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ABSTRACT

A hydrostatic, coupled-mode, shallow-water model (CSW) is described and used to diagnose and simulate

tidal dynamics in the greater Mid-Atlantic Bight region. The reduced-physics model incorporates realistic

stratification and topography, internal tide forcing from a priori estimates of the surface tide, and advection

terms that describe first-order interactions of internal tides with slowly varyingmean flow andmean buoyancy

fields and their respective shear. The model is validated via comparisons with semianalytic models and

nonlinear primitive equation models in several idealized and realistic simulations that include internal tide

interactions with topography and mean flows. Then, 24 simulations of internal tide generation and propa-

gation in the greaterMid-Atlantic Bight region are used to diagnose significant internal tide interactions with

theGulf Stream. The simulations indicate that locally generatedmode-one internal tides refract and/or reflect

at theGulf Stream. The redirected internal tides often reappear at the shelf break, where their onshore energy

fluxes are intermittent (i.e., noncoherent with surface tide) because meanders in the Gulf Stream alter their

precise location, phase, and amplitude. These results provide an explanation for anomalous onshore energy

fluxes that were previously observed at the New Jersey shelf break and linked to the irregular generation of

nonlinear internal waves.

1. Introduction

Although much has been learned about oceanic in-

ternal tides in the last few decades, some questions re-

main unanswered regarding their spatial and temporal

variability in shelf-edge regions. Observations of such

tidal variability abound and have been associated with

seasonal variations, three-dimensional structures, re-

mote internal tide generation, and intermittent local

mixing as reported, for example, by Holloway (1984),

Lerczak et al. (2003), Sharples et al. (2007), Kurapov

et al. (2010), and Jackson (2012). Reviews byHuthnance

(1995), Hollaway (1988), Ivey (2011), Nash et al.

(2012b), Lamb (2014), and others have emphasized that

shelf-edge tidal dynamics are challenging to explain

because many interconnected processes occur at the

shelf break. Particularly strong variability has been

documented in the Mid-Atlantic Bight (MAB) region

(e.g., Colosi et al. 2001; Nash et al. 2012a). In the present

paper, an efficient reduced-physics model that in-

corporates dominant interaction terms for internal tide

dynamics is developed and applied to study internal tide

variability specific to this MAB region.
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Our study of internal tide variability builds upon

comprehensive field data and model products from the

MAB region during the ShallowWater 2006 (SW06) and

2006 Autonomous Wide Aperture Cluster for Surveil-

lance (AWACS) experiments (Tang et al. 2007;

Chapman and Lynch 2010). During these experiments,

numerous oceanographic and acoustic measurements

were collected from July through September 2006

(Newhall et al. 2007; Lynch and Tang 2008; Colosi et al.

2012), and primitive equation forecasts with data as-

similation, reanalyses, and adaptive sampling recom-

mendations were issued in real time using the

Multidisciplinary Simulation, Estimation, and Assimi-

lation System (MSEAS; Lermusiaux et al. 2006; Haley

and Lermusiaux 2010; Lin et al. 2010; Colin et al. 2013).

Afterward, more than 1400, implicit, two-way-nested

primitive equation reanalyses were completed to im-

prove all aspects of the field estimation. Quick-look

evaluations of these simulations led to the detection of

sustained interactions between internal tides and the

Gulf Stream. Kelly and Lermusiaux (2016) examined

some of these interactions using the data-driven primi-

tive equation MSEAS model. One of the conclusions of

this analysis was that leading-order tide–Gulf Stream

interactions could be explained by first-order mean flow

terms acting on mode-1 internal tides. Specifically,

subtidal velocities and density gradients associated with

the Gulf Stream led to internal tide refraction/reflection

and produced regions of anomalous energy-flux di-

vergence and convergence. These results suggested, but

did not confirm, that mode-1 tides could originate along

the shelf break, reflect at the Gulf Stream, and return to

the shelf break to shoal.

Coincidentally, Nash et al. (2012a) observed a super-

position of locally generated (offshore propagating) and

incident (onshore propagating) internal tides at the New

Jersey shelf break during the SW06 experiment. Spe-

cifically, Nash et al. (2012a) separated the locally gen-

erated and incident internal tides by their coherence and

noncoherence, respectively, with the local surface tide.

Although Nash et al. (2012a) could not identify the

source of the incident internal tides, they emphasized

their importance in the generation of large-amplitude

nonlinear internal waves that were observed on the New

Jersey shelf (Moum and Nash 2008; Shroyer et al. 2009,

2010a,b,c, 2011).

In the present paper, we describe and apply the hy-

drostatic, coupled-mode, shallow-water model (CSW) to

determine whether internal tide reflection at the Gulf

Stream is a likely explanation for the incident non-

coherent internal tides observed at the New Jersey shelf

break. The reduced-physics model is designed for the

analysis of first-order tide–mean flow interactions. To this

end, CSW describes the horizontal propagation of

waveguide (vertical) internal tide modes, under the as-

sumption of first-order mean flow advection but in-

corporating lateral variability through vertical-mode

topographic coupling and the first-order effects of mean

flow advection and mean buoyancy variability and their

respective shear. The reduced-physics model is efficient

because it (i) utilizes a priori estimates of surface tides

and subtidal flows, (ii) includes only the dominant tide–

mean flow and tide–mean buoyancy interactions, and

(iii) uses modes as vertical coordinates. CSW is, however,

not intended to replace primitive equation models, which

are required where tidal flows are highly nonlinear, wave–

wave interactions are important, or strong feedbacks occur

between the tide and mean flow. A second aim of this

paper is to compare CSW simulations with idealized ana-

lytical solutions and primitive equation simulations in

varied shelf-edge regions so as to probe the robustness of

CSW’s dynamical approximations.

Section 2 presents derivations of modal momentum

and energy equations that describe internal tide gener-

ation, propagation, and scattering in the presence of

realistic topography, stratification, and subtidal back-

ground ocean. Sections 3 and 4 describe the numerical

implementation of CSW and trial simulations, re-

spectively. Section 5 discusses realistic simulations of

internal tide generation and propagation in the Gulf

Stream region. Section 6 contains a summary and

conclusions.

2. Derivation of the coupled-mode shallow-water
model

Here, we derive momentum and energy conservation

equations for a coupled, normal-mode, shallow-water

model. We start with an unforced linear system over ar-

bitrary topography, add a surface tide forcing term, and

finish by including first-order tide–mean flow interactions.

a. Unforced and linear dynamics

Internal tides can be described as linear waves pro-

vided u/c � 1 (Pedlosky 2003), where u & 0.1m s21 is a

typical tidal current and c * 1m s21 is a typical phase

speed. Finite-amplitude nonlinear effects, which we

neglect in this subsection, are important where internal

tides produce strong currents (e.g., the South China Sea;

Alford et al. 2015) and/or small-scale variability (Zhang

and Duda 2013; Duda et al. 2014). Ignoring finite-

amplitude nonlinear terms, the inviscid, hydrostatic,

Boussinesq equations of motion are

›u

›t
1 f k̂3 u52=p , (1a)
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052
›p

›z
1 b , (1b)

›b

›t
1wN2 5 0, and (1c)

= � u1 ›w

›z
5 0, (1d)

where u is horizontal velocity; w is vertical velocity;

p is reduced pressure (i.e., dynamic pressure divided by

reference density); b 5 2g(r 2 r0)/r0 is buoyancy per-

turbation; k̂ is the unit vector in the vertical; r and r0 are

instantaneous and reference density, respectively; and

N and f are the buoyancy and inertial frequencies, re-

spectively. The vertical domain extends from the seafloor

at z 5 2H(x) to the surface at z 5 0.

The explicit depth dependence at each horizontal lo-

cation is eliminated by projecting the equations of mo-

tion onto vertical modes that are the solutions to the

eigenvalue problem:

›2F
n

›z2
1

N2

c2n
F

n
5 0. (2)

Gill and Clarke (1974) provide a brief history of

vertical-mode decompositions, which define the surface

tide (barotropic tide) as the zeroth mode and the in-

ternal tide (baroclinic tide) as higher modes. In most

locations, internal tidal energy and energy flux occur at

the longest allowable vertical length scales, so these

quantities are efficiently represented by the lowest few

modes (e.g., n , 10; Nash et al. 2006; Alford and

Zhao 2007).

Boundary conditions are required to determine Fn.

Internal tides approximately obey a rigid lid (i.e.,

Fn 5 0 at z 5 0; Pedlosky 2003); however, decomposing

flows that obey a linear free surface using modes that

obey a rigid lid results in spurious surface to internal

tide energy conversion (e.g., Kelly et al. 2010). Here,

we avoid this problem by only considering flows that

also obey a rigid lid. The dynamical trade-off is that the

equations of motion no longer describe the propaga-

tion of surface tides (i.e., their wavelength becomes in-

finite), but this limitation is circumvented in section 2b

by treating surface tides as ‘‘known’’ forcing terms.

Alternatively, one can define a complete set of modes

that explicitly obey a linear free surface. These modes

have more complex orthogonality conditions, but they

completely eliminate spurious energy conversion and

eventually lead to the same expressions for momentum

and energy conservation that are derived here [i.e., (7)

and (9) below; Kelly 2016].

A locally flat-bottom boundary condition is also used

to determine the modes (i.e., Fn 5 0 at z 5 2H),

although the flow itself occurs over arbitrary topography

and obeys a kinematic boundary condition (i.e.,

w52u � =H at z 5 2H). The mismatch between these

boundary conditions leads to topographic coupling,

which is physically interpretable as internal tide gener-

ation and/or intermodal scattering.

With rigid-lid and flat-bottom boundary conditions,

the modes and their vertical derivatives, ›Fn/›z 5 fn,

are orthogonal:ð0
2H

F
m
F

n
N2 dz5 c2nHd

mn
, and (3a)

ð0
2H

f
m
f
n
dz5Hd

mn
, (3b)

and it is useful to note that, by definition of (2),

›fn/›z52FnN
2/c2n. Using this normalization, Fn has

units of length and fn is dimensionless. The barotropic

mode is then defined asF05 0,f05 1, and c05‘. Using

these modes as a complete orthogonal basis, the dy-

namic variables can be rewritten as

[u(x, z, t), p(x, z, t)]

5 �
‘

n50

[u
n
(x, t), p

n
(x, t)]f

n
(x, z), (4a)

and

[w(x, z, t), b(x, z, t)]

5 �
‘

n50

[w
n
(x, t), b

n
(x, t)N2(x, z)]F

n
(x, z), (4b)

whereFn and fn depend on x becauseN2 andH depend

on x and appear in (2). Note that wn and bn do not have

the same units as w and b.

After making the above modal Ansatz substitutions,

multiplying (1a) by fn, (1b) and (1c) byFn/c
2
n, and depth

integrating produces

›U
n

›t
1 f k̂3U

n
52H=p

n
2 �

‘

m50

p
m

ð0
2H

=f
m
f
n
dz ,

(5a)

05H
p
n

c2n
1Hb

n
, and (5b)

H
›b

n

›t
1Hw

n
5 0, (5c)

where Un 5 Hun is the equivalent volume transport of

each mode, although only the zeroth mode produces a

true volume transport. Next, the continuity equation

[(1d)] is multiplied by fn and depth integrated. During

this step it is necessary to integrate ›w/›z by parts and

utilize both Leibniz’s rule and the upper and lower

boundary conditions:
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ð0
2H

= �
�
�
‘

m50

u
m
f
m

�
f
n
dz1

ð0
2H

›

›z

�
�
‘

m50

w
m
F

m

�
f
n
dz5 0, (6a)

= � u
n
H1 �

‘

m50

u
m
�
ð0
2H

=f
m
f
n
dz1 �

‘

m50

w
m

ð0
2H

�
›

›z
(F

m
f

n
)2F

m

›f
n

›z

�
dz5 0, (6b)

= � u
n
H1 �

‘

m50

u
m
� =

ð0
2H

f
m
f

n
dz1=H � u(2H)f

n
(2H)2 �

‘

m50

u
m
�
ð0
2H

f
m
=f

n
dz , (6c)

1w(0)f
n
(0)2w(2H)f

n
(2H)1 �

‘

m50

w
m

ð0
2H

F
m
F

n

N2

c2n
dz5 0, and

= � (Hu
n
)2 �

‘

m50

u
m
�
ð0
2H

f
m
=f

n
dz1Hw

n
5 0. (6d)

Last, (5) and (6d) can be combined to write

›U
n

›t
1 f k̂3U

n
52H=p

n
2 �

‘

m50

Hp
m
T
mn
, and (7a)

a
n

g

›p
n

›t
52= �U

n
1 �

‘

m50

U
m
� T

nm
, (7b)

where an [ gH/c2n is a nondimensional-scale factor and

Tmn and Tnm are topographic coupling coefficients,

T
mn

5
1

H

ð0
2H

f
n
=f

m
dz , (8)

which arise where the vertical structure functions are

horizontal variable. The system of (7) is a set of cou-

pled shallow-water equations that describe linear

motions over arbitrary topography. An analogous set

of equations was previously derived by Griffiths and

Grimshaw (2007).

Multiplying (7a) by un and (7b) by pn and summing

produces the mode-n depth-integrated energy equations:

›

›t

�
H

2
ju

n
j2 1H

2

p2
n

c2n

�
1= � (U

n
p
n
)5 �

‘

m50

C
mn

, (9)

where the terms on the left-hand side are the energy En

tendency and energy-flux Fn 5 Unpn divergence, re-

spectively. Topographic energy conversion from mode

m to mode n is

C
mn

5p
n
U

m
� T

nm
2 p

m
U

n
� T

mn
, (10)

as previously derived and applied by Kelly et al. (2012).

b. External forcing

The astronomical tide generating force, which is

constant with depth, only significantly forces the surface

tide (Hendershott 1981). Therefore, internal tides are

generated indirectly where the surface tides scatter at

topographic features (Garrett and Kunze 2007). Highly

accurate surface tide (mode 0) solutions (e.g., the

TPXO7 atlas; Egbert 1997) can be specified a priori to

force the baroclinic modes (mode n) by providing esti-

mates of U0 and p0 in the topographic coupling terms

(i.e., those involving Tmn). Because the barotropic mode

is constant everywhere (f0 5 1), =f0 5 0 and T0n 5 0.

Therefore, the mode-0 (barotropic) tide only forces the

mode-n (internal) tide through one term in the sum-

mation on the right-hand side of (7b):

F
n
5U

0
� T

n0
52u

0
� =Hf

n
(2H) , (11)

where Leibniz’s rule has been used. We refer to F n as

the internal tide generating function (ITGF). The

ITGF is similar to the vertical body force derived by

Baines (1982) because it depends on surface tide ve-

locity and the topographic gradient. The ITGF de-

pends on the bottom values of the pressure structure

functions, which typically do not vary greatly in mag-

nitude. However, the scaling factor an in (7b) is pro-

portional to the mode number squared for constant

stratification, so the fluid’s response to the ITGF de-

creases rapidly with increasing mode number (analyt-

ical calculations of internal tide generation are also

known to decrease rapidly with mode number; see

Garrett and Kunze 2007).

Topographic mode-n internal tide generation in our

linearized system is C0n 5 F npn. Garrett and Kunze

(2007) reviewed internal tide generation in a variety of

dynamical settings and concluded that linear dynamics

are a good approximation where surface tide excursions

are small relative to the dominant topographic length

scale (a condition that holds at midocean ridges and
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continental slopes). This conclusion is supported by

numerous modeling studies that have shown that linear

internal tide generation terms dominate nonlinear terms

in regional energy balances (e.g., Kurapov et al. 2003;

Carter et al. 2008; Kang and Fringer 2012; Buijsman

et al. 2014). In contrast, a few high-resolution modeling

studies, which resolve extremely short-wavelength in-

ternal tides, have shown that nonlinear terms can sig-

nificantly contribute to generation, even where tidal

excursions are small (Gayen and Sarkar 2011; Zhang

and Duda 2013). For example, Zhang and Duda (2013)

found that nonlinear dynamics reduced generation at a

shelf break by 12% in a simulation with 150-m hori-

zontal grid spacing.

c. Mean flow effects

Although internal tides with u/c � 1 propagate as

linear waves, they can be steered (Rainville and Pinkel

2006; Park and Watts 2006; Zaron and Egbert 2014;

Kelly and Lermusiaux 2016) and scattered (Dunphy and

Lamb 2014; Kelly and Lermusiaux 2016) by subtidal

flows. Several studies have found that these phenomena

appear to be dominated by linearized tide–mean flow

interactions, even in fully nonlinear models (Zaron and

Egbert 2014; Dunphy and Lamb 2014; Kelly and

Lermusiaux 2016).

Following Kelly and Lermusiaux (2016), first-order

wave–mean flow and wave–buoyancy interaction terms

are included in the modal equations of motion by

(i) subtracting the fully nonlinear time-averaged equations

of motion from the fully nonlinear equations of motion

and (ii) assuming that wave amplitudes are small enough

so that wave–wave advection terms can be neglected.

This derivation (Kelly and Lermusiaux 2016) does not

require a spatial-scale separation between the tides and

background flow [e.g., steady flow: U(x, y, z)] nor be-

tween the tides and horizontally variable background

buoyancy [B(x, y, z)52g(r2 r0)/r0]. Adding these

first-order interaction terms to (7) and neglecting the

background vertical velocity lead to

›U
n

›t
1 �

‘

m50

[(U
mn

� =)U
m
1 (U

m
� =)U

mn
2 (= �U

m
)U

z,mn
]1 f k̂3U

n
52H=p

n
2H �

‘

m50

p
m
T
mn
, and (12a)

a
n

g

›p
n

›t
1 �

‘

m50

�
a
n

g
U

p,mn
� =p

m
2

U
m

c2n
� B

mn

�
52= �U

n
1 �

‘

m50

U
m
� T

nm
, (12b)

where the ‘‘effective mean flow’’ and ‘‘effective mean

buoyancy’’ terms (denoted with bars) are computed by

projecting the total depth-dependent mean flow [U(z)

and buoyancy B(z)] onto combinations of the structure

functions:

U
mn

5
1

H

ð0
2H

Uf
m
f

n
dz (m s21) , (13a)

U
p,mn

5
1

H

ð0
2H

U
N2

c2m
F

m
F

n
dz (m s21) , (13b)

U
z,mn

5
1

H

ð0
2H

›U

›z
F

m
f

n
dz5U

p,mn
2 U

mn
(m s21),

(13c)

and

B
mn

5
1

H

ð0
2H

=Bf
m
F

n
dz (m s22) . (13d)

When compared to (7), the three new terms in (12a)

represent, from left to right, wave advection by themean

flow, wave interactions with horizontal shear, and wave

interactions with vertical shear. Similarly, from left to

right, the two new terms in (12b) represent wave ad-

vection by the mean flow and wave interactions with

horizontal buoyancy gradients.

For simplicity, terms arising through simultaneous

topographic and mean flow coupling (i.e., terms

describing mean flow effects on topographic scat-

tering) are omitted from the present analysis. Kelly

and Lermusiaux’s (2016) analyses of fully nonlinear

simulations with tides and mean flows indicated

that, for the present applications, these terms were

less important than the terms retained in (12). In

essence, this approximation requires that either to-

pographic or mean flow coupling dominates at any

given location.

The energy equations [(9)] with the mean flow terms

included then become

›E
n

›t
1= � F

n
1 �

‘

m

A
mn

5 �
‘

m

(C
mn

1PS
mn 1PB

mn) . (14)

The new terms represent wave–energy advection by the

mean flow Amn, shear production PS
mn, and horizontal

buoyancy production PB
mn:
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A
mn

5 [(U
mn

� =)U
m
] �Un

H
1

�
a
n

g
U

p,mn
� =p

m

�
p
n
,

(15a)

PS
mn 5 [(= �U

m
)U

z,mn
2 (U

m
� =)U

mn
] �Un

H
, and

(15b)

PB
mn 5

�
U

m

c2n
� B

mn

�
p
n
. (15c)

d. Tidal analyses

The momentum and energy equations (12) and (14)

describe motions and energy exchanges at all frequencies

but do not include a mechanism to transfer energy be-

tween frequencies (provided themean flow is steady), that

is, narrowband tidal forcing produces narrowband internal

tides. Complex tidal amplitudes are extracted via a

Fourier transform or by fitting velocity and pressure to

tidal harmonics over four tidal periods. Period-averaged

covariances, which determine tidally averaged energy and

energy flux, are computed han(t)bn(t)i5Re(ânb̂n*/2),

where hats indicate complex tidal amplitudes [i.e.,

an(t)5Re(ân) cos(vt)1 Im(ân) sin(vt)] and stars indi-

cate complex conjugates.

3. Numerical implementation

The CSW truncates the system of (7) or (12) at Nm

vertical modes and forward integrates the solution on a

C grid (i.e., velocity and pressure nodes are staggered in

time and space to provide second-order accuracy;

Arakawa and Lamb 1977) using a third-order, accurate,

Adams–Bashforth, explicit, time-stepping algorithm.

Because internal tides propagate relatively slowly, the

Courant–Friedrichs–Lewy numerical–stability condi-

tion (e.g., Cushman-Roisin and Beckers 2011) permits

O(10–100) s time steps.

Forcing is applied by introducing internal tides at the

boundaries or through the ITGF [(11)]. Damping is

applied via linear/quadratic bottom drags and Laplacian

horizontal eddy viscosity. Here, bottom drags are set to

zero, and eddy viscosity is chosen using the stability

conditionAH.UDx/2, whereU is a typical tidal velocity

and Dx is the horizontal grid spacing (Bryan et al. 1975).

Much smaller viscosities are sufficient in simulations with

short duration and/or simple topography andmean flows.

Sponge conditions at the boundaries damp outward-

propagating waves and prevent their reflection (Lavelle

and Thacker 2008).

Coriolis terms are difficult to discretize on coarseC grids

with ‘‘low wave resolution,’’ that is, Dx . 2cn/f (Adcroft

et al. 1999). In these regions, numerical errors lead to

inaccurate dispersion relations and grid-scale noise. CSW

avoids these problems by using a flow-relaxation condition

(sponge) at nodeswith lowwave resolution. This condition

preferentially damps high-mode waves in shallow water,

which have small eigenspeeds.

Topographic effects in CSW arise through spatially

variable eigenspeeds (i.e., cn or an) and topographic

coupling terms (i.e., terms involving Tmn). The eigens-

peeds and vertical structure functions are determined

during preprocessing at the pressure nodes by solving

the generalized eigenvalue problem [(2)] with realistic

N2(z) and second-order accurate finite differences (e.g.,

Cushman-Roisin and Beckers 2011). To improve the

accuracy of the eigenvalue solution, observed or mod-

eled N2(z) profiles with irregular vertical grids are lin-

early interpolated onto a uniform vertical grid prior to

solving the eigenvalue problem. Horizontal derivatives

in the topographic coupling coefficients [(8)] and ITGF

[(11)] are computed using second-order accurate finite

differences.

The effective mean flow terms [(13)] are also com-

puted at the pressure nodes during preprocessing. When

necessary, topographic and mean flow coupling terms

are bilinearly interpolated from the pressure nodes to

the velocity nodes at runtime.

4. Trial simulations

a. Topographic coupling

When a constant barotropic transport is applied over

subcritical and supercritical continental slopes, CSW

produces the qualitative dynamics of internal tide gen-

eration (Fig. 1). CSW directly determines the internal

tide horizontal velocity and pressure amplitudes, the

latter of which is proportional to an ‘‘equivalent’’ sur-

face displacement [pnf0(0) 5 rghn]. As expected, the

pressure amplitudes oscillate in the horizontal, and their

wavelengths decrease with mode number and increase

with depth. Phase locking between the modal ampli-

tudes leads to vertically propagating internal tide beams

in the reconstructed depth profile of pressure over su-

percritical topography, a well-known qualitative char-

acteristic of the internal tide (Garrett and Kunze 2007).

Although CSW is 3D, we assess its accuracy via

comparisons of internal tide generation with the 2D

semianalytical Coupling Equation for Linear Tides

model (CELT; Kelly et al. 2013) and 2D configurations

of the fully nonlinear MIT general circulation model

(MITgcm; Marshall et al. 1997). CELT determines in-

ternal tide solutions by solving a system of equations

(i.e., inverting a matrix) that contains the matching

conditions for harmonic vertical-mode amplitudes at
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discrete topographic steps. Here, the CELT model is

inviscid, so internal tide generation is exactly equal to

radiated energy flux. Generation in CSW and MITgcm

are computed a posteriori by evaluating (10) at each

location using model outputs. For the MITgcm simula-

tions, complex modal amplitudes are obtained using

least squares harmonic analysis and direct projection of

the depth-dependent profiles onto vertical modes (e.g.,

Kelly et al. 2012, 2013).

Internal tide generation from CSW and CELT agree

within 610% (Fig. 2), except at tall gradual slopes, where

CSW indicates that generation is negligible [i.e.,C, 100W

(m-coastline)21] and CELT is less accurate and requires

unfeasibly high vertical and horizontal resolution (i.e., more

vertical modes and topographic steps; Kelly et al. 2013).

Internal tide generation from CSW and MITgcm

resemble each other in simulations of the Australian

(198S), Oregon (438N), and New Jersey (398N) con-

tinental slopes (Figs. 3g–i). These locations cover a

range of observed stratifications and topographic

shapes (i.e., subcritical/supercritical slopes and con-

cave/convex curvature; Fig. 3), suggesting the

agreement holds at most locations in the deep ocean,

where tidal excursions are small (e.g., Garrett and

Kunze 2007). In all three locations, MITgcm and

CSW horizontal velocities also qualitatively re-

semble each other (Figs. 3a–f), despite the former

being fully nonlinear and using 500 z levels and the

latter being linear and using just 16 modes. Here,

the CSW simulations required less than 1% of the

FIG. 1. Snapshots of surface displacements after 10 tidal cycles computed using CSWover (a) subcritical (smax5 1/2)
and (b) supercritical (smax 5 4) slopes. Pressure reconstructed from the modal amplitudes [p(x, z) 5 Snr0ghn(x)]

displays an internal tide beam when over the (d) supercritical ridge but not the (c) subcritical ridge. The CSW sim-

ulations haveDx5 250m andNm5 32modes resolution,N25 43 1026 s21 constant stratification, hyperbolic tangent

topographic shapes, and are forced with a U0 5 100m2 s21 barotropic transport.
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computation time of the MITgcm simulations (in

hydrostatic mode), although the exact speedup is a

function of numerous CSW and MITgcm parameters.

Of course, CSW is a weakly nonlinear model, which

cannot replace a full nonlinear model in regions of

strong forcing, where finite-amplitude (i.e., non-

linear wave–wave) advection is important (e.g.,

Lamb 2004; Legg and Huijts 2006; Venayagamoorthy

and Fringer 2006; Zhang and Duda 2013; Lamb 2014).

High- and low-resolution CSW simulations of internal

tide generation provide some indications of the model’s

sensitivity to horizontal and vertical resolution. Gener-

ation estimates from low-resolution simulations (Dx 5
1 km and Nm 5 8 modes) are within 610% of those

FIG. 2. (a) CELT (Dx5 500m, Nm 5 32 modes) and (b) CSW simulations indicate that slope-integrated, internal

tide generation [i.e.,W (m-coastline)21] dramatically increases with the height and steepness of the continental slope.

(c) The differences between the solutions are 610%, except at tall gradual slopes where generation is weak.

FIG. 3. Internal tide horizontal velocities from six 2D simulations with realistic topography and stratification that

are forced with a U0 5 100m2 s21 barotropic transport. (a)–(c) Fully nonlinear simulations using the MIT general

circulationmodel (Dx5 500m andDz5 10m) qualitatively resemble the (d)–(f) linear simulations using CSW (Dx5
500m andNm5 16modes). (g)–(i) Internal tide generation in theMITgcm closely matches energy-flux divergence in

CSW. The depth structure of the CSW velocities is reconstructed by summing 16 vertical modes.
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obtained from the high-resolution simulations (Dx 5
250m and Nm 5 32 modes), except at extremely tall

gradual slopes, where internal tide generation is small

(Figs. 4a,b). For several hyperbolic tangent topographic

profiles of moderate heights and steepnesses, internal

tide generation converges rapidly once Dx , 2 km and

Nm . 8 (Figs. 4c,d). For moderate topographic profiles,

the rates of conversion do not depend strongly on the

values of height and steepness. The sensitivity analysis

here is not exhaustive, but it provides zeroth-order

guidance for resolving internal tide dynamics in re-

alistic settings.

b. Mean flow coupling

The advective and vertical shear terms in CSW can be

tested by comparing CSW simulations with analytical

solutions to the hydrostatic Taylor–Goldstein (TG)

equation, which describes nonrotating internal waves of

the form wtot }w(z) exp[ik(x2 ct)] in a parallel shear

flow U(z):

(c2U)
›2w

›z2
1
›2U

›z2
w52ikb, and (16a)

(c2U)ikb5N2w . (16b)

The TG system of equations is usually presented as a

single equation for w(z); however, retaining b(z) and

splitting as above allows the system to be rewritten as a

generalized eigenvalue problem:
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where c are the eigenvalues, the concatenation of w(z)

and ikb(z) are the eigenfunctions, and 0 and I are the

zero and identity matrices, respectively. The problem

FIG. 4. (a) In high-resolution CSW simulations (Dx 5 250m and Nm 5 32 modes), internal tide generation

dramatically increases with the height and steepness of the continental slope. (b) In low-resolution simulations

(Dx5 1 km andNm5 8 modes), the ratio of conversion relative to the high-resolution simulations is 0.9–1.1, except

at very tall gradual slopes, where total conversion is negligible (i.e., C, 100W). For a variety of slope heights and

steepnesses [identified by square, circle, plus, and x symbols in (a) and (b)], internal tide generation converges at

around [(a) and (c)] 2-km horizontal resolution and [(b) and (d)] Nm 5 8 vertical modes. The suite of simulations

here has topographic shapes, stratification, and barotropic forcing identical to those shown in Fig. 1.
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is discretized and solved analogously to (2). The

problem is simpler than the full (nonhydrostatic) TG

equation because the eigenvalues are speeds rather

than frequencies, and the input matrices do not

require a specified wavenumber. In practice, once

w(z) and c are found, v is set to the tidal frequency

to determine k, and horizontal velocity is obtained

from vertical velocity using the continuity equation

[iku(z) 5 2›w/›z].

The solutions to the TG equation reveal how mean

flows alter the shape andwavelength of themode-1 internal

tide. Here, we consider a fluid with constant stratification

and a barotropic mean flow,U 5 0.5ms21, or a baroclinic

mean flow, U(z)5 0.25[tanh(11 z/200)1 1] ms21 (i.e.,

the flow is strong at the surface and nearly zero at

the bottom).

Mode-1 waves propagating in the direction of the

mean flows increase in horizontal wavelength (Figs. 5a–d).

FIG. 5. Internal tide horizontal velocity is shown for (left) barotropic and (right) baroclinic background flows. The flows are determined

from the analytical mode-1 TG solutions (c),(d) with and (a),(b) without mean flows and (e),(f) from the CSW simulations with flows

initiated using the TG solution at the left boundary. (g),(h) Plots of surface velocity display the close agreement between the TG (black)

and CSW solutions (gray) in the presence of a mean flow, and their departure from the TG solutions that neglect the mean flow (dashed).
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The surface-intensified baroclinic mean flow also raises

the depth of the mode-1 horizontal velocity zero cross-

ing (Fig. 5d). CSW simulations (here with no rotation)

are compared with the analytical results by projecting

the first TG mode onto flat-bottom modes (the modes

defined by 2) and initiating this spectrum at the left

boundary of the CSW domain. When terms describing

the effects of advection and vertical shear are neglected

in CSW, this forcing produces a vertically propagating

beamlike structure due to the seemingly random su-

perposition of modes (not shown, but see Fig. 1).

However, when mean flow terms are included in CSW,

the forcing produces a coherent structure that only

propagates horizontally and has the same wavelength

and zero crossing as the TG mode (Figs. 5e,f). Hori-

zontal surface velocities reveal the close agreement be-

tween the model and theory (Figs. 5g,h).

Last, an idealized two-dimensional MITgcm simulation

of amode-1 internal tide crossing theGulf Stream tests all

of the CSW mean flow terms (Fig. 6). The initial state of

the simulations is realistic across-axes slices of Gulf

Stream density and horizontal velocity. The simulations

are forced with amode-1 internal tide at the left (onshore)

boundary, which propagates across a 2000-km numerical

domain. The simulations have 2-km and 20-m horizontal

and vertical resolution, respectively. Additional details

and analyses of the MITgcm simulation are discussed in

Kelly and Lermusiaux (2016). An identically configured

CSW simulation replicates the MITgcm patterns of both

horizontal internal tide velocity and shear/buoyancy pro-

duction where the tide crosses the Gulf Stream. The close

quantitative agreement of the MITgcm and CSW simu-

lations suggests that mean flow shear and horizontal

buoyancy gradient terms are accurately implemented in

CSWand that, in this situation, CSW includes the leading-

order dynamics at work in a fully nonlinear model.

5. Application to the Gulf Stream region

a. Idealized internal tide reflection at the Gulf Stream

Kelly and Lermusiaux (2016) utilized data-driven re-

gional nonlinear primitive equation MSEAS simulations

to examine interactions between mode-1 internal tides

and the shelfbreak front and the Gulf Stream. For the

latter, the dominant dynamical term was internal tide

advection by the Gulf Stream, suggesting that geometric

wave theory could be used to predict internal tide re-

flection. Here, we validate this finding by using CSW to

simulate mode-1 internal tides as they strike a realistic

cross section of the Gulf Stream at different angles of

incidence (Fig. 7).As predicted by geometric wave theory,

incident mode-1 tides at grazing angle u 5 308 (u 5 1508)
undergo specular reflection at the shoreward (seaward)

edge of the Gulf Stream by regions of large velocity (ei-

genspeed). Incident mode-1 tides near the critical angles

(u5 608 and u5 1208) reveal the limitations of geometric

wave theory by displaying partial reflection and trans-

mission. However, the angles of the reflected and trans-

mitted waves are still accurately predicted by geometric

theory. The CSW simulations support the conclusion that

mode-1 internal tides’ incident at angles u , 608 and

u . 1208 are reflected shoreward by the Gulf Stream.

However, they do not indicate a binary transition between

transmission and reflection at the critical angles.

b. Internal tide reflection, refraction, and scattering by
the Gulf Stream

We now analyze the effects of internal tide reflection

by the Gulf Stream on the directionality and in-

termittency of internal tides in the Mid-Atlantic Bight

FIG. 6. In (a)MITgcm and (b) CSW simulations, mode-1 internal

tide velocity displays a longer wavelength and deeper zero crossing

after crossing the Gulf Stream. (c) While crossing the Gulf Stream,

shear and buoyancy production approximately cancel each other in

both the MITgcm (thick lines) and CSW (thin lines). Gulf Stream

velocity contours are shown every 0.25m s21 (the mean flow is into

the page).
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region. To do so, we study 24 realistic CSW simulations

of regional internal tide interactions with the Gulf

Stream. The computational domains extend from 308 to
458N and 608 to 808W, have 3-km horizontal resolution,

and include eight vertical modes. The simulations em-

ploy realistic topography (Smith and Sandwell 1997),

TPXO M2 surface tide velocities (for computing the

ITGF), and subtidal flows interpolated from a 1/128
global simulation conducted with the Hybrid Ocean

Coordinate Model (HYCOM, experiment 19.1;

Chassignet et al. 2007). Snapshots ofHYCOMdata from

20 August 2001–12 provide 12 different summer Gulf

Stream conditions. The effect of the Gulf Stream was

isolated by running two simulations for each year. The

first simulation employed HYCOM background condi-

tions that were low-pass filtered with a 500-km 2D

Hanning window to completely eliminate the Gulf

Stream (and all other mesoscale variability). The second

simulation reintroduced the Gulf Stream by including

the high-passed background conditions in offshore re-

gions using a linear weight between the 0- and 3000-m

isobaths (i.e., realistic unfiltered HYCOM data were

used in regions deeper than 3000m). In both simula-

tions, filtering the background conditions removed

small-scale variability at generation regions (such as the

shelfbreak front), which could have provided additional

sources of internal tide variability and complicated the

analyses of tide–Gulf Stream interactions. A typical map

FIG. 7. CSW simulations of mode-1 internal tides incident on theGulf Stream are visualized through snapshots of

mode-1 pressure. The orientation of the incident internal tides is indicated by gray arrows. The orientation of the

reflected tides predicted from geometric theory is indicated by black arrows. The Gulf Stream propagates from

bottom to top (at an angle of u 5 0) and its horizontal extent is marked by dashed lines. Cross-stream profiles of

Gulf Stream phase speed and velocity are presented in Kelly and Lermusiaux (2016).
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of eigenspeed and the effective mean flow indicates that

low-pass filtering the HYCOM data effectively removes

theGulf Stream (e.g., eigenspeed in the low-pass filtered

simulation is predominantly just a function of depth;

Fig. 8).

CSW was integrated for 30 tidal cycles with a steady

mean flow. After approximately 20 tidal cycles, the

simulations developed instabilities in regions of strong

mean flow gradients. This is possible because linearized

systems can exhibit unlimited growth even when the

underlying nonlinear system is stable, since the neglec-

ted higher-order terms can contain the negative feed-

backs. The instabilities persisted even after testing a

variety of numerical algorithms, perhaps indicating that

they are due to physical processes, such as wave capture

(Bühler and McIntyre 2005). Consistent with wave

capture, the instabilities developed more slowly in test

simulations where the mean flow was periodically up-

dated (i.e., varied in time) and were eliminated by

omitting the terms in (12) that are responsible for shear

and buoyancy production. In the end, the simulations

were conducted with horizontally variable eigenspeeds

and just the mean flow terms responsible for wave ad-

vection (i.e., the terms consistent with the geometric

approximation). These simulations retained the dy-

namics that explain idealized internal tide refraction/

reflection at the Gulf Stream (Fig. 7) and the dominant

tide–mean flow interactions quantified by Kelly and

Lermusiaux (2016).

Snapshots of mode-1 elevation in simulations with and

without the Gulf Stream contain similar patterns along

the shelf break, particularly on the eastern flank of

George’s Bank, where energetic internal tides radiate

offshore [Fig. 9; also, Chen et al. (2011) simulated a

1.1-GW internal tide radiating away from a ;100-km

segment of shelf break northeast of the bank]. The Gulf

FIG. 8. (a) August 2006 mode-1 eigenspeeds computed from

500-km low-passedHYCOMdensities depend on bottomdepth and

regional stratification. (b) Eigenspeeds computed from unfiltered

offshore densities additionally depend on the location of the Gulf

Stream and its mesoscale meanders, warm-core rings, and eddies.

Vectors represent the effective HYCOM mean flow given by U11.

A green dot marks the location of the SW06 field experiment on the

New Jersey shelf break. The coastline reflects themodel bathymetry,

which omitted all locations shallower than 30m.

FIG. 9. August 2006 snapshots of CSW mode-1 surface dis-

placements reveal internal tides radiating from the shelf break and

offshore interference patterns that are greatly influenced by the

Gulf Stream.
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Stream drastically alters the propagation of these waves

and their interference patterns. Near 408N, 2988E, the
offshore propagating internal tide beam even partly

reflects northward where it strikes the Gulf Stream, in-

stead of continuing to propagate southeast toward 388N,

3008E, as it does in the absence of the Gulf Stream. This

situation is reminiscent of the idealized reflection shown

in Fig. 7a.

The Gulf Stream’s impact on the internal tide energy

balance in CSW is quantifiable via Amn, the energy–

advection term in (14), which balances tidally averaged,

internal tide, energy-flux divergence in the Gulf Stream

(Fig. 10; note that PS
mn and PB

mn are not present in these

simulations). The pattern produced by SmAm1 has an

amplitude of O(20)mWm22 and a horizontal scale

comparable to the wavelength of the mode-1 internal

tide. Similarly, the pattern produced by SmAmn for all

n 5 2–8 has horizontal scales consistent with the wave-

lengths of the high-mode internal tide. In both cases,

energy advection by the mean flow does not produce a

net volume-integrated energy transfer between the tide

and mean flow, which explains the (nearly) offsetting

regions of internal tide energy sources and sinks in

Fig. 10. However, Amn can facilitate energy conversion

between internal tide modes via tidal scattering by the

mean flow (e.g., Dunphy and Lamb 2014). This scat-

tering appears as regions of simultaneous mode-1 en-

ergy-flux convergence and high-mode energy-flux

divergence in Fig. 10.

To better identify mode-1 scattering, SmAm1 was low-

pass filtered with a 200-km Hanning window to elimi-

nate offsetting sources and sinks and identify net energy

conversion between modes (Fig. 11). The smoothed

fields vaguely indicate that the mode-1 internal tide

scatters O(1)mWm22 to higher modes along the

shoreward side of the Gulf Stream. However, these

conversion rates are at least 100 times smaller than in-

ternal tide generation along the shelf break (not shown),

suggesting that mode-1 scattering due to advection by

the Gulf Stream is minimal.

FIG. 10. August 2006 tidally averaged (a) mode-1 and (c) high-mode (n5 2–8) energy-flux divergences in CSW are

balanced by tidal energy mean flow advection (15a) in the (b),(d) Gulf Stream away from the steep topography [here

the sign of Amn is reversed, so that advection appears as a source term in (14)]. To emphasize mean flow effects,

energy-flux divergences are not plottedwhere topographic generation exceeds 1mWm22 (i.e., along the shelf break).

Vectors represent Gulf Stream velocities [U11 in (a) and (b) and U22 in (c) and (d)].
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c. Internal tide coherence in the Mid-Atlantic
Bight region

Snapshots of internal tide pressure from individual

realizations of the Gulf Stream display unique and

complicated interference patterns that are difficult to

interpret in terms of individual wave reflections/

refraction at the Gulf Stream. However, the statistical

effect of the Gulf Stream is evident from maps of co-

herent (stationary) and noncoherent (nonstationary)

tidally averaged mode-1 energy (Fig. 12). Therefore,

harmonic amplitudes at each location are decomposed

into a coherent signal, defined as the 12-simulation

ensemble-mean amplitude, and a noncoherent signal,

defined as the residual amplitude (e.g., Zaron and

Egbert 2014). Coherent energy is computed directly

from the coherent harmonic amplitudes and non-

coherent energy is computed as total energy minus co-

herent energy (Munk and Cartwright 1966; Kelly et al.

2015). Following Nash et al. (2012a), coherent energy

flux is computed from the coherent amplitudes and

noncoherent energy flux is computed from the non-

coherent amplitudes.

Both coherent and noncoherent energies are en-

hanced onshore (north) of the Gulf Stream, indicating

that significant mode-1 tidal energy is trapped along the

continental margin by reflection at the Gulf Stream.

East of George’s Bank, mode-1 energy is coherent in the

generation region and becomes noncoherent as it enters

the Gulf Stream, indicating that accurate internal tide

predictions require accurate predictions of tide–mean

flow interactions. Zaron and Egbert (2014) reported a

similar result for energetic internal tides radiating away

from the Hawaiian Ridge. Where less energetic internal

tides encounter stronger mean flows, for example, the

Mid-Atlantic Bight between 358 and 408N, noncoherent

energy is larger than coherent energy, suggesting that

FIG. 11. Spatially smoothed tidally averaged tidal energy ad-

vection contains broad regions ofO(1)mWm22 (a) mode-1 energy

loss and (b) high-mode energy gain along the shoreward edge of the

Gulf Stream. The advection fields here are obtained by smoothing

the fields in Figs. 10c and 10d with a 200-km 2D Hanning window.

FIG. 12. CSW simulations of (a) coherent and (b) noncoherent

mode-1 tidal energy are enhanced shoreward of the Gulf Stream.

Coherent energy is largest in internal tide generation hotspots and

noncoherent energy is largest where the internal tides propagating

away from the hotspot interact, or have interacted, with the

Gulf Stream.
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most of themode-1 internal tide cannot be predicted nor

analyzed using conventional tidal analyses (e.g., the

harmonic or response methods; Doodson 1921; Munk

and Cartwright 1966).

d. Intermittent internal tides at the New Jersey
shelf break

Previous observations from the New Jersey shelf

break, during the SW06 experiment, indicated that (i) a

locally generated low-mode internal tide produces co-

herent offshore energy flux and (ii) a remotely gener-

ated low-mode internal tide produces intermittent

onshore energy flux (Kelly and Nash 2010; Nash et al.

2012a). Moreover, the onshore energy flux of nonlinear

wave packets (likely spawned from shoreward-

propagating internal tides) has been observed to be

spatially heterogeneous along the shelf break with a

length scale ofO(20) km. These results are in qualitative

agreement with the CSW simulations, which show the

coherent, mode-1 internal tide (i) has crests and troughs

in surface displacement that are aligned with the shelf

break and (ii) produces energy flux that diverges along

the shelf break (Fig. 13a). Conversely, the noncoherent,

mode-1 internal tide (i) has sea surface displacements

FIG. 13. Snapshots of CSW simulated (a) coherent and (b)–(d) noncoherent mode-1 surface displacements on 20

Aug display internal tide variability along the New Jersey shelf break. Energy-flux vectors computed from the

coherent tide in (a) indicate energy propagation away from the shelf break, while those computed from the non-

coherent tide in (b)–(d) indicate spatially heterogeneous energy propagation toward the shelf break. A green dot

marks the location of the SW06 field experiment. Depth contours are shown every 500m. Noncoherent tides from

the years that are not shown are similar in character.
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that resemble a confused wavefield with no dominant

directionality and (ii) produces patches of onshore en-

ergy flux that intermittently impact narrow sections of

the shelf break (Figs. 13b–d).

A time series of energy flux at the SW06 study site

(Fig. 14) indicates that coherent offshore energy flux is

present in the simulations with and without the Gulf

Stream, but noncoherent onshore energy flux is only

present in the simulations with the Gulf Stream. The

precise magnitude and timing of the simulated and ob-

served onshore energy fluxes do not agree and are not

expected to agree because (i) the simulations are not

forced with all tidal constituents and (ii) the time-

evolving, three-dimensional structure of the Gulf

Stream during the SW06 experiment is not precisely

known from the HYCOM fields alone.

6. Summary and conclusions

Comparisons of CSW with analytical solutions and

nonlinear numerical models indicate that CSW is ca-

pable of diagnosing and simulating internal tide gen-

eration and tide–mean flow and tide–mean buoyancy

interactions in realistic settings. The model is flexible

enough to incorporate arbitrary topography, stratifica-

tion, surface tide forcing (via the ITGF), and back-

ground conditions while operating at ,1% of the

computational expense of a 3D primitive equation

model. This is because the slowly varying background

flow and density fields are not explicitly simulated, tide–

mean flow interactions are linearized, and the modal

CSW equations are essentially a set of coupled 2D

partial differential equations. From this perspective,

CSW is useful for (i) studying high-resolution (e.g.,

Dx ’ 1 km) internal tidal dynamics in large computa-

tional domains and (ii) producing rapid internal tide

simulations that include the effects of regional subtidal

flows. However, this first-order model cannot replace a

fully nonlinear model in regions with large tidal excur-

sions, significant wave–wave interactions, or other types

of nonlinear phenomena. Also, CSW presently pro-

duces instabilities in regions of strong mean flow shear,

and further research is required to determine if these

instabilities are due to wave capture and/or neglected

higher-order terms that represent dissipation.

Nash et al. (2012a) linked the presence of nonlinear

internal waves on the New Jersey shelf with bursts of

onshore energy flux at the shelf break. Although they

did not identify the source of onshore energy flux, they

suggested two possibilities: (i) open-ocean internal

tide ‘‘swell,’’ which is generated at distant topographic

features, such as midocean ridges and remote conti-

nental slopes (Alford 2003), and (ii) locally generated

internal tides that refract onshore due to regional to-

pographic variability (Sherwin et al. 2002). The simu-

lations here produced onshore energy fluxes without

including extremely distant energy sources (e.g., the

Mid-Atlantic Ridge, Bermuda, or the European con-

tinental slope). However, the simulations did not

produce onshore energy fluxes from regional topo-

graphic variability alone. Instead, our results support a

third possibility: regionally generated low-mode in-

ternal tides are modified and reflected back to the

coast by the Gulf Stream. This explanation implies that

coastal internal wave dynamics in the Mid-Atlantic

Bight region are sensitive to the precise position and

strength of the Gulf Stream and its associated mean-

ders, warm-core rings, and eddy field. Improved pre-

dictions of internal tides and nonlinear internal waves

in this region need to account for these features and

their variability.
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FIG. 14. A time series of CSW energy flux at the SW06 shelf

break on 20 Aug of each year indicates that (i) coherent en-

ergy fluxes (gray), which are offshore, are the same magni-

tude regardless of the inclusion/exclusion of Gulf Stream and

(ii) noncoherent energy fluxes, which are onshore, are stronger

when the Gulf Stream is included (solid black) than excluded

(dashed black).
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