; this analysis is
currently too computationally expensive for results to be
presented now.
To compare how well the different waveform models

match the data, we use the Bayes factor Bs=n and the
deviance information criterion (DIC). The Bayes factor is
the ratio of the evidence (the marginalized likelihood) for a
coherent signal hypothesis to that for Gaussian noise [215].
A larger Bayes factor indicates that there is more support
for the signal model [220]. The DIC is a measure of the
goodness of fit of a model, defined as an average log
likelihood plus a penalty factor for higher dimensional
models [221–223]. A smaller value of the DIC indicates
a greater expectation that the model would predict data
similar to that being analyzed, and hence that it is a better fit.
The values for both quantities are similar for all three events.
The data do not allow us to conclusively prefer one wave-
form model over the other; therefore, in the column titled
Overall of Table IV, results are constructed by averaging the
two, marginalizing over our choice of waveform.
Inaccuracies in the waveform models could be a source

of systematic error in the parameter estimates [224–226].
However, an alternative analysis of GW150914 using a set
of waveforms from numerical-relativity simulations
yielded results consistent with those using the EOBNR
and IMRPhenom approximants [227]. For our results, we
use the difference between results from the two waveform
models as a proxy for the theoretical error from waveform
modeling, although some known physics such as higher
modes and eccentricity are missing from both of these
waveform families. For each parameter, we quote system-
atic errors on the boundaries of the 90% credible intervals;
this is the 90% range of a normal distribution estimated
from the variance of results from the different models [39].
For parameters with bounded ranges, like the spins or mass
ratio, the normal distributions should be truncated, but for
simplicity, we still quote the 90% range of the uncut
distributions. More sophisticated means of incorporating
waveform uncertainty into the analysis, such as Gaussian

BINARY BLACK HOLE MERGERS IN THE FIRST … PHYS. REV. X 6, 041015 (2016)

041015-25



TA
B
L
E
IV
.

Pa
ra
m
et
er
s
th
at

ch
ar
ac
te
ri
ze

G
W
15
09
14
,
G
W
15
12
26
,
an
d
LV

T
15
10
12
.
Fo

r
m
od
el

pa
ra
m
et
er
s,
w
e
re
po
rt
th
e
m
ed
ia
n
va
lu
e
w
ith

th
e
ra
ng
e
of

th
e
sy
m
m
et
ri
c
90
%

cr
ed
ib
le
in
te
rv
al
[2
14
];
w
e
al
so

qu
ot
e
se
le
ct
ed

90
%

cr
ed
ib
le
bo
un
ds
.F

or
th
e
lo
ga
ri
th
m

of
th
e
B
ay
es

fa
ct
or

fo
ra

si
gn
al
co
m
pa
re
d
to
G
au
ss
ia
n
no
is
e,
w
e
re
po
rt
th
e
m
ea
n
an
d
its

90
%

st
an
da
rd

er
ro
r
fr
om

fo
ur

pa
ra
lle
l
ru
ns

w
ith

a
ne
st
ed

sa
m
pl
in
g
al
go
ri
th
m

[2
15
],
an
d
fo
r
th
e
de
vi
an
ce

in
fo
rm

at
io
n
cr
ite
ri
on
,w

e
re
po
rt
th
e
m
ea
n
an
d
its

90
%

st
an
da
rd

er
ro
r
fr
om

a
M
ar
ko
v-
ch
ai
n
M
on
te
C
ar
lo

an
d
a
ne
st
ed

sa
m
pl
in
g
ru
n.
T
he

so
ur
ce

re
ds
hi
ft
an
d
so
ur
ce
-f
ra
m
e
m
as
se
s
as
su
m
e
st
an
da
rd

co
sm

ol
og
y
[1
8]
.R

es
ul
ts
ar
e
gi
ve
n
fo
r
sp
in
-a
lig

ne
d
E
O
B
N
R

an
d
pr
ec
es
si
ng

IM
R
Ph

en
om

w
av
ef
or
m

m
od
el
s.
T
he

“O
ve
ra
ll”

re
su
lts

ar
e
co
m
pu
te
d
by

av
er
ag
in
g
th
e
po
st
er
io
rs
fo
r
th
e
tw
o
m
od
el
s.
Fo

r
th
e
ov
er
al
lr
es
ul
ts
,w

e
qu
ot
e
bo
th

th
e
90
%

cr
ed
ib
le

in
te
rv
al

or
bo
un
d
an
d
an

es
tim

at
e
fo
r
th
e
90
%

ra
ng
e
of

sy
st
em

at
ic

er
ro
r
on

th
is
de
te
rm

in
ed

fr
om

th
e
va
ri
an
ce

be
tw
ee
n
w
av
ef
or
m

m
od
el
s.
Fu

rt
he
r
ex
pl
an
at
io
ns

of
th
e

pa
ra
m
et
er
s
ar
e
gi
ve
n
in

R
ef
.
[3
9]
.

G
W
15
09
14

G
W
15
12
26

LV
T
15
10
12

E
O
B
N
R

IM
R
Ph

en
om

O
ve
ra
ll

E
O
B
N
R

IM
R
Ph

en
om

O
ve
ra
ll

E
O
B
N
R

IM
R
Ph

en
om

O
ve
ra
ll

D
et
ec
to
r
fr
am

e
To

ta
l
m
as
s
M
=M

⊙
7
1
.0

þ4
.6

−
4
.0

7
1
.2

þ3
.5

−
3
.2

7
1
.1

þ4
.1
�0

.7
−
3
.6
�0

.8
2
3
.6

þ8
.0

−
1
.3

2
3
.8

þ5
.1

−
1
.5

2
3
.7

þ6
.5
�2

.2
−
1
.4
�0

.1
4
5
þ1

7
−
4

4
4
þ1

2
−
3

4
4
þ1

6
�5

−
3
�0

C
hi
rp

m
as
s
M

=M
⊙

3
0
.4

þ2
.3

−
1
.6

3
0
.7

þ1
.5

−
1
.5

3
0
.6

þ1
.9
�0

.3
−
1
.6
�0

.4
9
.7
1
þ0

.0
8

−
0
.0
7

9
.7
2
þ0

.0
6

−
0
.0
6

9
.7
2
þ0

.0
7
�0

.0
1

−
0
.0
6
�0

.0
1

1
8
.1

þ1
.3

−
0
.9

1
8
.1

þ0
.8

−
0
.8

1
8
.1

þ1
.0
�0

.5
−
0
.8
�0

.1

Pr
im

ar
y
m
as
s
m

1
=M

⊙
4
0
.2

þ5
.2

−
4
.8

3
8
.5

þ5
.4

−
3
.3

3
9
.4

þ5
.4
�1

.3
−
4
.1
�0

.2
1
5
.3

þ1
0
.8

−
3
.8

1
5
.8

þ7
.2

−
4
.0

1
5
.6

þ9
.0
�2

.6
−
4
.0
�0

.2
2
9
þ2

3
−
8

2
7
þ1

9
−
6

2
8
þ2

1
�5

−
7
�0

Se
co
nd
ar
y
m
as
s
m

2
=M

⊙
3
0
.6

þ5
.1

−
4
.2

3
2
.7

þ3
.1

−
4
.9

3
1
.7

þ4
.0
�0

.1
−
4
.9
�1

.2
8
.3

þ2
.5

−
2
.9

8
.1

þ2
.5

−
2
.1

8
.2

þ2
.6
�0

.2
−
2
.5
�0

.5
1
5
þ5 −
6

1
6
þ4 −
6

1
6
þ5

�0
−
6
�1

Fi
na
l
m
as
s
M

f=
M

⊙
6
7
.8

þ4
.0

−
3
.6

6
7
.9

þ3
.2

−
2
.9

6
7
.8

þ3
.7
�0

.6
−
3
.3
�0

.7
2
2
.5

þ8
.2

−
1
.4

2
2
.8

þ5
.3

−
1
.6

2
2
.6

þ6
.7
�2

.2
−
1
.5
�0

.1
4
3
þ1

7
−
4

4
2
þ1

3
−
2

4
2
þ1

6
�5

−
3
�0

So
ur
ce

fr
am

e
To

ta
l
m
as
s
M

so
ur
ce
=M

⊙
6
5
.5

þ4
.4

−
3
.9

6
5
.1

þ3
.6

−
3
.1

6
5
.3

þ4
.1
�1

.0
−
3
.4
�0

.3
2
1
.6

þ7
.4

−
1
.6

2
1
.9

þ4
.7

−
1
.7

2
1
.8

þ5
.9
�2

.0
−
1
.7
�0

.1
3
8
þ1

5
−
5

3
7
þ1

1
−
4

3
7
þ1

3
�4

−
4
�0

C
hi
rp

m
as
s
M

so
ur
ce
=M

⊙
2
8
.1

þ2
.1

−
1
.6

2
8
.1

þ1
.6

−
1
.4

2
8
.1

þ1
.8
�0

.4
−
1
.5
�0

.2
8
.8
7
þ0

.3
5

−
0
.2
8

8
.9
0
þ0

.3
1

−
0
.2
7

8
.8
8
þ0

.3
3
�0

.0
1

−
0
.2
8
�0

.0
4

1
5
.2

þ1
.5

−
1
.1

1
5
.0

þ1
.3

−
1
.0

1
5
.1

þ1
.4
�0

.3
−
1
.1
�0

.0

Pr
im

ar
y
m
as
s
m

so
ur
ce

1
=M

⊙
3
7
.0

þ4
.9

−
4
.4

3
5
.3

þ5
.1

−
3
.1

3
6
.2

þ5
.2
�1

.4
−
3
.8
�0

.4
1
4
.0

þ1
0
.0

−
3
.5

1
4
.5

þ6
.6

−
3
.7

1
4
.2

þ8
.3
�2

.4
−
3
.7
�0

.2
2
4
þ1

9
−
7

2
3
þ1

6
−
5

2
3
þ1

8
�5

−
6
�0

Se
co
nd
ar
y
m
as
s
m

so
ur
ce

2
=M

⊙
2
8
.3

þ4
.6

−
3
.9

2
9
.9

þ3
.0

−
4
.5

2
9
.1

þ3
.7
�0

.0
−
4
.4
�0

.9
7
.5

þ2
.3

−
2
.6

7
.4

þ2
.3

−
2
.0

7
.5

þ2
.3
�0

.2
−
2
.3
�0

.4
1
3
þ4 −
5

1
4
þ4 −
5

1
3
þ4

�0
−
5
�0

Fi
na
l
m
as
s
M

so
ur
ce

f
=M

⊙
6
2
.5

þ3
.9

−
3
.5

6
2
.1

þ3
.3

−
2
.8

6
2
.3

þ3
.7
�0

.9
−
3
.1
�0

.2
2
0
.6

þ7
.6

−
1
.6

2
0
.9

þ4
.8

−
1
.8

2
0
.8

þ6
.1
�2

.0
−
1
.7
�0

.1
3
6
þ1

5
−
4

3
5
þ1

1
−
3

3
5
þ1

4
�4

−
4
�0

E
ne
rg
y
ra
di
at
ed

E
ra
d
=ð
M

⊙c
2
Þ

2
.9
8
þ0

.5
5

−
0
.4
0

3
.0
2
þ0

.3
6

−
0
.3
6

3
.0
0
þ0

.4
7
�0

.1
3

−
0
.3
9
�0

.0
7

1
.0
2
þ0

.0
9

−
0
.2
4

0
.9
9
þ0

.1
1

−
0
.1
7

1
.0
0
þ0

.1
0
�0

.0
1

−
0
.2
0
�0

.0
3

1
.4
8
þ0

.3
9

−
0
.4
1

1
.5
1
þ0

.2
9

−
0
.4
4

1
.5
0
þ0

.3
3
�0

.0
5

−
0
.4
3
�0

.0
1

M
as
s
ra
tio

q
0
.7
7
þ0

.2
0

−
0
.1
8

0
.8
5
þ0

.1
3

−
0
.2
1

0
.8
1
þ0

.1
7
�0

.0
2

−
0
.2
0
�0

.0
4

0
.5
4
þ0

.4
0

−
0
.3
3

0
.5
1
þ0

.3
9

−
0
.2
5

0
.5
2
þ0

.4
0
�0

.0
3

−
0
.2
9
�0

.0
4

0
.5
3
þ0

.4
2

−
0
.3
4

0
.6
0
þ0

.3
5

−
0
.3
7

0
.5
7
þ0

.3
8
�0

.0
1

−
0
.3
7
�0

.0
4

E
ff
ec
tiv

e
in
sp
ir
al

sp
in

χ e
ff

−
0
.0
8
þ0

.1
7

−
0
.1
4

−
0
.0
5
þ0

.1
1

−
0
.1
2

−
0
.0
6
þ0

.1
4
�0

.0
2

−
0
.1
4
�0

.0
4

0
.2
1
þ0

.2
4

−
0
.1
1

0
.2
2
þ0

.1
5

−
0
.0
8

0
.2
1
þ0

.2
0
�0

.0
7

−
0
.1
0
�0

.0
3

0
.0
6
þ0

.3
1

−
0
.2
4

0
.0
1
þ0

.2
6

−
0
.1
7

0
.0
3
þ0

.3
1
�0

.0
8

−
0
.2
0
�0

.0
2

Pr
im

ar
y
sp
in

m
ag
ni
tu
de

a 1
0
.3
3
þ0

.3
9

−
0
.2
9

0
.3
0
þ0

.5
4

−
0
.2
7

0
.3
2
þ0

.4
7
�0

.1
0

−
0
.2
9
�0

.0
1

0
.4
2
þ0

.3
5

−
0
.3
7

0
.5
5
þ0

.3
5

−
0
.4
2

0
.4
9
þ0

.3
7
�0

.1
1

−
0
.4
2
�0

.0
7

0
.3
1
þ0

.4
6

−
0
.2
7

0
.3
1
þ0

.5
0

−
0
.2
8

0
.3
1
þ0

.4
8
�0

.0
3

−
0
.2
8
�0

.0
0

Se
co
nd
ar
y
sp
in

m
ag
ni
tu
de

a 2
0
.6
2
þ0

.3
5

−
0
.5
4

0
.3
6
þ0

.5
3

−
0
.3
3

0
.4
8
þ0

.4
7
�0

.0
8

−
0
.4
3
�0

.0
3

0
.5
1
þ0

.4
4

−
0
.4
6

0
.5
2
þ0

.4
2

−
0
.4
7

0
.5
2
þ0

.4
3
�0

.0
1

−
0
.4
7
�0

.0
0

0
.4
9
þ0

.4
5

−
0
.4
4

0
.4
2
þ0

.5
0

−
0
.3
8

0
.4
5
þ0

.4
8
�0

.0
2

−
0
.4
1
�0

.0
1

Fi
na
l
sp
in

a f
0
.6
8
þ0

.0
5

−
0
.0
7

0
.6
8
þ0

.0
6

−
0
.0
5

0
.6
8
þ0

.0
5
�0

.0
1

−
0
.0
6
�0

.0
2

0
.7
3
þ0

.0
5

−
0
.0
6

0
.7
5
þ0

.0
7

−
0
.0
5

0
.7
4
þ0

.0
6
�0

.0
3

−
0
.0
6
�0

.0
3

0
.6
5
þ0

.0
9

−
0
.1
0

0
.6
6
þ0

.0
8

−
0
.1
0

0
.6
6
þ0

.0
9
�0

.0
0

−
0
.1
0
�0

.0
2

L
um

in
os
ity

di
st
an
ce

D
L
=M

pc
4
0
0
þ1

6
0

−
1
8
0

4
4
0
þ1

4
0

−
1
7
0

4
2
0
þ1

5
0
�2

0
−
1
8
0
�4

0
4
5
0
þ1

8
0

−
2
1
0

4
4
0
þ1

7
0

−
1
8
0

4
4
0
þ1

8
0
�2

0
−
1
9
0
�1

0
1
0
0
0
þ5

4
0

−
4
9
0

1
0
3
0
þ4

8
0

−
4
8
0

1
0
2
0
þ5

0
0
�2

0
−
4
9
0
�4

0

So
ur
ce

re
ds
hi
ft
z

0
.0
8
6
þ0

.0
3
1

−
0
.0
3
6

0
.0
9
4
þ0

.0
2
7

−
0
.0
3
4

0
.0
9
0
þ0

.0
2
9
�0

.0
0
3

−
0
.0
3
6
�0

.0
0
8

0
.0
9
6
þ0

.0
3
5

−
0
.0
4
2

0
.0
9
2
þ0

.0
3
3

−
0
.0
3
7

0
.0
9
4
þ0

.0
3
5
�0

.0
0
4

−
0
.0
3
9
�0

.0
0
1

0
.1
9
8
þ0

.0
9
1

−
0
.0
9
2

0
.2
0
4
þ0

.0
8
2

−
0
.0
8
8

0
.2
0
1
þ0

.0
8
6
�0

.0
0
3

−
0
.0
9
1
�0

.0
0
8

U
pp
er

bo
un
d

Pr
im

ar
y
sp
in

m
ag
ni
tu
de

a 1
0.
62

0.
73

0
.6
7
�
0
.0
9

0.
68

0.
83

0
.7
7
�
0
.1
2

0.
64

0.
69

0
.6
7
�
0
.0
4

Se
co
nd
ar
y
sp
in

m
ag
ni
tu
de

a 2
0.
93

0.
80

0
.9
0
�
0
.1
2

0.
90

0.
89

0
.9
0
�
0
.0
1

0.
89

0.
85

0
.8
7
�
0
.0
4

L
ow

er
bo
un
d

M
as
s
ra
tio

q
0.
62

0.
68

0
.6
5
�
0
.0
5

0.
25

0.
30

0
.2
8
�
0
.0
4

0.
22

0.
28

0
.2
4
�
0
.0
5

L
og

B
ay
es

fa
ct
or

ln
B
s=
n

2
8
7
.7
�
0
.1

2
8
9
.8
�
0
.3

��
�

5
9
.5
�
0
.1

6
0
.2
�
0
.2

��
�

2
2
.8
�
0
.2

2
3
.0
�
0
.1

��
�

In
fo
rm

at
io
n
cr
ite
ri
on

D
IC

3
2
9
7
7
.2
�
0
.3

3
2
9
7
3
.1
�
0
.1

��
�

3
4
2
9
6
.4
�
0
.2

3
4
2
9
5
.1
�
0
.1

��
�

9
4
6
9
5
.8
�
0
.0

9
4
6
9
2
.9
�
0
.0

��
�

B. P. ABBOTT et al. PHYS. REV. X 6, 041015 (2016)

041015-26



process regression [228], may be used in the future. For all
three events, we find that the theoretical uncertainty from
waveform modeling is less significant than statistical
uncertainty from the finite SNR of the events.
The calibration error is modeled using a cubic spline

polynomial [39,191], and we marginalize over uncertainty
in the calibration. Each analysis assumes a prior for the
calibration uncertainty, which is specific for each detector
at the time of that signal. Standard deviations of the prior
distributions for the amplitude and phase uncertainty are
given in Table III. The updated calibration uncertainty is
better than the original 10% in amplitude and 10 deg in
phase [47] used for the first results.
Aside from the difference in calibration, the analysis of

GW150914 follows the specification in Ref. [39]. We
analyze 8 s of data centered on the time reported by the
detection analyses [44], using the frequency range between
20 Hz and 1024 Hz. The time interval is set by the in-band
duration of waveforms in the prior mass range. We assume
uninformative prior distributions for the parameters (uni-
form distributions for the time and phase of coalescence,
uniform distribution of sources in volume, isotropic ori-
entations for the binary and the two spins, uniform
distribution of spin magnitudes, and uniform distribution
of component masses m1;2 ∈ ½10; 80�M⊙). For quantities
subject to change because of precession, we quote values at
a reference gravitation-wave frequency of fref ¼ 20 Hz.
There are small differences in the source’s parameters
compared to the runs on the older calibration, but these are
well within the total uncertainty; the greatest difference is in
the sky area, where the reduced calibration uncertainty
improves the localization area by a factor of about 2–3.
There are two differences in the configuration of the

analysis of LVT151012 from that for GW150914: The prior
on the component masses was set to be uniform over the
range m1;2 ∈ ½5; 80�M⊙, and the length of data analyzed
was T ¼ 22 s. We find that LVT151012 is consistent with a
lower-mass source, which necessitates a lower prior bound
on the component masses and requires us to analyze a
longer stretch since the signal could be in band for longer.
GW151226 is also consistent with being a lower-mass

source. However, we can still consider just 8 s of data by
confining the component masses such that the chirp mass is
M ∈ ½9.5; 10.5�M⊙ and the mass ratio is q ∈ ½1=18; 1�.
Preliminary analyses found no support outside of these
ranges, and the final posteriors lie safely within this region.
This choice of segment length limits the computational
expense of the analysis.

APPENDIX C: RATES CALCULATION
DESCRIPTION

In this appendix, we give further details of how the BBH
coalescence rates are estimated. The framework of
Ref. [229] considers two classes of triggers (coincident
search events): those whose origin is astrophysical and

those whose origin is terrestrial. Terrestrial triggers are the
result of either instrumental or environmental effects in
the detector. In order to calculate the rate of astrophysical
triggers, we first seek to determine the probability that
any given trigger arises from either class. The two classes
of source produce triggers with different densities as a
function of the detection statistic used in the analysis,
which we denote as x. Triggers appear in a Poisson process
with number density

dN
dx

¼ Λ1p1ðxÞ þ Λ0p0ðxÞ; ðC1Þ

where Λ1 and Λ0 are the Poisson mean numbers of triggers
of astrophysical and terrestrial origin, respectively. Here,
Λ1 is related to the merger rate density through

Λ1 ¼ RhVTi; ðC2Þ

where hVTi is the population-averaged sensitive space-
time volume of the search [42,155],

hVTi ¼ T
Z

dzdθ
dVc

dz
1

1þ z
sðθÞfðz; θÞ; ðC3Þ

where Vc is the comoving volume [230], θ describes the
population parameters, sðθÞ is the distribution function
for the astrophysical population in question, and 0 ≤
fðz; θÞ ≤ 1 is the selection function giving the probability
of detecting a source with parameters θ at redshift z.
Because the distribution of astrophysical triggers is inde-
pendent of source parameters without parameter-estimation
follow-up, we must assume an astrophysical distribution of
sources, and the rate enters the likelihood only in the form
Λ1 ¼ RhVTi. We also marginalize over a calibration
uncertainty of 6% on the recovered luminosity distances
(18% uncertainty on hVTi) when computing the rates.
The distribution of terrestrial triggers is calculated from

the search background estimated by the analyses (as shown
in Fig. 3). The distribution of astrophysical events is
determined by performing large-scale simulations of sig-
nals drawn from the various astrophysical populations
added to the O1 data set and using the distribution of
triggers recovered by our detection analyses applied to this
data set. This method correctly accounts for various thresh-
olds applied in the analyses. Note that the observed
distribution of astrophysical triggers over the detection
statistic will be essentially independent of the astrophysical
population used: All populations are assumed to be
distributed uniformly in comoving volume; thus, to a good
approximation, the measured SNRs and other detection
statistics follow the flat-space, volumetric density p1ðρÞ ∝
ρ−4 [129].
The likelihood for a search result containing M triggers

with detection statistic values fxjjj ¼ 1;…;Mg is [229]
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Lðfxjjj¼ 1;…;MgjΛ1;Λ0Þ

¼
�YM

j¼1

½Λ1p1ðxjÞþΛ0p0ðxjÞ�
�
exp ½−Λ1−Λ0�: ðC4Þ

The posterior over Λ1 and Λ0 is then obtained by multi-
plying the likelihood in Eq. (C4) by a prior proportional to
1=

ffiffiffiffiffiffiffiffiffiffiffi
Λ0Λ1

p
and marginalizing over the xj to obtain

pðΛ0;Λ1Þ. For a trigger with statistic value x, the proba-
bility that it is of astrophysical origin is

P1ðxjfxjjj ¼ 1;…;MgÞ≡
Z

dΛ0dΛ1

Λ1p1ðxÞ
Λ0p0ðxÞ þ Λ1p1ðxÞ

× pðΛ1;Λ0jfxjjj ¼ 1;…;MgÞ:
ðC5Þ

Finally, we evaluate the rate assuming a population
containing only BBH mergers with mass and spin param-
eters matching the three triggers for which P1 > 0.5; i.e.,
astrophysical origin is more likely than terrestrial. To do so,
we must generalize the formalism presented above to
account for three different astrophysical populations, each
having a different mean number of triggers Λi. In this case,
the likelihood of Eq. (C4) is generalized to allow for each
trigger to arise from one of the astrophysical classes, or be
of terrestrial origin. Additionally, we change the prior
distribution to account for the number of astrophysical
trigger classes via

pðfΛig;Λ0Þ ∝
�XNc

i

Λi

�−Ncþ1=2

Λ−1=2
0 ; ðC6Þ

where Nc ¼ 3 is the number of different classes of
astrophysical triggers. This functional form is chosen to
prevent the posterior expectation of the total count of
astrophysical events,

PNc
i Λi, from growing without limit

as more classes are considered in the calculation.
The three triggers associated with GW150914,

GW151226, and LVT151012 are restricted to originate
either from their specific class or be of terrestrial origin.
Thus, for instance, we neglect any probability ofGW150914
arising from the class containingGW151226.We justify this
by noting that the probability distributions for the compo-
nent masses of the three likely signals are disjoint from one
another at high confidence.
Multiplying this prior by the generalization of the

likelihood, Eq. (C4), we obtain the posterior distribution
on Λi, the number of astrophysical triggers in each class.
We again calculate the sensitive hVTi for each of the
classes of signals and thus infer merger rates for each class.
Figure 14 shows how the sensitive hVTi is accumulated as
a function of redshift. For the less massive GW151226, the
peak occurs at z ∼ 0.1, while for GW150914, it occurs at

z ≈ 0.2, with the search being sensitive to some signals with
redshifts as high as 0.6.

APPENDIX D: MASS DISTRIBUTION
CALCULATION DESCRIPTION

Here, we describe the details of the analysis of the mass
distribution that appears in Sec. VI. Further details on
population analysis in the context of measurement uncer-
tainty and selection effects are given in Ref. [231]. After
this paper was accepted, we became aware of Ref. [232],
which derives the same result as Ref. [231] and this
appendix in a different context. Useful references for
hierarchical analysis in astronomy include Refs. [156–159].
We assume that the distribution of black hole masses in

coalescing binaries follows [see Eq. (7)]

pðm1Þ ∝ m−α
1 ðD1Þ

and

pðm2jm1Þ ¼
1

m1 −Mmin
; ðD2Þ

with Mmin ¼ 5M⊙ the minimum black hole mass we
consider, as in the models of the mass distributions used
to infer rates. The joint population distribution on m1 and
m2 therefore follows

FIG. 14. The rate at which sensitive space-time volume
accumulates with redshift. Curves labeled by component masses
in M⊙ are computed using an approximate prescription described
in Ref. [42], assuming sources with fixed masses in the comoving
frame and with zero component spins; the GW150914,
GW151226, and LVT151012 curves are determined from the
Monte Carlo injection campaign described in Sec. VI.
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pðm1; m2jαÞ ∝
m−α

1

m1 −Mmin
: ðD3Þ

Here, we take all masses to be source-frame masses. The
distribution of masses observed in our experiment will
differ from the population distribution because our detector
sensitivity is a strong function of system mass.
A simplified model of our detection pipeline is that it is a

deterministic function of the data, fðdÞ, such that when
fðdÞ > f0, for some threshold f0, we detect a trigger.
Given our population parameter α, the joint distribution of
system parameters and data for a single detected trigger
with data d is

pðd;m1; m2jαÞ ¼
pðdjm1; m2Þpðm1; m2jαÞ

βðαÞ ; ðD4Þ

where the first term in the numerator is the standard (un-
normalized) likelihood function used in our parameter-
estimation analysis, the second term is the population
distribution in Eq. (D3) and plays a role of a prior in
our hierarchical analysis, and βðαÞ is a normalization factor,
ensuring that the joint distribution is properly normalized.
This factor is

βðαÞ ¼
Z

dm1dm2ddpðdjm1; m2Þpðm1; m2jαÞ; ðD5Þ

where the integral is taken over all allowed masses and the
set of data producing a detected trigger fdjfðdÞ > f0g.
Consider first the integral over d, which is

Z
fdjfðdÞ>f0g

ddpðdjm1; m2Þpðm1; m2jαÞ

¼ pðm1; m2jαÞPdetðm1; m2Þ; ðD6Þ

where we have defined the detection probability as a
function of mass,

Pdetðm1; m2Þ≡
Z
fdjfðdÞ>f0g

ddpðdjm1; m2Þ: ðD7Þ

This quantity is proportional to the hVTi defined in
Eq. (C3) evaluated with a source distribution that fixes
the source masses:

Pdetðm1; m2Þ ∝ hVTijm1;m2
: ðD8Þ

To evaluate this factor, we use the approximate recipe from
Ref. [42]. Thus,

βðαÞ ∝
Z

dm1dm2pðm1; m2jαÞhVTijm1;m2
: ðD9Þ

This normalization factor accounts for the selection effects
of our searches on the observed distribution of masses.
Here, we are interested only in the population param-

eters, not in reanalyzing the system masses; thus, we can
integrate the masses out of the joint distribution in Eq. (D4)
to obtain

pðdjαÞ ¼ 1

βðαÞ
Z

dm1dm2pðdjm1; m2Þpðm1; m2jαÞ

∝
1

βðαÞ hpðm1; m2jαÞi; ðD10Þ

where the notation h…i refers to an average over posterior
samples (properly reweighted to correspond to a flat prior
in m1 and m2) [231].
With multiple triggers analyzed, the likelihood is a

product of single-event likelihoods from Eq. (D10). We
impose a flat prior on α. The posterior from an analysis
using GW150914, LVT151012, and GW151226 appears
in Fig. 12.
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